xref: /dragonfly/sys/dev/drm/ttm/ttm_memory.c (revision 3851e4b8)
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  * $FreeBSD: head/sys/dev/drm2/ttm/ttm_memory.c 248663 2013-03-23 20:46:47Z dumbbell $
27  **************************************************************************/
28 
29 #define pr_fmt(fmt) "[TTM] " fmt
30 
31 #include <drm/drmP.h>
32 #include <drm/ttm/ttm_memory.h>
33 #include <drm/ttm/ttm_module.h>
34 #include <drm/ttm/ttm_page_alloc.h>
35 #include <linux/export.h>
36 
37 #define TTM_MEMORY_ALLOC_RETRIES 4
38 
39 struct ttm_mem_zone {
40 	struct kobject kobj;
41 	struct ttm_mem_global *glob;
42 	const char *name;
43 	uint64_t zone_mem;
44 	uint64_t emer_mem;
45 	uint64_t max_mem;
46 	uint64_t swap_limit;
47 	uint64_t used_mem;
48 };
49 
50 static struct attribute ttm_mem_sys = {
51 	.name = "zone_memory",
52 	.mode = S_IRUGO
53 };
54 static struct attribute ttm_mem_emer = {
55 	.name = "emergency_memory",
56 	.mode = S_IRUGO | S_IWUSR
57 };
58 static struct attribute ttm_mem_max = {
59 	.name = "available_memory",
60 	.mode = S_IRUGO | S_IWUSR
61 };
62 static struct attribute ttm_mem_swap = {
63 	.name = "swap_limit",
64 	.mode = S_IRUGO | S_IWUSR
65 };
66 static struct attribute ttm_mem_used = {
67 	.name = "used_memory",
68 	.mode = S_IRUGO
69 };
70 
71 static void ttm_mem_zone_kobj_release(struct kobject *kobj)
72 {
73 	struct ttm_mem_zone *zone =
74 		container_of(kobj, struct ttm_mem_zone, kobj);
75 
76 	pr_info("Zone %7s: Used memory at exit: %llu kiB\n",
77 		zone->name, (unsigned long long)zone->used_mem >> 10);
78 	kfree(zone);
79 }
80 
81 static ssize_t ttm_mem_zone_show(struct kobject *kobj,
82 				 struct attribute *attr,
83 				 char *buffer)
84 {
85 	struct ttm_mem_zone *zone =
86 		container_of(kobj, struct ttm_mem_zone, kobj);
87 	uint64_t val = 0;
88 
89 	spin_lock(&zone->glob->lock);
90 	if (attr == &ttm_mem_sys)
91 		val = zone->zone_mem;
92 	else if (attr == &ttm_mem_emer)
93 		val = zone->emer_mem;
94 	else if (attr == &ttm_mem_max)
95 		val = zone->max_mem;
96 	else if (attr == &ttm_mem_swap)
97 		val = zone->swap_limit;
98 	else if (attr == &ttm_mem_used)
99 		val = zone->used_mem;
100 	spin_unlock(&zone->glob->lock);
101 
102 	return ksnprintf(buffer, PAGE_SIZE, "%llu\n",
103 			(unsigned long long) val >> 10);
104 }
105 
106 static void ttm_check_swapping(struct ttm_mem_global *glob);
107 
108 static ssize_t ttm_mem_zone_store(struct kobject *kobj,
109 				  struct attribute *attr,
110 				  const char *buffer,
111 				  size_t size)
112 {
113 	struct ttm_mem_zone *zone =
114 		container_of(kobj, struct ttm_mem_zone, kobj);
115 	int chars;
116 	unsigned long val;
117 	uint64_t val64;
118 
119 	chars = ksscanf(buffer, "%lu", &val);
120 	if (chars == 0)
121 		return size;
122 
123 	val64 = val;
124 	val64 <<= 10;
125 
126 	spin_lock(&zone->glob->lock);
127 	if (val64 > zone->zone_mem)
128 		val64 = zone->zone_mem;
129 	if (attr == &ttm_mem_emer) {
130 		zone->emer_mem = val64;
131 		if (zone->max_mem > val64)
132 			zone->max_mem = val64;
133 	} else if (attr == &ttm_mem_max) {
134 		zone->max_mem = val64;
135 		if (zone->emer_mem < val64)
136 			zone->emer_mem = val64;
137 	} else if (attr == &ttm_mem_swap)
138 		zone->swap_limit = val64;
139 	spin_unlock(&zone->glob->lock);
140 
141 	ttm_check_swapping(zone->glob);
142 
143 	return size;
144 }
145 
146 static struct attribute *ttm_mem_zone_attrs[] = {
147 	&ttm_mem_sys,
148 	&ttm_mem_emer,
149 	&ttm_mem_max,
150 	&ttm_mem_swap,
151 	&ttm_mem_used,
152 	NULL
153 };
154 
155 static const struct sysfs_ops ttm_mem_zone_ops = {
156 	.show = &ttm_mem_zone_show,
157 	.store = &ttm_mem_zone_store
158 };
159 
160 static struct kobj_type ttm_mem_zone_kobj_type = {
161 	.release = &ttm_mem_zone_kobj_release,
162 	.sysfs_ops = &ttm_mem_zone_ops,
163 	.default_attrs = ttm_mem_zone_attrs,
164 };
165 
166 static void ttm_mem_global_kobj_release(struct kobject *kobj)
167 {
168 	struct ttm_mem_global *glob =
169 		container_of(kobj, struct ttm_mem_global, kobj);
170 
171 	kfree(glob);
172 }
173 
174 static struct kobj_type ttm_mem_glob_kobj_type = {
175 	.release = &ttm_mem_global_kobj_release,
176 };
177 
178 static bool ttm_zones_above_swap_target(struct ttm_mem_global *glob,
179 					bool from_wq, uint64_t extra)
180 {
181 	unsigned int i;
182 	struct ttm_mem_zone *zone;
183 	uint64_t target;
184 
185 	for (i = 0; i < glob->num_zones; ++i) {
186 		zone = glob->zones[i];
187 
188 		if (from_wq)
189 			target = zone->swap_limit;
190 		else if (priv_check(curthread, PRIV_VM_MLOCK) == 0)
191 			target = zone->emer_mem;
192 		else
193 			target = zone->max_mem;
194 
195 		target = (extra > target) ? 0ULL : target;
196 
197 		if (zone->used_mem > target)
198 			return true;
199 	}
200 	return false;
201 }
202 
203 /**
204  * At this point we only support a single shrink callback.
205  * Extend this if needed, perhaps using a linked list of callbacks.
206  * Note that this function is reentrant:
207  * many threads may try to swap out at any given time.
208  */
209 
210 static void ttm_shrink(struct ttm_mem_global *glob, bool from_wq,
211 		       uint64_t extra)
212 {
213 	int ret;
214 	struct ttm_mem_shrink *shrink;
215 
216 	spin_lock(&glob->lock);
217 	if (glob->shrink == NULL)
218 		goto out;
219 
220 	while (ttm_zones_above_swap_target(glob, from_wq, extra)) {
221 		shrink = glob->shrink;
222 		spin_unlock(&glob->lock);
223 		ret = shrink->do_shrink(shrink);
224 		spin_lock(&glob->lock);
225 		if (unlikely(ret != 0))
226 			goto out;
227 	}
228 out:
229 	spin_unlock(&glob->lock);
230 }
231 
232 
233 
234 static void ttm_shrink_work(void *arg, int pending __unused)
235 {
236 	struct ttm_mem_global *glob = arg;
237 
238 	ttm_shrink(glob, true, 0ULL);
239 }
240 
241 static int ttm_mem_init_kernel_zone(struct ttm_mem_global *glob,
242     uint64_t mem)
243 {
244 	struct ttm_mem_zone *zone = kzalloc(sizeof(*zone), GFP_KERNEL);
245 	int ret;
246 
247 	zone->name = "kernel";
248 	zone->zone_mem = mem;
249 	zone->max_mem = mem >> 1;
250 	zone->emer_mem = (mem >> 1) + (mem >> 2);
251 	zone->swap_limit = zone->max_mem - (mem >> 3);
252 	zone->used_mem = 0;
253 	zone->glob = glob;
254 	glob->zone_kernel = zone;
255 	ret = kobject_init_and_add(
256 		&zone->kobj, &ttm_mem_zone_kobj_type, &glob->kobj, zone->name);
257 	if (unlikely(ret != 0)) {
258 		kobject_put(&zone->kobj);
259 		return ret;
260 	}
261 	glob->zones[glob->num_zones++] = zone;
262 	return 0;
263 }
264 
265 #ifdef CONFIG_HIGHMEM
266 #else
267 static int ttm_mem_init_dma32_zone(struct ttm_mem_global *glob,
268     uint64_t mem)
269 {
270 	struct ttm_mem_zone *zone = kzalloc(sizeof(*zone), GFP_KERNEL);
271 	int ret;
272 
273 	/**
274 	 * No special dma32 zone needed.
275 	 */
276 
277 	if ((physmem * PAGE_SIZE) <= ((uint64_t) 1ULL << 32)) {
278 		kfree(zone);
279 		return 0;
280 	}
281 
282 	/*
283 	 * Limit max dma32 memory to 4GB for now
284 	 * until we can figure out how big this
285 	 * zone really is.
286 	 */
287 	if (mem > ((uint64_t) 1ULL << 32))
288 		mem = ((uint64_t) 1ULL << 32);
289 
290 	zone->name = "dma32";
291 	zone->zone_mem = mem;
292 	zone->max_mem = mem >> 1;
293 	zone->emer_mem = (mem >> 1) + (mem >> 2);
294 	zone->swap_limit = zone->max_mem - (mem >> 3);
295 	zone->used_mem = 0;
296 	zone->glob = glob;
297 	glob->zone_dma32 = zone;
298 	ret = kobject_init_and_add(
299 		&zone->kobj, &ttm_mem_zone_kobj_type, &glob->kobj, zone->name);
300 	if (unlikely(ret != 0)) {
301 		kobject_put(&zone->kobj);
302 		return ret;
303 	}
304 	glob->zones[glob->num_zones++] = zone;
305 	return 0;
306 }
307 #endif
308 
309 int ttm_mem_global_init(struct ttm_mem_global *glob)
310 {
311 	u_int64_t mem;
312 	int ret;
313 	int i;
314 	struct ttm_mem_zone *zone;
315 
316 	spin_init(&glob->lock, "ttmemglob");
317 	glob->swap_queue = taskqueue_create("ttm_swap", M_WAITOK,
318 	    taskqueue_thread_enqueue, &glob->swap_queue);
319 	taskqueue_start_threads(&glob->swap_queue, 1, TDPRI_KERN_DAEMON,
320 				-1, "ttm swap");
321 	TASK_INIT(&glob->work, 0, ttm_shrink_work, glob);
322 	ret = kobject_init_and_add(
323 		&glob->kobj, &ttm_mem_glob_kobj_type, ttm_get_kobj(), "memory_accounting");
324 	if (unlikely(ret != 0)) {
325 		kobject_put(&glob->kobj);
326 		return ret;
327 	}
328 
329 	/*
330 	 * Managed contiguous memory for TTM.  Only use kernel-reserved
331 	 * dma memory for TTM, which can be controlled via /boot/loader.conf
332 	 * (e.g. vm.dma_reserved=256m).  This is the only truly dependable
333 	 * DMA memory.
334 	 */
335 	mem = (uint64_t)vm_contig_avail_pages() * PAGE_SIZE;
336 
337 	ret = ttm_mem_init_kernel_zone(glob, mem);
338 	if (unlikely(ret != 0))
339 		goto out_no_zone;
340 	ret = ttm_mem_init_dma32_zone(glob, mem);
341 	if (unlikely(ret != 0))
342 		goto out_no_zone;
343 	pr_info("(struct ttm_mem_global *)%p\n", glob);
344 	for (i = 0; i < glob->num_zones; ++i) {
345 		zone = glob->zones[i];
346 		pr_info("Zone %7s: Available graphics memory: %llu kiB\n",
347 			zone->name, (unsigned long long)zone->max_mem >> 10);
348 	}
349 	ttm_page_alloc_init(glob, glob->zone_kernel->max_mem/(2*PAGE_SIZE));
350 	ttm_dma_page_alloc_init(glob, glob->zone_kernel->max_mem/(2*PAGE_SIZE));
351 	return 0;
352 out_no_zone:
353 	ttm_mem_global_release(glob);
354 	return ret;
355 }
356 EXPORT_SYMBOL(ttm_mem_global_init);
357 
358 void ttm_mem_global_release(struct ttm_mem_global *glob)
359 {
360 	unsigned int i;
361 	struct ttm_mem_zone *zone;
362 
363 	/* let the page allocator first stop the shrink work. */
364 	ttm_page_alloc_fini();
365 	ttm_dma_page_alloc_fini();
366 
367 	taskqueue_drain(glob->swap_queue, &glob->work);
368 	taskqueue_free(glob->swap_queue);
369 	glob->swap_queue = NULL;
370 	for (i = 0; i < glob->num_zones; ++i) {
371 		zone = glob->zones[i];
372 		kobject_del(&zone->kobj);
373 		kobject_put(&zone->kobj);
374 	}
375 	kobject_del(&glob->kobj);
376 	kobject_put(&glob->kobj);
377 
378 }
379 EXPORT_SYMBOL(ttm_mem_global_release);
380 
381 static void ttm_check_swapping(struct ttm_mem_global *glob)
382 {
383 	bool needs_swapping = false;
384 	unsigned int i;
385 	struct ttm_mem_zone *zone;
386 
387 	spin_lock(&glob->lock);
388 	for (i = 0; i < glob->num_zones; ++i) {
389 		zone = glob->zones[i];
390 		if (zone->used_mem > zone->swap_limit) {
391 			needs_swapping = true;
392 			break;
393 		}
394 	}
395 	spin_unlock(&glob->lock);
396 
397 	if (unlikely(needs_swapping))
398 		taskqueue_enqueue(glob->swap_queue, &glob->work);
399 
400 }
401 
402 static void ttm_mem_global_free_zone(struct ttm_mem_global *glob,
403 				     struct ttm_mem_zone *single_zone,
404 				     uint64_t amount)
405 {
406 	unsigned int i;
407 	struct ttm_mem_zone *zone;
408 
409 	spin_lock(&glob->lock);
410 	for (i = 0; i < glob->num_zones; ++i) {
411 		zone = glob->zones[i];
412 		if (single_zone && zone != single_zone)
413 			continue;
414 		zone->used_mem -= amount;
415 	}
416 	spin_unlock(&glob->lock);
417 }
418 
419 void ttm_mem_global_free(struct ttm_mem_global *glob,
420 			 uint64_t amount)
421 {
422 	ttm_mem_global_free_zone(glob, NULL, amount);
423 }
424 EXPORT_SYMBOL(ttm_mem_global_free);
425 
426 static int ttm_mem_global_reserve(struct ttm_mem_global *glob,
427 				  struct ttm_mem_zone *single_zone,
428 				  uint64_t amount, bool reserve)
429 {
430 	uint64_t limit;
431 	int ret = -ENOMEM;
432 	unsigned int i;
433 	struct ttm_mem_zone *zone;
434 
435 	spin_lock(&glob->lock);
436 	for (i = 0; i < glob->num_zones; ++i) {
437 		zone = glob->zones[i];
438 		if (single_zone && zone != single_zone)
439 			continue;
440 
441 		limit = (priv_check(curthread, PRIV_VM_MLOCK) == 0) ?
442 			zone->emer_mem : zone->max_mem;
443 
444 		if (zone->used_mem > limit)
445 			goto out_unlock;
446 	}
447 
448 	if (reserve) {
449 		for (i = 0; i < glob->num_zones; ++i) {
450 			zone = glob->zones[i];
451 			if (single_zone && zone != single_zone)
452 				continue;
453 			zone->used_mem += amount;
454 		}
455 	}
456 
457 	ret = 0;
458 out_unlock:
459 	spin_unlock(&glob->lock);
460 	ttm_check_swapping(glob);
461 
462 	return ret;
463 }
464 
465 
466 static int ttm_mem_global_alloc_zone(struct ttm_mem_global *glob,
467 				     struct ttm_mem_zone *single_zone,
468 				     uint64_t memory,
469 				     bool no_wait, bool interruptible)
470 {
471 	int count = TTM_MEMORY_ALLOC_RETRIES;
472 
473 	while (unlikely(ttm_mem_global_reserve(glob,
474 					       single_zone,
475 					       memory, true)
476 			!= 0)) {
477 		if (no_wait)
478 			return -ENOMEM;
479 		if (unlikely(count-- == 0))
480 			return -ENOMEM;
481 		ttm_shrink(glob, false, memory + (memory >> 2) + 16);
482 	}
483 
484 	return 0;
485 }
486 
487 int ttm_mem_global_alloc(struct ttm_mem_global *glob, uint64_t memory,
488 			 bool no_wait, bool interruptible)
489 {
490 	/**
491 	 * Normal allocations of kernel memory are registered in
492 	 * all zones.
493 	 */
494 
495 	return ttm_mem_global_alloc_zone(glob, NULL, memory, no_wait,
496 					 interruptible);
497 }
498 EXPORT_SYMBOL(ttm_mem_global_alloc);
499 
500 int ttm_mem_global_alloc_page(struct ttm_mem_global *glob,
501 			      struct page *page,
502 			      bool no_wait, bool interruptible)
503 {
504 
505 	struct ttm_mem_zone *zone = NULL;
506 
507 	/**
508 	 * Page allocations may be registed in a single zone
509 	 * only if highmem or !dma32.
510 	 */
511 
512 	if (glob->zone_dma32 && page_to_pfn(page) > 0x00100000UL)
513 		zone = glob->zone_kernel;
514 	return ttm_mem_global_alloc_zone(glob, zone, PAGE_SIZE, no_wait,
515 					 interruptible);
516 }
517 
518 void ttm_mem_global_free_page(struct ttm_mem_global *glob, struct page *page)
519 {
520 	struct ttm_mem_zone *zone = NULL;
521 
522 	if (glob->zone_dma32 && page_to_pfn(page) > 0x00100000UL)
523 		zone = glob->zone_kernel;
524 	ttm_mem_global_free_zone(glob, zone, PAGE_SIZE);
525 }
526 
527 
528 size_t ttm_round_pot(size_t size)
529 {
530 	if ((size & (size - 1)) == 0)
531 		return size;
532 	else if (size > PAGE_SIZE)
533 		return PAGE_ALIGN(size);
534 	else {
535 		size_t tmp_size = 4;
536 
537 		while (tmp_size < size)
538 			tmp_size <<= 1;
539 
540 		return tmp_size;
541 	}
542 	return 0;
543 }
544 EXPORT_SYMBOL(ttm_round_pot);
545