xref: /dragonfly/sys/dev/netif/ath/ath/if_ath.c (revision f2c43266)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #define CTLFLAG_RWTUN	CTLFLAG_RW
34 
35 /*
36  * Driver for the Atheros Wireless LAN controller.
37  *
38  * This software is derived from work of Atsushi Onoe; his contribution
39  * is greatly appreciated.
40  */
41 
42 #include "opt_inet.h"
43 #include "opt_ath.h"
44 /*
45  * This is needed for register operations which are performed
46  * by the driver - eg, calls to ath_hal_gettsf32().
47  *
48  * It's also required for any AH_DEBUG checks in here, eg the
49  * module dependencies.
50  */
51 #include "opt_ah.h"
52 #include "opt_wlan.h"
53 
54 #include <sys/param.h>
55 #include <sys/systm.h>
56 #include <sys/sysctl.h>
57 #include <sys/mbuf.h>
58 #include <sys/malloc.h>
59 #include <sys/lock.h>
60 #include <sys/mutex.h>
61 #include <sys/kernel.h>
62 #include <sys/socket.h>
63 #include <sys/sockio.h>
64 #include <sys/errno.h>
65 #include <sys/callout.h>
66 #include <sys/bus.h>
67 #include <sys/endian.h>
68 #include <sys/kthread.h>
69 #include <sys/taskqueue.h>
70 #include <sys/priv.h>
71 #include <sys/module.h>
72 #include <sys/ktr.h>
73 
74 #include <net/if.h>
75 #include <net/if_var.h>
76 #include <net/if_dl.h>
77 #include <net/if_media.h>
78 #include <net/if_types.h>
79 #include <net/if_arp.h>
80 #include <net/ethernet.h>
81 #include <net/if_llc.h>
82 #include <net/ifq_var.h>
83 
84 #include <netproto/802_11/ieee80211_var.h>
85 #include <netproto/802_11/ieee80211_regdomain.h>
86 #ifdef IEEE80211_SUPPORT_SUPERG
87 #include <netproto/802_11/ieee80211_superg.h>
88 #endif
89 #ifdef IEEE80211_SUPPORT_TDMA
90 #include <netproto/802_11/ieee80211_tdma.h>
91 #endif
92 
93 #include <net/bpf.h>
94 
95 #ifdef INET
96 #include <netinet/in.h>
97 #include <netinet/if_ether.h>
98 #endif
99 
100 #include <dev/netif/ath/ath/if_athvar.h>
101 #include <dev/netif/ath/ath_hal/ah_devid.h>		/* XXX for softled */
102 #include <dev/netif/ath/ath_hal/ah_diagcodes.h>
103 
104 #include <dev/netif/ath/ath/if_ath_debug.h>
105 #include <dev/netif/ath/ath/if_ath_misc.h>
106 #include <dev/netif/ath/ath/if_ath_tsf.h>
107 #include <dev/netif/ath/ath/if_ath_tx.h>
108 #include <dev/netif/ath/ath/if_ath_sysctl.h>
109 #include <dev/netif/ath/ath/if_ath_led.h>
110 #include <dev/netif/ath/ath/if_ath_keycache.h>
111 #include <dev/netif/ath/ath/if_ath_rx.h>
112 #include <dev/netif/ath/ath/if_ath_rx_edma.h>
113 #include <dev/netif/ath/ath/if_ath_tx_edma.h>
114 #include <dev/netif/ath/ath/if_ath_beacon.h>
115 #include <dev/netif/ath/ath/if_ath_btcoex.h>
116 #include <dev/netif/ath/ath/if_ath_spectral.h>
117 #include <dev/netif/ath/ath/if_ath_lna_div.h>
118 #include <dev/netif/ath/ath/if_athdfs.h>
119 
120 #ifdef ATH_TX99_DIAG
121 #include <dev/netif/ath/ath/ath_tx99/ath_tx99.h>
122 #endif
123 
124 #ifdef	ATH_DEBUG_ALQ
125 #include <dev/netif/ath/ath/if_ath_alq.h>
126 #endif
127 
128 /*
129  * Only enable this if you're working on PS-POLL support.
130  */
131 #define	ATH_SW_PSQ
132 
133 /*
134  * ATH_BCBUF determines the number of vap's that can transmit
135  * beacons and also (currently) the number of vap's that can
136  * have unique mac addresses/bssid.  When staggering beacons
137  * 4 is probably a good max as otherwise the beacons become
138  * very closely spaced and there is limited time for cab q traffic
139  * to go out.  You can burst beacons instead but that is not good
140  * for stations in power save and at some point you really want
141  * another radio (and channel).
142  *
143  * The limit on the number of mac addresses is tied to our use of
144  * the U/L bit and tracking addresses in a byte; it would be
145  * worthwhile to allow more for applications like proxy sta.
146  */
147 CTASSERT(ATH_BCBUF <= 8);
148 
149 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
150 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
151 		    const uint8_t [IEEE80211_ADDR_LEN],
152 		    const uint8_t [IEEE80211_ADDR_LEN]);
153 static void	ath_vap_delete(struct ieee80211vap *);
154 static void	ath_init(void *);
155 static void	ath_stop_locked(struct ifnet *);
156 static void	ath_stop(struct ifnet *);
157 static int	ath_reset_vap(struct ieee80211vap *, u_long);
158 static int	ath_transmit(struct ifnet *ifp, struct mbuf *m);
159 #if !defined(__DragonFly__)
160 static void	ath_qflush(struct ifnet *ifp);
161 #endif
162 static int	ath_media_change(struct ifnet *);
163 static void	ath_watchdog(void *);
164 #if defined(__DragonFly__)
165 static int	ath_ioctl(struct ifnet *, u_long, caddr_t, struct ucred * __unused);
166 #else
167 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
168 #endif
169 static void	ath_fatal_proc(void *, int);
170 static void	ath_bmiss_vap(struct ieee80211vap *);
171 static void	ath_bmiss_proc(void *, int);
172 static void	ath_key_update_begin(struct ieee80211vap *);
173 static void	ath_key_update_end(struct ieee80211vap *);
174 static void	ath_update_mcast_hw(struct ath_softc *);
175 static void	ath_update_mcast(struct ieee80211com *);
176 static void	ath_update_promisc(struct ieee80211com *);
177 static void	ath_updateslot(struct ieee80211com *);
178 static void	ath_bstuck_proc(void *, int);
179 static void	ath_reset_proc(void *, int);
180 static int	ath_desc_alloc(struct ath_softc *);
181 static void	ath_desc_free(struct ath_softc *);
182 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
183 			const uint8_t [IEEE80211_ADDR_LEN]);
184 static void	ath_node_cleanup(struct ieee80211_node *);
185 static void	ath_node_free(struct ieee80211_node *);
186 static void	ath_node_getsignal(const struct ieee80211_node *,
187 			int8_t *, int8_t *);
188 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
189 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
190 static int	ath_tx_setup(struct ath_softc *, int, int);
191 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
192 static void	ath_tx_cleanup(struct ath_softc *);
193 static int	ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq,
194 		    int dosched);
195 static void	ath_tx_proc_q0(void *, int);
196 static void	ath_tx_proc_q0123(void *, int);
197 static void	ath_tx_proc(void *, int);
198 static void	ath_txq_sched_tasklet(void *, int);
199 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
200 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
201 static void	ath_scan_start(struct ieee80211com *);
202 static void	ath_scan_end(struct ieee80211com *);
203 static void	ath_set_channel(struct ieee80211com *);
204 #ifdef	ATH_ENABLE_11N
205 static void	ath_update_chw(struct ieee80211com *);
206 #endif	/* ATH_ENABLE_11N */
207 static void	ath_calibrate(void *);
208 static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
209 static void	ath_setup_stationkey(struct ieee80211_node *);
210 static void	ath_newassoc(struct ieee80211_node *, int);
211 static int	ath_setregdomain(struct ieee80211com *,
212 		    struct ieee80211_regdomain *, int,
213 		    struct ieee80211_channel []);
214 static void	ath_getradiocaps(struct ieee80211com *, int, int *,
215 		    struct ieee80211_channel []);
216 static int	ath_getchannels(struct ath_softc *);
217 
218 static int	ath_rate_setup(struct ath_softc *, u_int mode);
219 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
220 
221 static void	ath_announce(struct ath_softc *);
222 
223 static void	ath_dfs_tasklet(void *, int);
224 static void	ath_node_powersave(struct ieee80211_node *, int);
225 static int	ath_node_set_tim(struct ieee80211_node *, int);
226 static void	ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *);
227 
228 #if defined(__DragonFly__)
229 static void	ath_start(struct ifnet *ifp, struct ifaltq_subque *ifsq);
230 #endif
231 
232 #ifdef IEEE80211_SUPPORT_TDMA
233 #include <dev/netif/ath/ath/if_ath_tdma.h>
234 #endif
235 
236 extern	const char* ath_hal_ether_sprintf(const u_int8_t *mac);
237 
238 SYSCTL_DECL(_hw_ath);
239 
240 /* XXX validate sysctl values */
241 static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
242 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
243 	    0, "long chip calibration interval (secs)");
244 static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
245 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
246 	    0, "short chip calibration interval (msecs)");
247 static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
248 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
249 	    0, "reset chip calibration results (secs)");
250 static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
251 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
252 	    0, "ANI calibration (msecs)");
253 
254 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
255 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &ath_rxbuf,
256 	    0, "rx buffers allocated");
257 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
258 
259 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
260 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RWTUN, &ath_txbuf,
261 	    0, "tx buffers allocated");
262 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
263 
264 int ath_txbuf_mgmt = ATH_MGMT_TXBUF;	/* # mgmt tx buffers to allocate */
265 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RWTUN, &ath_txbuf_mgmt,
266 	    0, "tx (mgmt) buffers allocated");
267 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt);
268 
269 int ath_bstuck_threshold = 4;		/* max missed beacons */
270 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
271 	    0, "max missed beacon xmits before chip reset");
272 
273 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
274 
275 void
276 ath_legacy_attach_comp_func(struct ath_softc *sc)
277 {
278 
279 	/*
280 	 * Special case certain configurations.  Note the
281 	 * CAB queue is handled by these specially so don't
282 	 * include them when checking the txq setup mask.
283 	 */
284 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
285 	case 0x01:
286 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
287 		break;
288 	case 0x0f:
289 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
290 		break;
291 	default:
292 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
293 		break;
294 	}
295 }
296 
297 /*
298  * Set the target power mode.
299  *
300  * If this is called during a point in time where
301  * the hardware is being programmed elsewhere, it will
302  * simply store it away and update it when all current
303  * uses of the hardware are completed.
304  */
305 void
306 _ath_power_setpower(struct ath_softc *sc, int power_state, const char *file, int line)
307 {
308 	ATH_LOCK_ASSERT(sc);
309 
310 	sc->sc_target_powerstate = power_state;
311 
312 	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
313 	    __func__,
314 	    file,
315 	    line,
316 	    power_state,
317 	    sc->sc_powersave_refcnt);
318 
319 	if (sc->sc_powersave_refcnt == 0 &&
320 	    power_state != sc->sc_cur_powerstate) {
321 		sc->sc_cur_powerstate = power_state;
322 		ath_hal_setpower(sc->sc_ah, power_state);
323 
324 		/*
325 		 * If the NIC is force-awake, then set the
326 		 * self-gen frame state appropriately.
327 		 *
328 		 * If the nic is in network sleep or full-sleep,
329 		 * we let the above call leave the self-gen
330 		 * state as "sleep".
331 		 */
332 		if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
333 		    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
334 			ath_hal_setselfgenpower(sc->sc_ah,
335 			    sc->sc_target_selfgen_state);
336 		}
337 	}
338 }
339 
340 /*
341  * Set the current self-generated frames state.
342  *
343  * This is separate from the target power mode.  The chip may be
344  * awake but the desired state is "sleep", so frames sent to the
345  * destination has PWRMGT=1 in the 802.11 header.  The NIC also
346  * needs to know to set PWRMGT=1 in self-generated frames.
347  */
348 void
349 _ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line)
350 {
351 
352 	ATH_LOCK_ASSERT(sc);
353 
354 	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
355 	    __func__,
356 	    file,
357 	    line,
358 	    power_state,
359 	    sc->sc_target_selfgen_state);
360 
361 	sc->sc_target_selfgen_state = power_state;
362 
363 	/*
364 	 * If the NIC is force-awake, then set the power state.
365 	 * Network-state and full-sleep will already transition it to
366 	 * mark self-gen frames as sleeping - and we can't
367 	 * guarantee the NIC is awake to program the self-gen frame
368 	 * setting anyway.
369 	 */
370 	if (sc->sc_cur_powerstate == HAL_PM_AWAKE) {
371 		ath_hal_setselfgenpower(sc->sc_ah, power_state);
372 	}
373 }
374 
375 /*
376  * Set the hardware power mode and take a reference.
377  *
378  * This doesn't update the target power mode in the driver;
379  * it just updates the hardware power state.
380  *
381  * XXX it should only ever force the hardware awake; it should
382  * never be called to set it asleep.
383  */
384 void
385 _ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line)
386 {
387 	ATH_LOCK_ASSERT(sc);
388 
389 	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
390 	    __func__,
391 	    file,
392 	    line,
393 	    power_state,
394 	    sc->sc_powersave_refcnt);
395 
396 	sc->sc_powersave_refcnt++;
397 
398 	if (power_state != sc->sc_cur_powerstate) {
399 		ath_hal_setpower(sc->sc_ah, power_state);
400 		sc->sc_cur_powerstate = power_state;
401 
402 		/*
403 		 * Adjust the self-gen powerstate if appropriate.
404 		 */
405 		if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
406 		    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
407 			ath_hal_setselfgenpower(sc->sc_ah,
408 			    sc->sc_target_selfgen_state);
409 		}
410 
411 	}
412 }
413 
414 /*
415  * Restore the power save mode to what it once was.
416  *
417  * This will decrement the reference counter and once it hits
418  * zero, it'll restore the powersave state.
419  */
420 void
421 _ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line)
422 {
423 
424 	ATH_LOCK_ASSERT(sc);
425 
426 	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n",
427 	    __func__,
428 	    file,
429 	    line,
430 	    sc->sc_powersave_refcnt,
431 	    sc->sc_target_powerstate);
432 
433 	if (sc->sc_powersave_refcnt == 0)
434 		device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__);
435 	else
436 		sc->sc_powersave_refcnt--;
437 
438 	if (sc->sc_powersave_refcnt == 0 &&
439 	    sc->sc_target_powerstate != sc->sc_cur_powerstate) {
440 		sc->sc_cur_powerstate = sc->sc_target_powerstate;
441 		ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate);
442 	}
443 
444 	/*
445 	 * Adjust the self-gen powerstate if appropriate.
446 	 */
447 	if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
448 	    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
449 		ath_hal_setselfgenpower(sc->sc_ah,
450 		    sc->sc_target_selfgen_state);
451 	}
452 
453 }
454 
455 /*
456  * Configure the initial HAL configuration values based on bus
457  * specific parameters.
458  *
459  * Some PCI IDs and other information may need tweaking.
460  *
461  * XXX TODO: ath9k and the Atheros HAL only program comm2g_switch_enable
462  * if BT antenna diversity isn't enabled.
463  *
464  * So, let's also figure out how to enable BT diversity for AR9485.
465  */
466 static void
467 ath_setup_hal_config(struct ath_softc *sc, HAL_OPS_CONFIG *ah_config)
468 {
469 	/* XXX TODO: only for PCI devices? */
470 
471 	if (sc->sc_pci_devinfo & (ATH_PCI_CUS198 | ATH_PCI_CUS230)) {
472 		ah_config->ath_hal_ext_lna_ctl_gpio = 0x200; /* bit 9 */
473 		ah_config->ath_hal_ext_atten_margin_cfg = AH_TRUE;
474 		ah_config->ath_hal_min_gainidx = AH_TRUE;
475 		ah_config->ath_hal_ant_ctrl_comm2g_switch_enable = 0x000bbb88;
476 		/* XXX low_rssi_thresh */
477 		/* XXX fast_div_bias */
478 		device_printf(sc->sc_dev, "configuring for %s\n",
479 		    (sc->sc_pci_devinfo & ATH_PCI_CUS198) ?
480 		    "CUS198" : "CUS230");
481 	}
482 
483 	if (sc->sc_pci_devinfo & ATH_PCI_CUS217)
484 		device_printf(sc->sc_dev, "CUS217 card detected\n");
485 
486 	if (sc->sc_pci_devinfo & ATH_PCI_CUS252)
487 		device_printf(sc->sc_dev, "CUS252 card detected\n");
488 
489 	if (sc->sc_pci_devinfo & ATH_PCI_AR9565_1ANT)
490 		device_printf(sc->sc_dev, "WB335 1-ANT card detected\n");
491 
492 	if (sc->sc_pci_devinfo & ATH_PCI_AR9565_2ANT)
493 		device_printf(sc->sc_dev, "WB335 2-ANT card detected\n");
494 
495 	if (sc->sc_pci_devinfo & ATH_PCI_KILLER)
496 		device_printf(sc->sc_dev, "Killer Wireless card detected\n");
497 
498 #if 0
499         /*
500          * Some WB335 cards do not support antenna diversity. Since
501          * we use a hardcoded value for AR9565 instead of using the
502          * EEPROM/OTP data, remove the combining feature from
503          * the HW capabilities bitmap.
504          */
505         if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) {
506                 if (!(sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV))
507                         pCap->hw_caps &= ~ATH9K_HW_CAP_ANT_DIV_COMB;
508         }
509 
510         if (sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV) {
511                 pCap->hw_caps |= ATH9K_HW_CAP_BT_ANT_DIV;
512                 device_printf(sc->sc_dev, "Set BT/WLAN RX diversity capability\n");
513         }
514 #endif
515 
516         if (sc->sc_pci_devinfo & ATH_PCI_D3_L1_WAR) {
517                 ah_config->ath_hal_pcie_waen = 0x0040473b;
518                 device_printf(sc->sc_dev, "Enable WAR for ASPM D3/L1\n");
519         }
520 
521 #if 0
522         if (sc->sc_pci_devinfo & ATH9K_PCI_NO_PLL_PWRSAVE) {
523                 ah->config.no_pll_pwrsave = true;
524                 device_printf(sc->sc_dev, "Disable PLL PowerSave\n");
525         }
526 #endif
527 
528 }
529 
530 #define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
531 #define	HAL_MODE_HT40 \
532 	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
533 	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
534 int
535 ath_attach(u_int16_t devid, struct ath_softc *sc)
536 {
537 	struct ifnet *ifp;
538 	struct ieee80211com *ic;
539 	struct ath_hal *ah = NULL;
540 	HAL_STATUS status;
541 	int error = 0, i;
542 	u_int wmodes;
543 	uint8_t macaddr[IEEE80211_ADDR_LEN];
544 	int rx_chainmask, tx_chainmask;
545 	HAL_OPS_CONFIG ah_config;
546 
547 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
548 
549 	wlan_serialize_enter();
550 	CURVNET_SET(vnet0);
551 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
552 	if (ifp == NULL) {
553 		device_printf(sc->sc_dev, "can not if_alloc()\n");
554 		error = ENOSPC;
555 		CURVNET_RESTORE();
556 		goto bad;
557 	}
558 	ic = ifp->if_l2com;
559 	ic->ic_softc = sc;
560 	ic->ic_name = device_get_nameunit(sc->sc_dev);
561 
562 	/* set these up early for if_printf use */
563 	if_initname(ifp, device_get_name(sc->sc_dev),
564 		device_get_unit(sc->sc_dev));
565 	CURVNET_RESTORE();
566 
567 	/*
568 	 * Configure the initial configuration data.
569 	 *
570 	 * This is stuff that may be needed early during attach
571 	 * rather than done via configuration calls later.
572 	 */
573 	bzero(&ah_config, sizeof(ah_config));
574 	ath_setup_hal_config(sc, &ah_config);
575 
576 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
577 	    sc->sc_eepromdata, &ah_config, &status);
578 	if (ah == NULL) {
579 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
580 			status);
581 		error = ENXIO;
582 		goto bad;
583 	}
584 	sc->sc_ah = ah;
585 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
586 #ifdef	ATH_DEBUG
587 	sc->sc_debug = ath_debug;
588 #endif
589 
590 	/*
591 	 * Setup the DMA/EDMA functions based on the current
592 	 * hardware support.
593 	 *
594 	 * This is required before the descriptors are allocated.
595 	 */
596 	if (ath_hal_hasedma(sc->sc_ah)) {
597 		sc->sc_isedma = 1;
598 		ath_recv_setup_edma(sc);
599 		ath_xmit_setup_edma(sc);
600 	} else {
601 		ath_recv_setup_legacy(sc);
602 		ath_xmit_setup_legacy(sc);
603 	}
604 
605 	if (ath_hal_hasmybeacon(sc->sc_ah)) {
606 		sc->sc_do_mybeacon = 1;
607 	}
608 
609 	/*
610 	 * Check if the MAC has multi-rate retry support.
611 	 * We do this by trying to setup a fake extended
612 	 * descriptor.  MAC's that don't have support will
613 	 * return false w/o doing anything.  MAC's that do
614 	 * support it will return true w/o doing anything.
615 	 */
616 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
617 
618 	/*
619 	 * Check if the device has hardware counters for PHY
620 	 * errors.  If so we need to enable the MIB interrupt
621 	 * so we can act on stat triggers.
622 	 */
623 	if (ath_hal_hwphycounters(ah))
624 		sc->sc_needmib = 1;
625 
626 	/*
627 	 * Get the hardware key cache size.
628 	 */
629 	sc->sc_keymax = ath_hal_keycachesize(ah);
630 	if (sc->sc_keymax > ATH_KEYMAX) {
631 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
632 			ATH_KEYMAX, sc->sc_keymax);
633 		sc->sc_keymax = ATH_KEYMAX;
634 	}
635 	/*
636 	 * Reset the key cache since some parts do not
637 	 * reset the contents on initial power up.
638 	 */
639 	for (i = 0; i < sc->sc_keymax; i++)
640 		ath_hal_keyreset(ah, i);
641 
642 	/*
643 	 * Collect the default channel list.
644 	 */
645 	error = ath_getchannels(sc);
646 	if (error != 0)
647 		goto bad;
648 
649 	/*
650 	 * Setup rate tables for all potential media types.
651 	 */
652 	ath_rate_setup(sc, IEEE80211_MODE_11A);
653 	ath_rate_setup(sc, IEEE80211_MODE_11B);
654 	ath_rate_setup(sc, IEEE80211_MODE_11G);
655 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
656 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
657 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
658 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
659 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
660 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
661 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
662 
663 	/* NB: setup here so ath_rate_update is happy */
664 	ath_setcurmode(sc, IEEE80211_MODE_11A);
665 
666 	/*
667 	 * Allocate TX descriptors and populate the lists.
668 	 */
669 	error = ath_desc_alloc(sc);
670 	if (error != 0) {
671 		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
672 		    error);
673 		goto bad;
674 	}
675 	error = ath_txdma_setup(sc);
676 	if (error != 0) {
677 		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
678 		    error);
679 		goto bad;
680 	}
681 
682 	/*
683 	 * Allocate RX descriptors and populate the lists.
684 	 */
685 	error = ath_rxdma_setup(sc);
686 	if (error != 0) {
687 		if_printf(ifp, "failed to allocate RX descriptors: %d\n",
688 		    error);
689 		goto bad;
690 	}
691 
692 	callout_init_lk(&sc->sc_cal_ch, &sc->sc_mtx);
693 	callout_init_lk(&sc->sc_wd_ch, &sc->sc_mtx);
694 
695 	ATH_TXBUF_LOCK_INIT(sc);
696 
697 	sc->sc_tq = taskqueue_create("ath_taskq", M_INTWAIT,
698 		taskqueue_thread_enqueue, &sc->sc_tq);
699 	taskqueue_start_threads(&sc->sc_tq, 1, TDPRI_KERN_DAEMON, -1,
700 		"%s taskq", ifp->if_xname);
701 
702 	TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc);
703 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
704 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
705 	TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
706 	TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc);
707 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
708 
709 	/*
710 	 * Allocate hardware transmit queues: one queue for
711 	 * beacon frames and one data queue for each QoS
712 	 * priority.  Note that the hal handles resetting
713 	 * these queues at the needed time.
714 	 *
715 	 * XXX PS-Poll
716 	 */
717 	sc->sc_bhalq = ath_beaconq_setup(sc);
718 	if (sc->sc_bhalq == (u_int) -1) {
719 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
720 		error = EIO;
721 		goto bad2;
722 	}
723 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
724 	if (sc->sc_cabq == NULL) {
725 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
726 		error = EIO;
727 		goto bad2;
728 	}
729 	/* NB: insure BK queue is the lowest priority h/w queue */
730 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
731 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
732 			ieee80211_wme_acnames[WME_AC_BK]);
733 		error = EIO;
734 		goto bad2;
735 	}
736 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
737 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
738 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
739 		/*
740 		 * Not enough hardware tx queues to properly do WME;
741 		 * just punt and assign them all to the same h/w queue.
742 		 * We could do a better job of this if, for example,
743 		 * we allocate queues when we switch from station to
744 		 * AP mode.
745 		 */
746 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
747 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
748 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
749 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
750 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
751 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
752 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
753 	}
754 
755 	/*
756 	 * Attach the TX completion function.
757 	 *
758 	 * The non-EDMA chips may have some special case optimisations;
759 	 * this method gives everyone a chance to attach cleanly.
760 	 */
761 	sc->sc_tx.xmit_attach_comp_func(sc);
762 
763 	/*
764 	 * Setup rate control.  Some rate control modules
765 	 * call back to change the anntena state so expose
766 	 * the necessary entry points.
767 	 * XXX maybe belongs in struct ath_ratectrl?
768 	 */
769 	sc->sc_setdefantenna = ath_setdefantenna;
770 	sc->sc_rc = ath_rate_attach(sc);
771 	if (sc->sc_rc == NULL) {
772 		error = EIO;
773 		goto bad2;
774 	}
775 
776 	/* Attach DFS module */
777 	if (! ath_dfs_attach(sc)) {
778 		device_printf(sc->sc_dev,
779 		    "%s: unable to attach DFS\n", __func__);
780 		error = EIO;
781 		goto bad2;
782 	}
783 
784 	/* Attach spectral module */
785 	if (ath_spectral_attach(sc) < 0) {
786 		device_printf(sc->sc_dev,
787 		    "%s: unable to attach spectral\n", __func__);
788 		error = EIO;
789 		goto bad2;
790 	}
791 
792 	/* Attach bluetooth coexistence module */
793 	if (ath_btcoex_attach(sc) < 0) {
794 		device_printf(sc->sc_dev,
795 		    "%s: unable to attach bluetooth coexistence\n", __func__);
796 		error = EIO;
797 		goto bad2;
798 	}
799 
800 	/* Attach LNA diversity module */
801 	if (ath_lna_div_attach(sc) < 0) {
802 		device_printf(sc->sc_dev,
803 		    "%s: unable to attach LNA diversity\n", __func__);
804 		error = EIO;
805 		goto bad2;
806 	}
807 
808 	/* Start DFS processing tasklet */
809 	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
810 
811 	/* Configure LED state */
812 	sc->sc_blinking = 0;
813 	sc->sc_ledstate = 1;
814 	sc->sc_ledon = 0;			/* low true */
815 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
816 	callout_init_mp(&sc->sc_ledtimer);
817 
818 	/*
819 	 * Don't setup hardware-based blinking.
820 	 *
821 	 * Although some NICs may have this configured in the
822 	 * default reset register values, the user may wish
823 	 * to alter which pins have which function.
824 	 *
825 	 * The reference driver attaches the MAC network LED to GPIO1 and
826 	 * the MAC power LED to GPIO2.  However, the DWA-552 cardbus
827 	 * NIC has these reversed.
828 	 */
829 	sc->sc_hardled = (1 == 0);
830 	sc->sc_led_net_pin = -1;
831 	sc->sc_led_pwr_pin = -1;
832 	/*
833 	 * Auto-enable soft led processing for IBM cards and for
834 	 * 5211 minipci cards.  Users can also manually enable/disable
835 	 * support with a sysctl.
836 	 */
837 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
838 	ath_led_config(sc);
839 	ath_hal_setledstate(ah, HAL_LED_INIT);
840 
841 	ifp->if_softc = sc;
842 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
843 #if defined(__DragonFly__)
844 	ifp->if_start = ath_start;
845 #else
846 	ifp->if_transmit = ath_transmit;
847 	ifp->if_qflush = ath_qflush;
848 #endif
849 	ifp->if_ioctl = ath_ioctl;
850 	ifp->if_init = ath_init;
851 #if defined(__DragonFly__)
852 	if (sc->sc_isedma)
853 		ifp->if_nmbjclusters = ath_rxbuf;
854 	else
855 		ifp->if_nmbclusters = ath_rxbuf;
856 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
857 #else
858 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
859 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
860 	IFQ_SET_READY(&ifp->if_snd);
861 #endif
862 
863 	ic->ic_ifp = ifp;
864 	/* XXX not right but it's not used anywhere important */
865 	ic->ic_phytype = IEEE80211_T_OFDM;
866 	ic->ic_opmode = IEEE80211_M_STA;
867 	ic->ic_caps =
868 		  IEEE80211_C_STA		/* station mode */
869 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
870 		| IEEE80211_C_HOSTAP		/* hostap mode */
871 		| IEEE80211_C_MONITOR		/* monitor mode */
872 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
873 		| IEEE80211_C_WDS		/* 4-address traffic works */
874 		| IEEE80211_C_MBSS		/* mesh point link mode */
875 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
876 		| IEEE80211_C_SHSLOT		/* short slot time supported */
877 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
878 #ifndef	ATH_ENABLE_11N
879 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
880 #endif
881 		| IEEE80211_C_TXFRAG		/* handle tx frags */
882 #ifdef	ATH_ENABLE_DFS
883 		| IEEE80211_C_DFS		/* Enable radar detection */
884 #endif
885 		| IEEE80211_C_PMGT		/* Station side power mgmt */
886 		| IEEE80211_C_SWSLEEP
887 		;
888 	/*
889 	 * Query the hal to figure out h/w crypto support.
890 	 */
891 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
892 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
893 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
894 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
895 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
896 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
897 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
898 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
899 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
900 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
901 		/*
902 		 * Check if h/w does the MIC and/or whether the
903 		 * separate key cache entries are required to
904 		 * handle both tx+rx MIC keys.
905 		 */
906 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
907 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
908 		/*
909 		 * If the h/w supports storing tx+rx MIC keys
910 		 * in one cache slot automatically enable use.
911 		 */
912 		if (ath_hal_hastkipsplit(ah) ||
913 		    !ath_hal_settkipsplit(ah, AH_FALSE))
914 			sc->sc_splitmic = 1;
915 		/*
916 		 * If the h/w can do TKIP MIC together with WME then
917 		 * we use it; otherwise we force the MIC to be done
918 		 * in software by the net80211 layer.
919 		 */
920 		if (ath_hal_haswmetkipmic(ah))
921 			sc->sc_wmetkipmic = 1;
922 	}
923 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
924 	/*
925 	 * Check for multicast key search support.
926 	 */
927 	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
928 	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
929 		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
930 	}
931 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
932 	/*
933 	 * Mark key cache slots associated with global keys
934 	 * as in use.  If we knew TKIP was not to be used we
935 	 * could leave the +32, +64, and +32+64 slots free.
936 	 */
937 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
938 		setbit(sc->sc_keymap, i);
939 		setbit(sc->sc_keymap, i+64);
940 		if (sc->sc_splitmic) {
941 			setbit(sc->sc_keymap, i+32);
942 			setbit(sc->sc_keymap, i+32+64);
943 		}
944 	}
945 	/*
946 	 * TPC support can be done either with a global cap or
947 	 * per-packet support.  The latter is not available on
948 	 * all parts.  We're a bit pedantic here as all parts
949 	 * support a global cap.
950 	 */
951 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
952 		ic->ic_caps |= IEEE80211_C_TXPMGT;
953 
954 	/*
955 	 * Mark WME capability only if we have sufficient
956 	 * hardware queues to do proper priority scheduling.
957 	 */
958 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
959 		ic->ic_caps |= IEEE80211_C_WME;
960 	/*
961 	 * Check for misc other capabilities.
962 	 */
963 	if (ath_hal_hasbursting(ah))
964 		ic->ic_caps |= IEEE80211_C_BURST;
965 	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
966 	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
967 	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
968 	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
969 	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
970 	sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah);
971 	sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah);
972 	sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah);
973 
974 	if (ath_hal_hasfastframes(ah))
975 		ic->ic_caps |= IEEE80211_C_FF;
976 	wmodes = ath_hal_getwirelessmodes(ah);
977 	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
978 		ic->ic_caps |= IEEE80211_C_TURBOP;
979 #ifdef IEEE80211_SUPPORT_TDMA
980 	if (ath_hal_macversion(ah) > 0x78) {
981 		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
982 		ic->ic_tdma_update = ath_tdma_update;
983 	}
984 #endif
985 
986 	/*
987 	 * TODO: enforce that at least this many frames are available
988 	 * in the txbuf list before allowing data frames (raw or
989 	 * otherwise) to be transmitted.
990 	 */
991 	sc->sc_txq_data_minfree = 10;
992 	/*
993 	 * Leave this as default to maintain legacy behaviour.
994 	 * Shortening the cabq/mcastq may end up causing some
995 	 * undesirable behaviour.
996 	 */
997 	sc->sc_txq_mcastq_maxdepth = ath_txbuf;
998 
999 	/*
1000 	 * How deep can the node software TX queue get whilst it's asleep.
1001 	 */
1002 	sc->sc_txq_node_psq_maxdepth = 16;
1003 
1004 	/*
1005 	 * Default the maximum queue depth for a given node
1006 	 * to 1/4'th the TX buffers, or 64, whichever
1007 	 * is larger.
1008 	 */
1009 	sc->sc_txq_node_maxdepth = MAX(64, ath_txbuf / 4);
1010 
1011 	/* Enable CABQ by default */
1012 	sc->sc_cabq_enable = 1;
1013 
1014 	/*
1015 	 * Allow the TX and RX chainmasks to be overridden by
1016 	 * environment variables and/or device.hints.
1017 	 *
1018 	 * This must be done early - before the hardware is
1019 	 * calibrated or before the 802.11n stream calculation
1020 	 * is done.
1021 	 */
1022 	if (resource_int_value(device_get_name(sc->sc_dev),
1023 	    device_get_unit(sc->sc_dev), "rx_chainmask",
1024 	    &rx_chainmask) == 0) {
1025 		device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
1026 		    rx_chainmask);
1027 		(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
1028 	}
1029 	if (resource_int_value(device_get_name(sc->sc_dev),
1030 	    device_get_unit(sc->sc_dev), "tx_chainmask",
1031 	    &tx_chainmask) == 0) {
1032 		device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
1033 		    tx_chainmask);
1034 		(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
1035 	}
1036 
1037 	/*
1038 	 * Query the TX/RX chainmask configuration.
1039 	 *
1040 	 * This is only relevant for 11n devices.
1041 	 */
1042 	ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
1043 	ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
1044 
1045 	/*
1046 	 * Disable MRR with protected frames by default.
1047 	 * Only 802.11n series NICs can handle this.
1048 	 */
1049 	sc->sc_mrrprot = 0;	/* XXX should be a capability */
1050 
1051 	/*
1052 	 * Query the enterprise mode information the HAL.
1053 	 */
1054 	if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0,
1055 	    &sc->sc_ent_cfg) == HAL_OK)
1056 		sc->sc_use_ent = 1;
1057 
1058 #ifdef	ATH_ENABLE_11N
1059 	/*
1060 	 * Query HT capabilities
1061 	 */
1062 	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
1063 	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
1064 		uint32_t rxs, txs;
1065 
1066 		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
1067 
1068 		sc->sc_mrrprot = 1;	/* XXX should be a capability */
1069 
1070 		ic->ic_htcaps = IEEE80211_HTC_HT	/* HT operation */
1071 			    | IEEE80211_HTC_AMPDU	/* A-MPDU tx/rx */
1072 			    | IEEE80211_HTC_AMSDU	/* A-MSDU tx/rx */
1073 			    | IEEE80211_HTCAP_MAXAMSDU_3839
1074 			    				/* max A-MSDU length */
1075 			    | IEEE80211_HTCAP_SMPS_OFF;	/* SM power save off */
1076 			;
1077 
1078 		/*
1079 		 * Enable short-GI for HT20 only if the hardware
1080 		 * advertises support.
1081 		 * Notably, anything earlier than the AR9287 doesn't.
1082 		 */
1083 		if ((ath_hal_getcapability(ah,
1084 		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
1085 		    (wmodes & HAL_MODE_HT20)) {
1086 			device_printf(sc->sc_dev,
1087 			    "[HT] enabling short-GI in 20MHz mode\n");
1088 			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
1089 		}
1090 
1091 		if (wmodes & HAL_MODE_HT40)
1092 			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
1093 			    |  IEEE80211_HTCAP_SHORTGI40;
1094 
1095 		/*
1096 		 * TX/RX streams need to be taken into account when
1097 		 * negotiating which MCS rates it'll receive and
1098 		 * what MCS rates are available for TX.
1099 		 */
1100 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
1101 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
1102 		ic->ic_txstream = txs;
1103 		ic->ic_rxstream = rxs;
1104 
1105 		/*
1106 		 * Setup TX and RX STBC based on what the HAL allows and
1107 		 * the currently configured chainmask set.
1108 		 * Ie - don't enable STBC TX if only one chain is enabled.
1109 		 * STBC RX is fine on a single RX chain; it just won't
1110 		 * provide any real benefit.
1111 		 */
1112 		if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0,
1113 		    NULL) == HAL_OK) {
1114 			sc->sc_rx_stbc = 1;
1115 			device_printf(sc->sc_dev,
1116 			    "[HT] 1 stream STBC receive enabled\n");
1117 			ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM;
1118 		}
1119 		if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0,
1120 		    NULL) == HAL_OK) {
1121 			sc->sc_tx_stbc = 1;
1122 			device_printf(sc->sc_dev,
1123 			    "[HT] 1 stream STBC transmit enabled\n");
1124 			ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
1125 		}
1126 
1127 		(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
1128 		    &sc->sc_rts_aggr_limit);
1129 		if (sc->sc_rts_aggr_limit != (64 * 1024))
1130 			device_printf(sc->sc_dev,
1131 			    "[HT] RTS aggregates limited to %d KiB\n",
1132 			    sc->sc_rts_aggr_limit / 1024);
1133 
1134 		device_printf(sc->sc_dev,
1135 		    "[HT] %d RX streams; %d TX streams\n", rxs, txs);
1136 	}
1137 #endif
1138 
1139 	/*
1140 	 * Initial aggregation settings.
1141 	 */
1142 	sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH;
1143 	sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH;
1144 	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
1145 	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
1146 	sc->sc_aggr_limit = ATH_AGGR_MAXSIZE;
1147 	sc->sc_delim_min_pad = 0;
1148 
1149 	/*
1150 	 * Check if the hardware requires PCI register serialisation.
1151 	 * Some of the Owl based MACs require this.
1152 	 */
1153 	if (ncpus > 1 &&
1154 	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
1155 	     0, NULL) == HAL_OK) {
1156 		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
1157 		device_printf(sc->sc_dev,
1158 		    "Enabling register serialisation\n");
1159 	}
1160 
1161 	/*
1162 	 * Initialise the deferred completed RX buffer list.
1163 	 */
1164 	TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]);
1165 	TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]);
1166 
1167 	/*
1168 	 * Indicate we need the 802.11 header padded to a
1169 	 * 32-bit boundary for 4-address and QoS frames.
1170 	 */
1171 	ic->ic_flags |= IEEE80211_F_DATAPAD;
1172 
1173 	/*
1174 	 * Query the hal about antenna support.
1175 	 */
1176 	sc->sc_defant = ath_hal_getdefantenna(ah);
1177 
1178 	/*
1179 	 * Not all chips have the VEOL support we want to
1180 	 * use with IBSS beacons; check here for it.
1181 	 */
1182 	sc->sc_hasveol = ath_hal_hasveol(ah);
1183 
1184 	/* get mac address from hardware */
1185 	ath_hal_getmac(ah, macaddr);
1186 	if (sc->sc_hasbmask)
1187 		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
1188 
1189 	/* NB: used to size node table key mapping array */
1190 	ic->ic_max_keyix = sc->sc_keymax;
1191 	/* Call MI attach routine. */
1192 	ieee80211_ifattach(ic, macaddr);
1193 	ic->ic_setregdomain = ath_setregdomain;
1194 	ic->ic_getradiocaps = ath_getradiocaps;
1195 	sc->sc_opmode = HAL_M_STA;
1196 
1197 	/* override default methods */
1198 	ic->ic_newassoc = ath_newassoc;
1199 	ic->ic_updateslot = ath_updateslot;
1200 	ic->ic_wme.wme_update = ath_wme_update;
1201 	ic->ic_vap_create = ath_vap_create;
1202 	ic->ic_vap_delete = ath_vap_delete;
1203 	ic->ic_raw_xmit = ath_raw_xmit;
1204 	ic->ic_update_mcast = ath_update_mcast;
1205 	ic->ic_update_promisc = ath_update_promisc;
1206 	ic->ic_node_alloc = ath_node_alloc;
1207 	sc->sc_node_free = ic->ic_node_free;
1208 	ic->ic_node_free = ath_node_free;
1209 	sc->sc_node_cleanup = ic->ic_node_cleanup;
1210 	ic->ic_node_cleanup = ath_node_cleanup;
1211 	ic->ic_node_getsignal = ath_node_getsignal;
1212 	ic->ic_scan_start = ath_scan_start;
1213 	ic->ic_scan_end = ath_scan_end;
1214 	ic->ic_set_channel = ath_set_channel;
1215 #ifdef	ATH_ENABLE_11N
1216 	/* 802.11n specific - but just override anyway */
1217 	sc->sc_addba_request = ic->ic_addba_request;
1218 	sc->sc_addba_response = ic->ic_addba_response;
1219 	sc->sc_addba_stop = ic->ic_addba_stop;
1220 	sc->sc_bar_response = ic->ic_bar_response;
1221 	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
1222 
1223 	ic->ic_addba_request = ath_addba_request;
1224 	ic->ic_addba_response = ath_addba_response;
1225 	ic->ic_addba_response_timeout = ath_addba_response_timeout;
1226 	ic->ic_addba_stop = ath_addba_stop;
1227 	ic->ic_bar_response = ath_bar_response;
1228 
1229 	ic->ic_update_chw = ath_update_chw;
1230 #endif	/* ATH_ENABLE_11N */
1231 
1232 #ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
1233 	/*
1234 	 * There's one vendor bitmap entry in the RX radiotap
1235 	 * header; make sure that's taken into account.
1236 	 */
1237 	ieee80211_radiotap_attachv(ic,
1238 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0,
1239 		ATH_TX_RADIOTAP_PRESENT,
1240 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1,
1241 		ATH_RX_RADIOTAP_PRESENT);
1242 #else
1243 	/*
1244 	 * No vendor bitmap/extensions are present.
1245 	 */
1246 	ieee80211_radiotap_attach(ic,
1247 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
1248 		ATH_TX_RADIOTAP_PRESENT,
1249 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
1250 		ATH_RX_RADIOTAP_PRESENT);
1251 #endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
1252 
1253 	/*
1254 	 * Setup the ALQ logging if required
1255 	 */
1256 #ifdef	ATH_DEBUG_ALQ
1257 	if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev));
1258 	if_ath_alq_setcfg(&sc->sc_alq,
1259 	    sc->sc_ah->ah_macVersion,
1260 	    sc->sc_ah->ah_macRev,
1261 	    sc->sc_ah->ah_phyRev,
1262 	    sc->sc_ah->ah_magic);
1263 #endif
1264 
1265 	/*
1266 	 * Setup dynamic sysctl's now that country code and
1267 	 * regdomain are available from the hal.
1268 	 */
1269 	ath_sysctlattach(sc);
1270 	ath_sysctl_stats_attach(sc);
1271 	ath_sysctl_hal_attach(sc);
1272 
1273 	if (bootverbose)
1274 		ieee80211_announce(ic);
1275 	ath_announce(sc);
1276 
1277 	/*
1278 	 * Put it to sleep for now.
1279 	 */
1280 	ATH_LOCK(sc);
1281 	ath_power_setpower(sc, HAL_PM_FULL_SLEEP);
1282 	ATH_UNLOCK(sc);
1283 
1284 	wlan_serialize_exit();
1285 
1286 	return 0;
1287 bad2:
1288 	ath_tx_cleanup(sc);
1289 	ath_desc_free(sc);
1290 	ath_txdma_teardown(sc);
1291 	ath_rxdma_teardown(sc);
1292 bad:
1293 	if (ah)
1294 		ath_hal_detach(ah);
1295 
1296 	/*
1297 	 * To work around scoping issues with CURVNET_SET/CURVNET_RESTORE..
1298 	 */
1299 #if !defined(__DragonFly__)
1300 	if (ifp != NULL && ifp->if_vnet) {
1301 		CURVNET_SET(ifp->if_vnet);
1302 		if_free(ifp);
1303 		CURVNET_RESTORE();
1304 	} else
1305 #endif
1306 	if (ifp != NULL)
1307 		if_free(ifp);
1308 	sc->sc_invalid = 1;
1309 	wlan_serialize_exit();
1310 
1311 	return error;
1312 }
1313 
1314 int
1315 ath_detach(struct ath_softc *sc)
1316 {
1317 	struct ifnet *ifp = sc->sc_ifp;
1318 
1319 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1320 		__func__, ifp->if_flags);
1321 
1322 	/*
1323 	 * NB: the order of these is important:
1324 	 * o stop the chip so no more interrupts will fire
1325 	 * o call the 802.11 layer before detaching the hal to
1326 	 *   insure callbacks into the driver to delete global
1327 	 *   key cache entries can be handled
1328 	 * o free the taskqueue which drains any pending tasks
1329 	 * o reclaim the tx queue data structures after calling
1330 	 *   the 802.11 layer as we'll get called back to reclaim
1331 	 *   node state and potentially want to use them
1332 	 * o to cleanup the tx queues the hal is called, so detach
1333 	 *   it last
1334 	 * Other than that, it's straightforward...
1335 	 */
1336 
1337 	/*
1338 	 * XXX Wake the hardware up first.  ath_stop() will still
1339 	 * wake it up first, but I'd rather do it here just to
1340 	 * ensure it's awake.
1341 	 */
1342 	ATH_LOCK(sc);
1343 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1344 	ath_power_setpower(sc, HAL_PM_AWAKE);
1345 	ATH_UNLOCK(sc);
1346 
1347 	/*
1348 	 * Stop things cleanly.
1349 	 */
1350 	ath_stop(ifp);
1351 
1352 	wlan_serialize_enter();
1353 	ieee80211_ifdetach(ifp->if_l2com);
1354 	wlan_serialize_exit();
1355 	taskqueue_free(sc->sc_tq);
1356 #ifdef ATH_TX99_DIAG
1357 	if (sc->sc_tx99 != NULL)
1358 		sc->sc_tx99->detach(sc->sc_tx99);
1359 #endif
1360 	ath_rate_detach(sc->sc_rc);
1361 #ifdef	ATH_DEBUG_ALQ
1362 	if_ath_alq_tidyup(&sc->sc_alq);
1363 #endif
1364 	ath_lna_div_detach(sc);
1365 	ath_btcoex_detach(sc);
1366 	ath_spectral_detach(sc);
1367 	ath_dfs_detach(sc);
1368 	ath_desc_free(sc);
1369 	ath_txdma_teardown(sc);
1370 	ath_rxdma_teardown(sc);
1371 	ath_tx_cleanup(sc);
1372 	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
1373 
1374 	CURVNET_SET(ifp->if_vnet);
1375 	if_free(ifp);
1376 	CURVNET_RESTORE();
1377 
1378 	return 0;
1379 }
1380 
1381 /*
1382  * MAC address handling for multiple BSS on the same radio.
1383  * The first vap uses the MAC address from the EEPROM.  For
1384  * subsequent vap's we set the U/L bit (bit 1) in the MAC
1385  * address and use the next six bits as an index.
1386  */
1387 static void
1388 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
1389 {
1390 	int i;
1391 
1392 	if (clone && sc->sc_hasbmask) {
1393 		/* NB: we only do this if h/w supports multiple bssid */
1394 		for (i = 0; i < 8; i++)
1395 			if ((sc->sc_bssidmask & (1<<i)) == 0)
1396 				break;
1397 		if (i != 0)
1398 			mac[0] |= (i << 2)|0x2;
1399 	} else
1400 		i = 0;
1401 	sc->sc_bssidmask |= 1<<i;
1402 	sc->sc_hwbssidmask[0] &= ~mac[0];
1403 	if (i == 0)
1404 		sc->sc_nbssid0++;
1405 }
1406 
1407 static void
1408 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
1409 {
1410 	int i = mac[0] >> 2;
1411 	uint8_t mask;
1412 
1413 	if (i != 0 || --sc->sc_nbssid0 == 0) {
1414 		sc->sc_bssidmask &= ~(1<<i);
1415 		/* recalculate bssid mask from remaining addresses */
1416 		mask = 0xff;
1417 		for (i = 1; i < 8; i++)
1418 			if (sc->sc_bssidmask & (1<<i))
1419 				mask &= ~((i<<2)|0x2);
1420 		sc->sc_hwbssidmask[0] |= mask;
1421 	}
1422 }
1423 
1424 /*
1425  * Assign a beacon xmit slot.  We try to space out
1426  * assignments so when beacons are staggered the
1427  * traffic coming out of the cab q has maximal time
1428  * to go out before the next beacon is scheduled.
1429  */
1430 static int
1431 assign_bslot(struct ath_softc *sc)
1432 {
1433 	u_int slot, free;
1434 
1435 	free = 0;
1436 	for (slot = 0; slot < ATH_BCBUF; slot++)
1437 		if (sc->sc_bslot[slot] == NULL) {
1438 			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
1439 			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
1440 				return slot;
1441 			free = slot;
1442 			/* NB: keep looking for a double slot */
1443 		}
1444 	return free;
1445 }
1446 
1447 static struct ieee80211vap *
1448 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1449     enum ieee80211_opmode opmode, int flags,
1450     const uint8_t bssid[IEEE80211_ADDR_LEN],
1451     const uint8_t mac0[IEEE80211_ADDR_LEN])
1452 {
1453 	struct ath_softc *sc = ic->ic_softc;
1454 	struct ath_vap *avp;
1455 	struct ieee80211vap *vap;
1456 	uint8_t mac[IEEE80211_ADDR_LEN];
1457 	int needbeacon, error;
1458 	enum ieee80211_opmode ic_opmode;
1459 
1460 	avp = kmalloc(sizeof(struct ath_vap), M_80211_VAP, M_WAITOK | M_ZERO);
1461 	needbeacon = 0;
1462 	IEEE80211_ADDR_COPY(mac, mac0);
1463 
1464 	ATH_LOCK(sc);
1465 	ic_opmode = opmode;		/* default to opmode of new vap */
1466 	switch (opmode) {
1467 	case IEEE80211_M_STA:
1468 		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
1469 			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
1470 			goto bad;
1471 		}
1472 		if (sc->sc_nvaps) {
1473 			/*
1474 			 * With multiple vaps we must fall back
1475 			 * to s/w beacon miss handling.
1476 			 */
1477 			flags |= IEEE80211_CLONE_NOBEACONS;
1478 		}
1479 		if (flags & IEEE80211_CLONE_NOBEACONS) {
1480 			/*
1481 			 * Station mode w/o beacons are implemented w/ AP mode.
1482 			 */
1483 			ic_opmode = IEEE80211_M_HOSTAP;
1484 		}
1485 		break;
1486 	case IEEE80211_M_IBSS:
1487 		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
1488 			device_printf(sc->sc_dev,
1489 			    "only 1 ibss vap supported\n");
1490 			goto bad;
1491 		}
1492 		needbeacon = 1;
1493 		break;
1494 	case IEEE80211_M_AHDEMO:
1495 #ifdef IEEE80211_SUPPORT_TDMA
1496 		if (flags & IEEE80211_CLONE_TDMA) {
1497 			if (sc->sc_nvaps != 0) {
1498 				device_printf(sc->sc_dev,
1499 				    "only 1 tdma vap supported\n");
1500 				goto bad;
1501 			}
1502 			needbeacon = 1;
1503 			flags |= IEEE80211_CLONE_NOBEACONS;
1504 		}
1505 		/* fall thru... */
1506 #endif
1507 	case IEEE80211_M_MONITOR:
1508 		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1509 			/*
1510 			 * Adopt existing mode.  Adding a monitor or ahdemo
1511 			 * vap to an existing configuration is of dubious
1512 			 * value but should be ok.
1513 			 */
1514 			/* XXX not right for monitor mode */
1515 			ic_opmode = ic->ic_opmode;
1516 		}
1517 		break;
1518 	case IEEE80211_M_HOSTAP:
1519 	case IEEE80211_M_MBSS:
1520 		needbeacon = 1;
1521 		break;
1522 	case IEEE80211_M_WDS:
1523 		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1524 			device_printf(sc->sc_dev,
1525 			    "wds not supported in sta mode\n");
1526 			goto bad;
1527 		}
1528 		/*
1529 		 * Silently remove any request for a unique
1530 		 * bssid; WDS vap's always share the local
1531 		 * mac address.
1532 		 */
1533 		flags &= ~IEEE80211_CLONE_BSSID;
1534 		if (sc->sc_nvaps == 0)
1535 			ic_opmode = IEEE80211_M_HOSTAP;
1536 		else
1537 			ic_opmode = ic->ic_opmode;
1538 		break;
1539 	default:
1540 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1541 		goto bad;
1542 	}
1543 	/*
1544 	 * Check that a beacon buffer is available; the code below assumes it.
1545 	 */
1546 	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1547 		device_printf(sc->sc_dev, "no beacon buffer available\n");
1548 		goto bad;
1549 	}
1550 
1551 	/* STA, AHDEMO? */
1552 	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
1553 		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1554 		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1555 	}
1556 
1557 	vap = &avp->av_vap;
1558 	/* XXX can't hold mutex across if_alloc */
1559 	ATH_UNLOCK(sc);
1560 	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
1561 	    bssid, mac);
1562 	ATH_LOCK(sc);
1563 	if (error != 0) {
1564 		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1565 		    __func__, error);
1566 		goto bad2;
1567 	}
1568 
1569 	/* h/w crypto support */
1570 	vap->iv_key_alloc = ath_key_alloc;
1571 	vap->iv_key_delete = ath_key_delete;
1572 	vap->iv_key_set = ath_key_set;
1573 	vap->iv_key_update_begin = ath_key_update_begin;
1574 	vap->iv_key_update_end = ath_key_update_end;
1575 
1576 	/* override various methods */
1577 	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1578 	vap->iv_recv_mgmt = ath_recv_mgmt;
1579 	vap->iv_reset = ath_reset_vap;
1580 	vap->iv_update_beacon = ath_beacon_update;
1581 	avp->av_newstate = vap->iv_newstate;
1582 	vap->iv_newstate = ath_newstate;
1583 	avp->av_bmiss = vap->iv_bmiss;
1584 	vap->iv_bmiss = ath_bmiss_vap;
1585 
1586 	avp->av_node_ps = vap->iv_node_ps;
1587 	vap->iv_node_ps = ath_node_powersave;
1588 
1589 	avp->av_set_tim = vap->iv_set_tim;
1590 	vap->iv_set_tim = ath_node_set_tim;
1591 
1592 	avp->av_recv_pspoll = vap->iv_recv_pspoll;
1593 	vap->iv_recv_pspoll = ath_node_recv_pspoll;
1594 
1595 	/* Set default parameters */
1596 
1597 	/*
1598 	 * Anything earlier than some AR9300 series MACs don't
1599 	 * support a smaller MPDU density.
1600 	 */
1601 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1602 	/*
1603 	 * All NICs can handle the maximum size, however
1604 	 * AR5416 based MACs can only TX aggregates w/ RTS
1605 	 * protection when the total aggregate size is <= 8k.
1606 	 * However, for now that's enforced by the TX path.
1607 	 */
1608 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1609 
1610 	avp->av_bslot = -1;
1611 	if (needbeacon) {
1612 		/*
1613 		 * Allocate beacon state and setup the q for buffered
1614 		 * multicast frames.  We know a beacon buffer is
1615 		 * available because we checked above.
1616 		 */
1617 		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1618 		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1619 		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1620 			/*
1621 			 * Assign the vap to a beacon xmit slot.  As above
1622 			 * this cannot fail to find a free one.
1623 			 */
1624 			avp->av_bslot = assign_bslot(sc);
1625 			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1626 			    ("beacon slot %u not empty", avp->av_bslot));
1627 			sc->sc_bslot[avp->av_bslot] = vap;
1628 			sc->sc_nbcnvaps++;
1629 		}
1630 		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1631 			/*
1632 			 * Multple vaps are to transmit beacons and we
1633 			 * have h/w support for TSF adjusting; enable
1634 			 * use of staggered beacons.
1635 			 */
1636 			sc->sc_stagbeacons = 1;
1637 		}
1638 		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1639 	}
1640 
1641 	ic->ic_opmode = ic_opmode;
1642 	if (opmode != IEEE80211_M_WDS) {
1643 		sc->sc_nvaps++;
1644 		if (opmode == IEEE80211_M_STA)
1645 			sc->sc_nstavaps++;
1646 		if (opmode == IEEE80211_M_MBSS)
1647 			sc->sc_nmeshvaps++;
1648 	}
1649 	switch (ic_opmode) {
1650 	case IEEE80211_M_IBSS:
1651 		sc->sc_opmode = HAL_M_IBSS;
1652 		break;
1653 	case IEEE80211_M_STA:
1654 		sc->sc_opmode = HAL_M_STA;
1655 		break;
1656 	case IEEE80211_M_AHDEMO:
1657 #ifdef IEEE80211_SUPPORT_TDMA
1658 		if (vap->iv_caps & IEEE80211_C_TDMA) {
1659 			sc->sc_tdma = 1;
1660 			/* NB: disable tsf adjust */
1661 			sc->sc_stagbeacons = 0;
1662 		}
1663 		/*
1664 		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1665 		 * just ap mode.
1666 		 */
1667 		/* fall thru... */
1668 #endif
1669 	case IEEE80211_M_HOSTAP:
1670 	case IEEE80211_M_MBSS:
1671 		sc->sc_opmode = HAL_M_HOSTAP;
1672 		break;
1673 	case IEEE80211_M_MONITOR:
1674 		sc->sc_opmode = HAL_M_MONITOR;
1675 		break;
1676 	default:
1677 		/* XXX should not happen */
1678 		break;
1679 	}
1680 	if (sc->sc_hastsfadd) {
1681 		/*
1682 		 * Configure whether or not TSF adjust should be done.
1683 		 */
1684 		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1685 	}
1686 	if (flags & IEEE80211_CLONE_NOBEACONS) {
1687 		/*
1688 		 * Enable s/w beacon miss handling.
1689 		 */
1690 		sc->sc_swbmiss = 1;
1691 	}
1692 	ATH_UNLOCK(sc);
1693 
1694 	/* complete setup */
1695 	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1696 	return vap;
1697 bad2:
1698 	reclaim_address(sc, mac);
1699 	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1700 bad:
1701 	kfree(avp, M_80211_VAP);
1702 	ATH_UNLOCK(sc);
1703 	return NULL;
1704 }
1705 
1706 static void
1707 ath_vap_delete(struct ieee80211vap *vap)
1708 {
1709 	struct ieee80211com *ic = vap->iv_ic;
1710 	struct ifnet *ifp = ic->ic_ifp;
1711 	struct ath_softc *sc = ic->ic_softc;
1712 	struct ath_hal *ah = sc->sc_ah;
1713 	struct ath_vap *avp = ATH_VAP(vap);
1714 
1715 	ATH_LOCK(sc);
1716 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1717 	ATH_UNLOCK(sc);
1718 
1719 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1720 	if (ifp->if_flags & IFF_RUNNING) {
1721 		/*
1722 		 * Quiesce the hardware while we remove the vap.  In
1723 		 * particular we need to reclaim all references to
1724 		 * the vap state by any frames pending on the tx queues.
1725 		 */
1726 		ath_hal_intrset(ah, 0);		/* disable interrupts */
1727 		/* XXX Do all frames from all vaps/nodes need draining here? */
1728 		ath_stoprecv(sc, 1);		/* stop recv side */
1729 		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1730 	}
1731 
1732 	/* .. leave the hardware awake for now. */
1733 
1734 	ieee80211_vap_detach(vap);
1735 
1736 	/*
1737 	 * XXX Danger Will Robinson! Danger!
1738 	 *
1739 	 * Because ieee80211_vap_detach() can queue a frame (the station
1740 	 * diassociate message?) after we've drained the TXQ and
1741 	 * flushed the software TXQ, we will end up with a frame queued
1742 	 * to a node whose vap is about to be freed.
1743 	 *
1744 	 * To work around this, flush the hardware/software again.
1745 	 * This may be racy - the ath task may be running and the packet
1746 	 * may be being scheduled between sw->hw txq. Tsk.
1747 	 *
1748 	 * TODO: figure out why a new node gets allocated somewhere around
1749 	 * here (after the ath_tx_swq() call; and after an ath_stop_locked()
1750 	 * call!)
1751 	 */
1752 
1753 	ath_draintxq(sc, ATH_RESET_DEFAULT);
1754 
1755 	ATH_LOCK(sc);
1756 	/*
1757 	 * Reclaim beacon state.  Note this must be done before
1758 	 * the vap instance is reclaimed as we may have a reference
1759 	 * to it in the buffer for the beacon frame.
1760 	 */
1761 	if (avp->av_bcbuf != NULL) {
1762 		if (avp->av_bslot != -1) {
1763 			sc->sc_bslot[avp->av_bslot] = NULL;
1764 			sc->sc_nbcnvaps--;
1765 		}
1766 		ath_beacon_return(sc, avp->av_bcbuf);
1767 		avp->av_bcbuf = NULL;
1768 		if (sc->sc_nbcnvaps == 0) {
1769 			sc->sc_stagbeacons = 0;
1770 			if (sc->sc_hastsfadd)
1771 				ath_hal_settsfadjust(sc->sc_ah, 0);
1772 		}
1773 		/*
1774 		 * Reclaim any pending mcast frames for the vap.
1775 		 */
1776 		ath_tx_draintxq(sc, &avp->av_mcastq);
1777 	}
1778 	/*
1779 	 * Update bookkeeping.
1780 	 */
1781 	if (vap->iv_opmode == IEEE80211_M_STA) {
1782 		sc->sc_nstavaps--;
1783 		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1784 			sc->sc_swbmiss = 0;
1785 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1786 	    vap->iv_opmode == IEEE80211_M_MBSS) {
1787 		reclaim_address(sc, vap->iv_myaddr);
1788 		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1789 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1790 			sc->sc_nmeshvaps--;
1791 	}
1792 	if (vap->iv_opmode != IEEE80211_M_WDS)
1793 		sc->sc_nvaps--;
1794 #ifdef IEEE80211_SUPPORT_TDMA
1795 	/* TDMA operation ceases when the last vap is destroyed */
1796 	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1797 		sc->sc_tdma = 0;
1798 		sc->sc_swbmiss = 0;
1799 	}
1800 #endif
1801 	kfree(avp, M_80211_VAP);
1802 
1803 	if (ifp->if_flags & IFF_RUNNING) {
1804 		/*
1805 		 * Restart rx+tx machines if still running (RUNNING will
1806 		 * be reset if we just destroyed the last vap).
1807 		 */
1808 		if (ath_startrecv(sc) != 0)
1809 			if_printf(ifp, "%s: unable to restart recv logic\n",
1810 			    __func__);
1811 		if (sc->sc_beacons) {		/* restart beacons */
1812 #ifdef IEEE80211_SUPPORT_TDMA
1813 			if (sc->sc_tdma)
1814 				ath_tdma_config(sc, NULL);
1815 			else
1816 #endif
1817 				ath_beacon_config(sc, NULL);
1818 		}
1819 		ath_hal_intrset(ah, sc->sc_imask);
1820 	}
1821 
1822 	/* Ok, let the hardware asleep. */
1823 	ath_power_restore_power_state(sc);
1824 	ATH_UNLOCK(sc);
1825 }
1826 
1827 void
1828 ath_suspend(struct ath_softc *sc)
1829 {
1830 	struct ifnet *ifp = sc->sc_ifp;
1831 	struct ieee80211com *ic = ifp->if_l2com;
1832 
1833 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1834 		__func__, ifp->if_flags);
1835 
1836 	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1837 
1838 	ieee80211_suspend_all(ic);
1839 	/*
1840 	 * NB: don't worry about putting the chip in low power
1841 	 * mode; pci will power off our socket on suspend and
1842 	 * CardBus detaches the device.
1843 	 *
1844 	 * XXX TODO: well, that's great, except for non-cardbus
1845 	 * devices!
1846 	 */
1847 
1848 	/*
1849 	 * XXX This doesn't wait until all pending taskqueue
1850 	 * items and parallel transmit/receive/other threads
1851 	 * are running!
1852 	 */
1853 	ath_hal_intrset(sc->sc_ah, 0);
1854 	taskqueue_block(sc->sc_tq);
1855 
1856 	ATH_LOCK(sc);
1857 	callout_stop_sync(&sc->sc_cal_ch);
1858 	ATH_UNLOCK(sc);
1859 
1860 	/*
1861 	 * XXX ensure sc_invalid is 1
1862 	 */
1863 
1864 	/* Disable the PCIe PHY, complete with workarounds */
1865 	ath_hal_enablepcie(sc->sc_ah, 1, 1);
1866 }
1867 
1868 /*
1869  * Reset the key cache since some parts do not reset the
1870  * contents on resume.  First we clear all entries, then
1871  * re-load keys that the 802.11 layer assumes are setup
1872  * in h/w.
1873  */
1874 static void
1875 ath_reset_keycache(struct ath_softc *sc)
1876 {
1877 	struct ifnet *ifp = sc->sc_ifp;
1878 	struct ieee80211com *ic = ifp->if_l2com;
1879 	struct ath_hal *ah = sc->sc_ah;
1880 	int i;
1881 
1882 	ATH_LOCK(sc);
1883 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1884 	for (i = 0; i < sc->sc_keymax; i++)
1885 		ath_hal_keyreset(ah, i);
1886 	ath_power_restore_power_state(sc);
1887 	ATH_UNLOCK(sc);
1888 	ieee80211_crypto_reload_keys(ic);
1889 }
1890 
1891 /*
1892  * Fetch the current chainmask configuration based on the current
1893  * operating channel and options.
1894  */
1895 static void
1896 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan)
1897 {
1898 
1899 	/*
1900 	 * Set TX chainmask to the currently configured chainmask;
1901 	 * the TX chainmask depends upon the current operating mode.
1902 	 */
1903 	sc->sc_cur_rxchainmask = sc->sc_rxchainmask;
1904 	if (IEEE80211_IS_CHAN_HT(chan)) {
1905 		sc->sc_cur_txchainmask = sc->sc_txchainmask;
1906 	} else {
1907 		sc->sc_cur_txchainmask = 1;
1908 	}
1909 
1910 	DPRINTF(sc, ATH_DEBUG_RESET,
1911 	    "%s: TX chainmask is now 0x%x, RX is now 0x%x\n",
1912 	    __func__,
1913 	    sc->sc_cur_txchainmask,
1914 	    sc->sc_cur_rxchainmask);
1915 }
1916 
1917 void
1918 ath_resume(struct ath_softc *sc)
1919 {
1920 	struct ifnet *ifp = sc->sc_ifp;
1921 	struct ieee80211com *ic = ifp->if_l2com;
1922 	struct ath_hal *ah = sc->sc_ah;
1923 	HAL_STATUS status;
1924 
1925 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1926 		__func__, ifp->if_flags);
1927 
1928 	/* Re-enable PCIe, re-enable the PCIe bus */
1929 	ath_hal_enablepcie(ah, 0, 0);
1930 
1931 	/*
1932 	 * Must reset the chip before we reload the
1933 	 * keycache as we were powered down on suspend.
1934 	 */
1935 	ath_update_chainmasks(sc,
1936 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan);
1937 	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
1938 	    sc->sc_cur_rxchainmask);
1939 
1940 	/* Ensure we set the current power state to on */
1941 	ATH_LOCK(sc);
1942 	ath_power_setselfgen(sc, HAL_PM_AWAKE);
1943 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1944 	ath_power_setpower(sc, HAL_PM_AWAKE);
1945 	ATH_UNLOCK(sc);
1946 
1947 	ath_hal_reset(ah, sc->sc_opmode,
1948 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1949 	    AH_FALSE, &status);
1950 	ath_reset_keycache(sc);
1951 
1952 	ATH_RX_LOCK(sc);
1953 	sc->sc_rx_stopped = 1;
1954 	sc->sc_rx_resetted = 1;
1955 	ATH_RX_UNLOCK(sc);
1956 
1957 	/* Let DFS at it in case it's a DFS channel */
1958 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1959 
1960 	/* Let spectral at in case spectral is enabled */
1961 	ath_spectral_enable(sc, ic->ic_curchan);
1962 
1963 	/*
1964 	 * Let bluetooth coexistence at in case it's needed for this channel
1965 	 */
1966 	ath_btcoex_enable(sc, ic->ic_curchan);
1967 
1968 	/*
1969 	 * If we're doing TDMA, enforce the TXOP limitation for chips that
1970 	 * support it.
1971 	 */
1972 	if (sc->sc_hasenforcetxop && sc->sc_tdma)
1973 		ath_hal_setenforcetxop(sc->sc_ah, 1);
1974 	else
1975 		ath_hal_setenforcetxop(sc->sc_ah, 0);
1976 
1977 	/* Restore the LED configuration */
1978 	ath_led_config(sc);
1979 	ath_hal_setledstate(ah, HAL_LED_INIT);
1980 
1981 	if (sc->sc_resume_up)
1982 		ieee80211_resume_all(ic);
1983 
1984 	ATH_LOCK(sc);
1985 	ath_power_restore_power_state(sc);
1986 	ATH_UNLOCK(sc);
1987 
1988 	/* XXX beacons ? */
1989 }
1990 
1991 void
1992 ath_shutdown(struct ath_softc *sc)
1993 {
1994 	struct ifnet *ifp = sc->sc_ifp;
1995 
1996 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1997 		__func__, ifp->if_flags);
1998 
1999 	ath_stop(ifp);
2000 	/* NB: no point powering down chip as we're about to reboot */
2001 }
2002 
2003 /*
2004  * Interrupt handler.  Most of the actual processing is deferred.
2005  */
2006 void
2007 ath_intr(void *arg)
2008 {
2009 	struct ath_softc *sc = arg;
2010 	struct ifnet *ifp = sc->sc_ifp;
2011 	struct ath_hal *ah = sc->sc_ah;
2012 	HAL_INT status = 0;
2013 	uint32_t txqs;
2014 
2015 	/*
2016 	 * If we're inside a reset path, just print a warning and
2017 	 * clear the ISR. The reset routine will finish it for us.
2018 	 */
2019 	ATH_PCU_LOCK(sc);
2020 	if (sc->sc_inreset_cnt) {
2021 		HAL_INT status;
2022 		ath_hal_getisr(ah, &status);	/* clear ISR */
2023 		ath_hal_intrset(ah, 0);		/* disable further intr's */
2024 		DPRINTF(sc, ATH_DEBUG_ANY,
2025 		    "%s: in reset, ignoring: status=0x%x\n",
2026 		    __func__, status);
2027 		ATH_PCU_UNLOCK(sc);
2028 		return;
2029 	}
2030 
2031 	if (sc->sc_invalid) {
2032 		/*
2033 		 * The hardware is not ready/present, don't touch anything.
2034 		 * Note this can happen early on if the IRQ is shared.
2035 		 */
2036 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
2037 		ATH_PCU_UNLOCK(sc);
2038 		return;
2039 	}
2040 	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
2041 		ATH_PCU_UNLOCK(sc);
2042 		return;
2043 	}
2044 
2045 	ATH_LOCK(sc);
2046 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2047 	ATH_UNLOCK(sc);
2048 
2049 	if ((ifp->if_flags & IFF_UP) == 0 ||
2050 	    (ifp->if_flags & IFF_RUNNING) == 0) {
2051 		HAL_INT status;
2052 
2053 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
2054 			__func__, ifp->if_flags);
2055 		ath_hal_getisr(ah, &status);	/* clear ISR */
2056 		ath_hal_intrset(ah, 0);		/* disable further intr's */
2057 		ATH_PCU_UNLOCK(sc);
2058 
2059 		ATH_LOCK(sc);
2060 		ath_power_restore_power_state(sc);
2061 		ATH_UNLOCK(sc);
2062 		return;
2063 	}
2064 
2065 	/*
2066 	 * Figure out the reason(s) for the interrupt.  Note
2067 	 * that the hal returns a pseudo-ISR that may include
2068 	 * bits we haven't explicitly enabled so we mask the
2069 	 * value to insure we only process bits we requested.
2070 	 */
2071 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
2072 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
2073 	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status);
2074 #ifdef	ATH_DEBUG_ALQ
2075 	if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate,
2076 	    ah->ah_syncstate);
2077 #endif	/* ATH_DEBUG_ALQ */
2078 #ifdef	ATH_KTR_INTR_DEBUG
2079 	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5,
2080 	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
2081 	    ah->ah_intrstate[0],
2082 	    ah->ah_intrstate[1],
2083 	    ah->ah_intrstate[2],
2084 	    ah->ah_intrstate[3],
2085 	    ah->ah_intrstate[6]);
2086 #endif
2087 
2088 	/* Squirrel away SYNC interrupt debugging */
2089 	if (ah->ah_syncstate != 0) {
2090 		int i;
2091 		for (i = 0; i < 32; i++)
2092 			if (ah->ah_syncstate & (i << i))
2093 				sc->sc_intr_stats.sync_intr[i]++;
2094 	}
2095 
2096 	status &= sc->sc_imask;			/* discard unasked for bits */
2097 
2098 	/* Short-circuit un-handled interrupts */
2099 	if (status == 0x0) {
2100 		ATH_PCU_UNLOCK(sc);
2101 
2102 		ATH_LOCK(sc);
2103 		ath_power_restore_power_state(sc);
2104 		ATH_UNLOCK(sc);
2105 
2106 		return;
2107 	}
2108 
2109 	/*
2110 	 * Take a note that we're inside the interrupt handler, so
2111 	 * the reset routines know to wait.
2112 	 */
2113 	sc->sc_intr_cnt++;
2114 	ATH_PCU_UNLOCK(sc);
2115 
2116 	/*
2117 	 * Handle the interrupt. We won't run concurrent with the reset
2118 	 * or channel change routines as they'll wait for sc_intr_cnt
2119 	 * to be 0 before continuing.
2120 	 */
2121 	if (status & HAL_INT_FATAL) {
2122 		sc->sc_stats.ast_hardware++;
2123 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
2124 		taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
2125 	} else {
2126 		if (status & HAL_INT_SWBA) {
2127 			/*
2128 			 * Software beacon alert--time to send a beacon.
2129 			 * Handle beacon transmission directly; deferring
2130 			 * this is too slow to meet timing constraints
2131 			 * under load.
2132 			 */
2133 #ifdef IEEE80211_SUPPORT_TDMA
2134 			if (sc->sc_tdma) {
2135 				if (sc->sc_tdmaswba == 0) {
2136 					struct ieee80211com *ic = ifp->if_l2com;
2137 					struct ieee80211vap *vap =
2138 					    TAILQ_FIRST(&ic->ic_vaps);
2139 					ath_tdma_beacon_send(sc, vap);
2140 					sc->sc_tdmaswba =
2141 					    vap->iv_tdma->tdma_bintval;
2142 				} else
2143 					sc->sc_tdmaswba--;
2144 			} else
2145 #endif
2146 			{
2147 				ath_beacon_proc(sc, 0);
2148 #ifdef IEEE80211_SUPPORT_SUPERG
2149 				/*
2150 				 * Schedule the rx taskq in case there's no
2151 				 * traffic so any frames held on the staging
2152 				 * queue are aged and potentially flushed.
2153 				 */
2154 				sc->sc_rx.recv_sched(sc, 1);
2155 #endif
2156 			}
2157 		}
2158 		if (status & HAL_INT_RXEOL) {
2159 			int imask;
2160 			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL");
2161 			if (! sc->sc_isedma) {
2162 				ATH_PCU_LOCK(sc);
2163 				/*
2164 				 * NB: the hardware should re-read the link when
2165 				 *     RXE bit is written, but it doesn't work at
2166 				 *     least on older hardware revs.
2167 				 */
2168 				sc->sc_stats.ast_rxeol++;
2169 				/*
2170 				 * Disable RXEOL/RXORN - prevent an interrupt
2171 				 * storm until the PCU logic can be reset.
2172 				 * In case the interface is reset some other
2173 				 * way before "sc_kickpcu" is called, don't
2174 				 * modify sc_imask - that way if it is reset
2175 				 * by a call to ath_reset() somehow, the
2176 				 * interrupt mask will be correctly reprogrammed.
2177 				 */
2178 				imask = sc->sc_imask;
2179 				imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
2180 				ath_hal_intrset(ah, imask);
2181 				/*
2182 				 * Only blank sc_rxlink if we've not yet kicked
2183 				 * the PCU.
2184 				 *
2185 				 * This isn't entirely correct - the correct solution
2186 				 * would be to have a PCU lock and engage that for
2187 				 * the duration of the PCU fiddling; which would include
2188 				 * running the RX process. Otherwise we could end up
2189 				 * messing up the RX descriptor chain and making the
2190 				 * RX desc list much shorter.
2191 				 */
2192 				if (! sc->sc_kickpcu)
2193 					sc->sc_rxlink = NULL;
2194 				sc->sc_kickpcu = 1;
2195 				ATH_PCU_UNLOCK(sc);
2196 			}
2197 			/*
2198 			 * Enqueue an RX proc to handle whatever
2199 			 * is in the RX queue.
2200 			 * This will then kick the PCU if required.
2201 			 */
2202 			sc->sc_rx.recv_sched(sc, 1);
2203 		}
2204 		if (status & HAL_INT_TXURN) {
2205 			sc->sc_stats.ast_txurn++;
2206 			/* bump tx trigger level */
2207 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
2208 		}
2209 		/*
2210 		 * Handle both the legacy and RX EDMA interrupt bits.
2211 		 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC.
2212 		 */
2213 		if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) {
2214 			sc->sc_stats.ast_rx_intr++;
2215 			sc->sc_rx.recv_sched(sc, 1);
2216 		}
2217 		if (status & HAL_INT_TX) {
2218 			sc->sc_stats.ast_tx_intr++;
2219 			/*
2220 			 * Grab all the currently set bits in the HAL txq bitmap
2221 			 * and blank them. This is the only place we should be
2222 			 * doing this.
2223 			 */
2224 			if (! sc->sc_isedma) {
2225 				ATH_PCU_LOCK(sc);
2226 				txqs = 0xffffffff;
2227 				ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
2228 				ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3,
2229 				    "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x",
2230 				    txqs,
2231 				    sc->sc_txq_active,
2232 				    sc->sc_txq_active | txqs);
2233 				sc->sc_txq_active |= txqs;
2234 				ATH_PCU_UNLOCK(sc);
2235 			}
2236 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
2237 		}
2238 		if (status & HAL_INT_BMISS) {
2239 			sc->sc_stats.ast_bmiss++;
2240 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
2241 		}
2242 		if (status & HAL_INT_GTT)
2243 			sc->sc_stats.ast_tx_timeout++;
2244 		if (status & HAL_INT_CST)
2245 			sc->sc_stats.ast_tx_cst++;
2246 		if (status & HAL_INT_MIB) {
2247 			sc->sc_stats.ast_mib++;
2248 			ATH_PCU_LOCK(sc);
2249 			/*
2250 			 * Disable interrupts until we service the MIB
2251 			 * interrupt; otherwise it will continue to fire.
2252 			 */
2253 			ath_hal_intrset(ah, 0);
2254 			/*
2255 			 * Let the hal handle the event.  We assume it will
2256 			 * clear whatever condition caused the interrupt.
2257 			 */
2258 			ath_hal_mibevent(ah, &sc->sc_halstats);
2259 			/*
2260 			 * Don't reset the interrupt if we've just
2261 			 * kicked the PCU, or we may get a nested
2262 			 * RXEOL before the rxproc has had a chance
2263 			 * to run.
2264 			 */
2265 			if (sc->sc_kickpcu == 0)
2266 				ath_hal_intrset(ah, sc->sc_imask);
2267 			ATH_PCU_UNLOCK(sc);
2268 		}
2269 		if (status & HAL_INT_RXORN) {
2270 			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
2271 			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN");
2272 			sc->sc_stats.ast_rxorn++;
2273 		}
2274 		if (status & HAL_INT_TSFOOR) {
2275 			device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__);
2276 			sc->sc_syncbeacon = 1;
2277 		}
2278 	}
2279 	ATH_PCU_LOCK(sc);
2280 	sc->sc_intr_cnt--;
2281 	ATH_PCU_UNLOCK(sc);
2282 
2283 	ATH_LOCK(sc);
2284 	ath_power_restore_power_state(sc);
2285 	ATH_UNLOCK(sc);
2286 }
2287 
2288 static void
2289 ath_fatal_proc(void *arg, int pending)
2290 {
2291 	struct ath_softc *sc = arg;
2292 	struct ifnet *ifp = sc->sc_ifp;
2293 	u_int32_t *state;
2294 	u_int32_t len;
2295 	void *sp;
2296 
2297 	if_printf(ifp, "hardware error; resetting\n");
2298 	/*
2299 	 * Fatal errors are unrecoverable.  Typically these
2300 	 * are caused by DMA errors.  Collect h/w state from
2301 	 * the hal so we can diagnose what's going on.
2302 	 */
2303 	wlan_serialize_enter();
2304 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
2305 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
2306 		state = sp;
2307 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
2308 		    state[0], state[1] , state[2], state[3],
2309 		    state[4], state[5]);
2310 	}
2311 	ath_reset(ifp, ATH_RESET_NOLOSS);
2312 	wlan_serialize_exit();
2313 }
2314 
2315 static void
2316 ath_bmiss_vap(struct ieee80211vap *vap)
2317 {
2318 	struct ath_softc *sc = vap->iv_ic->ic_softc;
2319 
2320 	/*
2321 	 * Workaround phantom bmiss interrupts by sanity-checking
2322 	 * the time of our last rx'd frame.  If it is within the
2323 	 * beacon miss interval then ignore the interrupt.  If it's
2324 	 * truly a bmiss we'll get another interrupt soon and that'll
2325 	 * be dispatched up for processing.  Note this applies only
2326 	 * for h/w beacon miss events.
2327 	 */
2328 
2329 	/*
2330 	 * XXX TODO: Just read the TSF during the interrupt path;
2331 	 * that way we don't have to wake up again just to read it
2332 	 * again.
2333 	 */
2334 	ATH_LOCK(sc);
2335 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2336 	ATH_UNLOCK(sc);
2337 
2338 	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
2339 		u_int64_t lastrx = sc->sc_lastrx;
2340 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
2341 		/* XXX should take a locked ref to iv_bss */
2342 		u_int bmisstimeout =
2343 			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
2344 
2345 		DPRINTF(sc, ATH_DEBUG_BEACON,
2346 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
2347 		    __func__, (unsigned long long) tsf,
2348 		    (unsigned long long)(tsf - lastrx),
2349 		    (unsigned long long) lastrx, bmisstimeout);
2350 
2351 		if (tsf - lastrx <= bmisstimeout) {
2352 			sc->sc_stats.ast_bmiss_phantom++;
2353 
2354 			ATH_LOCK(sc);
2355 			ath_power_restore_power_state(sc);
2356 			ATH_UNLOCK(sc);
2357 
2358 			return;
2359 		}
2360 	}
2361 
2362 	/*
2363 	 * There's no need to keep the hardware awake during the call
2364 	 * to av_bmiss().
2365 	 */
2366 	ATH_LOCK(sc);
2367 	ath_power_restore_power_state(sc);
2368 	ATH_UNLOCK(sc);
2369 
2370 	/*
2371 	 * Attempt to force a beacon resync.
2372 	 */
2373 	sc->sc_syncbeacon = 1;
2374 
2375 	ATH_VAP(vap)->av_bmiss(vap);
2376 }
2377 
2378 /* XXX this needs a force wakeup! */
2379 int
2380 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
2381 {
2382 	uint32_t rsize;
2383 	void *sp;
2384 
2385 	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
2386 		return 0;
2387 	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
2388 	*hangs = *(uint32_t *)sp;
2389 	return 1;
2390 }
2391 
2392 static void
2393 ath_bmiss_proc(void *arg, int pending)
2394 {
2395 	struct ath_softc *sc = arg;
2396 	struct ifnet *ifp = sc->sc_ifp;
2397 	uint32_t hangs;
2398 
2399 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
2400 
2401 	ATH_LOCK(sc);
2402 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2403 	ATH_UNLOCK(sc);
2404 
2405 	ath_beacon_miss(sc);
2406 
2407 	/*
2408 	 * Do a reset upon any becaon miss event.
2409 	 *
2410 	 * It may be a non-recognised RX clear hang which needs a reset
2411 	 * to clear.
2412 	 */
2413 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
2414 		ath_reset(ifp, ATH_RESET_NOLOSS);
2415 		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
2416 	} else {
2417 		ath_reset(ifp, ATH_RESET_NOLOSS);
2418 		ieee80211_beacon_miss(ifp->if_l2com);
2419 	}
2420 
2421 	/* Force a beacon resync, in case they've drifted */
2422 	sc->sc_syncbeacon = 1;
2423 
2424 	ATH_LOCK(sc);
2425 	ath_power_restore_power_state(sc);
2426 	ATH_UNLOCK(sc);
2427 }
2428 
2429 /*
2430  * Handle TKIP MIC setup to deal hardware that doesn't do MIC
2431  * calcs together with WME.  If necessary disable the crypto
2432  * hardware and mark the 802.11 state so keys will be setup
2433  * with the MIC work done in software.
2434  */
2435 static void
2436 ath_settkipmic(struct ath_softc *sc)
2437 {
2438 	struct ifnet *ifp = sc->sc_ifp;
2439 	struct ieee80211com *ic = ifp->if_l2com;
2440 
2441 	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
2442 		if (ic->ic_flags & IEEE80211_F_WME) {
2443 			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
2444 			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
2445 		} else {
2446 			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
2447 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
2448 		}
2449 	}
2450 }
2451 
2452 static void
2453 ath_init(void *arg)
2454 {
2455 	struct ath_softc *sc = (struct ath_softc *) arg;
2456 	struct ifnet *ifp = sc->sc_ifp;
2457 	struct ieee80211com *ic = ifp->if_l2com;
2458 	struct ath_hal *ah = sc->sc_ah;
2459 	HAL_STATUS status;
2460 
2461 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
2462 		__func__, ifp->if_flags);
2463 
2464 	ATH_LOCK(sc);
2465 	/*
2466 	 * Force the sleep state awake.
2467 	 */
2468 	ath_power_setselfgen(sc, HAL_PM_AWAKE);
2469 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2470 	ath_power_setpower(sc, HAL_PM_AWAKE);
2471 
2472 	/*
2473 	 * Stop anything previously setup.  This is safe
2474 	 * whether this is the first time through or not.
2475 	 */
2476 	ath_stop_locked(ifp);
2477 
2478 	/*
2479 	 * The basic interface to setting the hardware in a good
2480 	 * state is ``reset''.  On return the hardware is known to
2481 	 * be powered up and with interrupts disabled.  This must
2482 	 * be followed by initialization of the appropriate bits
2483 	 * and then setup of the interrupt mask.
2484 	 */
2485 	ath_settkipmic(sc);
2486 	ath_update_chainmasks(sc, ic->ic_curchan);
2487 	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2488 	    sc->sc_cur_rxchainmask);
2489 
2490 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
2491 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
2492 			status);
2493 		ATH_UNLOCK(sc);
2494 		return;
2495 	}
2496 
2497 	ATH_RX_LOCK(sc);
2498 	sc->sc_rx_stopped = 1;
2499 	sc->sc_rx_resetted = 1;
2500 	ATH_RX_UNLOCK(sc);
2501 
2502 	ath_chan_change(sc, ic->ic_curchan);
2503 
2504 	/* Let DFS at it in case it's a DFS channel */
2505 	ath_dfs_radar_enable(sc, ic->ic_curchan);
2506 
2507 	/* Let spectral at in case spectral is enabled */
2508 	ath_spectral_enable(sc, ic->ic_curchan);
2509 
2510 	/*
2511 	 * Let bluetooth coexistence at in case it's needed for this channel
2512 	 */
2513 	ath_btcoex_enable(sc, ic->ic_curchan);
2514 
2515 	/*
2516 	 * If we're doing TDMA, enforce the TXOP limitation for chips that
2517 	 * support it.
2518 	 */
2519 	if (sc->sc_hasenforcetxop && sc->sc_tdma)
2520 		ath_hal_setenforcetxop(sc->sc_ah, 1);
2521 	else
2522 		ath_hal_setenforcetxop(sc->sc_ah, 0);
2523 
2524 	/*
2525 	 * Likewise this is set during reset so update
2526 	 * state cached in the driver.
2527 	 */
2528 	sc->sc_diversity = ath_hal_getdiversity(ah);
2529 	sc->sc_lastlongcal = 0;
2530 	sc->sc_resetcal = 1;
2531 	sc->sc_lastcalreset = 0;
2532 	sc->sc_lastani = 0;
2533 	sc->sc_lastshortcal = 0;
2534 	sc->sc_doresetcal = AH_FALSE;
2535 	/*
2536 	 * Beacon timers were cleared here; give ath_newstate()
2537 	 * a hint that the beacon timers should be poked when
2538 	 * things transition to the RUN state.
2539 	 */
2540 	sc->sc_beacons = 0;
2541 
2542 	/*
2543 	 * Setup the hardware after reset: the key cache
2544 	 * is filled as needed and the receive engine is
2545 	 * set going.  Frame transmit is handled entirely
2546 	 * in the frame output path; there's nothing to do
2547 	 * here except setup the interrupt mask.
2548 	 */
2549 	if (ath_startrecv(sc) != 0) {
2550 		if_printf(ifp, "unable to start recv logic\n");
2551 		ath_power_restore_power_state(sc);
2552 		ATH_UNLOCK(sc);
2553 		return;
2554 	}
2555 
2556 	/*
2557 	 * Enable interrupts.
2558 	 */
2559 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
2560 		  | HAL_INT_RXORN | HAL_INT_TXURN
2561 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
2562 
2563 	/*
2564 	 * Enable RX EDMA bits.  Note these overlap with
2565 	 * HAL_INT_RX and HAL_INT_RXDESC respectively.
2566 	 */
2567 	if (sc->sc_isedma)
2568 		sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP);
2569 
2570 	/*
2571 	 * If we're an EDMA NIC, we don't care about RXEOL.
2572 	 * Writing a new descriptor in will simply restart
2573 	 * RX DMA.
2574 	 */
2575 	if (! sc->sc_isedma)
2576 		sc->sc_imask |= HAL_INT_RXEOL;
2577 
2578 	/*
2579 	 * Enable MIB interrupts when there are hardware phy counters.
2580 	 * Note we only do this (at the moment) for station mode.
2581 	 */
2582 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
2583 		sc->sc_imask |= HAL_INT_MIB;
2584 
2585 	/*
2586 	 * XXX add capability for this.
2587 	 *
2588 	 * If we're in STA mode (and maybe IBSS?) then register for
2589 	 * TSFOOR interrupts.
2590 	 */
2591 	if (ic->ic_opmode == IEEE80211_M_STA)
2592 		sc->sc_imask |= HAL_INT_TSFOOR;
2593 
2594 	/* Enable global TX timeout and carrier sense timeout if available */
2595 	if (ath_hal_gtxto_supported(ah))
2596 		sc->sc_imask |= HAL_INT_GTT;
2597 
2598 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
2599 		__func__, sc->sc_imask);
2600 
2601 	ifp->if_flags |= IFF_RUNNING;
2602 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
2603 	ath_hal_intrset(ah, sc->sc_imask);
2604 
2605 	ath_power_restore_power_state(sc);
2606 	ATH_UNLOCK(sc);
2607 
2608 #ifdef ATH_TX99_DIAG
2609 	if (sc->sc_tx99 != NULL)
2610 		sc->sc_tx99->start(sc->sc_tx99);
2611 	else
2612 #endif
2613 	ieee80211_start_all(ic);		/* start all vap's */
2614 }
2615 
2616 static void
2617 ath_stop_locked(struct ifnet *ifp)
2618 {
2619 	struct ath_softc *sc = ifp->if_softc;
2620 	struct ath_hal *ah = sc->sc_ah;
2621 
2622 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
2623 		__func__, sc->sc_invalid, ifp->if_flags);
2624 
2625 	ATH_LOCK_ASSERT(sc);
2626 
2627 	/*
2628 	 * Wake the hardware up before fiddling with it.
2629 	 */
2630 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2631 
2632 	if (ifp->if_flags & IFF_RUNNING) {
2633 		/*
2634 		 * Shutdown the hardware and driver:
2635 		 *    reset 802.11 state machine
2636 		 *    turn off timers
2637 		 *    disable interrupts
2638 		 *    turn off the radio
2639 		 *    clear transmit machinery
2640 		 *    clear receive machinery
2641 		 *    drain and release tx queues
2642 		 *    reclaim beacon resources
2643 		 *    power down hardware
2644 		 *
2645 		 * Note that some of this work is not possible if the
2646 		 * hardware is gone (invalid).
2647 		 */
2648 #ifdef ATH_TX99_DIAG
2649 		if (sc->sc_tx99 != NULL)
2650 			sc->sc_tx99->stop(sc->sc_tx99);
2651 #endif
2652 		callout_stop_sync(&sc->sc_wd_ch);
2653 		sc->sc_wd_timer = 0;
2654 		ifp->if_flags &= ~IFF_RUNNING;
2655 		if (!sc->sc_invalid) {
2656 			if (sc->sc_softled) {
2657 				callout_stop_sync(&sc->sc_ledtimer);
2658 				ath_hal_gpioset(ah, sc->sc_ledpin,
2659 					!sc->sc_ledon);
2660 				sc->sc_blinking = 0;
2661 			}
2662 			ath_hal_intrset(ah, 0);
2663 		}
2664 		/* XXX we should stop RX regardless of whether it's valid */
2665 		if (!sc->sc_invalid) {
2666 			ath_stoprecv(sc, 1);
2667 			ath_hal_phydisable(ah);
2668 		} else
2669 			sc->sc_rxlink = NULL;
2670 		ath_draintxq(sc, ATH_RESET_DEFAULT);
2671 		ath_beacon_free(sc);	/* XXX not needed */
2672 	}
2673 
2674 	/* And now, restore the current power state */
2675 	ath_power_restore_power_state(sc);
2676 }
2677 
2678 /*
2679  * Wait until all pending TX/RX has completed.
2680  *
2681  * This waits until all existing transmit, receive and interrupts
2682  * have completed.  It's assumed that the caller has first
2683  * grabbed the reset lock so it doesn't try to do overlapping
2684  * chip resets.
2685  */
2686 #define	MAX_TXRX_ITERATIONS	100
2687 static void
2688 ath_txrx_stop_locked(struct ath_softc *sc)
2689 {
2690 	int i = MAX_TXRX_ITERATIONS;
2691 
2692 	ATH_UNLOCK_ASSERT(sc);
2693 	ATH_PCU_LOCK_ASSERT(sc);
2694 
2695 	/*
2696 	 * Sleep until all the pending operations have completed.
2697 	 *
2698 	 * The caller must ensure that reset has been incremented
2699 	 * or the pending operations may continue being queued.
2700 	 */
2701 	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
2702 	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
2703 		if (i <= 0)
2704 			break;
2705 		if (wlan_is_serialized()) {
2706 			wlan_serialize_exit();
2707 			lksleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop",
2708 				msecs_to_ticks(10));
2709 			wlan_serialize_enter();
2710 		} else {
2711 			lksleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop",
2712 				msecs_to_ticks(10));
2713 		}
2714 		i--;
2715 	}
2716 
2717 	if (i <= 0)
2718 		device_printf(sc->sc_dev,
2719 		    "%s: didn't finish after %d iterations\n",
2720 		    __func__, MAX_TXRX_ITERATIONS);
2721 }
2722 #undef	MAX_TXRX_ITERATIONS
2723 
2724 #if 0
2725 static void
2726 ath_txrx_stop(struct ath_softc *sc)
2727 {
2728 	ATH_UNLOCK_ASSERT(sc);
2729 	ATH_PCU_UNLOCK_ASSERT(sc);
2730 
2731 	ATH_PCU_LOCK(sc);
2732 	ath_txrx_stop_locked(sc);
2733 	ATH_PCU_UNLOCK(sc);
2734 }
2735 #endif
2736 
2737 static void
2738 ath_txrx_start(struct ath_softc *sc)
2739 {
2740 
2741 	taskqueue_unblock(sc->sc_tq);
2742 }
2743 
2744 /*
2745  * Grab the reset lock, and wait around until noone else
2746  * is trying to do anything with it.
2747  *
2748  * This is totally horrible but we can't hold this lock for
2749  * long enough to do TX/RX or we end up with net80211/ip stack
2750  * LORs and eventual deadlock.
2751  *
2752  * "dowait" signals whether to spin, waiting for the reset
2753  * lock count to reach 0. This should (for now) only be used
2754  * during the reset path, as the rest of the code may not
2755  * be locking-reentrant enough to behave correctly.
2756  *
2757  * Another, cleaner way should be found to serialise all of
2758  * these operations.
2759  */
2760 #define	MAX_RESET_ITERATIONS	25
2761 static int
2762 ath_reset_grablock(struct ath_softc *sc, int dowait)
2763 {
2764 	int w = 0;
2765 	int i = MAX_RESET_ITERATIONS;
2766 
2767 	ATH_PCU_LOCK_ASSERT(sc);
2768 	do {
2769 		if (sc->sc_inreset_cnt == 0) {
2770 			w = 1;
2771 			break;
2772 		}
2773 		if (dowait == 0) {
2774 			w = 0;
2775 			break;
2776 		}
2777 		ATH_PCU_UNLOCK(sc);
2778 
2779 		/*
2780 		 * 1 tick is likely not enough time for long calibrations
2781 		 * to complete.  So we should wait quite a while.
2782 		 */
2783 #if defined(__DragonFly__)
2784 		tsleep(&sc->sc_inreset_cnt, 0,
2785 		       "ath_reset_grablock", (hz + 99) / 100);
2786 #else
2787 		pause("ath_reset_grablock", msecs_to_ticks(100));
2788 #endif
2789 		i--;
2790 		ATH_PCU_LOCK(sc);
2791 	} while (i > 0);
2792 
2793 	/*
2794 	 * We always increment the refcounter, regardless
2795 	 * of whether we succeeded to get it in an exclusive
2796 	 * way.
2797 	 */
2798 	sc->sc_inreset_cnt++;
2799 
2800 	if (i <= 0)
2801 		device_printf(sc->sc_dev,
2802 		    "%s: didn't finish after %d iterations\n",
2803 		    __func__, MAX_RESET_ITERATIONS);
2804 
2805 	if (w == 0)
2806 		device_printf(sc->sc_dev,
2807 		    "%s: warning, recursive reset path!\n",
2808 		    __func__);
2809 
2810 	return w;
2811 }
2812 #undef MAX_RESET_ITERATIONS
2813 
2814 /*
2815  * XXX TODO: write ath_reset_releaselock
2816  */
2817 
2818 static void
2819 ath_stop(struct ifnet *ifp)
2820 {
2821 	struct ath_softc *sc = ifp->if_softc;
2822 
2823 	ATH_LOCK(sc);
2824 	ath_stop_locked(ifp);
2825 	ATH_UNLOCK(sc);
2826 }
2827 
2828 /*
2829  * Reset the hardware w/o losing operational state.  This is
2830  * basically a more efficient way of doing ath_stop, ath_init,
2831  * followed by state transitions to the current 802.11
2832  * operational state.  Used to recover from various errors and
2833  * to reset or reload hardware state.
2834  */
2835 int
2836 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type)
2837 {
2838 	struct ieee80211com *ic = ifp->if_l2com;
2839 	struct ath_softc *sc = ic->ic_softc;
2840 	struct ath_hal *ah = sc->sc_ah;
2841 	HAL_STATUS status;
2842 	int i;
2843 
2844 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2845 
2846 	/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2847 	ATH_PCU_UNLOCK_ASSERT(sc);
2848 	ATH_UNLOCK_ASSERT(sc);
2849 
2850 	/* Try to (stop any further TX/RX from occuring */
2851 	taskqueue_block(sc->sc_tq);
2852 
2853 	/*
2854 	 * Wake the hardware up.
2855 	 */
2856 	ATH_LOCK(sc);
2857 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2858 	ATH_UNLOCK(sc);
2859 
2860 	ATH_PCU_LOCK(sc);
2861 
2862 	/*
2863 	 * Grab the reset lock before TX/RX is stopped.
2864 	 *
2865 	 * This is needed to ensure that when the TX/RX actually does finish,
2866 	 * no further TX/RX/reset runs in parallel with this.
2867 	 */
2868 	if (ath_reset_grablock(sc, 1) == 0) {
2869 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2870 		    __func__);
2871 	}
2872 
2873 	/* disable interrupts */
2874 	ath_hal_intrset(ah, 0);
2875 
2876 	/*
2877 	 * Now, ensure that any in progress TX/RX completes before we
2878 	 * continue.
2879 	 */
2880 	ath_txrx_stop_locked(sc);
2881 
2882 	ATH_PCU_UNLOCK(sc);
2883 
2884 	/*
2885 	 * Regardless of whether we're doing a no-loss flush or
2886 	 * not, stop the PCU and handle what's in the RX queue.
2887 	 * That way frames aren't dropped which shouldn't be.
2888 	 */
2889 	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2890 	ath_rx_flush(sc);
2891 
2892 	/*
2893 	 * Should now wait for pending TX/RX to complete
2894 	 * and block future ones from occuring. This needs to be
2895 	 * done before the TX queue is drained.
2896 	 */
2897 	ath_draintxq(sc, reset_type);	/* stop xmit side */
2898 
2899 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
2900 	/* NB: indicate channel change so we do a full reset */
2901 	ath_update_chainmasks(sc, ic->ic_curchan);
2902 	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2903 	    sc->sc_cur_rxchainmask);
2904 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
2905 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
2906 			__func__, status);
2907 	sc->sc_diversity = ath_hal_getdiversity(ah);
2908 
2909 	ATH_RX_LOCK(sc);
2910 	sc->sc_rx_stopped = 1;
2911 	sc->sc_rx_resetted = 1;
2912 	ATH_RX_UNLOCK(sc);
2913 
2914 	/* Let DFS at it in case it's a DFS channel */
2915 	ath_dfs_radar_enable(sc, ic->ic_curchan);
2916 
2917 	/* Let spectral at in case spectral is enabled */
2918 	ath_spectral_enable(sc, ic->ic_curchan);
2919 
2920 	/*
2921 	 * Let bluetooth coexistence at in case it's needed for this channel
2922 	 */
2923 	ath_btcoex_enable(sc, ic->ic_curchan);
2924 
2925 	/*
2926 	 * If we're doing TDMA, enforce the TXOP limitation for chips that
2927 	 * support it.
2928 	 */
2929 	if (sc->sc_hasenforcetxop && sc->sc_tdma)
2930 		ath_hal_setenforcetxop(sc->sc_ah, 1);
2931 	else
2932 		ath_hal_setenforcetxop(sc->sc_ah, 0);
2933 
2934 	if (ath_startrecv(sc) != 0)	/* restart recv */
2935 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
2936 	/*
2937 	 * We may be doing a reset in response to an ioctl
2938 	 * that changes the channel so update any state that
2939 	 * might change as a result.
2940 	 */
2941 	ath_chan_change(sc, ic->ic_curchan);
2942 	if (sc->sc_beacons) {		/* restart beacons */
2943 #ifdef IEEE80211_SUPPORT_TDMA
2944 		if (sc->sc_tdma)
2945 			ath_tdma_config(sc, NULL);
2946 		else
2947 #endif
2948 			ath_beacon_config(sc, NULL);
2949 	}
2950 
2951 	/*
2952 	 * Release the reset lock and re-enable interrupts here.
2953 	 * If an interrupt was being processed in ath_intr(),
2954 	 * it would disable interrupts at this point. So we have
2955 	 * to atomically enable interrupts and decrement the
2956 	 * reset counter - this way ath_intr() doesn't end up
2957 	 * disabling interrupts without a corresponding enable
2958 	 * in the rest or channel change path.
2959 	 *
2960 	 * Grab the TX reference in case we need to transmit.
2961 	 * That way a parallel transmit doesn't.
2962 	 */
2963 	ATH_PCU_LOCK(sc);
2964 	sc->sc_inreset_cnt--;
2965 	sc->sc_txstart_cnt++;
2966 	/* XXX only do this if sc_inreset_cnt == 0? */
2967 	ath_hal_intrset(ah, sc->sc_imask);
2968 	ATH_PCU_UNLOCK(sc);
2969 
2970 	/*
2971 	 * TX and RX can be started here. If it were started with
2972 	 * sc_inreset_cnt > 0, the TX and RX path would abort.
2973 	 * Thus if this is a nested call through the reset or
2974 	 * channel change code, TX completion will occur but
2975 	 * RX completion and ath_start / ath_tx_start will not
2976 	 * run.
2977 	 */
2978 
2979 	/* Restart TX/RX as needed */
2980 	ath_txrx_start(sc);
2981 
2982 	/* XXX TODO: we need to hold the tx refcount here! */
2983 
2984 	/* Restart TX completion and pending TX */
2985 	if (reset_type == ATH_RESET_NOLOSS) {
2986 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2987 			if (ATH_TXQ_SETUP(sc, i)) {
2988 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
2989 				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
2990 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
2991 
2992 				ATH_TX_LOCK(sc);
2993 				ath_txq_sched(sc, &sc->sc_txq[i]);
2994 				ATH_TX_UNLOCK(sc);
2995 			}
2996 		}
2997 	}
2998 
2999 	/*
3000 	 * This may have been set during an ath_start() call which
3001 	 * set this once it detected a concurrent TX was going on.
3002 	 * So, clear it.
3003 	 */
3004 	IF_LOCK(&ifp->if_snd);
3005 #if defined(__DragonFly__)
3006 	ifq_clr_oactive(&ifp->if_snd);
3007 #else
3008 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3009 #endif
3010 	IF_UNLOCK(&ifp->if_snd);
3011 
3012 	ATH_LOCK(sc);
3013 	ath_power_restore_power_state(sc);
3014 	ATH_UNLOCK(sc);
3015 
3016 	ATH_PCU_LOCK(sc);
3017 	sc->sc_txstart_cnt--;
3018 	ATH_PCU_UNLOCK(sc);
3019 
3020 	/* Handle any frames in the TX queue */
3021 	/*
3022 	 * XXX should this be done by the caller, rather than
3023 	 * ath_reset() ?
3024 	 */
3025 	ath_tx_kick(sc);		/* restart xmit */
3026 	return 0;
3027 }
3028 
3029 static int
3030 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
3031 {
3032 	struct ieee80211com *ic = vap->iv_ic;
3033 	struct ifnet *ifp = ic->ic_ifp;
3034 	struct ath_softc *sc = ic->ic_softc;
3035 	struct ath_hal *ah = sc->sc_ah;
3036 
3037 	switch (cmd) {
3038 	case IEEE80211_IOC_TXPOWER:
3039 		/*
3040 		 * If per-packet TPC is enabled, then we have nothing
3041 		 * to do; otherwise we need to force the global limit.
3042 		 * All this can happen directly; no need to reset.
3043 		 */
3044 		if (!ath_hal_gettpc(ah))
3045 			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
3046 		return 0;
3047 	}
3048 	/* XXX? Full or NOLOSS? */
3049 	return ath_reset(ifp, ATH_RESET_FULL);
3050 }
3051 
3052 struct ath_buf *
3053 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
3054 {
3055 	struct ath_buf *bf;
3056 
3057 	ATH_TXBUF_LOCK_ASSERT(sc);
3058 
3059 	if (btype == ATH_BUFTYPE_MGMT)
3060 		bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
3061 	else
3062 		bf = TAILQ_FIRST(&sc->sc_txbuf);
3063 
3064 	if (bf == NULL) {
3065 		sc->sc_stats.ast_tx_getnobuf++;
3066 	} else {
3067 		if (bf->bf_flags & ATH_BUF_BUSY) {
3068 			sc->sc_stats.ast_tx_getbusybuf++;
3069 			bf = NULL;
3070 		}
3071 	}
3072 
3073 	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
3074 		if (btype == ATH_BUFTYPE_MGMT)
3075 			TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
3076 		else {
3077 			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
3078 			sc->sc_txbuf_cnt--;
3079 
3080 			/*
3081 			 * This shuldn't happen; however just to be
3082 			 * safe print a warning and fudge the txbuf
3083 			 * count.
3084 			 */
3085 			if (sc->sc_txbuf_cnt < 0) {
3086 				device_printf(sc->sc_dev,
3087 				    "%s: sc_txbuf_cnt < 0?\n",
3088 				    __func__);
3089 				sc->sc_txbuf_cnt = 0;
3090 			}
3091 		}
3092 	} else
3093 		bf = NULL;
3094 
3095 	if (bf == NULL) {
3096 		/* XXX should check which list, mgmt or otherwise */
3097 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
3098 		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
3099 			"out of xmit buffers" : "xmit buffer busy");
3100 		return NULL;
3101 	}
3102 
3103 	/* XXX TODO: should do this at buffer list initialisation */
3104 	/* XXX (then, ensure the buffer has the right flag set) */
3105 	bf->bf_flags = 0;
3106 	if (btype == ATH_BUFTYPE_MGMT)
3107 		bf->bf_flags |= ATH_BUF_MGMT;
3108 	else
3109 		bf->bf_flags &= (~ATH_BUF_MGMT);
3110 
3111 	/* Valid bf here; clear some basic fields */
3112 	bf->bf_next = NULL;	/* XXX just to be sure */
3113 	bf->bf_last = NULL;	/* XXX again, just to be sure */
3114 	bf->bf_comp = NULL;	/* XXX again, just to be sure */
3115 	bzero(&bf->bf_state, sizeof(bf->bf_state));
3116 
3117 	/*
3118 	 * Track the descriptor ID only if doing EDMA
3119 	 */
3120 	if (sc->sc_isedma) {
3121 		bf->bf_descid = sc->sc_txbuf_descid;
3122 		sc->sc_txbuf_descid++;
3123 	}
3124 
3125 	return bf;
3126 }
3127 
3128 /*
3129  * When retrying a software frame, buffers marked ATH_BUF_BUSY
3130  * can't be thrown back on the queue as they could still be
3131  * in use by the hardware.
3132  *
3133  * This duplicates the buffer, or returns NULL.
3134  *
3135  * The descriptor is also copied but the link pointers and
3136  * the DMA segments aren't copied; this frame should thus
3137  * be again passed through the descriptor setup/chain routines
3138  * so the link is correct.
3139  *
3140  * The caller must free the buffer using ath_freebuf().
3141  */
3142 struct ath_buf *
3143 ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf)
3144 {
3145 	struct ath_buf *tbf;
3146 
3147 	tbf = ath_getbuf(sc,
3148 	    (bf->bf_flags & ATH_BUF_MGMT) ?
3149 	     ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL);
3150 	if (tbf == NULL)
3151 		return NULL;	/* XXX failure? Why? */
3152 
3153 	/* Copy basics */
3154 	tbf->bf_next = NULL;
3155 	tbf->bf_nseg = bf->bf_nseg;
3156 	tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE;
3157 	tbf->bf_status = bf->bf_status;
3158 	tbf->bf_m = bf->bf_m;
3159 	tbf->bf_node = bf->bf_node;
3160 	KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__));
3161 	/* will be setup by the chain/setup function */
3162 	tbf->bf_lastds = NULL;
3163 	/* for now, last == self */
3164 	tbf->bf_last = tbf;
3165 	tbf->bf_comp = bf->bf_comp;
3166 
3167 	/* NOTE: DMA segments will be setup by the setup/chain functions */
3168 
3169 	/* The caller has to re-init the descriptor + links */
3170 
3171 	/*
3172 	 * Free the DMA mapping here, before we NULL the mbuf.
3173 	 * We must only call bus_dmamap_unload() once per mbuf chain
3174 	 * or behaviour is undefined.
3175 	 */
3176 	if (bf->bf_m != NULL) {
3177 		/*
3178 		 * XXX is this POSTWRITE call required?
3179 		 */
3180 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3181 		    BUS_DMASYNC_POSTWRITE);
3182 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3183 	}
3184 
3185 	bf->bf_m = NULL;
3186 	bf->bf_node = NULL;
3187 
3188 	/* Copy state */
3189 	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
3190 
3191 	return tbf;
3192 }
3193 
3194 struct ath_buf *
3195 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
3196 {
3197 	struct ath_buf *bf;
3198 
3199 	ATH_TXBUF_LOCK(sc);
3200 	bf = _ath_getbuf_locked(sc, btype);
3201 	/*
3202 	 * If a mgmt buffer was requested but we're out of those,
3203 	 * try requesting a normal one.
3204 	 */
3205 	if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
3206 		bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
3207 	ATH_TXBUF_UNLOCK(sc);
3208 	if (bf == NULL) {
3209 		struct ifnet *ifp = sc->sc_ifp;
3210 
3211 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
3212 		sc->sc_stats.ast_tx_qstop++;
3213 		IF_LOCK(&ifp->if_snd);
3214 #if defined(__DragonFly__)
3215 		ifq_set_oactive(&ifp->if_snd);
3216 #else
3217 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3218 #endif
3219 		IF_UNLOCK(&ifp->if_snd);
3220 	}
3221 	return bf;
3222 }
3223 
3224 #if !defined(__DragonFly__)
3225 
3226 static void
3227 ath_qflush(struct ifnet *ifp)
3228 {
3229 
3230 	/* XXX TODO */
3231 }
3232 
3233 #endif
3234 
3235 /*
3236  * Transmit a single frame.
3237  *
3238  * net80211 will free the node reference if the transmit
3239  * fails, so don't free the node reference here.
3240  */
3241 static int
3242 ath_transmit(struct ifnet *ifp, struct mbuf *m)
3243 {
3244 	struct ieee80211com *ic = ifp->if_l2com;
3245 	struct ath_softc *sc = ic->ic_softc;
3246 	struct ieee80211_node *ni;
3247 	struct mbuf *next;
3248 	struct ath_buf *bf;
3249 	ath_bufhead frags;
3250 	int retval = 0;
3251 
3252 	/*
3253 	 * Tell the reset path that we're currently transmitting.
3254 	 */
3255 	ATH_PCU_LOCK(sc);
3256 	if (sc->sc_inreset_cnt > 0) {
3257 		DPRINTF(sc, ATH_DEBUG_XMIT,
3258 		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
3259 		ATH_PCU_UNLOCK(sc);
3260 		IF_LOCK(&ifp->if_snd);
3261 		sc->sc_stats.ast_tx_qstop++;
3262 #if defined(__DragonFly__)
3263 		/* removed, DragonFly uses OACTIVE to control if_start calls */
3264 		/*ifq_set_oactive(&ifp->if_snd);*/
3265 #else
3266 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3267 #endif
3268 		IF_UNLOCK(&ifp->if_snd);
3269 		ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish");
3270 #if defined(__DragonFly__)
3271 		m_freem(m);
3272 		m = NULL;
3273 #endif
3274 		return (ENOBUFS);	/* XXX should be EINVAL or? */
3275 	}
3276 	sc->sc_txstart_cnt++;
3277 	ATH_PCU_UNLOCK(sc);
3278 
3279 	/* Wake the hardware up already */
3280 	ATH_LOCK(sc);
3281 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3282 	ATH_UNLOCK(sc);
3283 
3284 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start");
3285 	/*
3286 	 * Grab the TX lock - it's ok to do this here; we haven't
3287 	 * yet started transmitting.
3288 	 */
3289 	ATH_TX_LOCK(sc);
3290 
3291 	/*
3292 	 * Node reference, if there's one.
3293 	 */
3294 	ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
3295 
3296 	/*
3297 	 * Enforce how deep a node queue can get.
3298 	 *
3299 	 * XXX it would be nicer if we kept an mbuf queue per
3300 	 * node and only whacked them into ath_bufs when we
3301 	 * are ready to schedule some traffic from them.
3302 	 * .. that may come later.
3303 	 *
3304 	 * XXX we should also track the per-node hardware queue
3305 	 * depth so it is easy to limit the _SUM_ of the swq and
3306 	 * hwq frames.  Since we only schedule two HWQ frames
3307 	 * at a time, this should be OK for now.
3308 	 */
3309 	if ((!(m->m_flags & M_EAPOL)) &&
3310 	    (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) {
3311 		sc->sc_stats.ast_tx_nodeq_overflow++;
3312 		m_freem(m);
3313 		m = NULL;
3314 		retval = ENOBUFS;
3315 		goto finish;
3316 	}
3317 
3318 	/*
3319 	 * Check how many TX buffers are available.
3320 	 *
3321 	 * If this is for non-EAPOL traffic, just leave some
3322 	 * space free in order for buffer cloning and raw
3323 	 * frame transmission to occur.
3324 	 *
3325 	 * If it's for EAPOL traffic, ignore this for now.
3326 	 * Management traffic will be sent via the raw transmit
3327 	 * method which bypasses this check.
3328 	 *
3329 	 * This is needed to ensure that EAPOL frames during
3330 	 * (re) keying have a chance to go out.
3331 	 *
3332 	 * See kern/138379 for more information.
3333 	 */
3334 	if ((!(m->m_flags & M_EAPOL)) &&
3335 	    (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) {
3336 		sc->sc_stats.ast_tx_nobuf++;
3337 		m_freem(m);
3338 		m = NULL;
3339 		retval = ENOBUFS;
3340 		goto finish;
3341 	}
3342 
3343 	/*
3344 	 * Grab a TX buffer and associated resources.
3345 	 *
3346 	 * If it's an EAPOL frame, allocate a MGMT ath_buf.
3347 	 * That way even with temporary buffer exhaustion due to
3348 	 * the data path doesn't leave us without the ability
3349 	 * to transmit management frames.
3350 	 *
3351 	 * Otherwise allocate a normal buffer.
3352 	 */
3353 	if (m->m_flags & M_EAPOL)
3354 		bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT);
3355 	else
3356 		bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL);
3357 
3358 	if (bf == NULL) {
3359 		/*
3360 		 * If we failed to allocate a buffer, fail.
3361 		 *
3362 		 * We shouldn't fail normally, due to the check
3363 		 * above.
3364 		 */
3365 		sc->sc_stats.ast_tx_nobuf++;
3366 		IF_LOCK(&ifp->if_snd);
3367 #if defined(__DragonFly__)
3368 		/* removed, DragonFly uses OACTIVE to control if_start calls */
3369 		/*ifq_set_oactive(&ifp->if_snd);*/
3370 #else
3371 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3372 #endif
3373 		IF_UNLOCK(&ifp->if_snd);
3374 		m_freem(m);
3375 		m = NULL;
3376 		retval = ENOBUFS;
3377 		goto finish;
3378 	}
3379 
3380 	/*
3381 	 * At this point we have a buffer; so we need to free it
3382 	 * if we hit any error conditions.
3383 	 */
3384 
3385 	/*
3386 	 * Check for fragmentation.  If this frame
3387 	 * has been broken up verify we have enough
3388 	 * buffers to send all the fragments so all
3389 	 * go out or none...
3390 	 */
3391 	TAILQ_INIT(&frags);
3392 	if ((m->m_flags & M_FRAG) &&
3393 	    !ath_txfrag_setup(sc, &frags, m, ni)) {
3394 		DPRINTF(sc, ATH_DEBUG_XMIT,
3395 		    "%s: out of txfrag buffers\n", __func__);
3396 		sc->sc_stats.ast_tx_nofrag++;
3397 #if defined(__DragonFly__)
3398 		++ifp->if_oerrors;
3399 #else
3400 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3401 #endif
3402 		ath_freetx(m);
3403 		goto bad;
3404 	}
3405 
3406 	/*
3407 	 * At this point if we have any TX fragments, then we will
3408 	 * have bumped the node reference once for each of those.
3409 	 */
3410 
3411 	/*
3412 	 * XXX Is there anything actually _enforcing_ that the
3413 	 * fragments are being transmitted in one hit, rather than
3414 	 * being interleaved with other transmissions on that
3415 	 * hardware queue?
3416 	 *
3417 	 * The ATH TX output lock is the only thing serialising this
3418 	 * right now.
3419 	 */
3420 
3421 	/*
3422 	 * Calculate the "next fragment" length field in ath_buf
3423 	 * in order to let the transmit path know enough about
3424 	 * what to next write to the hardware.
3425 	 */
3426 	if (m->m_flags & M_FRAG) {
3427 		struct ath_buf *fbf = bf;
3428 		struct ath_buf *n_fbf = NULL;
3429 		struct mbuf *fm = m->m_nextpkt;
3430 
3431 		/*
3432 		 * We need to walk the list of fragments and set
3433 		 * the next size to the following buffer.
3434 		 * However, the first buffer isn't in the frag
3435 		 * list, so we have to do some gymnastics here.
3436 		 */
3437 		TAILQ_FOREACH(n_fbf, &frags, bf_list) {
3438 			fbf->bf_nextfraglen = fm->m_pkthdr.len;
3439 			fbf = n_fbf;
3440 			fm = fm->m_nextpkt;
3441 		}
3442 	}
3443 
3444 	/*
3445 	 * Bump the ifp output counter.
3446 	 *
3447 	 * XXX should use atomics?
3448 	 */
3449 #if defined(__DragonFly__)
3450 	++ifp->if_opackets;
3451 #else
3452 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3453 #endif
3454 nextfrag:
3455 	/*
3456 	 * Pass the frame to the h/w for transmission.
3457 	 * Fragmented frames have each frag chained together
3458 	 * with m_nextpkt.  We know there are sufficient ath_buf's
3459 	 * to send all the frags because of work done by
3460 	 * ath_txfrag_setup.  We leave m_nextpkt set while
3461 	 * calling ath_tx_start so it can use it to extend the
3462 	 * the tx duration to cover the subsequent frag and
3463 	 * so it can reclaim all the mbufs in case of an error;
3464 	 * ath_tx_start clears m_nextpkt once it commits to
3465 	 * handing the frame to the hardware.
3466 	 *
3467 	 * Note: if this fails, then the mbufs are freed but
3468 	 * not the node reference.
3469 	 */
3470 	next = m->m_nextpkt;
3471 	if (ath_tx_start(sc, ni, bf, m)) {
3472 bad:
3473 #if defined(__DragonFly__)
3474 		++ifp->if_oerrors;
3475 #else
3476 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3477 #endif
3478 reclaim:
3479 		bf->bf_m = NULL;
3480 		bf->bf_node = NULL;
3481 		ATH_TXBUF_LOCK(sc);
3482 		ath_returnbuf_head(sc, bf);
3483 		/*
3484 		 * Free the rest of the node references and
3485 		 * buffers for the fragment list.
3486 		 */
3487 		ath_txfrag_cleanup(sc, &frags, ni);
3488 		ATH_TXBUF_UNLOCK(sc);
3489 		retval = ENOBUFS;
3490 		goto finish;
3491 	}
3492 
3493 	/*
3494 	 * Check here if the node is in power save state.
3495 	 */
3496 	ath_tx_update_tim(sc, ni, 1);
3497 
3498 	if (next != NULL) {
3499 		/*
3500 		 * Beware of state changing between frags.
3501 		 * XXX check sta power-save state?
3502 		 */
3503 		if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
3504 			DPRINTF(sc, ATH_DEBUG_XMIT,
3505 			    "%s: flush fragmented packet, state %s\n",
3506 			    __func__,
3507 			    ieee80211_state_name[ni->ni_vap->iv_state]);
3508 			/* XXX dmamap */
3509 			ath_freetx(next);
3510 			goto reclaim;
3511 		}
3512 		m = next;
3513 		bf = TAILQ_FIRST(&frags);
3514 		KASSERT(bf != NULL, ("no buf for txfrag"));
3515 		TAILQ_REMOVE(&frags, bf, bf_list);
3516 		goto nextfrag;
3517 	}
3518 
3519 	/*
3520 	 * Bump watchdog timer.
3521 	 */
3522 	sc->sc_wd_timer = 5;
3523 
3524 finish:
3525 	ATH_TX_UNLOCK(sc);
3526 
3527 	/*
3528 	 * Finished transmitting!
3529 	 */
3530 	ATH_PCU_LOCK(sc);
3531 	sc->sc_txstart_cnt--;
3532 	ATH_PCU_UNLOCK(sc);
3533 
3534 	/* Sleep the hardware if required */
3535 	ATH_LOCK(sc);
3536 	ath_power_restore_power_state(sc);
3537 	ATH_UNLOCK(sc);
3538 
3539 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished");
3540 
3541 	return (retval);
3542 }
3543 
3544 static int
3545 ath_media_change(struct ifnet *ifp)
3546 {
3547 	int error = ieee80211_media_change(ifp);
3548 	/* NB: only the fixed rate can change and that doesn't need a reset */
3549 	return (error == ENETRESET ? 0 : error);
3550 }
3551 
3552 /*
3553  * Block/unblock tx+rx processing while a key change is done.
3554  * We assume the caller serializes key management operations
3555  * so we only need to worry about synchronization with other
3556  * uses that originate in the driver.
3557  */
3558 static void
3559 ath_key_update_begin(struct ieee80211vap *vap)
3560 {
3561 	struct ath_softc *sc = vap->iv_ic->ic_softc;
3562 
3563 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
3564 	taskqueue_block(sc->sc_tq);
3565 }
3566 
3567 static void
3568 ath_key_update_end(struct ieee80211vap *vap)
3569 {
3570 	struct ath_softc *sc = vap->iv_ic->ic_softc;
3571 
3572 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
3573 	taskqueue_unblock(sc->sc_tq);
3574 }
3575 
3576 static void
3577 ath_update_promisc(struct ieee80211com *ic)
3578 {
3579 	struct ath_softc *sc = ic->ic_softc;
3580 	u_int32_t rfilt;
3581 
3582 	/* configure rx filter */
3583 	ATH_LOCK(sc);
3584 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3585 	rfilt = ath_calcrxfilter(sc);
3586 	ath_hal_setrxfilter(sc->sc_ah, rfilt);
3587 	ath_power_restore_power_state(sc);
3588 	ATH_UNLOCK(sc);
3589 
3590 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
3591 }
3592 
3593 /*
3594  * Driver-internal mcast update call.
3595  *
3596  * Assumes the hardware is already awake.
3597  */
3598 static void
3599 ath_update_mcast_hw(struct ath_softc *sc)
3600 {
3601 	struct ifnet *ifp = sc->sc_ifp;
3602 	u_int32_t mfilt[2];
3603 
3604 	/* calculate and install multicast filter */
3605 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3606 		struct ifmultiaddr *ifma;
3607 		/*
3608 		 * Merge multicast addresses to form the hardware filter.
3609 		 */
3610 		mfilt[0] = mfilt[1] = 0;
3611 #if defined(__DragonFly__)
3612 		/* nothing */
3613 #else
3614 		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
3615 #endif
3616 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
3617 			caddr_t dl;
3618 			u_int32_t val;
3619 			u_int8_t pos;
3620 
3621 			/* calculate XOR of eight 6bit values */
3622 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
3623 			val = LE_READ_4(dl + 0);
3624 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
3625 			val = LE_READ_4(dl + 3);
3626 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
3627 			pos &= 0x3f;
3628 			mfilt[pos / 32] |= (1 << (pos % 32));
3629 		}
3630 #if defined(__DragonFly__)
3631 		/* nothing */
3632 #else
3633 		if_maddr_runlock(ifp);
3634 #endif
3635 	} else
3636 		mfilt[0] = mfilt[1] = ~0;
3637 
3638 	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
3639 
3640 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
3641 		__func__, mfilt[0], mfilt[1]);
3642 }
3643 
3644 /*
3645  * Called from the net80211 layer - force the hardware
3646  * awake before operating.
3647  */
3648 static void
3649 ath_update_mcast(struct ieee80211com *ic)
3650 {
3651 	struct ath_softc *sc = ic->ic_softc;
3652 
3653 	ATH_LOCK(sc);
3654 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3655 	ATH_UNLOCK(sc);
3656 
3657 	ath_update_mcast_hw(sc);
3658 
3659 	ATH_LOCK(sc);
3660 	ath_power_restore_power_state(sc);
3661 	ATH_UNLOCK(sc);
3662 }
3663 
3664 void
3665 ath_mode_init(struct ath_softc *sc)
3666 {
3667 	struct ifnet *ifp = sc->sc_ifp;
3668 	struct ath_hal *ah = sc->sc_ah;
3669 	u_int32_t rfilt;
3670 
3671 	/* configure rx filter */
3672 	rfilt = ath_calcrxfilter(sc);
3673 	ath_hal_setrxfilter(ah, rfilt);
3674 
3675 	/* configure operational mode */
3676 	ath_hal_setopmode(ah);
3677 
3678 #if !defined(__DragonFly__)
3679 	DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE,
3680 	    "%s: ah=%p, ifp=%p, if_addr=%p\n",
3681 	    __func__,
3682 	    ah,
3683 	    ifp,
3684 	    (ifp == NULL) ? NULL : ifp->if_addr);
3685 #endif
3686 
3687 	/* handle any link-level address change */
3688 	ath_hal_setmac(ah, IF_LLADDR(ifp));
3689 
3690 	/* calculate and install multicast filter */
3691 	ath_update_mcast_hw(sc);
3692 }
3693 
3694 /*
3695  * Set the slot time based on the current setting.
3696  */
3697 void
3698 ath_setslottime(struct ath_softc *sc)
3699 {
3700 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3701 	struct ath_hal *ah = sc->sc_ah;
3702 	u_int usec;
3703 
3704 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
3705 		usec = 13;
3706 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
3707 		usec = 21;
3708 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
3709 		/* honor short/long slot time only in 11g */
3710 		/* XXX shouldn't honor on pure g or turbo g channel */
3711 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
3712 			usec = HAL_SLOT_TIME_9;
3713 		else
3714 			usec = HAL_SLOT_TIME_20;
3715 	} else
3716 		usec = HAL_SLOT_TIME_9;
3717 
3718 	DPRINTF(sc, ATH_DEBUG_RESET,
3719 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
3720 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
3721 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
3722 
3723 	/* Wake up the hardware first before updating the slot time */
3724 	ATH_LOCK(sc);
3725 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3726 	ath_hal_setslottime(ah, usec);
3727 	ath_power_restore_power_state(sc);
3728 	sc->sc_updateslot = OK;
3729 	ATH_UNLOCK(sc);
3730 }
3731 
3732 /*
3733  * Callback from the 802.11 layer to update the
3734  * slot time based on the current setting.
3735  */
3736 static void
3737 ath_updateslot(struct ieee80211com *ic)
3738 {
3739 	struct ath_softc *sc = ic->ic_softc;
3740 
3741 	/*
3742 	 * When not coordinating the BSS, change the hardware
3743 	 * immediately.  For other operation we defer the change
3744 	 * until beacon updates have propagated to the stations.
3745 	 *
3746 	 * XXX sc_updateslot isn't changed behind a lock?
3747 	 */
3748 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3749 	    ic->ic_opmode == IEEE80211_M_MBSS)
3750 		sc->sc_updateslot = UPDATE;
3751 	else
3752 		ath_setslottime(sc);
3753 }
3754 
3755 /*
3756  * Append the contents of src to dst; both queues
3757  * are assumed to be locked.
3758  */
3759 void
3760 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
3761 {
3762 
3763 	ATH_TXQ_LOCK_ASSERT(src);
3764 	ATH_TXQ_LOCK_ASSERT(dst);
3765 
3766 	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
3767 	dst->axq_link = src->axq_link;
3768 	src->axq_link = NULL;
3769 	dst->axq_depth += src->axq_depth;
3770 	dst->axq_aggr_depth += src->axq_aggr_depth;
3771 	src->axq_depth = 0;
3772 	src->axq_aggr_depth = 0;
3773 }
3774 
3775 /*
3776  * Reset the hardware, with no loss.
3777  *
3778  * This can't be used for a general case reset.
3779  */
3780 static void
3781 ath_reset_proc(void *arg, int pending)
3782 {
3783 	struct ath_softc *sc = arg;
3784 	struct ifnet *ifp = sc->sc_ifp;
3785 
3786 #if 0
3787 	if_printf(ifp, "%s: resetting\n", __func__);
3788 #endif
3789 	wlan_serialize_enter();
3790 	ath_reset(ifp, ATH_RESET_NOLOSS);
3791 	wlan_serialize_exit();
3792 }
3793 
3794 /*
3795  * Reset the hardware after detecting beacons have stopped.
3796  */
3797 static void
3798 ath_bstuck_proc(void *arg, int pending)
3799 {
3800 	struct ath_softc *sc = arg;
3801 	struct ifnet *ifp = sc->sc_ifp;
3802 	uint32_t hangs = 0;
3803 
3804 	wlan_serialize_enter();
3805 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
3806 		if_printf(ifp, "bb hang detected (0x%x)\n", hangs);
3807 
3808 #ifdef	ATH_DEBUG_ALQ
3809 	if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON))
3810 		if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL);
3811 #endif
3812 
3813 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3814 		sc->sc_bmisscount);
3815 	sc->sc_stats.ast_bstuck++;
3816 	/*
3817 	 * This assumes that there's no simultaneous channel mode change
3818 	 * occuring.
3819 	 */
3820 	ath_reset(ifp, ATH_RESET_NOLOSS);
3821 	wlan_serialize_exit();
3822 }
3823 
3824 static void
3825 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3826 {
3827 	bus_addr_t *paddr = (bus_addr_t*) arg;
3828 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3829 	*paddr = segs->ds_addr;
3830 }
3831 
3832 /*
3833  * Allocate the descriptors and appropriate DMA tag/setup.
3834  *
3835  * For some situations (eg EDMA TX completion), there isn't a requirement
3836  * for the ath_buf entries to be allocated.
3837  */
3838 int
3839 ath_descdma_alloc_desc(struct ath_softc *sc,
3840 	struct ath_descdma *dd, ath_bufhead *head,
3841 	const char *name, int ds_size, int ndesc)
3842 {
3843 #define	DS2PHYS(_dd, _ds) \
3844 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3845 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3846 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3847 	struct ifnet *ifp = sc->sc_ifp;
3848 	int error;
3849 
3850 	dd->dd_descsize = ds_size;
3851 
3852 	DPRINTF(sc, ATH_DEBUG_RESET,
3853 	    "%s: %s DMA: %u desc, %d bytes per descriptor\n",
3854 	    __func__, name, ndesc, dd->dd_descsize);
3855 
3856 	dd->dd_name = name;
3857 	dd->dd_desc_len = dd->dd_descsize * ndesc;
3858 
3859 	/*
3860 	 * Merlin work-around:
3861 	 * Descriptors that cross the 4KB boundary can't be used.
3862 	 * Assume one skipped descriptor per 4KB page.
3863 	 */
3864 	if (! ath_hal_split4ktrans(sc->sc_ah)) {
3865 		int numpages = dd->dd_desc_len / 4096;
3866 		dd->dd_desc_len += ds_size * numpages;
3867 	}
3868 
3869 	/*
3870 	 * Setup DMA descriptor area.
3871 	 *
3872 	 * BUS_DMA_ALLOCNOW is not used; we never use bounce
3873 	 * buffers for the descriptors themselves.
3874 	 */
3875 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3876 		       PAGE_SIZE, 0,		/* alignment, bounds */
3877 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3878 		       BUS_SPACE_MAXADDR,	/* highaddr */
3879 		       NULL, NULL,		/* filter, filterarg */
3880 		       dd->dd_desc_len,		/* maxsize */
3881 		       1,			/* nsegments */
3882 		       dd->dd_desc_len,		/* maxsegsize */
3883 		       0,			/* flags */
3884 #if !defined(__DragonFly__)
3885 		       NULL,			/* lockfunc */
3886 		       NULL,			/* lockarg */
3887 #endif
3888 		       &dd->dd_dmat);
3889 	if (error != 0) {
3890 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3891 		return error;
3892 	}
3893 
3894 	/* allocate descriptors */
3895 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3896 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3897 				 &dd->dd_dmamap);
3898 	if (error != 0) {
3899 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3900 			"error %u\n", ndesc, dd->dd_name, error);
3901 		goto fail1;
3902 	}
3903 
3904 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3905 				dd->dd_desc, dd->dd_desc_len,
3906 				ath_load_cb, &dd->dd_desc_paddr,
3907 				BUS_DMA_NOWAIT);
3908 	if (error != 0) {
3909 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3910 			dd->dd_name, error);
3911 		goto fail2;
3912 	}
3913 
3914 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3915 	    __func__, dd->dd_name, (uint8_t *) dd->dd_desc,
3916 	    (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr,
3917 	    /*XXX*/ (u_long) dd->dd_desc_len);
3918 
3919 	return (0);
3920 
3921 fail2:
3922 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3923 fail1:
3924 	bus_dma_tag_destroy(dd->dd_dmat);
3925 	memset(dd, 0, sizeof(*dd));
3926 	return error;
3927 #undef DS2PHYS
3928 #undef ATH_DESC_4KB_BOUND_CHECK
3929 }
3930 
3931 int
3932 ath_descdma_setup(struct ath_softc *sc,
3933 	struct ath_descdma *dd, ath_bufhead *head,
3934 	const char *name, int ds_size, int nbuf, int ndesc)
3935 {
3936 #define	DS2PHYS(_dd, _ds) \
3937 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3938 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3939 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3940 	struct ifnet *ifp = sc->sc_ifp;
3941 	uint8_t *ds;
3942 	struct ath_buf *bf;
3943 	int i, bsize, error;
3944 
3945 	/* Allocate descriptors */
3946 	error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size,
3947 	    nbuf * ndesc);
3948 
3949 	/* Assume any errors during allocation were dealt with */
3950 	if (error != 0) {
3951 		return (error);
3952 	}
3953 
3954 	ds = (uint8_t *) dd->dd_desc;
3955 
3956 	/* allocate rx buffers */
3957 	bsize = sizeof(struct ath_buf) * nbuf;
3958 	bf = kmalloc(bsize, M_ATHDEV, M_INTWAIT | M_ZERO);
3959 	if (bf == NULL) {
3960 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3961 			dd->dd_name, bsize);
3962 		goto fail3;
3963 	}
3964 	dd->dd_bufptr = bf;
3965 
3966 	TAILQ_INIT(head);
3967 	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) {
3968 		bf->bf_desc = (struct ath_desc *) ds;
3969 		bf->bf_daddr = DS2PHYS(dd, ds);
3970 		if (! ath_hal_split4ktrans(sc->sc_ah)) {
3971 			/*
3972 			 * Merlin WAR: Skip descriptor addresses which
3973 			 * cause 4KB boundary crossing along any point
3974 			 * in the descriptor.
3975 			 */
3976 			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
3977 			     dd->dd_descsize)) {
3978 				/* Start at the next page */
3979 				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
3980 				bf->bf_desc = (struct ath_desc *) ds;
3981 				bf->bf_daddr = DS2PHYS(dd, ds);
3982 			}
3983 		}
3984 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3985 				&bf->bf_dmamap);
3986 		if (error != 0) {
3987 			if_printf(ifp, "unable to create dmamap for %s "
3988 				"buffer %u, error %u\n", dd->dd_name, i, error);
3989 			ath_descdma_cleanup(sc, dd, head);
3990 			return error;
3991 		}
3992 		bf->bf_lastds = bf->bf_desc;	/* Just an initial value */
3993 		TAILQ_INSERT_TAIL(head, bf, bf_list);
3994 	}
3995 
3996 	/*
3997 	 * XXX TODO: ensure that ds doesn't overflow the descriptor
3998 	 * allocation otherwise weird stuff will occur and crash your
3999 	 * machine.
4000 	 */
4001 	return 0;
4002 	/* XXX this should likely just call ath_descdma_cleanup() */
4003 fail3:
4004 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
4005 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
4006 	bus_dma_tag_destroy(dd->dd_dmat);
4007 	memset(dd, 0, sizeof(*dd));
4008 	return error;
4009 #undef DS2PHYS
4010 #undef ATH_DESC_4KB_BOUND_CHECK
4011 }
4012 
4013 /*
4014  * Allocate ath_buf entries but no descriptor contents.
4015  *
4016  * This is for RX EDMA where the descriptors are the header part of
4017  * the RX buffer.
4018  */
4019 int
4020 ath_descdma_setup_rx_edma(struct ath_softc *sc,
4021 	struct ath_descdma *dd, ath_bufhead *head,
4022 	const char *name, int nbuf, int rx_status_len)
4023 {
4024 	struct ifnet *ifp = sc->sc_ifp;
4025 	struct ath_buf *bf;
4026 	int i, bsize, error;
4027 
4028 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n",
4029 	    __func__, name, nbuf);
4030 
4031 	dd->dd_name = name;
4032 	/*
4033 	 * This is (mostly) purely for show.  We're not allocating any actual
4034 	 * descriptors here as EDMA RX has the descriptor be part
4035 	 * of the RX buffer.
4036 	 *
4037 	 * However, dd_desc_len is used by ath_descdma_free() to determine
4038 	 * whether we have already freed this DMA mapping.
4039 	 */
4040 	dd->dd_desc_len = rx_status_len * nbuf;
4041 	dd->dd_descsize = rx_status_len;
4042 
4043 	/* allocate rx buffers */
4044 	bsize = sizeof(struct ath_buf) * nbuf;
4045 	bf = kmalloc(bsize, M_ATHDEV, M_INTWAIT | M_ZERO);
4046 	if (bf == NULL) {
4047 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
4048 			dd->dd_name, bsize);
4049 		error = ENOMEM;
4050 		goto fail3;
4051 	}
4052 	dd->dd_bufptr = bf;
4053 
4054 	TAILQ_INIT(head);
4055 	for (i = 0; i < nbuf; i++, bf++) {
4056 		bf->bf_desc = NULL;
4057 		bf->bf_daddr = 0;
4058 		bf->bf_lastds = NULL;	/* Just an initial value */
4059 
4060 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
4061 				&bf->bf_dmamap);
4062 		if (error != 0) {
4063 			if_printf(ifp, "unable to create dmamap for %s "
4064 				"buffer %u, error %u\n", dd->dd_name, i, error);
4065 			ath_descdma_cleanup(sc, dd, head);
4066 			return error;
4067 		}
4068 		TAILQ_INSERT_TAIL(head, bf, bf_list);
4069 	}
4070 	return 0;
4071 fail3:
4072 	memset(dd, 0, sizeof(*dd));
4073 	return error;
4074 }
4075 
4076 void
4077 ath_descdma_cleanup(struct ath_softc *sc,
4078 	struct ath_descdma *dd, ath_bufhead *head)
4079 {
4080 	struct ath_buf *bf;
4081 	struct ieee80211_node *ni;
4082 	int do_warning = 0;
4083 
4084 	if (dd->dd_dmamap != 0) {
4085 		bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
4086 		bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
4087 		bus_dma_tag_destroy(dd->dd_dmat);
4088 	}
4089 
4090 	if (head != NULL) {
4091 		TAILQ_FOREACH(bf, head, bf_list) {
4092 			if (bf->bf_m) {
4093 				/*
4094 				 * XXX warn if there's buffers here.
4095 				 * XXX it should have been freed by the
4096 				 * owner!
4097 				 */
4098 
4099 				if (do_warning == 0) {
4100 					do_warning = 1;
4101 					device_printf(sc->sc_dev,
4102 					    "%s: %s: mbuf should've been"
4103 					    " unmapped/freed!\n",
4104 					    __func__,
4105 					    dd->dd_name);
4106 				}
4107 				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4108 				    BUS_DMASYNC_POSTREAD);
4109 				bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4110 				m_freem(bf->bf_m);
4111 				bf->bf_m = NULL;
4112 			}
4113 			if (bf->bf_dmamap != NULL) {
4114 				bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
4115 				bf->bf_dmamap = NULL;
4116 			}
4117 			ni = bf->bf_node;
4118 			bf->bf_node = NULL;
4119 			if (ni != NULL) {
4120 				/*
4121 				 * Reclaim node reference.
4122 				 */
4123 				ieee80211_free_node(ni);
4124 			}
4125 		}
4126 	}
4127 
4128 	if (head != NULL)
4129 		TAILQ_INIT(head);
4130 
4131 	if (dd->dd_bufptr != NULL)
4132 		kfree(dd->dd_bufptr, M_ATHDEV);
4133 	memset(dd, 0, sizeof(*dd));
4134 }
4135 
4136 static int
4137 ath_desc_alloc(struct ath_softc *sc)
4138 {
4139 	int error;
4140 
4141 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
4142 		    "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER);
4143 	if (error != 0) {
4144 		return error;
4145 	}
4146 	sc->sc_txbuf_cnt = ath_txbuf;
4147 
4148 	error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
4149 		    "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt,
4150 		    ATH_TXDESC);
4151 	if (error != 0) {
4152 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
4153 		return error;
4154 	}
4155 
4156 	/*
4157 	 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
4158 	 * flag doesn't have to be set in ath_getbuf_locked().
4159 	 */
4160 
4161 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
4162 			"beacon", sc->sc_tx_desclen, ATH_BCBUF, 1);
4163 	if (error != 0) {
4164 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
4165 		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
4166 		    &sc->sc_txbuf_mgmt);
4167 		return error;
4168 	}
4169 	return 0;
4170 }
4171 
4172 static void
4173 ath_desc_free(struct ath_softc *sc)
4174 {
4175 
4176 	if (sc->sc_bdma.dd_desc_len != 0)
4177 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
4178 	if (sc->sc_txdma.dd_desc_len != 0)
4179 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
4180 	if (sc->sc_txdma_mgmt.dd_desc_len != 0)
4181 		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
4182 		    &sc->sc_txbuf_mgmt);
4183 }
4184 
4185 static struct ieee80211_node *
4186 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
4187 {
4188 	struct ieee80211com *ic = vap->iv_ic;
4189 	struct ath_softc *sc = ic->ic_softc;
4190 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
4191 	struct ath_node *an;
4192 
4193 	an = kmalloc(space, M_80211_NODE, M_INTWAIT | M_ZERO);
4194 	if (an == NULL) {
4195 		/* XXX stat+msg */
4196 		return NULL;
4197 	}
4198 	ath_rate_node_init(sc, an);
4199 
4200 	/* Setup the mutex - there's no associd yet so set the name to NULL */
4201 	ksnprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
4202 	    device_get_nameunit(sc->sc_dev), an);
4203 	lockinit(&an->an_mtx, an->an_name, 0, 0);
4204 
4205 	/* XXX setup ath_tid */
4206 	ath_tx_tid_init(sc, an);
4207 
4208 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %s: an %p\n", __func__,
4209 	    ath_hal_ether_sprintf(mac), an);
4210 	return &an->an_node;
4211 }
4212 
4213 static void
4214 ath_node_cleanup(struct ieee80211_node *ni)
4215 {
4216 	struct ieee80211com *ic = ni->ni_ic;
4217 	struct ath_softc *sc = ic->ic_softc;
4218 
4219 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %s: an %p\n", __func__,
4220 	    ath_hal_ether_sprintf(ni->ni_macaddr), ATH_NODE(ni));
4221 
4222 	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
4223 	ath_tx_node_flush(sc, ATH_NODE(ni));
4224 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
4225 	sc->sc_node_cleanup(ni);
4226 }
4227 
4228 static void
4229 ath_node_free(struct ieee80211_node *ni)
4230 {
4231 	struct ieee80211com *ic = ni->ni_ic;
4232 	struct ath_softc *sc = ic->ic_softc;
4233 
4234 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %s: an %p\n", __func__,
4235 	    ath_hal_ether_sprintf(ni->ni_macaddr), ATH_NODE(ni));
4236 	lockuninit(&ATH_NODE(ni)->an_mtx);
4237 	sc->sc_node_free(ni);
4238 }
4239 
4240 static void
4241 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
4242 {
4243 	struct ieee80211com *ic = ni->ni_ic;
4244 	struct ath_softc *sc = ic->ic_softc;
4245 	struct ath_hal *ah = sc->sc_ah;
4246 
4247 	*rssi = ic->ic_node_getrssi(ni);
4248 	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
4249 		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
4250 	else
4251 		*noise = -95;		/* nominally correct */
4252 }
4253 
4254 /*
4255  * Set the default antenna.
4256  */
4257 void
4258 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
4259 {
4260 	struct ath_hal *ah = sc->sc_ah;
4261 
4262 	/* XXX block beacon interrupts */
4263 	ath_hal_setdefantenna(ah, antenna);
4264 	if (sc->sc_defant != antenna)
4265 		sc->sc_stats.ast_ant_defswitch++;
4266 	sc->sc_defant = antenna;
4267 	sc->sc_rxotherant = 0;
4268 }
4269 
4270 static void
4271 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
4272 {
4273 	txq->axq_qnum = qnum;
4274 	txq->axq_ac = 0;
4275 	txq->axq_depth = 0;
4276 	txq->axq_aggr_depth = 0;
4277 	txq->axq_intrcnt = 0;
4278 	txq->axq_link = NULL;
4279 	txq->axq_softc = sc;
4280 	TAILQ_INIT(&txq->axq_q);
4281 	TAILQ_INIT(&txq->axq_tidq);
4282 	TAILQ_INIT(&txq->fifo.axq_q);
4283 	ATH_TXQ_LOCK_INIT(sc, txq);
4284 }
4285 
4286 /*
4287  * Setup a h/w transmit queue.
4288  */
4289 static struct ath_txq *
4290 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4291 {
4292 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4293 	struct ath_hal *ah = sc->sc_ah;
4294 	HAL_TXQ_INFO qi;
4295 	int qnum;
4296 
4297 	memset(&qi, 0, sizeof(qi));
4298 	qi.tqi_subtype = subtype;
4299 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
4300 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
4301 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
4302 	/*
4303 	 * Enable interrupts only for EOL and DESC conditions.
4304 	 * We mark tx descriptors to receive a DESC interrupt
4305 	 * when a tx queue gets deep; otherwise waiting for the
4306 	 * EOL to reap descriptors.  Note that this is done to
4307 	 * reduce interrupt load and this only defers reaping
4308 	 * descriptors, never transmitting frames.  Aside from
4309 	 * reducing interrupts this also permits more concurrency.
4310 	 * The only potential downside is if the tx queue backs
4311 	 * up in which case the top half of the kernel may backup
4312 	 * due to a lack of tx descriptors.
4313 	 */
4314 	if (sc->sc_isedma)
4315 		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
4316 		    HAL_TXQ_TXOKINT_ENABLE;
4317 	else
4318 		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
4319 		    HAL_TXQ_TXDESCINT_ENABLE;
4320 
4321 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4322 	if (qnum == -1) {
4323 		/*
4324 		 * NB: don't print a message, this happens
4325 		 * normally on parts with too few tx queues
4326 		 */
4327 		return NULL;
4328 	}
4329 	if (qnum >= N(sc->sc_txq)) {
4330 		device_printf(sc->sc_dev,
4331 			"hal qnum %u out of range, max %zu!\n",
4332 			qnum, N(sc->sc_txq));
4333 		ath_hal_releasetxqueue(ah, qnum);
4334 		return NULL;
4335 	}
4336 	if (!ATH_TXQ_SETUP(sc, qnum)) {
4337 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4338 		sc->sc_txqsetup |= 1<<qnum;
4339 	}
4340 	return &sc->sc_txq[qnum];
4341 #undef N
4342 }
4343 
4344 /*
4345  * Setup a hardware data transmit queue for the specified
4346  * access control.  The hal may not support all requested
4347  * queues in which case it will return a reference to a
4348  * previously setup queue.  We record the mapping from ac's
4349  * to h/w queues for use by ath_tx_start and also track
4350  * the set of h/w queues being used to optimize work in the
4351  * transmit interrupt handler and related routines.
4352  */
4353 static int
4354 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4355 {
4356 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4357 	struct ath_txq *txq;
4358 
4359 	if (ac >= N(sc->sc_ac2q)) {
4360 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4361 			ac, N(sc->sc_ac2q));
4362 		return 0;
4363 	}
4364 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4365 	if (txq != NULL) {
4366 		txq->axq_ac = ac;
4367 		sc->sc_ac2q[ac] = txq;
4368 		return 1;
4369 	} else
4370 		return 0;
4371 #undef N
4372 }
4373 
4374 /*
4375  * Update WME parameters for a transmit queue.
4376  */
4377 static int
4378 ath_txq_update(struct ath_softc *sc, int ac)
4379 {
4380 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
4381 #define	ATH_TXOP_TO_US(v)		(v<<5)
4382 	struct ifnet *ifp = sc->sc_ifp;
4383 	struct ieee80211com *ic = ifp->if_l2com;
4384 	struct ath_txq *txq = sc->sc_ac2q[ac];
4385 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4386 	struct ath_hal *ah = sc->sc_ah;
4387 	HAL_TXQ_INFO qi;
4388 
4389 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4390 #ifdef IEEE80211_SUPPORT_TDMA
4391 	if (sc->sc_tdma) {
4392 		/*
4393 		 * AIFS is zero so there's no pre-transmit wait.  The
4394 		 * burst time defines the slot duration and is configured
4395 		 * through net80211.  The QCU is setup to not do post-xmit
4396 		 * back off, lockout all lower-priority QCU's, and fire
4397 		 * off the DMA beacon alert timer which is setup based
4398 		 * on the slot configuration.
4399 		 */
4400 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4401 			      | HAL_TXQ_TXERRINT_ENABLE
4402 			      | HAL_TXQ_TXURNINT_ENABLE
4403 			      | HAL_TXQ_TXEOLINT_ENABLE
4404 			      | HAL_TXQ_DBA_GATED
4405 			      | HAL_TXQ_BACKOFF_DISABLE
4406 			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
4407 			      ;
4408 		qi.tqi_aifs = 0;
4409 		/* XXX +dbaprep? */
4410 		qi.tqi_readyTime = sc->sc_tdmaslotlen;
4411 		qi.tqi_burstTime = qi.tqi_readyTime;
4412 	} else {
4413 #endif
4414 		/*
4415 		 * XXX shouldn't this just use the default flags
4416 		 * used in the previous queue setup?
4417 		 */
4418 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4419 			      | HAL_TXQ_TXERRINT_ENABLE
4420 			      | HAL_TXQ_TXDESCINT_ENABLE
4421 			      | HAL_TXQ_TXURNINT_ENABLE
4422 			      | HAL_TXQ_TXEOLINT_ENABLE
4423 			      ;
4424 		qi.tqi_aifs = wmep->wmep_aifsn;
4425 		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4426 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4427 		qi.tqi_readyTime = 0;
4428 		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
4429 #ifdef IEEE80211_SUPPORT_TDMA
4430 	}
4431 #endif
4432 
4433 	DPRINTF(sc, ATH_DEBUG_RESET,
4434 	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
4435 	    __func__, txq->axq_qnum, qi.tqi_qflags,
4436 	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
4437 
4438 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4439 		if_printf(ifp, "unable to update hardware queue "
4440 			"parameters for %s traffic!\n",
4441 			ieee80211_wme_acnames[ac]);
4442 		return 0;
4443 	} else {
4444 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4445 		return 1;
4446 	}
4447 #undef ATH_TXOP_TO_US
4448 #undef ATH_EXPONENT_TO_VALUE
4449 }
4450 
4451 /*
4452  * Callback from the 802.11 layer to update WME parameters.
4453  */
4454 int
4455 ath_wme_update(struct ieee80211com *ic)
4456 {
4457 	struct ath_softc *sc = ic->ic_softc;
4458 
4459 	return !ath_txq_update(sc, WME_AC_BE) ||
4460 	    !ath_txq_update(sc, WME_AC_BK) ||
4461 	    !ath_txq_update(sc, WME_AC_VI) ||
4462 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4463 }
4464 
4465 /*
4466  * Reclaim resources for a setup queue.
4467  */
4468 static void
4469 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4470 {
4471 
4472 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4473 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4474 	ATH_TXQ_LOCK_DESTROY(txq);
4475 }
4476 
4477 /*
4478  * Reclaim all tx queue resources.
4479  */
4480 static void
4481 ath_tx_cleanup(struct ath_softc *sc)
4482 {
4483 	int i;
4484 
4485 	ATH_TXBUF_LOCK_DESTROY(sc);
4486 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4487 		if (ATH_TXQ_SETUP(sc, i))
4488 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4489 }
4490 
4491 /*
4492  * Return h/w rate index for an IEEE rate (w/o basic rate bit)
4493  * using the current rates in sc_rixmap.
4494  */
4495 int
4496 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
4497 {
4498 	int rix = sc->sc_rixmap[rate];
4499 	/* NB: return lowest rix for invalid rate */
4500 	return (rix == 0xff ? 0 : rix);
4501 }
4502 
4503 static void
4504 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
4505     struct ath_buf *bf)
4506 {
4507 	struct ieee80211_node *ni = bf->bf_node;
4508 	struct ifnet *ifp = sc->sc_ifp;
4509 	struct ieee80211com *ic = ifp->if_l2com;
4510 	int sr, lr, pri;
4511 
4512 	if (ts->ts_status == 0) {
4513 		u_int8_t txant = ts->ts_antenna;
4514 		sc->sc_stats.ast_ant_tx[txant]++;
4515 		sc->sc_ant_tx[txant]++;
4516 		if (ts->ts_finaltsi != 0)
4517 			sc->sc_stats.ast_tx_altrate++;
4518 		pri = M_WME_GETAC(bf->bf_m);
4519 		if (pri >= WME_AC_VO)
4520 			ic->ic_wme.wme_hipri_traffic++;
4521 		if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
4522 			ni->ni_inact = ni->ni_inact_reload;
4523 	} else {
4524 		if (ts->ts_status & HAL_TXERR_XRETRY)
4525 			sc->sc_stats.ast_tx_xretries++;
4526 		if (ts->ts_status & HAL_TXERR_FIFO)
4527 			sc->sc_stats.ast_tx_fifoerr++;
4528 		if (ts->ts_status & HAL_TXERR_FILT)
4529 			sc->sc_stats.ast_tx_filtered++;
4530 		if (ts->ts_status & HAL_TXERR_XTXOP)
4531 			sc->sc_stats.ast_tx_xtxop++;
4532 		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
4533 			sc->sc_stats.ast_tx_timerexpired++;
4534 
4535 		if (bf->bf_m->m_flags & M_FF)
4536 			sc->sc_stats.ast_ff_txerr++;
4537 	}
4538 	/* XXX when is this valid? */
4539 	if (ts->ts_flags & HAL_TX_DESC_CFG_ERR)
4540 		sc->sc_stats.ast_tx_desccfgerr++;
4541 	/*
4542 	 * This can be valid for successful frame transmission!
4543 	 * If there's a TX FIFO underrun during aggregate transmission,
4544 	 * the MAC will pad the rest of the aggregate with delimiters.
4545 	 * If a BA is returned, the frame is marked as "OK" and it's up
4546 	 * to the TX completion code to notice which frames weren't
4547 	 * successfully transmitted.
4548 	 */
4549 	if (ts->ts_flags & HAL_TX_DATA_UNDERRUN)
4550 		sc->sc_stats.ast_tx_data_underrun++;
4551 	if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN)
4552 		sc->sc_stats.ast_tx_delim_underrun++;
4553 
4554 	sr = ts->ts_shortretry;
4555 	lr = ts->ts_longretry;
4556 	sc->sc_stats.ast_tx_shortretry += sr;
4557 	sc->sc_stats.ast_tx_longretry += lr;
4558 
4559 }
4560 
4561 /*
4562  * The default completion. If fail is 1, this means
4563  * "please don't retry the frame, and just return -1 status
4564  * to the net80211 stack.
4565  */
4566 void
4567 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
4568 {
4569 	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
4570 	int st;
4571 
4572 	if (fail == 1)
4573 		st = -1;
4574 	else
4575 		st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
4576 		    ts->ts_status : HAL_TXERR_XRETRY;
4577 
4578 #if 0
4579 	if (bf->bf_state.bfs_dobaw)
4580 		device_printf(sc->sc_dev,
4581 		    "%s: bf %p: seqno %d: dobaw should've been cleared!\n",
4582 		    __func__,
4583 		    bf,
4584 		    SEQNO(bf->bf_state.bfs_seqno));
4585 #endif
4586 	if (bf->bf_next != NULL)
4587 		device_printf(sc->sc_dev,
4588 		    "%s: bf %p: seqno %d: bf_next not NULL!\n",
4589 		    __func__,
4590 		    bf,
4591 		    SEQNO(bf->bf_state.bfs_seqno));
4592 
4593 	/*
4594 	 * Check if the node software queue is empty; if so
4595 	 * then clear the TIM.
4596 	 *
4597 	 * This needs to be done before the buffer is freed as
4598 	 * otherwise the node reference will have been released
4599 	 * and the node may not actually exist any longer.
4600 	 *
4601 	 * XXX I don't like this belonging here, but it's cleaner
4602 	 * to do it here right now then all the other places
4603 	 * where ath_tx_default_comp() is called.
4604 	 *
4605 	 * XXX TODO: during drain, ensure that the callback is
4606 	 * being called so we get a chance to update the TIM.
4607 	 */
4608 	if (bf->bf_node) {
4609 		ATH_TX_LOCK(sc);
4610 		ath_tx_update_tim(sc, bf->bf_node, 0);
4611 		ATH_TX_UNLOCK(sc);
4612 	}
4613 
4614 	/*
4615 	 * Do any tx complete callback.  Note this must
4616 	 * be done before releasing the node reference.
4617 	 * This will free the mbuf, release the net80211
4618 	 * node and recycle the ath_buf.
4619 	 */
4620 	ath_tx_freebuf(sc, bf, st);
4621 }
4622 
4623 /*
4624  * Update rate control with the given completion status.
4625  */
4626 void
4627 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
4628     struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
4629     int nframes, int nbad)
4630 {
4631 	struct ath_node *an;
4632 
4633 	/* Only for unicast frames */
4634 	if (ni == NULL)
4635 		return;
4636 
4637 	an = ATH_NODE(ni);
4638 	ATH_NODE_UNLOCK_ASSERT(an);
4639 
4640 	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
4641 		ATH_NODE_LOCK(an);
4642 		ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
4643 		ATH_NODE_UNLOCK(an);
4644 	}
4645 }
4646 
4647 /*
4648  * Process the completion of the given buffer.
4649  *
4650  * This calls the rate control update and then the buffer completion.
4651  * This will either free the buffer or requeue it.  In any case, the
4652  * bf pointer should be treated as invalid after this function is called.
4653  */
4654 void
4655 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq,
4656     struct ath_tx_status *ts, struct ath_buf *bf)
4657 {
4658 	struct ieee80211_node *ni = bf->bf_node;
4659 
4660 	ATH_TX_UNLOCK_ASSERT(sc);
4661 	ATH_TXQ_UNLOCK_ASSERT(txq);
4662 
4663 	/* If unicast frame, update general statistics */
4664 	if (ni != NULL) {
4665 		/* update statistics */
4666 		ath_tx_update_stats(sc, ts, bf);
4667 	}
4668 
4669 	/*
4670 	 * Call the completion handler.
4671 	 * The completion handler is responsible for
4672 	 * calling the rate control code.
4673 	 *
4674 	 * Frames with no completion handler get the
4675 	 * rate control code called here.
4676 	 */
4677 	if (bf->bf_comp == NULL) {
4678 		if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4679 		    (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
4680 			/*
4681 			 * XXX assume this isn't an aggregate
4682 			 * frame.
4683 			 */
4684 			ath_tx_update_ratectrl(sc, ni,
4685 			     bf->bf_state.bfs_rc, ts,
4686 			    bf->bf_state.bfs_pktlen, 1,
4687 			    (ts->ts_status == 0 ? 0 : 1));
4688 		}
4689 		ath_tx_default_comp(sc, bf, 0);
4690 	} else
4691 		bf->bf_comp(sc, bf, 0);
4692 }
4693 
4694 
4695 
4696 /*
4697  * Process completed xmit descriptors from the specified queue.
4698  * Kick the packet scheduler if needed. This can occur from this
4699  * particular task.
4700  */
4701 static int
4702 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
4703 {
4704 	struct ath_hal *ah = sc->sc_ah;
4705 	struct ath_buf *bf;
4706 	struct ath_desc *ds;
4707 	struct ath_tx_status *ts;
4708 	struct ieee80211_node *ni;
4709 #ifdef	IEEE80211_SUPPORT_SUPERG
4710 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4711 #endif	/* IEEE80211_SUPPORT_SUPERG */
4712 	int nacked;
4713 	HAL_STATUS status;
4714 
4715 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4716 		__func__, txq->axq_qnum,
4717 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4718 		txq->axq_link);
4719 
4720 	ATH_KTR(sc, ATH_KTR_TXCOMP, 4,
4721 	    "ath_tx_processq: txq=%u head %p link %p depth %p",
4722 	    txq->axq_qnum,
4723 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4724 	    txq->axq_link,
4725 	    txq->axq_depth);
4726 
4727 	nacked = 0;
4728 	for (;;) {
4729 		ATH_TXQ_LOCK(txq);
4730 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4731 		bf = TAILQ_FIRST(&txq->axq_q);
4732 		if (bf == NULL) {
4733 			ATH_TXQ_UNLOCK(txq);
4734 			break;
4735 		}
4736 		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
4737 		ts = &bf->bf_status.ds_txstat;
4738 
4739 		status = ath_hal_txprocdesc(ah, ds, ts);
4740 #ifdef ATH_DEBUG
4741 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4742 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4743 			    status == HAL_OK);
4744 		else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0))
4745 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4746 			    status == HAL_OK);
4747 #endif
4748 #ifdef	ATH_DEBUG_ALQ
4749 		if (if_ath_alq_checkdebug(&sc->sc_alq,
4750 		    ATH_ALQ_EDMA_TXSTATUS)) {
4751 			if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS,
4752 			sc->sc_tx_statuslen,
4753 			(char *) ds);
4754 		}
4755 #endif
4756 
4757 		if (status == HAL_EINPROGRESS) {
4758 			ATH_KTR(sc, ATH_KTR_TXCOMP, 3,
4759 			    "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS",
4760 			    txq->axq_qnum, bf, ds);
4761 			ATH_TXQ_UNLOCK(txq);
4762 			break;
4763 		}
4764 		ATH_TXQ_REMOVE(txq, bf, bf_list);
4765 
4766 		/*
4767 		 * Sanity check.
4768 		 */
4769 		if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) {
4770 			device_printf(sc->sc_dev,
4771 			    "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n",
4772 			    __func__,
4773 			    txq->axq_qnum,
4774 			    bf,
4775 			    bf->bf_state.bfs_tx_queue);
4776 		}
4777 		if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) {
4778 			device_printf(sc->sc_dev,
4779 			    "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n",
4780 			    __func__,
4781 			    txq->axq_qnum,
4782 			    bf->bf_last,
4783 			    bf->bf_last->bf_state.bfs_tx_queue);
4784 		}
4785 
4786 #if 0
4787 		if (txq->axq_depth > 0) {
4788 			/*
4789 			 * More frames follow.  Mark the buffer busy
4790 			 * so it's not re-used while the hardware may
4791 			 * still re-read the link field in the descriptor.
4792 			 *
4793 			 * Use the last buffer in an aggregate as that
4794 			 * is where the hardware may be - intermediate
4795 			 * descriptors won't be "busy".
4796 			 */
4797 			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4798 		} else
4799 			txq->axq_link = NULL;
4800 #else
4801 		bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4802 #endif
4803 		if (bf->bf_state.bfs_aggr)
4804 			txq->axq_aggr_depth--;
4805 
4806 		ni = bf->bf_node;
4807 
4808 		ATH_KTR(sc, ATH_KTR_TXCOMP, 5,
4809 		    "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x",
4810 		    txq->axq_qnum, bf, ds, ni, ts->ts_status);
4811 		/*
4812 		 * If unicast frame was ack'd update RSSI,
4813 		 * including the last rx time used to
4814 		 * workaround phantom bmiss interrupts.
4815 		 */
4816 		if (ni != NULL && ts->ts_status == 0 &&
4817 		    ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
4818 			nacked++;
4819 			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4820 			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4821 				ts->ts_rssi);
4822 		}
4823 		ATH_TXQ_UNLOCK(txq);
4824 
4825 		/*
4826 		 * Update statistics and call completion
4827 		 */
4828 		ath_tx_process_buf_completion(sc, txq, ts, bf);
4829 
4830 		/* XXX at this point, bf and ni may be totally invalid */
4831 	}
4832 #ifdef IEEE80211_SUPPORT_SUPERG
4833 	/*
4834 	 * Flush fast-frame staging queue when traffic slows.
4835 	 */
4836 	if (txq->axq_depth <= 1)
4837 		ieee80211_ff_flush(ic, txq->axq_ac);
4838 #endif
4839 
4840 	/* Kick the software TXQ scheduler */
4841 	if (dosched) {
4842 		ATH_TX_LOCK(sc);
4843 		ath_txq_sched(sc, txq);
4844 		ATH_TX_UNLOCK(sc);
4845 	}
4846 
4847 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4848 	    "ath_tx_processq: txq=%u: done",
4849 	    txq->axq_qnum);
4850 
4851 	return nacked;
4852 }
4853 
4854 #define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
4855 
4856 /*
4857  * Deferred processing of transmit interrupt; special-cased
4858  * for a single hardware transmit queue (e.g. 5210 and 5211).
4859  */
4860 static void
4861 ath_tx_proc_q0(void *arg, int npending)
4862 {
4863 	struct ath_softc *sc = arg;
4864 	struct ifnet *ifp = sc->sc_ifp;
4865 	uint32_t txqs;
4866 
4867 	ATH_PCU_LOCK(sc);
4868 	sc->sc_txproc_cnt++;
4869 	txqs = sc->sc_txq_active;
4870 	sc->sc_txq_active &= ~txqs;
4871 	ATH_PCU_UNLOCK(sc);
4872 
4873 	ATH_LOCK(sc);
4874 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4875 	ATH_UNLOCK(sc);
4876 
4877 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4878 	    "ath_tx_proc_q0: txqs=0x%08x", txqs);
4879 
4880 	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
4881 		/* XXX why is lastrx updated in tx code? */
4882 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4883 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4884 		ath_tx_processq(sc, sc->sc_cabq, 1);
4885 	IF_LOCK(&ifp->if_snd);
4886 #if defined(__DragonFly__)
4887 	ifq_clr_oactive(&ifp->if_snd);
4888 #else
4889 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4890 #endif
4891 	IF_UNLOCK(&ifp->if_snd);
4892 	sc->sc_wd_timer = 0;
4893 
4894 	if (sc->sc_softled)
4895 		ath_led_event(sc, sc->sc_txrix);
4896 
4897 	ATH_PCU_LOCK(sc);
4898 	sc->sc_txproc_cnt--;
4899 	ATH_PCU_UNLOCK(sc);
4900 
4901 	ATH_LOCK(sc);
4902 	ath_power_restore_power_state(sc);
4903 	ATH_UNLOCK(sc);
4904 
4905 	ath_tx_kick(sc);
4906 }
4907 
4908 /*
4909  * Deferred processing of transmit interrupt; special-cased
4910  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4911  */
4912 static void
4913 ath_tx_proc_q0123(void *arg, int npending)
4914 {
4915 	struct ath_softc *sc = arg;
4916 	struct ifnet *ifp = sc->sc_ifp;
4917 	int nacked;
4918 	uint32_t txqs;
4919 
4920 	ATH_PCU_LOCK(sc);
4921 	sc->sc_txproc_cnt++;
4922 	txqs = sc->sc_txq_active;
4923 	sc->sc_txq_active &= ~txqs;
4924 	ATH_PCU_UNLOCK(sc);
4925 
4926 	ATH_LOCK(sc);
4927 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4928 	ATH_UNLOCK(sc);
4929 
4930 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4931 	    "ath_tx_proc_q0123: txqs=0x%08x", txqs);
4932 
4933 	/*
4934 	 * Process each active queue.
4935 	 */
4936 	nacked = 0;
4937 	if (TXQACTIVE(txqs, 0))
4938 		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
4939 	if (TXQACTIVE(txqs, 1))
4940 		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
4941 	if (TXQACTIVE(txqs, 2))
4942 		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
4943 	if (TXQACTIVE(txqs, 3))
4944 		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
4945 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4946 		ath_tx_processq(sc, sc->sc_cabq, 1);
4947 	if (nacked)
4948 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4949 
4950 	IF_LOCK(&ifp->if_snd);
4951 #if defined(__DragonFly__)
4952 	ifq_clr_oactive(&ifp->if_snd);
4953 #else
4954 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4955 #endif
4956 	IF_UNLOCK(&ifp->if_snd);
4957 	sc->sc_wd_timer = 0;
4958 
4959 	if (sc->sc_softled)
4960 		ath_led_event(sc, sc->sc_txrix);
4961 
4962 	ATH_PCU_LOCK(sc);
4963 	sc->sc_txproc_cnt--;
4964 	ATH_PCU_UNLOCK(sc);
4965 
4966 	ATH_LOCK(sc);
4967 	ath_power_restore_power_state(sc);
4968 	ATH_UNLOCK(sc);
4969 
4970 	ath_tx_kick(sc);
4971 }
4972 
4973 /*
4974  * Deferred processing of transmit interrupt.
4975  */
4976 static void
4977 ath_tx_proc(void *arg, int npending)
4978 {
4979 	struct ath_softc *sc = arg;
4980 	struct ifnet *ifp = sc->sc_ifp;
4981 	int i, nacked;
4982 	uint32_t txqs;
4983 
4984 	ATH_PCU_LOCK(sc);
4985 	sc->sc_txproc_cnt++;
4986 	txqs = sc->sc_txq_active;
4987 	sc->sc_txq_active &= ~txqs;
4988 	ATH_PCU_UNLOCK(sc);
4989 
4990 	ATH_LOCK(sc);
4991 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4992 	ATH_UNLOCK(sc);
4993 
4994 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs);
4995 
4996 	/*
4997 	 * Process each active queue.
4998 	 */
4999 	nacked = 0;
5000 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5001 		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
5002 			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
5003 	if (nacked)
5004 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5005 
5006 	/* XXX check this inside of IF_LOCK? */
5007 	IF_LOCK(&ifp->if_snd);
5008 #if defined(__DragonFly__)
5009 	ifq_clr_oactive(&ifp->if_snd);
5010 #else
5011 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5012 #endif
5013 	IF_UNLOCK(&ifp->if_snd);
5014 	sc->sc_wd_timer = 0;
5015 
5016 	if (sc->sc_softled)
5017 		ath_led_event(sc, sc->sc_txrix);
5018 
5019 	ATH_PCU_LOCK(sc);
5020 	sc->sc_txproc_cnt--;
5021 	ATH_PCU_UNLOCK(sc);
5022 
5023 	ATH_LOCK(sc);
5024 	ath_power_restore_power_state(sc);
5025 	ATH_UNLOCK(sc);
5026 
5027 	ath_tx_kick(sc);
5028 }
5029 #undef	TXQACTIVE
5030 
5031 /*
5032  * Deferred processing of TXQ rescheduling.
5033  */
5034 static void
5035 ath_txq_sched_tasklet(void *arg, int npending)
5036 {
5037 	struct ath_softc *sc = arg;
5038 	int i;
5039 
5040 	/* XXX is skipping ok? */
5041 	ATH_PCU_LOCK(sc);
5042 #if 0
5043 	if (sc->sc_inreset_cnt > 0) {
5044 		device_printf(sc->sc_dev,
5045 		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
5046 		ATH_PCU_UNLOCK(sc);
5047 		return;
5048 	}
5049 #endif
5050 	sc->sc_txproc_cnt++;
5051 	ATH_PCU_UNLOCK(sc);
5052 
5053 	ATH_LOCK(sc);
5054 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5055 	ATH_UNLOCK(sc);
5056 
5057 	ATH_TX_LOCK(sc);
5058 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5059 		if (ATH_TXQ_SETUP(sc, i)) {
5060 			ath_txq_sched(sc, &sc->sc_txq[i]);
5061 		}
5062 	}
5063 	ATH_TX_UNLOCK(sc);
5064 
5065 	ATH_LOCK(sc);
5066 	ath_power_restore_power_state(sc);
5067 	ATH_UNLOCK(sc);
5068 
5069 	ATH_PCU_LOCK(sc);
5070 	sc->sc_txproc_cnt--;
5071 	ATH_PCU_UNLOCK(sc);
5072 }
5073 
5074 void
5075 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
5076 {
5077 
5078 	ATH_TXBUF_LOCK_ASSERT(sc);
5079 
5080 	if (bf->bf_flags & ATH_BUF_MGMT)
5081 		TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
5082 	else {
5083 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5084 		sc->sc_txbuf_cnt++;
5085 		if (sc->sc_txbuf_cnt > ath_txbuf) {
5086 			device_printf(sc->sc_dev,
5087 			    "%s: sc_txbuf_cnt > %d?\n",
5088 			    __func__,
5089 			    ath_txbuf);
5090 			sc->sc_txbuf_cnt = ath_txbuf;
5091 		}
5092 	}
5093 }
5094 
5095 void
5096 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
5097 {
5098 
5099 	ATH_TXBUF_LOCK_ASSERT(sc);
5100 
5101 	if (bf->bf_flags & ATH_BUF_MGMT)
5102 		TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
5103 	else {
5104 		TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
5105 		sc->sc_txbuf_cnt++;
5106 		if (sc->sc_txbuf_cnt > ATH_TXBUF) {
5107 			device_printf(sc->sc_dev,
5108 			    "%s: sc_txbuf_cnt > %d?\n",
5109 			    __func__,
5110 			    ATH_TXBUF);
5111 			sc->sc_txbuf_cnt = ATH_TXBUF;
5112 		}
5113 	}
5114 }
5115 
5116 /*
5117  * Free the holding buffer if it exists
5118  */
5119 void
5120 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq)
5121 {
5122 	ATH_TXBUF_UNLOCK_ASSERT(sc);
5123 	ATH_TXQ_LOCK_ASSERT(txq);
5124 
5125 	if (txq->axq_holdingbf == NULL)
5126 		return;
5127 
5128 	txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY;
5129 
5130 	ATH_TXBUF_LOCK(sc);
5131 	ath_returnbuf_tail(sc, txq->axq_holdingbf);
5132 	ATH_TXBUF_UNLOCK(sc);
5133 
5134 	txq->axq_holdingbf = NULL;
5135 }
5136 
5137 /*
5138  * Add this buffer to the holding queue, freeing the previous
5139  * one if it exists.
5140  */
5141 static void
5142 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf)
5143 {
5144 	struct ath_txq *txq;
5145 
5146 	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
5147 
5148 	ATH_TXBUF_UNLOCK_ASSERT(sc);
5149 	ATH_TXQ_LOCK_ASSERT(txq);
5150 
5151 	/* XXX assert ATH_BUF_BUSY is set */
5152 
5153 	/* XXX assert the tx queue is under the max number */
5154 	if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) {
5155 		device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n",
5156 		    __func__,
5157 		    bf,
5158 		    bf->bf_state.bfs_tx_queue);
5159 		bf->bf_flags &= ~ATH_BUF_BUSY;
5160 		ath_returnbuf_tail(sc, bf);
5161 		return;
5162 	}
5163 	ath_txq_freeholdingbuf(sc, txq);
5164 	txq->axq_holdingbf = bf;
5165 }
5166 
5167 /*
5168  * Return a buffer to the pool and update the 'busy' flag on the
5169  * previous 'tail' entry.
5170  *
5171  * This _must_ only be called when the buffer is involved in a completed
5172  * TX. The logic is that if it was part of an active TX, the previous
5173  * buffer on the list is now not involved in a halted TX DMA queue, waiting
5174  * for restart (eg for TDMA.)
5175  *
5176  * The caller must free the mbuf and recycle the node reference.
5177  *
5178  * XXX This method of handling busy / holding buffers is insanely stupid.
5179  * It requires bf_state.bfs_tx_queue to be correctly assigned.  It would
5180  * be much nicer if buffers in the processq() methods would instead be
5181  * always completed there (pushed onto a txq or ath_bufhead) so we knew
5182  * exactly what hardware queue they came from in the first place.
5183  */
5184 void
5185 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
5186 {
5187 	struct ath_txq *txq;
5188 
5189 	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
5190 
5191 	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
5192 	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
5193 
5194 	/*
5195 	 * If this buffer is busy, push it onto the holding queue.
5196 	 */
5197 	if (bf->bf_flags & ATH_BUF_BUSY) {
5198 		ATH_TXQ_LOCK(txq);
5199 		ath_txq_addholdingbuf(sc, bf);
5200 		ATH_TXQ_UNLOCK(txq);
5201 		return;
5202 	}
5203 
5204 	/*
5205 	 * Not a busy buffer, so free normally
5206 	 */
5207 	ATH_TXBUF_LOCK(sc);
5208 	ath_returnbuf_tail(sc, bf);
5209 	ATH_TXBUF_UNLOCK(sc);
5210 }
5211 
5212 /*
5213  * This is currently used by ath_tx_draintxq() and
5214  * ath_tx_tid_free_pkts().
5215  *
5216  * It recycles a single ath_buf.
5217  */
5218 void
5219 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
5220 {
5221 	struct ieee80211_node *ni = bf->bf_node;
5222 	struct mbuf *m0 = bf->bf_m;
5223 
5224 	/*
5225 	 * Make sure that we only sync/unload if there's an mbuf.
5226 	 * If not (eg we cloned a buffer), the unload will have already
5227 	 * occured.
5228 	 */
5229 	if (bf->bf_m != NULL) {
5230 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
5231 		    BUS_DMASYNC_POSTWRITE);
5232 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5233 	}
5234 
5235 	bf->bf_node = NULL;
5236 	bf->bf_m = NULL;
5237 
5238 	/* Free the buffer, it's not needed any longer */
5239 	ath_freebuf(sc, bf);
5240 
5241 	/* Pass the buffer back to net80211 - completing it */
5242 	ieee80211_tx_complete(ni, m0, status);
5243 }
5244 
5245 static struct ath_buf *
5246 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq)
5247 {
5248 	struct ath_buf *bf;
5249 
5250 	ATH_TXQ_LOCK_ASSERT(txq);
5251 
5252 	/*
5253 	 * Drain the FIFO queue first, then if it's
5254 	 * empty, move to the normal frame queue.
5255 	 */
5256 	bf = TAILQ_FIRST(&txq->fifo.axq_q);
5257 	if (bf != NULL) {
5258 		/*
5259 		 * Is it the last buffer in this set?
5260 		 * Decrement the FIFO counter.
5261 		 */
5262 		if (bf->bf_flags & ATH_BUF_FIFOEND) {
5263 			if (txq->axq_fifo_depth == 0) {
5264 				device_printf(sc->sc_dev,
5265 				    "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n",
5266 				    __func__,
5267 				    txq->axq_qnum,
5268 				    txq->fifo.axq_depth);
5269 			} else
5270 				txq->axq_fifo_depth--;
5271 		}
5272 		ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list);
5273 		return (bf);
5274 	}
5275 
5276 	/*
5277 	 * Debugging!
5278 	 */
5279 	if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) {
5280 		device_printf(sc->sc_dev,
5281 		    "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n",
5282 		    __func__,
5283 		    txq->axq_qnum,
5284 		    txq->axq_fifo_depth,
5285 		    txq->fifo.axq_depth);
5286 	}
5287 
5288 	/*
5289 	 * Now drain the pending queue.
5290 	 */
5291 	bf = TAILQ_FIRST(&txq->axq_q);
5292 	if (bf == NULL) {
5293 		txq->axq_link = NULL;
5294 		return (NULL);
5295 	}
5296 	ATH_TXQ_REMOVE(txq, bf, bf_list);
5297 	return (bf);
5298 }
5299 
5300 void
5301 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
5302 {
5303 #ifdef ATH_DEBUG
5304 	struct ath_hal *ah = sc->sc_ah;
5305 #endif
5306 	struct ath_buf *bf;
5307 	u_int ix;
5308 
5309 	/*
5310 	 * NB: this assumes output has been stopped and
5311 	 *     we do not need to block ath_tx_proc
5312 	 */
5313 	for (ix = 0;; ix++) {
5314 		ATH_TXQ_LOCK(txq);
5315 		bf = ath_tx_draintxq_get_one(sc, txq);
5316 		if (bf == NULL) {
5317 			ATH_TXQ_UNLOCK(txq);
5318 			break;
5319 		}
5320 		if (bf->bf_state.bfs_aggr)
5321 			txq->axq_aggr_depth--;
5322 #ifdef ATH_DEBUG
5323 		if (sc->sc_debug & ATH_DEBUG_RESET) {
5324 			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5325 			int status = 0;
5326 
5327 			/*
5328 			 * EDMA operation has a TX completion FIFO
5329 			 * separate from the TX descriptor, so this
5330 			 * method of checking the "completion" status
5331 			 * is wrong.
5332 			 */
5333 			if (! sc->sc_isedma) {
5334 				status = (ath_hal_txprocdesc(ah,
5335 				    bf->bf_lastds,
5336 				    &bf->bf_status.ds_txstat) == HAL_OK);
5337 			}
5338 			ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status);
5339 			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
5340 			    bf->bf_m->m_len, 0, -1);
5341 		}
5342 #endif /* ATH_DEBUG */
5343 		/*
5344 		 * Since we're now doing magic in the completion
5345 		 * functions, we -must- call it for aggregation
5346 		 * destinations or BAW tracking will get upset.
5347 		 */
5348 		/*
5349 		 * Clear ATH_BUF_BUSY; the completion handler
5350 		 * will free the buffer.
5351 		 */
5352 		ATH_TXQ_UNLOCK(txq);
5353 		bf->bf_flags &= ~ATH_BUF_BUSY;
5354 		if (bf->bf_comp)
5355 			bf->bf_comp(sc, bf, 1);
5356 		else
5357 			ath_tx_default_comp(sc, bf, 1);
5358 	}
5359 
5360 	/*
5361 	 * Free the holding buffer if it exists
5362 	 */
5363 	ATH_TXQ_LOCK(txq);
5364 	ath_txq_freeholdingbuf(sc, txq);
5365 	ATH_TXQ_UNLOCK(txq);
5366 
5367 	/*
5368 	 * Drain software queued frames which are on
5369 	 * active TIDs.
5370 	 */
5371 	ath_tx_txq_drain(sc, txq);
5372 }
5373 
5374 static void
5375 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5376 {
5377 	struct ath_hal *ah = sc->sc_ah;
5378 
5379 	ATH_TXQ_LOCK_ASSERT(txq);
5380 
5381 	DPRINTF(sc, ATH_DEBUG_RESET,
5382 	    "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, "
5383 	    "link %p, holdingbf=%p\n",
5384 	    __func__,
5385 	    txq->axq_qnum,
5386 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5387 	    (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)),
5388 	    (int) ath_hal_numtxpending(ah, txq->axq_qnum),
5389 	    txq->axq_flags,
5390 	    txq->axq_link,
5391 	    txq->axq_holdingbf);
5392 
5393 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5394 	/* We've stopped TX DMA, so mark this as stopped. */
5395 	txq->axq_flags &= ~ATH_TXQ_PUTRUNNING;
5396 
5397 #ifdef	ATH_DEBUG
5398 	if ((sc->sc_debug & ATH_DEBUG_RESET)
5399 	    && (txq->axq_holdingbf != NULL)) {
5400 		ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0);
5401 	}
5402 #endif
5403 }
5404 
5405 int
5406 ath_stoptxdma(struct ath_softc *sc)
5407 {
5408 	struct ath_hal *ah = sc->sc_ah;
5409 	int i;
5410 
5411 	/* XXX return value */
5412 	if (sc->sc_invalid)
5413 		return 0;
5414 
5415 	if (!sc->sc_invalid) {
5416 		/* don't touch the hardware if marked invalid */
5417 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5418 		    __func__, sc->sc_bhalq,
5419 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5420 		    NULL);
5421 
5422 		/* stop the beacon queue */
5423 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5424 
5425 		/* Stop the data queues */
5426 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5427 			if (ATH_TXQ_SETUP(sc, i)) {
5428 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
5429 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
5430 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
5431 			}
5432 		}
5433 	}
5434 
5435 	return 1;
5436 }
5437 
5438 #ifdef	ATH_DEBUG
5439 void
5440 ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq)
5441 {
5442 	struct ath_hal *ah = sc->sc_ah;
5443 	struct ath_buf *bf;
5444 	int i = 0;
5445 
5446 	if (! (sc->sc_debug & ATH_DEBUG_RESET))
5447 		return;
5448 
5449 	device_printf(sc->sc_dev, "%s: Q%d: begin\n",
5450 	    __func__, txq->axq_qnum);
5451 	TAILQ_FOREACH(bf, &txq->axq_q, bf_list) {
5452 		ath_printtxbuf(sc, bf, txq->axq_qnum, i,
5453 			ath_hal_txprocdesc(ah, bf->bf_lastds,
5454 			    &bf->bf_status.ds_txstat) == HAL_OK);
5455 		i++;
5456 	}
5457 	device_printf(sc->sc_dev, "%s: Q%d: end\n",
5458 	    __func__, txq->axq_qnum);
5459 }
5460 #endif /* ATH_DEBUG */
5461 
5462 /*
5463  * Drain the transmit queues and reclaim resources.
5464  */
5465 void
5466 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
5467 {
5468 	struct ath_hal *ah = sc->sc_ah;
5469 	struct ifnet *ifp = sc->sc_ifp;
5470 	int i;
5471 	struct ath_buf *bf_last;
5472 
5473 	(void) ath_stoptxdma(sc);
5474 
5475 	/*
5476 	 * Dump the queue contents
5477 	 */
5478 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5479 		/*
5480 		 * XXX TODO: should we just handle the completed TX frames
5481 		 * here, whether or not the reset is a full one or not?
5482 		 */
5483 		if (ATH_TXQ_SETUP(sc, i)) {
5484 #ifdef	ATH_DEBUG
5485 			if (sc->sc_debug & ATH_DEBUG_RESET)
5486 				ath_tx_dump(sc, &sc->sc_txq[i]);
5487 #endif	/* ATH_DEBUG */
5488 			if (reset_type == ATH_RESET_NOLOSS) {
5489 				ath_tx_processq(sc, &sc->sc_txq[i], 0);
5490 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
5491 				/*
5492 				 * Free the holding buffer; DMA is now
5493 				 * stopped.
5494 				 */
5495 				ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]);
5496 				/*
5497 				 * Setup the link pointer to be the
5498 				 * _last_ buffer/descriptor in the list.
5499 				 * If there's nothing in the list, set it
5500 				 * to NULL.
5501 				 */
5502 				bf_last = ATH_TXQ_LAST(&sc->sc_txq[i],
5503 				    axq_q_s);
5504 				if (bf_last != NULL) {
5505 					ath_hal_gettxdesclinkptr(ah,
5506 					    bf_last->bf_lastds,
5507 					    &sc->sc_txq[i].axq_link);
5508 				} else {
5509 					sc->sc_txq[i].axq_link = NULL;
5510 				}
5511 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
5512 			} else
5513 				ath_tx_draintxq(sc, &sc->sc_txq[i]);
5514 		}
5515 	}
5516 #ifdef ATH_DEBUG
5517 	if (sc->sc_debug & ATH_DEBUG_RESET) {
5518 		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
5519 		if (bf != NULL && bf->bf_m != NULL) {
5520 			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
5521 				ath_hal_txprocdesc(ah, bf->bf_lastds,
5522 				    &bf->bf_status.ds_txstat) == HAL_OK);
5523 			ieee80211_dump_pkt(ifp->if_l2com,
5524 			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
5525 			    0, -1);
5526 		}
5527 	}
5528 #endif /* ATH_DEBUG */
5529 	IF_LOCK(&ifp->if_snd);
5530 #if defined(__DragonFly__)
5531 	ifq_clr_oactive(&ifp->if_snd);
5532 #else
5533 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5534 #endif
5535 	IF_UNLOCK(&ifp->if_snd);
5536 	sc->sc_wd_timer = 0;
5537 }
5538 
5539 /*
5540  * Update internal state after a channel change.
5541  */
5542 static void
5543 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5544 {
5545 	enum ieee80211_phymode mode;
5546 
5547 	/*
5548 	 * Change channels and update the h/w rate map
5549 	 * if we're switching; e.g. 11a to 11b/g.
5550 	 */
5551 	mode = ieee80211_chan2mode(chan);
5552 	if (mode != sc->sc_curmode)
5553 		ath_setcurmode(sc, mode);
5554 	sc->sc_curchan = chan;
5555 }
5556 
5557 /*
5558  * Set/change channels.  If the channel is really being changed,
5559  * it's done by resetting the chip.  To accomplish this we must
5560  * first cleanup any pending DMA, then restart stuff after a la
5561  * ath_init.
5562  */
5563 static int
5564 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5565 {
5566 	struct ifnet *ifp = sc->sc_ifp;
5567 	struct ieee80211com *ic = ifp->if_l2com;
5568 	struct ath_hal *ah = sc->sc_ah;
5569 	int ret = 0;
5570 
5571 	/* Treat this as an interface reset */
5572 	ATH_PCU_UNLOCK_ASSERT(sc);
5573 	ATH_UNLOCK_ASSERT(sc);
5574 
5575 	/* (Try to) stop TX/RX from occuring */
5576 	taskqueue_block(sc->sc_tq);
5577 
5578 	ATH_PCU_LOCK(sc);
5579 
5580 	/* Disable interrupts */
5581 	ath_hal_intrset(ah, 0);
5582 
5583 	/* Stop new RX/TX/interrupt completion */
5584 	if (ath_reset_grablock(sc, 1) == 0) {
5585 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
5586 		    __func__);
5587 	}
5588 
5589 	/* Stop pending RX/TX completion */
5590 	ath_txrx_stop_locked(sc);
5591 
5592 	ATH_PCU_UNLOCK(sc);
5593 
5594 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
5595 	    __func__, ieee80211_chan2ieee(ic, chan),
5596 	    chan->ic_freq, chan->ic_flags);
5597 	if (chan != sc->sc_curchan) {
5598 		HAL_STATUS status;
5599 		/*
5600 		 * To switch channels clear any pending DMA operations;
5601 		 * wait long enough for the RX fifo to drain, reset the
5602 		 * hardware at the new frequency, and then re-enable
5603 		 * the relevant bits of the h/w.
5604 		 */
5605 #if 0
5606 		ath_hal_intrset(ah, 0);		/* disable interrupts */
5607 #endif
5608 		ath_stoprecv(sc, 1);		/* turn off frame recv */
5609 		/*
5610 		 * First, handle completed TX/RX frames.
5611 		 */
5612 		ath_rx_flush(sc);
5613 		ath_draintxq(sc, ATH_RESET_NOLOSS);
5614 		/*
5615 		 * Next, flush the non-scheduled frames.
5616 		 */
5617 		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
5618 
5619 		ath_update_chainmasks(sc, chan);
5620 		ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
5621 		    sc->sc_cur_rxchainmask);
5622 		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
5623 			if_printf(ifp, "%s: unable to reset "
5624 			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
5625 			    __func__, ieee80211_chan2ieee(ic, chan),
5626 			    chan->ic_freq, chan->ic_flags, status);
5627 			ret = EIO;
5628 			goto finish;
5629 		}
5630 		sc->sc_diversity = ath_hal_getdiversity(ah);
5631 
5632 		ATH_RX_LOCK(sc);
5633 		sc->sc_rx_stopped = 1;
5634 		sc->sc_rx_resetted = 1;
5635 		ATH_RX_UNLOCK(sc);
5636 
5637 		/* Let DFS at it in case it's a DFS channel */
5638 		ath_dfs_radar_enable(sc, chan);
5639 
5640 		/* Let spectral at in case spectral is enabled */
5641 		ath_spectral_enable(sc, chan);
5642 
5643 		/*
5644 		 * Let bluetooth coexistence at in case it's needed for this
5645 		 * channel
5646 		 */
5647 		ath_btcoex_enable(sc, ic->ic_curchan);
5648 
5649 		/*
5650 		 * If we're doing TDMA, enforce the TXOP limitation for chips
5651 		 * that support it.
5652 		 */
5653 		if (sc->sc_hasenforcetxop && sc->sc_tdma)
5654 			ath_hal_setenforcetxop(sc->sc_ah, 1);
5655 		else
5656 			ath_hal_setenforcetxop(sc->sc_ah, 0);
5657 
5658 		/*
5659 		 * Re-enable rx framework.
5660 		 */
5661 		if (ath_startrecv(sc) != 0) {
5662 			if_printf(ifp, "%s: unable to restart recv logic\n",
5663 			    __func__);
5664 			ret = EIO;
5665 			goto finish;
5666 		}
5667 
5668 		/*
5669 		 * Change channels and update the h/w rate map
5670 		 * if we're switching; e.g. 11a to 11b/g.
5671 		 */
5672 		ath_chan_change(sc, chan);
5673 
5674 		/*
5675 		 * Reset clears the beacon timers; reset them
5676 		 * here if needed.
5677 		 */
5678 		if (sc->sc_beacons) {		/* restart beacons */
5679 #ifdef IEEE80211_SUPPORT_TDMA
5680 			if (sc->sc_tdma)
5681 				ath_tdma_config(sc, NULL);
5682 			else
5683 #endif
5684 			ath_beacon_config(sc, NULL);
5685 		}
5686 
5687 		/*
5688 		 * Re-enable interrupts.
5689 		 */
5690 #if 0
5691 		ath_hal_intrset(ah, sc->sc_imask);
5692 #endif
5693 	}
5694 
5695 finish:
5696 	ATH_PCU_LOCK(sc);
5697 	sc->sc_inreset_cnt--;
5698 	/* XXX only do this if sc_inreset_cnt == 0? */
5699 	ath_hal_intrset(ah, sc->sc_imask);
5700 	ATH_PCU_UNLOCK(sc);
5701 
5702 	IF_LOCK(&ifp->if_snd);
5703 #if defined(__DragonFly__)
5704 	ifq_clr_oactive(&ifp->if_snd);
5705 #else
5706 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5707 #endif
5708 	IF_UNLOCK(&ifp->if_snd);
5709 	ath_txrx_start(sc);
5710 	/* XXX ath_start? */
5711 
5712 	return ret;
5713 }
5714 
5715 /*
5716  * Periodically recalibrate the PHY to account
5717  * for temperature/environment changes.
5718  */
5719 static void
5720 ath_calibrate(void *arg)
5721 {
5722 	struct ath_softc *sc = arg;
5723 	struct ath_hal *ah = sc->sc_ah;
5724 	struct ifnet *ifp = sc->sc_ifp;
5725 	struct ieee80211com *ic = ifp->if_l2com;
5726 	HAL_BOOL longCal, isCalDone = AH_TRUE;
5727 	HAL_BOOL aniCal, shortCal = AH_FALSE;
5728 	int nextcal;
5729 
5730 	ATH_LOCK_ASSERT(sc);
5731 
5732 	/*
5733 	 * Force the hardware awake for ANI work.
5734 	 */
5735 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5736 
5737 	/* Skip trying to do this if we're in reset */
5738 	if (sc->sc_inreset_cnt)
5739 		goto restart;
5740 
5741 	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
5742 		goto restart;
5743 	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5744 	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
5745 	if (sc->sc_doresetcal)
5746 		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
5747 
5748 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
5749 	if (aniCal) {
5750 		sc->sc_stats.ast_ani_cal++;
5751 		sc->sc_lastani = ticks;
5752 		ath_hal_ani_poll(ah, sc->sc_curchan);
5753 	}
5754 
5755 	if (longCal) {
5756 		sc->sc_stats.ast_per_cal++;
5757 		sc->sc_lastlongcal = ticks;
5758 		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5759 			/*
5760 			 * Rfgain is out of bounds, reset the chip
5761 			 * to load new gain values.
5762 			 */
5763 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5764 				"%s: rfgain change\n", __func__);
5765 			sc->sc_stats.ast_per_rfgain++;
5766 			sc->sc_resetcal = 0;
5767 			sc->sc_doresetcal = AH_TRUE;
5768 			taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
5769 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5770 			ath_power_restore_power_state(sc);
5771 			return;
5772 		}
5773 		/*
5774 		 * If this long cal is after an idle period, then
5775 		 * reset the data collection state so we start fresh.
5776 		 */
5777 		if (sc->sc_resetcal) {
5778 			(void) ath_hal_calreset(ah, sc->sc_curchan);
5779 			sc->sc_lastcalreset = ticks;
5780 			sc->sc_lastshortcal = ticks;
5781 			sc->sc_resetcal = 0;
5782 			sc->sc_doresetcal = AH_TRUE;
5783 		}
5784 	}
5785 
5786 	/* Only call if we're doing a short/long cal, not for ANI calibration */
5787 	if (shortCal || longCal) {
5788 		isCalDone = AH_FALSE;
5789 		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5790 			if (longCal) {
5791 				/*
5792 				 * Calibrate noise floor data again in case of change.
5793 				 */
5794 				ath_hal_process_noisefloor(ah);
5795 			}
5796 		} else {
5797 			DPRINTF(sc, ATH_DEBUG_ANY,
5798 				"%s: calibration of channel %u failed\n",
5799 				__func__, sc->sc_curchan->ic_freq);
5800 			sc->sc_stats.ast_per_calfail++;
5801 		}
5802 		if (shortCal)
5803 			sc->sc_lastshortcal = ticks;
5804 	}
5805 	if (!isCalDone) {
5806 restart:
5807 		/*
5808 		 * Use a shorter interval to potentially collect multiple
5809 		 * data samples required to complete calibration.  Once
5810 		 * we're told the work is done we drop back to a longer
5811 		 * interval between requests.  We're more aggressive doing
5812 		 * work when operating as an AP to improve operation right
5813 		 * after startup.
5814 		 */
5815 		sc->sc_lastshortcal = ticks;
5816 		nextcal = ath_shortcalinterval*hz/1000;
5817 		if (sc->sc_opmode != HAL_M_HOSTAP)
5818 			nextcal *= 10;
5819 		sc->sc_doresetcal = AH_TRUE;
5820 	} else {
5821 		/* nextcal should be the shortest time for next event */
5822 		nextcal = ath_longcalinterval*hz;
5823 		if (sc->sc_lastcalreset == 0)
5824 			sc->sc_lastcalreset = sc->sc_lastlongcal;
5825 		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5826 			sc->sc_resetcal = 1;	/* setup reset next trip */
5827 		sc->sc_doresetcal = AH_FALSE;
5828 	}
5829 	/* ANI calibration may occur more often than short/long/resetcal */
5830 	if (ath_anicalinterval > 0)
5831 		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
5832 
5833 	if (nextcal != 0) {
5834 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5835 		    __func__, nextcal, isCalDone ? "" : "!");
5836 		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
5837 	} else {
5838 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5839 		    __func__);
5840 		/* NB: don't rearm timer */
5841 	}
5842 	/*
5843 	 * Restore power state now that we're done.
5844 	 */
5845 	ath_power_restore_power_state(sc);
5846 }
5847 
5848 static void
5849 ath_scan_start(struct ieee80211com *ic)
5850 {
5851 	struct ifnet *ifp = ic->ic_ifp;
5852 	struct ath_softc *sc = ic->ic_softc;
5853 	struct ath_hal *ah = sc->sc_ah;
5854 	u_int32_t rfilt;
5855 
5856 	/* XXX calibration timer? */
5857 
5858 	ATH_LOCK(sc);
5859 	sc->sc_scanning = 1;
5860 	sc->sc_syncbeacon = 0;
5861 	rfilt = ath_calcrxfilter(sc);
5862 	ATH_UNLOCK(sc);
5863 
5864 	ATH_PCU_LOCK(sc);
5865 	ath_hal_setrxfilter(ah, rfilt);
5866 	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
5867 	ATH_PCU_UNLOCK(sc);
5868 
5869 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5870 		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
5871 }
5872 
5873 static void
5874 ath_scan_end(struct ieee80211com *ic)
5875 {
5876 	struct ath_softc *sc = ic->ic_softc;
5877 	struct ath_hal *ah = sc->sc_ah;
5878 	u_int32_t rfilt;
5879 
5880 	ATH_LOCK(sc);
5881 	sc->sc_scanning = 0;
5882 	rfilt = ath_calcrxfilter(sc);
5883 	ATH_UNLOCK(sc);
5884 
5885 	ATH_PCU_LOCK(sc);
5886 	ath_hal_setrxfilter(ah, rfilt);
5887 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5888 
5889 	ath_hal_process_noisefloor(ah);
5890 	ATH_PCU_UNLOCK(sc);
5891 
5892 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5893 		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5894 		 sc->sc_curaid);
5895 }
5896 
5897 #ifdef	ATH_ENABLE_11N
5898 /*
5899  * For now, just do a channel change.
5900  *
5901  * Later, we'll go through the hard slog of suspending tx/rx, changing rate
5902  * control state and resetting the hardware without dropping frames out
5903  * of the queue.
5904  *
5905  * The unfortunate trouble here is making absolutely sure that the
5906  * channel width change has propagated enough so the hardware
5907  * absolutely isn't handed bogus frames for it's current operating
5908  * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
5909  * does occur in parallel, we need to make certain we've blocked
5910  * any further ongoing TX (and RX, that can cause raw TX)
5911  * before we do this.
5912  */
5913 static void
5914 ath_update_chw(struct ieee80211com *ic)
5915 {
5916 	struct ath_softc *sc = ic->ic_softc;
5917 
5918 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
5919 	ath_set_channel(ic);
5920 }
5921 #endif	/* ATH_ENABLE_11N */
5922 
5923 static void
5924 ath_set_channel(struct ieee80211com *ic)
5925 {
5926 	struct ath_softc *sc = ic->ic_softc;
5927 
5928 	ATH_LOCK(sc);
5929 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5930 	ATH_UNLOCK(sc);
5931 
5932 	(void) ath_chan_set(sc, ic->ic_curchan);
5933 	/*
5934 	 * If we are returning to our bss channel then mark state
5935 	 * so the next recv'd beacon's tsf will be used to sync the
5936 	 * beacon timers.  Note that since we only hear beacons in
5937 	 * sta/ibss mode this has no effect in other operating modes.
5938 	 */
5939 	ATH_LOCK(sc);
5940 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5941 		sc->sc_syncbeacon = 1;
5942 	ath_power_restore_power_state(sc);
5943 	ATH_UNLOCK(sc);
5944 }
5945 
5946 /*
5947  * Walk the vap list and check if there any vap's in RUN state.
5948  */
5949 static int
5950 ath_isanyrunningvaps(struct ieee80211vap *this)
5951 {
5952 	struct ieee80211com *ic = this->iv_ic;
5953 	struct ieee80211vap *vap;
5954 
5955 	IEEE80211_LOCK_ASSERT(ic);
5956 
5957 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5958 		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
5959 			return 1;
5960 	}
5961 	return 0;
5962 }
5963 
5964 static int
5965 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5966 {
5967 	struct ieee80211com *ic = vap->iv_ic;
5968 	struct ath_softc *sc = ic->ic_softc;
5969 	struct ath_vap *avp = ATH_VAP(vap);
5970 	struct ath_hal *ah = sc->sc_ah;
5971 	struct ieee80211_node *ni = NULL;
5972 	int i, error, stamode;
5973 	u_int32_t rfilt;
5974 	int csa_run_transition = 0;
5975 	enum ieee80211_state ostate = vap->iv_state;
5976 
5977 	static const HAL_LED_STATE leds[] = {
5978 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5979 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5980 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5981 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5982 	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5983 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5984 	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5985 	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5986 	};
5987 
5988 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5989 		ieee80211_state_name[ostate],
5990 		ieee80211_state_name[nstate]);
5991 
5992 	/*
5993 	 * net80211 _should_ have the comlock asserted at this point.
5994 	 * There are some comments around the calls to vap->iv_newstate
5995 	 * which indicate that it (newstate) may end up dropping the
5996 	 * lock.  This and the subsequent lock assert check after newstate
5997 	 * are an attempt to catch these and figure out how/why.
5998 	 */
5999 	IEEE80211_LOCK_ASSERT(ic);
6000 
6001 	/* Before we touch the hardware - wake it up */
6002 	ATH_LOCK(sc);
6003 	/*
6004 	 * If the NIC is in anything other than SLEEP state,
6005 	 * we need to ensure that self-generated frames are
6006 	 * set for PWRMGT=0.  Otherwise we may end up with
6007 	 * strange situations.
6008 	 *
6009 	 * XXX TODO: is this actually the case? :-)
6010 	 */
6011 	if (nstate != IEEE80211_S_SLEEP)
6012 		ath_power_setselfgen(sc, HAL_PM_AWAKE);
6013 
6014 	/*
6015 	 * Now, wake the thing up.
6016 	 */
6017 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
6018 
6019 	/*
6020 	 * And stop the calibration callout whilst we have
6021 	 * ATH_LOCK held.
6022 	 */
6023 	callout_stop_sync(&sc->sc_cal_ch);
6024 	ATH_UNLOCK(sc);
6025 
6026 	if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
6027 		csa_run_transition = 1;
6028 
6029 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
6030 
6031 	if (nstate == IEEE80211_S_SCAN) {
6032 		/*
6033 		 * Scanning: turn off beacon miss and don't beacon.
6034 		 * Mark beacon state so when we reach RUN state we'll
6035 		 * [re]setup beacons.  Unblock the task q thread so
6036 		 * deferred interrupt processing is done.
6037 		 */
6038 
6039 		/* Ensure we stay awake during scan */
6040 		ATH_LOCK(sc);
6041 		ath_power_setselfgen(sc, HAL_PM_AWAKE);
6042 		ath_power_setpower(sc, HAL_PM_AWAKE);
6043 		ATH_UNLOCK(sc);
6044 
6045 		ath_hal_intrset(ah,
6046 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
6047 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
6048 		sc->sc_beacons = 0;
6049 		taskqueue_unblock(sc->sc_tq);
6050 	}
6051 
6052 	ni = ieee80211_ref_node(vap->iv_bss);
6053 	rfilt = ath_calcrxfilter(sc);
6054 	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
6055 		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
6056 		   vap->iv_opmode == IEEE80211_M_IBSS);
6057 
6058 	/*
6059 	 * XXX Dont need to do this (and others) if we've transitioned
6060 	 * from SLEEP->RUN.
6061 	 */
6062 	if (stamode && nstate == IEEE80211_S_RUN) {
6063 		sc->sc_curaid = ni->ni_associd;
6064 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
6065 		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
6066 	}
6067 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
6068 	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
6069 	ath_hal_setrxfilter(ah, rfilt);
6070 
6071 	/* XXX is this to restore keycache on resume? */
6072 	if (vap->iv_opmode != IEEE80211_M_STA &&
6073 	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
6074 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
6075 			if (ath_hal_keyisvalid(ah, i))
6076 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
6077 	}
6078 
6079 	/*
6080 	 * Invoke the parent method to do net80211 work.
6081 	 */
6082 	error = avp->av_newstate(vap, nstate, arg);
6083 	if (error != 0)
6084 		goto bad;
6085 
6086 	/*
6087 	 * See above: ensure av_newstate() doesn't drop the lock
6088 	 * on us.
6089 	 */
6090 	IEEE80211_LOCK_ASSERT(ic);
6091 
6092 	if (nstate == IEEE80211_S_RUN) {
6093 		/* NB: collect bss node again, it may have changed */
6094 		ieee80211_free_node(ni);
6095 		ni = ieee80211_ref_node(vap->iv_bss);
6096 
6097 		DPRINTF(sc, ATH_DEBUG_STATE,
6098 		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
6099 		    "capinfo 0x%04x chan %d\n", __func__,
6100 		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
6101 		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
6102 
6103 		switch (vap->iv_opmode) {
6104 #ifdef IEEE80211_SUPPORT_TDMA
6105 		case IEEE80211_M_AHDEMO:
6106 			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
6107 				break;
6108 			/* fall thru... */
6109 #endif
6110 		case IEEE80211_M_HOSTAP:
6111 		case IEEE80211_M_IBSS:
6112 		case IEEE80211_M_MBSS:
6113 			/*
6114 			 * Allocate and setup the beacon frame.
6115 			 *
6116 			 * Stop any previous beacon DMA.  This may be
6117 			 * necessary, for example, when an ibss merge
6118 			 * causes reconfiguration; there will be a state
6119 			 * transition from RUN->RUN that means we may
6120 			 * be called with beacon transmission active.
6121 			 */
6122 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
6123 
6124 			error = ath_beacon_alloc(sc, ni);
6125 			if (error != 0)
6126 				goto bad;
6127 			/*
6128 			 * If joining an adhoc network defer beacon timer
6129 			 * configuration to the next beacon frame so we
6130 			 * have a current TSF to use.  Otherwise we're
6131 			 * starting an ibss/bss so there's no need to delay;
6132 			 * if this is the first vap moving to RUN state, then
6133 			 * beacon state needs to be [re]configured.
6134 			 */
6135 			if (vap->iv_opmode == IEEE80211_M_IBSS &&
6136 			    ni->ni_tstamp.tsf != 0) {
6137 				sc->sc_syncbeacon = 1;
6138 			} else if (!sc->sc_beacons) {
6139 #ifdef IEEE80211_SUPPORT_TDMA
6140 				if (vap->iv_caps & IEEE80211_C_TDMA)
6141 					ath_tdma_config(sc, vap);
6142 				else
6143 #endif
6144 					ath_beacon_config(sc, vap);
6145 				sc->sc_beacons = 1;
6146 			}
6147 			break;
6148 		case IEEE80211_M_STA:
6149 			/*
6150 			 * Defer beacon timer configuration to the next
6151 			 * beacon frame so we have a current TSF to use
6152 			 * (any TSF collected when scanning is likely old).
6153 			 * However if it's due to a CSA -> RUN transition,
6154 			 * force a beacon update so we pick up a lack of
6155 			 * beacons from an AP in CAC and thus force a
6156 			 * scan.
6157 			 *
6158 			 * And, there's also corner cases here where
6159 			 * after a scan, the AP may have disappeared.
6160 			 * In that case, we may not receive an actual
6161 			 * beacon to update the beacon timer and thus we
6162 			 * won't get notified of the missing beacons.
6163 			 */
6164 			if (ostate != IEEE80211_S_RUN &&
6165 			    ostate != IEEE80211_S_SLEEP) {
6166 				DPRINTF(sc, ATH_DEBUG_BEACON,
6167 				    "%s: STA; syncbeacon=1\n", __func__);
6168 				sc->sc_syncbeacon = 1;
6169 
6170 				if (csa_run_transition)
6171 					ath_beacon_config(sc, vap);
6172 
6173 			/*
6174 			 * PR: kern/175227
6175 			 *
6176 			 * Reconfigure beacons during reset; as otherwise
6177 			 * we won't get the beacon timers reprogrammed
6178 			 * after a reset and thus we won't pick up a
6179 			 * beacon miss interrupt.
6180 			 *
6181 			 * Hopefully we'll see a beacon before the BMISS
6182 			 * timer fires (too often), leading to a STA
6183 			 * disassociation.
6184 			 */
6185 				sc->sc_beacons = 1;
6186 			}
6187 			break;
6188 		case IEEE80211_M_MONITOR:
6189 			/*
6190 			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
6191 			 * transitions so we must re-enable interrupts here to
6192 			 * handle the case of a single monitor mode vap.
6193 			 */
6194 			ath_hal_intrset(ah, sc->sc_imask);
6195 			break;
6196 		case IEEE80211_M_WDS:
6197 			break;
6198 		default:
6199 			break;
6200 		}
6201 		/*
6202 		 * Let the hal process statistics collected during a
6203 		 * scan so it can provide calibrated noise floor data.
6204 		 */
6205 		ath_hal_process_noisefloor(ah);
6206 		/*
6207 		 * Reset rssi stats; maybe not the best place...
6208 		 */
6209 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
6210 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
6211 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
6212 
6213 		/*
6214 		 * Force awake for RUN mode.
6215 		 */
6216 		ATH_LOCK(sc);
6217 		ath_power_setselfgen(sc, HAL_PM_AWAKE);
6218 		ath_power_setpower(sc, HAL_PM_AWAKE);
6219 
6220 		/*
6221 		 * Finally, start any timers and the task q thread
6222 		 * (in case we didn't go through SCAN state).
6223 		 */
6224 		if (ath_longcalinterval != 0) {
6225 			/* start periodic recalibration timer */
6226 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
6227 		} else {
6228 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
6229 			    "%s: calibration disabled\n", __func__);
6230 		}
6231 		ATH_UNLOCK(sc);
6232 
6233 		taskqueue_unblock(sc->sc_tq);
6234 	} else if (nstate == IEEE80211_S_INIT) {
6235 		/*
6236 		 * If there are no vaps left in RUN state then
6237 		 * shutdown host/driver operation:
6238 		 * o disable interrupts
6239 		 * o disable the task queue thread
6240 		 * o mark beacon processing as stopped
6241 		 */
6242 		if (!ath_isanyrunningvaps(vap)) {
6243 			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
6244 			/* disable interrupts  */
6245 			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
6246 			taskqueue_block(sc->sc_tq);
6247 			sc->sc_beacons = 0;
6248 		}
6249 #ifdef IEEE80211_SUPPORT_TDMA
6250 		ath_hal_setcca(ah, AH_TRUE);
6251 #endif
6252 	} else if (nstate == IEEE80211_S_SLEEP) {
6253 		/* We're going to sleep, so transition appropriately */
6254 		/* For now, only do this if we're a single STA vap */
6255 		if (sc->sc_nvaps == 1 &&
6256 		    vap->iv_opmode == IEEE80211_M_STA) {
6257 			DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon);
6258 			ATH_LOCK(sc);
6259 			/*
6260 			 * Always at least set the self-generated
6261 			 * frame config to set PWRMGT=1.
6262 			 */
6263 			ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP);
6264 
6265 			/*
6266 			 * If we're not syncing beacons, transition
6267 			 * to NETWORK_SLEEP.
6268 			 *
6269 			 * We stay awake if syncbeacon > 0 in case
6270 			 * we need to listen for some beacons otherwise
6271 			 * our beacon timer config may be wrong.
6272 			 */
6273 			if (sc->sc_syncbeacon == 0) {
6274 				ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP);
6275 			}
6276 			ATH_UNLOCK(sc);
6277 		}
6278 	}
6279 bad:
6280 	ieee80211_free_node(ni);
6281 
6282 	/*
6283 	 * Restore the power state - either to what it was, or
6284 	 * to network_sleep if it's alright.
6285 	 */
6286 	ATH_LOCK(sc);
6287 	ath_power_restore_power_state(sc);
6288 	ATH_UNLOCK(sc);
6289 	return error;
6290 }
6291 
6292 /*
6293  * Allocate a key cache slot to the station so we can
6294  * setup a mapping from key index to node. The key cache
6295  * slot is needed for managing antenna state and for
6296  * compression when stations do not use crypto.  We do
6297  * it uniliaterally here; if crypto is employed this slot
6298  * will be reassigned.
6299  */
6300 static void
6301 ath_setup_stationkey(struct ieee80211_node *ni)
6302 {
6303 	struct ieee80211vap *vap = ni->ni_vap;
6304 	struct ath_softc *sc = vap->iv_ic->ic_softc;
6305 	ieee80211_keyix keyix, rxkeyix;
6306 
6307 	/* XXX should take a locked ref to vap->iv_bss */
6308 	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
6309 		/*
6310 		 * Key cache is full; we'll fall back to doing
6311 		 * the more expensive lookup in software.  Note
6312 		 * this also means no h/w compression.
6313 		 */
6314 		/* XXX msg+statistic */
6315 	} else {
6316 		/* XXX locking? */
6317 		ni->ni_ucastkey.wk_keyix = keyix;
6318 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
6319 		/* NB: must mark device key to get called back on delete */
6320 		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
6321 		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
6322 		/* NB: this will create a pass-thru key entry */
6323 		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
6324 	}
6325 }
6326 
6327 /*
6328  * Setup driver-specific state for a newly associated node.
6329  * Note that we're called also on a re-associate, the isnew
6330  * param tells us if this is the first time or not.
6331  */
6332 static void
6333 ath_newassoc(struct ieee80211_node *ni, int isnew)
6334 {
6335 	struct ath_node *an = ATH_NODE(ni);
6336 	struct ieee80211vap *vap = ni->ni_vap;
6337 	struct ath_softc *sc = vap->iv_ic->ic_softc;
6338 	const struct ieee80211_txparam *tp = ni->ni_txparms;
6339 
6340 	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
6341 	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
6342 
6343 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %s: reassoc; isnew=%d, is_powersave=%d\n",
6344 	    __func__,
6345 	    ath_hal_ether_sprintf(ni->ni_macaddr),
6346 	    isnew,
6347 	    an->an_is_powersave);
6348 
6349 	ATH_NODE_LOCK(an);
6350 	ath_rate_newassoc(sc, an, isnew);
6351 	ATH_NODE_UNLOCK(an);
6352 
6353 	if (isnew &&
6354 	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
6355 	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
6356 		ath_setup_stationkey(ni);
6357 
6358 	/*
6359 	 * If we're reassociating, make sure that any paused queues
6360 	 * get unpaused.
6361 	 *
6362 	 * Now, we may hvae frames in the hardware queue for this node.
6363 	 * So if we are reassociating and there are frames in the queue,
6364 	 * we need to go through the cleanup path to ensure that they're
6365 	 * marked as non-aggregate.
6366 	 */
6367 	if (! isnew) {
6368 		DPRINTF(sc, ATH_DEBUG_NODE,
6369 		    "%s: %s: reassoc; is_powersave=%d\n",
6370 		    __func__,
6371 		    ath_hal_ether_sprintf(ni->ni_macaddr),
6372 		    an->an_is_powersave);
6373 
6374 		/* XXX for now, we can't hold the lock across assoc */
6375 		ath_tx_node_reassoc(sc, an);
6376 
6377 		/* XXX for now, we can't hold the lock across wakeup */
6378 		if (an->an_is_powersave)
6379 			ath_tx_node_wakeup(sc, an);
6380 	}
6381 }
6382 
6383 static int
6384 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
6385 	int nchans, struct ieee80211_channel chans[])
6386 {
6387 	struct ath_softc *sc = ic->ic_softc;
6388 	struct ath_hal *ah = sc->sc_ah;
6389 	HAL_STATUS status;
6390 
6391 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6392 	    "%s: rd %u cc %u location %c%s\n",
6393 	    __func__, reg->regdomain, reg->country, reg->location,
6394 	    reg->ecm ? " ecm" : "");
6395 
6396 	status = ath_hal_set_channels(ah, chans, nchans,
6397 	    reg->country, reg->regdomain);
6398 	if (status != HAL_OK) {
6399 		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
6400 		    __func__, status);
6401 		return EINVAL;		/* XXX */
6402 	}
6403 
6404 	return 0;
6405 }
6406 
6407 static void
6408 ath_getradiocaps(struct ieee80211com *ic,
6409 	int maxchans, int *nchans, struct ieee80211_channel chans[])
6410 {
6411 	struct ath_softc *sc = ic->ic_softc;
6412 	struct ath_hal *ah = sc->sc_ah;
6413 
6414 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
6415 	    __func__, SKU_DEBUG, CTRY_DEFAULT);
6416 
6417 	/* XXX check return */
6418 	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
6419 	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
6420 
6421 }
6422 
6423 static int
6424 ath_getchannels(struct ath_softc *sc)
6425 {
6426 	struct ifnet *ifp = sc->sc_ifp;
6427 	struct ieee80211com *ic = ifp->if_l2com;
6428 	struct ath_hal *ah = sc->sc_ah;
6429 	HAL_STATUS status;
6430 
6431 	/*
6432 	 * Collect channel set based on EEPROM contents.
6433 	 */
6434 	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
6435 	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
6436 	if (status != HAL_OK) {
6437 		if_printf(ifp, "%s: unable to collect channel list from hal, "
6438 		    "status %d\n", __func__, status);
6439 		return EINVAL;
6440 	}
6441 	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
6442 	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
6443 	/* XXX map Atheros sku's to net80211 SKU's */
6444 	/* XXX net80211 types too small */
6445 	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
6446 	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
6447 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
6448 	ic->ic_regdomain.isocc[1] = ' ';
6449 
6450 	ic->ic_regdomain.ecm = 1;
6451 	ic->ic_regdomain.location = 'I';
6452 
6453 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6454 	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
6455 	    __func__, sc->sc_eerd, sc->sc_eecc,
6456 	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
6457 	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
6458 	return 0;
6459 }
6460 
6461 static int
6462 ath_rate_setup(struct ath_softc *sc, u_int mode)
6463 {
6464 	struct ath_hal *ah = sc->sc_ah;
6465 	const HAL_RATE_TABLE *rt;
6466 
6467 	switch (mode) {
6468 	case IEEE80211_MODE_11A:
6469 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
6470 		break;
6471 	case IEEE80211_MODE_HALF:
6472 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
6473 		break;
6474 	case IEEE80211_MODE_QUARTER:
6475 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
6476 		break;
6477 	case IEEE80211_MODE_11B:
6478 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
6479 		break;
6480 	case IEEE80211_MODE_11G:
6481 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
6482 		break;
6483 	case IEEE80211_MODE_TURBO_A:
6484 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
6485 		break;
6486 	case IEEE80211_MODE_TURBO_G:
6487 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
6488 		break;
6489 	case IEEE80211_MODE_STURBO_A:
6490 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
6491 		break;
6492 	case IEEE80211_MODE_11NA:
6493 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
6494 		break;
6495 	case IEEE80211_MODE_11NG:
6496 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
6497 		break;
6498 	default:
6499 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
6500 			__func__, mode);
6501 		return 0;
6502 	}
6503 	sc->sc_rates[mode] = rt;
6504 	return (rt != NULL);
6505 }
6506 
6507 static void
6508 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
6509 {
6510 #define	N(a)	(sizeof(a)/sizeof(a[0]))
6511 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
6512 	static const struct {
6513 		u_int		rate;		/* tx/rx 802.11 rate */
6514 		u_int16_t	timeOn;		/* LED on time (ms) */
6515 		u_int16_t	timeOff;	/* LED off time (ms) */
6516 	} blinkrates[] = {
6517 		{ 108,  40,  10 },
6518 		{  96,  44,  11 },
6519 		{  72,  50,  13 },
6520 		{  48,  57,  14 },
6521 		{  36,  67,  16 },
6522 		{  24,  80,  20 },
6523 		{  22, 100,  25 },
6524 		{  18, 133,  34 },
6525 		{  12, 160,  40 },
6526 		{  10, 200,  50 },
6527 		{   6, 240,  58 },
6528 		{   4, 267,  66 },
6529 		{   2, 400, 100 },
6530 		{   0, 500, 130 },
6531 		/* XXX half/quarter rates */
6532 	};
6533 	const HAL_RATE_TABLE *rt;
6534 	int i, j;
6535 
6536 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
6537 	rt = sc->sc_rates[mode];
6538 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
6539 	for (i = 0; i < rt->rateCount; i++) {
6540 		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6541 		if (rt->info[i].phy != IEEE80211_T_HT)
6542 			sc->sc_rixmap[ieeerate] = i;
6543 		else
6544 			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
6545 	}
6546 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
6547 	for (i = 0; i < N(sc->sc_hwmap); i++) {
6548 		if (i >= rt->rateCount) {
6549 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
6550 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
6551 			continue;
6552 		}
6553 		sc->sc_hwmap[i].ieeerate =
6554 			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6555 		if (rt->info[i].phy == IEEE80211_T_HT)
6556 			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
6557 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
6558 		if (rt->info[i].shortPreamble ||
6559 		    rt->info[i].phy == IEEE80211_T_OFDM)
6560 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6561 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
6562 		for (j = 0; j < N(blinkrates)-1; j++)
6563 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6564 				break;
6565 		/* NB: this uses the last entry if the rate isn't found */
6566 		/* XXX beware of overlow */
6567 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6568 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6569 	}
6570 	sc->sc_currates = rt;
6571 	sc->sc_curmode = mode;
6572 	/*
6573 	 * All protection frames are transmited at 2Mb/s for
6574 	 * 11g, otherwise at 1Mb/s.
6575 	 */
6576 	if (mode == IEEE80211_MODE_11G)
6577 		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
6578 	else
6579 		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
6580 	/* NB: caller is responsible for resetting rate control state */
6581 #undef N
6582 }
6583 
6584 static void
6585 ath_watchdog(void *arg)
6586 {
6587 	struct ath_softc *sc = arg;
6588 	int do_reset = 0;
6589 
6590 	ATH_LOCK_ASSERT(sc);
6591 
6592 	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
6593 		struct ifnet *ifp = sc->sc_ifp;
6594 		uint32_t hangs;
6595 
6596 		ath_power_set_power_state(sc, HAL_PM_AWAKE);
6597 
6598 		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
6599 		    hangs != 0) {
6600 			if_printf(ifp, "%s hang detected (0x%x)\n",
6601 			    hangs & 0xff ? "bb" : "mac", hangs);
6602 		} else
6603 			if_printf(ifp, "device timeout\n");
6604 		do_reset = 1;
6605 #if defined(__DragonFly__)
6606 		++ifp->if_oerrors;
6607 #else
6608 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
6609 #endif
6610 		sc->sc_stats.ast_watchdog++;
6611 
6612 		ath_power_restore_power_state(sc);
6613 	}
6614 
6615 	/*
6616 	 * We can't hold the lock across the ath_reset() call.
6617 	 *
6618 	 * And since this routine can't hold a lock and sleep,
6619 	 * do the reset deferred.
6620 	 */
6621 	if (do_reset) {
6622 		taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
6623 	}
6624 
6625 #if defined(__DragonFly__)
6626 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
6627 #else
6628 	callout_schedule(&sc->sc_wd_ch, hz);
6629 #endif
6630 }
6631 
6632 #if defined(__DragonFly__)
6633 
6634 /*
6635  * (DragonFly network start)
6636  */
6637 static void
6638 ath_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
6639 {
6640        struct ath_softc *sc = ifp->if_softc;
6641        struct mbuf *m;
6642        int wst;
6643 
6644        ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
6645        wst = wlan_serialize_push();
6646 
6647        if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid) {
6648                ifq_purge(&ifp->if_snd);
6649                wlan_serialize_pop(wst);
6650                return;
6651        }
6652        ifq_set_oactive(&ifp->if_snd);
6653        for (;;) {
6654                m = ifq_dequeue(&ifp->if_snd);
6655                if (m == NULL)
6656                        break;
6657                ath_transmit(ifp, m);
6658        }
6659        ifq_clr_oactive(&ifp->if_snd);
6660        wlan_serialize_pop(wst);
6661 }
6662 
6663 #endif
6664 
6665 /*
6666  * Fetch the rate control statistics for the given node.
6667  */
6668 static int
6669 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs)
6670 {
6671 	struct ath_node *an;
6672 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
6673 	struct ieee80211_node *ni;
6674 	int error = 0;
6675 
6676 	/* Perform a lookup on the given node */
6677 	ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr);
6678 	if (ni == NULL) {
6679 		error = EINVAL;
6680 		goto bad;
6681 	}
6682 
6683 	/* Lock the ath_node */
6684 	an = ATH_NODE(ni);
6685 	ATH_NODE_LOCK(an);
6686 
6687 	/* Fetch the rate control stats for this node */
6688 	error = ath_rate_fetch_node_stats(sc, an, rs);
6689 
6690 	/* No matter what happens here, just drop through */
6691 
6692 	/* Unlock the ath_node */
6693 	ATH_NODE_UNLOCK(an);
6694 
6695 	/* Unref the node */
6696 	ieee80211_node_decref(ni);
6697 
6698 bad:
6699 	return (error);
6700 }
6701 
6702 #ifdef ATH_DIAGAPI
6703 /*
6704  * Diagnostic interface to the HAL.  This is used by various
6705  * tools to do things like retrieve register contents for
6706  * debugging.  The mechanism is intentionally opaque so that
6707  * it can change frequently w/o concern for compatiblity.
6708  */
6709 static int
6710 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
6711 {
6712 	struct ath_hal *ah = sc->sc_ah;
6713 	u_int id = ad->ad_id & ATH_DIAG_ID;
6714 	void *indata = NULL;
6715 	void *outdata = NULL;
6716 	u_int32_t insize = ad->ad_in_size;
6717 	u_int32_t outsize = ad->ad_out_size;
6718 	int error = 0;
6719 
6720 	if (ad->ad_id & ATH_DIAG_IN) {
6721 		/*
6722 		 * Copy in data.
6723 		 */
6724 		indata = kmalloc(insize, M_TEMP, M_INTWAIT);
6725 		if (indata == NULL) {
6726 			error = ENOMEM;
6727 			goto bad;
6728 		}
6729 		error = copyin(ad->ad_in_data, indata, insize);
6730 		if (error)
6731 			goto bad;
6732 	}
6733 	if (ad->ad_id & ATH_DIAG_DYN) {
6734 		/*
6735 		 * Allocate a buffer for the results (otherwise the HAL
6736 		 * returns a pointer to a buffer where we can read the
6737 		 * results).  Note that we depend on the HAL leaving this
6738 		 * pointer for us to use below in reclaiming the buffer;
6739 		 * may want to be more defensive.
6740 		 */
6741 		outdata = kmalloc(outsize, M_TEMP, M_INTWAIT);
6742 		if (outdata == NULL) {
6743 			error = ENOMEM;
6744 			goto bad;
6745 		}
6746 	}
6747 
6748 
6749 	ATH_LOCK(sc);
6750 	if (id != HAL_DIAG_REGS)
6751 		ath_power_set_power_state(sc, HAL_PM_AWAKE);
6752 	ATH_UNLOCK(sc);
6753 
6754 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
6755 		if (outsize < ad->ad_out_size)
6756 			ad->ad_out_size = outsize;
6757 		if (outdata != NULL)
6758 			error = copyout(outdata, ad->ad_out_data,
6759 					ad->ad_out_size);
6760 	} else {
6761 		error = EINVAL;
6762 	}
6763 
6764 	ATH_LOCK(sc);
6765 	if (id != HAL_DIAG_REGS)
6766 		ath_power_restore_power_state(sc);
6767 	ATH_UNLOCK(sc);
6768 
6769 bad:
6770 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
6771 		kfree(indata, M_TEMP);
6772 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
6773 		kfree(outdata, M_TEMP);
6774 	return error;
6775 }
6776 #endif /* ATH_DIAGAPI */
6777 
6778 #if defined(__DragonFly__)
6779 
6780 static int
6781 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data,
6782 	  struct ucred *cred __unused)
6783 
6784 #else
6785 
6786 static int
6787 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
6788 
6789 #endif
6790 {
6791 #define	IS_RUNNING(ifp) \
6792 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
6793 	struct ieee80211com *ic = ifp->if_l2com;
6794 	struct ath_softc *sc = ic->ic_softc;
6795 	struct ifreq *ifr = (struct ifreq *)data;
6796 	const HAL_RATE_TABLE *rt;
6797 	int error = 0;
6798 
6799 	switch (cmd) {
6800 	case SIOCSIFFLAGS:
6801 		if (IS_RUNNING(ifp)) {
6802 			/*
6803 			 * To avoid rescanning another access point,
6804 			 * do not call ath_init() here.  Instead,
6805 			 * only reflect promisc mode settings.
6806 			 */
6807 			ATH_LOCK(sc);
6808 			ath_power_set_power_state(sc, HAL_PM_AWAKE);
6809 			ath_mode_init(sc);
6810 			ath_power_restore_power_state(sc);
6811 			ATH_UNLOCK(sc);
6812 		} else if (ifp->if_flags & IFF_UP) {
6813 			/*
6814 			 * Beware of being called during attach/detach
6815 			 * to reset promiscuous mode.  In that case we
6816 			 * will still be marked UP but not RUNNING.
6817 			 * However trying to re-init the interface
6818 			 * is the wrong thing to do as we've already
6819 			 * torn down much of our state.  There's
6820 			 * probably a better way to deal with this.
6821 			 */
6822 			if (!sc->sc_invalid)
6823 				ath_init(sc);	/* XXX lose error */
6824 		} else {
6825 			ATH_LOCK(sc);
6826 			ath_stop_locked(ifp);
6827 			if (!sc->sc_invalid)
6828 				ath_power_setpower(sc, HAL_PM_FULL_SLEEP);
6829 			ATH_UNLOCK(sc);
6830 		}
6831 		break;
6832 	case SIOCGIFMEDIA:
6833 	case SIOCSIFMEDIA:
6834 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
6835 		break;
6836 	case SIOCGATHSTATS:
6837 		/* NB: embed these numbers to get a consistent view */
6838 #if defined(__DragonFly__)
6839 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
6840 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
6841 #else
6842 		sc->sc_stats.ast_tx_packets = ifp->if_get_counter(ifp,
6843 		    IFCOUNTER_OPACKETS);
6844 		sc->sc_stats.ast_rx_packets = ifp->if_get_counter(ifp,
6845 		    IFCOUNTER_IPACKETS);
6846 #endif
6847 		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
6848 		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
6849 #ifdef IEEE80211_SUPPORT_TDMA
6850 		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
6851 		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
6852 #endif
6853 		rt = sc->sc_currates;
6854 		sc->sc_stats.ast_tx_rate =
6855 		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
6856 		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
6857 			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
6858 		error = copyout(&sc->sc_stats,
6859 		    ifr->ifr_data, sizeof (sc->sc_stats));
6860 		break;
6861 	case SIOCGATHAGSTATS:
6862 		error = copyout(&sc->sc_aggr_stats,
6863 		    ifr->ifr_data, sizeof (sc->sc_aggr_stats));
6864 		break;
6865 	case SIOCZATHSTATS:
6866 		error = priv_check(curthread, PRIV_DRIVER);
6867 		if (error == 0) {
6868 			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
6869 			memset(&sc->sc_aggr_stats, 0,
6870 			    sizeof(sc->sc_aggr_stats));
6871 			memset(&sc->sc_intr_stats, 0,
6872 			    sizeof(sc->sc_intr_stats));
6873 		}
6874 		break;
6875 #ifdef ATH_DIAGAPI
6876 	case SIOCGATHDIAG:
6877 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
6878 		break;
6879 	case SIOCGATHPHYERR:
6880 		error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
6881 		break;
6882 #endif
6883 	case SIOCGATHSPECTRAL:
6884 		error = ath_ioctl_spectral(sc,(struct ath_diag*) ifr);
6885 		break;
6886 	case SIOCGATHNODERATESTATS:
6887 		error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr);
6888 		break;
6889 	case SIOCGIFADDR:
6890 		error = ether_ioctl(ifp, cmd, data);
6891 		break;
6892 	default:
6893 		error = EINVAL;
6894 		break;
6895 	}
6896 	return error;
6897 #undef IS_RUNNING
6898 }
6899 
6900 /*
6901  * Announce various information on device/driver attach.
6902  */
6903 static void
6904 ath_announce(struct ath_softc *sc)
6905 {
6906 	struct ifnet *ifp = sc->sc_ifp;
6907 	struct ath_hal *ah = sc->sc_ah;
6908 
6909 	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
6910 		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
6911 		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
6912 	if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
6913 		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
6914 	if (bootverbose) {
6915 		int i;
6916 		for (i = 0; i <= WME_AC_VO; i++) {
6917 			struct ath_txq *txq = sc->sc_ac2q[i];
6918 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
6919 				txq->axq_qnum, ieee80211_wme_acnames[i]);
6920 		}
6921 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
6922 			sc->sc_cabq->axq_qnum);
6923 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
6924 	}
6925 	if (ath_rxbuf != ATH_RXBUF)
6926 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
6927 	if (ath_txbuf != ATH_TXBUF)
6928 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
6929 	if (sc->sc_mcastkey && bootverbose)
6930 		if_printf(ifp, "using multicast key search\n");
6931 }
6932 
6933 static void
6934 ath_dfs_tasklet(void *p, int npending)
6935 {
6936 	struct ath_softc *sc = (struct ath_softc *) p;
6937 	struct ifnet *ifp = sc->sc_ifp;
6938 	struct ieee80211com *ic = ifp->if_l2com;
6939 
6940 	/*
6941 	 * If previous processing has found a radar event,
6942 	 * signal this to the net80211 layer to begin DFS
6943 	 * processing.
6944 	 */
6945 	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
6946 		/* DFS event found, initiate channel change */
6947 		/*
6948 		 * XXX doesn't currently tell us whether the event
6949 		 * XXX was found in the primary or extension
6950 		 * XXX channel!
6951 		 */
6952 		IEEE80211_LOCK(ic);
6953 		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
6954 		IEEE80211_UNLOCK(ic);
6955 	}
6956 }
6957 
6958 /*
6959  * Enable/disable power save.  This must be called with
6960  * no TX driver locks currently held, so it should only
6961  * be called from the RX path (which doesn't hold any
6962  * TX driver locks.)
6963  */
6964 static void
6965 ath_node_powersave(struct ieee80211_node *ni, int enable)
6966 {
6967 #ifdef	ATH_SW_PSQ
6968 	struct ath_node *an = ATH_NODE(ni);
6969 	struct ieee80211com *ic = ni->ni_ic;
6970 	struct ath_softc *sc = ic->ic_softc;
6971 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6972 
6973 	/* XXX and no TXQ locks should be held here */
6974 
6975 	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6s: enable=%d\n",
6976 	    __func__,
6977 	    ath_hal_ether_sprintf(ni->ni_macaddr),
6978 	    !! enable);
6979 
6980 	/* Suspend or resume software queue handling */
6981 	if (enable)
6982 		ath_tx_node_sleep(sc, an);
6983 	else
6984 		ath_tx_node_wakeup(sc, an);
6985 
6986 	/* Update net80211 state */
6987 	avp->av_node_ps(ni, enable);
6988 #else
6989 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6990 
6991 	/* Update net80211 state */
6992 	avp->av_node_ps(ni, enable);
6993 #endif/* ATH_SW_PSQ */
6994 }
6995 
6996 /*
6997  * Notification from net80211 that the powersave queue state has
6998  * changed.
6999  *
7000  * Since the software queue also may have some frames:
7001  *
7002  * + if the node software queue has frames and the TID state
7003  *   is 0, we set the TIM;
7004  * + if the node and the stack are both empty, we clear the TIM bit.
7005  * + If the stack tries to set the bit, always set it.
7006  * + If the stack tries to clear the bit, only clear it if the
7007  *   software queue in question is also cleared.
7008  *
7009  * TODO: this is called during node teardown; so let's ensure this
7010  * is all correctly handled and that the TIM bit is cleared.
7011  * It may be that the node flush is called _AFTER_ the net80211
7012  * stack clears the TIM.
7013  *
7014  * Here is the racy part.  Since it's possible >1 concurrent,
7015  * overlapping TXes will appear complete with a TX completion in
7016  * another thread, it's possible that the concurrent TIM calls will
7017  * clash.  We can't hold the node lock here because setting the
7018  * TIM grabs the net80211 comlock and this may cause a LOR.
7019  * The solution is either to totally serialise _everything_ at
7020  * this point (ie, all TX, completion and any reset/flush go into
7021  * one taskqueue) or a new "ath TIM lock" needs to be created that
7022  * just wraps the driver state change and this call to avp->av_set_tim().
7023  *
7024  * The same race exists in the net80211 power save queue handling
7025  * as well.  Since multiple transmitting threads may queue frames
7026  * into the driver, as well as ps-poll and the driver transmitting
7027  * frames (and thus clearing the psq), it's quite possible that
7028  * a packet entering the PSQ and a ps-poll being handled will
7029  * race, causing the TIM to be cleared and not re-set.
7030  */
7031 static int
7032 ath_node_set_tim(struct ieee80211_node *ni, int enable)
7033 {
7034 #ifdef	ATH_SW_PSQ
7035 	struct ieee80211com *ic = ni->ni_ic;
7036 	struct ath_softc *sc = ic->ic_softc;
7037 	struct ath_node *an = ATH_NODE(ni);
7038 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
7039 	int changed = 0;
7040 
7041 	ATH_TX_LOCK(sc);
7042 	an->an_stack_psq = enable;
7043 
7044 	/*
7045 	 * This will get called for all operating modes,
7046 	 * even if avp->av_set_tim is unset.
7047 	 * It's currently set for hostap/ibss modes; but
7048 	 * the same infrastructure is used for both STA
7049 	 * and AP/IBSS node power save.
7050 	 */
7051 	if (avp->av_set_tim == NULL) {
7052 		ATH_TX_UNLOCK(sc);
7053 		return (0);
7054 	}
7055 
7056 	/*
7057 	 * If setting the bit, always set it here.
7058 	 * If clearing the bit, only clear it if the
7059 	 * software queue is also empty.
7060 	 *
7061 	 * If the node has left power save, just clear the TIM
7062 	 * bit regardless of the state of the power save queue.
7063 	 *
7064 	 * XXX TODO: although atomics are used, it's quite possible
7065 	 * that a race will occur between this and setting/clearing
7066 	 * in another thread.  TX completion will occur always in
7067 	 * one thread, however setting/clearing the TIM bit can come
7068 	 * from a variety of different process contexts!
7069 	 */
7070 	if (enable && an->an_tim_set == 1) {
7071 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7072 		    "%s: %s: enable=%d, tim_set=1, ignoring\n",
7073 		    __func__,
7074 		    ath_hal_ether_sprintf(ni->ni_macaddr),
7075 		    enable);
7076 		ATH_TX_UNLOCK(sc);
7077 	} else if (enable) {
7078 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7079 		    "%s: %s: enable=%d, enabling TIM\n",
7080 		    __func__,
7081 		    ath_hal_ether_sprintf(ni->ni_macaddr),
7082 		    enable);
7083 		an->an_tim_set = 1;
7084 		ATH_TX_UNLOCK(sc);
7085 		changed = avp->av_set_tim(ni, enable);
7086 	} else if (an->an_swq_depth == 0) {
7087 		/* disable */
7088 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7089 		    "%s: %s: enable=%d, an_swq_depth == 0, disabling\n",
7090 		    __func__,
7091 		    ath_hal_ether_sprintf(ni->ni_macaddr),
7092 		    enable);
7093 		an->an_tim_set = 0;
7094 		ATH_TX_UNLOCK(sc);
7095 		changed = avp->av_set_tim(ni, enable);
7096 	} else if (! an->an_is_powersave) {
7097 		/*
7098 		 * disable regardless; the node isn't in powersave now
7099 		 */
7100 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7101 		    "%s: %s: enable=%d, an_pwrsave=0, disabling\n",
7102 		    __func__,
7103 		    ath_hal_ether_sprintf(ni->ni_macaddr),
7104 		    enable);
7105 		an->an_tim_set = 0;
7106 		ATH_TX_UNLOCK(sc);
7107 		changed = avp->av_set_tim(ni, enable);
7108 	} else {
7109 		/*
7110 		 * psq disable, node is currently in powersave, node
7111 		 * software queue isn't empty, so don't clear the TIM bit
7112 		 * for now.
7113 		 */
7114 		ATH_TX_UNLOCK(sc);
7115 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7116 		    "%s: %s: enable=%d, an_swq_depth > 0, ignoring\n",
7117 		    __func__,
7118 		    ath_hal_ether_sprintf(ni->ni_macaddr),
7119 		    enable);
7120 		changed = 0;
7121 	}
7122 
7123 	return (changed);
7124 #else
7125 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
7126 
7127 	/*
7128 	 * Some operating modes don't set av_set_tim(), so don't
7129 	 * update it here.
7130 	 */
7131 	if (avp->av_set_tim == NULL)
7132 		return (0);
7133 
7134 	return (avp->av_set_tim(ni, enable));
7135 #endif /* ATH_SW_PSQ */
7136 }
7137 
7138 /*
7139  * Set or update the TIM from the software queue.
7140  *
7141  * Check the software queue depth before attempting to do lock
7142  * anything; that avoids trying to obtain the lock.  Then,
7143  * re-check afterwards to ensure nothing has changed in the
7144  * meantime.
7145  *
7146  * set:   This is designed to be called from the TX path, after
7147  *        a frame has been queued; to see if the swq > 0.
7148  *
7149  * clear: This is designed to be called from the buffer completion point
7150  *        (right now it's ath_tx_default_comp()) where the state of
7151  *        a software queue has changed.
7152  *
7153  * It makes sense to place it at buffer free / completion rather
7154  * than after each software queue operation, as there's no real
7155  * point in churning the TIM bit as the last frames in the software
7156  * queue are transmitted.  If they fail and we retry them, we'd
7157  * just be setting the TIM bit again anyway.
7158  */
7159 void
7160 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni,
7161      int enable)
7162 {
7163 #ifdef	ATH_SW_PSQ
7164 	struct ath_node *an;
7165 	struct ath_vap *avp;
7166 
7167 	/* Don't do this for broadcast/etc frames */
7168 	if (ni == NULL)
7169 		return;
7170 
7171 	an = ATH_NODE(ni);
7172 	avp = ATH_VAP(ni->ni_vap);
7173 
7174 	/*
7175 	 * And for operating modes without the TIM handler set, let's
7176 	 * just skip those.
7177 	 */
7178 	if (avp->av_set_tim == NULL)
7179 		return;
7180 
7181 	ATH_TX_LOCK_ASSERT(sc);
7182 
7183 	if (enable) {
7184 		if (an->an_is_powersave &&
7185 		    an->an_tim_set == 0 &&
7186 		    an->an_swq_depth != 0) {
7187 			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7188 			    "%s: %s: swq_depth>0, tim_set=0, set!\n",
7189 			    __func__,
7190 			    ath_hal_ether_sprintf(ni->ni_macaddr));
7191 			an->an_tim_set = 1;
7192 			(void) avp->av_set_tim(ni, 1);
7193 		}
7194 	} else {
7195 		/*
7196 		 * Don't bother grabbing the lock unless the queue is empty.
7197 		 */
7198 		if (an->an_swq_depth != 0)
7199 			return;
7200 
7201 		if (an->an_is_powersave &&
7202 		    an->an_stack_psq == 0 &&
7203 		    an->an_tim_set == 1 &&
7204 		    an->an_swq_depth == 0) {
7205 			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7206 			    "%s: %s: swq_depth=0, tim_set=1, psq_set=0,"
7207 			    " clear!\n",
7208 			    __func__,
7209 			    ath_hal_ether_sprintf(ni->ni_macaddr));
7210 			an->an_tim_set = 0;
7211 			(void) avp->av_set_tim(ni, 0);
7212 		}
7213 	}
7214 #else
7215 	return;
7216 #endif	/* ATH_SW_PSQ */
7217 }
7218 
7219 /*
7220  * Received a ps-poll frame from net80211.
7221  *
7222  * Here we get a chance to serve out a software-queued frame ourselves
7223  * before we punt it to net80211 to transmit us one itself - either
7224  * because there's traffic in the net80211 psq, or a NULL frame to
7225  * indicate there's nothing else.
7226  */
7227 static void
7228 ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m)
7229 {
7230 #ifdef	ATH_SW_PSQ
7231 	struct ath_node *an;
7232 	struct ath_vap *avp;
7233 	struct ieee80211com *ic = ni->ni_ic;
7234 	struct ath_softc *sc = ic->ic_softc;
7235 	int tid;
7236 
7237 	/* Just paranoia */
7238 	if (ni == NULL)
7239 		return;
7240 
7241 	/*
7242 	 * Unassociated (temporary node) station.
7243 	 */
7244 	if (ni->ni_associd == 0)
7245 		return;
7246 
7247 	/*
7248 	 * We do have an active node, so let's begin looking into it.
7249 	 */
7250 	an = ATH_NODE(ni);
7251 	avp = ATH_VAP(ni->ni_vap);
7252 
7253 	/*
7254 	 * For now, we just call the original ps-poll method.
7255 	 * Once we're ready to flip this on:
7256 	 *
7257 	 * + Set leak to 1, as no matter what we're going to have
7258 	 *   to send a frame;
7259 	 * + Check the software queue and if there's something in it,
7260 	 *   schedule the highest TID thas has traffic from this node.
7261 	 *   Then make sure we schedule the software scheduler to
7262 	 *   run so it picks up said frame.
7263 	 *
7264 	 * That way whatever happens, we'll at least send _a_ frame
7265 	 * to the given node.
7266 	 *
7267 	 * Again, yes, it's crappy QoS if the node has multiple
7268 	 * TIDs worth of traffic - but let's get it working first
7269 	 * before we optimise it.
7270 	 *
7271 	 * Also yes, there's definitely latency here - we're not
7272 	 * direct dispatching to the hardware in this path (and
7273 	 * we're likely being called from the packet receive path,
7274 	 * so going back into TX may be a little hairy!) but again
7275 	 * I'd like to get this working first before optimising
7276 	 * turn-around time.
7277 	 */
7278 
7279 	ATH_TX_LOCK(sc);
7280 
7281 	/*
7282 	 * Legacy - we're called and the node isn't asleep.
7283 	 * Immediately punt.
7284 	 */
7285 	if (! an->an_is_powersave) {
7286 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7287 		    "%s: %s: not in powersave?\n",
7288 		    __func__,
7289 		    ath_hal_ether_sprintf(ni->ni_macaddr));
7290 		ATH_TX_UNLOCK(sc);
7291 		avp->av_recv_pspoll(ni, m);
7292 		return;
7293 	}
7294 
7295 	/*
7296 	 * We're in powersave.
7297 	 *
7298 	 * Leak a frame.
7299 	 */
7300 	an->an_leak_count = 1;
7301 
7302 	/*
7303 	 * Now, if there's no frames in the node, just punt to
7304 	 * recv_pspoll.
7305 	 *
7306 	 * Don't bother checking if the TIM bit is set, we really
7307 	 * only care if there are any frames here!
7308 	 */
7309 	if (an->an_swq_depth == 0) {
7310 		ATH_TX_UNLOCK(sc);
7311 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7312 		    "%s: %s: SWQ empty; punting to net80211\n",
7313 		    __func__,
7314 		    ath_hal_ether_sprintf(ni->ni_macaddr));
7315 		avp->av_recv_pspoll(ni, m);
7316 		return;
7317 	}
7318 
7319 	/*
7320 	 * Ok, let's schedule the highest TID that has traffic
7321 	 * and then schedule something.
7322 	 */
7323 	for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) {
7324 		struct ath_tid *atid = &an->an_tid[tid];
7325 		/*
7326 		 * No frames? Skip.
7327 		 */
7328 		if (atid->axq_depth == 0)
7329 			continue;
7330 		ath_tx_tid_sched(sc, atid);
7331 		/*
7332 		 * XXX we could do a direct call to the TXQ
7333 		 * scheduler code here to optimise latency
7334 		 * at the expense of a REALLY deep callstack.
7335 		 */
7336 		ATH_TX_UNLOCK(sc);
7337 		taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask);
7338 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7339 		    "%s: %s: leaking frame to TID %d\n",
7340 		    __func__,
7341 		    ath_hal_ether_sprintf(ni->ni_macaddr),
7342 		    tid);
7343 		return;
7344 	}
7345 
7346 	ATH_TX_UNLOCK(sc);
7347 
7348 	/*
7349 	 * XXX nothing in the TIDs at this point? Eek.
7350 	 */
7351 	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7352 	    "%s: %s: TIDs empty, but ath_node showed traffic?!\n",
7353 	    __func__,
7354 	    ath_hal_ether_sprintf(ni->ni_macaddr));
7355 	avp->av_recv_pspoll(ni, m);
7356 #else
7357 	avp->av_recv_pspoll(ni, m);
7358 #endif	/* ATH_SW_PSQ */
7359 }
7360 
7361 MODULE_VERSION(if_ath, 1);
7362 MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
7363 #if	defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) || defined(ATH_DEBUG_ALQ)
7364 MODULE_DEPEND(if_ath, alq, 1, 1, 1);
7365 #endif
7366