1 /************************************************************************** 2 * 3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA 4 * All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 /* 28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> 29 */ 30 31 #define pr_fmt(fmt) "[TTM] " fmt 32 33 #include <linux/sched.h> 34 #include <linux/highmem.h> 35 #include <linux/pagemap.h> 36 #include <linux/shmem_fs.h> 37 #include <linux/file.h> 38 #include <linux/swap.h> 39 #include <linux/slab.h> 40 #include <linux/export.h> 41 #include <drm/drm_mem_util.h> 42 #include <drm/ttm/ttm_module.h> 43 #include <drm/ttm/ttm_bo_driver.h> 44 #include <drm/ttm/ttm_placement.h> 45 #include <drm/ttm/ttm_page_alloc.h> 46 47 /** 48 * Allocates storage for pointers to the pages that back the ttm. 49 */ 50 static void ttm_tt_alloc_page_directory(struct ttm_tt *ttm) 51 { 52 ttm->pages = drm_calloc_large(ttm->num_pages, sizeof(void*)); 53 } 54 55 static void ttm_dma_tt_alloc_page_directory(struct ttm_dma_tt *ttm) 56 { 57 ttm->ttm.pages = drm_calloc_large(ttm->ttm.num_pages, 58 sizeof(*ttm->ttm.pages) + 59 sizeof(*ttm->dma_address) + 60 sizeof(*ttm->cpu_address)); 61 ttm->cpu_address = (void *) (ttm->ttm.pages + ttm->ttm.num_pages); 62 ttm->dma_address = (void *) (ttm->cpu_address + ttm->ttm.num_pages); 63 } 64 65 #ifdef CONFIG_X86 66 static inline int ttm_tt_set_page_caching(struct page *p, 67 enum ttm_caching_state c_old, 68 enum ttm_caching_state c_new) 69 { 70 int ret = 0; 71 72 #if 0 73 if (PageHighMem(p)) 74 return 0; 75 #endif 76 77 if (c_old != tt_cached) { 78 /* p isn't in the default caching state, set it to 79 * writeback first to free its current memtype. */ 80 81 ret = set_pages_wb(p, 1); 82 if (ret) 83 return ret; 84 } 85 86 if (c_new == tt_wc) 87 pmap_page_set_memattr((struct vm_page *)p, VM_MEMATTR_WRITE_COMBINING); 88 else if (c_new == tt_uncached) 89 pmap_page_set_memattr((struct vm_page *)p, VM_MEMATTR_UNCACHEABLE); 90 91 return (0); 92 } 93 #else /* CONFIG_X86 */ 94 static inline int ttm_tt_set_page_caching(struct page *p, 95 enum ttm_caching_state c_old, 96 enum ttm_caching_state c_new) 97 { 98 return 0; 99 } 100 #endif /* CONFIG_X86 */ 101 102 /* 103 * Change caching policy for the linear kernel map 104 * for range of pages in a ttm. 105 */ 106 107 static int ttm_tt_set_caching(struct ttm_tt *ttm, 108 enum ttm_caching_state c_state) 109 { 110 int i, j; 111 struct page *cur_page; 112 int ret; 113 114 if (ttm->caching_state == c_state) 115 return 0; 116 117 if (ttm->state == tt_unpopulated) { 118 /* Change caching but don't populate */ 119 ttm->caching_state = c_state; 120 return 0; 121 } 122 123 if (ttm->caching_state == tt_cached) 124 drm_clflush_pages(ttm->pages, ttm->num_pages); 125 126 for (i = 0; i < ttm->num_pages; ++i) { 127 cur_page = ttm->pages[i]; 128 if (likely(cur_page != NULL)) { 129 ret = ttm_tt_set_page_caching(cur_page, 130 ttm->caching_state, 131 c_state); 132 if (unlikely(ret != 0)) 133 goto out_err; 134 } 135 } 136 137 ttm->caching_state = c_state; 138 139 return 0; 140 141 out_err: 142 for (j = 0; j < i; ++j) { 143 cur_page = ttm->pages[j]; 144 if (likely(cur_page != NULL)) { 145 (void)ttm_tt_set_page_caching(cur_page, c_state, 146 ttm->caching_state); 147 } 148 } 149 150 return ret; 151 } 152 153 int ttm_tt_set_placement_caching(struct ttm_tt *ttm, uint32_t placement) 154 { 155 enum ttm_caching_state state; 156 157 if (placement & TTM_PL_FLAG_WC) 158 state = tt_wc; 159 else if (placement & TTM_PL_FLAG_UNCACHED) 160 state = tt_uncached; 161 else 162 state = tt_cached; 163 164 return ttm_tt_set_caching(ttm, state); 165 } 166 EXPORT_SYMBOL(ttm_tt_set_placement_caching); 167 168 void ttm_tt_destroy(struct ttm_tt *ttm) 169 { 170 if (ttm == NULL) 171 return; 172 173 ttm_tt_unbind(ttm); 174 175 if (ttm->state == tt_unbound) 176 ttm_tt_unpopulate(ttm); 177 178 if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTENT_SWAP) && 179 ttm->swap_storage) 180 vm_object_deallocate(ttm->swap_storage); 181 182 ttm->swap_storage = NULL; 183 ttm->func->destroy(ttm); 184 } 185 186 int ttm_tt_init(struct ttm_tt *ttm, struct ttm_bo_device *bdev, 187 unsigned long size, uint32_t page_flags, 188 struct page *dummy_read_page) 189 { 190 ttm->bdev = bdev; 191 ttm->glob = bdev->glob; 192 ttm->num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 193 ttm->caching_state = tt_cached; 194 ttm->page_flags = page_flags; 195 ttm->dummy_read_page = dummy_read_page; 196 ttm->state = tt_unpopulated; 197 ttm->swap_storage = NULL; 198 199 ttm_tt_alloc_page_directory(ttm); 200 if (!ttm->pages) { 201 ttm_tt_destroy(ttm); 202 pr_err("Failed allocating page table\n"); 203 return -ENOMEM; 204 } 205 return 0; 206 } 207 EXPORT_SYMBOL(ttm_tt_init); 208 209 void ttm_tt_fini(struct ttm_tt *ttm) 210 { 211 drm_free_large(ttm->pages); 212 ttm->pages = NULL; 213 } 214 EXPORT_SYMBOL(ttm_tt_fini); 215 216 int ttm_dma_tt_init(struct ttm_dma_tt *ttm_dma, struct ttm_bo_device *bdev, 217 unsigned long size, uint32_t page_flags, 218 struct page *dummy_read_page) 219 { 220 struct ttm_tt *ttm = &ttm_dma->ttm; 221 222 ttm->bdev = bdev; 223 ttm->glob = bdev->glob; 224 ttm->num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 225 ttm->caching_state = tt_cached; 226 ttm->page_flags = page_flags; 227 ttm->dummy_read_page = dummy_read_page; 228 ttm->state = tt_unpopulated; 229 ttm->swap_storage = NULL; 230 231 INIT_LIST_HEAD(&ttm_dma->pages_list); 232 ttm_dma_tt_alloc_page_directory(ttm_dma); 233 if (!ttm->pages) { 234 ttm_tt_destroy(ttm); 235 pr_err("Failed allocating page table\n"); 236 return -ENOMEM; 237 } 238 return 0; 239 } 240 EXPORT_SYMBOL(ttm_dma_tt_init); 241 242 void ttm_dma_tt_fini(struct ttm_dma_tt *ttm_dma) 243 { 244 struct ttm_tt *ttm = &ttm_dma->ttm; 245 246 drm_free_large(ttm->pages); 247 ttm->pages = NULL; 248 ttm_dma->cpu_address = NULL; 249 ttm_dma->dma_address = NULL; 250 } 251 EXPORT_SYMBOL(ttm_dma_tt_fini); 252 253 void ttm_tt_unbind(struct ttm_tt *ttm) 254 { 255 int ret; 256 257 if (ttm->state == tt_bound) { 258 ret = ttm->func->unbind(ttm); 259 BUG_ON(ret); 260 ttm->state = tt_unbound; 261 } 262 } 263 264 int ttm_tt_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem) 265 { 266 int ret = 0; 267 268 if (!ttm) 269 return -EINVAL; 270 271 if (ttm->state == tt_bound) 272 return 0; 273 274 ret = ttm->bdev->driver->ttm_tt_populate(ttm); 275 if (ret) 276 return ret; 277 278 ret = ttm->func->bind(ttm, bo_mem); 279 if (unlikely(ret != 0)) 280 return ret; 281 282 ttm->state = tt_bound; 283 284 return 0; 285 } 286 EXPORT_SYMBOL(ttm_tt_bind); 287 288 int ttm_tt_swapin(struct ttm_tt *ttm) 289 { 290 vm_object_t obj; 291 struct page *from_page; 292 struct page *to_page; 293 int i; 294 int ret = -ENOMEM; 295 296 obj = ttm->swap_storage; 297 298 VM_OBJECT_LOCK(obj); 299 vm_object_pip_add(obj, 1); 300 for (i = 0; i < ttm->num_pages; ++i) { 301 from_page = (struct page *)vm_page_grab(obj, i, VM_ALLOC_NORMAL | 302 VM_ALLOC_RETRY); 303 if (((struct vm_page *)from_page)->valid != VM_PAGE_BITS_ALL) { 304 if (vm_pager_has_page(obj, i)) { 305 if (vm_pager_get_page(obj, (struct vm_page **)&from_page, 1) != VM_PAGER_OK) { 306 vm_page_free((struct vm_page *)from_page); 307 ret = -EIO; 308 goto out_err; 309 } 310 } else { 311 vm_page_zero_invalid((struct vm_page *)from_page, TRUE); 312 } 313 } 314 to_page = ttm->pages[i]; 315 if (unlikely(to_page == NULL)) { 316 vm_page_wakeup((struct vm_page *)from_page); 317 goto out_err; 318 } 319 320 pmap_copy_page(VM_PAGE_TO_PHYS((struct vm_page *)from_page), 321 VM_PAGE_TO_PHYS((struct vm_page *)to_page)); 322 vm_page_wakeup((struct vm_page *)from_page); 323 } 324 vm_object_pip_wakeup(obj); 325 VM_OBJECT_UNLOCK(obj); 326 327 if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTENT_SWAP)) 328 vm_object_deallocate(obj); 329 ttm->swap_storage = NULL; 330 ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED; 331 332 return 0; 333 out_err: 334 vm_object_pip_wakeup(obj); 335 VM_OBJECT_UNLOCK(obj); 336 return ret; 337 } 338 339 int ttm_tt_swapout(struct ttm_tt *ttm, vm_object_t persistent_swap_storage) 340 { 341 vm_object_t obj; 342 vm_page_t from_page, to_page; 343 int i; 344 345 BUG_ON(ttm->state != tt_unbound && ttm->state != tt_unpopulated); 346 BUG_ON(ttm->caching_state != tt_cached); 347 348 if (!persistent_swap_storage) { 349 obj = swap_pager_alloc(NULL, 350 IDX_TO_OFF(ttm->num_pages), VM_PROT_DEFAULT, 0); 351 if (obj == NULL) { 352 pr_err("Failed allocating swap storage\n"); 353 return (-ENOMEM); 354 } 355 } else 356 obj = persistent_swap_storage; 357 358 VM_OBJECT_LOCK(obj); 359 vm_object_pip_add(obj, 1); 360 for (i = 0; i < ttm->num_pages; ++i) { 361 from_page = (struct vm_page *)ttm->pages[i]; 362 if (unlikely(from_page == NULL)) 363 continue; 364 to_page = vm_page_grab(obj, i, VM_ALLOC_NORMAL | 365 VM_ALLOC_RETRY); 366 pmap_copy_page(VM_PAGE_TO_PHYS(from_page), 367 VM_PAGE_TO_PHYS(to_page)); 368 to_page->valid = VM_PAGE_BITS_ALL; 369 vm_page_dirty(to_page); 370 vm_page_wakeup(to_page); 371 } 372 vm_object_pip_wakeup(obj); 373 VM_OBJECT_UNLOCK(obj); 374 375 ttm_tt_unpopulate(ttm); 376 ttm->swap_storage = obj; 377 ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED; 378 if (persistent_swap_storage) 379 ttm->page_flags |= TTM_PAGE_FLAG_PERSISTENT_SWAP; 380 381 return 0; 382 } 383 384 static void ttm_tt_clear_mapping(struct ttm_tt *ttm) 385 { 386 #if 0 387 pgoff_t i; 388 struct page **page = ttm->pages; 389 390 if (ttm->page_flags & TTM_PAGE_FLAG_SG) 391 return; 392 393 for (i = 0; i < ttm->num_pages; ++i) { 394 (*page)->mapping = NULL; 395 (*page++)->index = 0; 396 } 397 #endif 398 } 399 400 void ttm_tt_unpopulate(struct ttm_tt *ttm) 401 { 402 if (ttm->state == tt_unpopulated) 403 return; 404 405 ttm_tt_clear_mapping(ttm); 406 ttm->bdev->driver->ttm_tt_unpopulate(ttm); 407 } 408