xref: /dragonfly/sys/dev/netif/ath/ath/if_ath.c (revision bcb3e04d)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  *
29  * $FreeBSD: head/sys/dev/ath/if_ath.c 203751 2010-02-10 11:12:39Z rpaulo $");
30  */
31 
32 /*
33  * Driver for the Atheros Wireless LAN controller.
34  *
35  * This software is derived from work of Atsushi Onoe; his contribution
36  * is greatly appreciated.
37  */
38 
39 #include "opt_inet.h"
40 #include "opt_ath.h"
41 #include "opt_wlan.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/sysctl.h>
46 #include <sys/mbuf.h>
47 #include <sys/malloc.h>
48 #include <sys/lock.h>
49 #include <sys/mutex.h>
50 #include <sys/kernel.h>
51 #include <sys/socket.h>
52 #include <sys/sockio.h>
53 #include <sys/errno.h>
54 #include <sys/callout.h>
55 #include <sys/bus.h>
56 #include <sys/endian.h>
57 #include <sys/kthread.h>
58 #include <sys/taskqueue.h>
59 #include <sys/priv.h>
60 
61 #include <net/if.h>
62 #include <net/if_dl.h>
63 #include <net/if_media.h>
64 #include <net/if_types.h>
65 #include <net/if_arp.h>
66 #include <net/if_llc.h>
67 #include <net/ifq_var.h>
68 
69 #include <netproto/802_11/ieee80211_var.h>
70 #include <netproto/802_11/ieee80211_regdomain.h>
71 #ifdef IEEE80211_SUPPORT_SUPERG
72 #include <netproto/802_11/ieee80211_superg.h>
73 #endif
74 #ifdef IEEE80211_SUPPORT_TDMA
75 #include <netproto/802_11/ieee80211_tdma.h>
76 #endif
77 
78 #include <net/bpf.h>
79 
80 #ifdef INET
81 #include <netinet/in.h>
82 #include <netinet/if_ether.h>
83 #endif
84 
85 #include <dev/netif/ath/ath/if_athvar.h>
86 #include <dev/netif/ath/hal/ath_hal/ah_devid.h>		/* XXX for softled */
87 
88 #ifdef ATH_TX99_DIAG
89 #include <dev/netif/ath_tx99/ath_tx99.h>
90 #endif
91 
92 /*
93  * ATH_BCBUF determines the number of vap's that can transmit
94  * beacons and also (currently) the number of vap's that can
95  * have unique mac addresses/bssid.  When staggering beacons
96  * 4 is probably a good max as otherwise the beacons become
97  * very closely spaced and there is limited time for cab q traffic
98  * to go out.  You can burst beacons instead but that is not good
99  * for stations in power save and at some point you really want
100  * another radio (and channel).
101  *
102  * The limit on the number of mac addresses is tied to our use of
103  * the U/L bit and tracking addresses in a byte; it would be
104  * worthwhile to allow more for applications like proxy sta.
105  */
106 CTASSERT(ATH_BCBUF <= 8);
107 
108 /* unaligned little endian access */
109 #define LE_READ_2(p)							\
110 	((u_int16_t)							\
111 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
112 #define LE_READ_4(p)							\
113 	((u_int32_t)							\
114 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
115 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
116 
117 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
118 		    const char name[IFNAMSIZ], int unit, int opmode,
119 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
120 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
121 static void	ath_vap_delete(struct ieee80211vap *);
122 static void	ath_init(void *);
123 static void	ath_stop_locked(struct ifnet *);
124 static void	ath_stop(struct ifnet *);
125 static void	ath_start(struct ifnet *);
126 static int	ath_reset(struct ifnet *);
127 static int	ath_reset_vap(struct ieee80211vap *, u_long);
128 static int	ath_media_change(struct ifnet *);
129 static void	ath_watchdog_callout(void *);
130 static int	ath_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
131 static void	ath_fatal_proc(void *, int);
132 static void	ath_bmiss_vap(struct ieee80211vap *);
133 static void	ath_bmiss_task(void *, int);
134 static int	ath_keyset(struct ath_softc *, const struct ieee80211_key *,
135 			struct ieee80211_node *);
136 static int	ath_key_alloc(struct ieee80211vap *,
137 			struct ieee80211_key *,
138 			ieee80211_keyix *, ieee80211_keyix *);
139 static int	ath_key_delete(struct ieee80211vap *,
140 			const struct ieee80211_key *);
141 static int	ath_key_set(struct ieee80211vap *, const struct ieee80211_key *,
142 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
143 static void	ath_key_update_begin(struct ieee80211vap *);
144 static void	ath_key_update_end(struct ieee80211vap *);
145 static void	ath_update_mcast(struct ifnet *);
146 static void	ath_update_promisc(struct ifnet *);
147 static void	ath_mode_init(struct ath_softc *);
148 static void	ath_setslottime(struct ath_softc *);
149 static void	ath_updateslot(struct ifnet *);
150 static int	ath_beaconq_setup(struct ath_hal *);
151 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
152 static void	ath_beacon_update(struct ieee80211vap *, int item);
153 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
154 static void	ath_beacon_proc(void *, int);
155 static struct ath_buf *ath_beacon_generate(struct ath_softc *,
156 			struct ieee80211vap *);
157 static void	ath_bstuck_task(void *, int);
158 static void	ath_beacon_return(struct ath_softc *, struct ath_buf *);
159 static void	ath_beacon_free(struct ath_softc *);
160 static void	ath_beacon_config(struct ath_softc *, struct ieee80211vap *);
161 static void	ath_descdma_cleanup(struct ath_softc *sc,
162 			struct ath_descdma *, ath_bufhead *);
163 static int	ath_desc_alloc(struct ath_softc *);
164 static void	ath_desc_free(struct ath_softc *);
165 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
166 			const uint8_t [IEEE80211_ADDR_LEN]);
167 static void	ath_node_free(struct ieee80211_node *);
168 static void	ath_node_getsignal(const struct ieee80211_node *,
169 			int8_t *, int8_t *);
170 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
171 static void	ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
172 			int subtype, int rssi, int nf);
173 static void	ath_setdefantenna(struct ath_softc *, u_int);
174 static void	ath_rx_task(void *, int);
175 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
176 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
177 static int	ath_tx_setup(struct ath_softc *, int, int);
178 static int	ath_wme_update(struct ieee80211com *);
179 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
180 static void	ath_tx_cleanup(struct ath_softc *);
181 static void	ath_freetx(struct mbuf *);
182 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
183 			     struct ath_buf *, struct mbuf *);
184 static void	ath_tx_task_q0(void *, int);
185 static void	ath_tx_task_q0123(void *, int);
186 static void	ath_tx_task(void *, int);
187 static void	ath_tx_draintxq(struct ath_softc *, struct ath_txq *);
188 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
189 static void	ath_draintxq(struct ath_softc *);
190 static void	ath_stoprecv(struct ath_softc *);
191 static int	ath_startrecv(struct ath_softc *);
192 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
193 static void	ath_scan_start(struct ieee80211com *);
194 static void	ath_scan_end(struct ieee80211com *);
195 static void	ath_set_channel(struct ieee80211com *);
196 static void	ath_calibrate_callout(void *);
197 static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
198 static void	ath_setup_stationkey(struct ieee80211_node *);
199 static void	ath_newassoc(struct ieee80211_node *, int);
200 static int	ath_setregdomain(struct ieee80211com *,
201 		    struct ieee80211_regdomain *, int,
202 		    struct ieee80211_channel []);
203 static void	ath_getradiocaps(struct ieee80211com *, int, int *,
204 		    struct ieee80211_channel []);
205 static int	ath_getchannels(struct ath_softc *);
206 static void	ath_led_event(struct ath_softc *, int);
207 
208 static int	ath_rate_setup(struct ath_softc *, u_int mode);
209 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
210 
211 static void	ath_sysctlattach(struct ath_softc *);
212 static int	ath_raw_xmit(struct ieee80211_node *,
213 			struct mbuf *, const struct ieee80211_bpf_params *);
214 static void	ath_announce(struct ath_softc *);
215 static void	ath_sysctl_stats_attach(struct ath_softc *sc);
216 
217 #ifdef IEEE80211_SUPPORT_TDMA
218 static void	ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt,
219 		    u_int32_t bintval);
220 static void	ath_tdma_bintvalsetup(struct ath_softc *sc,
221 		    const struct ieee80211_tdma_state *tdma);
222 static void	ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap);
223 static void	ath_tdma_update(struct ieee80211_node *ni,
224 		    const struct ieee80211_tdma_param *tdma, int);
225 static void	ath_tdma_beacon_send(struct ath_softc *sc,
226 		    struct ieee80211vap *vap);
227 
228 static __inline void
229 ath_hal_setcca(struct ath_hal *ah, int ena)
230 {
231 	/*
232 	 * NB: fill me in; this is not provided by default because disabling
233 	 *     CCA in most locales violates regulatory.
234 	 */
235 }
236 
237 static __inline int
238 ath_hal_getcca(struct ath_hal *ah)
239 {
240 	u_int32_t diag;
241 	if (ath_hal_getcapability(ah, HAL_CAP_DIAG, 0, &diag) != HAL_OK)
242 		return 1;
243 	return ((diag & 0x500000) == 0);
244 }
245 
246 #define	TDMA_EP_MULTIPLIER	(1<<10) /* pow2 to optimize out * and / */
247 #define	TDMA_LPF_LEN		6
248 #define	TDMA_DUMMY_MARKER	0x127
249 #define	TDMA_EP_MUL(x, mul)	((x) * (mul))
250 #define	TDMA_IN(x)		(TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER))
251 #define	TDMA_LPF(x, y, len) \
252     ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y))
253 #define	TDMA_SAMPLE(x, y) do {					\
254 	x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN);		\
255 } while (0)
256 #define	TDMA_EP_RND(x,mul) \
257 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
258 #define	TDMA_AVG(x)		TDMA_EP_RND(x, TDMA_EP_MULTIPLIER)
259 #endif /* IEEE80211_SUPPORT_TDMA */
260 
261 SYSCTL_DECL(_hw_ath);
262 
263 /* XXX validate sysctl values */
264 static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
265 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
266 	    0, "long chip calibration interval (secs)");
267 static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
268 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
269 	    0, "short chip calibration interval (msecs)");
270 static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
271 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
272 	    0, "reset chip calibration results (secs)");
273 
274 static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
275 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
276 	    0, "rx buffers allocated");
277 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
278 static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
279 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
280 	    0, "tx buffers allocated");
281 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
282 
283 static	int ath_bstuck_threshold = 4;		/* max missed beacons */
284 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
285 	    0, "max missed beacon xmits before chip reset");
286 
287 #ifdef ATH_DEBUG
288 enum {
289 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
290 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
291 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
292 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
293 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
294 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
295 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
296 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
297 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
298 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
299 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
300 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
301 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
302 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
303 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
304 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
305 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
306 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
307 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
308 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
309 	ATH_DEBUG_TDMA		= 0x00800000,	/* TDMA processing */
310 	ATH_DEBUG_TDMA_TIMER	= 0x01000000,	/* TDMA timer processing */
311 	ATH_DEBUG_REGDOMAIN	= 0x02000000,	/* regulatory processing */
312 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
313 	ATH_DEBUG_ANY		= 0xffffffff
314 };
315 static	int ath_debug = 0;
316 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
317 	    0, "control debugging printfs");
318 TUNABLE_INT("hw.ath.debug", &ath_debug);
319 
320 #define	IFF_DUMPPKTS(sc, m) \
321 	((sc->sc_debug & (m)) || \
322 	    (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
323 #define	DPRINTF(sc, m, fmt, ...) do {				\
324 	if (sc->sc_debug & (m))					\
325 		kprintf(fmt, __VA_ARGS__);			\
326 } while (0)
327 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
328 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
329 		ath_keyprint(sc, __func__, ix, hk, mac);	\
330 } while (0)
331 static	void ath_printrxbuf(struct ath_softc *, const struct ath_buf *bf,
332 	u_int ix, int);
333 static	void ath_printtxbuf(struct ath_softc *, const struct ath_buf *bf,
334 	u_int qnum, u_int ix, int done);
335 #else
336 #define	IFF_DUMPPKTS(sc, m) \
337 	((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
338 #define	DPRINTF(sc, m, fmt, ...) do {				\
339 	(void) sc;						\
340 } while (0)
341 #define	KEYPRINTF(sc, k, ix, mac) do {				\
342 	(void) sc;						\
343 } while (0)
344 #endif
345 
346 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
347 
348 int
349 ath_attach(u_int16_t devid, struct ath_softc *sc)
350 {
351 	struct ifnet *ifp;
352 	struct ieee80211com *ic;
353 	struct ath_hal *ah = NULL;
354 	HAL_STATUS status;
355 	int error = 0, i;
356 	u_int wmodes;
357 	uint8_t macaddr[IEEE80211_ADDR_LEN];
358 
359 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
360 
361 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
362 	if (ifp == NULL) {
363 		device_printf(sc->sc_dev, "can not if_alloc()\n");
364 		error = ENOSPC;
365 		goto bad;
366 	}
367 	ic = ifp->if_l2com;
368 
369 	/* set these up early for if_printf use */
370 	if_initname(ifp, device_get_name(sc->sc_dev),
371 		device_get_unit(sc->sc_dev));
372 
373 	/* prepare sysctl tree for use in sub modules */
374 	sysctl_ctx_init(&sc->sc_sysctl_ctx);
375 	sc->sc_sysctl_tree = SYSCTL_ADD_NODE(&sc->sc_sysctl_ctx,
376 		SYSCTL_STATIC_CHILDREN(_hw),
377 		OID_AUTO,
378 		device_get_nameunit(sc->sc_dev),
379 		CTLFLAG_RD, 0, "");
380 
381 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
382 	if (ah == NULL) {
383 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
384 			status);
385 		error = ENXIO;
386 		goto bad;
387 	}
388 	sc->sc_ah = ah;
389 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
390 #ifdef	ATH_DEBUG
391 	sc->sc_debug = ath_debug;
392 #endif
393 
394 	/*
395 	 * Check if the MAC has multi-rate retry support.
396 	 * We do this by trying to setup a fake extended
397 	 * descriptor.  MAC's that don't have support will
398 	 * return false w/o doing anything.  MAC's that do
399 	 * support it will return true w/o doing anything.
400 	 */
401 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
402 
403 	/*
404 	 * Check if the device has hardware counters for PHY
405 	 * errors.  If so we need to enable the MIB interrupt
406 	 * so we can act on stat triggers.
407 	 */
408 	if (ath_hal_hwphycounters(ah))
409 		sc->sc_needmib = 1;
410 
411 	/*
412 	 * Get the hardware key cache size.
413 	 */
414 	sc->sc_keymax = ath_hal_keycachesize(ah);
415 	if (sc->sc_keymax > ATH_KEYMAX) {
416 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
417 			ATH_KEYMAX, sc->sc_keymax);
418 		sc->sc_keymax = ATH_KEYMAX;
419 	}
420 	/*
421 	 * Reset the key cache since some parts do not
422 	 * reset the contents on initial power up.
423 	 */
424 	for (i = 0; i < sc->sc_keymax; i++)
425 		ath_hal_keyreset(ah, i);
426 
427 	/*
428 	 * Collect the default channel list.
429 	 */
430 	error = ath_getchannels(sc);
431 	if (error != 0)
432 		goto bad;
433 
434 	/*
435 	 * Setup rate tables for all potential media types.
436 	 */
437 	ath_rate_setup(sc, IEEE80211_MODE_11A);
438 	ath_rate_setup(sc, IEEE80211_MODE_11B);
439 	ath_rate_setup(sc, IEEE80211_MODE_11G);
440 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
441 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
442 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
443 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
444 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
445 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
446 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
447 
448 	/* NB: setup here so ath_rate_update is happy */
449 	ath_setcurmode(sc, IEEE80211_MODE_11A);
450 
451 	/*
452 	 * Allocate tx+rx descriptors and populate the lists.
453 	 */
454 	wlan_assert_serialized();
455 	wlan_serialize_exit();
456 	error = ath_desc_alloc(sc);
457 	wlan_serialize_enter();
458 	if (error != 0) {
459 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
460 		goto bad;
461 	}
462 	callout_init(&sc->sc_cal_ch);
463 	callout_init(&sc->sc_wd_ch);
464 
465 	sc->sc_tq = taskqueue_create("ath_taskq", M_INTWAIT,
466 		taskqueue_thread_enqueue, &sc->sc_tq);
467 	taskqueue_start_threads(&sc->sc_tq, 1, TDPRI_KERN_DAEMON, -1,
468 		"%s taskq", ifp->if_xname);
469 
470 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_task, sc);
471 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_task, sc);
472 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_task, sc);
473 
474 	/*
475 	 * Allocate hardware transmit queues: one queue for
476 	 * beacon frames and one data queue for each QoS
477 	 * priority.  Note that the hal handles reseting
478 	 * these queues at the needed time.
479 	 *
480 	 * XXX PS-Poll
481 	 */
482 	sc->sc_bhalq = ath_beaconq_setup(ah);
483 	if (sc->sc_bhalq == (u_int) -1) {
484 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
485 		error = EIO;
486 		goto bad2;
487 	}
488 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
489 	if (sc->sc_cabq == NULL) {
490 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
491 		error = EIO;
492 		goto bad2;
493 	}
494 	/* NB: insure BK queue is the lowest priority h/w queue */
495 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
496 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
497 			ieee80211_wme_acnames[WME_AC_BK]);
498 		error = EIO;
499 		goto bad2;
500 	}
501 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
502 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
503 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
504 		/*
505 		 * Not enough hardware tx queues to properly do WME;
506 		 * just punt and assign them all to the same h/w queue.
507 		 * We could do a better job of this if, for example,
508 		 * we allocate queues when we switch from station to
509 		 * AP mode.
510 		 */
511 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
512 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
513 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
514 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
515 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
516 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
517 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
518 	}
519 
520 	/*
521 	 * Special case certain configurations.  Note the
522 	 * CAB queue is handled by these specially so don't
523 	 * include them when checking the txq setup mask.
524 	 */
525 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
526 	case 0x01:
527 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_task_q0, sc);
528 		break;
529 	case 0x0f:
530 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_task_q0123, sc);
531 		break;
532 	default:
533 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_task, sc);
534 		break;
535 	}
536 
537 	/*
538 	 * Setup rate control.  Some rate control modules
539 	 * call back to change the anntena state so expose
540 	 * the necessary entry points.
541 	 * XXX maybe belongs in struct ath_ratectrl?
542 	 */
543 	sc->sc_setdefantenna = ath_setdefantenna;
544 	sc->sc_rc = ath_rate_attach(sc);
545 	if (sc->sc_rc == NULL) {
546 		error = EIO;
547 		goto bad2;
548 	}
549 
550 	sc->sc_blinking = 0;
551 	sc->sc_ledstate = 1;
552 	sc->sc_ledon = 0;			/* low true */
553 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
554 	callout_init_mp(&sc->sc_ledtimer);
555 	/*
556 	 * Auto-enable soft led processing for IBM cards and for
557 	 * 5211 minipci cards.  Users can also manually enable/disable
558 	 * support with a sysctl.
559 	 */
560 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
561 	if (sc->sc_softled) {
562 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
563 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
564 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
565 	}
566 
567 	ifp->if_softc = sc;
568 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
569 	ifp->if_start = ath_start;
570 	ifp->if_ioctl = ath_ioctl;
571 	ifp->if_init = ath_init;
572 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
573 	ifq_set_ready(&ifp->if_snd);
574 
575 	ic->ic_ifp = ifp;
576 	/* XXX not right but it's not used anywhere important */
577 	ic->ic_phytype = IEEE80211_T_OFDM;
578 	ic->ic_opmode = IEEE80211_M_STA;
579 	ic->ic_caps =
580 		  IEEE80211_C_STA		/* station mode */
581 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
582 		| IEEE80211_C_HOSTAP		/* hostap mode */
583 		| IEEE80211_C_MONITOR		/* monitor mode */
584 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
585 		| IEEE80211_C_WDS		/* 4-address traffic works */
586 		| IEEE80211_C_MBSS		/* mesh point link mode */
587 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
588 		| IEEE80211_C_SHSLOT		/* short slot time supported */
589 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
590 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
591 		| IEEE80211_C_TXFRAG		/* handle tx frags */
592 		;
593 	/*
594 	 * Query the hal to figure out h/w crypto support.
595 	 */
596 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
597 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
598 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
599 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
600 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
601 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
602 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
603 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
604 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
605 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
606 		/*
607 		 * Check if h/w does the MIC and/or whether the
608 		 * separate key cache entries are required to
609 		 * handle both tx+rx MIC keys.
610 		 */
611 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
612 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
613 		/*
614 		 * If the h/w supports storing tx+rx MIC keys
615 		 * in one cache slot automatically enable use.
616 		 */
617 		if (ath_hal_hastkipsplit(ah) ||
618 		    !ath_hal_settkipsplit(ah, AH_FALSE))
619 			sc->sc_splitmic = 1;
620 		/*
621 		 * If the h/w can do TKIP MIC together with WME then
622 		 * we use it; otherwise we force the MIC to be done
623 		 * in software by the net80211 layer.
624 		 */
625 		if (ath_hal_haswmetkipmic(ah))
626 			sc->sc_wmetkipmic = 1;
627 	}
628 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
629 	/*
630 	 * Check for multicast key search support.
631 	 */
632 	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
633 	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
634 		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
635 	}
636 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
637 	/*
638 	 * Mark key cache slots associated with global keys
639 	 * as in use.  If we knew TKIP was not to be used we
640 	 * could leave the +32, +64, and +32+64 slots free.
641 	 */
642 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
643 		setbit(sc->sc_keymap, i);
644 		setbit(sc->sc_keymap, i+64);
645 		if (sc->sc_splitmic) {
646 			setbit(sc->sc_keymap, i+32);
647 			setbit(sc->sc_keymap, i+32+64);
648 		}
649 	}
650 	/*
651 	 * TPC support can be done either with a global cap or
652 	 * per-packet support.  The latter is not available on
653 	 * all parts.  We're a bit pedantic here as all parts
654 	 * support a global cap.
655 	 */
656 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
657 		ic->ic_caps |= IEEE80211_C_TXPMGT;
658 
659 	/*
660 	 * Mark WME capability only if we have sufficient
661 	 * hardware queues to do proper priority scheduling.
662 	 */
663 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
664 		ic->ic_caps |= IEEE80211_C_WME;
665 	/*
666 	 * Check for misc other capabilities.
667 	 */
668 	if (ath_hal_hasbursting(ah))
669 		ic->ic_caps |= IEEE80211_C_BURST;
670 	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
671 	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
672 	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
673 	if (ath_hal_hasfastframes(ah))
674 		ic->ic_caps |= IEEE80211_C_FF;
675 	wmodes = ath_hal_getwirelessmodes(ah);
676 	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
677 		ic->ic_caps |= IEEE80211_C_TURBOP;
678 #ifdef IEEE80211_SUPPORT_TDMA
679 	if (ath_hal_macversion(ah) > 0x78) {
680 		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
681 		ic->ic_tdma_update = ath_tdma_update;
682 	}
683 #endif
684 	/*
685 	 * Indicate we need the 802.11 header padded to a
686 	 * 32-bit boundary for 4-address and QoS frames.
687 	 */
688 	ic->ic_flags |= IEEE80211_F_DATAPAD;
689 
690 	/*
691 	 * Query the hal about antenna support.
692 	 */
693 	sc->sc_defant = ath_hal_getdefantenna(ah);
694 
695 	/*
696 	 * Not all chips have the VEOL support we want to
697 	 * use with IBSS beacons; check here for it.
698 	 */
699 	sc->sc_hasveol = ath_hal_hasveol(ah);
700 
701 	/* get mac address from hardware */
702 	ath_hal_getmac(ah, macaddr);
703 	if (sc->sc_hasbmask)
704 		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
705 
706 	/* NB: used to size node table key mapping array */
707 	ic->ic_max_keyix = sc->sc_keymax;
708 	/* call MI attach routine. */
709 	ieee80211_ifattach(ic, macaddr);
710 	ic->ic_setregdomain = ath_setregdomain;
711 	ic->ic_getradiocaps = ath_getradiocaps;
712 	sc->sc_opmode = HAL_M_STA;
713 
714 	/* override default methods */
715 	ic->ic_newassoc = ath_newassoc;
716 	ic->ic_updateslot = ath_updateslot;
717 	ic->ic_wme.wme_update = ath_wme_update;
718 	ic->ic_vap_create = ath_vap_create;
719 	ic->ic_vap_delete = ath_vap_delete;
720 	ic->ic_raw_xmit = ath_raw_xmit;
721 	ic->ic_update_mcast = ath_update_mcast;
722 	ic->ic_update_promisc = ath_update_promisc;
723 	ic->ic_node_alloc = ath_node_alloc;
724 	sc->sc_node_free = ic->ic_node_free;
725 	ic->ic_node_free = ath_node_free;
726 	ic->ic_node_getsignal = ath_node_getsignal;
727 	ic->ic_scan_start = ath_scan_start;
728 	ic->ic_scan_end = ath_scan_end;
729 	ic->ic_set_channel = ath_set_channel;
730 
731 	ieee80211_radiotap_attach(ic,
732 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
733 		ATH_TX_RADIOTAP_PRESENT,
734 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
735 		ATH_RX_RADIOTAP_PRESENT);
736 
737 	/*
738 	 * Setup dynamic sysctl's now that country code and
739 	 * regdomain are available from the hal.
740 	 */
741 	ath_sysctlattach(sc);
742 	ath_sysctl_stats_attach(sc);
743 
744 	if (bootverbose)
745 		ieee80211_announce(ic);
746 	ath_announce(sc);
747 	return 0;
748 bad2:
749 	ath_tx_cleanup(sc);
750 	ath_desc_free(sc);
751 bad:
752 	if (ah)
753 		ath_hal_detach(ah);
754 	if (ifp != NULL)
755 		if_free(ifp);
756 	sc->sc_invalid = 1;
757 	return error;
758 }
759 
760 int
761 ath_detach(struct ath_softc *sc)
762 {
763 	struct ifnet *ifp = sc->sc_ifp;
764 
765 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
766 		__func__, ifp->if_flags);
767 
768 	/*
769 	 * NB: the order of these is important:
770 	 * o stop the chip so no more interrupts will fire
771 	 * o call the 802.11 layer before detaching the hal to
772 	 *   insure callbacks into the driver to delete global
773 	 *   key cache entries can be handled
774 	 * o free the taskqueue which drains any pending tasks
775 	 * o reclaim the tx queue data structures after calling
776 	 *   the 802.11 layer as we'll get called back to reclaim
777 	 *   node state and potentially want to use them
778 	 * o to cleanup the tx queues the hal is called, so detach
779 	 *   it last
780 	 * Other than that, it's straightforward...
781 	 */
782 	ath_stop(ifp);
783 	ieee80211_ifdetach(ifp->if_l2com);
784 	taskqueue_free(sc->sc_tq);
785 #ifdef ATH_TX99_DIAG
786 	if (sc->sc_tx99 != NULL)
787 		sc->sc_tx99->detach(sc->sc_tx99);
788 #endif
789 	ath_rate_detach(sc->sc_rc);
790 	ath_desc_free(sc);
791 	ath_tx_cleanup(sc);
792 	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
793 	if (sc->sc_sysctl_tree) {
794 		sysctl_ctx_free(&sc->sc_sysctl_ctx);
795 		sc->sc_sysctl_tree = NULL;
796 	}
797 	if_free(ifp);
798 
799 	return 0;
800 }
801 
802 /*
803  * MAC address handling for multiple BSS on the same radio.
804  * The first vap uses the MAC address from the EEPROM.  For
805  * subsequent vap's we set the U/L bit (bit 1) in the MAC
806  * address and use the next six bits as an index.
807  */
808 static void
809 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
810 {
811 	int i;
812 
813 	if (clone && sc->sc_hasbmask) {
814 		/* NB: we only do this if h/w supports multiple bssid */
815 		for (i = 0; i < 8; i++)
816 			if ((sc->sc_bssidmask & (1<<i)) == 0)
817 				break;
818 		if (i != 0)
819 			mac[0] |= (i << 2)|0x2;
820 	} else
821 		i = 0;
822 	sc->sc_bssidmask |= 1<<i;
823 	sc->sc_hwbssidmask[0] &= ~mac[0];
824 	if (i == 0)
825 		sc->sc_nbssid0++;
826 }
827 
828 static void
829 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
830 {
831 	int i = mac[0] >> 2;
832 	uint8_t mask;
833 
834 	if (i != 0 || --sc->sc_nbssid0 == 0) {
835 		sc->sc_bssidmask &= ~(1<<i);
836 		/* recalculate bssid mask from remaining addresses */
837 		mask = 0xff;
838 		for (i = 1; i < 8; i++)
839 			if (sc->sc_bssidmask & (1<<i))
840 				mask &= ~((i<<2)|0x2);
841 		sc->sc_hwbssidmask[0] |= mask;
842 	}
843 }
844 
845 /*
846  * Assign a beacon xmit slot.  We try to space out
847  * assignments so when beacons are staggered the
848  * traffic coming out of the cab q has maximal time
849  * to go out before the next beacon is scheduled.
850  */
851 static int
852 assign_bslot(struct ath_softc *sc)
853 {
854 	u_int slot, free;
855 
856 	free = 0;
857 	for (slot = 0; slot < ATH_BCBUF; slot++)
858 		if (sc->sc_bslot[slot] == NULL) {
859 			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
860 			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
861 				return slot;
862 			free = slot;
863 			/* NB: keep looking for a double slot */
864 		}
865 	return free;
866 }
867 
868 static struct ieee80211vap *
869 ath_vap_create(struct ieee80211com *ic,
870 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
871 	const uint8_t bssid[IEEE80211_ADDR_LEN],
872 	const uint8_t mac0[IEEE80211_ADDR_LEN])
873 {
874 	struct ath_softc *sc = ic->ic_ifp->if_softc;
875 	struct ath_vap *avp;
876 	struct ieee80211vap *vap;
877 	uint8_t mac[IEEE80211_ADDR_LEN];
878 	int ic_opmode, needbeacon, error;
879 
880 	avp = (struct ath_vap *) kmalloc(sizeof(struct ath_vap),
881 	    M_80211_VAP, M_WAITOK | M_ZERO);
882 	needbeacon = 0;
883 	IEEE80211_ADDR_COPY(mac, mac0);
884 
885 	ic_opmode = opmode;		/* default to opmode of new vap */
886 	switch (opmode) {
887 	case IEEE80211_M_STA:
888 		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
889 			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
890 			goto bad;
891 		}
892 		if (sc->sc_nvaps) {
893 			/*
894 			 * With multiple vaps we must fall back
895 			 * to s/w beacon miss handling.
896 			 */
897 			flags |= IEEE80211_CLONE_NOBEACONS;
898 		}
899 		if (flags & IEEE80211_CLONE_NOBEACONS) {
900 			/*
901 			 * Station mode w/o beacons are implemented w/ AP mode.
902 			 */
903 			ic_opmode = IEEE80211_M_HOSTAP;
904 		}
905 		break;
906 	case IEEE80211_M_IBSS:
907 		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
908 			device_printf(sc->sc_dev,
909 			    "only 1 ibss vap supported\n");
910 			goto bad;
911 		}
912 		needbeacon = 1;
913 		break;
914 	case IEEE80211_M_AHDEMO:
915 #ifdef IEEE80211_SUPPORT_TDMA
916 		if (flags & IEEE80211_CLONE_TDMA) {
917 			if (sc->sc_nvaps != 0) {
918 				device_printf(sc->sc_dev,
919 				    "only 1 tdma vap supported\n");
920 				goto bad;
921 			}
922 			needbeacon = 1;
923 			flags |= IEEE80211_CLONE_NOBEACONS;
924 		}
925 		/* fall thru... */
926 #endif
927 	case IEEE80211_M_MONITOR:
928 		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
929 			/*
930 			 * Adopt existing mode.  Adding a monitor or ahdemo
931 			 * vap to an existing configuration is of dubious
932 			 * value but should be ok.
933 			 */
934 			/* XXX not right for monitor mode */
935 			ic_opmode = ic->ic_opmode;
936 		}
937 		break;
938 	case IEEE80211_M_HOSTAP:
939 	case IEEE80211_M_MBSS:
940 		needbeacon = 1;
941 		break;
942 	case IEEE80211_M_WDS:
943 		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
944 			device_printf(sc->sc_dev,
945 			    "wds not supported in sta mode\n");
946 			goto bad;
947 		}
948 		/*
949 		 * Silently remove any request for a unique
950 		 * bssid; WDS vap's always share the local
951 		 * mac address.
952 		 */
953 		flags &= ~IEEE80211_CLONE_BSSID;
954 		if (sc->sc_nvaps == 0)
955 			ic_opmode = IEEE80211_M_HOSTAP;
956 		else
957 			ic_opmode = ic->ic_opmode;
958 		break;
959 	default:
960 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
961 		goto bad;
962 	}
963 	/*
964 	 * Check that a beacon buffer is available; the code below assumes it.
965 	 */
966 	if (needbeacon & STAILQ_EMPTY(&sc->sc_bbuf)) {
967 		device_printf(sc->sc_dev, "no beacon buffer available\n");
968 		goto bad;
969 	}
970 
971 	/* STA, AHDEMO? */
972 	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
973 		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
974 		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
975 	}
976 
977 	vap = &avp->av_vap;
978 	/* XXX can't hold mutex across if_alloc */
979 	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
980 	    bssid, mac);
981 	if (error != 0) {
982 		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
983 		    __func__, error);
984 		goto bad2;
985 	}
986 
987 	/* h/w crypto support */
988 	vap->iv_key_alloc = ath_key_alloc;
989 	vap->iv_key_delete = ath_key_delete;
990 	vap->iv_key_set = ath_key_set;
991 	vap->iv_key_update_begin = ath_key_update_begin;
992 	vap->iv_key_update_end = ath_key_update_end;
993 
994 	/* override various methods */
995 	avp->av_recv_mgmt = vap->iv_recv_mgmt;
996 	vap->iv_recv_mgmt = ath_recv_mgmt;
997 	vap->iv_reset = ath_reset_vap;
998 	vap->iv_update_beacon = ath_beacon_update;
999 	avp->av_newstate = vap->iv_newstate;
1000 	vap->iv_newstate = ath_newstate;
1001 	avp->av_bmiss = vap->iv_bmiss;
1002 	vap->iv_bmiss = ath_bmiss_vap;
1003 
1004 	avp->av_bslot = -1;
1005 	if (needbeacon) {
1006 		/*
1007 		 * Allocate beacon state and setup the q for buffered
1008 		 * multicast frames.  We know a beacon buffer is
1009 		 * available because we checked above.
1010 		 */
1011 		avp->av_bcbuf = STAILQ_FIRST(&sc->sc_bbuf);
1012 		STAILQ_REMOVE_HEAD(&sc->sc_bbuf, bf_list);
1013 		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1014 			/*
1015 			 * Assign the vap to a beacon xmit slot.  As above
1016 			 * this cannot fail to find a free one.
1017 			 */
1018 			avp->av_bslot = assign_bslot(sc);
1019 			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1020 			    ("beacon slot %u not empty", avp->av_bslot));
1021 			sc->sc_bslot[avp->av_bslot] = vap;
1022 			sc->sc_nbcnvaps++;
1023 		}
1024 		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1025 			/*
1026 			 * Multple vaps are to transmit beacons and we
1027 			 * have h/w support for TSF adjusting; enable
1028 			 * use of staggered beacons.
1029 			 */
1030 			sc->sc_stagbeacons = 1;
1031 		}
1032 		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1033 	}
1034 
1035 	ic->ic_opmode = ic_opmode;
1036 	if (opmode != IEEE80211_M_WDS) {
1037 		sc->sc_nvaps++;
1038 		if (opmode == IEEE80211_M_STA)
1039 			sc->sc_nstavaps++;
1040 		if (opmode == IEEE80211_M_MBSS)
1041 			sc->sc_nmeshvaps++;
1042 	}
1043 	switch (ic_opmode) {
1044 	case IEEE80211_M_IBSS:
1045 		sc->sc_opmode = HAL_M_IBSS;
1046 		break;
1047 	case IEEE80211_M_STA:
1048 		sc->sc_opmode = HAL_M_STA;
1049 		break;
1050 	case IEEE80211_M_AHDEMO:
1051 #ifdef IEEE80211_SUPPORT_TDMA
1052 		if (vap->iv_caps & IEEE80211_C_TDMA) {
1053 			sc->sc_tdma = 1;
1054 			/* NB: disable tsf adjust */
1055 			sc->sc_stagbeacons = 0;
1056 		}
1057 		/*
1058 		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1059 		 * just ap mode.
1060 		 */
1061 		/* fall thru... */
1062 #endif
1063 	case IEEE80211_M_HOSTAP:
1064 	case IEEE80211_M_MBSS:
1065 		sc->sc_opmode = HAL_M_HOSTAP;
1066 		break;
1067 	case IEEE80211_M_MONITOR:
1068 		sc->sc_opmode = HAL_M_MONITOR;
1069 		break;
1070 	default:
1071 		/* XXX should not happen */
1072 		break;
1073 	}
1074 	if (sc->sc_hastsfadd) {
1075 		/*
1076 		 * Configure whether or not TSF adjust should be done.
1077 		 */
1078 		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1079 	}
1080 	if (flags & IEEE80211_CLONE_NOBEACONS) {
1081 		/*
1082 		 * Enable s/w beacon miss handling.
1083 		 */
1084 		sc->sc_swbmiss = 1;
1085 	}
1086 
1087 	/* complete setup */
1088 	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1089 	return vap;
1090 bad2:
1091 	reclaim_address(sc, mac);
1092 	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1093 bad:
1094 	kfree(avp, M_80211_VAP);
1095 	return NULL;
1096 }
1097 
1098 static void
1099 ath_vap_delete(struct ieee80211vap *vap)
1100 {
1101 	struct ieee80211com *ic = vap->iv_ic;
1102 	struct ifnet *ifp = ic->ic_ifp;
1103 	struct ath_softc *sc = ifp->if_softc;
1104 	struct ath_hal *ah = sc->sc_ah;
1105 	struct ath_vap *avp = ATH_VAP(vap);
1106 
1107 	if (ifp->if_flags & IFF_RUNNING) {
1108 		/*
1109 		 * Quiesce the hardware while we remove the vap.  In
1110 		 * particular we need to reclaim all references to
1111 		 * the vap state by any frames pending on the tx queues.
1112 		 */
1113 		ath_hal_intrset(ah, 0);		/* disable interrupts */
1114 		ath_draintxq(sc);		/* stop xmit side */
1115 		ath_stoprecv(sc);		/* stop recv side */
1116 	}
1117 
1118 	ieee80211_vap_detach(vap);
1119 	/*
1120 	 * Reclaim beacon state.  Note this must be done before
1121 	 * the vap instance is reclaimed as we may have a reference
1122 	 * to it in the buffer for the beacon frame.
1123 	 */
1124 	if (avp->av_bcbuf != NULL) {
1125 		if (avp->av_bslot != -1) {
1126 			sc->sc_bslot[avp->av_bslot] = NULL;
1127 			sc->sc_nbcnvaps--;
1128 		}
1129 		ath_beacon_return(sc, avp->av_bcbuf);
1130 		avp->av_bcbuf = NULL;
1131 		if (sc->sc_nbcnvaps == 0) {
1132 			sc->sc_stagbeacons = 0;
1133 			if (sc->sc_hastsfadd)
1134 				ath_hal_settsfadjust(sc->sc_ah, 0);
1135 		}
1136 		/*
1137 		 * Reclaim any pending mcast frames for the vap.
1138 		 */
1139 		ath_tx_draintxq(sc, &avp->av_mcastq);
1140 	}
1141 	/*
1142 	 * Update bookkeeping.
1143 	 */
1144 	if (vap->iv_opmode == IEEE80211_M_STA) {
1145 		sc->sc_nstavaps--;
1146 		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1147 			sc->sc_swbmiss = 0;
1148 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1149 	    vap->iv_opmode == IEEE80211_M_MBSS) {
1150 		reclaim_address(sc, vap->iv_myaddr);
1151 		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1152 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1153 			sc->sc_nmeshvaps--;
1154 	}
1155 	if (vap->iv_opmode != IEEE80211_M_WDS)
1156 		sc->sc_nvaps--;
1157 #ifdef IEEE80211_SUPPORT_TDMA
1158 	/* TDMA operation ceases when the last vap is destroyed */
1159 	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1160 		sc->sc_tdma = 0;
1161 		sc->sc_swbmiss = 0;
1162 	}
1163 #endif
1164 	kfree(avp, M_80211_VAP);
1165 
1166 	if (ifp->if_flags & IFF_RUNNING) {
1167 		/*
1168 		 * Restart rx+tx machines if still running (RUNNING will
1169 		 * be reset if we just destroyed the last vap).
1170 		 */
1171 		if (ath_startrecv(sc) != 0)
1172 			if_printf(ifp, "%s: unable to restart recv logic\n",
1173 			    __func__);
1174 		if (sc->sc_beacons) {		/* restart beacons */
1175 #ifdef IEEE80211_SUPPORT_TDMA
1176 			if (sc->sc_tdma)
1177 				ath_tdma_config(sc, NULL);
1178 			else
1179 #endif
1180 				ath_beacon_config(sc, NULL);
1181 		}
1182 		ath_hal_intrset(ah, sc->sc_imask);
1183 	}
1184 }
1185 
1186 void
1187 ath_suspend(struct ath_softc *sc)
1188 {
1189 	struct ifnet *ifp = sc->sc_ifp;
1190 	struct ieee80211com *ic = ifp->if_l2com;
1191 
1192 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1193 		__func__, ifp->if_flags);
1194 
1195 	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1196 	if (ic->ic_opmode == IEEE80211_M_STA)
1197 		ath_stop(ifp);
1198 	else
1199 		ieee80211_suspend_all(ic);
1200 	/*
1201 	 * NB: don't worry about putting the chip in low power
1202 	 * mode; pci will power off our socket on suspend and
1203 	 * CardBus detaches the device.
1204 	 */
1205 }
1206 
1207 /*
1208  * Reset the key cache since some parts do not reset the
1209  * contents on resume.  First we clear all entries, then
1210  * re-load keys that the 802.11 layer assumes are setup
1211  * in h/w.
1212  */
1213 static void
1214 ath_reset_keycache(struct ath_softc *sc)
1215 {
1216 	struct ifnet *ifp = sc->sc_ifp;
1217 	struct ieee80211com *ic = ifp->if_l2com;
1218 	struct ath_hal *ah = sc->sc_ah;
1219 	int i;
1220 
1221 	for (i = 0; i < sc->sc_keymax; i++)
1222 		ath_hal_keyreset(ah, i);
1223 	ieee80211_crypto_reload_keys(ic);
1224 }
1225 
1226 void
1227 ath_resume(struct ath_softc *sc)
1228 {
1229 	struct ifnet *ifp = sc->sc_ifp;
1230 	struct ieee80211com *ic = ifp->if_l2com;
1231 	struct ath_hal *ah = sc->sc_ah;
1232 	HAL_STATUS status;
1233 
1234 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1235 		__func__, ifp->if_flags);
1236 
1237 	/*
1238 	 * Must reset the chip before we reload the
1239 	 * keycache as we were powered down on suspend.
1240 	 */
1241 	ath_hal_reset(ah, sc->sc_opmode,
1242 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1243 	    AH_FALSE, &status);
1244 	ath_reset_keycache(sc);
1245 	if (sc->sc_resume_up) {
1246 		if (ic->ic_opmode == IEEE80211_M_STA) {
1247 			ath_init(sc);
1248 			/*
1249 			 * Program the beacon registers using the last rx'd
1250 			 * beacon frame and enable sync on the next beacon
1251 			 * we see.  This should handle the case where we
1252 			 * wakeup and find the same AP and also the case where
1253 			 * we wakeup and need to roam.  For the latter we
1254 			 * should get bmiss events that trigger a roam.
1255 			 */
1256 			ath_beacon_config(sc, NULL);
1257 			sc->sc_syncbeacon = 1;
1258 		} else
1259 			ieee80211_resume_all(ic);
1260 	}
1261 	if (sc->sc_softled) {
1262 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
1263 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
1264 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
1265 	}
1266 }
1267 
1268 void
1269 ath_shutdown(struct ath_softc *sc)
1270 {
1271 	struct ifnet *ifp = sc->sc_ifp;
1272 
1273 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1274 		__func__, ifp->if_flags);
1275 
1276 	ath_stop(ifp);
1277 	/* NB: no point powering down chip as we're about to reboot */
1278 }
1279 
1280 /*
1281  * Interrupt handler.  Most of the actual processing is deferred.
1282  */
1283 void
1284 ath_intr(void *arg)
1285 {
1286 	struct ath_softc *sc = arg;
1287 	struct ifnet *ifp = sc->sc_ifp;
1288 	struct ath_hal *ah = sc->sc_ah;
1289 	HAL_INT status;
1290 	HAL_INT ostatus;
1291 
1292 	if (sc->sc_invalid) {
1293 		/*
1294 		 * The hardware is not ready/present, don't touch anything.
1295 		 * Note this can happen early on if the IRQ is shared.
1296 		 */
1297 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1298 		return;
1299 	}
1300 
1301 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
1302 		return;
1303 	if ((ifp->if_flags & IFF_UP) == 0 ||
1304 	    (ifp->if_flags & IFF_RUNNING) == 0) {
1305 		HAL_INT status;
1306 
1307 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1308 			__func__, ifp->if_flags);
1309 		ath_hal_getisr(ah, &status);	/* clear ISR */
1310 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1311 		return;
1312 	}
1313 	/*
1314 	 * Figure out the reason(s) for the interrupt.  Note
1315 	 * that the hal returns a pseudo-ISR that may include
1316 	 * bits we haven't explicitly enabled so we mask the
1317 	 * value to insure we only process bits we requested.
1318 	 */
1319 	ath_hal_getisr(ah, &ostatus);		/* NB: clears ISR too */
1320 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, ostatus);
1321 	status = ostatus & sc->sc_imask;	/* discard unasked for bits */
1322 	if (status & HAL_INT_FATAL) {
1323 		sc->sc_stats.ast_hardware++;
1324 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1325 		ath_fatal_proc(sc, 0);
1326 	} else {
1327 		if (status & HAL_INT_SWBA) {
1328 			/*
1329 			 * Software beacon alert--time to send a beacon.
1330 			 * Handle beacon transmission directly; deferring
1331 			 * this is too slow to meet timing constraints
1332 			 * under load.
1333 			 */
1334 #ifdef IEEE80211_SUPPORT_TDMA
1335 			if (sc->sc_tdma) {
1336 				if (sc->sc_tdmaswba == 0) {
1337 					struct ieee80211com *ic = ifp->if_l2com;
1338 					struct ieee80211vap *vap =
1339 					    TAILQ_FIRST(&ic->ic_vaps);
1340 					ath_tdma_beacon_send(sc, vap);
1341 					sc->sc_tdmaswba =
1342 					    vap->iv_tdma->tdma_bintval;
1343 				} else
1344 					sc->sc_tdmaswba--;
1345 			} else
1346 #endif
1347 			{
1348 				ath_beacon_proc(sc, 0);
1349 #ifdef IEEE80211_SUPPORT_SUPERG
1350 				/*
1351 				 * Schedule the rx taskq in case there's no
1352 				 * traffic so any frames held on the staging
1353 				 * queue are aged and potentially flushed.
1354 				 */
1355 				taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1356 #endif
1357 			}
1358 		}
1359 
1360 		/*
1361 		 * NB: The hardware should re-read the link when the RXE
1362 		 *     bit is written, but it doesn't work at least on
1363 		 *     older chipsets.
1364 		 */
1365 		if (status & HAL_INT_RXEOL) {
1366 			sc->sc_stats.ast_rxeol++;
1367 			sc->sc_rxlink = NULL;
1368 		}
1369 
1370 		if (status & HAL_INT_TXURN) {
1371 			sc->sc_stats.ast_txurn++;
1372 			/* bump tx trigger level */
1373 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1374 		}
1375 
1376 		if (status & HAL_INT_RX)
1377 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1378 
1379 		if (status & HAL_INT_TX)
1380 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1381 
1382 		if (status & HAL_INT_BMISS) {
1383 			sc->sc_stats.ast_bmiss++;
1384 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1385 		}
1386 
1387 		if (status & HAL_INT_MIB) {
1388 			sc->sc_stats.ast_mib++;
1389 			/*
1390 			 * Disable interrupts until we service the MIB
1391 			 * interrupt; otherwise it will continue to fire.
1392 			 */
1393 			ath_hal_intrset(ah, 0);
1394 			/*
1395 			 * Let the hal handle the event.  We assume it will
1396 			 * clear whatever condition caused the interrupt.
1397 			 */
1398 			ath_hal_mibevent(ah, &sc->sc_halstats);
1399 			ath_hal_intrset(ah, sc->sc_imask);
1400 		}
1401 
1402 		if (status & HAL_INT_RXORN) {
1403 			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1404 			sc->sc_stats.ast_rxorn++;
1405 		}
1406 	}
1407 }
1408 
1409 static void
1410 ath_fatal_proc(void *arg, int pending)
1411 {
1412 	struct ath_softc *sc = arg;
1413 	struct ifnet *ifp = sc->sc_ifp;
1414 	u_int32_t *state;
1415 	u_int32_t len;
1416 	void *sp;
1417 
1418 	if_printf(ifp, "hardware error; resetting\n");
1419 	/*
1420 	 * Fatal errors are unrecoverable.  Typically these
1421 	 * are caused by DMA errors.  Collect h/w state from
1422 	 * the hal so we can diagnose what's going on.
1423 	 */
1424 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1425 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1426 		state = sp;
1427 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1428 		    state[0], state[1] , state[2], state[3],
1429 		    state[4], state[5]);
1430 	}
1431 	ath_reset(ifp);
1432 }
1433 
1434 static void
1435 ath_bmiss_vap(struct ieee80211vap *vap)
1436 {
1437 	/*
1438 	 * Workaround phantom bmiss interrupts by sanity-checking
1439 	 * the time of our last rx'd frame.  If it is within the
1440 	 * beacon miss interval then ignore the interrupt.  If it's
1441 	 * truly a bmiss we'll get another interrupt soon and that'll
1442 	 * be dispatched up for processing.  Note this applies only
1443 	 * for h/w beacon miss events.
1444 	 */
1445 	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1446 		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1447 		struct ath_softc *sc = ifp->if_softc;
1448 		u_int64_t lastrx = sc->sc_lastrx;
1449 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1450 		u_int bmisstimeout =
1451 			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1452 
1453 		DPRINTF(sc, ATH_DEBUG_BEACON,
1454 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1455 		    __func__, (unsigned long long) tsf,
1456 		    (unsigned long long)(tsf - lastrx),
1457 		    (unsigned long long) lastrx, bmisstimeout);
1458 
1459 		if (tsf - lastrx <= bmisstimeout) {
1460 			sc->sc_stats.ast_bmiss_phantom++;
1461 			return;
1462 		}
1463 	}
1464 	ATH_VAP(vap)->av_bmiss(vap);
1465 }
1466 
1467 static int
1468 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1469 {
1470 	uint32_t rsize;
1471 	void *sp;
1472 
1473 	if (!ath_hal_getdiagstate(ah, 32, &mask, sizeof(mask), &sp, &rsize))
1474 		return 0;
1475 	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1476 	*hangs = *(uint32_t *)sp;
1477 	return 1;
1478 }
1479 
1480 static void
1481 ath_bmiss_task(void *arg, int pending)
1482 {
1483 	struct ath_softc *sc = arg;
1484 	struct ifnet *ifp = sc->sc_ifp;
1485 	uint32_t hangs;
1486 
1487 	wlan_serialize_enter();
1488 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1489 
1490 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1491 		if_printf(ifp, "bb hang detected (0x%x), reseting\n", hangs);
1492 		ath_reset(ifp);
1493 	} else {
1494 		ieee80211_beacon_miss(ifp->if_l2com);
1495 	}
1496 	wlan_serialize_exit();
1497 }
1498 
1499 /*
1500  * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1501  * calcs together with WME.  If necessary disable the crypto
1502  * hardware and mark the 802.11 state so keys will be setup
1503  * with the MIC work done in software.
1504  */
1505 static void
1506 ath_settkipmic(struct ath_softc *sc)
1507 {
1508 	struct ifnet *ifp = sc->sc_ifp;
1509 	struct ieee80211com *ic = ifp->if_l2com;
1510 
1511 	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1512 		if (ic->ic_flags & IEEE80211_F_WME) {
1513 			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1514 			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1515 		} else {
1516 			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1517 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1518 		}
1519 	}
1520 }
1521 
1522 static void
1523 ath_init(void *arg)
1524 {
1525 	struct ath_softc *sc = (struct ath_softc *) arg;
1526 	struct ifnet *ifp = sc->sc_ifp;
1527 	struct ieee80211com *ic = ifp->if_l2com;
1528 	struct ath_hal *ah = sc->sc_ah;
1529 	HAL_STATUS status;
1530 
1531 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1532 		__func__, ifp->if_flags);
1533 
1534 	/*
1535 	 * Stop anything previously setup.  This is safe
1536 	 * whether this is the first time through or not.
1537 	 */
1538 	ath_stop_locked(ifp);
1539 
1540 	/*
1541 	 * The basic interface to setting the hardware in a good
1542 	 * state is ``reset''.  On return the hardware is known to
1543 	 * be powered up and with interrupts disabled.  This must
1544 	 * be followed by initialization of the appropriate bits
1545 	 * and then setup of the interrupt mask.
1546 	 */
1547 	ath_settkipmic(sc);
1548 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1549 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1550 			status);
1551 		return;
1552 	}
1553 	ath_chan_change(sc, ic->ic_curchan);
1554 
1555 	/*
1556 	 * Likewise this is set during reset so update
1557 	 * state cached in the driver.
1558 	 */
1559 	sc->sc_diversity = ath_hal_getdiversity(ah);
1560 	sc->sc_lastlongcal = 0;
1561 	sc->sc_resetcal = 1;
1562 	sc->sc_lastcalreset = 0;
1563 
1564 	/*
1565 	 * Setup the hardware after reset: the key cache
1566 	 * is filled as needed and the receive engine is
1567 	 * set going.  Frame transmit is handled entirely
1568 	 * in the frame output path; there's nothing to do
1569 	 * here except setup the interrupt mask.
1570 	 */
1571 	if (ath_startrecv(sc) != 0) {
1572 		if_printf(ifp, "unable to start recv logic\n");
1573 		return;
1574 	}
1575 
1576 	/*
1577 	 * Enable interrupts.
1578 	 */
1579 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1580 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1581 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1582 	/*
1583 	 * Enable MIB interrupts when there are hardware phy counters.
1584 	 * Note we only do this (at the moment) for station mode.
1585 	 */
1586 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1587 		sc->sc_imask |= HAL_INT_MIB;
1588 
1589 	ifp->if_flags |= IFF_RUNNING;
1590 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog_callout, sc);
1591 	ath_hal_intrset(ah, sc->sc_imask);
1592 
1593 
1594 #ifdef ATH_TX99_DIAG
1595 	if (sc->sc_tx99 != NULL)
1596 		sc->sc_tx99->start(sc->sc_tx99);
1597 	else
1598 #endif
1599 	ieee80211_start_all(ic);		/* start all vap's */
1600 }
1601 
1602 static void
1603 ath_stop_locked(struct ifnet *ifp)
1604 {
1605 	struct ath_softc *sc = ifp->if_softc;
1606 	struct ath_hal *ah = sc->sc_ah;
1607 
1608 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1609 		__func__, sc->sc_invalid, ifp->if_flags);
1610 
1611 	if (ifp->if_flags & IFF_RUNNING) {
1612 		/*
1613 		 * Shutdown the hardware and driver:
1614 		 *    reset 802.11 state machine
1615 		 *    turn off timers
1616 		 *    disable interrupts
1617 		 *    turn off the radio
1618 		 *    clear transmit machinery
1619 		 *    clear receive machinery
1620 		 *    drain and release tx queues
1621 		 *    reclaim beacon resources
1622 		 *    power down hardware
1623 		 *
1624 		 * Note that some of this work is not possible if the
1625 		 * hardware is gone (invalid).
1626 		 */
1627 #ifdef ATH_TX99_DIAG
1628 		if (sc->sc_tx99 != NULL)
1629 			sc->sc_tx99->stop(sc->sc_tx99);
1630 #endif
1631 		callout_stop(&sc->sc_wd_ch);
1632 		sc->sc_wd_timer = 0;
1633 		ifp->if_flags &= ~IFF_RUNNING;
1634 		if (!sc->sc_invalid) {
1635 			if (sc->sc_softled) {
1636 				callout_stop(&sc->sc_ledtimer);
1637 				ath_hal_gpioset(ah, sc->sc_ledpin,
1638 					!sc->sc_ledon);
1639 				sc->sc_blinking = 0;
1640 			}
1641 			ath_hal_intrset(ah, 0);
1642 		}
1643 		ath_draintxq(sc);
1644 		if (!sc->sc_invalid) {
1645 			ath_stoprecv(sc);
1646 			ath_hal_phydisable(ah);
1647 		} else
1648 			sc->sc_rxlink = NULL;
1649 		ath_beacon_free(sc);	/* XXX not needed */
1650 	}
1651 }
1652 
1653 static void
1654 ath_stop(struct ifnet *ifp)
1655 {
1656 	struct ath_softc *sc __unused = ifp->if_softc;
1657 
1658 	ath_stop_locked(ifp);
1659 }
1660 
1661 /*
1662  * Reset the hardware w/o losing operational state.  This is
1663  * basically a more efficient way of doing ath_stop, ath_init,
1664  * followed by state transitions to the current 802.11
1665  * operational state.  Used to recover from various errors and
1666  * to reset or reload hardware state.
1667  */
1668 static int
1669 ath_reset(struct ifnet *ifp)
1670 {
1671 	struct ath_softc *sc = ifp->if_softc;
1672 	struct ieee80211com *ic = ifp->if_l2com;
1673 	struct ath_hal *ah = sc->sc_ah;
1674 	HAL_STATUS status;
1675 
1676 	kprintf("ath_reset\n");
1677 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1678 	ath_draintxq(sc);		/* stop xmit side */
1679 	ath_stoprecv(sc);		/* stop recv side */
1680 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
1681 	/* NB: indicate channel change so we do a full reset */
1682 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
1683 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1684 			__func__, status);
1685 	sc->sc_diversity = ath_hal_getdiversity(ah);
1686 	if (ath_startrecv(sc) != 0)	/* restart recv */
1687 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1688 	/*
1689 	 * We may be doing a reset in response to an ioctl
1690 	 * that changes the channel so update any state that
1691 	 * might change as a result.
1692 	 */
1693 	ath_chan_change(sc, ic->ic_curchan);
1694 	if (sc->sc_beacons) {		/* restart beacons */
1695 #ifdef IEEE80211_SUPPORT_TDMA
1696 		if (sc->sc_tdma)
1697 			ath_tdma_config(sc, NULL);
1698 		else
1699 #endif
1700 			ath_beacon_config(sc, NULL);
1701 	}
1702 	ath_hal_intrset(ah, sc->sc_imask);
1703 
1704 	ath_start(ifp);			/* restart xmit */
1705 	return 0;
1706 }
1707 
1708 static int
1709 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
1710 {
1711 	struct ieee80211com *ic = vap->iv_ic;
1712 	struct ifnet *ifp = ic->ic_ifp;
1713 	struct ath_softc *sc = ifp->if_softc;
1714 	struct ath_hal *ah = sc->sc_ah;
1715 
1716 	switch (cmd) {
1717 	case IEEE80211_IOC_TXPOWER:
1718 		/*
1719 		 * If per-packet TPC is enabled, then we have nothing
1720 		 * to do; otherwise we need to force the global limit.
1721 		 * All this can happen directly; no need to reset.
1722 		 */
1723 		if (!ath_hal_gettpc(ah))
1724 			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
1725 		return 0;
1726 	}
1727 	return ath_reset(ifp);
1728 }
1729 
1730 static struct ath_buf *
1731 _ath_getbuf_locked(struct ath_softc *sc)
1732 {
1733 	struct ath_buf *bf;
1734 
1735 	bf = STAILQ_FIRST(&sc->sc_txbuf);
1736 	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0)
1737 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1738 	else
1739 		bf = NULL;
1740 	if (bf == NULL) {
1741 		kprintf("ath: ran out of descriptors\n");
1742 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
1743 		    STAILQ_FIRST(&sc->sc_txbuf) == NULL ?
1744 			"out of xmit buffers" : "xmit buffer busy");
1745 	}
1746 	return bf;
1747 }
1748 
1749 static struct ath_buf *
1750 ath_getbuf(struct ath_softc *sc)
1751 {
1752 	struct ath_buf *bf;
1753 
1754 	bf = _ath_getbuf_locked(sc);
1755 	if (bf == NULL) {
1756 		struct ifnet *ifp = sc->sc_ifp;
1757 
1758 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
1759 		sc->sc_stats.ast_tx_qstop++;
1760 		ifp->if_flags |= IFF_OACTIVE;
1761 	}
1762 	return bf;
1763 }
1764 
1765 /*
1766  * Cleanup driver resources when we run out of buffers
1767  * while processing fragments; return the tx buffers
1768  * allocated and drop node references.
1769  */
1770 static void
1771 ath_txfrag_cleanup(struct ath_softc *sc,
1772 	ath_bufhead *frags, struct ieee80211_node *ni)
1773 {
1774 	struct ath_buf *bf, *next;
1775 
1776 	STAILQ_FOREACH_MUTABLE(bf, frags, bf_list, next) {
1777 		/* NB: bf assumed clean */
1778 		STAILQ_REMOVE_HEAD(frags, bf_list);
1779 		STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1780 		ieee80211_node_decref(ni);
1781 	}
1782 }
1783 
1784 /*
1785  * Setup xmit of a fragmented frame.  Allocate a buffer
1786  * for each frag and bump the node reference count to
1787  * reflect the held reference to be setup by ath_tx_start.
1788  */
1789 static int
1790 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1791 	struct mbuf *m0, struct ieee80211_node *ni)
1792 {
1793 	struct mbuf *m;
1794 	struct ath_buf *bf;
1795 
1796 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1797 		bf = _ath_getbuf_locked(sc);
1798 		if (bf == NULL) {	/* out of buffers, cleanup */
1799 			ath_txfrag_cleanup(sc, frags, ni);
1800 			break;
1801 		}
1802 		ieee80211_node_incref(ni);
1803 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
1804 	}
1805 
1806 	return !STAILQ_EMPTY(frags);
1807 }
1808 
1809 static void
1810 ath_start(struct ifnet *ifp)
1811 {
1812 	struct ath_softc *sc = ifp->if_softc;
1813 	struct ieee80211_node *ni;
1814 	struct ath_buf *bf;
1815 	struct mbuf *m, *next;
1816 	ath_bufhead frags;
1817 
1818 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid) {
1819 		ifq_purge(&ifp->if_snd);
1820 		return;
1821 	}
1822 	for (;;) {
1823 		/*
1824 		 * Grab a TX buffer and associated resources.
1825 		 */
1826 		bf = ath_getbuf(sc);
1827 		if (bf == NULL)
1828 			break;
1829 
1830 		IF_DEQUEUE(&ifp->if_snd, m);
1831 		if (m == NULL) {
1832 			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1833 			break;
1834 		}
1835 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1836 		/*
1837 		 * Check for fragmentation.  If this frame
1838 		 * has been broken up verify we have enough
1839 		 * buffers to send all the fragments so all
1840 		 * go out or none...
1841 		 */
1842 		STAILQ_INIT(&frags);
1843 		if ((m->m_flags & M_FRAG) &&
1844 		    !ath_txfrag_setup(sc, &frags, m, ni)) {
1845 			DPRINTF(sc, ATH_DEBUG_XMIT,
1846 			    "%s: out of txfrag buffers\n", __func__);
1847 			sc->sc_stats.ast_tx_nofrag++;
1848 			ifp->if_oerrors++;
1849 			ath_freetx(m);
1850 			goto bad;
1851 		}
1852 		ifp->if_opackets++;
1853 	nextfrag:
1854 		/*
1855 		 * Pass the frame to the h/w for transmission.
1856 		 * Fragmented frames have each frag chained together
1857 		 * with m_nextpkt.  We know there are sufficient ath_buf's
1858 		 * to send all the frags because of work done by
1859 		 * ath_txfrag_setup.  We leave m_nextpkt set while
1860 		 * calling ath_tx_start so it can use it to extend the
1861 		 * the tx duration to cover the subsequent frag and
1862 		 * so it can reclaim all the mbufs in case of an error;
1863 		 * ath_tx_start clears m_nextpkt once it commits to
1864 		 * handing the frame to the hardware.
1865 		 */
1866 		next = m->m_nextpkt;
1867 		if (ath_tx_start(sc, ni, bf, m)) {
1868 	bad:
1869 			ifp->if_oerrors++;
1870 	reclaim:
1871 			bf->bf_m = NULL;
1872 			bf->bf_node = NULL;
1873 			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1874 			ath_txfrag_cleanup(sc, &frags, ni);
1875 			if (ni != NULL)
1876 				ieee80211_free_node(ni);
1877 			continue;
1878 		}
1879 		if (next != NULL) {
1880 			/*
1881 			 * Beware of state changing between frags.
1882 			 * XXX check sta power-save state?
1883 			 */
1884 			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
1885 				DPRINTF(sc, ATH_DEBUG_XMIT,
1886 				    "%s: flush fragmented packet, state %s\n",
1887 				    __func__,
1888 				    ieee80211_state_name[ni->ni_vap->iv_state]);
1889 				ath_freetx(next);
1890 				goto reclaim;
1891 			}
1892 			m = next;
1893 			bf = STAILQ_FIRST(&frags);
1894 			KASSERT(bf != NULL, ("no buf for txfrag"));
1895 			STAILQ_REMOVE_HEAD(&frags, bf_list);
1896 			goto nextfrag;
1897 		}
1898 
1899 		sc->sc_wd_timer = 5;
1900 	}
1901 }
1902 
1903 static int
1904 ath_media_change(struct ifnet *ifp)
1905 {
1906 	int error = ieee80211_media_change(ifp);
1907 	/* NB: only the fixed rate can change and that doesn't need a reset */
1908 	return (error == ENETRESET ? 0 : error);
1909 }
1910 
1911 #ifdef ATH_DEBUG
1912 static void
1913 ath_keyprint(struct ath_softc *sc, const char *tag, u_int ix,
1914 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1915 {
1916 	static const char *ciphers[] = {
1917 		"WEP",
1918 		"AES-OCB",
1919 		"AES-CCM",
1920 		"CKIP",
1921 		"TKIP",
1922 		"CLR",
1923 	};
1924 	int i, n;
1925 
1926 	kprintf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1927 	for (i = 0, n = hk->kv_len; i < n; i++)
1928 		kprintf("%02x", hk->kv_val[i]);
1929 	kprintf(" mac %6D", mac, ":");
1930 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1931 		kprintf(" %s ", sc->sc_splitmic ? "mic" : "rxmic");
1932 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1933 			kprintf("%02x", hk->kv_mic[i]);
1934 		if (!sc->sc_splitmic) {
1935 			kprintf(" txmic ");
1936 			for (i = 0; i < sizeof(hk->kv_txmic); i++)
1937 				kprintf("%02x", hk->kv_txmic[i]);
1938 		}
1939 	}
1940 	kprintf("\n");
1941 }
1942 #endif
1943 
1944 /*
1945  * Set a TKIP key into the hardware.  This handles the
1946  * potential distribution of key state to multiple key
1947  * cache slots for TKIP.
1948  */
1949 static int
1950 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1951 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1952 {
1953 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1954 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1955 	struct ath_hal *ah = sc->sc_ah;
1956 
1957 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1958 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1959 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1960 		if (sc->sc_splitmic) {
1961 			/*
1962 			 * TX key goes at first index, RX key at the rx index.
1963 			 * The hal handles the MIC keys at index+64.
1964 			 */
1965 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1966 			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1967 			if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1968 				return 0;
1969 
1970 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1971 			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1972 			/* XXX delete tx key on failure? */
1973 			return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1974 		} else {
1975 			/*
1976 			 * Room for both TX+RX MIC keys in one key cache
1977 			 * slot, just set key at the first index; the hal
1978 			 * will handle the rest.
1979 			 */
1980 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1981 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1982 			KEYPRINTF(sc, k->wk_keyix, hk, mac);
1983 			return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1984 		}
1985 	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
1986 		if (sc->sc_splitmic) {
1987 			/*
1988 			 * NB: must pass MIC key in expected location when
1989 			 * the keycache only holds one MIC key per entry.
1990 			 */
1991 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
1992 		} else
1993 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1994 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1995 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1996 	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
1997 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1998 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1999 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
2000 	}
2001 	return 0;
2002 #undef IEEE80211_KEY_XR
2003 }
2004 
2005 /*
2006  * Set a net80211 key into the hardware.  This handles the
2007  * potential distribution of key state to multiple key
2008  * cache slots for TKIP with hardware MIC support.
2009  */
2010 static int
2011 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
2012 	struct ieee80211_node *bss)
2013 {
2014 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2015 	static const u_int8_t ciphermap[] = {
2016 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
2017 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
2018 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
2019 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
2020 		(u_int8_t) -1,		/* 4 is not allocated */
2021 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
2022 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
2023 	};
2024 	struct ath_hal *ah = sc->sc_ah;
2025 	const struct ieee80211_cipher *cip = k->wk_cipher;
2026 	u_int8_t gmac[IEEE80211_ADDR_LEN];
2027 	const u_int8_t *mac;
2028 	HAL_KEYVAL hk;
2029 
2030 	memset(&hk, 0, sizeof(hk));
2031 	/*
2032 	 * Software crypto uses a "clear key" so non-crypto
2033 	 * state kept in the key cache are maintained and
2034 	 * so that rx frames have an entry to match.
2035 	 */
2036 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
2037 		KASSERT(cip->ic_cipher < N(ciphermap),
2038 			("invalid cipher type %u", cip->ic_cipher));
2039 		hk.kv_type = ciphermap[cip->ic_cipher];
2040 		hk.kv_len = k->wk_keylen;
2041 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
2042 	} else
2043 		hk.kv_type = HAL_CIPHER_CLR;
2044 
2045 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
2046 		/*
2047 		 * Group keys on hardware that supports multicast frame
2048 		 * key search use a MAC that is the sender's address with
2049 		 * the high bit set instead of the app-specified address.
2050 		 */
2051 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
2052 		gmac[0] |= 0x80;
2053 		mac = gmac;
2054 	} else
2055 		mac = k->wk_macaddr;
2056 
2057 	if (hk.kv_type == HAL_CIPHER_TKIP &&
2058 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2059 		return ath_keyset_tkip(sc, k, &hk, mac);
2060 	} else {
2061 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
2062 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
2063 	}
2064 #undef N
2065 }
2066 
2067 /*
2068  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
2069  * each key, one for decrypt/encrypt and the other for the MIC.
2070  */
2071 static u_int16_t
2072 key_alloc_2pair(struct ath_softc *sc,
2073 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2074 {
2075 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2076 	u_int i, keyix;
2077 
2078 	KASSERT(sc->sc_splitmic, ("key cache !split"));
2079 	/* XXX could optimize */
2080 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
2081 		u_int8_t b = sc->sc_keymap[i];
2082 		if (b != 0xff) {
2083 			/*
2084 			 * One or more slots in this byte are free.
2085 			 */
2086 			keyix = i*NBBY;
2087 			while (b & 1) {
2088 		again:
2089 				keyix++;
2090 				b >>= 1;
2091 			}
2092 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
2093 			if (isset(sc->sc_keymap, keyix+32) ||
2094 			    isset(sc->sc_keymap, keyix+64) ||
2095 			    isset(sc->sc_keymap, keyix+32+64)) {
2096 				/* full pair unavailable */
2097 				/* XXX statistic */
2098 				if (keyix == (i+1)*NBBY) {
2099 					/* no slots were appropriate, advance */
2100 					continue;
2101 				}
2102 				goto again;
2103 			}
2104 			setbit(sc->sc_keymap, keyix);
2105 			setbit(sc->sc_keymap, keyix+64);
2106 			setbit(sc->sc_keymap, keyix+32);
2107 			setbit(sc->sc_keymap, keyix+32+64);
2108 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2109 				"%s: key pair %u,%u %u,%u\n",
2110 				__func__, keyix, keyix+64,
2111 				keyix+32, keyix+32+64);
2112 			*txkeyix = keyix;
2113 			*rxkeyix = keyix+32;
2114 			return 1;
2115 		}
2116 	}
2117 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2118 	return 0;
2119 #undef N
2120 }
2121 
2122 /*
2123  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
2124  * each key, one for decrypt/encrypt and the other for the MIC.
2125  */
2126 static u_int16_t
2127 key_alloc_pair(struct ath_softc *sc,
2128 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2129 {
2130 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2131 	u_int i, keyix;
2132 
2133 	KASSERT(!sc->sc_splitmic, ("key cache split"));
2134 	/* XXX could optimize */
2135 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
2136 		u_int8_t b = sc->sc_keymap[i];
2137 		if (b != 0xff) {
2138 			/*
2139 			 * One or more slots in this byte are free.
2140 			 */
2141 			keyix = i*NBBY;
2142 			while (b & 1) {
2143 		again:
2144 				keyix++;
2145 				b >>= 1;
2146 			}
2147 			if (isset(sc->sc_keymap, keyix+64)) {
2148 				/* full pair unavailable */
2149 				/* XXX statistic */
2150 				if (keyix == (i+1)*NBBY) {
2151 					/* no slots were appropriate, advance */
2152 					continue;
2153 				}
2154 				goto again;
2155 			}
2156 			setbit(sc->sc_keymap, keyix);
2157 			setbit(sc->sc_keymap, keyix+64);
2158 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2159 				"%s: key pair %u,%u\n",
2160 				__func__, keyix, keyix+64);
2161 			*txkeyix = *rxkeyix = keyix;
2162 			return 1;
2163 		}
2164 	}
2165 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2166 	return 0;
2167 #undef N
2168 }
2169 
2170 /*
2171  * Allocate a single key cache slot.
2172  */
2173 static int
2174 key_alloc_single(struct ath_softc *sc,
2175 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2176 {
2177 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2178 	u_int i, keyix;
2179 
2180 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
2181 	for (i = 0; i < N(sc->sc_keymap); i++) {
2182 		u_int8_t b = sc->sc_keymap[i];
2183 		if (b != 0xff) {
2184 			/*
2185 			 * One or more slots are free.
2186 			 */
2187 			keyix = i*NBBY;
2188 			while (b & 1)
2189 				keyix++, b >>= 1;
2190 			setbit(sc->sc_keymap, keyix);
2191 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
2192 				__func__, keyix);
2193 			*txkeyix = *rxkeyix = keyix;
2194 			return 1;
2195 		}
2196 	}
2197 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
2198 	return 0;
2199 #undef N
2200 }
2201 
2202 /*
2203  * Allocate one or more key cache slots for a uniacst key.  The
2204  * key itself is needed only to identify the cipher.  For hardware
2205  * TKIP with split cipher+MIC keys we allocate two key cache slot
2206  * pairs so that we can setup separate TX and RX MIC keys.  Note
2207  * that the MIC key for a TKIP key at slot i is assumed by the
2208  * hardware to be at slot i+64.  This limits TKIP keys to the first
2209  * 64 entries.
2210  */
2211 static int
2212 ath_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
2213 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
2214 {
2215 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2216 
2217 	/*
2218 	 * Group key allocation must be handled specially for
2219 	 * parts that do not support multicast key cache search
2220 	 * functionality.  For those parts the key id must match
2221 	 * the h/w key index so lookups find the right key.  On
2222 	 * parts w/ the key search facility we install the sender's
2223 	 * mac address (with the high bit set) and let the hardware
2224 	 * find the key w/o using the key id.  This is preferred as
2225 	 * it permits us to support multiple users for adhoc and/or
2226 	 * multi-station operation.
2227 	 */
2228 	if (k->wk_keyix != IEEE80211_KEYIX_NONE) {
2229 		/*
2230 		 * Only global keys should have key index assigned.
2231 		 */
2232 		if (!(&vap->iv_nw_keys[0] <= k &&
2233 		      k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
2234 			/* should not happen */
2235 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2236 				"%s: bogus group key\n", __func__);
2237 			return 0;
2238 		}
2239 		if (vap->iv_opmode != IEEE80211_M_HOSTAP ||
2240 		    !(k->wk_flags & IEEE80211_KEY_GROUP) ||
2241 		    !sc->sc_mcastkey) {
2242 			/*
2243 			 * XXX we pre-allocate the global keys so
2244 			 * have no way to check if they've already
2245 			 * been allocated.
2246 			 */
2247 			*keyix = *rxkeyix = k - vap->iv_nw_keys;
2248 			return 1;
2249 		}
2250 		/*
2251 		 * Group key and device supports multicast key search.
2252 		 */
2253 		k->wk_keyix = IEEE80211_KEYIX_NONE;
2254 	}
2255 
2256 	/*
2257 	 * We allocate two pair for TKIP when using the h/w to do
2258 	 * the MIC.  For everything else, including software crypto,
2259 	 * we allocate a single entry.  Note that s/w crypto requires
2260 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
2261 	 * not support pass-through cache entries and we map all
2262 	 * those requests to slot 0.
2263 	 */
2264 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
2265 		return key_alloc_single(sc, keyix, rxkeyix);
2266 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
2267 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2268 		if (sc->sc_splitmic)
2269 			return key_alloc_2pair(sc, keyix, rxkeyix);
2270 		else
2271 			return key_alloc_pair(sc, keyix, rxkeyix);
2272 	} else {
2273 		return key_alloc_single(sc, keyix, rxkeyix);
2274 	}
2275 }
2276 
2277 /*
2278  * Delete an entry in the key cache allocated by ath_key_alloc.
2279  */
2280 static int
2281 ath_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
2282 {
2283 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2284 	struct ath_hal *ah = sc->sc_ah;
2285 	const struct ieee80211_cipher *cip = k->wk_cipher;
2286 	u_int keyix = k->wk_keyix;
2287 
2288 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
2289 
2290 	ath_hal_keyreset(ah, keyix);
2291 	/*
2292 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
2293 	 */
2294 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2295 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
2296 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
2297 	if (keyix >= IEEE80211_WEP_NKID) {
2298 		/*
2299 		 * Don't touch keymap entries for global keys so
2300 		 * they are never considered for dynamic allocation.
2301 		 */
2302 		clrbit(sc->sc_keymap, keyix);
2303 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2304 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2305 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
2306 			if (sc->sc_splitmic) {
2307 				/* +32 for RX key, +32+64 for RX key MIC */
2308 				clrbit(sc->sc_keymap, keyix+32);
2309 				clrbit(sc->sc_keymap, keyix+32+64);
2310 			}
2311 		}
2312 	}
2313 	return 1;
2314 }
2315 
2316 /*
2317  * Set the key cache contents for the specified key.  Key cache
2318  * slot(s) must already have been allocated by ath_key_alloc.
2319  */
2320 static int
2321 ath_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
2322 	const u_int8_t mac[IEEE80211_ADDR_LEN])
2323 {
2324 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2325 
2326 	return ath_keyset(sc, k, vap->iv_bss);
2327 }
2328 
2329 /*
2330  * Block/unblock tx+rx processing while a key change is done.
2331  * We assume the caller serializes key management operations
2332  * so we only need to worry about synchronization with other
2333  * uses that originate in the driver.
2334  */
2335 static void
2336 ath_key_update_begin(struct ieee80211vap *vap)
2337 {
2338 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2339 	struct ath_softc *sc = ifp->if_softc;
2340 
2341 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2342 	taskqueue_block(sc->sc_tq);
2343 }
2344 
2345 static void
2346 ath_key_update_end(struct ieee80211vap *vap)
2347 {
2348 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2349 	struct ath_softc *sc = ifp->if_softc;
2350 
2351 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2352 	taskqueue_unblock(sc->sc_tq);
2353 }
2354 
2355 /*
2356  * Calculate the receive filter according to the
2357  * operating mode and state:
2358  *
2359  * o always accept unicast, broadcast, and multicast traffic
2360  * o accept PHY error frames when hardware doesn't have MIB support
2361  *   to count and we need them for ANI (sta mode only until recently)
2362  *   and we are not scanning (ANI is disabled)
2363  *   NB: older hal's add rx filter bits out of sight and we need to
2364  *	 blindly preserve them
2365  * o probe request frames are accepted only when operating in
2366  *   hostap, adhoc, mesh, or monitor modes
2367  * o enable promiscuous mode
2368  *   - when in monitor mode
2369  *   - if interface marked PROMISC (assumes bridge setting is filtered)
2370  * o accept beacons:
2371  *   - when operating in station mode for collecting rssi data when
2372  *     the station is otherwise quiet, or
2373  *   - when operating in adhoc mode so the 802.11 layer creates
2374  *     node table entries for peers,
2375  *   - when scanning
2376  *   - when doing s/w beacon miss (e.g. for ap+sta)
2377  *   - when operating in ap mode in 11g to detect overlapping bss that
2378  *     require protection
2379  *   - when operating in mesh mode to detect neighbors
2380  * o accept control frames:
2381  *   - when in monitor mode
2382  * XXX BAR frames for 11n
2383  * XXX HT protection for 11n
2384  */
2385 static u_int32_t
2386 ath_calcrxfilter(struct ath_softc *sc)
2387 {
2388 	struct ifnet *ifp = sc->sc_ifp;
2389 	struct ieee80211com *ic = ifp->if_l2com;
2390 	u_int32_t rfilt;
2391 
2392 	rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
2393 	if (!sc->sc_needmib && !sc->sc_scanning)
2394 		rfilt |= HAL_RX_FILTER_PHYERR;
2395 	if (ic->ic_opmode != IEEE80211_M_STA)
2396 		rfilt |= HAL_RX_FILTER_PROBEREQ;
2397 	/* XXX ic->ic_monvaps != 0? */
2398 	if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC))
2399 		rfilt |= HAL_RX_FILTER_PROM;
2400 	if (ic->ic_opmode == IEEE80211_M_STA ||
2401 	    ic->ic_opmode == IEEE80211_M_IBSS ||
2402 	    sc->sc_swbmiss || sc->sc_scanning)
2403 		rfilt |= HAL_RX_FILTER_BEACON;
2404 	/*
2405 	 * NB: We don't recalculate the rx filter when
2406 	 * ic_protmode changes; otherwise we could do
2407 	 * this only when ic_protmode != NONE.
2408 	 */
2409 	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
2410 	    IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
2411 		rfilt |= HAL_RX_FILTER_BEACON;
2412 	if (sc->sc_nmeshvaps) {
2413 		rfilt |= HAL_RX_FILTER_BEACON;
2414 		if (sc->sc_hasbmatch)
2415 			rfilt |= HAL_RX_FILTER_BSSID;
2416 		else
2417 			rfilt |= HAL_RX_FILTER_PROM;
2418 	}
2419 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2420 		rfilt |= HAL_RX_FILTER_CONTROL;
2421 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n",
2422 	    __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags);
2423 	return rfilt;
2424 }
2425 
2426 static void
2427 ath_update_promisc(struct ifnet *ifp)
2428 {
2429 	struct ath_softc *sc = ifp->if_softc;
2430 	u_int32_t rfilt;
2431 
2432 	/* configure rx filter */
2433 	rfilt = ath_calcrxfilter(sc);
2434 	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2435 
2436 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2437 }
2438 
2439 static void
2440 ath_update_mcast(struct ifnet *ifp)
2441 {
2442 	struct ath_softc *sc = ifp->if_softc;
2443 	u_int32_t mfilt[2];
2444 
2445 	/* calculate and install multicast filter */
2446 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2447 		struct ifmultiaddr *ifma;
2448 		/*
2449 		 * Merge multicast addresses to form the hardware filter.
2450 		 */
2451 		mfilt[0] = mfilt[1] = 0;
2452 #ifdef __FreeBSD__
2453 		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
2454 #endif
2455 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2456 			caddr_t dl;
2457 			u_int32_t val;
2458 			u_int8_t pos;
2459 
2460 			/* calculate XOR of eight 6bit values */
2461 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2462 			val = LE_READ_4(dl + 0);
2463 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2464 			val = LE_READ_4(dl + 3);
2465 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2466 			pos &= 0x3f;
2467 			mfilt[pos / 32] |= (1 << (pos % 32));
2468 		}
2469 #ifdef __FreeBSD__
2470 		if_maddr_runlock(ifp);
2471 #endif
2472 	} else
2473 		mfilt[0] = mfilt[1] = ~0;
2474 	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2475 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2476 		__func__, mfilt[0], mfilt[1]);
2477 }
2478 
2479 static void
2480 ath_mode_init(struct ath_softc *sc)
2481 {
2482 	struct ifnet *ifp = sc->sc_ifp;
2483 	struct ath_hal *ah = sc->sc_ah;
2484 	u_int32_t rfilt;
2485 
2486 	/* configure rx filter */
2487 	rfilt = ath_calcrxfilter(sc);
2488 	ath_hal_setrxfilter(ah, rfilt);
2489 
2490 	/* configure operational mode */
2491 	ath_hal_setopmode(ah);
2492 
2493 	/* handle any link-level address change */
2494 	ath_hal_setmac(ah, IF_LLADDR(ifp));
2495 
2496 	/* calculate and install multicast filter */
2497 	ath_update_mcast(ifp);
2498 }
2499 
2500 /*
2501  * Set the slot time based on the current setting.
2502  */
2503 static void
2504 ath_setslottime(struct ath_softc *sc)
2505 {
2506 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2507 	struct ath_hal *ah = sc->sc_ah;
2508 	u_int usec;
2509 
2510 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2511 		usec = 13;
2512 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2513 		usec = 21;
2514 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2515 		/* honor short/long slot time only in 11g */
2516 		/* XXX shouldn't honor on pure g or turbo g channel */
2517 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2518 			usec = HAL_SLOT_TIME_9;
2519 		else
2520 			usec = HAL_SLOT_TIME_20;
2521 	} else
2522 		usec = HAL_SLOT_TIME_9;
2523 
2524 	DPRINTF(sc, ATH_DEBUG_RESET,
2525 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2526 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2527 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2528 
2529 	ath_hal_setslottime(ah, usec);
2530 	sc->sc_updateslot = OK;
2531 }
2532 
2533 /*
2534  * Callback from the 802.11 layer to update the
2535  * slot time based on the current setting.
2536  */
2537 static void
2538 ath_updateslot(struct ifnet *ifp)
2539 {
2540 	struct ath_softc *sc = ifp->if_softc;
2541 	struct ieee80211com *ic = ifp->if_l2com;
2542 
2543 	/*
2544 	 * When not coordinating the BSS, change the hardware
2545 	 * immediately.  For other operation we defer the change
2546 	 * until beacon updates have propagated to the stations.
2547 	 */
2548 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2549 	    ic->ic_opmode == IEEE80211_M_MBSS)
2550 		sc->sc_updateslot = UPDATE;
2551 	else
2552 		ath_setslottime(sc);
2553 }
2554 
2555 /*
2556  * Setup a h/w transmit queue for beacons.
2557  */
2558 static int
2559 ath_beaconq_setup(struct ath_hal *ah)
2560 {
2561 	HAL_TXQ_INFO qi;
2562 
2563 	memset(&qi, 0, sizeof(qi));
2564 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2565 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2566 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2567 	/* NB: for dynamic turbo, don't enable any other interrupts */
2568 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2569 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2570 }
2571 
2572 /*
2573  * Setup the transmit queue parameters for the beacon queue.
2574  */
2575 static int
2576 ath_beaconq_config(struct ath_softc *sc)
2577 {
2578 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2579 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2580 	struct ath_hal *ah = sc->sc_ah;
2581 	HAL_TXQ_INFO qi;
2582 
2583 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2584 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2585 	    ic->ic_opmode == IEEE80211_M_MBSS) {
2586 		/*
2587 		 * Always burst out beacon and CAB traffic.
2588 		 */
2589 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2590 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2591 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2592 	} else {
2593 		struct wmeParams *wmep =
2594 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2595 		/*
2596 		 * Adhoc mode; important thing is to use 2x cwmin.
2597 		 */
2598 		qi.tqi_aifs = wmep->wmep_aifsn;
2599 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2600 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2601 	}
2602 
2603 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2604 		device_printf(sc->sc_dev, "unable to update parameters for "
2605 			"beacon hardware queue!\n");
2606 		return 0;
2607 	} else {
2608 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2609 		return 1;
2610 	}
2611 #undef ATH_EXPONENT_TO_VALUE
2612 }
2613 
2614 /*
2615  * Allocate and setup an initial beacon frame.
2616  */
2617 static int
2618 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2619 {
2620 	struct ieee80211vap *vap = ni->ni_vap;
2621 	struct ath_vap *avp = ATH_VAP(vap);
2622 	struct ath_buf *bf;
2623 	struct mbuf *m;
2624 	int error;
2625 
2626 	bf = avp->av_bcbuf;
2627 	if (bf->bf_m != NULL) {
2628 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2629 		m_freem(bf->bf_m);
2630 		bf->bf_m = NULL;
2631 	}
2632 	if (bf->bf_node != NULL) {
2633 		ieee80211_free_node(bf->bf_node);
2634 		bf->bf_node = NULL;
2635 	}
2636 
2637 	/*
2638 	 * NB: the beacon data buffer must be 32-bit aligned;
2639 	 * we assume the mbuf routines will return us something
2640 	 * with this alignment (perhaps should assert).
2641 	 */
2642 	m = ieee80211_beacon_alloc(ni, &avp->av_boff);
2643 	if (m == NULL) {
2644 		device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__);
2645 		sc->sc_stats.ast_be_nombuf++;
2646 		return ENOMEM;
2647 	}
2648 	error = bus_dmamap_load_mbuf_segment(sc->sc_dmat, bf->bf_dmamap, m,
2649 				     bf->bf_segs, 1, &bf->bf_nseg,
2650 				     BUS_DMA_NOWAIT);
2651 	if (error != 0) {
2652 		device_printf(sc->sc_dev,
2653 		    "%s: cannot map mbuf, bus_dmamap_load_mbuf_segment returns %d\n",
2654 		    __func__, error);
2655 		m_freem(m);
2656 		return error;
2657 	}
2658 
2659 	/*
2660 	 * Calculate a TSF adjustment factor required for staggered
2661 	 * beacons.  Note that we assume the format of the beacon
2662 	 * frame leaves the tstamp field immediately following the
2663 	 * header.
2664 	 */
2665 	if (sc->sc_stagbeacons && avp->av_bslot > 0) {
2666 		uint64_t tsfadjust;
2667 		struct ieee80211_frame *wh;
2668 
2669 		/*
2670 		 * The beacon interval is in TU's; the TSF is in usecs.
2671 		 * We figure out how many TU's to add to align the timestamp
2672 		 * then convert to TSF units and handle byte swapping before
2673 		 * inserting it in the frame.  The hardware will then add this
2674 		 * each time a beacon frame is sent.  Note that we align vap's
2675 		 * 1..N and leave vap 0 untouched.  This means vap 0 has a
2676 		 * timestamp in one beacon interval while the others get a
2677 		 * timstamp aligned to the next interval.
2678 		 */
2679 		tsfadjust = ni->ni_intval *
2680 		    (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF;
2681 		tsfadjust = htole64(tsfadjust << 10);	/* TU -> TSF */
2682 
2683 		DPRINTF(sc, ATH_DEBUG_BEACON,
2684 		    "%s: %s beacons bslot %d intval %u tsfadjust %llu\n",
2685 		    __func__, sc->sc_stagbeacons ? "stagger" : "burst",
2686 		    avp->av_bslot, ni->ni_intval,
2687 		    (long long unsigned) le64toh(tsfadjust));
2688 
2689 		wh = mtod(m, struct ieee80211_frame *);
2690 		memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust));
2691 	}
2692 	bf->bf_m = m;
2693 	bf->bf_node = ieee80211_ref_node(ni);
2694 
2695 	return 0;
2696 }
2697 
2698 /*
2699  * Setup the beacon frame for transmit.
2700  */
2701 static void
2702 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2703 {
2704 #define	USE_SHPREAMBLE(_ic) \
2705 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2706 		== IEEE80211_F_SHPREAMBLE)
2707 	struct ieee80211_node *ni = bf->bf_node;
2708 	struct ieee80211com *ic = ni->ni_ic;
2709 	struct mbuf *m = bf->bf_m;
2710 	struct ath_hal *ah = sc->sc_ah;
2711 	struct ath_desc *ds;
2712 	int flags, antenna;
2713 	const HAL_RATE_TABLE *rt;
2714 	u_int8_t rix, rate;
2715 
2716 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
2717 		__func__, m, m->m_len);
2718 
2719 	/* setup descriptors */
2720 	ds = bf->bf_desc;
2721 
2722 	flags = HAL_TXDESC_NOACK;
2723 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2724 		ds->ds_link = bf->bf_daddr;	/* self-linked */
2725 		flags |= HAL_TXDESC_VEOL;
2726 		/*
2727 		 * Let hardware handle antenna switching.
2728 		 */
2729 		antenna = sc->sc_txantenna;
2730 	} else {
2731 		ds->ds_link = 0;
2732 		/*
2733 		 * Switch antenna every 4 beacons.
2734 		 * XXX assumes two antenna
2735 		 */
2736 		if (sc->sc_txantenna != 0)
2737 			antenna = sc->sc_txantenna;
2738 		else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0)
2739 			antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1);
2740 		else
2741 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2742 	}
2743 
2744 	KASSERT(bf->bf_nseg == 1,
2745 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2746 	ds->ds_data = bf->bf_segs[0].ds_addr;
2747 	/*
2748 	 * Calculate rate code.
2749 	 * XXX everything at min xmit rate
2750 	 */
2751 	rix = 0;
2752 	rt = sc->sc_currates;
2753 	rate = rt->info[rix].rateCode;
2754 	if (USE_SHPREAMBLE(ic))
2755 		rate |= rt->info[rix].shortPreamble;
2756 	ath_hal_setuptxdesc(ah, ds
2757 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2758 		, sizeof(struct ieee80211_frame)/* header length */
2759 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2760 		, ni->ni_txpower		/* txpower XXX */
2761 		, rate, 1			/* series 0 rate/tries */
2762 		, HAL_TXKEYIX_INVALID		/* no encryption */
2763 		, antenna			/* antenna mode */
2764 		, flags				/* no ack, veol for beacons */
2765 		, 0				/* rts/cts rate */
2766 		, 0				/* rts/cts duration */
2767 	);
2768 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2769 	ath_hal_filltxdesc(ah, ds
2770 		, roundup(m->m_len, 4)		/* buffer length */
2771 		, AH_TRUE			/* first segment */
2772 		, AH_TRUE			/* last segment */
2773 		, ds				/* first descriptor */
2774 	);
2775 #if 0
2776 	ath_desc_swap(ds);
2777 #endif
2778 #undef USE_SHPREAMBLE
2779 }
2780 
2781 static void
2782 ath_beacon_update(struct ieee80211vap *vap, int item)
2783 {
2784 	struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff;
2785 
2786 	setbit(bo->bo_flags, item);
2787 }
2788 
2789 /*
2790  * Append the contents of src to dst; both queues
2791  * are assumed to be locked.
2792  */
2793 static void
2794 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2795 {
2796 	STAILQ_CONCAT(&dst->axq_q, &src->axq_q);
2797 	if (src->axq_depth)
2798 		dst->axq_link = src->axq_link;
2799 	src->axq_link = NULL;
2800 	dst->axq_depth += src->axq_depth;
2801 	src->axq_depth = 0;
2802 }
2803 
2804 /*
2805  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2806  * frame contents are done as needed and the slot time is
2807  * also adjusted based on current state.
2808  */
2809 static void
2810 ath_beacon_proc(void *arg, int pending)
2811 {
2812 	struct ath_softc *sc = arg;
2813 	struct ath_hal *ah = sc->sc_ah;
2814 	struct ieee80211vap *vap;
2815 	struct ath_buf *bf;
2816 	int slot, otherant;
2817 	uint32_t bfaddr;
2818 
2819 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2820 		__func__, pending);
2821 	/*
2822 	 * Check if the previous beacon has gone out.  If
2823 	 * not don't try to post another, skip this period
2824 	 * and wait for the next.  Missed beacons indicate
2825 	 * a problem and should not occur.  If we miss too
2826 	 * many consecutive beacons reset the device.
2827 	 */
2828 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2829 		sc->sc_bmisscount++;
2830 		DPRINTF(sc, ATH_DEBUG_BEACON,
2831 			"%s: missed %u consecutive beacons\n",
2832 			__func__, sc->sc_bmisscount);
2833 		if (sc->sc_bmisscount >= ath_bstuck_threshold)
2834 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
2835 		return;
2836 	}
2837 	if (sc->sc_bmisscount != 0) {
2838 		DPRINTF(sc, ATH_DEBUG_BEACON,
2839 			"%s: resume beacon xmit after %u misses\n",
2840 			__func__, sc->sc_bmisscount);
2841 		sc->sc_bmisscount = 0;
2842 	}
2843 
2844 	/*
2845 	 * Stop any current dma before messing with the beacon linkages.
2846 	 */
2847 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2848 		DPRINTF(sc, ATH_DEBUG_ANY,
2849 			"%s: beacon queue %u did not stop?\n",
2850 			__func__, sc->sc_bhalq);
2851 	}
2852 
2853 	if (sc->sc_stagbeacons) {			/* staggered beacons */
2854 		struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2855 		uint32_t tsftu;
2856 
2857 		tsftu = ath_hal_gettsf32(ah) >> 10;
2858 		/* XXX lintval */
2859 		slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval;
2860 		vap = sc->sc_bslot[(slot+1) % ATH_BCBUF];
2861 		bfaddr = 0;
2862 		if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
2863 			bf = ath_beacon_generate(sc, vap);
2864 			if (bf != NULL)
2865 				bfaddr = bf->bf_daddr;
2866 		}
2867 	} else {					/* burst'd beacons */
2868 		uint32_t *bflink = &bfaddr;
2869 
2870 		for (slot = 0; slot < ATH_BCBUF; slot++) {
2871 			vap = sc->sc_bslot[slot];
2872 			if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
2873 				bf = ath_beacon_generate(sc, vap);
2874 				if (bf != NULL) {
2875 					*bflink = bf->bf_daddr;
2876 					bflink = &bf->bf_desc->ds_link;
2877 				}
2878 			}
2879 		}
2880 		*bflink = 0;				/* terminate list */
2881 	}
2882 
2883 	/*
2884 	 * Handle slot time change when a non-ERP station joins/leaves
2885 	 * an 11g network.  The 802.11 layer notifies us via callback,
2886 	 * we mark updateslot, then wait one beacon before effecting
2887 	 * the change.  This gives associated stations at least one
2888 	 * beacon interval to note the state change.
2889 	 */
2890 	/* XXX locking */
2891 	if (sc->sc_updateslot == UPDATE) {
2892 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2893 		sc->sc_slotupdate = slot;
2894 	} else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot)
2895 		ath_setslottime(sc);		/* commit change to h/w */
2896 
2897 	/*
2898 	 * Check recent per-antenna transmit statistics and flip
2899 	 * the default antenna if noticeably more frames went out
2900 	 * on the non-default antenna.
2901 	 * XXX assumes 2 anntenae
2902 	 */
2903 	if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) {
2904 		otherant = sc->sc_defant & 1 ? 2 : 1;
2905 		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2906 			ath_setdefantenna(sc, otherant);
2907 		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2908 	}
2909 
2910 	if (bfaddr != 0) {
2911 		/* NB: cabq traffic should already be queued and primed */
2912 		ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr);
2913 		sc->sc_stats.ast_be_xmit++;
2914 		ath_hal_txstart(ah, sc->sc_bhalq);
2915 	}
2916 	/* else no beacon will be generated */
2917 }
2918 
2919 static struct ath_buf *
2920 ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap)
2921 {
2922 	struct ath_vap *avp = ATH_VAP(vap);
2923 	struct ath_txq *cabq = sc->sc_cabq;
2924 	struct ath_buf *bf;
2925 	struct mbuf *m;
2926 	int nmcastq, error;
2927 
2928 	KASSERT(vap->iv_state >= IEEE80211_S_RUN,
2929 	    ("not running, state %d", vap->iv_state));
2930 	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
2931 
2932 	/*
2933 	 * Update dynamic beacon contents.  If this returns
2934 	 * non-zero then we need to remap the memory because
2935 	 * the beacon frame changed size (probably because
2936 	 * of the TIM bitmap).
2937 	 */
2938 	bf = avp->av_bcbuf;
2939 	m = bf->bf_m;
2940 	nmcastq = avp->av_mcastq.axq_depth;
2941 	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) {
2942 		/* XXX too conservative? */
2943 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2944 		error = bus_dmamap_load_mbuf_segment(sc->sc_dmat, bf->bf_dmamap, m,
2945 					     bf->bf_segs, 1, &bf->bf_nseg,
2946 					     BUS_DMA_NOWAIT);
2947 		if (error != 0) {
2948 			if_printf(vap->iv_ifp,
2949 			    "%s: bus_dmamap_load_mbuf_segment failed, error %u\n",
2950 			    __func__, error);
2951 			return NULL;
2952 		}
2953 	}
2954 	if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) {
2955 		DPRINTF(sc, ATH_DEBUG_BEACON,
2956 		    "%s: cabq did not drain, mcastq %u cabq %u\n",
2957 		    __func__, nmcastq, cabq->axq_depth);
2958 		sc->sc_stats.ast_cabq_busy++;
2959 		if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) {
2960 			/*
2961 			 * CABQ traffic from a previous vap is still pending.
2962 			 * We must drain the q before this beacon frame goes
2963 			 * out as otherwise this vap's stations will get cab
2964 			 * frames from a different vap.
2965 			 * XXX could be slow causing us to miss DBA
2966 			 */
2967 			ath_tx_draintxq(sc, cabq);
2968 		}
2969 	}
2970 	ath_beacon_setup(sc, bf);
2971 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
2972 
2973 	/*
2974 	 * Enable the CAB queue before the beacon queue to
2975 	 * insure cab frames are triggered by this beacon.
2976 	 */
2977 	if (avp->av_boff.bo_tim[4] & 1) {
2978 		struct ath_hal *ah = sc->sc_ah;
2979 
2980 		/* NB: only at DTIM */
2981 		if (nmcastq) {
2982 			struct ath_buf *bfm;
2983 			int qbusy;
2984 
2985 			/*
2986 			 * Move frames from the s/w mcast q to the h/w cab q.
2987 			 * XXX MORE_DATA bit
2988 			 */
2989 			bfm = STAILQ_FIRST(&avp->av_mcastq.axq_q);
2990 			qbusy = ath_hal_txqenabled(ah, cabq->axq_qnum);
2991 			if (qbusy == 0) {
2992 				if (cabq->axq_link != NULL) {
2993 					cpu_sfence();
2994 					*cabq->axq_link = bfm->bf_daddr;
2995 					cabq->axq_flags |= ATH_TXQ_PUTPENDING;
2996 				} else {
2997 					cpu_sfence();
2998 					ath_hal_puttxbuf(ah, cabq->axq_qnum,
2999 						bfm->bf_daddr);
3000 				}
3001 			} else {
3002 				if (cabq->axq_link != NULL) {
3003 					cpu_sfence();
3004 					*cabq->axq_link = bfm->bf_daddr;
3005 				}
3006 				cabq->axq_flags |= ATH_TXQ_PUTPENDING;
3007 			}
3008 			ath_txqmove(cabq, &avp->av_mcastq);
3009 
3010 			sc->sc_stats.ast_cabq_xmit += nmcastq;
3011 		}
3012 		/* NB: gated by beacon so safe to start here */
3013 		ath_hal_txstart(ah, cabq->axq_qnum);
3014 	}
3015 	return bf;
3016 }
3017 
3018 static void
3019 ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap)
3020 {
3021 	struct ath_vap *avp = ATH_VAP(vap);
3022 	struct ath_hal *ah = sc->sc_ah;
3023 	struct ath_buf *bf;
3024 	struct mbuf *m;
3025 	int error;
3026 
3027 	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
3028 
3029 	/*
3030 	 * Update dynamic beacon contents.  If this returns
3031 	 * non-zero then we need to remap the memory because
3032 	 * the beacon frame changed size (probably because
3033 	 * of the TIM bitmap).
3034 	 */
3035 	bf = avp->av_bcbuf;
3036 	m = bf->bf_m;
3037 	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) {
3038 		/* XXX too conservative? */
3039 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3040 		error = bus_dmamap_load_mbuf_segment(sc->sc_dmat, bf->bf_dmamap, m,
3041 					     bf->bf_segs, 1, &bf->bf_nseg,
3042 					     BUS_DMA_NOWAIT);
3043 		if (error != 0) {
3044 			if_printf(vap->iv_ifp,
3045 			    "%s: bus_dmamap_load_mbuf_segment failed, error %u\n",
3046 			    __func__, error);
3047 			return;
3048 		}
3049 	}
3050 	ath_beacon_setup(sc, bf);
3051 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3052 
3053 	/* NB: caller is known to have already stopped tx dma */
3054 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
3055 	ath_hal_txstart(ah, sc->sc_bhalq);
3056 }
3057 
3058 /*
3059  * Reset the hardware after detecting beacons have stopped.
3060  */
3061 static void
3062 ath_bstuck_task(void *arg, int pending)
3063 {
3064 	struct ath_softc *sc = arg;
3065 	struct ifnet *ifp = sc->sc_ifp;
3066 
3067 	wlan_serialize_enter();
3068 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3069 		  sc->sc_bmisscount);
3070 	sc->sc_stats.ast_bstuck++;
3071 	ath_reset(ifp);
3072 	wlan_serialize_exit();
3073 }
3074 
3075 /*
3076  * Reclaim beacon resources and return buffer to the pool.
3077  */
3078 static void
3079 ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf)
3080 {
3081 
3082 	if (bf->bf_m != NULL) {
3083 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3084 		m_freem(bf->bf_m);
3085 		bf->bf_m = NULL;
3086 	}
3087 	if (bf->bf_node != NULL) {
3088 		ieee80211_free_node(bf->bf_node);
3089 		bf->bf_node = NULL;
3090 	}
3091 	STAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list);
3092 }
3093 
3094 /*
3095  * Reclaim beacon resources.
3096  */
3097 static void
3098 ath_beacon_free(struct ath_softc *sc)
3099 {
3100 	struct ath_buf *bf;
3101 
3102 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
3103 		if (bf->bf_m != NULL) {
3104 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3105 			m_freem(bf->bf_m);
3106 			bf->bf_m = NULL;
3107 		}
3108 		if (bf->bf_node != NULL) {
3109 			ieee80211_free_node(bf->bf_node);
3110 			bf->bf_node = NULL;
3111 		}
3112 	}
3113 }
3114 
3115 /*
3116  * Configure the beacon and sleep timers.
3117  *
3118  * When operating as an AP this resets the TSF and sets
3119  * up the hardware to notify us when we need to issue beacons.
3120  *
3121  * When operating in station mode this sets up the beacon
3122  * timers according to the timestamp of the last received
3123  * beacon and the current TSF, configures PCF and DTIM
3124  * handling, programs the sleep registers so the hardware
3125  * will wakeup in time to receive beacons, and configures
3126  * the beacon miss handling so we'll receive a BMISS
3127  * interrupt when we stop seeing beacons from the AP
3128  * we've associated with.
3129  */
3130 static void
3131 ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap)
3132 {
3133 #define	TSF_TO_TU(_h,_l) \
3134 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
3135 #define	FUDGE	2
3136 	struct ath_hal *ah = sc->sc_ah;
3137 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3138 	struct ieee80211_node *ni;
3139 	u_int32_t nexttbtt, intval, tsftu;
3140 	u_int64_t tsf;
3141 
3142 	if (vap == NULL)
3143 		vap = TAILQ_FIRST(&ic->ic_vaps);	/* XXX */
3144 	ni = vap->iv_bss;
3145 
3146 	/* extract tstamp from last beacon and convert to TU */
3147 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
3148 			     LE_READ_4(ni->ni_tstamp.data));
3149 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3150 	    ic->ic_opmode == IEEE80211_M_MBSS) {
3151 		/*
3152 		 * For multi-bss ap/mesh support beacons are either staggered
3153 		 * evenly over N slots or burst together.  For the former
3154 		 * arrange for the SWBA to be delivered for each slot.
3155 		 * Slots that are not occupied will generate nothing.
3156 		 */
3157 		/* NB: the beacon interval is kept internally in TU's */
3158 		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3159 		if (sc->sc_stagbeacons)
3160 			intval /= ATH_BCBUF;
3161 	} else {
3162 		/* NB: the beacon interval is kept internally in TU's */
3163 		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3164 	}
3165 	if (nexttbtt == 0)		/* e.g. for ap mode */
3166 		nexttbtt = intval;
3167 	else if (intval)		/* NB: can be 0 for monitor mode */
3168 		nexttbtt = roundup(nexttbtt, intval);
3169 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
3170 		__func__, nexttbtt, intval, ni->ni_intval);
3171 	if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) {
3172 		HAL_BEACON_STATE bs;
3173 		int dtimperiod, dtimcount;
3174 		int cfpperiod, cfpcount;
3175 
3176 		/*
3177 		 * Setup dtim and cfp parameters according to
3178 		 * last beacon we received (which may be none).
3179 		 */
3180 		dtimperiod = ni->ni_dtim_period;
3181 		if (dtimperiod <= 0)		/* NB: 0 if not known */
3182 			dtimperiod = 1;
3183 		dtimcount = ni->ni_dtim_count;
3184 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
3185 			dtimcount = 0;		/* XXX? */
3186 		cfpperiod = 1;			/* NB: no PCF support yet */
3187 		cfpcount = 0;
3188 		/*
3189 		 * Pull nexttbtt forward to reflect the current
3190 		 * TSF and calculate dtim+cfp state for the result.
3191 		 */
3192 		tsf = ath_hal_gettsf64(ah);
3193 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3194 		do {
3195 			nexttbtt += intval;
3196 			if (--dtimcount < 0) {
3197 				dtimcount = dtimperiod - 1;
3198 				if (--cfpcount < 0)
3199 					cfpcount = cfpperiod - 1;
3200 			}
3201 		} while (nexttbtt < tsftu);
3202 		memset(&bs, 0, sizeof(bs));
3203 		bs.bs_intval = intval;
3204 		bs.bs_nexttbtt = nexttbtt;
3205 		bs.bs_dtimperiod = dtimperiod*intval;
3206 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
3207 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
3208 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
3209 		bs.bs_cfpmaxduration = 0;
3210 #if 0
3211 		/*
3212 		 * The 802.11 layer records the offset to the DTIM
3213 		 * bitmap while receiving beacons; use it here to
3214 		 * enable h/w detection of our AID being marked in
3215 		 * the bitmap vector (to indicate frames for us are
3216 		 * pending at the AP).
3217 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
3218 		 * XXX enable based on h/w rev for newer chips
3219 		 */
3220 		bs.bs_timoffset = ni->ni_timoff;
3221 #endif
3222 		/*
3223 		 * Calculate the number of consecutive beacons to miss
3224 		 * before taking a BMISS interrupt.
3225 		 * Note that we clamp the result to at most 10 beacons.
3226 		 */
3227 		bs.bs_bmissthreshold = vap->iv_bmissthreshold;
3228 		if (bs.bs_bmissthreshold > 10)
3229 			bs.bs_bmissthreshold = 10;
3230 		else if (bs.bs_bmissthreshold <= 0)
3231 			bs.bs_bmissthreshold = 1;
3232 
3233 		/*
3234 		 * Calculate sleep duration.  The configuration is
3235 		 * given in ms.  We insure a multiple of the beacon
3236 		 * period is used.  Also, if the sleep duration is
3237 		 * greater than the DTIM period then it makes senses
3238 		 * to make it a multiple of that.
3239 		 *
3240 		 * XXX fixed at 100ms
3241 		 */
3242 		bs.bs_sleepduration =
3243 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
3244 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
3245 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
3246 
3247 		DPRINTF(sc, ATH_DEBUG_BEACON,
3248 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
3249 			, __func__
3250 			, tsf, tsftu
3251 			, bs.bs_intval
3252 			, bs.bs_nexttbtt
3253 			, bs.bs_dtimperiod
3254 			, bs.bs_nextdtim
3255 			, bs.bs_bmissthreshold
3256 			, bs.bs_sleepduration
3257 			, bs.bs_cfpperiod
3258 			, bs.bs_cfpmaxduration
3259 			, bs.bs_cfpnext
3260 			, bs.bs_timoffset
3261 		);
3262 		ath_hal_intrset(ah, 0);
3263 		ath_hal_beacontimers(ah, &bs);
3264 		sc->sc_imask |= HAL_INT_BMISS;
3265 		ath_hal_intrset(ah, sc->sc_imask);
3266 	} else {
3267 		ath_hal_intrset(ah, 0);
3268 		if (nexttbtt == intval)
3269 			intval |= HAL_BEACON_RESET_TSF;
3270 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
3271 			/*
3272 			 * In IBSS mode enable the beacon timers but only
3273 			 * enable SWBA interrupts if we need to manually
3274 			 * prepare beacon frames.  Otherwise we use a
3275 			 * self-linked tx descriptor and let the hardware
3276 			 * deal with things.
3277 			 */
3278 			intval |= HAL_BEACON_ENA;
3279 			if (!sc->sc_hasveol)
3280 				sc->sc_imask |= HAL_INT_SWBA;
3281 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
3282 				/*
3283 				 * Pull nexttbtt forward to reflect
3284 				 * the current TSF.
3285 				 */
3286 				tsf = ath_hal_gettsf64(ah);
3287 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3288 				do {
3289 					nexttbtt += intval;
3290 				} while (nexttbtt < tsftu);
3291 			}
3292 			ath_beaconq_config(sc);
3293 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3294 		    ic->ic_opmode == IEEE80211_M_MBSS) {
3295 			/*
3296 			 * In AP/mesh mode we enable the beacon timers
3297 			 * and SWBA interrupts to prepare beacon frames.
3298 			 */
3299 			intval |= HAL_BEACON_ENA;
3300 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
3301 			ath_beaconq_config(sc);
3302 		}
3303 		ath_hal_beaconinit(ah, nexttbtt, intval);
3304 		sc->sc_bmisscount = 0;
3305 		ath_hal_intrset(ah, sc->sc_imask);
3306 		/*
3307 		 * When using a self-linked beacon descriptor in
3308 		 * ibss mode load it once here.
3309 		 */
3310 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
3311 			ath_beacon_start_adhoc(sc, vap);
3312 	}
3313 	sc->sc_syncbeacon = 0;
3314 #undef FUDGE
3315 #undef TSF_TO_TU
3316 }
3317 
3318 static void
3319 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3320 {
3321 	bus_addr_t *paddr = (bus_addr_t*) arg;
3322 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3323 	*paddr = segs->ds_addr;
3324 }
3325 
3326 static int
3327 ath_descdma_setup(struct ath_softc *sc,
3328 	struct ath_descdma *dd, ath_bufhead *head,
3329 	const char *name, int nbuf, int ndesc)
3330 {
3331 #define	DS2PHYS(_dd, _ds) \
3332 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3333 	struct ifnet *ifp = sc->sc_ifp;
3334 	struct ath_desc *ds;
3335 	struct ath_buf *bf;
3336 	int i, bsize, error;
3337 
3338 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
3339 	    __func__, name, nbuf, ndesc);
3340 
3341 	dd->dd_name = name;
3342 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
3343 
3344 	/*
3345 	 * Setup DMA descriptor area.
3346 	 */
3347 	error = bus_dma_tag_create(dd->dd_dmat,	/* parent */
3348 		       PAGE_SIZE, 0,		/* alignment, bounds */
3349 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3350 		       BUS_SPACE_MAXADDR,	/* highaddr */
3351 		       NULL, NULL,		/* filter, filterarg */
3352 		       dd->dd_desc_len,		/* maxsize */
3353 		       1,			/* nsegments */
3354 		       dd->dd_desc_len,		/* maxsegsize */
3355 		       BUS_DMA_ALLOCNOW,	/* flags */
3356 		       &dd->dd_dmat);
3357 	if (error != 0) {
3358 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3359 		return error;
3360 	}
3361 
3362 	/* allocate descriptors */
3363 	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
3364 	if (error != 0) {
3365 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
3366 			"error %u\n", dd->dd_name, error);
3367 		goto fail0;
3368 	}
3369 
3370 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3371 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3372 				 &dd->dd_dmamap);
3373 	if (error != 0) {
3374 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3375 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
3376 		goto fail1;
3377 	}
3378 
3379 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3380 				dd->dd_desc, dd->dd_desc_len,
3381 				ath_load_cb, &dd->dd_desc_paddr,
3382 				BUS_DMA_NOWAIT);
3383 	if (error != 0) {
3384 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3385 			dd->dd_name, error);
3386 		goto fail2;
3387 	}
3388 
3389 	ds = dd->dd_desc;
3390 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3391 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
3392 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
3393 
3394 	/* allocate rx buffers */
3395 	bsize = sizeof(struct ath_buf) * nbuf;
3396 	bf = kmalloc(bsize, M_ATHDEV, M_INTWAIT | M_ZERO);
3397 	if (bf == NULL) {
3398 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3399 			dd->dd_name, bsize);
3400 		goto fail3;
3401 	}
3402 	dd->dd_bufptr = bf;
3403 
3404 	STAILQ_INIT(head);
3405 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
3406 		bf->bf_desc = ds;
3407 		bf->bf_daddr = DS2PHYS(dd, ds);
3408 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3409 				&bf->bf_dmamap);
3410 		if (error != 0) {
3411 			if_printf(ifp, "unable to create dmamap for %s "
3412 				"buffer %u, error %u\n", dd->dd_name, i, error);
3413 			ath_descdma_cleanup(sc, dd, head);
3414 			return error;
3415 		}
3416 		STAILQ_INSERT_TAIL(head, bf, bf_list);
3417 	}
3418 	return 0;
3419 fail3:
3420 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3421 fail2:
3422 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3423 fail1:
3424 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3425 fail0:
3426 	bus_dma_tag_destroy(dd->dd_dmat);
3427 	memset(dd, 0, sizeof(*dd));
3428 	return error;
3429 #undef DS2PHYS
3430 }
3431 
3432 static void
3433 ath_descdma_cleanup(struct ath_softc *sc,
3434 	struct ath_descdma *dd, ath_bufhead *head)
3435 {
3436 	struct ath_buf *bf;
3437 	struct ieee80211_node *ni;
3438 
3439 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3440 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3441 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3442 	bus_dma_tag_destroy(dd->dd_dmat);
3443 
3444 	STAILQ_FOREACH(bf, head, bf_list) {
3445 		if (bf->bf_m) {
3446 			m_freem(bf->bf_m);
3447 			bf->bf_m = NULL;
3448 		}
3449 		if (bf->bf_dmamap != NULL) {
3450 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3451 			bf->bf_dmamap = NULL;
3452 		}
3453 		ni = bf->bf_node;
3454 		bf->bf_node = NULL;
3455 		if (ni != NULL) {
3456 			/*
3457 			 * Reclaim node reference.
3458 			 */
3459 			ieee80211_free_node(ni);
3460 		}
3461 	}
3462 
3463 	STAILQ_INIT(head);
3464 	kfree(dd->dd_bufptr, M_ATHDEV);
3465 	memset(dd, 0, sizeof(*dd));
3466 }
3467 
3468 static int
3469 ath_desc_alloc(struct ath_softc *sc)
3470 {
3471 	int error;
3472 
3473 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
3474 			"rx", ath_rxbuf, 1);
3475 	if (error != 0)
3476 		return error;
3477 
3478 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3479 			"tx", ath_txbuf, ATH_TXDESC);
3480 	if (error != 0) {
3481 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3482 		return error;
3483 	}
3484 
3485 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3486 			"beacon", ATH_BCBUF, 1);
3487 	if (error != 0) {
3488 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3489 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3490 		return error;
3491 	}
3492 	return 0;
3493 }
3494 
3495 static void
3496 ath_desc_free(struct ath_softc *sc)
3497 {
3498 
3499 	if (sc->sc_bdma.dd_desc_len != 0)
3500 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3501 	if (sc->sc_txdma.dd_desc_len != 0)
3502 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3503 	if (sc->sc_rxdma.dd_desc_len != 0)
3504 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3505 }
3506 
3507 static struct ieee80211_node *
3508 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3509 {
3510 	struct ieee80211com *ic = vap->iv_ic;
3511 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3512 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3513 	struct ath_node *an;
3514 
3515 	an = kmalloc(space, M_80211_NODE, M_INTWAIT|M_ZERO);
3516 	if (an == NULL) {
3517 		/* XXX stat+msg */
3518 		return NULL;
3519 	}
3520 	ath_rate_node_init(sc, an);
3521 
3522 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3523 	return &an->an_node;
3524 }
3525 
3526 static void
3527 ath_node_free(struct ieee80211_node *ni)
3528 {
3529 	struct ieee80211com *ic = ni->ni_ic;
3530         struct ath_softc *sc = ic->ic_ifp->if_softc;
3531 
3532 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3533 
3534 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3535 	sc->sc_node_free(ni);
3536 }
3537 
3538 static void
3539 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3540 {
3541 	struct ieee80211com *ic = ni->ni_ic;
3542 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3543 	struct ath_hal *ah = sc->sc_ah;
3544 
3545 	*rssi = ic->ic_node_getrssi(ni);
3546 	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3547 		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3548 	else
3549 		*noise = -95;		/* nominally correct */
3550 }
3551 
3552 static int
3553 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
3554 {
3555 	struct ath_hal *ah = sc->sc_ah;
3556 	int error;
3557 	struct mbuf *m;
3558 	struct ath_desc *ds;
3559 
3560 	m = bf->bf_m;
3561 	if (m == NULL) {
3562 		/*
3563 		 * NB: by assigning a page to the rx dma buffer we
3564 		 * implicitly satisfy the Atheros requirement that
3565 		 * this buffer be cache-line-aligned and sized to be
3566 		 * multiple of the cache line size.  Not doing this
3567 		 * causes weird stuff to happen (for the 5210 at least).
3568 		 */
3569 		m = m_getcl(MB_WAIT, MT_DATA, M_PKTHDR);
3570 		if (m == NULL) {
3571 			kprintf("ath_rxbuf_init: no mbuf\n");
3572 			DPRINTF(sc, ATH_DEBUG_ANY,
3573 				"%s: no mbuf/cluster\n", __func__);
3574 			sc->sc_stats.ast_rx_nombuf++;
3575 			return ENOMEM;
3576 		}
3577 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
3578 
3579 		error = bus_dmamap_load_mbuf_segment(sc->sc_dmat,
3580 					     bf->bf_dmamap, m,
3581 					     bf->bf_segs, 1, &bf->bf_nseg,
3582 					     BUS_DMA_NOWAIT);
3583 		if (error != 0) {
3584 			DPRINTF(sc, ATH_DEBUG_ANY,
3585 			    "%s: bus_dmamap_load_mbuf_segment failed; error %d\n",
3586 			    __func__, error);
3587 			sc->sc_stats.ast_rx_busdma++;
3588 			m_freem(m);
3589 			return error;
3590 		}
3591 		KASSERT(bf->bf_nseg == 1,
3592 			("multi-segment packet; nseg %u", bf->bf_nseg));
3593 		bf->bf_m = m;
3594 	}
3595 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
3596 
3597 	/*
3598 	 * Setup descriptors.  For receive we always terminate
3599 	 * the descriptor list with a self-linked entry so we'll
3600 	 * not get overrun under high load (as can happen with a
3601 	 * 5212 when ANI processing enables PHY error frames).
3602 	 *
3603 	 * To insure the last descriptor is self-linked we create
3604 	 * each descriptor as self-linked and add it to the end.  As
3605 	 * each additional descriptor is added the previous self-linked
3606 	 * entry is ``fixed'' naturally.  This should be safe even
3607 	 * if DMA is happening.  When processing RX interrupts we
3608 	 * never remove/process the last, self-linked, entry on the
3609 	 * descriptor list.  This insures the hardware always has
3610 	 * someplace to write a new frame.
3611 	 */
3612 	ds = bf->bf_desc;
3613 	ds->ds_link = bf->bf_daddr;	/* link to self */
3614 	ds->ds_data = bf->bf_segs[0].ds_addr;
3615 	ath_hal_setuprxdesc(ah, ds
3616 		, m->m_len		/* buffer size */
3617 		, 0
3618 	);
3619 
3620 	if (sc->sc_rxlink != NULL)
3621 		*sc->sc_rxlink = bf->bf_daddr;
3622 	sc->sc_rxlink = &ds->ds_link;
3623 	return 0;
3624 }
3625 
3626 /*
3627  * Extend 15-bit time stamp from rx descriptor to
3628  * a full 64-bit TSF using the specified TSF.
3629  */
3630 static __inline u_int64_t
3631 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
3632 {
3633 	if ((tsf & 0x7fff) < rstamp)
3634 		tsf -= 0x8000;
3635 	return ((tsf &~ 0x7fff) | rstamp);
3636 }
3637 
3638 /*
3639  * Intercept management frames to collect beacon rssi data
3640  * and to do ibss merges.
3641  */
3642 static void
3643 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
3644 	int subtype, int rssi, int nf)
3645 {
3646 	struct ieee80211vap *vap = ni->ni_vap;
3647 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
3648 
3649 	/*
3650 	 * Call up first so subsequent work can use information
3651 	 * potentially stored in the node (e.g. for ibss merge).
3652 	 */
3653 	ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, nf);
3654 	switch (subtype) {
3655 	case IEEE80211_FC0_SUBTYPE_BEACON:
3656 		/* update rssi statistics for use by the hal */
3657 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
3658 		if (sc->sc_syncbeacon &&
3659 		    ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) {
3660 			/*
3661 			 * Resync beacon timers using the tsf of the beacon
3662 			 * frame we just received.
3663 			 */
3664 			ath_beacon_config(sc, vap);
3665 		}
3666 		/* fall thru... */
3667 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3668 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
3669 		    vap->iv_state == IEEE80211_S_RUN) {
3670 			uint32_t rstamp = sc->sc_lastrs->rs_tstamp;
3671 			u_int64_t tsf = ath_extend_tsf(rstamp,
3672 				ath_hal_gettsf64(sc->sc_ah));
3673 			/*
3674 			 * Handle ibss merge as needed; check the tsf on the
3675 			 * frame before attempting the merge.  The 802.11 spec
3676 			 * says the station should change it's bssid to match
3677 			 * the oldest station with the same ssid, where oldest
3678 			 * is determined by the tsf.  Note that hardware
3679 			 * reconfiguration happens through callback to
3680 			 * ath_newstate as the state machine will go from
3681 			 * RUN -> RUN when this happens.
3682 			 */
3683 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
3684 				DPRINTF(sc, ATH_DEBUG_STATE,
3685 				    "ibss merge, rstamp %u tsf %ju "
3686 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
3687 				    (uintmax_t)ni->ni_tstamp.tsf);
3688 				(void) ieee80211_ibss_merge(ni);
3689 			}
3690 		}
3691 		break;
3692 	}
3693 }
3694 
3695 /*
3696  * Set the default antenna.
3697  */
3698 static void
3699 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3700 {
3701 	struct ath_hal *ah = sc->sc_ah;
3702 
3703 	/* XXX block beacon interrupts */
3704 	ath_hal_setdefantenna(ah, antenna);
3705 	if (sc->sc_defant != antenna)
3706 		sc->sc_stats.ast_ant_defswitch++;
3707 	sc->sc_defant = antenna;
3708 	sc->sc_rxotherant = 0;
3709 }
3710 
3711 static void
3712 ath_rx_tap(struct ifnet *ifp, struct mbuf *m,
3713 	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
3714 {
3715 #define	CHAN_HT20	htole32(IEEE80211_CHAN_HT20)
3716 #define	CHAN_HT40U	htole32(IEEE80211_CHAN_HT40U)
3717 #define	CHAN_HT40D	htole32(IEEE80211_CHAN_HT40D)
3718 #define	CHAN_HT		(CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
3719 	struct ath_softc *sc = ifp->if_softc;
3720 	const HAL_RATE_TABLE *rt;
3721 	uint8_t rix;
3722 
3723 	rt = sc->sc_currates;
3724 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3725 	rix = rt->rateCodeToIndex[rs->rs_rate];
3726 	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3727 	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3728 #ifdef AH_SUPPORT_AR5416
3729 	sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
3730 	if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) {	/* HT rate */
3731 		struct ieee80211com *ic = ifp->if_l2com;
3732 
3733 		if ((rs->rs_flags & HAL_RX_2040) == 0)
3734 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
3735 		else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
3736 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
3737 		else
3738 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
3739 		if ((rs->rs_flags & HAL_RX_GI) == 0)
3740 			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
3741 	}
3742 #endif
3743 	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(rs->rs_tstamp, tsf));
3744 	if (rs->rs_status & HAL_RXERR_CRC)
3745 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3746 	/* XXX propagate other error flags from descriptor */
3747 	sc->sc_rx_th.wr_antnoise = nf;
3748 	sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi;
3749 	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
3750 #undef CHAN_HT
3751 #undef CHAN_HT20
3752 #undef CHAN_HT40U
3753 #undef CHAN_HT40D
3754 }
3755 
3756 static void
3757 ath_handle_micerror(struct ieee80211com *ic,
3758 	struct ieee80211_frame *wh, int keyix)
3759 {
3760 	struct ieee80211_node *ni;
3761 
3762 	/* XXX recheck MIC to deal w/ chips that lie */
3763 	/* XXX discard MIC errors on !data frames */
3764 	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
3765 	if (ni != NULL) {
3766 		ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
3767 		ieee80211_free_node(ni);
3768 	}
3769 }
3770 
3771 static void
3772 ath_rx_task(void *arg, int npending)
3773 {
3774 #define	PA2DESC(_sc, _pa) \
3775 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3776 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3777 	struct ath_softc *sc = arg;
3778 	struct ath_buf *bf;
3779 	struct ifnet *ifp;
3780 	struct ieee80211com *ic;
3781 	struct ath_hal *ah;
3782 	struct ath_desc *ds;
3783 	struct ath_rx_status *rs;
3784 	struct mbuf *m;
3785 	struct ieee80211_node *ni;
3786 	int len, type, ngood;
3787 	u_int phyerr;
3788 	HAL_STATUS status;
3789 	int16_t nf;
3790 	u_int64_t tsf;
3791 
3792 	wlan_serialize_enter();
3793 	ifp = sc->sc_ifp;
3794 	ic = ifp->if_l2com;
3795 	ah = sc->sc_ah;
3796 
3797 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
3798 	ngood = 0;
3799 	nf = ath_hal_getchannoise(ah, sc->sc_curchan);
3800 	sc->sc_stats.ast_rx_noise = nf;
3801 	tsf = ath_hal_gettsf64(ah);
3802 	do {
3803 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
3804 		if (bf == NULL) {		/* NB: shouldn't happen */
3805 			if_printf(ifp, "%s: no buffer!\n", __func__);
3806 			break;
3807 		}
3808 		m = bf->bf_m;
3809 		if (m == NULL) {		/* NB: shouldn't happen */
3810 			/*
3811 			 * If mbuf allocation failed previously there
3812 			 * will be no mbuf; try again to re-populate it.
3813 			 */
3814 			/* XXX make debug msg */
3815 			if_printf(ifp, "%s: no mbuf!\n", __func__);
3816 			STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3817 			goto rx_next;
3818 		}
3819 		ds = bf->bf_desc;
3820 		if (ds->ds_link == bf->bf_daddr) {
3821 			/* NB: never process the self-linked entry at the end */
3822 			break;
3823 		}
3824 		/* XXX sync descriptor memory */
3825 		/*
3826 		 * Must provide the virtual address of the current
3827 		 * descriptor, the physical address, and the virtual
3828 		 * address of the next descriptor in the h/w chain.
3829 		 * This allows the HAL to look ahead to see if the
3830 		 * hardware is done with a descriptor by checking the
3831 		 * done bit in the following descriptor and the address
3832 		 * of the current descriptor the DMA engine is working
3833 		 * on.  All this is necessary because of our use of
3834 		 * a self-linked list to avoid rx overruns.
3835 		 */
3836 		rs = &bf->bf_status.ds_rxstat;
3837 		status = ath_hal_rxprocdesc(ah, ds,
3838 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
3839 #ifdef ATH_DEBUG
3840 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3841 			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
3842 #endif
3843 		if (status == HAL_EINPROGRESS)
3844 			break;
3845 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3846 		if (rs->rs_status != 0) {
3847 			if (rs->rs_status & HAL_RXERR_CRC)
3848 				sc->sc_stats.ast_rx_crcerr++;
3849 			if (rs->rs_status & HAL_RXERR_FIFO)
3850 				sc->sc_stats.ast_rx_fifoerr++;
3851 			if (rs->rs_status & HAL_RXERR_PHY) {
3852 				sc->sc_stats.ast_rx_phyerr++;
3853 				phyerr = rs->rs_phyerr & 0x1f;
3854 				sc->sc_stats.ast_rx_phy[phyerr]++;
3855 				goto rx_error;	/* NB: don't count in ierrors */
3856 			}
3857 			if (rs->rs_status & HAL_RXERR_DECRYPT) {
3858 				/*
3859 				 * Decrypt error.  If the error occurred
3860 				 * because there was no hardware key, then
3861 				 * let the frame through so the upper layers
3862 				 * can process it.  This is necessary for 5210
3863 				 * parts which have no way to setup a ``clear''
3864 				 * key cache entry.
3865 				 *
3866 				 * XXX do key cache faulting
3867 				 */
3868 				if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
3869 					goto rx_accept;
3870 				sc->sc_stats.ast_rx_badcrypt++;
3871 			}
3872 			if (rs->rs_status & HAL_RXERR_MIC) {
3873 				sc->sc_stats.ast_rx_badmic++;
3874 				/*
3875 				 * Do minimal work required to hand off
3876 				 * the 802.11 header for notification.
3877 				 */
3878 				/* XXX frag's and qos frames */
3879 				len = rs->rs_datalen;
3880 				if (len >= sizeof (struct ieee80211_frame)) {
3881 					bus_dmamap_sync(sc->sc_dmat,
3882 					    bf->bf_dmamap,
3883 					    BUS_DMASYNC_POSTREAD);
3884 					ath_handle_micerror(ic,
3885 					    mtod(m, struct ieee80211_frame *),
3886 					    sc->sc_splitmic ?
3887 						rs->rs_keyix-32 : rs->rs_keyix);
3888 				}
3889 			}
3890 			ifp->if_ierrors++;
3891 rx_error:
3892 			/*
3893 			 * Cleanup any pending partial frame.
3894 			 */
3895 			if (sc->sc_rxpending != NULL) {
3896 				m_freem(sc->sc_rxpending);
3897 				sc->sc_rxpending = NULL;
3898 			}
3899 			/*
3900 			 * When a tap is present pass error frames
3901 			 * that have been requested.  By default we
3902 			 * pass decrypt+mic errors but others may be
3903 			 * interesting (e.g. crc).
3904 			 */
3905 			if (ieee80211_radiotap_active(ic) &&
3906 			    (rs->rs_status & sc->sc_monpass)) {
3907 				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3908 				    BUS_DMASYNC_POSTREAD);
3909 				/* NB: bpf needs the mbuf length setup */
3910 				len = rs->rs_datalen;
3911 				m->m_pkthdr.len = m->m_len = len;
3912 				ath_rx_tap(ifp, m, rs, tsf, nf);
3913 				ieee80211_radiotap_rx_all(ic, m);
3914 			}
3915 			/* XXX pass MIC errors up for s/w reclaculation */
3916 			goto rx_next;
3917 		}
3918 rx_accept:
3919 		/*
3920 		 * Sync and unmap the frame.  At this point we're
3921 		 * committed to passing the mbuf somewhere so clear
3922 		 * bf_m; this means a new mbuf must be allocated
3923 		 * when the rx descriptor is setup again to receive
3924 		 * another frame.
3925 		 */
3926 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3927 		    BUS_DMASYNC_POSTREAD);
3928 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3929 		bf->bf_m = NULL;
3930 
3931 		len = rs->rs_datalen;
3932 		m->m_len = len;
3933 
3934 		if (rs->rs_more) {
3935 			/*
3936 			 * Frame spans multiple descriptors; save
3937 			 * it for the next completed descriptor, it
3938 			 * will be used to construct a jumbogram.
3939 			 */
3940 			if (sc->sc_rxpending != NULL) {
3941 				/* NB: max frame size is currently 2 clusters */
3942 				sc->sc_stats.ast_rx_toobig++;
3943 				m_freem(sc->sc_rxpending);
3944 			}
3945 			m->m_pkthdr.rcvif = ifp;
3946 			m->m_pkthdr.len = len;
3947 			sc->sc_rxpending = m;
3948 			goto rx_next;
3949 		} else if (sc->sc_rxpending != NULL) {
3950 			/*
3951 			 * This is the second part of a jumbogram,
3952 			 * chain it to the first mbuf, adjust the
3953 			 * frame length, and clear the rxpending state.
3954 			 */
3955 			sc->sc_rxpending->m_next = m;
3956 			sc->sc_rxpending->m_pkthdr.len += len;
3957 			m = sc->sc_rxpending;
3958 			sc->sc_rxpending = NULL;
3959 		} else {
3960 			/*
3961 			 * Normal single-descriptor receive; setup
3962 			 * the rcvif and packet length.
3963 			 */
3964 			m->m_pkthdr.rcvif = ifp;
3965 			m->m_pkthdr.len = len;
3966 		}
3967 
3968 		ifp->if_ipackets++;
3969 		sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
3970 
3971 		/*
3972 		 * Populate the rx status block.  When there are bpf
3973 		 * listeners we do the additional work to provide
3974 		 * complete status.  Otherwise we fill in only the
3975 		 * material required by ieee80211_input.  Note that
3976 		 * noise setting is filled in above.
3977 		 */
3978 		if (ieee80211_radiotap_active(ic))
3979 			ath_rx_tap(ifp, m, rs, tsf, nf);
3980 
3981 		/*
3982 		 * From this point on we assume the frame is at least
3983 		 * as large as ieee80211_frame_min; verify that.
3984 		 */
3985 		if (len < IEEE80211_MIN_LEN) {
3986 			if (!ieee80211_radiotap_active(ic)) {
3987 				DPRINTF(sc, ATH_DEBUG_RECV,
3988 				    "%s: short packet %d\n", __func__, len);
3989 				sc->sc_stats.ast_rx_tooshort++;
3990 			} else {
3991 				/* NB: in particular this captures ack's */
3992 				ieee80211_radiotap_rx_all(ic, m);
3993 			}
3994 			m_freem(m);
3995 			goto rx_next;
3996 		}
3997 
3998 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3999 			const HAL_RATE_TABLE *rt = sc->sc_currates;
4000 			uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
4001 
4002 			ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
4003 			    sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
4004 		}
4005 
4006 		m_adj(m, -IEEE80211_CRC_LEN);
4007 
4008 		/*
4009 		 * Locate the node for sender, track state, and then
4010 		 * pass the (referenced) node up to the 802.11 layer
4011 		 * for its use.
4012 		 */
4013 		ni = ieee80211_find_rxnode_withkey(ic,
4014 			mtod(m, const struct ieee80211_frame_min *),
4015 			rs->rs_keyix == HAL_RXKEYIX_INVALID ?
4016 				IEEE80211_KEYIX_NONE : rs->rs_keyix);
4017 		if (ni != NULL) {
4018 			/*
4019 			 * Sending station is known, dispatch directly.
4020 			 */
4021 			sc->sc_lastrs = rs;
4022 			type = ieee80211_input(ni, m, rs->rs_rssi, nf);
4023 			ieee80211_free_node(ni);
4024 			/*
4025 			 * Arrange to update the last rx timestamp only for
4026 			 * frames from our ap when operating in station mode.
4027 			 * This assumes the rx key is always setup when
4028 			 * associated.
4029 			 */
4030 			if (ic->ic_opmode == IEEE80211_M_STA &&
4031 			    rs->rs_keyix != HAL_RXKEYIX_INVALID)
4032 				ngood++;
4033 		} else {
4034 			type = ieee80211_input_all(ic, m, rs->rs_rssi, nf);
4035 		}
4036 		/*
4037 		 * Track rx rssi and do any rx antenna management.
4038 		 */
4039 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
4040 		if (sc->sc_diversity) {
4041 			/*
4042 			 * When using fast diversity, change the default rx
4043 			 * antenna if diversity chooses the other antenna 3
4044 			 * times in a row.
4045 			 */
4046 			if (sc->sc_defant != rs->rs_antenna) {
4047 				if (++sc->sc_rxotherant >= 3)
4048 					ath_setdefantenna(sc, rs->rs_antenna);
4049 			} else
4050 				sc->sc_rxotherant = 0;
4051 		}
4052 		if (sc->sc_softled) {
4053 			/*
4054 			 * Blink for any data frame.  Otherwise do a
4055 			 * heartbeat-style blink when idle.  The latter
4056 			 * is mainly for station mode where we depend on
4057 			 * periodic beacon frames to trigger the poll event.
4058 			 */
4059 			if (type == IEEE80211_FC0_TYPE_DATA) {
4060 				const HAL_RATE_TABLE *rt = sc->sc_currates;
4061 				ath_led_event(sc,
4062 				    rt->rateCodeToIndex[rs->rs_rate]);
4063 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
4064 				ath_led_event(sc, 0);
4065 		}
4066 rx_next:
4067 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
4068 	} while (ath_rxbuf_init(sc, bf) == 0);
4069 
4070 	/* rx signal state monitoring */
4071 	ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
4072 	if (ngood)
4073 		sc->sc_lastrx = tsf;
4074 
4075 	if ((ifp->if_flags & IFF_OACTIVE) == 0) {
4076 #ifdef IEEE80211_SUPPORT_SUPERG
4077 		ieee80211_ff_age_all(ic, 100);
4078 #endif
4079 		if (!ifq_is_empty(&ifp->if_snd))
4080 			ath_start(ifp);
4081 	}
4082 	wlan_serialize_exit();
4083 #undef PA2DESC
4084 }
4085 
4086 static void
4087 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
4088 {
4089 	txq->axq_qnum = qnum;
4090 	txq->axq_ac = 0;
4091 	txq->axq_depth = 0;
4092 	txq->axq_intrcnt = 0;
4093 	txq->axq_link = NULL;
4094 	STAILQ_INIT(&txq->axq_q);
4095 }
4096 
4097 /*
4098  * Setup a h/w transmit queue.
4099  */
4100 static struct ath_txq *
4101 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4102 {
4103 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4104 	struct ath_hal *ah = sc->sc_ah;
4105 	HAL_TXQ_INFO qi;
4106 	int qnum;
4107 
4108 	memset(&qi, 0, sizeof(qi));
4109 	qi.tqi_subtype = subtype;
4110 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
4111 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
4112 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
4113 	/*
4114 	 * Enable interrupts only for EOL and DESC conditions.
4115 	 * We mark tx descriptors to receive a DESC interrupt
4116 	 * when a tx queue gets deep; otherwise waiting for the
4117 	 * EOL to reap descriptors.  Note that this is done to
4118 	 * reduce interrupt load and this only defers reaping
4119 	 * descriptors, never transmitting frames.  Aside from
4120 	 * reducing interrupts this also permits more concurrency.
4121 	 * The only potential downside is if the tx queue backs
4122 	 * up in which case the top half of the kernel may backup
4123 	 * due to a lack of tx descriptors.
4124 	 */
4125 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
4126 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4127 	if (qnum == -1) {
4128 		/*
4129 		 * NB: don't print a message, this happens
4130 		 * normally on parts with too few tx queues
4131 		 */
4132 		return NULL;
4133 	}
4134 	if (qnum >= N(sc->sc_txq)) {
4135 		device_printf(sc->sc_dev,
4136 			"hal qnum %u out of range, max %zu!\n",
4137 			qnum, N(sc->sc_txq));
4138 		ath_hal_releasetxqueue(ah, qnum);
4139 		return NULL;
4140 	}
4141 	if (!ATH_TXQ_SETUP(sc, qnum)) {
4142 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4143 		sc->sc_txqsetup |= 1<<qnum;
4144 	}
4145 	return &sc->sc_txq[qnum];
4146 #undef N
4147 }
4148 
4149 /*
4150  * Setup a hardware data transmit queue for the specified
4151  * access control.  The hal may not support all requested
4152  * queues in which case it will return a reference to a
4153  * previously setup queue.  We record the mapping from ac's
4154  * to h/w queues for use by ath_tx_start and also track
4155  * the set of h/w queues being used to optimize work in the
4156  * transmit interrupt handler and related routines.
4157  */
4158 static int
4159 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4160 {
4161 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4162 	struct ath_txq *txq;
4163 
4164 	if (ac >= N(sc->sc_ac2q)) {
4165 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4166 			ac, N(sc->sc_ac2q));
4167 		return 0;
4168 	}
4169 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4170 	if (txq != NULL) {
4171 		txq->axq_ac = ac;
4172 		sc->sc_ac2q[ac] = txq;
4173 		return 1;
4174 	} else
4175 		return 0;
4176 #undef N
4177 }
4178 
4179 /*
4180  * Update WME parameters for a transmit queue.
4181  */
4182 static int
4183 ath_txq_update(struct ath_softc *sc, int ac)
4184 {
4185 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
4186 #define	ATH_TXOP_TO_US(v)		(v<<5)
4187 	struct ifnet *ifp = sc->sc_ifp;
4188 	struct ieee80211com *ic = ifp->if_l2com;
4189 	struct ath_txq *txq = sc->sc_ac2q[ac];
4190 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4191 	struct ath_hal *ah = sc->sc_ah;
4192 	HAL_TXQ_INFO qi;
4193 
4194 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4195 #ifdef IEEE80211_SUPPORT_TDMA
4196 	if (sc->sc_tdma) {
4197 		/*
4198 		 * AIFS is zero so there's no pre-transmit wait.  The
4199 		 * burst time defines the slot duration and is configured
4200 		 * through net80211.  The QCU is setup to not do post-xmit
4201 		 * back off, lockout all lower-priority QCU's, and fire
4202 		 * off the DMA beacon alert timer which is setup based
4203 		 * on the slot configuration.
4204 		 */
4205 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4206 			      | HAL_TXQ_TXERRINT_ENABLE
4207 			      | HAL_TXQ_TXURNINT_ENABLE
4208 			      | HAL_TXQ_TXEOLINT_ENABLE
4209 			      | HAL_TXQ_DBA_GATED
4210 			      | HAL_TXQ_BACKOFF_DISABLE
4211 			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
4212 			      ;
4213 		qi.tqi_aifs = 0;
4214 		/* XXX +dbaprep? */
4215 		qi.tqi_readyTime = sc->sc_tdmaslotlen;
4216 		qi.tqi_burstTime = qi.tqi_readyTime;
4217 	} else {
4218 #endif
4219 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4220 			      | HAL_TXQ_TXERRINT_ENABLE
4221 			      | HAL_TXQ_TXDESCINT_ENABLE
4222 			      | HAL_TXQ_TXURNINT_ENABLE
4223 			      ;
4224 		qi.tqi_aifs = wmep->wmep_aifsn;
4225 		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4226 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4227 		qi.tqi_readyTime = 0;
4228 		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
4229 #ifdef IEEE80211_SUPPORT_TDMA
4230 	}
4231 #endif
4232 
4233 	DPRINTF(sc, ATH_DEBUG_RESET,
4234 	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
4235 	    __func__, txq->axq_qnum, qi.tqi_qflags,
4236 	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
4237 
4238 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4239 		if_printf(ifp, "unable to update hardware queue "
4240 			"parameters for %s traffic!\n",
4241 			ieee80211_wme_acnames[ac]);
4242 		return 0;
4243 	} else {
4244 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4245 		return 1;
4246 	}
4247 #undef ATH_TXOP_TO_US
4248 #undef ATH_EXPONENT_TO_VALUE
4249 }
4250 
4251 /*
4252  * Callback from the 802.11 layer to update WME parameters.
4253  */
4254 static int
4255 ath_wme_update(struct ieee80211com *ic)
4256 {
4257 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4258 
4259 	return !ath_txq_update(sc, WME_AC_BE) ||
4260 	    !ath_txq_update(sc, WME_AC_BK) ||
4261 	    !ath_txq_update(sc, WME_AC_VI) ||
4262 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4263 }
4264 
4265 /*
4266  * Reclaim resources for a setup queue.
4267  */
4268 static void
4269 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4270 {
4271 
4272 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4273 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4274 }
4275 
4276 /*
4277  * Reclaim all tx queue resources.
4278  */
4279 static void
4280 ath_tx_cleanup(struct ath_softc *sc)
4281 {
4282 	int i;
4283 
4284 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4285 		if (ATH_TXQ_SETUP(sc, i))
4286 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4287 }
4288 
4289 /*
4290  * Return h/w rate index for an IEEE rate (w/o basic rate bit)
4291  * using the current rates in sc_rixmap.
4292  */
4293 static __inline int
4294 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
4295 {
4296 	int rix = sc->sc_rixmap[rate];
4297 	/* NB: return lowest rix for invalid rate */
4298 	return (rix == 0xff ? 0 : rix);
4299 }
4300 
4301 /*
4302  * Reclaim mbuf resources.  For fragmented frames we
4303  * need to claim each frag chained with m_nextpkt.
4304  */
4305 static void
4306 ath_freetx(struct mbuf *m)
4307 {
4308 	struct mbuf *next;
4309 
4310 	do {
4311 		next = m->m_nextpkt;
4312 		m->m_nextpkt = NULL;
4313 		m_freem(m);
4314 	} while ((m = next) != NULL);
4315 }
4316 
4317 static int
4318 ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0)
4319 {
4320 	int error;
4321 
4322 	/*
4323 	 *
4324 	 * Load the DMA map so any coalescing is done.  This
4325 	 * also calculates the number of descriptors we need.
4326 	 */
4327 	error = bus_dmamap_load_mbuf_defrag(sc->sc_dmat, bf->bf_dmamap, &m0,
4328 				     bf->bf_segs, ATH_TXDESC,
4329 				     &bf->bf_nseg, BUS_DMA_NOWAIT);
4330 	if (error != 0) {
4331 		sc->sc_stats.ast_tx_busdma++;
4332 		ath_freetx(m0);
4333 		return error;
4334 	}
4335 
4336 	/*
4337 	 * Discard null packets.
4338 	 */
4339 	if (bf->bf_nseg == 0) {		/* null packet, discard */
4340 		sc->sc_stats.ast_tx_nodata++;
4341 		ath_freetx(m0);
4342 		return EIO;
4343 	}
4344 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n",
4345 		__func__, m0, m0->m_pkthdr.len);
4346 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
4347 	bf->bf_m = m0;
4348 
4349 	return 0;
4350 }
4351 
4352 static void
4353 ath_tx_handoff(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf)
4354 {
4355 	struct ath_hal *ah = sc->sc_ah;
4356 	struct ath_desc *ds, *ds0;
4357 	int i;
4358 
4359 	/*
4360 	 * Fillin the remainder of the descriptor info.
4361 	 */
4362 	ds0 = ds = bf->bf_desc;
4363 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
4364 		ds->ds_data = bf->bf_segs[i].ds_addr;
4365 		if (i == bf->bf_nseg - 1)
4366 			ds->ds_link = 0;
4367 		else
4368 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
4369 		ath_hal_filltxdesc(ah, ds
4370 			, bf->bf_segs[i].ds_len	/* segment length */
4371 			, i == 0		/* first segment */
4372 			, i == bf->bf_nseg - 1	/* last segment */
4373 			, ds0			/* first descriptor */
4374 		);
4375 		DPRINTF(sc, ATH_DEBUG_XMIT,
4376 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
4377 			__func__, i, ds->ds_link, ds->ds_data,
4378 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
4379 	}
4380 	/*
4381 	 * Insert the frame on the outbound list and pass it on
4382 	 * to the hardware.  Multicast frames buffered for power
4383 	 * save stations and transmit from the CAB queue are stored
4384 	 * on a s/w only queue and loaded on to the CAB queue in
4385 	 * the SWBA handler since frames only go out on DTIM and
4386 	 * to avoid possible races.
4387 	 */
4388 	KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
4389 	     ("busy status 0x%x", bf->bf_flags));
4390 	if (txq->axq_qnum != ATH_TXQ_SWQ) {
4391 #ifdef IEEE80211_SUPPORT_TDMA
4392 		/*
4393 		 * Supporting transmit dma.  If the queue is busy it is
4394 		 * impossible to determine if we've won the race against
4395 		 * the chipset checking the link field or not, so we don't
4396 		 * try.  Instead we let the TX interrupt detect the case
4397 		 * and restart the transmitter.
4398 		 *
4399 		 * If the queue is not busy we can start things rolling
4400 		 * right here.
4401 		 */
4402 		int qbusy;
4403 
4404 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4405 		qbusy = ath_hal_txqenabled(ah, txq->axq_qnum);
4406 
4407 		if (qbusy == 0) {
4408 			if (txq->axq_link != NULL) {
4409 				/*
4410 				 * We had already started one previously but
4411 				 * not yet processed the TX interrupt.  Don't
4412 				 * try to race a restart because we do not
4413 				 * know where it stopped, let the TX interrupt
4414 				 * restart us when it figures out where we
4415 				 * stopped.
4416 				 */
4417 				cpu_sfence();
4418 				*txq->axq_link = bf->bf_daddr;
4419 				txq->axq_flags |= ATH_TXQ_PUTPENDING;
4420 			} else {
4421 				/*
4422 				 * We are first in line, we can safely start
4423 				 * at this address.
4424 				 */
4425 				cpu_sfence();
4426 				ath_hal_puttxbuf(ah, txq->axq_qnum,
4427 						 bf->bf_daddr);
4428 			}
4429 		} else {
4430 			/*
4431 			 * The queue is busy, go ahead and link us in but
4432 			 * do not try to start/restart the tx.  We just
4433 			 * don't know whether it will pick up our link
4434 			 * or not and we don't want to double-xmit.
4435 			 */
4436 			if (txq->axq_link != NULL) {
4437 				cpu_sfence();
4438 				*txq->axq_link = bf->bf_daddr;
4439 			}
4440 			txq->axq_flags |= ATH_TXQ_PUTPENDING;
4441 		}
4442 #if 0
4443 				ath_hal_puttxbuf(ah, txq->axq_qnum,
4444 					STAILQ_FIRST(&txq->axq_q)->bf_daddr);
4445 #endif
4446 #else
4447 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4448 		if (txq->axq_link == NULL) {
4449 			ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4450 			DPRINTF(sc, ATH_DEBUG_XMIT,
4451 			    "%s: TXDP[%u] = %p (%p) depth %d\n",
4452 			    __func__, txq->axq_qnum,
4453 			    (caddr_t)bf->bf_daddr, bf->bf_desc,
4454 			    txq->axq_depth);
4455 		} else {
4456 			*txq->axq_link = bf->bf_daddr;
4457 			DPRINTF(sc, ATH_DEBUG_XMIT,
4458 			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
4459 			    txq->axq_qnum, txq->axq_link,
4460 			    (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4461 		}
4462 #endif /* IEEE80211_SUPPORT_TDMA */
4463 		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4464 		ath_hal_txstart(ah, txq->axq_qnum);
4465 	} else {
4466 		if (txq->axq_link != NULL) {
4467 			struct ath_buf *last = ATH_TXQ_LAST(txq);
4468 			struct ieee80211_frame *wh;
4469 
4470 			/* mark previous frame */
4471 			wh = mtod(last->bf_m, struct ieee80211_frame *);
4472 			wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
4473 			bus_dmamap_sync(sc->sc_dmat, last->bf_dmamap,
4474 			    BUS_DMASYNC_PREWRITE);
4475 
4476 			/* link descriptor */
4477 			*txq->axq_link = bf->bf_daddr;
4478 		}
4479 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4480 		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4481 	}
4482 }
4483 
4484 static int
4485 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
4486     struct mbuf *m0)
4487 {
4488 	struct ieee80211vap *vap = ni->ni_vap;
4489 	struct ath_vap *avp = ATH_VAP(vap);
4490 	struct ath_hal *ah = sc->sc_ah;
4491 	struct ifnet *ifp = sc->sc_ifp;
4492 	struct ieee80211com *ic = ifp->if_l2com;
4493 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
4494 	int error, iswep, ismcast, isfrag, ismrr;
4495 	int keyix, hdrlen, pktlen, try0;
4496 	u_int8_t rix, txrate, ctsrate;
4497 	u_int8_t cix = 0xff;		/* NB: silence compiler */
4498 	struct ath_desc *ds;
4499 	struct ath_txq *txq;
4500 	struct ieee80211_frame *wh;
4501 	u_int subtype, flags, ctsduration;
4502 	HAL_PKT_TYPE atype;
4503 	const HAL_RATE_TABLE *rt;
4504 	HAL_BOOL shortPreamble;
4505 	struct ath_node *an;
4506 	u_int pri;
4507 
4508 	wh = mtod(m0, struct ieee80211_frame *);
4509 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
4510 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
4511 	isfrag = m0->m_flags & M_FRAG;
4512 	hdrlen = ieee80211_anyhdrsize(wh);
4513 	/*
4514 	 * Packet length must not include any
4515 	 * pad bytes; deduct them here.
4516 	 */
4517 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
4518 
4519 	if (iswep) {
4520 		const struct ieee80211_cipher *cip;
4521 		struct ieee80211_key *k;
4522 
4523 		/*
4524 		 * Construct the 802.11 header+trailer for an encrypted
4525 		 * frame. The only reason this can fail is because of an
4526 		 * unknown or unsupported cipher/key type.
4527 		 */
4528 		k = ieee80211_crypto_encap(ni, m0);
4529 		if (k == NULL) {
4530 			/*
4531 			 * This can happen when the key is yanked after the
4532 			 * frame was queued.  Just discard the frame; the
4533 			 * 802.11 layer counts failures and provides
4534 			 * debugging/diagnostics.
4535 			 */
4536 			ath_freetx(m0);
4537 			return EIO;
4538 		}
4539 		/*
4540 		 * Adjust the packet + header lengths for the crypto
4541 		 * additions and calculate the h/w key index.  When
4542 		 * a s/w mic is done the frame will have had any mic
4543 		 * added to it prior to entry so m0->m_pkthdr.len will
4544 		 * account for it. Otherwise we need to add it to the
4545 		 * packet length.
4546 		 */
4547 		cip = k->wk_cipher;
4548 		hdrlen += cip->ic_header;
4549 		pktlen += cip->ic_header + cip->ic_trailer;
4550 		/* NB: frags always have any TKIP MIC done in s/w */
4551 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
4552 			pktlen += cip->ic_miclen;
4553 		keyix = k->wk_keyix;
4554 
4555 		/* packet header may have moved, reset our local pointer */
4556 		wh = mtod(m0, struct ieee80211_frame *);
4557 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
4558 		/*
4559 		 * Use station key cache slot, if assigned.
4560 		 */
4561 		keyix = ni->ni_ucastkey.wk_keyix;
4562 		if (keyix == IEEE80211_KEYIX_NONE)
4563 			keyix = HAL_TXKEYIX_INVALID;
4564 	} else
4565 		keyix = HAL_TXKEYIX_INVALID;
4566 
4567 	pktlen += IEEE80211_CRC_LEN;
4568 
4569 	/*
4570 	 * Load the DMA map so any coalescing is done.  This
4571 	 * also calculates the number of descriptors we need.
4572 	 */
4573 	error = ath_tx_dmasetup(sc, bf, m0);
4574 	if (error != 0) {
4575 		return error;
4576 	}
4577 	bf->bf_node = ni;			/* NB: held reference */
4578 	m0 = bf->bf_m;				/* NB: may have changed */
4579 	wh = mtod(m0, struct ieee80211_frame *);
4580 
4581 	/* setup descriptors */
4582 	ds = bf->bf_desc;
4583 	rt = sc->sc_currates;
4584 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
4585 
4586 	/*
4587 	 * NB: the 802.11 layer marks whether or not we should
4588 	 * use short preamble based on the current mode and
4589 	 * negotiated parameters.
4590 	 */
4591 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
4592 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
4593 		shortPreamble = AH_TRUE;
4594 		sc->sc_stats.ast_tx_shortpre++;
4595 	} else {
4596 		shortPreamble = AH_FALSE;
4597 	}
4598 
4599 	an = ATH_NODE(ni);
4600 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
4601 	ismrr = 0;				/* default no multi-rate retry*/
4602 	pri = M_WME_GETAC(m0);			/* honor classification */
4603 	/* XXX use txparams instead of fixed values */
4604 	/*
4605 	 * Calculate Atheros packet type from IEEE80211 packet header,
4606 	 * setup for rate calculations, and select h/w transmit queue.
4607 	 */
4608 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
4609 	case IEEE80211_FC0_TYPE_MGT:
4610 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4611 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
4612 			atype = HAL_PKT_TYPE_BEACON;
4613 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4614 			atype = HAL_PKT_TYPE_PROBE_RESP;
4615 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
4616 			atype = HAL_PKT_TYPE_ATIM;
4617 		else
4618 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
4619 		rix = an->an_mgmtrix;
4620 		txrate = rt->info[rix].rateCode;
4621 		if (shortPreamble)
4622 			txrate |= rt->info[rix].shortPreamble;
4623 		try0 = ATH_TXMGTTRY;
4624 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
4625 		break;
4626 	case IEEE80211_FC0_TYPE_CTL:
4627 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
4628 		rix = an->an_mgmtrix;
4629 		txrate = rt->info[rix].rateCode;
4630 		if (shortPreamble)
4631 			txrate |= rt->info[rix].shortPreamble;
4632 		try0 = ATH_TXMGTTRY;
4633 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
4634 		break;
4635 	case IEEE80211_FC0_TYPE_DATA:
4636 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
4637 		/*
4638 		 * Data frames: multicast frames go out at a fixed rate,
4639 		 * EAPOL frames use the mgmt frame rate; otherwise consult
4640 		 * the rate control module for the rate to use.
4641 		 */
4642 		if (ismcast) {
4643 			rix = an->an_mcastrix;
4644 			txrate = rt->info[rix].rateCode;
4645 			if (shortPreamble)
4646 				txrate |= rt->info[rix].shortPreamble;
4647 			try0 = 1;
4648 		} else if (m0->m_flags & M_EAPOL) {
4649 			/* XXX? maybe always use long preamble? */
4650 			rix = an->an_mgmtrix;
4651 			txrate = rt->info[rix].rateCode;
4652 			if (shortPreamble)
4653 				txrate |= rt->info[rix].shortPreamble;
4654 			try0 = ATH_TXMAXTRY;	/* XXX?too many? */
4655 		} else {
4656 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
4657 				&rix, &try0, &txrate);
4658 			sc->sc_txrix = rix;		/* for LED blinking */
4659 			sc->sc_lastdatarix = rix;	/* for fast frames */
4660 			if (try0 != ATH_TXMAXTRY)
4661 				ismrr = 1;
4662 		}
4663 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
4664 			flags |= HAL_TXDESC_NOACK;
4665 		break;
4666 	default:
4667 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
4668 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
4669 		/* XXX statistic */
4670 		ath_freetx(m0);
4671 		return EIO;
4672 	}
4673 	txq = sc->sc_ac2q[pri];
4674 
4675 	/*
4676 	 * When servicing one or more stations in power-save mode
4677 	 * (or) if there is some mcast data waiting on the mcast
4678 	 * queue (to prevent out of order delivery) multicast
4679 	 * frames must be buffered until after the beacon.
4680 	 */
4681 	if (ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth))
4682 		txq = &avp->av_mcastq;
4683 
4684 	/*
4685 	 * Calculate miscellaneous flags.
4686 	 */
4687 	if (ismcast) {
4688 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
4689 	} else if (pktlen > vap->iv_rtsthreshold &&
4690 	    (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) {
4691 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
4692 		cix = rt->info[rix].controlRate;
4693 		sc->sc_stats.ast_tx_rts++;
4694 	}
4695 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
4696 		sc->sc_stats.ast_tx_noack++;
4697 #ifdef IEEE80211_SUPPORT_TDMA
4698 	if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) {
4699 		DPRINTF(sc, ATH_DEBUG_TDMA,
4700 		    "%s: discard frame, ACK required w/ TDMA\n", __func__);
4701 		sc->sc_stats.ast_tdma_ack++;
4702 		ath_freetx(m0);
4703 		return EIO;
4704 	}
4705 #endif
4706 
4707 	/*
4708 	 * If 802.11g protection is enabled, determine whether
4709 	 * to use RTS/CTS or just CTS.  Note that this is only
4710 	 * done for OFDM unicast frames.
4711 	 */
4712 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
4713 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
4714 	    (flags & HAL_TXDESC_NOACK) == 0) {
4715 		/* XXX fragments must use CCK rates w/ protection */
4716 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4717 			flags |= HAL_TXDESC_RTSENA;
4718 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4719 			flags |= HAL_TXDESC_CTSENA;
4720 		if (isfrag) {
4721 			/*
4722 			 * For frags it would be desirable to use the
4723 			 * highest CCK rate for RTS/CTS.  But stations
4724 			 * farther away may detect it at a lower CCK rate
4725 			 * so use the configured protection rate instead
4726 			 * (for now).
4727 			 */
4728 			cix = rt->info[sc->sc_protrix].controlRate;
4729 		} else
4730 			cix = rt->info[sc->sc_protrix].controlRate;
4731 		sc->sc_stats.ast_tx_protect++;
4732 	}
4733 
4734 	/*
4735 	 * Calculate duration.  This logically belongs in the 802.11
4736 	 * layer but it lacks sufficient information to calculate it.
4737 	 */
4738 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
4739 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
4740 		u_int16_t dur;
4741 		if (shortPreamble)
4742 			dur = rt->info[rix].spAckDuration;
4743 		else
4744 			dur = rt->info[rix].lpAckDuration;
4745 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
4746 			dur += dur;		/* additional SIFS+ACK */
4747 			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
4748 			/*
4749 			 * Include the size of next fragment so NAV is
4750 			 * updated properly.  The last fragment uses only
4751 			 * the ACK duration
4752 			 */
4753 			dur += ath_hal_computetxtime(ah, rt,
4754 					m0->m_nextpkt->m_pkthdr.len,
4755 					rix, shortPreamble);
4756 		}
4757 		if (isfrag) {
4758 			/*
4759 			 * Force hardware to use computed duration for next
4760 			 * fragment by disabling multi-rate retry which updates
4761 			 * duration based on the multi-rate duration table.
4762 			 */
4763 			ismrr = 0;
4764 			try0 = ATH_TXMGTTRY;	/* XXX? */
4765 		}
4766 		*(u_int16_t *)wh->i_dur = htole16(dur);
4767 	}
4768 
4769 	/*
4770 	 * Calculate RTS/CTS rate and duration if needed.
4771 	 */
4772 	ctsduration = 0;
4773 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
4774 		/*
4775 		 * CTS transmit rate is derived from the transmit rate
4776 		 * by looking in the h/w rate table.  We must also factor
4777 		 * in whether or not a short preamble is to be used.
4778 		 */
4779 		/* NB: cix is set above where RTS/CTS is enabled */
4780 		KASSERT(cix != 0xff, ("cix not setup"));
4781 		ctsrate = rt->info[cix].rateCode;
4782 		/*
4783 		 * Compute the transmit duration based on the frame
4784 		 * size and the size of an ACK frame.  We call into the
4785 		 * HAL to do the computation since it depends on the
4786 		 * characteristics of the actual PHY being used.
4787 		 *
4788 		 * NB: CTS is assumed the same size as an ACK so we can
4789 		 *     use the precalculated ACK durations.
4790 		 */
4791 		if (shortPreamble) {
4792 			ctsrate |= rt->info[cix].shortPreamble;
4793 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
4794 				ctsduration += rt->info[cix].spAckDuration;
4795 			ctsduration += ath_hal_computetxtime(ah,
4796 				rt, pktlen, rix, AH_TRUE);
4797 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
4798 				ctsduration += rt->info[rix].spAckDuration;
4799 		} else {
4800 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
4801 				ctsduration += rt->info[cix].lpAckDuration;
4802 			ctsduration += ath_hal_computetxtime(ah,
4803 				rt, pktlen, rix, AH_FALSE);
4804 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
4805 				ctsduration += rt->info[rix].lpAckDuration;
4806 		}
4807 		/*
4808 		 * Must disable multi-rate retry when using RTS/CTS.
4809 		 */
4810 		ismrr = 0;
4811 		try0 = ATH_TXMGTTRY;		/* XXX */
4812 	} else
4813 		ctsrate = 0;
4814 
4815 	/*
4816 	 * At this point we are committed to sending the frame
4817 	 * and we don't need to look at m_nextpkt; clear it in
4818 	 * case this frame is part of frag chain.
4819 	 */
4820 	m0->m_nextpkt = NULL;
4821 
4822 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
4823 		ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *), m0->m_len,
4824 		    sc->sc_hwmap[rix].ieeerate, -1);
4825 
4826 	if (ieee80211_radiotap_active_vap(vap)) {
4827 		u_int64_t tsf = ath_hal_gettsf64(ah);
4828 
4829 		sc->sc_tx_th.wt_tsf = htole64(tsf);
4830 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
4831 		if (iswep)
4832 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4833 		if (isfrag)
4834 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
4835 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
4836 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
4837 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
4838 
4839 		ieee80211_radiotap_tx(vap, m0);
4840 	}
4841 
4842 	/*
4843 	 * Determine if a tx interrupt should be generated for
4844 	 * this descriptor.  We take a tx interrupt to reap
4845 	 * descriptors when the h/w hits an EOL condition or
4846 	 * when the descriptor is specifically marked to generate
4847 	 * an interrupt.  We periodically mark descriptors in this
4848 	 * way to insure timely replenishing of the supply needed
4849 	 * for sending frames.  Defering interrupts reduces system
4850 	 * load and potentially allows more concurrent work to be
4851 	 * done but if done to aggressively can cause senders to
4852 	 * backup.
4853 	 *
4854 	 * NB: use >= to deal with sc_txintrperiod changing
4855 	 *     dynamically through sysctl.
4856 	 */
4857 	if (flags & HAL_TXDESC_INTREQ) {
4858 		txq->axq_intrcnt = 0;
4859 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
4860 		flags |= HAL_TXDESC_INTREQ;
4861 		txq->axq_intrcnt = 0;
4862 	}
4863 
4864 	/*
4865 	 * Formulate first tx descriptor with tx controls.
4866 	 */
4867 	/* XXX check return value? */
4868 	ath_hal_setuptxdesc(ah, ds
4869 		, pktlen		/* packet length */
4870 		, hdrlen		/* header length */
4871 		, atype			/* Atheros packet type */
4872 		, ni->ni_txpower	/* txpower */
4873 		, txrate, try0		/* series 0 rate/tries */
4874 		, keyix			/* key cache index */
4875 		, sc->sc_txantenna	/* antenna mode */
4876 		, flags			/* flags */
4877 		, ctsrate		/* rts/cts rate */
4878 		, ctsduration		/* rts/cts duration */
4879 	);
4880 	bf->bf_txflags = flags;
4881 	/*
4882 	 * Setup the multi-rate retry state only when we're
4883 	 * going to use it.  This assumes ath_hal_setuptxdesc
4884 	 * initializes the descriptors (so we don't have to)
4885 	 * when the hardware supports multi-rate retry and
4886 	 * we don't use it.
4887 	 */
4888 	if (ismrr)
4889 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
4890 
4891 	ath_tx_handoff(sc, txq, bf);
4892 	return 0;
4893 }
4894 
4895 /*
4896  * Process completed xmit descriptors from the specified queue.
4897  */
4898 static int
4899 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4900 {
4901 	struct ath_hal *ah = sc->sc_ah;
4902 	struct ifnet *ifp = sc->sc_ifp;
4903 	struct ieee80211com *ic = ifp->if_l2com;
4904 	struct ath_buf *bf, *last;
4905 	struct ath_desc *ds, *ds0;
4906 	struct ath_tx_status *ts;
4907 	struct ieee80211_node *ni;
4908 	struct ath_node *an;
4909 	int sr, lr, pri, nacked;
4910 	HAL_STATUS status;
4911 
4912 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4913 		__func__, txq->axq_qnum,
4914 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4915 		txq->axq_link);
4916 	nacked = 0;
4917 	for (;;) {
4918 		int qbusy;
4919 
4920 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4921 		bf = STAILQ_FIRST(&txq->axq_q);
4922 		if (bf == NULL)
4923 			break;
4924 		ds0 = &bf->bf_desc[0];
4925 		ds = &bf->bf_desc[bf->bf_nseg - 1];
4926 		ts = &bf->bf_status.ds_txstat;
4927 		qbusy = ath_hal_txqenabled(ah, txq->axq_qnum);
4928 		status = ath_hal_txprocdesc(ah, ds, ts);
4929 #ifdef ATH_DEBUG
4930 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4931 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4932 			    status == HAL_OK);
4933 #endif
4934 		if (status == HAL_EINPROGRESS) {
4935 #ifdef IEEE80211_SUPPORT_TDMA
4936 			/*
4937 			 * If not done and the queue is not busy then the
4938 			 * transmitter raced the hardware on the link field
4939 			 * and we have to restart it.
4940 			 */
4941 			if (!qbusy) {
4942 				cpu_sfence();
4943 				ath_hal_puttxbuf(ah, txq->axq_qnum,
4944 						 bf->bf_daddr);
4945 				ath_hal_txstart(ah, txq->axq_qnum);
4946 			}
4947 #endif
4948 			break;
4949 		}
4950 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4951 #ifdef IEEE80211_SUPPORT_TDMA
4952 		if (txq->axq_depth > 0) {
4953 			/*
4954 			 * More frames follow.  Mark the buffer busy
4955 			 * so it's not re-used while the hardware may
4956 			 * still re-read the link field in the descriptor.
4957 			 */
4958 			bf->bf_flags |= ATH_BUF_BUSY;
4959 		} else
4960 #else
4961 		if (txq->axq_depth == 0)
4962 #endif
4963 			txq->axq_link = NULL;
4964 
4965 		ni = bf->bf_node;
4966 		if (ni != NULL) {
4967 			an = ATH_NODE(ni);
4968 			if (ts->ts_status == 0) {
4969 				u_int8_t txant = ts->ts_antenna;
4970 				sc->sc_stats.ast_ant_tx[txant]++;
4971 				sc->sc_ant_tx[txant]++;
4972 				if (ts->ts_finaltsi != 0)
4973 					sc->sc_stats.ast_tx_altrate++;
4974 				pri = M_WME_GETAC(bf->bf_m);
4975 				if (pri >= WME_AC_VO)
4976 					ic->ic_wme.wme_hipri_traffic++;
4977 				if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)
4978 					ni->ni_inact = ni->ni_inact_reload;
4979 			} else {
4980 				if (ts->ts_status & HAL_TXERR_XRETRY)
4981 					sc->sc_stats.ast_tx_xretries++;
4982 				if (ts->ts_status & HAL_TXERR_FIFO)
4983 					sc->sc_stats.ast_tx_fifoerr++;
4984 				if (ts->ts_status & HAL_TXERR_FILT)
4985 					sc->sc_stats.ast_tx_filtered++;
4986 				if (bf->bf_m->m_flags & M_FF)
4987 					sc->sc_stats.ast_ff_txerr++;
4988 			}
4989 			sr = ts->ts_shortretry;
4990 			lr = ts->ts_longretry;
4991 			sc->sc_stats.ast_tx_shortretry += sr;
4992 			sc->sc_stats.ast_tx_longretry += lr;
4993 			/*
4994 			 * Hand the descriptor to the rate control algorithm.
4995 			 */
4996 			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4997 			    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0) {
4998 				/*
4999 				 * If frame was ack'd update statistics,
5000 				 * including the last rx time used to
5001 				 * workaround phantom bmiss interrupts.
5002 				 */
5003 				if (ts->ts_status == 0) {
5004 					nacked++;
5005 					sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
5006 					ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
5007 						ts->ts_rssi);
5008 				}
5009 				ath_rate_tx_complete(sc, an, bf);
5010 			}
5011 			/*
5012 			 * Do any tx complete callback.  Note this must
5013 			 * be done before releasing the node reference.
5014 			 */
5015 			if (bf->bf_m->m_flags & M_TXCB)
5016 				ieee80211_process_callback(ni, bf->bf_m,
5017 				    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0 ?
5018 				        ts->ts_status : HAL_TXERR_XRETRY);
5019 			ieee80211_free_node(ni);
5020 		}
5021 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
5022 		    BUS_DMASYNC_POSTWRITE);
5023 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5024 
5025 		m_freem(bf->bf_m);
5026 		bf->bf_m = NULL;
5027 		bf->bf_node = NULL;
5028 
5029 		last = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
5030 		if (last != NULL)
5031 			last->bf_flags &= ~ATH_BUF_BUSY;
5032 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5033 	}
5034 #ifdef IEEE80211_SUPPORT_SUPERG
5035 	/*
5036 	 * Flush fast-frame staging queue when traffic slows.
5037 	 */
5038 	if (txq->axq_depth <= 1)
5039 		ieee80211_ff_flush(ic, txq->axq_ac);
5040 #endif
5041 	return nacked;
5042 }
5043 
5044 static __inline int
5045 txqactive(struct ath_hal *ah, int qnum)
5046 {
5047 	u_int32_t txqs = 1<<qnum;
5048 	ath_hal_gettxintrtxqs(ah, &txqs);
5049 	return (txqs & (1<<qnum));
5050 }
5051 
5052 /*
5053  * Deferred processing of transmit interrupt; special-cased
5054  * for a single hardware transmit queue (e.g. 5210 and 5211).
5055  */
5056 static void
5057 ath_tx_task_q0(void *arg, int npending)
5058 {
5059 	struct ath_softc *sc = arg;
5060 	struct ifnet *ifp = sc->sc_ifp;
5061 
5062 	wlan_serialize_enter();
5063 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
5064 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5065 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
5066 		ath_tx_processq(sc, sc->sc_cabq);
5067 	ifp->if_flags &= ~IFF_OACTIVE;
5068 	sc->sc_wd_timer = 0;
5069 
5070 	if (sc->sc_softled)
5071 		ath_led_event(sc, sc->sc_txrix);
5072 
5073 	ath_start(ifp);
5074 	wlan_serialize_exit();
5075 }
5076 
5077 /*
5078  * Deferred processing of transmit interrupt; special-cased
5079  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
5080  */
5081 static void
5082 ath_tx_task_q0123(void *arg, int npending)
5083 {
5084 	struct ath_softc *sc = arg;
5085 	struct ifnet *ifp = sc->sc_ifp;
5086 	int nacked;
5087 
5088 	wlan_serialize_enter();
5089 	/*
5090 	 * Process each active queue.
5091 	 */
5092 	nacked = 0;
5093 	if (txqactive(sc->sc_ah, 0))
5094 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
5095 	if (txqactive(sc->sc_ah, 1))
5096 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
5097 	if (txqactive(sc->sc_ah, 2))
5098 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
5099 	if (txqactive(sc->sc_ah, 3))
5100 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
5101 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
5102 		ath_tx_processq(sc, sc->sc_cabq);
5103 	if (nacked)
5104 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5105 
5106 	ifp->if_flags &= ~IFF_OACTIVE;
5107 	sc->sc_wd_timer = 0;
5108 
5109 	if (sc->sc_softled)
5110 		ath_led_event(sc, sc->sc_txrix);
5111 
5112 	ath_start(ifp);
5113 	wlan_serialize_exit();
5114 }
5115 
5116 /*
5117  * Deferred processing of transmit interrupt.
5118  */
5119 static void
5120 ath_tx_task(void *arg, int npending)
5121 {
5122 	struct ath_softc *sc = arg;
5123 	struct ifnet *ifp = sc->sc_ifp;
5124 	int i, nacked;
5125 
5126 	wlan_serialize_enter();
5127 
5128 	/*
5129 	 * Process each active queue.
5130 	 */
5131 	nacked = 0;
5132 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5133 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
5134 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
5135 	}
5136 	if (nacked)
5137 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5138 
5139 	ifp->if_flags &= ~IFF_OACTIVE;
5140 	sc->sc_wd_timer = 0;
5141 
5142 	if (sc->sc_softled)
5143 		ath_led_event(sc, sc->sc_txrix);
5144 
5145 	ath_start(ifp);
5146 	wlan_serialize_exit();
5147 }
5148 
5149 static void
5150 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
5151 {
5152 #ifdef ATH_DEBUG
5153 	struct ath_hal *ah = sc->sc_ah;
5154 #endif
5155 	struct ieee80211_node *ni;
5156 	struct ath_buf *bf;
5157 	u_int ix;
5158 
5159 	/*
5160 	 * NB: this assumes output has been stopped and
5161 	 *     we do not need to block ath_tx_proc
5162 	 */
5163 	bf = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
5164 	if (bf != NULL)
5165 		bf->bf_flags &= ~ATH_BUF_BUSY;
5166 	for (ix = 0;; ix++) {
5167 		bf = STAILQ_FIRST(&txq->axq_q);
5168 		if (bf == NULL) {
5169 			txq->axq_link = NULL;
5170 			break;
5171 		}
5172 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
5173 #ifdef ATH_DEBUG
5174 		if (sc->sc_debug & ATH_DEBUG_RESET) {
5175 			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5176 
5177 			ath_printtxbuf(sc, bf, txq->axq_qnum, ix,
5178 				ath_hal_txprocdesc(ah, bf->bf_desc,
5179 				    &bf->bf_status.ds_txstat) == HAL_OK);
5180 			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
5181 			    bf->bf_m->m_len, 0, -1);
5182 		}
5183 #endif /* ATH_DEBUG */
5184 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5185 		ni = bf->bf_node;
5186 		bf->bf_node = NULL;
5187 		if (ni != NULL) {
5188 			/*
5189 			 * Do any callback and reclaim the node reference.
5190 			 */
5191 			if (bf->bf_m->m_flags & M_TXCB)
5192 				ieee80211_process_callback(ni, bf->bf_m, -1);
5193 			ieee80211_free_node(ni);
5194 		}
5195 		m_freem(bf->bf_m);
5196 		bf->bf_m = NULL;
5197 		bf->bf_flags &= ~ATH_BUF_BUSY;
5198 
5199 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5200 	}
5201 }
5202 
5203 static void
5204 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5205 {
5206 	struct ath_hal *ah = sc->sc_ah;
5207 
5208 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5209 	    __func__, txq->axq_qnum,
5210 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5211 	    txq->axq_link);
5212 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5213 }
5214 
5215 /*
5216  * Drain the transmit queues and reclaim resources.
5217  */
5218 static void
5219 ath_draintxq(struct ath_softc *sc)
5220 {
5221 	struct ath_hal *ah = sc->sc_ah;
5222 	struct ifnet *ifp = sc->sc_ifp;
5223 	int i;
5224 
5225 	/* XXX return value */
5226 	if (!sc->sc_invalid) {
5227 		/* don't touch the hardware if marked invalid */
5228 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5229 		    __func__, sc->sc_bhalq,
5230 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5231 		    NULL);
5232 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5233 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5234 			if (ATH_TXQ_SETUP(sc, i))
5235 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
5236 	}
5237 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5238 		if (ATH_TXQ_SETUP(sc, i))
5239 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
5240 #ifdef ATH_DEBUG
5241 	if (sc->sc_debug & ATH_DEBUG_RESET) {
5242 		struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
5243 		if (bf != NULL && bf->bf_m != NULL) {
5244 			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
5245 				ath_hal_txprocdesc(ah, bf->bf_desc,
5246 				    &bf->bf_status.ds_txstat) == HAL_OK);
5247 			ieee80211_dump_pkt(ifp->if_l2com,
5248 			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
5249 			    0, -1);
5250 		}
5251 	}
5252 #endif /* ATH_DEBUG */
5253 	ifp->if_flags &= ~IFF_OACTIVE;
5254 	sc->sc_wd_timer = 0;
5255 }
5256 
5257 /*
5258  * Disable the receive h/w in preparation for a reset.
5259  */
5260 static void
5261 ath_stoprecv(struct ath_softc *sc)
5262 {
5263 #define	PA2DESC(_sc, _pa) \
5264 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
5265 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
5266 	struct ath_hal *ah = sc->sc_ah;
5267 
5268 	ath_hal_stoppcurecv(ah);	/* disable PCU */
5269 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
5270 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
5271 	DELAY(3000);			/* 3ms is long enough for 1 frame */
5272 #ifdef ATH_DEBUG
5273 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
5274 		struct ath_buf *bf;
5275 		u_int ix;
5276 
5277 		kprintf("%s: rx queue %p, link %p\n", __func__,
5278 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
5279 		ix = 0;
5280 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5281 			struct ath_desc *ds = bf->bf_desc;
5282 			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
5283 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
5284 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
5285 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
5286 				ath_printrxbuf(sc, bf, ix, status == HAL_OK);
5287 			ix++;
5288 		}
5289 	}
5290 #endif
5291 	if (sc->sc_rxpending != NULL) {
5292 		m_freem(sc->sc_rxpending);
5293 		sc->sc_rxpending = NULL;
5294 	}
5295 	sc->sc_rxlink = NULL;		/* just in case */
5296 #undef PA2DESC
5297 }
5298 
5299 /*
5300  * Enable the receive h/w following a reset.
5301  */
5302 static int
5303 ath_startrecv(struct ath_softc *sc)
5304 {
5305 	struct ath_hal *ah = sc->sc_ah;
5306 	struct ath_buf *bf;
5307 
5308 	sc->sc_rxlink = NULL;
5309 	sc->sc_rxpending = NULL;
5310 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5311 		int error = ath_rxbuf_init(sc, bf);
5312 		if (error != 0) {
5313 			DPRINTF(sc, ATH_DEBUG_RECV,
5314 				"%s: ath_rxbuf_init failed %d\n",
5315 				__func__, error);
5316 			return error;
5317 		}
5318 	}
5319 
5320 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
5321 	ath_hal_putrxbuf(ah, bf->bf_daddr);
5322 	ath_hal_rxena(ah);		/* enable recv descriptors */
5323 	ath_mode_init(sc);		/* set filters, etc. */
5324 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
5325 	return 0;
5326 }
5327 
5328 /*
5329  * Update internal state after a channel change.
5330  */
5331 static void
5332 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5333 {
5334 	enum ieee80211_phymode mode;
5335 
5336 	/*
5337 	 * Change channels and update the h/w rate map
5338 	 * if we're switching; e.g. 11a to 11b/g.
5339 	 */
5340 	mode = ieee80211_chan2mode(chan);
5341 	if (mode != sc->sc_curmode)
5342 		ath_setcurmode(sc, mode);
5343 	sc->sc_curchan = chan;
5344 }
5345 
5346 /*
5347  * Set/change channels.  If the channel is really being changed,
5348  * it's done by reseting the chip.  To accomplish this we must
5349  * first cleanup any pending DMA, then restart stuff after a la
5350  * ath_init.
5351  */
5352 static int
5353 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5354 {
5355 	struct ifnet *ifp = sc->sc_ifp;
5356 	struct ieee80211com *ic = ifp->if_l2com;
5357 	struct ath_hal *ah = sc->sc_ah;
5358 
5359 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
5360 	    __func__, ieee80211_chan2ieee(ic, chan),
5361 	    chan->ic_freq, chan->ic_flags);
5362 	if (chan != sc->sc_curchan) {
5363 		HAL_STATUS status;
5364 		/*
5365 		 * To switch channels clear any pending DMA operations;
5366 		 * wait long enough for the RX fifo to drain, reset the
5367 		 * hardware at the new frequency, and then re-enable
5368 		 * the relevant bits of the h/w.
5369 		 */
5370 		ath_hal_intrset(ah, 0);		/* disable interrupts */
5371 		ath_draintxq(sc);		/* clear pending tx frames */
5372 		ath_stoprecv(sc);		/* turn off frame recv */
5373 		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
5374 			if_printf(ifp, "%s: unable to reset "
5375 			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
5376 			    __func__, ieee80211_chan2ieee(ic, chan),
5377 			    chan->ic_freq, chan->ic_flags, status);
5378 			return EIO;
5379 		}
5380 		sc->sc_diversity = ath_hal_getdiversity(ah);
5381 
5382 		/*
5383 		 * Re-enable rx framework.
5384 		 */
5385 		if (ath_startrecv(sc) != 0) {
5386 			if_printf(ifp, "%s: unable to restart recv logic\n",
5387 			    __func__);
5388 			return EIO;
5389 		}
5390 
5391 		/*
5392 		 * Change channels and update the h/w rate map
5393 		 * if we're switching; e.g. 11a to 11b/g.
5394 		 */
5395 		ath_chan_change(sc, chan);
5396 
5397 		/*
5398 		 * Re-enable interrupts.
5399 		 */
5400 		ath_hal_intrset(ah, sc->sc_imask);
5401 	}
5402 	return 0;
5403 }
5404 
5405 /*
5406  * Periodically recalibrate the PHY to account
5407  * for temperature/environment changes.
5408  */
5409 static void
5410 ath_calibrate_callout(void *arg)
5411 {
5412 	struct ath_softc *sc = arg;
5413 	struct ath_hal *ah = sc->sc_ah;
5414 	struct ifnet *ifp = sc->sc_ifp;
5415 	struct ieee80211com *ic = ifp->if_l2com;
5416 	HAL_BOOL longCal, isCalDone;
5417 	int nextcal;
5418 
5419 	wlan_serialize_enter();
5420 
5421 	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
5422 		goto restart;
5423 	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5424 	if (longCal) {
5425 		sc->sc_stats.ast_per_cal++;
5426 		sc->sc_lastlongcal = ticks;
5427 		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5428 			/*
5429 			 * Rfgain is out of bounds, reset the chip
5430 			 * to load new gain values.
5431 			 */
5432 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5433 				"%s: rfgain change\n", __func__);
5434 			sc->sc_stats.ast_per_rfgain++;
5435 			ath_reset(ifp);
5436 		}
5437 		/*
5438 		 * If this long cal is after an idle period, then
5439 		 * reset the data collection state so we start fresh.
5440 		 */
5441 		if (sc->sc_resetcal) {
5442 			(void) ath_hal_calreset(ah, sc->sc_curchan);
5443 			sc->sc_lastcalreset = ticks;
5444 			sc->sc_resetcal = 0;
5445 		}
5446 	}
5447 	if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5448 		if (longCal) {
5449 			/*
5450 			 * Calibrate noise floor data again in case of change.
5451 			 */
5452 			ath_hal_process_noisefloor(ah);
5453 		}
5454 	} else {
5455 		DPRINTF(sc, ATH_DEBUG_ANY,
5456 			"%s: calibration of channel %u failed\n",
5457 			__func__, sc->sc_curchan->ic_freq);
5458 		sc->sc_stats.ast_per_calfail++;
5459 	}
5460 	if (!isCalDone) {
5461 restart:
5462 		/*
5463 		 * Use a shorter interval to potentially collect multiple
5464 		 * data samples required to complete calibration.  Once
5465 		 * we're told the work is done we drop back to a longer
5466 		 * interval between requests.  We're more aggressive doing
5467 		 * work when operating as an AP to improve operation right
5468 		 * after startup.
5469 		 */
5470 		nextcal = (1000*ath_shortcalinterval)/hz;
5471 		if (sc->sc_opmode != HAL_M_HOSTAP)
5472 			nextcal *= 10;
5473 	} else {
5474 		nextcal = ath_longcalinterval*hz;
5475 		if (sc->sc_lastcalreset == 0)
5476 			sc->sc_lastcalreset = sc->sc_lastlongcal;
5477 		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5478 			sc->sc_resetcal = 1;	/* setup reset next trip */
5479 	}
5480 
5481 	if (nextcal != 0) {
5482 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5483 		    __func__, nextcal, isCalDone ? "" : "!");
5484 		callout_reset(&sc->sc_cal_ch, nextcal,
5485 			      ath_calibrate_callout, sc);
5486 	} else {
5487 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5488 		    __func__);
5489 		/* NB: don't rearm timer */
5490 	}
5491 	wlan_serialize_exit();
5492 }
5493 
5494 static void
5495 ath_scan_start(struct ieee80211com *ic)
5496 {
5497 	struct ifnet *ifp = ic->ic_ifp;
5498 	struct ath_softc *sc = ifp->if_softc;
5499 	struct ath_hal *ah = sc->sc_ah;
5500 	u_int32_t rfilt;
5501 
5502 	/* XXX calibration timer? */
5503 
5504 	sc->sc_scanning = 1;
5505 	sc->sc_syncbeacon = 0;
5506 	rfilt = ath_calcrxfilter(sc);
5507 	ath_hal_setrxfilter(ah, rfilt);
5508 	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
5509 
5510 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %6D aid 0\n",
5511 		 __func__, rfilt, ifp->if_broadcastaddr, ":");
5512 }
5513 
5514 static void
5515 ath_scan_end(struct ieee80211com *ic)
5516 {
5517 	struct ifnet *ifp = ic->ic_ifp;
5518 	struct ath_softc *sc = ifp->if_softc;
5519 	struct ath_hal *ah = sc->sc_ah;
5520 	u_int32_t rfilt;
5521 
5522 	sc->sc_scanning = 0;
5523 	rfilt = ath_calcrxfilter(sc);
5524 	ath_hal_setrxfilter(ah, rfilt);
5525 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5526 
5527 	ath_hal_process_noisefloor(ah);
5528 
5529 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %6D aid 0x%x\n",
5530 		 __func__, rfilt, sc->sc_curbssid, ":",
5531 		 sc->sc_curaid);
5532 }
5533 
5534 static void
5535 ath_set_channel(struct ieee80211com *ic)
5536 {
5537 	struct ifnet *ifp = ic->ic_ifp;
5538 	struct ath_softc *sc = ifp->if_softc;
5539 
5540 	(void) ath_chan_set(sc, ic->ic_curchan);
5541 	/*
5542 	 * If we are returning to our bss channel then mark state
5543 	 * so the next recv'd beacon's tsf will be used to sync the
5544 	 * beacon timers.  Note that since we only hear beacons in
5545 	 * sta/ibss mode this has no effect in other operating modes.
5546 	 */
5547 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5548 		sc->sc_syncbeacon = 1;
5549 }
5550 
5551 /*
5552  * Walk the vap list and check if there any vap's in RUN state.
5553  */
5554 static int
5555 ath_isanyrunningvaps(struct ieee80211vap *this)
5556 {
5557 	struct ieee80211com *ic = this->iv_ic;
5558 	struct ieee80211vap *vap;
5559 
5560 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5561 		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
5562 			return 1;
5563 	}
5564 	return 0;
5565 }
5566 
5567 static int
5568 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5569 {
5570 	struct ieee80211com *ic = vap->iv_ic;
5571 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5572 	struct ath_vap *avp = ATH_VAP(vap);
5573 	struct ath_hal *ah = sc->sc_ah;
5574 	struct ieee80211_node *ni = NULL;
5575 	int i, error, stamode;
5576 	u_int32_t rfilt;
5577 	static const HAL_LED_STATE leds[] = {
5578 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5579 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5580 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5581 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5582 	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5583 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5584 	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5585 	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5586 	};
5587 
5588 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5589 		ieee80211_state_name[vap->iv_state],
5590 		ieee80211_state_name[nstate]);
5591 
5592 	callout_stop(&sc->sc_cal_ch);
5593 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5594 
5595 	if (nstate == IEEE80211_S_SCAN) {
5596 		/*
5597 		 * Scanning: turn off beacon miss and don't beacon.
5598 		 * Mark beacon state so when we reach RUN state we'll
5599 		 * [re]setup beacons.  Unblock the task q thread so
5600 		 * deferred interrupt processing is done.
5601 		 */
5602 		ath_hal_intrset(ah,
5603 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5604 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5605 		sc->sc_beacons = 0;
5606 		taskqueue_unblock(sc->sc_tq);
5607 	}
5608 
5609 	ni = vap->iv_bss;
5610 	rfilt = ath_calcrxfilter(sc);
5611 	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5612 		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
5613 		   vap->iv_opmode == IEEE80211_M_IBSS);
5614 	if (stamode && nstate == IEEE80211_S_RUN) {
5615 		sc->sc_curaid = ni->ni_associd;
5616 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5617 		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5618 	}
5619 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %6D aid 0x%x\n",
5620 	   __func__, rfilt, sc->sc_curbssid, ":", sc->sc_curaid);
5621 	ath_hal_setrxfilter(ah, rfilt);
5622 
5623 	/* XXX is this to restore keycache on resume? */
5624 	if (vap->iv_opmode != IEEE80211_M_STA &&
5625 	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5626 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5627 			if (ath_hal_keyisvalid(ah, i))
5628 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5629 	}
5630 
5631 	/*
5632 	 * Invoke the parent method to do net80211 work.
5633 	 */
5634 	error = avp->av_newstate(vap, nstate, arg);
5635 	if (error != 0)
5636 		goto bad;
5637 
5638 	if (nstate == IEEE80211_S_RUN) {
5639 		/* NB: collect bss node again, it may have changed */
5640 		ni = vap->iv_bss;
5641 
5642 		DPRINTF(sc, ATH_DEBUG_STATE,
5643 		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %6D "
5644 		    "capinfo 0x%04x chan %d\n", __func__,
5645 		    vap->iv_flags, ni->ni_intval, ni->ni_bssid, ":",
5646 		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5647 
5648 		switch (vap->iv_opmode) {
5649 #ifdef IEEE80211_SUPPORT_TDMA
5650 		case IEEE80211_M_AHDEMO:
5651 			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
5652 				break;
5653 			/* fall thru... */
5654 #endif
5655 		case IEEE80211_M_HOSTAP:
5656 		case IEEE80211_M_IBSS:
5657 		case IEEE80211_M_MBSS:
5658 			/*
5659 			 * Allocate and setup the beacon frame.
5660 			 *
5661 			 * Stop any previous beacon DMA.  This may be
5662 			 * necessary, for example, when an ibss merge
5663 			 * causes reconfiguration; there will be a state
5664 			 * transition from RUN->RUN that means we may
5665 			 * be called with beacon transmission active.
5666 			 */
5667 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
5668 
5669 			error = ath_beacon_alloc(sc, ni);
5670 			if (error != 0)
5671 				goto bad;
5672 			/*
5673 			 * If joining an adhoc network defer beacon timer
5674 			 * configuration to the next beacon frame so we
5675 			 * have a current TSF to use.  Otherwise we're
5676 			 * starting an ibss/bss so there's no need to delay;
5677 			 * if this is the first vap moving to RUN state, then
5678 			 * beacon state needs to be [re]configured.
5679 			 */
5680 			if (vap->iv_opmode == IEEE80211_M_IBSS &&
5681 			    ni->ni_tstamp.tsf != 0) {
5682 				sc->sc_syncbeacon = 1;
5683 			} else if (!sc->sc_beacons) {
5684 #ifdef IEEE80211_SUPPORT_TDMA
5685 				if (vap->iv_caps & IEEE80211_C_TDMA)
5686 					ath_tdma_config(sc, vap);
5687 				else
5688 #endif
5689 					ath_beacon_config(sc, vap);
5690 				sc->sc_beacons = 1;
5691 			}
5692 			break;
5693 		case IEEE80211_M_STA:
5694 			/*
5695 			 * Defer beacon timer configuration to the next
5696 			 * beacon frame so we have a current TSF to use
5697 			 * (any TSF collected when scanning is likely old).
5698 			 */
5699 			sc->sc_syncbeacon = 1;
5700 			break;
5701 		case IEEE80211_M_MONITOR:
5702 			/*
5703 			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
5704 			 * transitions so we must re-enable interrupts here to
5705 			 * handle the case of a single monitor mode vap.
5706 			 */
5707 			ath_hal_intrset(ah, sc->sc_imask);
5708 			break;
5709 		case IEEE80211_M_WDS:
5710 			break;
5711 		default:
5712 			break;
5713 		}
5714 		/*
5715 		 * Let the hal process statistics collected during a
5716 		 * scan so it can provide calibrated noise floor data.
5717 		 */
5718 		ath_hal_process_noisefloor(ah);
5719 		/*
5720 		 * Reset rssi stats; maybe not the best place...
5721 		 */
5722 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
5723 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
5724 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
5725 		/*
5726 		 * Finally, start any timers and the task q thread
5727 		 * (in case we didn't go through SCAN state).
5728 		 */
5729 		if (ath_longcalinterval != 0) {
5730 			/* start periodic recalibration timer */
5731 			callout_reset(&sc->sc_cal_ch, 1,
5732 				      ath_calibrate_callout, sc);
5733 		} else {
5734 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5735 			    "%s: calibration disabled\n", __func__);
5736 		}
5737 		taskqueue_unblock(sc->sc_tq);
5738 	} else if (nstate == IEEE80211_S_INIT) {
5739 		/*
5740 		 * If there are no vaps left in RUN state then
5741 		 * shutdown host/driver operation:
5742 		 * o disable interrupts
5743 		 * o disable the task queue thread
5744 		 * o mark beacon processing as stopped
5745 		 */
5746 		if (!ath_isanyrunningvaps(vap)) {
5747 			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5748 			/* disable interrupts  */
5749 			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
5750 			taskqueue_block(sc->sc_tq);
5751 			sc->sc_beacons = 0;
5752 		}
5753 #ifdef IEEE80211_SUPPORT_TDMA
5754 		ath_hal_setcca(ah, AH_TRUE);
5755 #endif
5756 	}
5757 bad:
5758 	return error;
5759 }
5760 
5761 /*
5762  * Allocate a key cache slot to the station so we can
5763  * setup a mapping from key index to node. The key cache
5764  * slot is needed for managing antenna state and for
5765  * compression when stations do not use crypto.  We do
5766  * it uniliaterally here; if crypto is employed this slot
5767  * will be reassigned.
5768  */
5769 static void
5770 ath_setup_stationkey(struct ieee80211_node *ni)
5771 {
5772 	struct ieee80211vap *vap = ni->ni_vap;
5773 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5774 	ieee80211_keyix keyix, rxkeyix;
5775 
5776 	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
5777 		/*
5778 		 * Key cache is full; we'll fall back to doing
5779 		 * the more expensive lookup in software.  Note
5780 		 * this also means no h/w compression.
5781 		 */
5782 		/* XXX msg+statistic */
5783 	} else {
5784 		/* XXX locking? */
5785 		ni->ni_ucastkey.wk_keyix = keyix;
5786 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
5787 		/* NB: must mark device key to get called back on delete */
5788 		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
5789 		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
5790 		/* NB: this will create a pass-thru key entry */
5791 		ath_keyset(sc, &ni->ni_ucastkey, vap->iv_bss);
5792 	}
5793 }
5794 
5795 /*
5796  * Setup driver-specific state for a newly associated node.
5797  * Note that we're called also on a re-associate, the isnew
5798  * param tells us if this is the first time or not.
5799  */
5800 static void
5801 ath_newassoc(struct ieee80211_node *ni, int isnew)
5802 {
5803 	struct ath_node *an = ATH_NODE(ni);
5804 	struct ieee80211vap *vap = ni->ni_vap;
5805 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5806 	const struct ieee80211_txparam *tp = ni->ni_txparms;
5807 
5808 	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
5809 	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
5810 
5811 	ath_rate_newassoc(sc, an, isnew);
5812 	if (isnew &&
5813 	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
5814 	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
5815 		ath_setup_stationkey(ni);
5816 }
5817 
5818 static int
5819 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
5820 	int nchans, struct ieee80211_channel chans[])
5821 {
5822 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5823 	struct ath_hal *ah = sc->sc_ah;
5824 	HAL_STATUS status;
5825 
5826 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5827 	    "%s: rd %u cc %u location %c%s\n",
5828 	    __func__, reg->regdomain, reg->country, reg->location,
5829 	    reg->ecm ? " ecm" : "");
5830 
5831 	status = ath_hal_set_channels(ah, chans, nchans,
5832 	    reg->country, reg->regdomain);
5833 	if (status != HAL_OK) {
5834 		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
5835 		    __func__, status);
5836 		return EINVAL;		/* XXX */
5837 	}
5838 	return 0;
5839 }
5840 
5841 static void
5842 ath_getradiocaps(struct ieee80211com *ic,
5843 	int maxchans, int *nchans, struct ieee80211_channel chans[])
5844 {
5845 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5846 	struct ath_hal *ah = sc->sc_ah;
5847 
5848 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
5849 	    __func__, SKU_DEBUG, CTRY_DEFAULT);
5850 
5851 	/* XXX check return */
5852 	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
5853 	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
5854 
5855 }
5856 
5857 static int
5858 ath_getchannels(struct ath_softc *sc)
5859 {
5860 	struct ifnet *ifp = sc->sc_ifp;
5861 	struct ieee80211com *ic = ifp->if_l2com;
5862 	struct ath_hal *ah = sc->sc_ah;
5863 	HAL_STATUS status;
5864 
5865 	/*
5866 	 * Collect channel set based on EEPROM contents.
5867 	 */
5868 	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
5869 	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
5870 	if (status != HAL_OK) {
5871 		if_printf(ifp, "%s: unable to collect channel list from hal, "
5872 		    "status %d\n", __func__, status);
5873 		return EINVAL;
5874 	}
5875 	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
5876 	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
5877 	/* XXX map Atheros sku's to net80211 SKU's */
5878 	/* XXX net80211 types too small */
5879 	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
5880 	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
5881 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
5882 	ic->ic_regdomain.isocc[1] = ' ';
5883 
5884 	ic->ic_regdomain.ecm = 1;
5885 	ic->ic_regdomain.location = 'I';
5886 
5887 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5888 	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
5889 	    __func__, sc->sc_eerd, sc->sc_eecc,
5890 	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
5891 	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
5892 	return 0;
5893 }
5894 
5895 static void
5896 ath_led_done_callout(void *arg)
5897 {
5898 	struct ath_softc *sc = arg;
5899 
5900 	wlan_serialize_enter();
5901 	sc->sc_blinking = 0;
5902 	wlan_serialize_exit();
5903 }
5904 
5905 /*
5906  * Turn the LED off: flip the pin and then set a timer so no
5907  * update will happen for the specified duration.
5908  */
5909 static void
5910 ath_led_off_callout(void *arg)
5911 {
5912 	struct ath_softc *sc = arg;
5913 
5914 	wlan_serialize_enter();
5915 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
5916 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff,
5917 			ath_led_done_callout, sc);
5918 	wlan_serialize_exit();
5919 }
5920 
5921 /*
5922  * Blink the LED according to the specified on/off times.
5923  */
5924 static void
5925 ath_led_blink(struct ath_softc *sc, int on, int off)
5926 {
5927 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
5928 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
5929 	sc->sc_blinking = 1;
5930 	sc->sc_ledoff = off;
5931 	callout_reset(&sc->sc_ledtimer, on, ath_led_off_callout, sc);
5932 }
5933 
5934 static void
5935 ath_led_event(struct ath_softc *sc, int rix)
5936 {
5937 	sc->sc_ledevent = ticks;	/* time of last event */
5938 	if (sc->sc_blinking)		/* don't interrupt active blink */
5939 		return;
5940 	ath_led_blink(sc, sc->sc_hwmap[rix].ledon, sc->sc_hwmap[rix].ledoff);
5941 }
5942 
5943 static int
5944 ath_rate_setup(struct ath_softc *sc, u_int mode)
5945 {
5946 	struct ath_hal *ah = sc->sc_ah;
5947 	const HAL_RATE_TABLE *rt;
5948 
5949 	switch (mode) {
5950 	case IEEE80211_MODE_11A:
5951 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5952 		break;
5953 	case IEEE80211_MODE_HALF:
5954 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
5955 		break;
5956 	case IEEE80211_MODE_QUARTER:
5957 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
5958 		break;
5959 	case IEEE80211_MODE_11B:
5960 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5961 		break;
5962 	case IEEE80211_MODE_11G:
5963 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5964 		break;
5965 	case IEEE80211_MODE_TURBO_A:
5966 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
5967 		break;
5968 	case IEEE80211_MODE_TURBO_G:
5969 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5970 		break;
5971 	case IEEE80211_MODE_STURBO_A:
5972 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5973 		break;
5974 	case IEEE80211_MODE_11NA:
5975 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
5976 		break;
5977 	case IEEE80211_MODE_11NG:
5978 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
5979 		break;
5980 	default:
5981 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5982 			__func__, mode);
5983 		return 0;
5984 	}
5985 	sc->sc_rates[mode] = rt;
5986 	return (rt != NULL);
5987 }
5988 
5989 static void
5990 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5991 {
5992 #define	N(a)	(sizeof(a)/sizeof(a[0]))
5993 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5994 	static const struct {
5995 		u_int		rate;		/* tx/rx 802.11 rate */
5996 		u_int16_t	timeOn;		/* LED on time (ms) */
5997 		u_int16_t	timeOff;	/* LED off time (ms) */
5998 	} blinkrates[] = {
5999 		{ 108,  40,  10 },
6000 		{  96,  44,  11 },
6001 		{  72,  50,  13 },
6002 		{  48,  57,  14 },
6003 		{  36,  67,  16 },
6004 		{  24,  80,  20 },
6005 		{  22, 100,  25 },
6006 		{  18, 133,  34 },
6007 		{  12, 160,  40 },
6008 		{  10, 200,  50 },
6009 		{   6, 240,  58 },
6010 		{   4, 267,  66 },
6011 		{   2, 400, 100 },
6012 		{   0, 500, 130 },
6013 		/* XXX half/quarter rates */
6014 	};
6015 	const HAL_RATE_TABLE *rt;
6016 	int i, j;
6017 
6018 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
6019 	rt = sc->sc_rates[mode];
6020 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
6021 	for (i = 0; i < rt->rateCount; i++) {
6022 		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6023 		if (rt->info[i].phy != IEEE80211_T_HT)
6024 			sc->sc_rixmap[ieeerate] = i;
6025 		else
6026 			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
6027 	}
6028 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
6029 	for (i = 0; i < N(sc->sc_hwmap); i++) {
6030 		if (i >= rt->rateCount) {
6031 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
6032 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
6033 			continue;
6034 		}
6035 		sc->sc_hwmap[i].ieeerate =
6036 			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6037 		if (rt->info[i].phy == IEEE80211_T_HT)
6038 			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
6039 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
6040 		if (rt->info[i].shortPreamble ||
6041 		    rt->info[i].phy == IEEE80211_T_OFDM)
6042 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6043 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
6044 		for (j = 0; j < N(blinkrates)-1; j++)
6045 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6046 				break;
6047 		/* NB: this uses the last entry if the rate isn't found */
6048 		/* XXX beware of overlow */
6049 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6050 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6051 	}
6052 	sc->sc_currates = rt;
6053 	sc->sc_curmode = mode;
6054 	/*
6055 	 * All protection frames are transmited at 2Mb/s for
6056 	 * 11g, otherwise at 1Mb/s.
6057 	 */
6058 	if (mode == IEEE80211_MODE_11G)
6059 		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
6060 	else
6061 		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
6062 	/* NB: caller is responsible for reseting rate control state */
6063 #undef N
6064 }
6065 
6066 #ifdef ATH_DEBUG
6067 static void
6068 ath_printrxbuf(struct ath_softc *sc, const struct ath_buf *bf,
6069 	u_int ix, int done)
6070 {
6071 	const struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
6072 	struct ath_hal *ah = sc->sc_ah;
6073 	const struct ath_desc *ds;
6074 	int i;
6075 
6076 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
6077 		kprintf("R[%2u] (DS.V:%p DS.P:%p) L:%08x D:%08x%s\n"
6078 		       "      %08x %08x %08x %08x\n",
6079 		    ix, ds, (const struct ath_desc *)bf->bf_daddr + i,
6080 		    ds->ds_link, ds->ds_data,
6081 		    !done ? "" : (rs->rs_status == 0) ? " *" : " !",
6082 		    ds->ds_ctl0, ds->ds_ctl1,
6083 		    ds->ds_hw[0], ds->ds_hw[1]);
6084 		if (ah->ah_magic == 0x20065416) {
6085 			kprintf("        %08x %08x %08x %08x %08x %08x %08x\n",
6086 			    ds->ds_hw[2], ds->ds_hw[3], ds->ds_hw[4],
6087 			    ds->ds_hw[5], ds->ds_hw[6], ds->ds_hw[7],
6088 			    ds->ds_hw[8]);
6089 		}
6090 	}
6091 }
6092 
6093 static void
6094 ath_printtxbuf(struct ath_softc *sc, const struct ath_buf *bf,
6095 	u_int qnum, u_int ix, int done)
6096 {
6097 	const struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
6098 	struct ath_hal *ah = sc->sc_ah;
6099 	const struct ath_desc *ds;
6100 	int i;
6101 
6102 	kprintf("Q%u[%3u]", qnum, ix);
6103 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
6104 		kprintf(" (DS.V:%p DS.P:%p) L:%08x D:%08x F:04%x%s\n"
6105 		       "        %08x %08x %08x %08x %08x %08x\n",
6106 		    ds, (const struct ath_desc *)bf->bf_daddr + i,
6107 		    ds->ds_link, ds->ds_data, bf->bf_txflags,
6108 		    !done ? "" : (ts->ts_status == 0) ? " *" : " !",
6109 		    ds->ds_ctl0, ds->ds_ctl1,
6110 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3]);
6111 		if (ah->ah_magic == 0x20065416) {
6112 			kprintf("        %08x %08x %08x %08x %08x %08x %08x %08x\n",
6113 			    ds->ds_hw[4], ds->ds_hw[5], ds->ds_hw[6],
6114 			    ds->ds_hw[7], ds->ds_hw[8], ds->ds_hw[9],
6115 			    ds->ds_hw[10],ds->ds_hw[11]);
6116 			kprintf("        %08x %08x %08x %08x %08x %08x %08x %08x\n",
6117 			    ds->ds_hw[12],ds->ds_hw[13],ds->ds_hw[14],
6118 			    ds->ds_hw[15],ds->ds_hw[16],ds->ds_hw[17],
6119 			    ds->ds_hw[18], ds->ds_hw[19]);
6120 		}
6121 	}
6122 }
6123 #endif /* ATH_DEBUG */
6124 
6125 static void
6126 ath_watchdog_callout(void *arg)
6127 {
6128 	struct ath_softc *sc = arg;
6129 
6130 	wlan_serialize_enter();
6131 	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
6132 		struct ifnet *ifp = sc->sc_ifp;
6133 		uint32_t hangs;
6134 
6135 		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
6136 		    hangs != 0) {
6137 			if_printf(ifp, "%s hang detected (0x%x)\n",
6138 			    hangs & 0xff ? "bb" : "mac", hangs);
6139 		} else
6140 			if_printf(ifp, "device timeout\n");
6141 		ath_reset(ifp);
6142 		ifp->if_oerrors++;
6143 		sc->sc_stats.ast_watchdog++;
6144 	}
6145 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog_callout, sc);
6146 	wlan_serialize_exit();
6147 }
6148 
6149 #ifdef ATH_DIAGAPI
6150 /*
6151  * Diagnostic interface to the HAL.  This is used by various
6152  * tools to do things like retrieve register contents for
6153  * debugging.  The mechanism is intentionally opaque so that
6154  * it can change frequently w/o concern for compatiblity.
6155  */
6156 static int
6157 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
6158 {
6159 	struct ath_hal *ah = sc->sc_ah;
6160 	u_int id = ad->ad_id & ATH_DIAG_ID;
6161 	void *indata = NULL;
6162 	void *outdata = NULL;
6163 	u_int32_t insize = ad->ad_in_size;
6164 	u_int32_t outsize = ad->ad_out_size;
6165 	int error = 0;
6166 
6167 	if (ad->ad_id & ATH_DIAG_IN) {
6168 		/*
6169 		 * Copy in data.
6170 		 */
6171 		indata = kmalloc(insize, M_TEMP, M_INTWAIT);
6172 		if (indata == NULL) {
6173 			error = ENOMEM;
6174 			goto bad;
6175 		}
6176 		error = copyin(ad->ad_in_data, indata, insize);
6177 		if (error)
6178 			goto bad;
6179 	}
6180 	if (ad->ad_id & ATH_DIAG_DYN) {
6181 		/*
6182 		 * Allocate a buffer for the results (otherwise the HAL
6183 		 * returns a pointer to a buffer where we can read the
6184 		 * results).  Note that we depend on the HAL leaving this
6185 		 * pointer for us to use below in reclaiming the buffer;
6186 		 * may want to be more defensive.
6187 		 */
6188 		outdata = kmalloc(outsize, M_TEMP, M_INTWAIT);
6189 		if (outdata == NULL) {
6190 			error = ENOMEM;
6191 			goto bad;
6192 		}
6193 	}
6194 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
6195 		if (outsize < ad->ad_out_size)
6196 			ad->ad_out_size = outsize;
6197 		if (outdata != NULL)
6198 			error = copyout(outdata, ad->ad_out_data,
6199 					ad->ad_out_size);
6200 	} else {
6201 		error = EINVAL;
6202 	}
6203 bad:
6204 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
6205 		kfree(indata, M_TEMP);
6206 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
6207 		kfree(outdata, M_TEMP);
6208 	return error;
6209 }
6210 #endif /* ATH_DIAGAPI */
6211 
6212 static int
6213 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *ucred)
6214 {
6215 #define	IS_RUNNING(ifp) \
6216 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
6217 	struct ath_softc *sc = ifp->if_softc;
6218 	struct ieee80211com *ic = ifp->if_l2com;
6219 	struct ifreq *ifr = (struct ifreq *)data;
6220 	const HAL_RATE_TABLE *rt;
6221 	int error = 0;
6222 
6223 	switch (cmd) {
6224 	case SIOCSIFFLAGS:
6225 		if (IS_RUNNING(ifp)) {
6226 			/*
6227 			 * To avoid rescanning another access point,
6228 			 * do not call ath_init() here.  Instead,
6229 			 * only reflect promisc mode settings.
6230 			 */
6231 			ath_mode_init(sc);
6232 		} else if (ifp->if_flags & IFF_UP) {
6233 			/*
6234 			 * Beware of being called during attach/detach
6235 			 * to reset promiscuous mode.  In that case we
6236 			 * will still be marked UP but not RUNNING.
6237 			 * However trying to re-init the interface
6238 			 * is the wrong thing to do as we've already
6239 			 * torn down much of our state.  There's
6240 			 * probably a better way to deal with this.
6241 			 */
6242 			if (!sc->sc_invalid)
6243 				ath_init(sc);	/* XXX lose error */
6244 		} else {
6245 			ath_stop_locked(ifp);
6246 #ifdef notyet
6247 			/* XXX must wakeup in places like ath_vap_delete */
6248 			if (!sc->sc_invalid)
6249 				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
6250 #endif
6251 		}
6252 		break;
6253 	case SIOCGIFMEDIA:
6254 	case SIOCSIFMEDIA:
6255 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
6256 		break;
6257 	case SIOCGATHSTATS:
6258 		/* NB: embed these numbers to get a consistent view */
6259 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
6260 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
6261 		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
6262 		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
6263 #ifdef IEEE80211_SUPPORT_TDMA
6264 		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
6265 		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
6266 #endif
6267 		rt = sc->sc_currates;
6268 		/* XXX HT rates */
6269 		sc->sc_stats.ast_tx_rate =
6270 		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
6271 		return copyout(&sc->sc_stats,
6272 		    ifr->ifr_data, sizeof (sc->sc_stats));
6273 	case SIOCZATHSTATS:
6274 		error = priv_check(curthread, PRIV_DRIVER);
6275 		if (error == 0)
6276 			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
6277 		break;
6278 #ifdef ATH_DIAGAPI
6279 	case SIOCGATHDIAG:
6280 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
6281 		break;
6282 #endif
6283 	case SIOCGIFADDR:
6284 		error = ether_ioctl(ifp, cmd, data);
6285 		break;
6286 	default:
6287 		error = EINVAL;
6288 		break;
6289 	}
6290 	return error;
6291 #undef IS_RUNNING
6292 }
6293 
6294 static int
6295 ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
6296 {
6297 	struct ath_softc *sc = arg1;
6298 	u_int slottime;
6299 	int error;
6300 
6301 	wlan_serialize_enter();
6302 	slottime = ath_hal_getslottime(sc->sc_ah);
6303 	error = sysctl_handle_int(oidp, &slottime, 0, req);
6304 	if (error == 0 && req->newptr) {
6305 		if (!ath_hal_setslottime(sc->sc_ah, slottime))
6306 			error = EINVAL;
6307 	}
6308 	wlan_serialize_exit();
6309 	return error;
6310 }
6311 
6312 static int
6313 ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
6314 {
6315 	struct ath_softc *sc = arg1;
6316 	u_int acktimeout;
6317 	int error;
6318 
6319 	wlan_serialize_enter();
6320 	acktimeout = ath_hal_getacktimeout(sc->sc_ah);
6321 	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
6322 	if (error == 0 && req->newptr) {
6323 		if (!ath_hal_setacktimeout(sc->sc_ah, acktimeout))
6324 			error = EINVAL;
6325 	}
6326 	wlan_serialize_exit();
6327 	return error;
6328 }
6329 
6330 static int
6331 ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
6332 {
6333 	struct ath_softc *sc = arg1;
6334 	u_int ctstimeout;
6335 	int error;
6336 
6337 	wlan_serialize_enter();
6338 	ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
6339 	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
6340 	if (error == 0 && req->newptr) {
6341 		if (!ath_hal_setctstimeout(sc->sc_ah, ctstimeout))
6342 			error = EINVAL;
6343 	}
6344 	wlan_serialize_exit();
6345 	return error;
6346 }
6347 
6348 static int
6349 ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
6350 {
6351 	struct ath_softc *sc = arg1;
6352 	int softled = sc->sc_softled;
6353 	int error;
6354 
6355 	error = sysctl_handle_int(oidp, &softled, 0, req);
6356 	if (error || !req->newptr)
6357 		return error;
6358 	wlan_serialize_enter();
6359 	softled = (softled != 0);
6360 	if (softled != sc->sc_softled) {
6361 		if (softled) {
6362 			/* NB: handle any sc_ledpin change */
6363 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin,
6364 			    HAL_GPIO_MUX_MAC_NETWORK_LED);
6365 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
6366 				!sc->sc_ledon);
6367 		}
6368 		sc->sc_softled = softled;
6369 	}
6370 	wlan_serialize_exit();
6371 	return 0;
6372 }
6373 
6374 static int
6375 ath_sysctl_ledpin(SYSCTL_HANDLER_ARGS)
6376 {
6377 	struct ath_softc *sc = arg1;
6378 	int ledpin = sc->sc_ledpin;
6379 	int error;
6380 
6381 	error = sysctl_handle_int(oidp, &ledpin, 0, req);
6382 	if (error || !req->newptr)
6383 		return error;
6384 	wlan_serialize_enter();
6385 	if (ledpin != sc->sc_ledpin) {
6386 		sc->sc_ledpin = ledpin;
6387 		if (sc->sc_softled) {
6388 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin,
6389 			    HAL_GPIO_MUX_MAC_NETWORK_LED);
6390 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
6391 				!sc->sc_ledon);
6392 		}
6393 	}
6394 	wlan_serialize_exit();
6395 	return 0;
6396 }
6397 
6398 static int
6399 ath_sysctl_txantenna(SYSCTL_HANDLER_ARGS)
6400 {
6401 	struct ath_softc *sc = arg1;
6402 	u_int txantenna;
6403 	int error;
6404 
6405 	wlan_serialize_enter();
6406 	txantenna = ath_hal_getantennaswitch(sc->sc_ah);
6407 	error = sysctl_handle_int(oidp, &txantenna, 0, req);
6408 
6409 	if (!error && req->newptr) {
6410 		/* XXX assumes 2 antenna ports */
6411 		if (txantenna < HAL_ANT_VARIABLE ||
6412 		    txantenna > HAL_ANT_FIXED_B) {
6413 			error = EINVAL;
6414 		} else {
6415 			ath_hal_setantennaswitch(sc->sc_ah, txantenna);
6416 			/*
6417 			 * NB: with the switch locked this isn't meaningful,
6418 			 *     but set it anyway so things like radiotap get
6419 			 *     consistent info in their data.
6420 			 */
6421 			sc->sc_txantenna = txantenna;
6422 		}
6423 	}
6424 	wlan_serialize_exit();
6425 	return error;
6426 }
6427 
6428 static int
6429 ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
6430 {
6431 	struct ath_softc *sc = arg1;
6432 	u_int defantenna;
6433 	int error;
6434 
6435 	wlan_serialize_enter();
6436 	defantenna = ath_hal_getdefantenna(sc->sc_ah);
6437 	error = sysctl_handle_int(oidp, &defantenna, 0, req);
6438 	if (error == 0 && req->newptr)
6439 		ath_hal_setdefantenna(sc->sc_ah, defantenna);
6440 	wlan_serialize_exit();
6441 	return error;
6442 }
6443 
6444 static int
6445 ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
6446 {
6447 	struct ath_softc *sc = arg1;
6448 	u_int diversity;
6449 	int error;
6450 
6451 	wlan_serialize_enter();
6452 	diversity = ath_hal_getdiversity(sc->sc_ah);
6453 	error = sysctl_handle_int(oidp, &diversity, 0, req);
6454 	if (error == 0 && req->newptr) {
6455 		if (!ath_hal_setdiversity(sc->sc_ah, diversity))
6456 			error = EINVAL;
6457 		else
6458 			sc->sc_diversity = diversity;
6459 	}
6460 	wlan_serialize_exit();
6461 	return error;
6462 }
6463 
6464 static int
6465 ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
6466 {
6467 	struct ath_softc *sc = arg1;
6468 	u_int32_t diag;
6469 	int error;
6470 
6471 	wlan_serialize_enter();
6472 	if (!ath_hal_getdiag(sc->sc_ah, &diag)) {
6473 		error = EINVAL;
6474 	} else {
6475 		error = sysctl_handle_int(oidp, &diag, 0, req);
6476 		if (error == 0 && req->newptr) {
6477 			if (!ath_hal_setdiag(sc->sc_ah, diag))
6478 				error = EINVAL;
6479 		}
6480 	}
6481 	wlan_serialize_exit();
6482 	return error;
6483 }
6484 
6485 static int
6486 ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
6487 {
6488 	struct ath_softc *sc = arg1;
6489 	struct ifnet *ifp = sc->sc_ifp;
6490 	u_int32_t scale;
6491 	int error;
6492 
6493 	wlan_serialize_enter();
6494 	(void)ath_hal_gettpscale(sc->sc_ah, &scale);
6495 	error = sysctl_handle_int(oidp, &scale, 0, req);
6496 	if (error == 0 && req->newptr) {
6497 		if (!ath_hal_settpscale(sc->sc_ah, scale))
6498 			error = EINVAL;
6499 		else if (ifp->if_flags & IFF_RUNNING)
6500 			error = ath_reset(ifp);
6501 	}
6502 	wlan_serialize_exit();
6503 	return error;
6504 }
6505 
6506 static int
6507 ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
6508 {
6509 	struct ath_softc *sc = arg1;
6510 	u_int tpc;
6511 	int error;
6512 
6513 	wlan_serialize_enter();
6514 	tpc = ath_hal_gettpc(sc->sc_ah);
6515 	error = sysctl_handle_int(oidp, &tpc, 0, req);
6516 	if (error == 0 && req->newptr) {
6517 		if (!ath_hal_settpc(sc->sc_ah, tpc))
6518 			error = EINVAL;
6519 	}
6520 	wlan_serialize_exit();
6521 	return error;
6522 }
6523 
6524 static int
6525 ath_sysctl_rfkill(SYSCTL_HANDLER_ARGS)
6526 {
6527 	struct ath_softc *sc = arg1;
6528 	struct ifnet *ifp;
6529 	struct ath_hal *ah;
6530 	u_int rfkill;
6531 	int error;
6532 
6533 	wlan_serialize_enter();
6534 	ifp = sc->sc_ifp;
6535 	ah = sc->sc_ah;
6536 	rfkill = ath_hal_getrfkill(ah);
6537 
6538 	error = sysctl_handle_int(oidp, &rfkill, 0, req);
6539 	if (error == 0 && req->newptr) {
6540 		if (rfkill != ath_hal_getrfkill(ah)) {
6541 			if (!ath_hal_setrfkill(ah, rfkill))
6542 				error = EINVAL;
6543 			else if (ifp->if_flags & IFF_RUNNING)
6544 				error = ath_reset(ifp);
6545 		}
6546 	}
6547 	wlan_serialize_exit();
6548 	return error;
6549 }
6550 
6551 static int
6552 ath_sysctl_rfsilent(SYSCTL_HANDLER_ARGS)
6553 {
6554 	struct ath_softc *sc = arg1;
6555 	u_int rfsilent;
6556 	int error;
6557 
6558 	wlan_serialize_enter();
6559 	(void)ath_hal_getrfsilent(sc->sc_ah, &rfsilent);
6560 	error = sysctl_handle_int(oidp, &rfsilent, 0, req);
6561 	if (error == 0 && req->newptr) {
6562 		if (!ath_hal_setrfsilent(sc->sc_ah, rfsilent)) {
6563 			error = EINVAL;
6564 		} else {
6565 			sc->sc_rfsilentpin = rfsilent & 0x1c;
6566 			sc->sc_rfsilentpol = (rfsilent & 0x2) != 0;
6567 		}
6568 	}
6569 	wlan_serialize_exit();
6570 	return error;
6571 }
6572 
6573 static int
6574 ath_sysctl_tpack(SYSCTL_HANDLER_ARGS)
6575 {
6576 	struct ath_softc *sc = arg1;
6577 	u_int32_t tpack;
6578 	int error;
6579 
6580 	wlan_serialize_enter();
6581 	(void)ath_hal_gettpack(sc->sc_ah, &tpack);
6582 	error = sysctl_handle_int(oidp, &tpack, 0, req);
6583 	if (error == 0 && req->newptr) {
6584 		if (!ath_hal_settpack(sc->sc_ah, tpack))
6585 			error = EINVAL;
6586 	}
6587 	wlan_serialize_exit();
6588 	return error;
6589 }
6590 
6591 static int
6592 ath_sysctl_tpcts(SYSCTL_HANDLER_ARGS)
6593 {
6594 	struct ath_softc *sc = arg1;
6595 	u_int32_t tpcts;
6596 	int error;
6597 
6598 	wlan_serialize_enter();
6599 	(void)ath_hal_gettpcts(sc->sc_ah, &tpcts);
6600 	error = sysctl_handle_int(oidp, &tpcts, 0, req);
6601 	if (error == 0 && req->newptr) {
6602 		if (!ath_hal_settpcts(sc->sc_ah, tpcts))
6603 			error = EINVAL;
6604 	}
6605 	wlan_serialize_exit();
6606 	return error;
6607 }
6608 
6609 static int
6610 ath_sysctl_intmit(SYSCTL_HANDLER_ARGS)
6611 {
6612 	struct ath_softc *sc = arg1;
6613 	int intmit, error;
6614 
6615 	wlan_serialize_enter();
6616 	intmit = ath_hal_getintmit(sc->sc_ah);
6617 	error = sysctl_handle_int(oidp, &intmit, 0, req);
6618 	if (error == 0 && req->newptr) {
6619 		if (!ath_hal_setintmit(sc->sc_ah, intmit))
6620 			error = EINVAL;
6621 	}
6622 	wlan_serialize_exit();
6623 	return error;
6624 }
6625 
6626 #ifdef IEEE80211_SUPPORT_TDMA
6627 static int
6628 ath_sysctl_setcca(SYSCTL_HANDLER_ARGS)
6629 {
6630 	struct ath_softc *sc = arg1;
6631 	int setcca, error;
6632 
6633 	wlan_serialize_enter();
6634 	setcca = sc->sc_setcca;
6635 	error = sysctl_handle_int(oidp, &setcca, 0, req);
6636 	if (error == 0 && req->newptr)
6637 		sc->sc_setcca = (setcca != 0);
6638 	wlan_serialize_exit();
6639 	return error;
6640 }
6641 #endif /* IEEE80211_SUPPORT_TDMA */
6642 
6643 static void
6644 ath_sysctlattach(struct ath_softc *sc)
6645 {
6646 	struct sysctl_ctx_list *ctx;
6647 	struct sysctl_oid *tree;
6648 	struct ath_hal *ah = sc->sc_ah;
6649 
6650 	ctx = &sc->sc_sysctl_ctx;
6651 	tree = sc->sc_sysctl_tree;
6652         if (tree == NULL) {
6653 		device_printf(sc->sc_dev, "can't add sysctl node\n");
6654 		return;
6655 	}
6656 
6657 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6658 		"countrycode", CTLFLAG_RD, &sc->sc_eecc, 0,
6659 		"EEPROM country code");
6660 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6661 		"regdomain", CTLFLAG_RD, &sc->sc_eerd, 0,
6662 		"EEPROM regdomain code");
6663 #ifdef	ATH_DEBUG
6664 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6665 		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
6666 		"control debugging printfs");
6667 #endif
6668 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6669 		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6670 		ath_sysctl_slottime, "I", "802.11 slot time (us)");
6671 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6672 		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6673 		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
6674 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6675 		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6676 		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
6677 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6678 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6679 		ath_sysctl_softled, "I", "enable/disable software LED support");
6680 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6681 		"ledpin", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6682 		ath_sysctl_ledpin, "I", "GPIO pin connected to LED");
6683 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6684 		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
6685 		"setting to turn LED on");
6686 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6687 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
6688 		"idle time for inactivity LED (ticks)");
6689 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6690 		"txantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6691 		ath_sysctl_txantenna, "I", "antenna switch");
6692 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6693 		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6694 		ath_sysctl_rxantenna, "I", "default/rx antenna");
6695 	if (ath_hal_hasdiversity(ah))
6696 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6697 			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6698 			ath_sysctl_diversity, "I", "antenna diversity");
6699 	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
6700 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6701 		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
6702 		"tx descriptor batching");
6703 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6704 		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6705 		ath_sysctl_diag, "I", "h/w diagnostic control");
6706 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6707 		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6708 		ath_sysctl_tpscale, "I", "tx power scaling");
6709 	if (ath_hal_hastpc(ah)) {
6710 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6711 			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6712 			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
6713 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6714 			"tpack", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6715 			ath_sysctl_tpack, "I", "tx power for ack frames");
6716 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6717 			"tpcts", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6718 			ath_sysctl_tpcts, "I", "tx power for cts frames");
6719 	}
6720 	if (ath_hal_hasrfsilent(ah)) {
6721 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6722 			"rfsilent", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6723 			ath_sysctl_rfsilent, "I", "h/w RF silent config");
6724 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6725 			"rfkill", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6726 			ath_sysctl_rfkill, "I", "enable/disable RF kill switch");
6727 	}
6728 	if (ath_hal_hasintmit(ah)) {
6729 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6730 			"intmit", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6731 			ath_sysctl_intmit, "I", "interference mitigation");
6732 	}
6733 	sc->sc_monpass = HAL_RXERR_DECRYPT | HAL_RXERR_MIC;
6734 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6735 		"monpass", CTLFLAG_RW, &sc->sc_monpass, 0,
6736 		"mask of error frames to pass when monitoring");
6737 #ifdef IEEE80211_SUPPORT_TDMA
6738 	if (ath_hal_macversion(ah) > 0x78) {
6739 		sc->sc_tdmadbaprep = 2;
6740 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6741 			"dbaprep", CTLFLAG_RW, &sc->sc_tdmadbaprep, 0,
6742 			"TDMA DBA preparation time");
6743 		sc->sc_tdmaswbaprep = 10;
6744 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6745 			"swbaprep", CTLFLAG_RW, &sc->sc_tdmaswbaprep, 0,
6746 			"TDMA SWBA preparation time");
6747 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6748 			"guardtime", CTLFLAG_RW, &sc->sc_tdmaguard, 0,
6749 			"TDMA slot guard time");
6750 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6751 			"superframe", CTLFLAG_RD, &sc->sc_tdmabintval, 0,
6752 			"TDMA calculated super frame");
6753 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6754 			"setcca", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6755 			ath_sysctl_setcca, "I", "enable CCA control");
6756 	}
6757 #endif
6758 }
6759 
6760 static int
6761 ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni,
6762 	struct ath_buf *bf, struct mbuf *m0,
6763 	const struct ieee80211_bpf_params *params)
6764 {
6765 	struct ifnet *ifp = sc->sc_ifp;
6766 	struct ieee80211com *ic = ifp->if_l2com;
6767 	struct ath_hal *ah = sc->sc_ah;
6768 	struct ieee80211vap *vap = ni->ni_vap;
6769 	int error, ismcast, ismrr;
6770 	int keyix, hdrlen, pktlen, try0, txantenna;
6771 	u_int8_t rix, cix, txrate, ctsrate, rate1, rate2, rate3;
6772 	struct ieee80211_frame *wh;
6773 	u_int flags, ctsduration;
6774 	HAL_PKT_TYPE atype;
6775 	const HAL_RATE_TABLE *rt;
6776 	struct ath_desc *ds;
6777 	u_int pri;
6778 
6779 	wh = mtod(m0, struct ieee80211_frame *);
6780 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
6781 	hdrlen = ieee80211_anyhdrsize(wh);
6782 	/*
6783 	 * Packet length must not include any
6784 	 * pad bytes; deduct them here.
6785 	 */
6786 	/* XXX honor IEEE80211_BPF_DATAPAD */
6787 	pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN;
6788 
6789 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
6790 		const struct ieee80211_cipher *cip;
6791 		struct ieee80211_key *k;
6792 
6793 		/*
6794 		 * Construct the 802.11 header+trailer for an encrypted
6795 		 * frame. The only reason this can fail is because of an
6796 		 * unknown or unsupported cipher/key type.
6797 		 */
6798 		k = ieee80211_crypto_encap(ni, m0);
6799 		if (k == NULL) {
6800 			/*
6801 			 * This can happen when the key is yanked after the
6802 			 * frame was queued.  Just discard the frame; the
6803 			 * 802.11 layer counts failures and provides
6804 			 * debugging/diagnostics.
6805 			 */
6806 			ath_freetx(m0);
6807 			return EIO;
6808 		}
6809 		/*
6810 		 * Adjust the packet + header lengths for the crypto
6811 		 * additions and calculate the h/w key index.  When
6812 		 * a s/w mic is done the frame will have had any mic
6813 		 * added to it prior to entry so m0->m_pkthdr.len will
6814 		 * account for it. Otherwise we need to add it to the
6815 		 * packet length.
6816 		 */
6817 		cip = k->wk_cipher;
6818 		hdrlen += cip->ic_header;
6819 		pktlen += cip->ic_header + cip->ic_trailer;
6820 		/* NB: frags always have any TKIP MIC done in s/w */
6821 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
6822 			pktlen += cip->ic_miclen;
6823 		keyix = k->wk_keyix;
6824 
6825 		/* packet header may have moved, reset our local pointer */
6826 		wh = mtod(m0, struct ieee80211_frame *);
6827 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
6828 		/*
6829 		 * Use station key cache slot, if assigned.
6830 		 */
6831 		keyix = ni->ni_ucastkey.wk_keyix;
6832 		if (keyix == IEEE80211_KEYIX_NONE)
6833 			keyix = HAL_TXKEYIX_INVALID;
6834 	} else
6835 		keyix = HAL_TXKEYIX_INVALID;
6836 
6837 	error = ath_tx_dmasetup(sc, bf, m0);
6838 	if (error != 0)
6839 		return error;
6840 	m0 = bf->bf_m;				/* NB: may have changed */
6841 	wh = mtod(m0, struct ieee80211_frame *);
6842 	bf->bf_node = ni;			/* NB: held reference */
6843 
6844 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
6845 	flags |= HAL_TXDESC_INTREQ;		/* force interrupt */
6846 	if (params->ibp_flags & IEEE80211_BPF_RTS)
6847 		flags |= HAL_TXDESC_RTSENA;
6848 	else if (params->ibp_flags & IEEE80211_BPF_CTS)
6849 		flags |= HAL_TXDESC_CTSENA;
6850 	/* XXX leave ismcast to injector? */
6851 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast)
6852 		flags |= HAL_TXDESC_NOACK;
6853 
6854 	rt = sc->sc_currates;
6855 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
6856 	rix = ath_tx_findrix(sc, params->ibp_rate0);
6857 	txrate = rt->info[rix].rateCode;
6858 	if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6859 		txrate |= rt->info[rix].shortPreamble;
6860 	sc->sc_txrix = rix;
6861 	try0 = params->ibp_try0;
6862 	ismrr = (params->ibp_try1 != 0);
6863 	txantenna = params->ibp_pri >> 2;
6864 	if (txantenna == 0)			/* XXX? */
6865 		txantenna = sc->sc_txantenna;
6866 	ctsduration = 0;
6867 	if (flags & (HAL_TXDESC_CTSENA | HAL_TXDESC_RTSENA)) {
6868 		cix = ath_tx_findrix(sc, params->ibp_ctsrate);
6869 		ctsrate = rt->info[cix].rateCode;
6870 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) {
6871 			ctsrate |= rt->info[cix].shortPreamble;
6872 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
6873 				ctsduration += rt->info[cix].spAckDuration;
6874 			ctsduration += ath_hal_computetxtime(ah,
6875 				rt, pktlen, rix, AH_TRUE);
6876 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
6877 				ctsduration += rt->info[rix].spAckDuration;
6878 		} else {
6879 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
6880 				ctsduration += rt->info[cix].lpAckDuration;
6881 			ctsduration += ath_hal_computetxtime(ah,
6882 				rt, pktlen, rix, AH_FALSE);
6883 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
6884 				ctsduration += rt->info[rix].lpAckDuration;
6885 		}
6886 		ismrr = 0;			/* XXX */
6887 	} else
6888 		ctsrate = 0;
6889 	pri = params->ibp_pri & 3;
6890 	/*
6891 	 * NB: we mark all packets as type PSPOLL so the h/w won't
6892 	 * set the sequence number, duration, etc.
6893 	 */
6894 	atype = HAL_PKT_TYPE_PSPOLL;
6895 
6896 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
6897 		ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
6898 		    sc->sc_hwmap[rix].ieeerate, -1);
6899 
6900 	if (ieee80211_radiotap_active_vap(vap)) {
6901 		u_int64_t tsf = ath_hal_gettsf64(ah);
6902 
6903 		sc->sc_tx_th.wt_tsf = htole64(tsf);
6904 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
6905 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
6906 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
6907 		if (m0->m_flags & M_FRAG)
6908 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
6909 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
6910 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
6911 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
6912 
6913 		ieee80211_radiotap_tx(vap, m0);
6914 	}
6915 
6916 	/*
6917 	 * Formulate first tx descriptor with tx controls.
6918 	 */
6919 	ds = bf->bf_desc;
6920 	/* XXX check return value? */
6921 	ath_hal_setuptxdesc(ah, ds
6922 		, pktlen		/* packet length */
6923 		, hdrlen		/* header length */
6924 		, atype			/* Atheros packet type */
6925 		, params->ibp_power	/* txpower */
6926 		, txrate, try0		/* series 0 rate/tries */
6927 		, keyix			/* key cache index */
6928 		, txantenna		/* antenna mode */
6929 		, flags			/* flags */
6930 		, ctsrate		/* rts/cts rate */
6931 		, ctsduration		/* rts/cts duration */
6932 	);
6933 	bf->bf_txflags = flags;
6934 
6935 	if (ismrr) {
6936 		rix = ath_tx_findrix(sc, params->ibp_rate1);
6937 		rate1 = rt->info[rix].rateCode;
6938 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6939 			rate1 |= rt->info[rix].shortPreamble;
6940 		if (params->ibp_try2) {
6941 			rix = ath_tx_findrix(sc, params->ibp_rate2);
6942 			rate2 = rt->info[rix].rateCode;
6943 			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6944 				rate2 |= rt->info[rix].shortPreamble;
6945 		} else
6946 			rate2 = 0;
6947 		if (params->ibp_try3) {
6948 			rix = ath_tx_findrix(sc, params->ibp_rate3);
6949 			rate3 = rt->info[rix].rateCode;
6950 			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6951 				rate3 |= rt->info[rix].shortPreamble;
6952 		} else
6953 			rate3 = 0;
6954 		ath_hal_setupxtxdesc(ah, ds
6955 			, rate1, params->ibp_try1	/* series 1 */
6956 			, rate2, params->ibp_try2	/* series 2 */
6957 			, rate3, params->ibp_try3	/* series 3 */
6958 		);
6959 	}
6960 
6961 	/* NB: no buffered multicast in power save support */
6962 	ath_tx_handoff(sc, sc->sc_ac2q[pri], bf);
6963 	return 0;
6964 }
6965 
6966 static int
6967 ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
6968 	const struct ieee80211_bpf_params *params)
6969 {
6970 	struct ieee80211com *ic = ni->ni_ic;
6971 	struct ifnet *ifp = ic->ic_ifp;
6972 	struct ath_softc *sc = ifp->if_softc;
6973 	struct ath_buf *bf;
6974 	int error;
6975 
6976 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid) {
6977 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, %s", __func__,
6978 		    (ifp->if_flags & IFF_RUNNING) == 0 ?
6979 			"!running" : "invalid");
6980 		m_freem(m);
6981 		error = ENETDOWN;
6982 		goto bad;
6983 	}
6984 	/*
6985 	 * Grab a TX buffer and associated resources.
6986 	 */
6987 	bf = ath_getbuf(sc);
6988 	if (bf == NULL) {
6989 		sc->sc_stats.ast_tx_nobuf++;
6990 		m_freem(m);
6991 		error = ENOBUFS;
6992 		goto bad;
6993 	}
6994 
6995 	if (params == NULL) {
6996 		/*
6997 		 * Legacy path; interpret frame contents to decide
6998 		 * precisely how to send the frame.
6999 		 */
7000 		if (ath_tx_start(sc, ni, bf, m)) {
7001 			error = EIO;		/* XXX */
7002 			goto bad2;
7003 		}
7004 	} else {
7005 		/*
7006 		 * Caller supplied explicit parameters to use in
7007 		 * sending the frame.
7008 		 */
7009 		if (ath_tx_raw_start(sc, ni, bf, m, params)) {
7010 			error = EIO;		/* XXX */
7011 			goto bad2;
7012 		}
7013 	}
7014 	sc->sc_wd_timer = 5;
7015 	ifp->if_opackets++;
7016 	sc->sc_stats.ast_tx_raw++;
7017 
7018 	return 0;
7019 bad2:
7020 	STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
7021 bad:
7022 	ifp->if_oerrors++;
7023 	sc->sc_stats.ast_tx_raw_fail++;
7024 	ieee80211_free_node(ni);
7025 	return error;
7026 }
7027 
7028 /*
7029  * Announce various information on device/driver attach.
7030  */
7031 static void
7032 ath_announce(struct ath_softc *sc)
7033 {
7034 	struct ifnet *ifp = sc->sc_ifp;
7035 	struct ath_hal *ah = sc->sc_ah;
7036 
7037 	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
7038 		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
7039 		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
7040 	if (bootverbose) {
7041 		int i;
7042 		for (i = 0; i <= WME_AC_VO; i++) {
7043 			struct ath_txq *txq = sc->sc_ac2q[i];
7044 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
7045 				txq->axq_qnum, ieee80211_wme_acnames[i]);
7046 		}
7047 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
7048 			sc->sc_cabq->axq_qnum);
7049 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
7050 	}
7051 	if (ath_rxbuf != ATH_RXBUF)
7052 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
7053 	if (ath_txbuf != ATH_TXBUF)
7054 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
7055 	if (sc->sc_mcastkey && bootverbose)
7056 		if_printf(ifp, "using multicast key search\n");
7057 }
7058 
7059 #ifdef IEEE80211_SUPPORT_TDMA
7060 static __inline uint32_t
7061 ath_hal_getnexttbtt(struct ath_hal *ah)
7062 {
7063 #define	AR_TIMER0	0x8028
7064 	return OS_REG_READ(ah, AR_TIMER0);
7065 }
7066 
7067 static __inline void
7068 ath_hal_adjusttsf(struct ath_hal *ah, int32_t tsfdelta)
7069 {
7070 	/* XXX handle wrap/overflow */
7071 	OS_REG_WRITE(ah, AR_TSF_L32, OS_REG_READ(ah, AR_TSF_L32) + tsfdelta);
7072 }
7073 
7074 static void
7075 ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval)
7076 {
7077 	struct ath_hal *ah = sc->sc_ah;
7078 	HAL_BEACON_TIMERS bt;
7079 
7080 	bt.bt_intval = bintval | HAL_BEACON_ENA;
7081 	bt.bt_nexttbtt = nexttbtt;
7082 	bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep;
7083 	bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep;
7084 	bt.bt_nextatim = nexttbtt+1;
7085 	ath_hal_beaconsettimers(ah, &bt);
7086 }
7087 
7088 /*
7089  * Calculate the beacon interval.  This is periodic in the
7090  * superframe for the bss.  We assume each station is configured
7091  * identically wrt transmit rate so the guard time we calculate
7092  * above will be the same on all stations.  Note we need to
7093  * factor in the xmit time because the hardware will schedule
7094  * a frame for transmit if the start of the frame is within
7095  * the burst time.  When we get hardware that properly kills
7096  * frames in the PCU we can reduce/eliminate the guard time.
7097  *
7098  * Roundup to 1024 is so we have 1 TU buffer in the guard time
7099  * to deal with the granularity of the nexttbtt timer.  11n MAC's
7100  * with 1us timer granularity should allow us to reduce/eliminate
7101  * this.
7102  */
7103 static void
7104 ath_tdma_bintvalsetup(struct ath_softc *sc,
7105 	const struct ieee80211_tdma_state *tdma)
7106 {
7107 	/* copy from vap state (XXX check all vaps have same value?) */
7108 	sc->sc_tdmaslotlen = tdma->tdma_slotlen;
7109 
7110 	sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) *
7111 		tdma->tdma_slotcnt, 1024);
7112 	sc->sc_tdmabintval >>= 10;		/* TSF -> TU */
7113 	if (sc->sc_tdmabintval & 1)
7114 		sc->sc_tdmabintval++;
7115 
7116 	if (tdma->tdma_slot == 0) {
7117 		/*
7118 		 * Only slot 0 beacons; other slots respond.
7119 		 */
7120 		sc->sc_imask |= HAL_INT_SWBA;
7121 		sc->sc_tdmaswba = 0;		/* beacon immediately */
7122 	} else {
7123 		/* XXX all vaps must be slot 0 or slot !0 */
7124 		sc->sc_imask &= ~HAL_INT_SWBA;
7125 	}
7126 }
7127 
7128 /*
7129  * Max 802.11 overhead.  This assumes no 4-address frames and
7130  * the encapsulation done by ieee80211_encap (llc).  We also
7131  * include potential crypto overhead.
7132  */
7133 #define	IEEE80211_MAXOVERHEAD \
7134 	(sizeof(struct ieee80211_qosframe) \
7135 	 + sizeof(struct llc) \
7136 	 + IEEE80211_ADDR_LEN \
7137 	 + IEEE80211_WEP_IVLEN \
7138 	 + IEEE80211_WEP_KIDLEN \
7139 	 + IEEE80211_WEP_CRCLEN \
7140 	 + IEEE80211_WEP_MICLEN \
7141 	 + IEEE80211_CRC_LEN)
7142 
7143 /*
7144  * Setup initially for tdma operation.  Start the beacon
7145  * timers and enable SWBA if we are slot 0.  Otherwise
7146  * we wait for slot 0 to arrive so we can sync up before
7147  * starting to transmit.
7148  */
7149 static void
7150 ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap)
7151 {
7152 	struct ath_hal *ah = sc->sc_ah;
7153 	struct ifnet *ifp = sc->sc_ifp;
7154 	struct ieee80211com *ic = ifp->if_l2com;
7155 	const struct ieee80211_txparam *tp;
7156 	const struct ieee80211_tdma_state *tdma = NULL;
7157 	int rix;
7158 
7159 	if (vap == NULL) {
7160 		vap = TAILQ_FIRST(&ic->ic_vaps);   /* XXX */
7161 		if (vap == NULL) {
7162 			if_printf(ifp, "%s: no vaps?\n", __func__);
7163 			return;
7164 		}
7165 	}
7166 	tp = vap->iv_bss->ni_txparms;
7167 	/*
7168 	 * Calculate the guard time for each slot.  This is the
7169 	 * time to send a maximal-size frame according to the
7170 	 * fixed/lowest transmit rate.  Note that the interface
7171 	 * mtu does not include the 802.11 overhead so we must
7172 	 * tack that on (ath_hal_computetxtime includes the
7173 	 * preamble and plcp in it's calculation).
7174 	 */
7175 	tdma = vap->iv_tdma;
7176 	if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
7177 		rix = ath_tx_findrix(sc, tp->ucastrate);
7178 	else
7179 		rix = ath_tx_findrix(sc, tp->mcastrate);
7180 	/* XXX short preamble assumed */
7181 	sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates,
7182 		ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE);
7183 
7184 	ath_hal_intrset(ah, 0);
7185 
7186 	ath_beaconq_config(sc);			/* setup h/w beacon q */
7187 	if (sc->sc_setcca)
7188 		ath_hal_setcca(ah, AH_FALSE);	/* disable CCA */
7189 	ath_tdma_bintvalsetup(sc, tdma);	/* calculate beacon interval */
7190 	ath_tdma_settimers(sc, sc->sc_tdmabintval,
7191 		sc->sc_tdmabintval | HAL_BEACON_RESET_TSF);
7192 	sc->sc_syncbeacon = 0;
7193 
7194 	sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER;
7195 	sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER;
7196 
7197 	ath_hal_intrset(ah, sc->sc_imask);
7198 
7199 	DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u "
7200 	    "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__,
7201 	    tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt,
7202 	    tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval,
7203 	    sc->sc_tdmadbaprep);
7204 }
7205 
7206 /*
7207  * Update tdma operation.  Called from the 802.11 layer
7208  * when a beacon is received from the TDMA station operating
7209  * in the slot immediately preceding us in the bss.  Use
7210  * the rx timestamp for the beacon frame to update our
7211  * beacon timers so we follow their schedule.  Note that
7212  * by using the rx timestamp we implicitly include the
7213  * propagation delay in our schedule.
7214  */
7215 static void
7216 ath_tdma_update(struct ieee80211_node *ni,
7217 	const struct ieee80211_tdma_param *tdma, int changed)
7218 {
7219 #define	TSF_TO_TU(_h,_l) \
7220 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
7221 #define	TU_TO_TSF(_tu)	(((u_int64_t)(_tu)) << 10)
7222 	struct ieee80211vap *vap = ni->ni_vap;
7223 	struct ieee80211com *ic = ni->ni_ic;
7224 	struct ath_softc *sc = ic->ic_ifp->if_softc;
7225 	struct ath_hal *ah = sc->sc_ah;
7226 	const HAL_RATE_TABLE *rt = sc->sc_currates;
7227 	u_int64_t tsf, rstamp, nextslot;
7228 	u_int32_t txtime, nextslottu, timer0;
7229 	int32_t tudelta, tsfdelta;
7230 	const struct ath_rx_status *rs;
7231 	int rix;
7232 
7233 	sc->sc_stats.ast_tdma_update++;
7234 
7235 	/*
7236 	 * Check for and adopt configuration changes.
7237 	 */
7238 	if (changed != 0) {
7239 		const struct ieee80211_tdma_state *ts = vap->iv_tdma;
7240 
7241 		ath_tdma_bintvalsetup(sc, ts);
7242 		if (changed & TDMA_UPDATE_SLOTLEN)
7243 			ath_wme_update(ic);
7244 
7245 		DPRINTF(sc, ATH_DEBUG_TDMA,
7246 		    "%s: adopt slot %u slotcnt %u slotlen %u us "
7247 		    "bintval %u TU\n", __func__,
7248 		    ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen,
7249 		    sc->sc_tdmabintval);
7250 
7251 		/* XXX right? */
7252 		ath_hal_intrset(ah, sc->sc_imask);
7253 		/* NB: beacon timers programmed below */
7254 	}
7255 
7256 	/* extend rx timestamp to 64 bits */
7257 	rs = sc->sc_lastrs;
7258 	tsf = ath_hal_gettsf64(ah);
7259 	rstamp = ath_extend_tsf(rs->rs_tstamp, tsf);
7260 	/*
7261 	 * The rx timestamp is set by the hardware on completing
7262 	 * reception (at the point where the rx descriptor is DMA'd
7263 	 * to the host).  To find the start of our next slot we
7264 	 * must adjust this time by the time required to send
7265 	 * the packet just received.
7266 	 */
7267 	rix = rt->rateCodeToIndex[rs->rs_rate];
7268 	txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix,
7269 	    rt->info[rix].shortPreamble);
7270 	/* NB: << 9 is to cvt to TU and /2 */
7271 	nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9);
7272 	nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD;
7273 
7274 	/*
7275 	 * TIMER0 is the h/w's idea of NextTBTT (in TU's).  Convert
7276 	 * to usecs and calculate the difference between what the
7277 	 * other station thinks and what we have programmed.  This
7278 	 * lets us figure how to adjust our timers to match.  The
7279 	 * adjustments are done by pulling the TSF forward and possibly
7280 	 * rewriting the beacon timers.
7281 	 */
7282 	timer0 = ath_hal_getnexttbtt(ah);
7283 	tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD+1)) - TU_TO_TSF(timer0));
7284 
7285 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
7286 	    "tsfdelta %d avg +%d/-%d\n", tsfdelta,
7287 	    TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam));
7288 
7289 	if (tsfdelta < 0) {
7290 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
7291 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta);
7292 		tsfdelta = -tsfdelta % 1024;
7293 		nextslottu++;
7294 	} else if (tsfdelta > 0) {
7295 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta);
7296 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
7297 		tsfdelta = 1024 - (tsfdelta % 1024);
7298 		nextslottu++;
7299 	} else {
7300 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
7301 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
7302 	}
7303 	tudelta = nextslottu - timer0;
7304 
7305 	/*
7306 	 * Copy sender's timetstamp into tdma ie so they can
7307 	 * calculate roundtrip time.  We submit a beacon frame
7308 	 * below after any timer adjustment.  The frame goes out
7309 	 * at the next TBTT so the sender can calculate the
7310 	 * roundtrip by inspecting the tdma ie in our beacon frame.
7311 	 *
7312 	 * NB: This tstamp is subtlely preserved when
7313 	 *     IEEE80211_BEACON_TDMA is marked (e.g. when the
7314 	 *     slot position changes) because ieee80211_add_tdma
7315 	 *     skips over the data.
7316 	 */
7317 	memcpy(ATH_VAP(vap)->av_boff.bo_tdma +
7318 		__offsetof(struct ieee80211_tdma_param, tdma_tstamp),
7319 		&ni->ni_tstamp.data, 8);
7320 #if 0
7321 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
7322 	    "tsf %llu nextslot %llu (%d, %d) nextslottu %u timer0 %u (%d)\n",
7323 	    (unsigned long long) tsf, (unsigned long long) nextslot,
7324 	    (int)(nextslot - tsf), tsfdelta,
7325 	    nextslottu, timer0, tudelta);
7326 #endif
7327 	/*
7328 	 * Adjust the beacon timers only when pulling them forward
7329 	 * or when going back by less than the beacon interval.
7330 	 * Negative jumps larger than the beacon interval seem to
7331 	 * cause the timers to stop and generally cause instability.
7332 	 * This basically filters out jumps due to missed beacons.
7333 	 */
7334 	if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) {
7335 		ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval);
7336 		sc->sc_stats.ast_tdma_timers++;
7337 	}
7338 	if (tsfdelta > 0) {
7339 		ath_hal_adjusttsf(ah, tsfdelta);
7340 		sc->sc_stats.ast_tdma_tsf++;
7341 	}
7342 	ath_tdma_beacon_send(sc, vap);		/* prepare response */
7343 #undef TU_TO_TSF
7344 #undef TSF_TO_TU
7345 }
7346 
7347 /*
7348  * Transmit a beacon frame at SWBA.  Dynamic updates
7349  * to the frame contents are done as needed.
7350  */
7351 static void
7352 ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap)
7353 {
7354 	struct ath_hal *ah = sc->sc_ah;
7355 	struct ath_buf *bf;
7356 	int otherant;
7357 
7358 	/*
7359 	 * Check if the previous beacon has gone out.  If
7360 	 * not don't try to post another, skip this period
7361 	 * and wait for the next.  Missed beacons indicate
7362 	 * a problem and should not occur.  If we miss too
7363 	 * many consecutive beacons reset the device.
7364 	 */
7365 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
7366 		sc->sc_bmisscount++;
7367 		DPRINTF(sc, ATH_DEBUG_BEACON,
7368 			"%s: missed %u consecutive beacons\n",
7369 			__func__, sc->sc_bmisscount);
7370 		if (sc->sc_bmisscount >= ath_bstuck_threshold)
7371 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
7372 		return;
7373 	}
7374 	if (sc->sc_bmisscount != 0) {
7375 		DPRINTF(sc, ATH_DEBUG_BEACON,
7376 			"%s: resume beacon xmit after %u misses\n",
7377 			__func__, sc->sc_bmisscount);
7378 		sc->sc_bmisscount = 0;
7379 	}
7380 
7381 	/*
7382 	 * Check recent per-antenna transmit statistics and flip
7383 	 * the default antenna if noticeably more frames went out
7384 	 * on the non-default antenna.
7385 	 * XXX assumes 2 anntenae
7386 	 */
7387 	if (!sc->sc_diversity) {
7388 		otherant = sc->sc_defant & 1 ? 2 : 1;
7389 		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
7390 			ath_setdefantenna(sc, otherant);
7391 		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
7392 	}
7393 
7394 	/*
7395 	 * Stop any current dma before messing with the beacon linkages.
7396 	 *
7397 	 * This should never fail since we check above that no frames
7398 	 * are still pending on the queue.
7399 	 */
7400 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
7401 		DPRINTF(sc, ATH_DEBUG_ANY,
7402 			"%s: beacon queue %u did not stop?\n",
7403 			__func__, sc->sc_bhalq);
7404 		/* NB: the HAL still stops DMA, so proceed */
7405 	}
7406 	bf = ath_beacon_generate(sc, vap);
7407 	if (bf != NULL) {
7408 		ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
7409 		ath_hal_txstart(ah, sc->sc_bhalq);
7410 
7411 		sc->sc_stats.ast_be_xmit++;		/* XXX per-vap? */
7412 
7413 		/*
7414 		 * Record local TSF for our last send for use
7415 		 * in arbitrating slot collisions.
7416 		 */
7417 		vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah);
7418 	} else {
7419 		device_printf(sc->sc_dev, "tdma beacon gen failed!\n");
7420 	}
7421 }
7422 #endif /* IEEE80211_SUPPORT_TDMA */
7423 
7424 static int
7425 ath_sysctl_clearstats(SYSCTL_HANDLER_ARGS)
7426 {
7427 	struct ath_softc *sc = arg1;
7428 	int val = 0;
7429 	int error;
7430 
7431 	error = sysctl_handle_int(oidp, &val, 0, req);
7432 	if (error || !req->newptr)
7433 		return error;
7434 	if (val == 0)
7435 		return 0;       /* Not clearing the stats is still valid */
7436 	memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
7437 	val = 0;
7438 	return 0;
7439 }
7440 
7441 static void
7442 ath_sysctl_stats_attach(struct ath_softc *sc)
7443 {
7444 	struct sysctl_oid *tree;
7445 	struct sysctl_ctx_list *ctx;
7446 	struct sysctl_oid_list *child;
7447 
7448 	ctx = &sc->sc_sysctl_ctx;
7449 	tree = sc->sc_sysctl_tree;
7450 	child = SYSCTL_CHILDREN(tree);
7451 
7452 	/* Create "clear" node */
7453 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
7454 	    "clear_stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
7455 	    ath_sysctl_clearstats, "I", "clear stats");
7456 
7457 	/* Create stats node */
7458 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
7459 	    NULL, "Statistics");
7460 	child = SYSCTL_CHILDREN(tree);
7461 
7462 	/* This was generated from if_athioctl.h */
7463 
7464 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_watchdog", CTLFLAG_RD,
7465 	    &sc->sc_stats.ast_watchdog, 0, "device reset by watchdog");
7466 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_hardware", CTLFLAG_RD,
7467 	    &sc->sc_stats.ast_hardware, 0, "fatal hardware error interrupts");
7468 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_bmiss", CTLFLAG_RD,
7469 	    &sc->sc_stats.ast_bmiss, 0, "beacon miss interrupts");
7470 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_bmiss_phantom", CTLFLAG_RD,
7471 	    &sc->sc_stats.ast_bmiss_phantom, 0, "beacon miss interrupts");
7472 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_bstuck", CTLFLAG_RD,
7473 	    &sc->sc_stats.ast_bstuck, 0, "beacon stuck interrupts");
7474 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rxorn", CTLFLAG_RD,
7475 	    &sc->sc_stats.ast_rxorn, 0, "rx overrun interrupts");
7476 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rxeol", CTLFLAG_RD,
7477 	    &sc->sc_stats.ast_rxeol, 0, "rx eol interrupts");
7478 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_txurn", CTLFLAG_RD,
7479 	    &sc->sc_stats.ast_txurn, 0, "tx underrun interrupts");
7480 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_mib", CTLFLAG_RD,
7481 	    &sc->sc_stats.ast_mib, 0, "mib interrupts");
7482 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_intrcoal", CTLFLAG_RD,
7483 	    &sc->sc_stats.ast_intrcoal, 0, "interrupts coalesced");
7484 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_packets", CTLFLAG_RD,
7485 	    &sc->sc_stats.ast_tx_packets, 0, "packet sent on the interface");
7486 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_mgmt", CTLFLAG_RD,
7487 	    &sc->sc_stats.ast_tx_mgmt, 0, "management frames transmitted");
7488 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_discard", CTLFLAG_RD,
7489 	    &sc->sc_stats.ast_tx_discard, 0, "frames discarded prior to assoc");
7490 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_qstop", CTLFLAG_RD,
7491 	    &sc->sc_stats.ast_tx_qstop, 0, "output stopped 'cuz no buffer");
7492 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_encap", CTLFLAG_RD,
7493 	    &sc->sc_stats.ast_tx_encap, 0, "tx encapsulation failed");
7494 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_nonode", CTLFLAG_RD,
7495 	    &sc->sc_stats.ast_tx_nonode, 0, "tx failed 'cuz no node");
7496 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_nombuf", CTLFLAG_RD,
7497 	    &sc->sc_stats.ast_tx_nombuf, 0, "tx failed 'cuz no mbuf");
7498 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_nomcl", CTLFLAG_RD,
7499 	    &sc->sc_stats.ast_tx_nomcl, 0, "tx failed 'cuz no cluster");
7500 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_linear", CTLFLAG_RD,
7501 	    &sc->sc_stats.ast_tx_linear, 0, "tx linearized to cluster");
7502 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_nodata", CTLFLAG_RD,
7503 	    &sc->sc_stats.ast_tx_nodata, 0, "tx discarded empty frame");
7504 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_busdma", CTLFLAG_RD,
7505 	    &sc->sc_stats.ast_tx_busdma, 0, "tx failed for dma resrcs");
7506 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_xretries", CTLFLAG_RD,
7507 	    &sc->sc_stats.ast_tx_xretries, 0, "tx failed 'cuz too many retries");
7508 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_fifoerr", CTLFLAG_RD,
7509 	    &sc->sc_stats.ast_tx_fifoerr, 0, "tx failed 'cuz FIFO underrun");
7510 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_filtered", CTLFLAG_RD,
7511 	    &sc->sc_stats.ast_tx_filtered, 0, "tx failed 'cuz xmit filtered");
7512 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_shortretry", CTLFLAG_RD,
7513 	    &sc->sc_stats.ast_tx_shortretry, 0, "tx on-chip retries (short)");
7514 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_longretry", CTLFLAG_RD,
7515 	    &sc->sc_stats.ast_tx_longretry, 0, "tx on-chip retries (long)");
7516 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_badrate", CTLFLAG_RD,
7517 	    &sc->sc_stats.ast_tx_badrate, 0, "tx failed 'cuz bogus xmit rate");
7518 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_noack", CTLFLAG_RD,
7519 	    &sc->sc_stats.ast_tx_noack, 0, "tx frames with no ack marked");
7520 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_rts", CTLFLAG_RD,
7521 	    &sc->sc_stats.ast_tx_rts, 0, "tx frames with rts enabled");
7522 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_cts", CTLFLAG_RD,
7523 	    &sc->sc_stats.ast_tx_cts, 0, "tx frames with cts enabled");
7524 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_shortpre", CTLFLAG_RD,
7525 	    &sc->sc_stats.ast_tx_shortpre, 0, "tx frames with short preamble");
7526 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_altrate", CTLFLAG_RD,
7527 	    &sc->sc_stats.ast_tx_altrate, 0, "tx frames with alternate rate");
7528 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_protect", CTLFLAG_RD,
7529 	    &sc->sc_stats.ast_tx_protect, 0, "tx frames with protection");
7530 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_ctsburst", CTLFLAG_RD,
7531 	    &sc->sc_stats.ast_tx_ctsburst, 0, "tx frames with cts and bursting");
7532 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_ctsext", CTLFLAG_RD,
7533 	    &sc->sc_stats.ast_tx_ctsext, 0, "tx frames with cts extension");
7534 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_nombuf", CTLFLAG_RD,
7535 	    &sc->sc_stats.ast_rx_nombuf, 0, "rx setup failed 'cuz no mbuf");
7536 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_busdma", CTLFLAG_RD,
7537 	    &sc->sc_stats.ast_rx_busdma, 0, "rx setup failed for dma resrcs");
7538 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_orn", CTLFLAG_RD,
7539 	    &sc->sc_stats.ast_rx_orn, 0, "rx failed 'cuz of desc overrun");
7540 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_crcerr", CTLFLAG_RD,
7541 	    &sc->sc_stats.ast_rx_crcerr, 0, "rx failed 'cuz of bad CRC");
7542 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_fifoerr", CTLFLAG_RD,
7543 	    &sc->sc_stats.ast_rx_fifoerr, 0, "rx failed 'cuz of FIFO overrun");
7544 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_badcrypt", CTLFLAG_RD,
7545 	    &sc->sc_stats.ast_rx_badcrypt, 0, "rx failed 'cuz decryption");
7546 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_badmic", CTLFLAG_RD,
7547 	    &sc->sc_stats.ast_rx_badmic, 0, "rx failed 'cuz MIC failure");
7548 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_phyerr", CTLFLAG_RD,
7549 	    &sc->sc_stats.ast_rx_phyerr, 0, "rx failed 'cuz of PHY err");
7550 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_tooshort", CTLFLAG_RD,
7551 	    &sc->sc_stats.ast_rx_tooshort, 0, "rx discarded 'cuz frame too short");
7552 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_toobig", CTLFLAG_RD,
7553 	    &sc->sc_stats.ast_rx_toobig, 0, "rx discarded 'cuz frame too large");
7554 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_packets", CTLFLAG_RD,
7555 	    &sc->sc_stats.ast_rx_packets, 0, "packet recv on the interface");
7556 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_mgt", CTLFLAG_RD,
7557 	    &sc->sc_stats.ast_rx_mgt, 0, "management frames received");
7558 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_ctl", CTLFLAG_RD,
7559 	    &sc->sc_stats.ast_rx_ctl, 0, "rx discarded 'cuz ctl frame");
7560 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_be_xmit", CTLFLAG_RD,
7561 	    &sc->sc_stats.ast_be_xmit, 0, "beacons transmitted");
7562 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_be_nombuf", CTLFLAG_RD,
7563 	    &sc->sc_stats.ast_be_nombuf, 0, "beacon setup failed 'cuz no mbuf");
7564 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_per_cal", CTLFLAG_RD,
7565 	    &sc->sc_stats.ast_per_cal, 0, "periodic calibration calls");
7566 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_per_calfail", CTLFLAG_RD,
7567 	    &sc->sc_stats.ast_per_calfail, 0, "periodic calibration failed");
7568 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_per_rfgain", CTLFLAG_RD,
7569 	    &sc->sc_stats.ast_per_rfgain, 0, "periodic calibration rfgain reset");
7570 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rate_calls", CTLFLAG_RD,
7571 	    &sc->sc_stats.ast_rate_calls, 0, "rate control checks");
7572 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rate_raise", CTLFLAG_RD,
7573 	    &sc->sc_stats.ast_rate_raise, 0, "rate control raised xmit rate");
7574 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rate_drop", CTLFLAG_RD,
7575 	    &sc->sc_stats.ast_rate_drop, 0, "rate control dropped xmit rate");
7576 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_ant_defswitch", CTLFLAG_RD,
7577 	    &sc->sc_stats.ast_ant_defswitch, 0, "rx/default antenna switches");
7578 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_ant_txswitch", CTLFLAG_RD,
7579 	    &sc->sc_stats.ast_ant_txswitch, 0, "tx antenna switches");
7580 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_cabq_xmit", CTLFLAG_RD,
7581 	    &sc->sc_stats.ast_cabq_xmit, 0, "cabq frames transmitted");
7582 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_cabq_busy", CTLFLAG_RD,
7583 	    &sc->sc_stats.ast_cabq_busy, 0, "cabq found busy");
7584 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_raw", CTLFLAG_RD,
7585 	    &sc->sc_stats.ast_tx_raw, 0, "tx frames through raw api");
7586 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_ff_txok", CTLFLAG_RD,
7587 	    &sc->sc_stats.ast_ff_txok, 0, "fast frames tx'd successfully");
7588 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_ff_txerr", CTLFLAG_RD,
7589 	    &sc->sc_stats.ast_ff_txerr, 0, "fast frames tx'd w/ error");
7590 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_ff_rx", CTLFLAG_RD,
7591 	    &sc->sc_stats.ast_ff_rx, 0, "fast frames rx'd");
7592 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_ff_flush", CTLFLAG_RD,
7593 	    &sc->sc_stats.ast_ff_flush, 0, "fast frames flushed from staging q");
7594 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_qfull", CTLFLAG_RD,
7595 	    &sc->sc_stats.ast_tx_qfull, 0, "tx dropped 'cuz of queue limit");
7596 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_nobuf", CTLFLAG_RD,
7597 	    &sc->sc_stats.ast_tx_nobuf, 0, "tx dropped 'cuz no ath buffer");
7598 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tdma_update", CTLFLAG_RD,
7599 	    &sc->sc_stats.ast_tdma_update, 0, "TDMA slot timing updates");
7600 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tdma_timers", CTLFLAG_RD,
7601 	    &sc->sc_stats.ast_tdma_timers, 0, "TDMA slot update set beacon timers");
7602 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tdma_tsf", CTLFLAG_RD,
7603 	    &sc->sc_stats.ast_tdma_tsf, 0, "TDMA slot update set TSF");
7604 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tdma_ack", CTLFLAG_RD,
7605 	    &sc->sc_stats.ast_tdma_ack, 0, "TDMA tx failed 'cuz ACK required");
7606 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_raw_fail", CTLFLAG_RD,
7607 	    &sc->sc_stats.ast_tx_raw_fail, 0, "raw tx failed 'cuz h/w down");
7608 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_nofrag", CTLFLAG_RD,
7609 	    &sc->sc_stats.ast_tx_nofrag, 0, "tx dropped 'cuz no ath frag buffer");
7610 #if 0
7611 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_be_missed", CTLFLAG_RD,
7612 	    &sc->sc_stats.ast_be_missed, 0, "number of -missed- beacons");
7613 #endif
7614 }
7615