xref: /dragonfly/sys/dev/netif/bge/if_bge.c (revision 5de36205)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.29 2003/12/01 21:06:59 ambrisko Exp $
34  * $DragonFly: src/sys/dev/netif/bge/if_bge.c,v 1.41 2005/06/21 15:27:55 joerg Exp $
35  *
36  */
37 
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
40  *
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Engineer, Wind River Systems
43  */
44 
45 /*
46  * The Broadcom BCM5700 is based on technology originally developed by
47  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
48  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
49  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
50  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
51  * frames, highly configurable RX filtering, and 16 RX and TX queues
52  * (which, along with RX filter rules, can be used for QOS applications).
53  * Other features, such as TCP segmentation, may be available as part
54  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
55  * firmware images can be stored in hardware and need not be compiled
56  * into the driver.
57  *
58  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
59  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
60  *
61  * The BCM5701 is a single-chip solution incorporating both the BCM5700
62  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
63  * does not support external SSRAM.
64  *
65  * Broadcom also produces a variation of the BCM5700 under the "Altima"
66  * brand name, which is functionally similar but lacks PCI-X support.
67  *
68  * Without external SSRAM, you can only have at most 4 TX rings,
69  * and the use of the mini RX ring is disabled. This seems to imply
70  * that these features are simply not available on the BCM5701. As a
71  * result, this driver does not implement any support for the mini RX
72  * ring.
73  */
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/sockio.h>
78 #include <sys/mbuf.h>
79 #include <sys/malloc.h>
80 #include <sys/kernel.h>
81 #include <sys/socket.h>
82 #include <sys/queue.h>
83 #include <sys/thread2.h>
84 
85 #include <net/if.h>
86 #include <net/ifq_var.h>
87 #include <net/if_arp.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 
92 #include <net/bpf.h>
93 
94 #include <net/if_types.h>
95 #include <net/vlan/if_vlan_var.h>
96 
97 #include <netinet/in_systm.h>
98 #include <netinet/in.h>
99 #include <netinet/ip.h>
100 
101 #include <vm/vm.h>              /* for vtophys */
102 #include <vm/pmap.h>            /* for vtophys */
103 #include <machine/resource.h>
104 #include <sys/bus.h>
105 #include <sys/rman.h>
106 
107 #include <dev/netif/mii_layer/mii.h>
108 #include <dev/netif/mii_layer/miivar.h>
109 #include <dev/netif/mii_layer/miidevs.h>
110 #include <dev/netif/mii_layer/brgphyreg.h>
111 
112 #include <bus/pci/pcidevs.h>
113 #include <bus/pci/pcireg.h>
114 #include <bus/pci/pcivar.h>
115 
116 #include "if_bgereg.h"
117 
118 #define BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
119 
120 /* "controller miibus0" required.  See GENERIC if you get errors here. */
121 #include "miibus_if.h"
122 
123 /*
124  * Various supported device vendors/types and their names. Note: the
125  * spec seems to indicate that the hardware still has Alteon's vendor
126  * ID burned into it, though it will always be overriden by the vendor
127  * ID in the EEPROM. Just to be safe, we cover all possibilities.
128  */
129 #define BGE_DEVDESC_MAX		64	/* Maximum device description length */
130 
131 static struct bge_type bge_devs[] = {
132 	{ PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
133 		"Broadcom BCM5700 Gigabit Ethernet" },
134 	{ PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
135 		"Broadcom BCM5701 Gigabit Ethernet" },
136 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
137 		"Broadcom BCM5700 Gigabit Ethernet" },
138 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
139 		"Broadcom BCM5701 Gigabit Ethernet" },
140 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
141 		"Broadcom BCM5702X Gigabit Ethernet" },
142 	{ PCI_VENDOR_BROADCOM, BCOM_DEVICEID_BCM5702X,
143 		"Broadcom BCM5702X Gigabit Ethernet" },
144 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
145 		"Broadcom BCM5703X Gigabit Ethernet" },
146 	{ PCI_VENDOR_BROADCOM, BCOM_DEVICEID_BCM5703X,
147 		"Broadcom BCM5703X Gigabit Ethernet" },
148 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
149 		"Broadcom BCM5704C Dual Gigabit Ethernet" },
150 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
151 		"Broadcom BCM5704S Dual Gigabit Ethernet" },
152 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
153 		"Broadcom BCM5705 Gigabit Ethernet" },
154 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
155 		"Broadcom BCM5705M Gigabit Ethernet" },
156 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705_ALT,
157 		"Broadcom BCM5705M Gigabit Ethernet" },
158 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
159 		"Broadcom BCM5751 Gigabit Ethernet" },
160 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
161 		"Broadcom BCM5782 Gigabit Ethernet" },
162 	{ PCI_VENDOR_BROADCOM, BCOM_DEVICEID_BCM5788,
163 		"Broadcom BCM5788 Gigabit Ethernet" },
164 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
165 		"Broadcom BCM5901 Fast Ethernet" },
166 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
167 		"Broadcom BCM5901A2 Fast Ethernet" },
168 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
169 		"SysKonnect Gigabit Ethernet" },
170 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
171 		"Altima AC1000 Gigabit Ethernet" },
172 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
173 		"Altima AC1002 Gigabit Ethernet" },
174 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
175 		"Altima AC9100 Gigabit Ethernet" },
176 	{ 0, 0, NULL }
177 };
178 
179 static int	bge_probe(device_t);
180 static int	bge_attach(device_t);
181 static int	bge_detach(device_t);
182 static void	bge_release_resources(struct bge_softc *);
183 static void	bge_txeof(struct bge_softc *);
184 static void	bge_rxeof(struct bge_softc *);
185 
186 static void	bge_tick(void *);
187 static void	bge_stats_update(struct bge_softc *);
188 static void	bge_stats_update_regs(struct bge_softc *);
189 static int	bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
190 
191 static void	bge_intr(void *);
192 static void	bge_start(struct ifnet *);
193 static int	bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
194 static void	bge_init(void *);
195 static void	bge_stop(struct bge_softc *);
196 static void	bge_watchdog(struct ifnet *);
197 static void	bge_shutdown(device_t);
198 static int	bge_ifmedia_upd(struct ifnet *);
199 static void	bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
200 
201 static uint8_t	bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
202 static int	bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
203 
204 static void	bge_setmulti(struct bge_softc *);
205 
206 static void	bge_handle_events(struct bge_softc *);
207 static int	bge_alloc_jumbo_mem(struct bge_softc *);
208 static void	bge_free_jumbo_mem(struct bge_softc *);
209 static struct bge_jslot
210 		*bge_jalloc(struct bge_softc *);
211 static void	bge_jfree(void *);
212 static void	bge_jref(void *);
213 static int	bge_newbuf_std(struct bge_softc *, int, struct mbuf *);
214 static int	bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
215 static int	bge_init_rx_ring_std(struct bge_softc *);
216 static void	bge_free_rx_ring_std(struct bge_softc *);
217 static int	bge_init_rx_ring_jumbo(struct bge_softc *);
218 static void	bge_free_rx_ring_jumbo(struct bge_softc *);
219 static void	bge_free_tx_ring(struct bge_softc *);
220 static int	bge_init_tx_ring(struct bge_softc *);
221 
222 static int	bge_chipinit(struct bge_softc *);
223 static int	bge_blockinit(struct bge_softc *);
224 
225 #ifdef notdef
226 static uint8_t	bge_vpd_readbyte(struct bge_softc *, uint32_t);
227 static void	bge_vpd_read_res(struct bge_softc *, struct vpd_res *, uint32_t);
228 static void	bge_vpd_read(struct bge_softc *);
229 #endif
230 
231 static uint32_t	bge_readmem_ind(struct bge_softc *, uint32_t);
232 static void	bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
233 #ifdef notdef
234 static uint32_t	bge_readreg_ind(struct bge_softc *, uint32_t);
235 #endif
236 static void	bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
237 
238 static int	bge_miibus_readreg(device_t, int, int);
239 static int	bge_miibus_writereg(device_t, int, int, int);
240 static void	bge_miibus_statchg(device_t);
241 
242 static void	bge_reset(struct bge_softc *);
243 
244 static device_method_t bge_methods[] = {
245 	/* Device interface */
246 	DEVMETHOD(device_probe,		bge_probe),
247 	DEVMETHOD(device_attach,	bge_attach),
248 	DEVMETHOD(device_detach,	bge_detach),
249 	DEVMETHOD(device_shutdown,	bge_shutdown),
250 
251 	/* bus interface */
252 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
253 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
254 
255 	/* MII interface */
256 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
257 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
258 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
259 
260 	{ 0, 0 }
261 };
262 
263 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
264 static devclass_t bge_devclass;
265 
266 DECLARE_DUMMY_MODULE(if_bge);
267 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, 0, 0);
268 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
269 
270 static uint32_t
271 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
272 {
273 	device_t dev = sc->bge_dev;
274 
275 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
276 	return(pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4));
277 }
278 
279 static void
280 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
281 {
282 	device_t dev = sc->bge_dev;
283 
284 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
285 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
286 }
287 
288 #ifdef notdef
289 static uint32_t
290 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
291 {
292 	device_t dev = sc->bge_dev;
293 
294 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
295 	return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
296 }
297 #endif
298 
299 static void
300 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
301 {
302 	device_t dev = sc->bge_dev;
303 
304 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
305 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
306 }
307 
308 #ifdef notdef
309 static uint8_t
310 bge_vpd_readbyte(struct bge_softc *sc, uint32_t addr)
311 {
312 	device_t dev = sc->bge_dev;
313 	uint32_t val;
314 	int i;
315 
316 	pci_write_config(dev, BGE_PCI_VPD_ADDR, addr, 2);
317 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
318 		DELAY(10);
319 		if (pci_read_config(dev, BGE_PCI_VPD_ADDR, 2) & BGE_VPD_FLAG)
320 			break;
321 	}
322 
323 	if (i == BGE_TIMEOUT) {
324 		device_printf(sc->bge_dev, "VPD read timed out\n");
325 		return(0);
326 	}
327 
328 	val = pci_read_config(dev, BGE_PCI_VPD_DATA, 4);
329 
330 	return((val >> ((addr % 4) * 8)) & 0xFF);
331 }
332 
333 static void
334 bge_vpd_read_res(struct bge_softc *sc, struct vpd_res *res, uint32_t addr)
335 {
336 	size_t i;
337 	uint8_t *ptr;
338 
339 	ptr = (uint8_t *)res;
340 	for (i = 0; i < sizeof(struct vpd_res); i++)
341 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
342 
343 	return;
344 }
345 
346 static void
347 bge_vpd_read(struct bge_softc *sc)
348 {
349 	int pos = 0, i;
350 	struct vpd_res res;
351 
352 	if (sc->bge_vpd_prodname != NULL)
353 		free(sc->bge_vpd_prodname, M_DEVBUF);
354 	if (sc->bge_vpd_readonly != NULL)
355 		free(sc->bge_vpd_readonly, M_DEVBUF);
356 	sc->bge_vpd_prodname = NULL;
357 	sc->bge_vpd_readonly = NULL;
358 
359 	bge_vpd_read_res(sc, &res, pos);
360 
361 	if (res.vr_id != VPD_RES_ID) {
362 		device_printf(sc->bge_dev,
363 			      "bad VPD resource id: expected %x got %x\n",
364 			      VPD_RES_ID, res.vr_id);
365                 return;
366         }
367 
368 	pos += sizeof(res);
369 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_INTWAIT);
370 	for (i = 0; i < res.vr_len; i++)
371 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
372 	sc->bge_vpd_prodname[i] = '\0';
373 	pos += i;
374 
375 	bge_vpd_read_res(sc, &res, pos);
376 
377 	if (res.vr_id != VPD_RES_READ) {
378 		device_printf(sc->bge_dev,
379 			      "bad VPD resource id: expected %x got %x\n",
380 			      VPD_RES_READ, res.vr_id);
381 		return;
382 	}
383 
384 	pos += sizeof(res);
385 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_INTWAIT);
386 	for (i = 0; i < res.vr_len + 1; i++)
387 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
388 }
389 #endif
390 
391 /*
392  * Read a byte of data stored in the EEPROM at address 'addr.' The
393  * BCM570x supports both the traditional bitbang interface and an
394  * auto access interface for reading the EEPROM. We use the auto
395  * access method.
396  */
397 static uint8_t
398 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
399 {
400 	int i;
401 	uint32_t byte = 0;
402 
403 	/*
404 	 * Enable use of auto EEPROM access so we can avoid
405 	 * having to use the bitbang method.
406 	 */
407 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
408 
409 	/* Reset the EEPROM, load the clock period. */
410 	CSR_WRITE_4(sc, BGE_EE_ADDR,
411 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
412 	DELAY(20);
413 
414 	/* Issue the read EEPROM command. */
415 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
416 
417 	/* Wait for completion */
418 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
419 		DELAY(10);
420 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
421 			break;
422 	}
423 
424 	if (i == BGE_TIMEOUT) {
425 		if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
426 		return(0);
427 	}
428 
429 	/* Get result. */
430 	byte = CSR_READ_4(sc, BGE_EE_DATA);
431 
432         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
433 
434 	return(0);
435 }
436 
437 /*
438  * Read a sequence of bytes from the EEPROM.
439  */
440 static int
441 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
442 {
443 	size_t i;
444 	int err;
445 	uint8_t byte;
446 
447 	for (byte = 0, err = 0, i = 0; i < len; i++) {
448 		err = bge_eeprom_getbyte(sc, off + i, &byte);
449 		if (err)
450 			break;
451 		*(dest + i) = byte;
452 	}
453 
454 	return(err ? 1 : 0);
455 }
456 
457 static int
458 bge_miibus_readreg(device_t dev, int phy, int reg)
459 {
460 	struct bge_softc *sc;
461 	struct ifnet *ifp;
462 	uint32_t val, autopoll;
463 	int i;
464 
465 	sc = device_get_softc(dev);
466 	ifp = &sc->arpcom.ac_if;
467 
468 	/*
469 	 * Broadcom's own driver always assumes the internal
470 	 * PHY is at GMII address 1. On some chips, the PHY responds
471 	 * to accesses at all addresses, which could cause us to
472 	 * bogusly attach the PHY 32 times at probe type. Always
473 	 * restricting the lookup to address 1 is simpler than
474 	 * trying to figure out which chips revisions should be
475 	 * special-cased.
476 	 */
477 	if (phy != 1)
478 		return(0);
479 
480 	/* Reading with autopolling on may trigger PCI errors */
481 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
482 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
483 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
484 		DELAY(40);
485 	}
486 
487 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
488 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
489 
490 	for (i = 0; i < BGE_TIMEOUT; i++) {
491 		val = CSR_READ_4(sc, BGE_MI_COMM);
492 		if (!(val & BGE_MICOMM_BUSY))
493 			break;
494 	}
495 
496 	if (i == BGE_TIMEOUT) {
497 		if_printf(ifp, "PHY read timed out\n");
498 		val = 0;
499 		goto done;
500 	}
501 
502 	val = CSR_READ_4(sc, BGE_MI_COMM);
503 
504 done:
505 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
506 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
507 		DELAY(40);
508 	}
509 
510 	if (val & BGE_MICOMM_READFAIL)
511 		return(0);
512 
513 	return(val & 0xFFFF);
514 }
515 
516 static int
517 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
518 {
519 	struct bge_softc *sc;
520 	uint32_t autopoll;
521 	int i;
522 
523 	sc = device_get_softc(dev);
524 
525 	/* Reading with autopolling on may trigger PCI errors */
526 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
527 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
528 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
529 		DELAY(40);
530 	}
531 
532 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
533 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
534 
535 	for (i = 0; i < BGE_TIMEOUT; i++) {
536 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
537 			break;
538 	}
539 
540 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
541 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
542 		DELAY(40);
543 	}
544 
545 	if (i == BGE_TIMEOUT) {
546 		if_printf(&sc->arpcom.ac_if, "PHY read timed out\n");
547 		return(0);
548 	}
549 
550 	return(0);
551 }
552 
553 static void
554 bge_miibus_statchg(device_t dev)
555 {
556 	struct bge_softc *sc;
557 	struct mii_data *mii;
558 
559 	sc = device_get_softc(dev);
560 	mii = device_get_softc(sc->bge_miibus);
561 
562 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
563 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
564 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
565 	} else {
566 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
567 	}
568 
569 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
570 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
571 	} else {
572 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
573 	}
574 }
575 
576 /*
577  * Handle events that have triggered interrupts.
578  */
579 static void
580 bge_handle_events(struct bge_softc *sc)
581 {
582 }
583 
584 /*
585  * Memory management for jumbo frames.
586  */
587 static int
588 bge_alloc_jumbo_mem(struct bge_softc *sc)
589 {
590 	struct bge_jslot *entry;
591 	caddr_t ptr;
592 	int i;
593 
594 	/* Grab a big chunk o' storage. */
595 	sc->bge_cdata.bge_jumbo_buf = contigmalloc(BGE_JMEM, M_DEVBUF,
596 		M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
597 
598 	if (sc->bge_cdata.bge_jumbo_buf == NULL) {
599 		if_printf(&sc->arpcom.ac_if, "no memory for jumbo buffers!\n");
600 		return(ENOBUFS);
601 	}
602 
603 	SLIST_INIT(&sc->bge_jfree_listhead);
604 
605 	/*
606 	 * Now divide it up into 9K pieces and save the addresses
607 	 * in an array. Note that we play an evil trick here by using
608 	 * the first few bytes in the buffer to hold the the address
609 	 * of the softc structure for this interface. This is because
610 	 * bge_jfree() needs it, but it is called by the mbuf management
611 	 * code which will not pass it to us explicitly.
612 	 */
613 	ptr = sc->bge_cdata.bge_jumbo_buf;
614 	for (i = 0; i < BGE_JSLOTS; i++) {
615 		entry = &sc->bge_cdata.bge_jslots[i];
616 		entry->bge_sc = sc;
617 		entry->bge_buf = ptr;
618 		entry->bge_inuse = 0;
619 		entry->bge_slot = i;
620 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
621 		ptr += BGE_JLEN;
622 	}
623 
624 	return(0);
625 }
626 
627 static void
628 bge_free_jumbo_mem(struct bge_softc *sc)
629 {
630 	if (sc->bge_cdata.bge_jumbo_buf)
631 		contigfree(sc->bge_cdata.bge_jumbo_buf, BGE_JMEM, M_DEVBUF);
632 }
633 
634 /*
635  * Allocate a jumbo buffer.
636  */
637 static struct bge_jslot *
638 bge_jalloc(struct bge_softc *sc)
639 {
640 	struct bge_jslot *entry;
641 
642 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
643 
644 	if (entry == NULL) {
645 		if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
646 		return(NULL);
647 	}
648 
649 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
650 	entry->bge_inuse = 1;
651 	return(entry);
652 }
653 
654 /*
655  * Adjust usage count on a jumbo buffer.
656  */
657 static void
658 bge_jref(void *arg)
659 {
660 	struct bge_jslot *entry = (struct bge_jslot *)arg;
661 	struct bge_softc *sc = entry->bge_sc;
662 
663 	if (sc == NULL)
664 		panic("bge_jref: can't find softc pointer!");
665 
666 	if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry)
667 		panic("bge_jref: asked to reference buffer "
668 		    "that we don't manage!");
669 	else if (entry->bge_inuse == 0)
670 		panic("bge_jref: buffer already free!");
671 	else
672 		entry->bge_inuse++;
673 }
674 
675 /*
676  * Release a jumbo buffer.
677  */
678 static void
679 bge_jfree(void *arg)
680 {
681 	struct bge_jslot *entry = (struct bge_jslot *)arg;
682 	struct bge_softc *sc = entry->bge_sc;
683 
684 	if (sc == NULL)
685 		panic("bge_jfree: can't find softc pointer!");
686 
687 	if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry)
688 		panic("bge_jfree: asked to free buffer that we don't manage!");
689 	else if (entry->bge_inuse == 0)
690 		panic("bge_jfree: buffer already free!");
691 	else if (--entry->bge_inuse == 0)
692 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
693 }
694 
695 
696 /*
697  * Intialize a standard receive ring descriptor.
698  */
699 static int
700 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m)
701 {
702 	struct mbuf *m_new = NULL;
703 	struct bge_rx_bd *r;
704 
705 	if (m == NULL) {
706 		m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
707 		if (m_new == NULL)
708 			return (ENOBUFS);
709 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
710 	} else {
711 		m_new = m;
712 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
713 		m_new->m_data = m_new->m_ext.ext_buf;
714 	}
715 
716 	if (!sc->bge_rx_alignment_bug)
717 		m_adj(m_new, ETHER_ALIGN);
718 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
719 	r = &sc->bge_rdata->bge_rx_std_ring[i];
720 	BGE_HOSTADDR(r->bge_addr, vtophys(mtod(m_new, caddr_t)));
721 	r->bge_flags = BGE_RXBDFLAG_END;
722 	r->bge_len = m_new->m_len;
723 	r->bge_idx = i;
724 
725 	return(0);
726 }
727 
728 /*
729  * Initialize a jumbo receive ring descriptor. This allocates
730  * a jumbo buffer from the pool managed internally by the driver.
731  */
732 static int
733 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
734 {
735 	struct mbuf *m_new = NULL;
736 	struct bge_rx_bd *r;
737 
738 	if (m == NULL) {
739 		struct bge_jslot *buf;
740 
741 		/* Allocate the mbuf. */
742 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
743 		if (m_new == NULL)
744 			return(ENOBUFS);
745 
746 		/* Allocate the jumbo buffer */
747 		buf = bge_jalloc(sc);
748 		if (buf == NULL) {
749 			m_freem(m_new);
750 			if_printf(&sc->arpcom.ac_if, "jumbo allocation failed "
751 			    "-- packet dropped!\n");
752 			return(ENOBUFS);
753 		}
754 
755 		/* Attach the buffer to the mbuf. */
756 		m_new->m_ext.ext_arg = buf;
757 		m_new->m_ext.ext_buf = buf->bge_buf;
758 		m_new->m_ext.ext_free = bge_jfree;
759 		m_new->m_ext.ext_ref = bge_jref;
760 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
761 
762 		m_new->m_data = m_new->m_ext.ext_buf;
763 		m_new->m_flags |= M_EXT;
764 		m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
765 	} else {
766 		m_new = m;
767 		m_new->m_data = m_new->m_ext.ext_buf;
768 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
769 	}
770 
771 	if (!sc->bge_rx_alignment_bug)
772 		m_adj(m_new, ETHER_ALIGN);
773 	/* Set up the descriptor. */
774 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
775 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
776 	BGE_HOSTADDR(r->bge_addr, vtophys(mtod(m_new, caddr_t)));
777 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
778 	r->bge_len = m_new->m_len;
779 	r->bge_idx = i;
780 
781 	return(0);
782 }
783 
784 /*
785  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
786  * that's 1MB or memory, which is a lot. For now, we fill only the first
787  * 256 ring entries and hope that our CPU is fast enough to keep up with
788  * the NIC.
789  */
790 static int
791 bge_init_rx_ring_std(struct bge_softc *sc)
792 {
793 	int i;
794 
795 	for (i = 0; i < BGE_SSLOTS; i++) {
796 		if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
797 			return(ENOBUFS);
798 	};
799 
800 	sc->bge_std = i - 1;
801 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
802 
803 	return(0);
804 }
805 
806 static void
807 bge_free_rx_ring_std(struct bge_softc *sc)
808 {
809 	int i;
810 
811 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
812 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
813 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
814 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
815 		}
816 		bzero(&sc->bge_rdata->bge_rx_std_ring[i],
817 		    sizeof(struct bge_rx_bd));
818 	}
819 }
820 
821 static int
822 bge_init_rx_ring_jumbo(struct bge_softc *sc)
823 {
824 	int i;
825 	struct bge_rcb *rcb;
826 
827 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
828 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
829 			return(ENOBUFS);
830 	};
831 
832 	sc->bge_jumbo = i - 1;
833 
834 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
835 	rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
836 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
837 
838 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
839 
840 	return(0);
841 }
842 
843 static void
844 bge_free_rx_ring_jumbo(struct bge_softc *sc)
845 {
846 	int i;
847 
848 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
849 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
850 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
851 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
852 		}
853 		bzero(&sc->bge_rdata->bge_rx_jumbo_ring[i],
854 		    sizeof(struct bge_rx_bd));
855 	}
856 }
857 
858 static void
859 bge_free_tx_ring(struct bge_softc *sc)
860 {
861 	int i;
862 
863 	if (sc->bge_rdata->bge_tx_ring == NULL)
864 		return;
865 
866 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
867 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
868 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
869 			sc->bge_cdata.bge_tx_chain[i] = NULL;
870 		}
871 		bzero(&sc->bge_rdata->bge_tx_ring[i],
872 		    sizeof(struct bge_tx_bd));
873 	}
874 }
875 
876 static int
877 bge_init_tx_ring(struct bge_softc *sc)
878 {
879 	sc->bge_txcnt = 0;
880 	sc->bge_tx_saved_considx = 0;
881 
882 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
883 	/* 5700 b2 errata */
884 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
885 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
886 
887 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
888 	/* 5700 b2 errata */
889 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
890 		CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
891 
892 	return(0);
893 }
894 
895 static void
896 bge_setmulti(struct bge_softc *sc)
897 {
898 	struct ifnet *ifp;
899 	struct ifmultiaddr *ifma;
900 	uint32_t hashes[4] = { 0, 0, 0, 0 };
901 	int h, i;
902 
903 	ifp = &sc->arpcom.ac_if;
904 
905 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
906 		for (i = 0; i < 4; i++)
907 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
908 		return;
909 	}
910 
911 	/* First, zot all the existing filters. */
912 	for (i = 0; i < 4; i++)
913 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
914 
915 	/* Now program new ones. */
916 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
917 		if (ifma->ifma_addr->sa_family != AF_LINK)
918 			continue;
919 		h = ether_crc32_le(
920 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
921 		    ETHER_ADDR_LEN) & 0x7f;
922 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
923 	}
924 
925 	for (i = 0; i < 4; i++)
926 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
927 }
928 
929 /*
930  * Do endian, PCI and DMA initialization. Also check the on-board ROM
931  * self-test results.
932  */
933 static int
934 bge_chipinit(struct bge_softc *sc)
935 {
936 	int i;
937 	uint32_t dma_rw_ctl;
938 
939 	/* Set endianness before we access any non-PCI registers. */
940 #if BYTE_ORDER == BIG_ENDIAN
941 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
942 	    BGE_BIGENDIAN_INIT, 4);
943 #else
944 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
945 	    BGE_LITTLEENDIAN_INIT, 4);
946 #endif
947 
948 	/*
949 	 * Check the 'ROM failed' bit on the RX CPU to see if
950 	 * self-tests passed.
951 	 */
952 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
953 		if_printf(&sc->arpcom.ac_if,
954 			  "RX CPU self-diagnostics failed!\n");
955 		return(ENODEV);
956 	}
957 
958 	/* Clear the MAC control register */
959 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
960 
961 	/*
962 	 * Clear the MAC statistics block in the NIC's
963 	 * internal memory.
964 	 */
965 	for (i = BGE_STATS_BLOCK;
966 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
967 		BGE_MEMWIN_WRITE(sc, i, 0);
968 
969 	for (i = BGE_STATUS_BLOCK;
970 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
971 		BGE_MEMWIN_WRITE(sc, i, 0);
972 
973 	/* Set up the PCI DMA control register. */
974 	if (pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
975 	    BGE_PCISTATE_PCI_BUSMODE) {
976 		/* Conventional PCI bus */
977 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
978 		    (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
979 		    (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
980 		    (0x0F);
981 	} else {
982 		/* PCI-X bus */
983 		/*
984 		 * The 5704 uses a different encoding of read/write
985 		 * watermarks.
986 		 */
987 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
988 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
989 			    (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
990 			    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
991 		else
992 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
993 			    (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
994 			    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
995 			    (0x0F);
996 
997 		/*
998 		 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
999 		 * for hardware bugs.
1000 		 */
1001 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1002 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1003 			uint32_t tmp;
1004 
1005 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1006 			if (tmp == 0x6 || tmp == 0x7)
1007 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1008 		}
1009 	}
1010 
1011 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1012 	    sc->bge_asicrev == BGE_ASICREV_BCM5704 ||
1013 	    sc->bge_asicrev == BGE_ASICREV_BCM5705)
1014 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1015 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1016 
1017 	/*
1018 	 * Set up general mode register.
1019 	 */
1020 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_WORDSWAP_NONFRAME|
1021 	    BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1022 	    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1023 	    BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1024 
1025 	/*
1026 	 * Disable memory write invalidate.  Apparently it is not supported
1027 	 * properly by these devices.
1028 	 */
1029 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1030 
1031 	/* Set the timer prescaler (always 66Mhz) */
1032 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1033 
1034 	return(0);
1035 }
1036 
1037 static int
1038 bge_blockinit(struct bge_softc *sc)
1039 {
1040 	struct bge_rcb *rcb;
1041 	volatile struct bge_rcb *vrcb;
1042 	int i;
1043 
1044 	/*
1045 	 * Initialize the memory window pointer register so that
1046 	 * we can access the first 32K of internal NIC RAM. This will
1047 	 * allow us to set up the TX send ring RCBs and the RX return
1048 	 * ring RCBs, plus other things which live in NIC memory.
1049 	 */
1050 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1051 
1052 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1053 
1054 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1055 		/* Configure mbuf memory pool */
1056 		if (sc->bge_extram) {
1057 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1058 			    BGE_EXT_SSRAM);
1059 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1060 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1061 			else
1062 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1063 		} else {
1064 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1065 			    BGE_BUFFPOOL_1);
1066 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1067 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1068 			else
1069 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1070 		}
1071 
1072 		/* Configure DMA resource pool */
1073 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1074 		    BGE_DMA_DESCRIPTORS);
1075 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1076 	}
1077 
1078 	/* Configure mbuf pool watermarks */
1079 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
1080 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1081 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1082 	} else {
1083 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1084 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1085 	}
1086 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1087 
1088 	/* Configure DMA resource watermarks */
1089 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1090 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1091 
1092 	/* Enable buffer manager */
1093 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1094 		CSR_WRITE_4(sc, BGE_BMAN_MODE,
1095 		    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1096 
1097 		/* Poll for buffer manager start indication */
1098 		for (i = 0; i < BGE_TIMEOUT; i++) {
1099 			if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1100 				break;
1101 			DELAY(10);
1102 		}
1103 
1104 		if (i == BGE_TIMEOUT) {
1105 			if_printf(&sc->arpcom.ac_if,
1106 				  "buffer manager failed to start\n");
1107 			return(ENXIO);
1108 		}
1109 	}
1110 
1111 	/* Enable flow-through queues */
1112 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1113 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1114 
1115 	/* Wait until queue initialization is complete */
1116 	for (i = 0; i < BGE_TIMEOUT; i++) {
1117 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1118 			break;
1119 		DELAY(10);
1120 	}
1121 
1122 	if (i == BGE_TIMEOUT) {
1123 		if_printf(&sc->arpcom.ac_if,
1124 			  "flow-through queue init failed\n");
1125 		return(ENXIO);
1126 	}
1127 
1128 	/* Initialize the standard RX ring control block */
1129 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1130 	BGE_HOSTADDR(rcb->bge_hostaddr,
1131 	    vtophys(&sc->bge_rdata->bge_rx_std_ring));
1132 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705)
1133 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1134 	else
1135 		rcb->bge_maxlen_flags =
1136 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1137 	if (sc->bge_extram)
1138 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1139 	else
1140 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1141 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1142 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1143 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1144 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1145 
1146 	/*
1147 	 * Initialize the jumbo RX ring control block
1148 	 * We set the 'ring disabled' bit in the flags
1149 	 * field until we're actually ready to start
1150 	 * using this ring (i.e. once we set the MTU
1151 	 * high enough to require it).
1152 	 */
1153 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1154 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1155 		BGE_HOSTADDR(rcb->bge_hostaddr,
1156 		    vtophys(&sc->bge_rdata->bge_rx_jumbo_ring));
1157 		rcb->bge_maxlen_flags =
1158 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1159 		    BGE_RCB_FLAG_RING_DISABLED);
1160 		if (sc->bge_extram)
1161 			rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1162 		else
1163 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1164 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1165 		    rcb->bge_hostaddr.bge_addr_hi);
1166 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1167 		    rcb->bge_hostaddr.bge_addr_lo);
1168 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1169 		    rcb->bge_maxlen_flags);
1170 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1171 
1172 		/* Set up dummy disabled mini ring RCB */
1173 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1174 		rcb->bge_maxlen_flags =
1175 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1176 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1177 		    rcb->bge_maxlen_flags);
1178 	}
1179 
1180 	/*
1181 	 * Set the BD ring replentish thresholds. The recommended
1182 	 * values are 1/8th the number of descriptors allocated to
1183 	 * each ring.
1184 	 */
1185 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1186 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1187 
1188 	/*
1189 	 * Disable all unused send rings by setting the 'ring disabled'
1190 	 * bit in the flags field of all the TX send ring control blocks.
1191 	 * These are located in NIC memory.
1192 	 */
1193 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1194 	    BGE_SEND_RING_RCB);
1195 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1196 		vrcb->bge_maxlen_flags =
1197 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1198 		vrcb->bge_nicaddr = 0;
1199 		vrcb++;
1200 	}
1201 
1202 	/* Configure TX RCB 0 (we use only the first ring) */
1203 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1204 	    BGE_SEND_RING_RCB);
1205 	vrcb->bge_hostaddr.bge_addr_hi = 0;
1206 	BGE_HOSTADDR(vrcb->bge_hostaddr, vtophys(&sc->bge_rdata->bge_tx_ring));
1207 	vrcb->bge_nicaddr = BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT);
1208 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1209 		vrcb->bge_maxlen_flags =
1210 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0);
1211 
1212 	/* Disable all unused RX return rings */
1213 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1214 	    BGE_RX_RETURN_RING_RCB);
1215 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1216 		vrcb->bge_hostaddr.bge_addr_hi = 0;
1217 		vrcb->bge_hostaddr.bge_addr_lo = 0;
1218 		vrcb->bge_maxlen_flags =
1219 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1220 		    BGE_RCB_FLAG_RING_DISABLED);
1221 		vrcb->bge_nicaddr = 0;
1222 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1223 		    (i * (sizeof(uint64_t))), 0);
1224 		vrcb++;
1225 	}
1226 
1227 	/* Initialize RX ring indexes */
1228 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1229 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1230 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1231 
1232 	/*
1233 	 * Set up RX return ring 0
1234 	 * Note that the NIC address for RX return rings is 0x00000000.
1235 	 * The return rings live entirely within the host, so the
1236 	 * nicaddr field in the RCB isn't used.
1237 	 */
1238 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1239 	    BGE_RX_RETURN_RING_RCB);
1240 	vrcb->bge_hostaddr.bge_addr_hi = 0;
1241 	BGE_HOSTADDR(vrcb->bge_hostaddr,
1242 	    vtophys(&sc->bge_rdata->bge_rx_return_ring));
1243 	vrcb->bge_nicaddr = 0x00000000;
1244 	vrcb->bge_maxlen_flags =
1245 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0);
1246 
1247 	/* Set random backoff seed for TX */
1248 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1249 	    sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1250 	    sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1251 	    sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1252 	    BGE_TX_BACKOFF_SEED_MASK);
1253 
1254 	/* Set inter-packet gap */
1255 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1256 
1257 	/*
1258 	 * Specify which ring to use for packets that don't match
1259 	 * any RX rules.
1260 	 */
1261 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1262 
1263 	/*
1264 	 * Configure number of RX lists. One interrupt distribution
1265 	 * list, sixteen active lists, one bad frames class.
1266 	 */
1267 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1268 
1269 	/* Inialize RX list placement stats mask. */
1270 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1271 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1272 
1273 	/* Disable host coalescing until we get it set up */
1274 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1275 
1276 	/* Poll to make sure it's shut down. */
1277 	for (i = 0; i < BGE_TIMEOUT; i++) {
1278 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1279 			break;
1280 		DELAY(10);
1281 	}
1282 
1283 	if (i == BGE_TIMEOUT) {
1284 		if_printf(&sc->arpcom.ac_if,
1285 			  "host coalescing engine failed to idle\n");
1286 		return(ENXIO);
1287 	}
1288 
1289 	/* Set up host coalescing defaults */
1290 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1291 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1292 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1293 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1294 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1295 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1296 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1297 	}
1298 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1299 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1300 
1301 	/* Set up address of statistics block */
1302 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1303 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 0);
1304 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1305 		    vtophys(&sc->bge_rdata->bge_info.bge_stats));
1306 
1307 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1308 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1309 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1310 	}
1311 
1312 	/* Set up address of status block */
1313 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 0);
1314 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1315 	    vtophys(&sc->bge_rdata->bge_status_block));
1316 
1317 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1318 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1319 
1320 	/* Turn on host coalescing state machine */
1321 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1322 
1323 	/* Turn on RX BD completion state machine and enable attentions */
1324 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1325 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1326 
1327 	/* Turn on RX list placement state machine */
1328 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1329 
1330 	/* Turn on RX list selector state machine. */
1331 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1332 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1333 
1334 	/* Turn on DMA, clear stats */
1335 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1336 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1337 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1338 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1339 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1340 
1341 	/* Set misc. local control, enable interrupts on attentions */
1342 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1343 
1344 #ifdef notdef
1345 	/* Assert GPIO pins for PHY reset */
1346 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1347 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1348 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1349 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1350 #endif
1351 
1352 	/* Turn on DMA completion state machine */
1353 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1354 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1355 
1356 	/* Turn on write DMA state machine */
1357 	CSR_WRITE_4(sc, BGE_WDMA_MODE,
1358 	    BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1359 
1360 	/* Turn on read DMA state machine */
1361 	CSR_WRITE_4(sc, BGE_RDMA_MODE,
1362 	    BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1363 
1364 	/* Turn on RX data completion state machine */
1365 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1366 
1367 	/* Turn on RX BD initiator state machine */
1368 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1369 
1370 	/* Turn on RX data and RX BD initiator state machine */
1371 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1372 
1373 	/* Turn on Mbuf cluster free state machine */
1374 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1375 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1376 
1377 	/* Turn on send BD completion state machine */
1378 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1379 
1380 	/* Turn on send data completion state machine */
1381 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1382 
1383 	/* Turn on send data initiator state machine */
1384 	CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1385 
1386 	/* Turn on send BD initiator state machine */
1387 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1388 
1389 	/* Turn on send BD selector state machine */
1390 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1391 
1392 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1393 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1394 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1395 
1396 	/* ack/clear link change events */
1397 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1398 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1399 	    BGE_MACSTAT_LINK_CHANGED);
1400 
1401 	/* Enable PHY auto polling (for MII/GMII only) */
1402 	if (sc->bge_tbi) {
1403 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1404  	} else {
1405 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1406 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700)
1407 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1408 			    BGE_EVTENB_MI_INTERRUPT);
1409 	}
1410 
1411 	/* Enable link state change attentions. */
1412 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1413 
1414 	return(0);
1415 }
1416 
1417 /*
1418  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1419  * against our list and return its name if we find a match. Note
1420  * that since the Broadcom controller contains VPD support, we
1421  * can get the device name string from the controller itself instead
1422  * of the compiled-in string. This is a little slow, but it guarantees
1423  * we'll always announce the right product name.
1424  */
1425 static int
1426 bge_probe(device_t dev)
1427 {
1428 	struct bge_softc *sc;
1429 	struct bge_type *t;
1430 	char *descbuf;
1431 	uint16_t product, vendor;
1432 
1433 	product = pci_get_device(dev);
1434 	vendor = pci_get_vendor(dev);
1435 
1436 	for (t = bge_devs; t->bge_name != NULL; t++) {
1437 		if (vendor == t->bge_vid && product == t->bge_did)
1438 			break;
1439 	}
1440 
1441 	if (t->bge_name == NULL)
1442 		return(ENXIO);
1443 
1444 	sc = device_get_softc(dev);
1445 #ifdef notdef
1446 	sc->bge_dev = dev;
1447 
1448 	bge_vpd_read(sc);
1449 	device_set_desc(dev, sc->bge_vpd_prodname);
1450 #endif
1451 	descbuf = malloc(BGE_DEVDESC_MAX, M_TEMP, M_WAITOK);
1452 	snprintf(descbuf, BGE_DEVDESC_MAX, "%s, ASIC rev. %#04x", t->bge_name,
1453 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 16);
1454 	device_set_desc_copy(dev, descbuf);
1455 	if (pci_get_subvendor(dev) == PCI_VENDOR_DELL)
1456 		sc->bge_no_3_led = 1;
1457 	free(descbuf, M_TEMP);
1458 	return(0);
1459 }
1460 
1461 static int
1462 bge_attach(device_t dev)
1463 {
1464 	struct ifnet *ifp;
1465 	struct bge_softc *sc;
1466 	uint32_t hwcfg = 0;
1467 	uint32_t mac_addr = 0;
1468 	int error = 0, rid;
1469 	uint8_t ether_addr[ETHER_ADDR_LEN];
1470 
1471 	sc = device_get_softc(dev);
1472 	sc->bge_dev = dev;
1473 	callout_init(&sc->bge_stat_timer);
1474 
1475 	/*
1476 	 * Map control/status registers.
1477 	 */
1478 	pci_enable_busmaster(dev);
1479 
1480 	rid = BGE_PCI_BAR0;
1481 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1482 	    RF_ACTIVE);
1483 
1484 	if (sc->bge_res == NULL) {
1485 		device_printf(dev, "couldn't map memory\n");
1486 		error = ENXIO;
1487 		return(error);
1488 	}
1489 
1490 	sc->bge_btag = rman_get_bustag(sc->bge_res);
1491 	sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
1492 	sc->bge_vhandle = (vm_offset_t)rman_get_virtual(sc->bge_res);
1493 
1494 	/* Allocate interrupt */
1495 	rid = 0;
1496 
1497 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1498 	    RF_SHAREABLE | RF_ACTIVE);
1499 
1500 	if (sc->bge_irq == NULL) {
1501 		device_printf(dev, "couldn't map interrupt\n");
1502 		error = ENXIO;
1503 		goto fail;
1504 	}
1505 
1506 	ifp = &sc->arpcom.ac_if;
1507 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1508 
1509 	/* Try to reset the chip. */
1510 	bge_reset(sc);
1511 
1512 	if (bge_chipinit(sc)) {
1513 		device_printf(dev, "chip initialization failed\n");
1514 		error = ENXIO;
1515 		goto fail;
1516 	}
1517 
1518 	/*
1519 	 * Get station address from the EEPROM.
1520 	 */
1521 	mac_addr = bge_readmem_ind(sc, 0x0c14);
1522 	if ((mac_addr >> 16) == 0x484b) {
1523 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
1524 		ether_addr[1] = (uint8_t)mac_addr;
1525 		mac_addr = bge_readmem_ind(sc, 0x0c18);
1526 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
1527 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
1528 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
1529 		ether_addr[5] = (uint8_t)mac_addr;
1530 	} else if (bge_read_eeprom(sc, ether_addr,
1531 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1532 		device_printf(dev, "failed to read station address\n");
1533 		error = ENXIO;
1534 		goto fail;
1535 	}
1536 
1537 	/* Allocate the general information block and ring buffers. */
1538 	sc->bge_rdata = contigmalloc(sizeof(struct bge_ring_data), M_DEVBUF,
1539 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
1540 
1541 	if (sc->bge_rdata == NULL) {
1542 		error = ENXIO;
1543 		device_printf(dev, "no memory for list buffers!\n");
1544 		goto fail;
1545 	}
1546 
1547 	bzero(sc->bge_rdata, sizeof(struct bge_ring_data));
1548 
1549 	/* Save ASIC rev. */
1550 
1551 	sc->bge_chipid =
1552 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
1553 	    BGE_PCIMISCCTL_ASICREV;
1554 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
1555 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
1556 
1557 	/*
1558 	 * Try to allocate memory for jumbo buffers.
1559 	 * The 5705 does not appear to support jumbo frames.
1560 	 */
1561 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1562 		if (bge_alloc_jumbo_mem(sc)) {
1563 			device_printf(dev, "jumbo buffer allocation failed\n");
1564 			error = ENXIO;
1565 			goto fail;
1566 		}
1567 	}
1568 
1569 	/* Set default tuneable values. */
1570 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1571 	sc->bge_rx_coal_ticks = 150;
1572 	sc->bge_tx_coal_ticks = 150;
1573 	sc->bge_rx_max_coal_bds = 64;
1574 	sc->bge_tx_max_coal_bds = 128;
1575 
1576 	/* 5705 limits RX return ring to 512 entries. */
1577 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705)
1578 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1579 	else
1580 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1581 
1582 	/* Set up ifnet structure */
1583 	ifp->if_softc = sc;
1584 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1585 	ifp->if_ioctl = bge_ioctl;
1586 	ifp->if_start = bge_start;
1587 	ifp->if_watchdog = bge_watchdog;
1588 	ifp->if_init = bge_init;
1589 	ifp->if_mtu = ETHERMTU;
1590 	ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
1591 	ifq_set_ready(&ifp->if_snd);
1592 	ifp->if_hwassist = BGE_CSUM_FEATURES;
1593 	ifp->if_capabilities = IFCAP_HWCSUM;
1594 	ifp->if_capenable = ifp->if_capabilities;
1595 
1596 	/*
1597 	 * Figure out what sort of media we have by checking the
1598 	 * hardware config word in the first 32k of NIC internal memory,
1599 	 * or fall back to examining the EEPROM if necessary.
1600 	 * Note: on some BCM5700 cards, this value appears to be unset.
1601 	 * If that's the case, we have to rely on identifying the NIC
1602 	 * by its PCI subsystem ID, as we do below for the SysKonnect
1603 	 * SK-9D41.
1604 	 */
1605 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
1606 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
1607 	else {
1608 		bge_read_eeprom(sc, (caddr_t)&hwcfg,
1609 				BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
1610 		hwcfg = ntohl(hwcfg);
1611 	}
1612 
1613 	if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
1614 		sc->bge_tbi = 1;
1615 
1616 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
1617 	if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41)
1618 		sc->bge_tbi = 1;
1619 
1620 	if (sc->bge_tbi) {
1621 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
1622 		    bge_ifmedia_upd, bge_ifmedia_sts);
1623 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1624 		ifmedia_add(&sc->bge_ifmedia,
1625 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1626 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1627 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1628 	} else {
1629 		/*
1630 		 * Do transceiver setup.
1631 		 */
1632 		if (mii_phy_probe(dev, &sc->bge_miibus,
1633 		    bge_ifmedia_upd, bge_ifmedia_sts)) {
1634 			device_printf(dev, "MII without any PHY!\n");
1635 			error = ENXIO;
1636 			goto fail;
1637 		}
1638 	}
1639 
1640 	/*
1641 	 * When using the BCM5701 in PCI-X mode, data corruption has
1642 	 * been observed in the first few bytes of some received packets.
1643 	 * Aligning the packet buffer in memory eliminates the corruption.
1644 	 * Unfortunately, this misaligns the packet payloads.  On platforms
1645 	 * which do not support unaligned accesses, we will realign the
1646 	 * payloads by copying the received packets.
1647 	 */
1648 	switch (sc->bge_chipid) {
1649 	case BGE_CHIPID_BCM5701_A0:
1650 	case BGE_CHIPID_BCM5701_B0:
1651 	case BGE_CHIPID_BCM5701_B2:
1652 	case BGE_CHIPID_BCM5701_B5:
1653 		/* If in PCI-X mode, work around the alignment bug. */
1654 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
1655 		    (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
1656 		    BGE_PCISTATE_PCI_BUSSPEED)
1657 			sc->bge_rx_alignment_bug = 1;
1658 		break;
1659 	}
1660 
1661 	/*
1662 	 * Call MI attach routine.
1663 	 */
1664 	ether_ifattach(ifp, ether_addr);
1665 
1666 	error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET,
1667 			       bge_intr, sc, &sc->bge_intrhand, NULL);
1668 	if (error) {
1669 		ether_ifdetach(ifp);
1670 		device_printf(dev, "couldn't set up irq\n");
1671 		goto fail;
1672 	}
1673 
1674 	return(0);
1675 
1676 fail:
1677 	bge_detach(dev);
1678 
1679 	return(error);
1680 }
1681 
1682 static int
1683 bge_detach(device_t dev)
1684 {
1685 	struct bge_softc *sc = device_get_softc(dev);
1686 	struct ifnet *ifp = &sc->arpcom.ac_if;
1687 
1688 	crit_enter();
1689 
1690 	if (device_is_attached(dev)) {
1691 		ether_ifdetach(ifp);
1692 		bge_stop(sc);
1693 		bge_reset(sc);
1694 	}
1695 
1696 	if (sc->bge_tbi)
1697 		ifmedia_removeall(&sc->bge_ifmedia);
1698 	if (sc->bge_miibus);
1699 		device_delete_child(dev, sc->bge_miibus);
1700 	bus_generic_detach(dev);
1701 
1702 	bge_release_resources(sc);
1703 
1704 	crit_exit();
1705 
1706 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1707 		bge_free_jumbo_mem(sc);
1708 
1709 	return(0);
1710 }
1711 
1712 static void
1713 bge_release_resources(struct bge_softc *sc)
1714 {
1715         device_t dev;
1716 
1717         dev = sc->bge_dev;
1718 
1719 	if (sc->bge_vpd_prodname != NULL)
1720 		free(sc->bge_vpd_prodname, M_DEVBUF);
1721 
1722 	if (sc->bge_vpd_readonly != NULL)
1723 		free(sc->bge_vpd_readonly, M_DEVBUF);
1724 
1725         if (sc->bge_intrhand != NULL)
1726                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
1727 
1728         if (sc->bge_irq != NULL)
1729 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
1730 
1731         if (sc->bge_res != NULL)
1732 		bus_release_resource(dev, SYS_RES_MEMORY,
1733 		    BGE_PCI_BAR0, sc->bge_res);
1734 
1735         if (sc->bge_rdata != NULL)
1736 		contigfree(sc->bge_rdata, sizeof(struct bge_ring_data),
1737 			   M_DEVBUF);
1738 
1739         return;
1740 }
1741 
1742 static void
1743 bge_reset(struct bge_softc *sc)
1744 {
1745 	device_t dev;
1746 	uint32_t cachesize, command, pcistate;
1747 	int i, val = 0;
1748 
1749 	dev = sc->bge_dev;
1750 
1751 	/* Save some important PCI state. */
1752 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
1753 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
1754 	pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
1755 
1756 	pci_write_config(dev, BGE_PCI_MISC_CTL,
1757 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1758 	    BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1759 
1760 	/* Issue global reset */
1761 	bge_writereg_ind(sc, BGE_MISC_CFG,
1762 			 BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1));
1763 
1764 	DELAY(1000);
1765 
1766 	/* Reset some of the PCI state that got zapped by reset */
1767 	pci_write_config(dev, BGE_PCI_MISC_CTL,
1768 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1769 	    BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1770 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
1771 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
1772 	bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
1773 
1774 	/*
1775 	 * Prevent PXE restart: write a magic number to the
1776 	 * general communications memory at 0xB50.
1777 	 */
1778 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1779 	/*
1780 	 * Poll the value location we just wrote until
1781 	 * we see the 1's complement of the magic number.
1782 	 * This indicates that the firmware initialization
1783 	 * is complete.
1784 	 */
1785 	for (i = 0; i < BGE_TIMEOUT; i++) {
1786 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
1787 		if (val == ~BGE_MAGIC_NUMBER)
1788 			break;
1789 		DELAY(10);
1790 	}
1791 
1792 	if (i == BGE_TIMEOUT) {
1793 		if_printf(&sc->arpcom.ac_if, "firmware handshake timed out\n");
1794 		return;
1795 	}
1796 
1797 	/*
1798 	 * XXX Wait for the value of the PCISTATE register to
1799 	 * return to its original pre-reset state. This is a
1800 	 * fairly good indicator of reset completion. If we don't
1801 	 * wait for the reset to fully complete, trying to read
1802 	 * from the device's non-PCI registers may yield garbage
1803 	 * results.
1804 	 */
1805 	for (i = 0; i < BGE_TIMEOUT; i++) {
1806 		if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
1807 			break;
1808 		DELAY(10);
1809 	}
1810 
1811 	/* Enable memory arbiter. */
1812 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1813 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
1814 
1815 	/* Fix up byte swapping */
1816 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_BYTESWAP_NONFRAME|
1817 	    BGE_MODECTL_BYTESWAP_DATA);
1818 
1819 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1820 
1821 	DELAY(10000);
1822 
1823 	return;
1824 }
1825 
1826 /*
1827  * Frame reception handling. This is called if there's a frame
1828  * on the receive return list.
1829  *
1830  * Note: we have to be able to handle two possibilities here:
1831  * 1) the frame is from the jumbo recieve ring
1832  * 2) the frame is from the standard receive ring
1833  */
1834 
1835 static void
1836 bge_rxeof(struct bge_softc *sc)
1837 {
1838 	struct ifnet *ifp;
1839 	int stdcnt = 0, jumbocnt = 0;
1840 
1841 	ifp = &sc->arpcom.ac_if;
1842 
1843 	while(sc->bge_rx_saved_considx !=
1844 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
1845 		struct bge_rx_bd	*cur_rx;
1846 		uint32_t		rxidx;
1847 		struct mbuf		*m = NULL;
1848 		uint16_t		vlan_tag = 0;
1849 		int			have_tag = 0;
1850 
1851 		cur_rx =
1852 	    &sc->bge_rdata->bge_rx_return_ring[sc->bge_rx_saved_considx];
1853 
1854 		rxidx = cur_rx->bge_idx;
1855 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
1856 
1857 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
1858 			have_tag = 1;
1859 			vlan_tag = cur_rx->bge_vlan_tag;
1860 		}
1861 
1862 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
1863 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1864 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
1865 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
1866 			jumbocnt++;
1867 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
1868 				ifp->if_ierrors++;
1869 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
1870 				continue;
1871 			}
1872 			if (bge_newbuf_jumbo(sc,
1873 			    sc->bge_jumbo, NULL) == ENOBUFS) {
1874 				ifp->if_ierrors++;
1875 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
1876 				continue;
1877 			}
1878 		} else {
1879 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1880 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
1881 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
1882 			stdcnt++;
1883 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
1884 				ifp->if_ierrors++;
1885 				bge_newbuf_std(sc, sc->bge_std, m);
1886 				continue;
1887 			}
1888 			if (bge_newbuf_std(sc, sc->bge_std,
1889 			    NULL) == ENOBUFS) {
1890 				ifp->if_ierrors++;
1891 				bge_newbuf_std(sc, sc->bge_std, m);
1892 				continue;
1893 			}
1894 		}
1895 
1896 		ifp->if_ipackets++;
1897 #ifndef __i386__
1898 		/*
1899 		 * The i386 allows unaligned accesses, but for other
1900 		 * platforms we must make sure the payload is aligned.
1901 		 */
1902 		if (sc->bge_rx_alignment_bug) {
1903 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
1904 			    cur_rx->bge_len);
1905 			m->m_data += ETHER_ALIGN;
1906 		}
1907 #endif
1908 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
1909 		m->m_pkthdr.rcvif = ifp;
1910 
1911 #if 0 /* currently broken for some packets, possibly related to TCP options */
1912 		if (ifp->if_hwassist) {
1913 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1914 			if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
1915 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1916 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
1917 				m->m_pkthdr.csum_data =
1918 				    cur_rx->bge_tcp_udp_csum;
1919 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
1920 			}
1921 		}
1922 #endif
1923 
1924 		/*
1925 		 * If we received a packet with a vlan tag, pass it
1926 		 * to vlan_input() instead of ether_input().
1927 		 */
1928 		if (have_tag) {
1929 			VLAN_INPUT_TAG(m, vlan_tag);
1930 			have_tag = vlan_tag = 0;
1931 			continue;
1932 		}
1933 
1934 		(*ifp->if_input)(ifp, m);
1935 	}
1936 
1937 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
1938 	if (stdcnt)
1939 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1940 	if (jumbocnt)
1941 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1942 }
1943 
1944 static void
1945 bge_txeof(struct bge_softc *sc)
1946 {
1947 	struct bge_tx_bd *cur_tx = NULL;
1948 	struct ifnet *ifp;
1949 
1950 	ifp = &sc->arpcom.ac_if;
1951 
1952 	/*
1953 	 * Go through our tx ring and free mbufs for those
1954 	 * frames that have been sent.
1955 	 */
1956 	while (sc->bge_tx_saved_considx !=
1957 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
1958 		uint32_t		idx = 0;
1959 
1960 		idx = sc->bge_tx_saved_considx;
1961 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
1962 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
1963 			ifp->if_opackets++;
1964 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
1965 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
1966 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
1967 		}
1968 		sc->bge_txcnt--;
1969 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
1970 		ifp->if_timer = 0;
1971 	}
1972 
1973 	if (cur_tx != NULL)
1974 		ifp->if_flags &= ~IFF_OACTIVE;
1975 }
1976 
1977 static void
1978 bge_intr(void *xsc)
1979 {
1980 	struct bge_softc *sc = xsc;
1981 	struct ifnet *ifp = &sc->arpcom.ac_if;
1982 	uint32_t status;
1983 
1984 #ifdef notdef
1985 	/* Avoid this for now -- checking this register is expensive. */
1986 	/* Make sure this is really our interrupt. */
1987 	if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
1988 		return;
1989 #endif
1990 	/* Ack interrupt and stop others from occuring. */
1991 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
1992 
1993 	/*
1994 	 * Process link state changes.
1995 	 * Grrr. The link status word in the status block does
1996 	 * not work correctly on the BCM5700 rev AX and BX chips,
1997 	 * according to all available information. Hence, we have
1998 	 * to enable MII interrupts in order to properly obtain
1999 	 * async link changes. Unfortunately, this also means that
2000 	 * we have to read the MAC status register to detect link
2001 	 * changes, thereby adding an additional register access to
2002 	 * the interrupt handler.
2003 	 */
2004 
2005 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
2006 		status = CSR_READ_4(sc, BGE_MAC_STS);
2007 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
2008 			sc->bge_link = 0;
2009 			callout_stop(&sc->bge_stat_timer);
2010 			bge_tick(sc);
2011 			/* Clear the interrupt */
2012 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2013 			    BGE_EVTENB_MI_INTERRUPT);
2014 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
2015 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
2016 			    BRGPHY_INTRS);
2017 		}
2018 	} else {
2019 		if ((sc->bge_rdata->bge_status_block.bge_status &
2020 		    BGE_STATFLAG_UPDATED) &&
2021 		    (sc->bge_rdata->bge_status_block.bge_status &
2022 		    BGE_STATFLAG_LINKSTATE_CHANGED)) {
2023 			sc->bge_rdata->bge_status_block.bge_status &=
2024 				~(BGE_STATFLAG_UPDATED|
2025 				BGE_STATFLAG_LINKSTATE_CHANGED);
2026 			/*
2027 			 * Sometimes PCS encoding errors are detected in
2028 			 * TBI mode (on fiber NICs), and for some reason
2029 			 * the chip will signal them as link changes.
2030 			 * If we get a link change event, but the 'PCS
2031 			 * encoding error' bit in the MAC status register
2032 			 * is set, don't bother doing a link check.
2033 			 * This avoids spurious "gigabit link up" messages
2034 			 * that sometimes appear on fiber NICs during
2035 			 * periods of heavy traffic. (There should be no
2036 			 * effect on copper NICs.)
2037 			 */
2038 			status = CSR_READ_4(sc, BGE_MAC_STS);
2039 			if (!(status & (BGE_MACSTAT_PORT_DECODE_ERROR|
2040 			    BGE_MACSTAT_MI_COMPLETE))) {
2041 				sc->bge_link = 0;
2042 				callout_stop(&sc->bge_stat_timer);
2043 				bge_tick(sc);
2044 			}
2045 			sc->bge_link = 0;
2046 			callout_stop(&sc->bge_stat_timer);
2047 			bge_tick(sc);
2048 			/* Clear the interrupt */
2049 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2050 			    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
2051 			    BGE_MACSTAT_LINK_CHANGED);
2052 
2053 			/* Force flush the status block cached by PCI bridge */
2054 			CSR_READ_4(sc, BGE_MBX_IRQ0_LO);
2055 		}
2056 	}
2057 
2058 	if (ifp->if_flags & IFF_RUNNING) {
2059 		/* Check RX return ring producer/consumer */
2060 		bge_rxeof(sc);
2061 
2062 		/* Check TX ring producer/consumer */
2063 		bge_txeof(sc);
2064 	}
2065 
2066 	bge_handle_events(sc);
2067 
2068 	/* Re-enable interrupts. */
2069 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2070 
2071 	if ((ifp->if_flags & IFF_RUNNING) && !ifq_is_empty(&ifp->if_snd))
2072 		(*ifp->if_start)(ifp);
2073 }
2074 
2075 static void
2076 bge_tick(void *xsc)
2077 {
2078 	struct bge_softc *sc = xsc;
2079 	struct ifnet *ifp = &sc->arpcom.ac_if;
2080 	struct mii_data *mii = NULL;
2081 	struct ifmedia *ifm = NULL;
2082 
2083 	crit_enter();
2084 
2085 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705)
2086 		bge_stats_update_regs(sc);
2087 	else
2088 		bge_stats_update(sc);
2089 
2090 	callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2091 
2092 	if (sc->bge_link) {
2093 		crit_exit();
2094 		return;
2095 	}
2096 
2097 	if (sc->bge_tbi) {
2098 		ifm = &sc->bge_ifmedia;
2099 		if (CSR_READ_4(sc, BGE_MAC_STS) &
2100 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
2101 			sc->bge_link++;
2102 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2103 			if_printf(ifp, "gigabit link up\n");
2104 			if (!ifq_is_empty(&ifp->if_snd))
2105 				(*ifp->if_start)(ifp);
2106 		}
2107 		crit_exit();
2108 		return;
2109 	}
2110 
2111 	mii = device_get_softc(sc->bge_miibus);
2112 	mii_tick(mii);
2113 
2114 	if (!sc->bge_link) {
2115 		mii_pollstat(mii);
2116 		if (mii->mii_media_status & IFM_ACTIVE &&
2117 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2118 			sc->bge_link++;
2119 			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
2120 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
2121 				if_printf(ifp, "gigabit link up\n");
2122 			if (!ifq_is_empty(&ifp->if_snd))
2123 				(*ifp->if_start)(ifp);
2124 		}
2125 	}
2126 
2127 	crit_exit();
2128 }
2129 
2130 static void
2131 bge_stats_update_regs(struct bge_softc *sc)
2132 {
2133 	struct ifnet *ifp = &sc->arpcom.ac_if;
2134 	struct bge_mac_stats_regs stats;
2135 	uint32_t *s;
2136 	int i;
2137 
2138 	s = (uint32_t *)&stats;
2139 	for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
2140 		*s = CSR_READ_4(sc, BGE_RX_STATS + i);
2141 		s++;
2142 	}
2143 
2144 	ifp->if_collisions +=
2145 	   (stats.dot3StatsSingleCollisionFrames +
2146 	   stats.dot3StatsMultipleCollisionFrames +
2147 	   stats.dot3StatsExcessiveCollisions +
2148 	   stats.dot3StatsLateCollisions) -
2149 	   ifp->if_collisions;
2150 }
2151 
2152 static void
2153 bge_stats_update(struct bge_softc *sc)
2154 {
2155 	struct ifnet *ifp = &sc->arpcom.ac_if;
2156 	struct bge_stats *stats;
2157 
2158 	stats = (struct bge_stats *)(sc->bge_vhandle +
2159 	    BGE_MEMWIN_START + BGE_STATS_BLOCK);
2160 
2161 	ifp->if_collisions +=
2162 	   (stats->txstats.dot3StatsSingleCollisionFrames.bge_addr_lo +
2163 	   stats->txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo +
2164 	   stats->txstats.dot3StatsExcessiveCollisions.bge_addr_lo +
2165 	   stats->txstats.dot3StatsLateCollisions.bge_addr_lo) -
2166 	   ifp->if_collisions;
2167 
2168 #ifdef notdef
2169 	ifp->if_collisions +=
2170 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2171 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2172 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2173 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2174 	   ifp->if_collisions;
2175 #endif
2176 }
2177 
2178 /*
2179  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2180  * pointers to descriptors.
2181  */
2182 static int
2183 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
2184 {
2185 	struct bge_tx_bd *f = NULL;
2186 	struct mbuf *m;
2187 	uint32_t frag, cur, cnt = 0;
2188 	uint16_t csum_flags = 0;
2189 	struct ifvlan *ifv = NULL;
2190 
2191 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2192 	    m_head->m_pkthdr.rcvif != NULL &&
2193 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
2194 		ifv = m_head->m_pkthdr.rcvif->if_softc;
2195 
2196 	m = m_head;
2197 	cur = frag = *txidx;
2198 
2199 	if (m_head->m_pkthdr.csum_flags) {
2200 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2201 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2202 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2203 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2204 		if (m_head->m_flags & M_LASTFRAG)
2205 			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2206 		else if (m_head->m_flags & M_FRAG)
2207 			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2208 	}
2209 	/*
2210  	 * Start packing the mbufs in this chain into
2211 	 * the fragment pointers. Stop when we run out
2212  	 * of fragments or hit the end of the mbuf chain.
2213 	 */
2214 	for (m = m_head; m != NULL; m = m->m_next) {
2215 		if (m->m_len != 0) {
2216 			f = &sc->bge_rdata->bge_tx_ring[frag];
2217 			if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2218 				break;
2219 			BGE_HOSTADDR(f->bge_addr,
2220 			    vtophys(mtod(m, vm_offset_t)));
2221 			f->bge_len = m->m_len;
2222 			f->bge_flags = csum_flags;
2223 			if (ifv != NULL) {
2224 				f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2225 				f->bge_vlan_tag = ifv->ifv_tag;
2226 			} else {
2227 				f->bge_vlan_tag = 0;
2228 			}
2229 			/*
2230 			 * Sanity check: avoid coming within 16 descriptors
2231 			 * of the end of the ring.
2232 			 */
2233 			if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2234 				return(ENOBUFS);
2235 			cur = frag;
2236 			BGE_INC(frag, BGE_TX_RING_CNT);
2237 			cnt++;
2238 		}
2239 	}
2240 
2241 	if (m != NULL)
2242 		return(ENOBUFS);
2243 
2244 	if (frag == sc->bge_tx_saved_considx)
2245 		return(ENOBUFS);
2246 
2247 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2248 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
2249 	sc->bge_txcnt += cnt;
2250 
2251 	*txidx = frag;
2252 
2253 	return(0);
2254 }
2255 
2256 /*
2257  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2258  * to the mbuf data regions directly in the transmit descriptors.
2259  */
2260 static void
2261 bge_start(struct ifnet *ifp)
2262 {
2263 	struct bge_softc *sc;
2264 	struct mbuf *m_head = NULL;
2265 	uint32_t prodidx = 0;
2266 
2267 	sc = ifp->if_softc;
2268 
2269 	if (!sc->bge_link)
2270 		return;
2271 
2272 	prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2273 
2274 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2275 		m_head = ifq_poll(&ifp->if_snd);
2276 		if (m_head == NULL)
2277 			break;
2278 
2279 		/*
2280 		 * XXX
2281 		 * safety overkill.  If this is a fragmented packet chain
2282 		 * with delayed TCP/UDP checksums, then only encapsulate
2283 		 * it if we have enough descriptors to handle the entire
2284 		 * chain at once.
2285 		 * (paranoia -- may not actually be needed)
2286 		 */
2287 		if (m_head->m_flags & M_FIRSTFRAG &&
2288 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2289 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2290 			    m_head->m_pkthdr.csum_data + 16) {
2291 				ifp->if_flags |= IFF_OACTIVE;
2292 				break;
2293 			}
2294 		}
2295 
2296 		/*
2297 		 * Pack the data into the transmit ring. If we
2298 		 * don't have room, set the OACTIVE flag and wait
2299 		 * for the NIC to drain the ring.
2300 		 */
2301 		if (bge_encap(sc, m_head, &prodidx)) {
2302 			ifp->if_flags |= IFF_OACTIVE;
2303 			break;
2304 		}
2305 		m_head = ifq_dequeue(&ifp->if_snd);
2306 
2307 		BPF_MTAP(ifp, m_head);
2308 	}
2309 
2310 	/* Transmit */
2311 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2312 	/* 5700 b2 errata */
2313 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
2314 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2315 
2316 	/*
2317 	 * Set a timeout in case the chip goes out to lunch.
2318 	 */
2319 	ifp->if_timer = 5;
2320 }
2321 
2322 static void
2323 bge_init(void *xsc)
2324 {
2325 	struct bge_softc *sc = xsc;
2326 	struct ifnet *ifp = &sc->arpcom.ac_if;
2327 	uint16_t *m;
2328 
2329 	crit_enter();
2330 
2331 	if (ifp->if_flags & IFF_RUNNING) {
2332 		crit_exit();
2333 		return;
2334 	}
2335 
2336 	/* Cancel pending I/O and flush buffers. */
2337 	bge_stop(sc);
2338 	bge_reset(sc);
2339 	bge_chipinit(sc);
2340 
2341 	/*
2342 	 * Init the various state machines, ring
2343 	 * control blocks and firmware.
2344 	 */
2345 	if (bge_blockinit(sc)) {
2346 		if_printf(ifp, "initialization failure\n");
2347 		crit_exit();
2348 		return;
2349 	}
2350 
2351 	/* Specify MTU. */
2352 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2353 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2354 
2355 	/* Load our MAC address. */
2356 	m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
2357 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2358 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2359 
2360 	/* Enable or disable promiscuous mode as needed. */
2361 	if (ifp->if_flags & IFF_PROMISC) {
2362 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2363 	} else {
2364 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2365 	}
2366 
2367 	/* Program multicast filter. */
2368 	bge_setmulti(sc);
2369 
2370 	/* Init RX ring. */
2371 	bge_init_rx_ring_std(sc);
2372 
2373 	/*
2374 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
2375 	 * memory to insure that the chip has in fact read the first
2376 	 * entry of the ring.
2377 	 */
2378 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
2379 		uint32_t		v, i;
2380 		for (i = 0; i < 10; i++) {
2381 			DELAY(20);
2382 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
2383 			if (v == (MCLBYTES - ETHER_ALIGN))
2384 				break;
2385 		}
2386 		if (i == 10)
2387 			if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
2388 	}
2389 
2390 	/* Init jumbo RX ring. */
2391 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2392 		bge_init_rx_ring_jumbo(sc);
2393 
2394 	/* Init our RX return ring index */
2395 	sc->bge_rx_saved_considx = 0;
2396 
2397 	/* Init TX ring. */
2398 	bge_init_tx_ring(sc);
2399 
2400 	/* Turn on transmitter */
2401 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2402 
2403 	/* Turn on receiver */
2404 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2405 
2406 	/* Tell firmware we're alive. */
2407 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2408 
2409 	/* Enable host interrupts. */
2410 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2411 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2412 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2413 
2414 	bge_ifmedia_upd(ifp);
2415 
2416 	ifp->if_flags |= IFF_RUNNING;
2417 	ifp->if_flags &= ~IFF_OACTIVE;
2418 
2419 	callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2420 
2421 	crit_exit();
2422 }
2423 
2424 /*
2425  * Set media options.
2426  */
2427 static int
2428 bge_ifmedia_upd(struct ifnet *ifp)
2429 {
2430 	struct bge_softc *sc = ifp->if_softc;
2431 	struct ifmedia *ifm = &sc->bge_ifmedia;
2432 	struct mii_data *mii;
2433 
2434 	/* If this is a 1000baseX NIC, enable the TBI port. */
2435 	if (sc->bge_tbi) {
2436 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2437 			return(EINVAL);
2438 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
2439 		case IFM_AUTO:
2440 			break;
2441 		case IFM_1000_SX:
2442 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2443 				BGE_CLRBIT(sc, BGE_MAC_MODE,
2444 				    BGE_MACMODE_HALF_DUPLEX);
2445 			} else {
2446 				BGE_SETBIT(sc, BGE_MAC_MODE,
2447 				    BGE_MACMODE_HALF_DUPLEX);
2448 			}
2449 			break;
2450 		default:
2451 			return(EINVAL);
2452 		}
2453 		return(0);
2454 	}
2455 
2456 	mii = device_get_softc(sc->bge_miibus);
2457 	sc->bge_link = 0;
2458 	if (mii->mii_instance) {
2459 		struct mii_softc *miisc;
2460 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
2461 		    miisc = LIST_NEXT(miisc, mii_list))
2462 			mii_phy_reset(miisc);
2463 	}
2464 	mii_mediachg(mii);
2465 
2466 	return(0);
2467 }
2468 
2469 /*
2470  * Report current media status.
2471  */
2472 static void
2473 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2474 {
2475 	struct bge_softc *sc = ifp->if_softc;
2476 	struct mii_data *mii;
2477 
2478 	if (sc->bge_tbi) {
2479 		ifmr->ifm_status = IFM_AVALID;
2480 		ifmr->ifm_active = IFM_ETHER;
2481 		if (CSR_READ_4(sc, BGE_MAC_STS) &
2482 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
2483 			ifmr->ifm_status |= IFM_ACTIVE;
2484 		ifmr->ifm_active |= IFM_1000_SX;
2485 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
2486 			ifmr->ifm_active |= IFM_HDX;
2487 		else
2488 			ifmr->ifm_active |= IFM_FDX;
2489 		return;
2490 	}
2491 
2492 	mii = device_get_softc(sc->bge_miibus);
2493 	mii_pollstat(mii);
2494 	ifmr->ifm_active = mii->mii_media_active;
2495 	ifmr->ifm_status = mii->mii_media_status;
2496 }
2497 
2498 static int
2499 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2500 {
2501 	struct bge_softc *sc = ifp->if_softc;
2502 	struct ifreq *ifr = (struct ifreq *) data;
2503 	int mask, error = 0;
2504 	struct mii_data *mii;
2505 
2506 	crit_enter();
2507 
2508 	switch(command) {
2509 	case SIOCSIFMTU:
2510 		/* Disallow jumbo frames on 5705. */
2511 		if ((sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2512 		    ifr->ifr_mtu > ETHERMTU) || ifr->ifr_mtu > BGE_JUMBO_MTU)
2513 			error = EINVAL;
2514 		else {
2515 			ifp->if_mtu = ifr->ifr_mtu;
2516 			ifp->if_flags &= ~IFF_RUNNING;
2517 			bge_init(sc);
2518 		}
2519 		break;
2520 	case SIOCSIFFLAGS:
2521 		if (ifp->if_flags & IFF_UP) {
2522 			/*
2523 			 * If only the state of the PROMISC flag changed,
2524 			 * then just use the 'set promisc mode' command
2525 			 * instead of reinitializing the entire NIC. Doing
2526 			 * a full re-init means reloading the firmware and
2527 			 * waiting for it to start up, which may take a
2528 			 * second or two.
2529 			 */
2530 			if (ifp->if_flags & IFF_RUNNING &&
2531 			    ifp->if_flags & IFF_PROMISC &&
2532 			    !(sc->bge_if_flags & IFF_PROMISC)) {
2533 				BGE_SETBIT(sc, BGE_RX_MODE,
2534 				    BGE_RXMODE_RX_PROMISC);
2535 			} else if (ifp->if_flags & IFF_RUNNING &&
2536 			    !(ifp->if_flags & IFF_PROMISC) &&
2537 			    sc->bge_if_flags & IFF_PROMISC) {
2538 				BGE_CLRBIT(sc, BGE_RX_MODE,
2539 				    BGE_RXMODE_RX_PROMISC);
2540 			} else
2541 				bge_init(sc);
2542 		} else {
2543 			if (ifp->if_flags & IFF_RUNNING) {
2544 				bge_stop(sc);
2545 			}
2546 		}
2547 		sc->bge_if_flags = ifp->if_flags;
2548 		error = 0;
2549 		break;
2550 	case SIOCADDMULTI:
2551 	case SIOCDELMULTI:
2552 		if (ifp->if_flags & IFF_RUNNING) {
2553 			bge_setmulti(sc);
2554 			error = 0;
2555 		}
2556 		break;
2557 	case SIOCSIFMEDIA:
2558 	case SIOCGIFMEDIA:
2559 		if (sc->bge_tbi) {
2560 			error = ifmedia_ioctl(ifp, ifr,
2561 			    &sc->bge_ifmedia, command);
2562 		} else {
2563 			mii = device_get_softc(sc->bge_miibus);
2564 			error = ifmedia_ioctl(ifp, ifr,
2565 			    &mii->mii_media, command);
2566 		}
2567 		break;
2568         case SIOCSIFCAP:
2569 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2570 		if (mask & IFCAP_HWCSUM) {
2571 			if (IFCAP_HWCSUM & ifp->if_capenable)
2572 				ifp->if_capenable &= ~IFCAP_HWCSUM;
2573 			else
2574 				ifp->if_capenable |= IFCAP_HWCSUM;
2575 		}
2576 		error = 0;
2577 		break;
2578 	default:
2579 		error = ether_ioctl(ifp, command, data);
2580 		break;
2581 	}
2582 
2583 	crit_exit();
2584 
2585 	return(error);
2586 }
2587 
2588 static void
2589 bge_watchdog(struct ifnet *ifp)
2590 {
2591 	struct bge_softc *sc = ifp->if_softc;
2592 
2593 	if_printf(ifp, "watchdog timeout -- resetting\n");
2594 
2595 	ifp->if_flags &= ~IFF_RUNNING;
2596 	bge_init(sc);
2597 
2598 	ifp->if_oerrors++;
2599 }
2600 
2601 /*
2602  * Stop the adapter and free any mbufs allocated to the
2603  * RX and TX lists.
2604  */
2605 static void
2606 bge_stop(struct bge_softc *sc)
2607 {
2608 	struct ifnet *ifp = &sc->arpcom.ac_if;
2609 	struct ifmedia_entry *ifm;
2610 	struct mii_data *mii = NULL;
2611 	int mtmp, itmp;
2612 
2613 	if (!sc->bge_tbi)
2614 		mii = device_get_softc(sc->bge_miibus);
2615 
2616 	callout_stop(&sc->bge_stat_timer);
2617 
2618 	/*
2619 	 * Disable all of the receiver blocks
2620 	 */
2621 	BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2622 	BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2623 	BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2624 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
2625 		BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2626 	BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
2627 	BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2628 	BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
2629 
2630 	/*
2631 	 * Disable all of the transmit blocks
2632 	 */
2633 	BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2634 	BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2635 	BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2636 	BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
2637 	BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
2638 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
2639 		BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2640 	BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2641 
2642 	/*
2643 	 * Shut down all of the memory managers and related
2644 	 * state machines.
2645 	 */
2646 	BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2647 	BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
2648 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
2649 		BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2650 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2651 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2652 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
2653 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
2654 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2655 	}
2656 
2657 	/* Disable host interrupts. */
2658 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2659 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2660 
2661 	/*
2662 	 * Tell firmware we're shutting down.
2663 	 */
2664 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2665 
2666 	/* Free the RX lists. */
2667 	bge_free_rx_ring_std(sc);
2668 
2669 	/* Free jumbo RX list. */
2670 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
2671 		bge_free_rx_ring_jumbo(sc);
2672 
2673 	/* Free TX buffers. */
2674 	bge_free_tx_ring(sc);
2675 
2676 	/*
2677 	 * Isolate/power down the PHY, but leave the media selection
2678 	 * unchanged so that things will be put back to normal when
2679 	 * we bring the interface back up.
2680 	 */
2681 	if (!sc->bge_tbi) {
2682 		itmp = ifp->if_flags;
2683 		ifp->if_flags |= IFF_UP;
2684 		ifm = mii->mii_media.ifm_cur;
2685 		mtmp = ifm->ifm_media;
2686 		ifm->ifm_media = IFM_ETHER|IFM_NONE;
2687 		mii_mediachg(mii);
2688 		ifm->ifm_media = mtmp;
2689 		ifp->if_flags = itmp;
2690 	}
2691 
2692 	sc->bge_link = 0;
2693 
2694 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
2695 
2696 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2697 }
2698 
2699 /*
2700  * Stop all chip I/O so that the kernel's probe routines don't
2701  * get confused by errant DMAs when rebooting.
2702  */
2703 static void
2704 bge_shutdown(device_t dev)
2705 {
2706 	struct bge_softc *sc = device_get_softc(dev);
2707 
2708 	bge_stop(sc);
2709 	bge_reset(sc);
2710 }
2711