1 /* 2 * Copyright 2011 (c) Oracle Corp. 3 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sub license, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the 12 * next paragraph) shall be included in all copies or substantial portions 13 * of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 * 23 * Author: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> 24 * 25 * $FreeBSD: head/sys/dev/drm2/ttm/ttm_page_alloc_dma.c 247835 2013-03-05 09:49:34Z kib $ 26 */ 27 28 /* 29 * A simple DMA pool losely based on dmapool.c. It has certain advantages 30 * over the DMA pools: 31 * - Pool collects resently freed pages for reuse (and hooks up to 32 * the shrinker). 33 * - Tracks currently in use pages 34 * - Tracks whether the page is UC, WB or cached (and reverts to WB 35 * when freed). 36 */ 37 38 #define pr_fmt(fmt) "[TTM] " fmt 39 40 #include <linux/dma-mapping.h> 41 #include <linux/list.h> 42 #include <linux/seq_file.h> /* for seq_printf */ 43 #include <linux/slab.h> 44 #include <linux/spinlock.h> 45 #include <linux/highmem.h> 46 #include <linux/mm_types.h> 47 #include <linux/module.h> 48 #include <linux/mm.h> 49 #include <linux/atomic.h> 50 #include <linux/device.h> 51 #include <linux/kthread.h> 52 #include <drm/ttm/ttm_bo_driver.h> 53 #include <drm/ttm/ttm_page_alloc.h> 54 #ifdef TTM_HAS_AGP 55 #include <asm/agp.h> 56 #endif 57 58 #define NUM_PAGES_TO_ALLOC (PAGE_SIZE/sizeof(struct page *)) 59 #define SMALL_ALLOCATION 4 60 #define FREE_ALL_PAGES (~0U) 61 /* times are in msecs */ 62 #define IS_UNDEFINED (0) 63 #define IS_WC (1<<1) 64 #define IS_UC (1<<2) 65 #define IS_CACHED (1<<3) 66 #define IS_DMA32 (1<<4) 67 68 enum pool_type { 69 POOL_IS_UNDEFINED, 70 POOL_IS_WC = IS_WC, 71 POOL_IS_UC = IS_UC, 72 POOL_IS_CACHED = IS_CACHED, 73 POOL_IS_WC_DMA32 = IS_WC | IS_DMA32, 74 POOL_IS_UC_DMA32 = IS_UC | IS_DMA32, 75 POOL_IS_CACHED_DMA32 = IS_CACHED | IS_DMA32, 76 }; 77 /* 78 * The pool structure. There are usually six pools: 79 * - generic (not restricted to DMA32): 80 * - write combined, uncached, cached. 81 * - dma32 (up to 2^32 - so up 4GB): 82 * - write combined, uncached, cached. 83 * for each 'struct device'. The 'cached' is for pages that are actively used. 84 * The other ones can be shrunk by the shrinker API if neccessary. 85 * @pools: The 'struct device->dma_pools' link. 86 * @type: Type of the pool 87 * @lock: Protects the inuse_list and free_list from concurrnet access. Must be 88 * used with irqsave/irqrestore variants because pool allocator maybe called 89 * from delayed work. 90 * @inuse_list: Pool of pages that are in use. The order is very important and 91 * it is in the order that the TTM pages that are put back are in. 92 * @free_list: Pool of pages that are free to be used. No order requirements. 93 * @dev: The device that is associated with these pools. 94 * @size: Size used during DMA allocation. 95 * @npages_free: Count of available pages for re-use. 96 * @npages_in_use: Count of pages that are in use. 97 * @nfrees: Stats when pool is shrinking. 98 * @nrefills: Stats when the pool is grown. 99 * @gfp_flags: Flags to pass for alloc_page. 100 * @name: Name of the pool. 101 * @dev_name: Name derieved from dev - similar to how dev_info works. 102 * Used during shutdown as the dev_info during release is unavailable. 103 */ 104 struct dma_pool { 105 struct list_head pools; /* The 'struct device->dma_pools link */ 106 enum pool_type type; 107 spinlock_t lock; 108 struct list_head inuse_list; 109 struct list_head free_list; 110 struct device *dev; 111 unsigned size; 112 unsigned npages_free; 113 unsigned npages_in_use; 114 unsigned long nfrees; /* Stats when shrunk. */ 115 unsigned long nrefills; /* Stats when grown. */ 116 gfp_t gfp_flags; 117 char name[13]; /* "cached dma32" */ 118 char dev_name[64]; /* Constructed from dev */ 119 }; 120 121 /* 122 * The accounting page keeping track of the allocated page along with 123 * the DMA address. 124 * @page_list: The link to the 'page_list' in 'struct dma_pool'. 125 * @vaddr: The virtual address of the page 126 * @dma: The bus address of the page. If the page is not allocated 127 * via the DMA API, it will be -1. 128 */ 129 struct dma_page { 130 struct list_head page_list; 131 void *vaddr; 132 struct page *p; 133 dma_addr_t dma; 134 }; 135 136 /* 137 * Limits for the pool. They are handled without locks because only place where 138 * they may change is in sysfs store. They won't have immediate effect anyway 139 * so forcing serialization to access them is pointless. 140 */ 141 142 struct ttm_pool_opts { 143 unsigned alloc_size; 144 unsigned max_size; 145 unsigned small; 146 }; 147 148 /* 149 * Contains the list of all of the 'struct device' and their corresponding 150 * DMA pools. Guarded by _mutex->lock. 151 * @pools: The link to 'struct ttm_pool_manager->pools' 152 * @dev: The 'struct device' associated with the 'pool' 153 * @pool: The 'struct dma_pool' associated with the 'dev' 154 */ 155 struct device_pools { 156 struct list_head pools; 157 struct device *dev; 158 struct dma_pool *pool; 159 }; 160 161 /* 162 * struct ttm_pool_manager - Holds memory pools for fast allocation 163 * 164 * @lock: Lock used when adding/removing from pools 165 * @pools: List of 'struct device' and 'struct dma_pool' tuples. 166 * @options: Limits for the pool. 167 * @npools: Total amount of pools in existence. 168 * @shrinker: The structure used by [un|]register_shrinker 169 */ 170 struct ttm_pool_manager { 171 struct mutex lock; 172 struct list_head pools; 173 struct ttm_pool_opts options; 174 unsigned npools; 175 struct shrinker mm_shrink; 176 struct kobject kobj; 177 }; 178 179 static struct ttm_pool_manager *_manager; 180 181 static struct attribute ttm_page_pool_max = { 182 .name = "pool_max_size", 183 .mode = S_IRUGO | S_IWUSR 184 }; 185 static struct attribute ttm_page_pool_small = { 186 .name = "pool_small_allocation", 187 .mode = S_IRUGO | S_IWUSR 188 }; 189 static struct attribute ttm_page_pool_alloc_size = { 190 .name = "pool_allocation_size", 191 .mode = S_IRUGO | S_IWUSR 192 }; 193 194 static struct attribute *ttm_pool_attrs[] = { 195 &ttm_page_pool_max, 196 &ttm_page_pool_small, 197 &ttm_page_pool_alloc_size, 198 NULL 199 }; 200 201 static void ttm_pool_kobj_release(struct kobject *kobj) 202 { 203 struct ttm_pool_manager *m = 204 container_of(kobj, struct ttm_pool_manager, kobj); 205 kfree(m); 206 } 207 208 static ssize_t ttm_pool_store(struct kobject *kobj, struct attribute *attr, 209 const char *buffer, size_t size) 210 { 211 struct ttm_pool_manager *m = 212 container_of(kobj, struct ttm_pool_manager, kobj); 213 int chars; 214 unsigned val; 215 chars = sscanf(buffer, "%u", &val); 216 if (chars == 0) 217 return size; 218 219 /* Convert kb to number of pages */ 220 val = val / (PAGE_SIZE >> 10); 221 222 if (attr == &ttm_page_pool_max) 223 m->options.max_size = val; 224 else if (attr == &ttm_page_pool_small) 225 m->options.small = val; 226 else if (attr == &ttm_page_pool_alloc_size) { 227 if (val > NUM_PAGES_TO_ALLOC*8) { 228 pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n", 229 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7), 230 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10)); 231 return size; 232 } else if (val > NUM_PAGES_TO_ALLOC) { 233 pr_warn("Setting allocation size to larger than %lu is not recommended\n", 234 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10)); 235 } 236 m->options.alloc_size = val; 237 } 238 239 return size; 240 } 241 242 static ssize_t ttm_pool_show(struct kobject *kobj, struct attribute *attr, 243 char *buffer) 244 { 245 struct ttm_pool_manager *m = 246 container_of(kobj, struct ttm_pool_manager, kobj); 247 unsigned val = 0; 248 249 if (attr == &ttm_page_pool_max) 250 val = m->options.max_size; 251 else if (attr == &ttm_page_pool_small) 252 val = m->options.small; 253 else if (attr == &ttm_page_pool_alloc_size) 254 val = m->options.alloc_size; 255 256 val = val * (PAGE_SIZE >> 10); 257 258 return snprintf(buffer, PAGE_SIZE, "%u\n", val); 259 } 260 261 static const struct sysfs_ops ttm_pool_sysfs_ops = { 262 .show = &ttm_pool_show, 263 .store = &ttm_pool_store, 264 }; 265 266 static struct kobj_type ttm_pool_kobj_type = { 267 .release = &ttm_pool_kobj_release, 268 .sysfs_ops = &ttm_pool_sysfs_ops, 269 .default_attrs = ttm_pool_attrs, 270 }; 271 272 #ifndef CONFIG_X86 273 static int set_pages_array_wb(struct page **pages, int addrinarray) 274 { 275 #ifdef TTM_HAS_AGP 276 int i; 277 278 for (i = 0; i < addrinarray; i++) 279 unmap_page_from_agp(pages[i]); 280 #endif 281 return 0; 282 } 283 284 static int set_pages_array_wc(struct page **pages, int addrinarray) 285 { 286 #ifdef TTM_HAS_AGP 287 int i; 288 289 for (i = 0; i < addrinarray; i++) 290 map_page_into_agp(pages[i]); 291 #endif 292 return 0; 293 } 294 295 static int set_pages_array_uc(struct page **pages, int addrinarray) 296 { 297 #ifdef TTM_HAS_AGP 298 int i; 299 300 for (i = 0; i < addrinarray; i++) 301 map_page_into_agp(pages[i]); 302 #endif 303 return 0; 304 } 305 #endif /* for !CONFIG_X86 */ 306 307 static int ttm_set_pages_caching(struct dma_pool *pool, 308 struct page **pages, unsigned cpages) 309 { 310 int r = 0; 311 /* Set page caching */ 312 if (pool->type & IS_UC) { 313 r = set_pages_array_uc(pages, cpages); 314 if (r) 315 pr_err("%s: Failed to set %d pages to uc!\n", 316 pool->dev_name, cpages); 317 } 318 if (pool->type & IS_WC) { 319 r = set_pages_array_wc(pages, cpages); 320 if (r) 321 pr_err("%s: Failed to set %d pages to wc!\n", 322 pool->dev_name, cpages); 323 } 324 return r; 325 } 326 327 static void __ttm_dma_free_page(struct dma_pool *pool, struct dma_page *d_page) 328 { 329 dma_addr_t dma = d_page->dma; 330 dma_free_coherent(pool->dev, pool->size, d_page->vaddr, dma); 331 332 kfree(d_page); 333 d_page = NULL; 334 } 335 static struct dma_page *__ttm_dma_alloc_page(struct dma_pool *pool) 336 { 337 struct dma_page *d_page; 338 339 d_page = kmalloc(sizeof(struct dma_page), GFP_KERNEL); 340 if (!d_page) 341 return NULL; 342 343 d_page->vaddr = dma_alloc_coherent(pool->dev, pool->size, 344 &d_page->dma, 345 pool->gfp_flags); 346 if (d_page->vaddr) 347 d_page->p = virt_to_page(d_page->vaddr); 348 else { 349 kfree(d_page); 350 d_page = NULL; 351 } 352 return d_page; 353 } 354 static enum pool_type ttm_to_type(int flags, enum ttm_caching_state cstate) 355 { 356 enum pool_type type = IS_UNDEFINED; 357 358 if (flags & TTM_PAGE_FLAG_DMA32) 359 type |= IS_DMA32; 360 if (cstate == tt_cached) 361 type |= IS_CACHED; 362 else if (cstate == tt_uncached) 363 type |= IS_UC; 364 else 365 type |= IS_WC; 366 367 return type; 368 } 369 370 static void ttm_pool_update_free_locked(struct dma_pool *pool, 371 unsigned freed_pages) 372 { 373 pool->npages_free -= freed_pages; 374 pool->nfrees += freed_pages; 375 376 } 377 378 /* set memory back to wb and free the pages. */ 379 static void ttm_dma_pages_put(struct dma_pool *pool, struct list_head *d_pages, 380 struct page *pages[], unsigned npages) 381 { 382 struct dma_page *d_page, *tmp; 383 384 /* Don't set WB on WB page pool. */ 385 if (npages && !(pool->type & IS_CACHED) && 386 set_pages_array_wb(pages, npages)) 387 pr_err("%s: Failed to set %d pages to wb!\n", 388 pool->dev_name, npages); 389 390 list_for_each_entry_safe(d_page, tmp, d_pages, page_list) { 391 list_del(&d_page->page_list); 392 __ttm_dma_free_page(pool, d_page); 393 } 394 } 395 396 static void ttm_dma_page_put(struct dma_pool *pool, struct dma_page *d_page) 397 { 398 /* Don't set WB on WB page pool. */ 399 if (!(pool->type & IS_CACHED) && set_pages_array_wb(&d_page->p, 1)) 400 pr_err("%s: Failed to set %d pages to wb!\n", 401 pool->dev_name, 1); 402 403 list_del(&d_page->page_list); 404 __ttm_dma_free_page(pool, d_page); 405 } 406 407 /* 408 * Free pages from pool. 409 * 410 * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC 411 * number of pages in one go. 412 * 413 * @pool: to free the pages from 414 * @nr_free: If set to true will free all pages in pool 415 **/ 416 static unsigned ttm_dma_page_pool_free(struct dma_pool *pool, unsigned nr_free) 417 { 418 unsigned long irq_flags; 419 struct dma_page *dma_p, *tmp; 420 struct page **pages_to_free; 421 struct list_head d_pages; 422 unsigned freed_pages = 0, 423 npages_to_free = nr_free; 424 425 if (NUM_PAGES_TO_ALLOC < nr_free) 426 npages_to_free = NUM_PAGES_TO_ALLOC; 427 #if 0 428 if (nr_free > 1) { 429 pr_debug("%s: (%s:%d) Attempting to free %d (%d) pages\n", 430 pool->dev_name, pool->name, current->pid, 431 npages_to_free, nr_free); 432 } 433 #endif 434 pages_to_free = kmalloc(npages_to_free * sizeof(struct page *), 435 GFP_KERNEL); 436 437 if (!pages_to_free) { 438 pr_err("%s: Failed to allocate memory for pool free operation\n", 439 pool->dev_name); 440 return 0; 441 } 442 INIT_LIST_HEAD(&d_pages); 443 restart: 444 spin_lock_irqsave(&pool->lock, irq_flags); 445 446 /* We picking the oldest ones off the list */ 447 list_for_each_entry_safe_reverse(dma_p, tmp, &pool->free_list, 448 page_list) { 449 if (freed_pages >= npages_to_free) 450 break; 451 452 /* Move the dma_page from one list to another. */ 453 list_move(&dma_p->page_list, &d_pages); 454 455 pages_to_free[freed_pages++] = dma_p->p; 456 /* We can only remove NUM_PAGES_TO_ALLOC at a time. */ 457 if (freed_pages >= NUM_PAGES_TO_ALLOC) { 458 459 ttm_pool_update_free_locked(pool, freed_pages); 460 /** 461 * Because changing page caching is costly 462 * we unlock the pool to prevent stalling. 463 */ 464 spin_unlock_irqrestore(&pool->lock, irq_flags); 465 466 ttm_dma_pages_put(pool, &d_pages, pages_to_free, 467 freed_pages); 468 469 INIT_LIST_HEAD(&d_pages); 470 471 if (likely(nr_free != FREE_ALL_PAGES)) 472 nr_free -= freed_pages; 473 474 if (NUM_PAGES_TO_ALLOC >= nr_free) 475 npages_to_free = nr_free; 476 else 477 npages_to_free = NUM_PAGES_TO_ALLOC; 478 479 freed_pages = 0; 480 481 /* free all so restart the processing */ 482 if (nr_free) 483 goto restart; 484 485 /* Not allowed to fall through or break because 486 * following context is inside spinlock while we are 487 * outside here. 488 */ 489 goto out; 490 491 } 492 } 493 494 /* remove range of pages from the pool */ 495 if (freed_pages) { 496 ttm_pool_update_free_locked(pool, freed_pages); 497 nr_free -= freed_pages; 498 } 499 500 spin_unlock_irqrestore(&pool->lock, irq_flags); 501 502 if (freed_pages) 503 ttm_dma_pages_put(pool, &d_pages, pages_to_free, freed_pages); 504 out: 505 kfree(pages_to_free); 506 return nr_free; 507 } 508 509 static void ttm_dma_free_pool(struct device *dev, enum pool_type type) 510 { 511 struct device_pools *p; 512 struct dma_pool *pool; 513 514 if (!dev) 515 return; 516 517 mutex_lock(&_manager->lock); 518 list_for_each_entry_reverse(p, &_manager->pools, pools) { 519 if (p->dev != dev) 520 continue; 521 pool = p->pool; 522 if (pool->type != type) 523 continue; 524 525 list_del(&p->pools); 526 kfree(p); 527 _manager->npools--; 528 break; 529 } 530 list_for_each_entry_reverse(pool, &dev->dma_pools, pools) { 531 if (pool->type != type) 532 continue; 533 /* Takes a spinlock.. */ 534 ttm_dma_page_pool_free(pool, FREE_ALL_PAGES); 535 WARN_ON(((pool->npages_in_use + pool->npages_free) != 0)); 536 /* This code path is called after _all_ references to the 537 * struct device has been dropped - so nobody should be 538 * touching it. In case somebody is trying to _add_ we are 539 * guarded by the mutex. */ 540 list_del(&pool->pools); 541 kfree(pool); 542 break; 543 } 544 mutex_unlock(&_manager->lock); 545 } 546 547 /* 548 * On free-ing of the 'struct device' this deconstructor is run. 549 * Albeit the pool might have already been freed earlier. 550 */ 551 static void ttm_dma_pool_release(struct device *dev, void *res) 552 { 553 struct dma_pool *pool = *(struct dma_pool **)res; 554 555 if (pool) 556 ttm_dma_free_pool(dev, pool->type); 557 } 558 559 static int ttm_dma_pool_match(struct device *dev, void *res, void *match_data) 560 { 561 return *(struct dma_pool **)res == match_data; 562 } 563 564 static struct dma_pool *ttm_dma_pool_init(struct device *dev, gfp_t flags, 565 enum pool_type type) 566 { 567 char *n[] = {"wc", "uc", "cached", " dma32", "unknown",}; 568 enum pool_type t[] = {IS_WC, IS_UC, IS_CACHED, IS_DMA32, IS_UNDEFINED}; 569 struct device_pools *sec_pool = NULL; 570 struct dma_pool *pool = NULL, **ptr; 571 unsigned i; 572 int ret = -ENODEV; 573 char *p; 574 575 if (!dev) 576 return NULL; 577 578 ptr = devres_alloc(ttm_dma_pool_release, sizeof(*ptr), GFP_KERNEL); 579 if (!ptr) 580 return NULL; 581 582 ret = -ENOMEM; 583 584 pool = kmalloc_node(sizeof(struct dma_pool), GFP_KERNEL, 585 dev_to_node(dev)); 586 if (!pool) 587 goto err_mem; 588 589 sec_pool = kmalloc_node(sizeof(struct device_pools), GFP_KERNEL, 590 dev_to_node(dev)); 591 if (!sec_pool) 592 goto err_mem; 593 594 INIT_LIST_HEAD(&sec_pool->pools); 595 sec_pool->dev = dev; 596 sec_pool->pool = pool; 597 598 INIT_LIST_HEAD(&pool->free_list); 599 INIT_LIST_HEAD(&pool->inuse_list); 600 INIT_LIST_HEAD(&pool->pools); 601 spin_lock_init(&pool->lock); 602 pool->dev = dev; 603 pool->npages_free = pool->npages_in_use = 0; 604 pool->nfrees = 0; 605 pool->gfp_flags = flags; 606 pool->size = PAGE_SIZE; 607 pool->type = type; 608 pool->nrefills = 0; 609 p = pool->name; 610 for (i = 0; i < 5; i++) { 611 if (type & t[i]) { 612 p += snprintf(p, sizeof(pool->name) - (p - pool->name), 613 "%s", n[i]); 614 } 615 } 616 *p = 0; 617 /* We copy the name for pr_ calls b/c when dma_pool_destroy is called 618 * - the kobj->name has already been deallocated.*/ 619 snprintf(pool->dev_name, sizeof(pool->dev_name), "%s %s", 620 dev_driver_string(dev), dev_name(dev)); 621 mutex_lock(&_manager->lock); 622 /* You can get the dma_pool from either the global: */ 623 list_add(&sec_pool->pools, &_manager->pools); 624 _manager->npools++; 625 /* or from 'struct device': */ 626 list_add(&pool->pools, &dev->dma_pools); 627 mutex_unlock(&_manager->lock); 628 629 *ptr = pool; 630 devres_add(dev, ptr); 631 632 return pool; 633 err_mem: 634 devres_free(ptr); 635 kfree(sec_pool); 636 kfree(pool); 637 return ERR_PTR(ret); 638 } 639 640 static struct dma_pool *ttm_dma_find_pool(struct device *dev, 641 enum pool_type type) 642 { 643 struct dma_pool *pool, *tmp, *found = NULL; 644 645 if (type == IS_UNDEFINED) 646 return found; 647 648 /* NB: We iterate on the 'struct dev' which has no spinlock, but 649 * it does have a kref which we have taken. The kref is taken during 650 * graphic driver loading - in the drm_pci_init it calls either 651 * pci_dev_get or pci_register_driver which both end up taking a kref 652 * on 'struct device'. 653 * 654 * On teardown, the graphic drivers end up quiescing the TTM (put_pages) 655 * and calls the dev_res deconstructors: ttm_dma_pool_release. The nice 656 * thing is at that point of time there are no pages associated with the 657 * driver so this function will not be called. 658 */ 659 list_for_each_entry_safe(pool, tmp, &dev->dma_pools, pools) { 660 if (pool->type != type) 661 continue; 662 found = pool; 663 break; 664 } 665 return found; 666 } 667 668 /* 669 * Free pages the pages that failed to change the caching state. If there 670 * are pages that have changed their caching state already put them to the 671 * pool. 672 */ 673 static void ttm_dma_handle_caching_state_failure(struct dma_pool *pool, 674 struct list_head *d_pages, 675 struct page **failed_pages, 676 unsigned cpages) 677 { 678 struct dma_page *d_page, *tmp; 679 struct page *p; 680 unsigned i = 0; 681 682 p = failed_pages[0]; 683 if (!p) 684 return; 685 /* Find the failed page. */ 686 list_for_each_entry_safe(d_page, tmp, d_pages, page_list) { 687 if (d_page->p != p) 688 continue; 689 /* .. and then progress over the full list. */ 690 list_del(&d_page->page_list); 691 __ttm_dma_free_page(pool, d_page); 692 if (++i < cpages) 693 p = failed_pages[i]; 694 else 695 break; 696 } 697 698 } 699 700 /* 701 * Allocate 'count' pages, and put 'need' number of them on the 702 * 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset. 703 * The full list of pages should also be on 'd_pages'. 704 * We return zero for success, and negative numbers as errors. 705 */ 706 static int ttm_dma_pool_alloc_new_pages(struct dma_pool *pool, 707 struct list_head *d_pages, 708 unsigned count) 709 { 710 struct page **caching_array; 711 struct dma_page *dma_p; 712 struct page *p; 713 int r = 0; 714 unsigned i, cpages; 715 unsigned max_cpages = min(count, 716 (unsigned)(PAGE_SIZE/sizeof(struct page *))); 717 718 /* allocate array for page caching change */ 719 caching_array = kmalloc(max_cpages*sizeof(struct page *), GFP_KERNEL); 720 721 if (!caching_array) { 722 pr_err("%s: Unable to allocate table for new pages\n", 723 pool->dev_name); 724 return -ENOMEM; 725 } 726 727 if (count > 1) { 728 pr_debug("%s: (%s:%d) Getting %d pages\n", 729 pool->dev_name, pool->name, current->pid, count); 730 } 731 732 for (i = 0, cpages = 0; i < count; ++i) { 733 dma_p = __ttm_dma_alloc_page(pool); 734 if (!dma_p) { 735 pr_err("%s: Unable to get page %u\n", 736 pool->dev_name, i); 737 738 /* store already allocated pages in the pool after 739 * setting the caching state */ 740 if (cpages) { 741 r = ttm_set_pages_caching(pool, caching_array, 742 cpages); 743 if (r) 744 ttm_dma_handle_caching_state_failure( 745 pool, d_pages, caching_array, 746 cpages); 747 } 748 r = -ENOMEM; 749 goto out; 750 } 751 p = dma_p->p; 752 #ifdef CONFIG_HIGHMEM 753 /* gfp flags of highmem page should never be dma32 so we 754 * we should be fine in such case 755 */ 756 if (!PageHighMem(p)) 757 #endif 758 { 759 caching_array[cpages++] = p; 760 if (cpages == max_cpages) { 761 /* Note: Cannot hold the spinlock */ 762 r = ttm_set_pages_caching(pool, caching_array, 763 cpages); 764 if (r) { 765 ttm_dma_handle_caching_state_failure( 766 pool, d_pages, caching_array, 767 cpages); 768 goto out; 769 } 770 cpages = 0; 771 } 772 } 773 list_add(&dma_p->page_list, d_pages); 774 } 775 776 if (cpages) { 777 r = ttm_set_pages_caching(pool, caching_array, cpages); 778 if (r) 779 ttm_dma_handle_caching_state_failure(pool, d_pages, 780 caching_array, cpages); 781 } 782 out: 783 kfree(caching_array); 784 return r; 785 } 786 787 /* 788 * @return count of pages still required to fulfill the request. 789 */ 790 static int ttm_dma_page_pool_fill_locked(struct dma_pool *pool, 791 unsigned long *irq_flags) 792 { 793 unsigned count = _manager->options.small; 794 int r = pool->npages_free; 795 796 if (count > pool->npages_free) { 797 struct list_head d_pages; 798 799 INIT_LIST_HEAD(&d_pages); 800 801 spin_unlock_irqrestore(&pool->lock, *irq_flags); 802 803 /* Returns how many more are neccessary to fulfill the 804 * request. */ 805 r = ttm_dma_pool_alloc_new_pages(pool, &d_pages, count); 806 807 spin_lock_irqsave(&pool->lock, *irq_flags); 808 if (!r) { 809 /* Add the fresh to the end.. */ 810 list_splice(&d_pages, &pool->free_list); 811 ++pool->nrefills; 812 pool->npages_free += count; 813 r = count; 814 } else { 815 struct dma_page *d_page; 816 unsigned cpages = 0; 817 818 pr_err("%s: Failed to fill %s pool (r:%d)!\n", 819 pool->dev_name, pool->name, r); 820 821 list_for_each_entry(d_page, &d_pages, page_list) { 822 cpages++; 823 } 824 list_splice_tail(&d_pages, &pool->free_list); 825 pool->npages_free += cpages; 826 r = cpages; 827 } 828 } 829 return r; 830 } 831 832 /* 833 * @return count of pages still required to fulfill the request. 834 * The populate list is actually a stack (not that is matters as TTM 835 * allocates one page at a time. 836 */ 837 static int ttm_dma_pool_get_pages(struct dma_pool *pool, 838 struct ttm_dma_tt *ttm_dma, 839 unsigned index) 840 { 841 struct dma_page *d_page; 842 struct ttm_tt *ttm = &ttm_dma->ttm; 843 unsigned long irq_flags; 844 int count, r = -ENOMEM; 845 846 spin_lock_irqsave(&pool->lock, irq_flags); 847 count = ttm_dma_page_pool_fill_locked(pool, &irq_flags); 848 if (count) { 849 d_page = list_first_entry(&pool->free_list, struct dma_page, page_list); 850 ttm->pages[index] = d_page->p; 851 ttm_dma->dma_address[index] = d_page->dma; 852 list_move_tail(&d_page->page_list, &ttm_dma->pages_list); 853 r = 0; 854 pool->npages_in_use += 1; 855 pool->npages_free -= 1; 856 } 857 spin_unlock_irqrestore(&pool->lock, irq_flags); 858 return r; 859 } 860 861 /* 862 * On success pages list will hold count number of correctly 863 * cached pages. On failure will hold the negative return value (-ENOMEM, etc). 864 */ 865 int ttm_dma_populate(struct ttm_dma_tt *ttm_dma, struct device *dev) 866 { 867 struct ttm_tt *ttm = &ttm_dma->ttm; 868 struct ttm_mem_global *mem_glob = ttm->glob->mem_glob; 869 struct dma_pool *pool; 870 enum pool_type type; 871 unsigned i; 872 gfp_t gfp_flags; 873 int ret; 874 875 if (ttm->state != tt_unpopulated) 876 return 0; 877 878 type = ttm_to_type(ttm->page_flags, ttm->caching_state); 879 if (ttm->page_flags & TTM_PAGE_FLAG_DMA32) 880 gfp_flags = GFP_USER | GFP_DMA32; 881 else 882 gfp_flags = GFP_HIGHUSER; 883 if (ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC) 884 gfp_flags |= __GFP_ZERO; 885 886 pool = ttm_dma_find_pool(dev, type); 887 if (!pool) { 888 pool = ttm_dma_pool_init(dev, gfp_flags, type); 889 if (IS_ERR_OR_NULL(pool)) { 890 return -ENOMEM; 891 } 892 } 893 894 INIT_LIST_HEAD(&ttm_dma->pages_list); 895 for (i = 0; i < ttm->num_pages; ++i) { 896 ret = ttm_dma_pool_get_pages(pool, ttm_dma, i); 897 if (ret != 0) { 898 ttm_dma_unpopulate(ttm_dma, dev); 899 return -ENOMEM; 900 } 901 902 ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i], 903 false, false); 904 if (unlikely(ret != 0)) { 905 ttm_dma_unpopulate(ttm_dma, dev); 906 return -ENOMEM; 907 } 908 } 909 910 if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) { 911 ret = ttm_tt_swapin(ttm); 912 if (unlikely(ret != 0)) { 913 ttm_dma_unpopulate(ttm_dma, dev); 914 return ret; 915 } 916 } 917 918 ttm->state = tt_unbound; 919 return 0; 920 } 921 EXPORT_SYMBOL_GPL(ttm_dma_populate); 922 923 /* Get good estimation how many pages are free in pools */ 924 static int ttm_dma_pool_get_num_unused_pages(void) 925 { 926 struct device_pools *p; 927 unsigned total = 0; 928 929 mutex_lock(&_manager->lock); 930 list_for_each_entry(p, &_manager->pools, pools) 931 total += p->pool->npages_free; 932 mutex_unlock(&_manager->lock); 933 return total; 934 } 935 936 /* Put all pages in pages list to correct pool to wait for reuse */ 937 void ttm_dma_unpopulate(struct ttm_dma_tt *ttm_dma, struct device *dev) 938 { 939 struct ttm_tt *ttm = &ttm_dma->ttm; 940 struct dma_pool *pool; 941 struct dma_page *d_page, *next; 942 enum pool_type type; 943 bool is_cached = false; 944 unsigned count = 0, i, npages = 0; 945 unsigned long irq_flags; 946 947 type = ttm_to_type(ttm->page_flags, ttm->caching_state); 948 pool = ttm_dma_find_pool(dev, type); 949 if (!pool) 950 return; 951 952 is_cached = (ttm_dma_find_pool(pool->dev, 953 ttm_to_type(ttm->page_flags, tt_cached)) == pool); 954 955 /* make sure pages array match list and count number of pages */ 956 list_for_each_entry(d_page, &ttm_dma->pages_list, page_list) { 957 ttm->pages[count] = d_page->p; 958 count++; 959 } 960 961 spin_lock_irqsave(&pool->lock, irq_flags); 962 pool->npages_in_use -= count; 963 if (is_cached) { 964 pool->nfrees += count; 965 } else { 966 pool->npages_free += count; 967 list_splice(&ttm_dma->pages_list, &pool->free_list); 968 npages = count; 969 if (pool->npages_free > _manager->options.max_size) { 970 npages = pool->npages_free - _manager->options.max_size; 971 /* free at least NUM_PAGES_TO_ALLOC number of pages 972 * to reduce calls to set_memory_wb */ 973 if (npages < NUM_PAGES_TO_ALLOC) 974 npages = NUM_PAGES_TO_ALLOC; 975 } 976 } 977 spin_unlock_irqrestore(&pool->lock, irq_flags); 978 979 if (is_cached) { 980 list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list, page_list) { 981 ttm_mem_global_free_page(ttm->glob->mem_glob, 982 d_page->p); 983 ttm_dma_page_put(pool, d_page); 984 } 985 } else { 986 for (i = 0; i < count; i++) { 987 ttm_mem_global_free_page(ttm->glob->mem_glob, 988 ttm->pages[i]); 989 } 990 } 991 992 INIT_LIST_HEAD(&ttm_dma->pages_list); 993 for (i = 0; i < ttm->num_pages; i++) { 994 ttm->pages[i] = NULL; 995 ttm_dma->dma_address[i] = 0; 996 } 997 998 /* shrink pool if necessary (only on !is_cached pools)*/ 999 if (npages) 1000 ttm_dma_page_pool_free(pool, npages); 1001 ttm->state = tt_unpopulated; 1002 } 1003 EXPORT_SYMBOL_GPL(ttm_dma_unpopulate); 1004 1005 /** 1006 * Callback for mm to request pool to reduce number of page held. 1007 */ 1008 static int ttm_dma_pool_mm_shrink(struct shrinker *shrink, 1009 struct shrink_control *sc) 1010 { 1011 static atomic_t start_pool = ATOMIC_INIT(0); 1012 unsigned idx = 0; 1013 unsigned pool_offset = atomic_add_return(1, &start_pool); 1014 unsigned shrink_pages = sc->nr_to_scan; 1015 struct device_pools *p; 1016 1017 if (list_empty(&_manager->pools)) 1018 return 0; 1019 1020 mutex_lock(&_manager->lock); 1021 pool_offset = pool_offset % _manager->npools; 1022 list_for_each_entry(p, &_manager->pools, pools) { 1023 unsigned nr_free; 1024 1025 if (!p->dev) 1026 continue; 1027 if (shrink_pages == 0) 1028 break; 1029 /* Do it in round-robin fashion. */ 1030 if (++idx < pool_offset) 1031 continue; 1032 nr_free = shrink_pages; 1033 shrink_pages = ttm_dma_page_pool_free(p->pool, nr_free); 1034 pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n", 1035 p->pool->dev_name, p->pool->name, current->pid, 1036 nr_free, shrink_pages); 1037 } 1038 mutex_unlock(&_manager->lock); 1039 /* return estimated number of unused pages in pool */ 1040 return ttm_dma_pool_get_num_unused_pages(); 1041 } 1042 1043 static void ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager *manager) 1044 { 1045 manager->mm_shrink.shrink = &ttm_dma_pool_mm_shrink; 1046 manager->mm_shrink.seeks = 1; 1047 register_shrinker(&manager->mm_shrink); 1048 } 1049 1050 static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager *manager) 1051 { 1052 unregister_shrinker(&manager->mm_shrink); 1053 } 1054 1055 int ttm_dma_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages) 1056 { 1057 int ret = -ENOMEM; 1058 1059 WARN_ON(_manager); 1060 1061 pr_info("Initializing DMA pool allocator\n"); 1062 1063 _manager = kzalloc(sizeof(*_manager), GFP_KERNEL); 1064 if (!_manager) 1065 goto err; 1066 1067 mutex_init(&_manager->lock); 1068 INIT_LIST_HEAD(&_manager->pools); 1069 1070 _manager->options.max_size = max_pages; 1071 _manager->options.small = SMALL_ALLOCATION; 1072 _manager->options.alloc_size = NUM_PAGES_TO_ALLOC; 1073 1074 /* This takes care of auto-freeing the _manager */ 1075 ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type, 1076 &glob->kobj, "dma_pool"); 1077 if (unlikely(ret != 0)) { 1078 kobject_put(&_manager->kobj); 1079 goto err; 1080 } 1081 ttm_dma_pool_mm_shrink_init(_manager); 1082 return 0; 1083 err: 1084 return ret; 1085 } 1086 1087 void ttm_dma_page_alloc_fini(void) 1088 { 1089 struct device_pools *p, *t; 1090 1091 pr_info("Finalizing DMA pool allocator\n"); 1092 ttm_dma_pool_mm_shrink_fini(_manager); 1093 1094 list_for_each_entry_safe_reverse(p, t, &_manager->pools, pools) { 1095 dev_dbg(p->dev, "(%s:%d) Freeing.\n", p->pool->name, 1096 current->pid); 1097 WARN_ON(devres_destroy(p->dev, ttm_dma_pool_release, 1098 ttm_dma_pool_match, p->pool)); 1099 ttm_dma_free_pool(p->dev, p->pool->type); 1100 } 1101 kobject_put(&_manager->kobj); 1102 _manager = NULL; 1103 } 1104 1105 int ttm_dma_page_alloc_debugfs(struct seq_file *m, void *data) 1106 { 1107 struct device_pools *p; 1108 struct dma_pool *pool = NULL; 1109 char *h[] = {"pool", "refills", "pages freed", "inuse", "available", 1110 "name", "virt", "busaddr"}; 1111 1112 if (!_manager) { 1113 seq_printf(m, "No pool allocator running.\n"); 1114 return 0; 1115 } 1116 seq_printf(m, "%13s %12s %13s %8s %8s %8s\n", 1117 h[0], h[1], h[2], h[3], h[4], h[5]); 1118 mutex_lock(&_manager->lock); 1119 list_for_each_entry(p, &_manager->pools, pools) { 1120 struct device *dev = p->dev; 1121 if (!dev) 1122 continue; 1123 pool = p->pool; 1124 seq_printf(m, "%13s %12ld %13ld %8d %8d %8s\n", 1125 pool->name, pool->nrefills, 1126 pool->nfrees, pool->npages_in_use, 1127 pool->npages_free, 1128 pool->dev_name); 1129 } 1130 mutex_unlock(&_manager->lock); 1131 return 0; 1132 } 1133 EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs); 1134