xref: /dragonfly/sys/dev/netif/dc/if_dc.c (revision a68e0df0)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_dc.c,v 1.9.2.45 2003/06/08 14:31:53 mux Exp $
33  * $DragonFly: src/sys/dev/netif/dc/if_dc.c,v 1.58 2008/08/17 04:32:33 sephe Exp $
34  */
35 
36 /*
37  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
38  * series chips and several workalikes including the following:
39  *
40  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
41  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
42  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
43  * ASIX Electronics AX88140A (www.asix.com.tw)
44  * ASIX Electronics AX88141 (www.asix.com.tw)
45  * ADMtek AL981 (www.admtek.com.tw)
46  * ADMtek AN985 (www.admtek.com.tw)
47  * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek AN985
48  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
49  * Accton EN1217 (www.accton.com)
50  * Xircom X3201 (www.xircom.com)
51  * Conexant LANfinity (www.conexant.com)
52  *
53  * Datasheets for the 21143 are available at developer.intel.com.
54  * Datasheets for the clone parts can be found at their respective sites.
55  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
56  * The PNIC II is essentially a Macronix 98715A chip; the only difference
57  * worth noting is that its multicast hash table is only 128 bits wide
58  * instead of 512.
59  *
60  * Written by Bill Paul <wpaul@ee.columbia.edu>
61  * Electrical Engineering Department
62  * Columbia University, New York City
63  */
64 
65 /*
66  * The Intel 21143 is the successor to the DEC 21140. It is basically
67  * the same as the 21140 but with a few new features. The 21143 supports
68  * three kinds of media attachments:
69  *
70  * o MII port, for 10Mbps and 100Mbps support and NWAY
71  *   autonegotiation provided by an external PHY.
72  * o SYM port, for symbol mode 100Mbps support.
73  * o 10baseT port.
74  * o AUI/BNC port.
75  *
76  * The 100Mbps SYM port and 10baseT port can be used together in
77  * combination with the internal NWAY support to create a 10/100
78  * autosensing configuration.
79  *
80  * Note that not all tulip workalikes are handled in this driver: we only
81  * deal with those which are relatively well behaved. The Winbond is
82  * handled separately due to its different register offsets and the
83  * special handling needed for its various bugs. The PNIC is handled
84  * here, but I'm not thrilled about it.
85  *
86  * All of the workalike chips use some form of MII transceiver support
87  * with the exception of the Macronix chips, which also have a SYM port.
88  * The ASIX AX88140A is also documented to have a SYM port, but all
89  * the cards I've seen use an MII transceiver, probably because the
90  * AX88140A doesn't support internal NWAY.
91  */
92 
93 #include "opt_polling.h"
94 
95 #include <sys/param.h>
96 #include <sys/systm.h>
97 #include <sys/sockio.h>
98 #include <sys/mbuf.h>
99 #include <sys/malloc.h>
100 #include <sys/kernel.h>
101 #include <sys/interrupt.h>
102 #include <sys/socket.h>
103 #include <sys/sysctl.h>
104 #include <sys/bus.h>
105 #include <sys/rman.h>
106 #include <sys/thread2.h>
107 
108 #include <net/if.h>
109 #include <net/ifq_var.h>
110 #include <net/if_arp.h>
111 #include <net/ethernet.h>
112 #include <net/if_dl.h>
113 #include <net/if_media.h>
114 #include <net/if_types.h>
115 #include <net/vlan/if_vlan_var.h>
116 
117 #include <net/bpf.h>
118 
119 #include <vm/vm.h>              /* for vtophys */
120 #include <vm/pmap.h>            /* for vtophys */
121 
122 #include "../mii_layer/mii.h"
123 #include "../mii_layer/miivar.h"
124 
125 #include <bus/pci/pcireg.h>
126 #include <bus/pci/pcivar.h>
127 
128 #define DC_USEIOSPACE
129 
130 #include "if_dcreg.h"
131 
132 /* "controller miibus0" required.  See GENERIC if you get errors here. */
133 #include "miibus_if.h"
134 
135 /*
136  * Various supported device vendors/types and their names.
137  */
138 static const struct dc_type dc_devs[] = {
139 	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
140 		"Intel 21143 10/100BaseTX" },
141 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
142 		"Davicom DM9009 10/100BaseTX" },
143 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
144 		"Davicom DM9100 10/100BaseTX" },
145 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
146 		"Davicom DM9102 10/100BaseTX" },
147 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
148 		"Davicom DM9102A 10/100BaseTX" },
149 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
150 		"ADMtek AL981 10/100BaseTX" },
151 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
152 		"ADMtek AN985 10/100BaseTX" },
153 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_FA511,
154 		"Netgear FA511 10/100BaseTX" },
155 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511,
156 		"ADMtek ADM9511 10/100BaseTX" },
157 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513,
158 		"ADMtek ADM9513 10/100BaseTX" },
159 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
160 		"ASIX AX88140A 10/100BaseTX" },
161 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
162 		"ASIX AX88141 10/100BaseTX" },
163 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
164 		"Macronix 98713 10/100BaseTX" },
165 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
166 		"Macronix 98713A 10/100BaseTX" },
167 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
168 		"Compex RL100-TX 10/100BaseTX" },
169 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
170 		"Compex RL100-TX 10/100BaseTX" },
171 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
172 		"Macronix 98715/98715A 10/100BaseTX" },
173 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
174 		"Macronix 98715AEC-C 10/100BaseTX" },
175 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
176 		"Macronix 98725 10/100BaseTX" },
177 	{ DC_VENDORID_MX, DC_DEVICEID_98727,
178 		"Macronix 98727/98732 10/100BaseTX" },
179 	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
180 		"LC82C115 PNIC II 10/100BaseTX" },
181 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
182 		"82c168 PNIC 10/100BaseTX" },
183 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
184 		"82c169 PNIC 10/100BaseTX" },
185 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
186 		"Accton EN1217 10/100BaseTX" },
187 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
188 		"Accton EN2242 MiniPCI 10/100BaseTX" },
189     	{ DC_VENDORID_XIRCOM, DC_DEVICEID_X3201,
190 	  	"Xircom X3201 10/100BaseTX" },
191 	{ DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
192 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
193 	{ DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB,
194 		"3Com OfficeConnect 10/100B" },
195 	{ 0, 0, NULL }
196 };
197 
198 static int dc_probe		(device_t);
199 static int dc_attach		(device_t);
200 static int dc_detach		(device_t);
201 static int dc_suspend		(device_t);
202 static int dc_resume		(device_t);
203 static void dc_acpi		(device_t);
204 static const struct dc_type *dc_devtype	(device_t);
205 static int dc_newbuf		(struct dc_softc *, int, struct mbuf *);
206 static int dc_encap		(struct dc_softc *, struct mbuf *,
207 					u_int32_t *);
208 static void dc_pnic_rx_bug_war	(struct dc_softc *, int);
209 static int dc_rx_resync		(struct dc_softc *);
210 static void dc_rxeof		(struct dc_softc *);
211 static void dc_txeof		(struct dc_softc *);
212 static void dc_tick		(void *);
213 static void dc_tx_underrun	(struct dc_softc *);
214 static void dc_intr		(void *);
215 static void dc_start		(struct ifnet *);
216 static int dc_ioctl		(struct ifnet *, u_long, caddr_t,
217 					struct ucred *);
218 #ifdef DEVICE_POLLING
219 static void dc_poll		(struct ifnet *ifp, enum poll_cmd cmd,
220 					int count);
221 #endif
222 static void dc_init		(void *);
223 static void dc_stop		(struct dc_softc *);
224 static void dc_watchdog		(struct ifnet *);
225 static void dc_shutdown		(device_t);
226 static int dc_ifmedia_upd	(struct ifnet *);
227 static void dc_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
228 
229 static void dc_delay		(struct dc_softc *);
230 static void dc_eeprom_idle	(struct dc_softc *);
231 static void dc_eeprom_putbyte	(struct dc_softc *, int);
232 static void dc_eeprom_getword	(struct dc_softc *, int, u_int16_t *);
233 static void dc_eeprom_getword_pnic
234 				(struct dc_softc *, int, u_int16_t *);
235 static void dc_eeprom_getword_xircom
236 				(struct dc_softc *, int, u_int16_t *);
237 static void dc_eeprom_width	(struct dc_softc *);
238 static void dc_read_eeprom	(struct dc_softc *, caddr_t, int,
239 							int, int);
240 
241 static void dc_mii_writebit	(struct dc_softc *, int);
242 static int dc_mii_readbit	(struct dc_softc *);
243 static void dc_mii_sync		(struct dc_softc *);
244 static void dc_mii_send		(struct dc_softc *, u_int32_t, int);
245 static int dc_mii_readreg	(struct dc_softc *, struct dc_mii_frame *);
246 static int dc_mii_writereg	(struct dc_softc *, struct dc_mii_frame *);
247 static int dc_miibus_readreg	(device_t, int, int);
248 static int dc_miibus_writereg	(device_t, int, int, int);
249 static void dc_miibus_statchg	(device_t);
250 static void dc_miibus_mediainit	(device_t);
251 
252 static u_int32_t dc_crc_mask	(struct dc_softc *);
253 static void dc_setcfg		(struct dc_softc *, int);
254 static void dc_setfilt_21143	(struct dc_softc *);
255 static void dc_setfilt_asix	(struct dc_softc *);
256 static void dc_setfilt_admtek	(struct dc_softc *);
257 static void dc_setfilt_xircom	(struct dc_softc *);
258 
259 static void dc_setfilt		(struct dc_softc *);
260 
261 static void dc_reset		(struct dc_softc *);
262 static int dc_list_rx_init	(struct dc_softc *);
263 static int dc_list_tx_init	(struct dc_softc *);
264 
265 static void dc_read_srom	(struct dc_softc *, int);
266 static void dc_parse_21143_srom	(struct dc_softc *);
267 static void dc_decode_leaf_sia	(struct dc_softc *,
268 				    struct dc_eblock_sia *);
269 static void dc_decode_leaf_mii	(struct dc_softc *,
270 				    struct dc_eblock_mii *);
271 static void dc_decode_leaf_sym	(struct dc_softc *,
272 				    struct dc_eblock_sym *);
273 static void dc_apply_fixup	(struct dc_softc *, int);
274 static uint32_t dc_mchash_xircom(struct dc_softc *, const uint8_t *);
275 
276 #ifdef DC_USEIOSPACE
277 #define DC_RES			SYS_RES_IOPORT
278 #define DC_RID			DC_PCI_CFBIO
279 #else
280 #define DC_RES			SYS_RES_MEMORY
281 #define DC_RID			DC_PCI_CFBMA
282 #endif
283 
284 static device_method_t dc_methods[] = {
285 	/* Device interface */
286 	DEVMETHOD(device_probe,		dc_probe),
287 	DEVMETHOD(device_attach,	dc_attach),
288 	DEVMETHOD(device_detach,	dc_detach),
289 	DEVMETHOD(device_suspend,	dc_suspend),
290 	DEVMETHOD(device_resume,	dc_resume),
291 	DEVMETHOD(device_shutdown,	dc_shutdown),
292 
293 	/* bus interface */
294 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
295 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
296 
297 	/* MII interface */
298 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
299 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
300 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
301 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
302 
303 	{ 0, 0 }
304 };
305 
306 static driver_t dc_driver = {
307 	"dc",
308 	dc_methods,
309 	sizeof(struct dc_softc)
310 };
311 
312 static devclass_t dc_devclass;
313 
314 #ifdef __i386__
315 static int dc_quick=1;
316 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW,
317 	&dc_quick,0,"do not mdevget in dc driver");
318 #endif
319 
320 DECLARE_DUMMY_MODULE(if_dc);
321 DRIVER_MODULE(if_dc, cardbus, dc_driver, dc_devclass, 0, 0);
322 DRIVER_MODULE(if_dc, pci, dc_driver, dc_devclass, 0, 0);
323 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
324 
325 #define DC_SETBIT(sc, reg, x)				\
326 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
327 
328 #define DC_CLRBIT(sc, reg, x)				\
329 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
330 
331 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
332 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
333 
334 static void
335 dc_delay(struct dc_softc *sc)
336 {
337 	int			idx;
338 
339 	for (idx = (300 / 33) + 1; idx > 0; idx--)
340 		CSR_READ_4(sc, DC_BUSCTL);
341 }
342 
343 static void
344 dc_eeprom_width(struct dc_softc *sc)
345 {
346 	int i;
347 
348 	/* Force EEPROM to idle state. */
349 	dc_eeprom_idle(sc);
350 
351 	/* Enter EEPROM access mode. */
352 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
353 	dc_delay(sc);
354 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
355 	dc_delay(sc);
356 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
357 	dc_delay(sc);
358 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
359 	dc_delay(sc);
360 
361 	for (i = 3; i--;) {
362 		if (6 & (1 << i))
363 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
364 		else
365 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
366 		dc_delay(sc);
367 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
368 		dc_delay(sc);
369 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
370 		dc_delay(sc);
371 	}
372 
373 	for (i = 1; i <= 12; i++) {
374 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
375 		dc_delay(sc);
376 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
377 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
378 			dc_delay(sc);
379 			break;
380 		}
381 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
382 		dc_delay(sc);
383 	}
384 
385 	/* Turn off EEPROM access mode. */
386 	dc_eeprom_idle(sc);
387 
388 	if (i < 4 || i > 12)
389 		sc->dc_romwidth = 6;
390 	else
391 		sc->dc_romwidth = i;
392 
393 	/* Enter EEPROM access mode. */
394 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
395 	dc_delay(sc);
396 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
397 	dc_delay(sc);
398 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
399 	dc_delay(sc);
400 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
401 	dc_delay(sc);
402 
403 	/* Turn off EEPROM access mode. */
404 	dc_eeprom_idle(sc);
405 }
406 
407 static void
408 dc_eeprom_idle(struct dc_softc *sc)
409 {
410 	int		i;
411 
412 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
413 	dc_delay(sc);
414 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
415 	dc_delay(sc);
416 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
417 	dc_delay(sc);
418 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
419 	dc_delay(sc);
420 
421 	for (i = 0; i < 25; i++) {
422 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
423 		dc_delay(sc);
424 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
425 		dc_delay(sc);
426 	}
427 
428 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
429 	dc_delay(sc);
430 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
431 	dc_delay(sc);
432 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
433 
434 	return;
435 }
436 
437 /*
438  * Send a read command and address to the EEPROM, check for ACK.
439  */
440 static void
441 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
442 {
443 	int		d, i;
444 
445 	d = DC_EECMD_READ >> 6;
446 	for (i = 3; i--; ) {
447 		if (d & (1 << i))
448 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
449 		else
450 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
451 		dc_delay(sc);
452 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
453 		dc_delay(sc);
454 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
455 		dc_delay(sc);
456 	}
457 
458 	/*
459 	 * Feed in each bit and strobe the clock.
460 	 */
461 	for (i = sc->dc_romwidth; i--;) {
462 		if (addr & (1 << i)) {
463 			SIO_SET(DC_SIO_EE_DATAIN);
464 		} else {
465 			SIO_CLR(DC_SIO_EE_DATAIN);
466 		}
467 		dc_delay(sc);
468 		SIO_SET(DC_SIO_EE_CLK);
469 		dc_delay(sc);
470 		SIO_CLR(DC_SIO_EE_CLK);
471 		dc_delay(sc);
472 	}
473 
474 	return;
475 }
476 
477 /*
478  * Read a word of data stored in the EEPROM at address 'addr.'
479  * The PNIC 82c168/82c169 has its own non-standard way to read
480  * the EEPROM.
481  */
482 static void
483 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
484 {
485 	int		i;
486 	u_int32_t		r;
487 
488 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ|addr);
489 
490 	for (i = 0; i < DC_TIMEOUT; i++) {
491 		DELAY(1);
492 		r = CSR_READ_4(sc, DC_SIO);
493 		if (!(r & DC_PN_SIOCTL_BUSY)) {
494 			*dest = (u_int16_t)(r & 0xFFFF);
495 			return;
496 		}
497 	}
498 
499 	return;
500 }
501 
502 /*
503  * Read a word of data stored in the EEPROM at address 'addr.'
504  * The Xircom X3201 has its own non-standard way to read
505  * the EEPROM, too.
506  */
507 static void
508 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, u_int16_t *dest)
509 {
510 	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
511 
512 	addr *= 2;
513 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
514 	*dest = (u_int16_t)CSR_READ_4(sc, DC_SIO)&0xff;
515 	addr += 1;
516 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
517 	*dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO)&0xff) << 8;
518 
519 	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
520 }
521 
522 /*
523  * Read a word of data stored in the EEPROM at address 'addr.'
524  */
525 static void
526 dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
527 {
528 	int		i;
529 	u_int16_t		word = 0;
530 
531 	/* Force EEPROM to idle state. */
532 	dc_eeprom_idle(sc);
533 
534 	/* Enter EEPROM access mode. */
535 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
536 	dc_delay(sc);
537 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
538 	dc_delay(sc);
539 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
540 	dc_delay(sc);
541 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
542 	dc_delay(sc);
543 
544 	/*
545 	 * Send address of word we want to read.
546 	 */
547 	dc_eeprom_putbyte(sc, addr);
548 
549 	/*
550 	 * Start reading bits from EEPROM.
551 	 */
552 	for (i = 0x8000; i; i >>= 1) {
553 		SIO_SET(DC_SIO_EE_CLK);
554 		dc_delay(sc);
555 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
556 			word |= i;
557 		dc_delay(sc);
558 		SIO_CLR(DC_SIO_EE_CLK);
559 		dc_delay(sc);
560 	}
561 
562 	/* Turn off EEPROM access mode. */
563 	dc_eeprom_idle(sc);
564 
565 	*dest = word;
566 
567 	return;
568 }
569 
570 /*
571  * Read a sequence of words from the EEPROM.
572  */
573 static void
574 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int swap)
575 {
576 	int			i;
577 	u_int16_t		word = 0, *ptr;
578 
579 	for (i = 0; i < cnt; i++) {
580 		if (DC_IS_PNIC(sc))
581 			dc_eeprom_getword_pnic(sc, off + i, &word);
582 		else if (DC_IS_XIRCOM(sc))
583 			dc_eeprom_getword_xircom(sc, off + i, &word);
584 		else
585 			dc_eeprom_getword(sc, off + i, &word);
586 		ptr = (u_int16_t *)(dest + (i * 2));
587 		if (swap)
588 			*ptr = ntohs(word);
589 		else
590 			*ptr = word;
591 	}
592 
593 	return;
594 }
595 
596 /*
597  * The following two routines are taken from the Macronix 98713
598  * Application Notes pp.19-21.
599  */
600 /*
601  * Write a bit to the MII bus.
602  */
603 static void
604 dc_mii_writebit(struct dc_softc *sc, int bit)
605 {
606 	if (bit)
607 		CSR_WRITE_4(sc, DC_SIO,
608 		    DC_SIO_ROMCTL_WRITE|DC_SIO_MII_DATAOUT);
609 	else
610 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
611 
612 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
613 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
614 
615 	return;
616 }
617 
618 /*
619  * Read a bit from the MII bus.
620  */
621 static int
622 dc_mii_readbit(struct dc_softc *sc)
623 {
624 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ|DC_SIO_MII_DIR);
625 	CSR_READ_4(sc, DC_SIO);
626 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
627 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
628 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
629 		return(1);
630 
631 	return(0);
632 }
633 
634 /*
635  * Sync the PHYs by setting data bit and strobing the clock 32 times.
636  */
637 static void
638 dc_mii_sync(struct dc_softc *sc)
639 {
640 	int		i;
641 
642 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
643 
644 	for (i = 0; i < 32; i++)
645 		dc_mii_writebit(sc, 1);
646 
647 	return;
648 }
649 
650 /*
651  * Clock a series of bits through the MII.
652  */
653 static void
654 dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
655 {
656 	int			i;
657 
658 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
659 		dc_mii_writebit(sc, bits & i);
660 }
661 
662 /*
663  * Read an PHY register through the MII.
664  */
665 static int
666 dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
667 {
668 	int ack, i;
669 
670 	/*
671 	 * Set up frame for RX.
672 	 */
673 	frame->mii_stdelim = DC_MII_STARTDELIM;
674 	frame->mii_opcode = DC_MII_READOP;
675 	frame->mii_turnaround = 0;
676 	frame->mii_data = 0;
677 
678 	/*
679 	 * Sync the PHYs.
680 	 */
681 	dc_mii_sync(sc);
682 
683 	/*
684 	 * Send command/address info.
685 	 */
686 	dc_mii_send(sc, frame->mii_stdelim, 2);
687 	dc_mii_send(sc, frame->mii_opcode, 2);
688 	dc_mii_send(sc, frame->mii_phyaddr, 5);
689 	dc_mii_send(sc, frame->mii_regaddr, 5);
690 
691 #ifdef notdef
692 	/* Idle bit */
693 	dc_mii_writebit(sc, 1);
694 	dc_mii_writebit(sc, 0);
695 #endif
696 
697 	/* Check for ack */
698 	ack = dc_mii_readbit(sc);
699 
700 	/*
701 	 * Now try reading data bits. If the ack failed, we still
702 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
703 	 */
704 	if (ack) {
705 		for(i = 0; i < 16; i++) {
706 			dc_mii_readbit(sc);
707 		}
708 		goto fail;
709 	}
710 
711 	for (i = 0x8000; i; i >>= 1) {
712 		if (!ack) {
713 			if (dc_mii_readbit(sc))
714 				frame->mii_data |= i;
715 		}
716 	}
717 
718 fail:
719 
720 	dc_mii_writebit(sc, 0);
721 	dc_mii_writebit(sc, 0);
722 
723 	if (ack)
724 		return(1);
725 	return(0);
726 }
727 
728 /*
729  * Write to a PHY register through the MII.
730  */
731 static int
732 dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
733 {
734 	/*
735 	 * Set up frame for TX.
736 	 */
737 
738 	frame->mii_stdelim = DC_MII_STARTDELIM;
739 	frame->mii_opcode = DC_MII_WRITEOP;
740 	frame->mii_turnaround = DC_MII_TURNAROUND;
741 
742 	/*
743 	 * Sync the PHYs.
744 	 */
745 	dc_mii_sync(sc);
746 
747 	dc_mii_send(sc, frame->mii_stdelim, 2);
748 	dc_mii_send(sc, frame->mii_opcode, 2);
749 	dc_mii_send(sc, frame->mii_phyaddr, 5);
750 	dc_mii_send(sc, frame->mii_regaddr, 5);
751 	dc_mii_send(sc, frame->mii_turnaround, 2);
752 	dc_mii_send(sc, frame->mii_data, 16);
753 
754 	/* Idle bit. */
755 	dc_mii_writebit(sc, 0);
756 	dc_mii_writebit(sc, 0);
757 
758 	return(0);
759 }
760 
761 static int
762 dc_miibus_readreg(device_t dev, int phy, int reg)
763 {
764 	struct dc_mii_frame	frame;
765 	struct dc_softc		*sc;
766 	int			i, rval, phy_reg = 0;
767 
768 	sc = device_get_softc(dev);
769 	bzero((char *)&frame, sizeof(frame));
770 
771 	/*
772 	 * Note: both the AL981 and AN985 have internal PHYs,
773 	 * however the AL981 provides direct access to the PHY
774 	 * registers while the AN985 uses a serial MII interface.
775 	 * The AN985's MII interface is also buggy in that you
776 	 * can read from any MII address (0 to 31), but only address 1
777 	 * behaves normally. To deal with both cases, we pretend
778 	 * that the PHY is at MII address 1.
779 	 */
780 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
781 		return(0);
782 
783 	/*
784 	 * Note: the ukphy probes of the RS7112 report a PHY at
785 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
786 	 * so we only respond to correct one.
787 	 */
788 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
789 		return(0);
790 
791 	if (sc->dc_pmode != DC_PMODE_MII) {
792 		if (phy == (MII_NPHY - 1)) {
793 			switch(reg) {
794 			case MII_BMSR:
795 			/*
796 			 * Fake something to make the probe
797 			 * code think there's a PHY here.
798 			 */
799 				return(BMSR_MEDIAMASK);
800 				break;
801 			case MII_PHYIDR1:
802 				if (DC_IS_PNIC(sc))
803 					return(DC_VENDORID_LO);
804 				return(DC_VENDORID_DEC);
805 				break;
806 			case MII_PHYIDR2:
807 				if (DC_IS_PNIC(sc))
808 					return(DC_DEVICEID_82C168);
809 				return(DC_DEVICEID_21143);
810 				break;
811 			default:
812 				return(0);
813 				break;
814 			}
815 		} else
816 			return(0);
817 	}
818 
819 	if (DC_IS_PNIC(sc)) {
820 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
821 		    (phy << 23) | (reg << 18));
822 		for (i = 0; i < DC_TIMEOUT; i++) {
823 			DELAY(1);
824 			rval = CSR_READ_4(sc, DC_PN_MII);
825 			if (!(rval & DC_PN_MII_BUSY)) {
826 				rval &= 0xFFFF;
827 				return(rval == 0xFFFF ? 0 : rval);
828 			}
829 		}
830 		return(0);
831 	}
832 
833 	if (DC_IS_COMET(sc)) {
834 		switch(reg) {
835 		case MII_BMCR:
836 			phy_reg = DC_AL_BMCR;
837 			break;
838 		case MII_BMSR:
839 			phy_reg = DC_AL_BMSR;
840 			break;
841 		case MII_PHYIDR1:
842 			phy_reg = DC_AL_VENID;
843 			break;
844 		case MII_PHYIDR2:
845 			phy_reg = DC_AL_DEVID;
846 			break;
847 		case MII_ANAR:
848 			phy_reg = DC_AL_ANAR;
849 			break;
850 		case MII_ANLPAR:
851 			phy_reg = DC_AL_LPAR;
852 			break;
853 		case MII_ANER:
854 			phy_reg = DC_AL_ANER;
855 			break;
856 		default:
857 			if_printf(&sc->arpcom.ac_if,
858 				  "phy_read: bad phy register %x\n", reg);
859 			return(0);
860 			break;
861 		}
862 
863 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
864 
865 		if (rval == 0xFFFF)
866 			return(0);
867 		return(rval);
868 	}
869 
870 	frame.mii_phyaddr = phy;
871 	frame.mii_regaddr = reg;
872 	if (sc->dc_type == DC_TYPE_98713) {
873 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
874 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
875 	}
876 	dc_mii_readreg(sc, &frame);
877 	if (sc->dc_type == DC_TYPE_98713)
878 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
879 
880 	return(frame.mii_data);
881 }
882 
883 static int
884 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
885 {
886 	struct dc_softc		*sc;
887 	struct dc_mii_frame	frame;
888 	int			i, phy_reg = 0;
889 
890 	sc = device_get_softc(dev);
891 	bzero((char *)&frame, sizeof(frame));
892 
893 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
894 		return(0);
895 
896 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
897 		return(0);
898 
899 	if (DC_IS_PNIC(sc)) {
900 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
901 		    (phy << 23) | (reg << 10) | data);
902 		for (i = 0; i < DC_TIMEOUT; i++) {
903 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
904 				break;
905 		}
906 		return(0);
907 	}
908 
909 	if (DC_IS_COMET(sc)) {
910 		switch(reg) {
911 		case MII_BMCR:
912 			phy_reg = DC_AL_BMCR;
913 			break;
914 		case MII_BMSR:
915 			phy_reg = DC_AL_BMSR;
916 			break;
917 		case MII_PHYIDR1:
918 			phy_reg = DC_AL_VENID;
919 			break;
920 		case MII_PHYIDR2:
921 			phy_reg = DC_AL_DEVID;
922 			break;
923 		case MII_ANAR:
924 			phy_reg = DC_AL_ANAR;
925 			break;
926 		case MII_ANLPAR:
927 			phy_reg = DC_AL_LPAR;
928 			break;
929 		case MII_ANER:
930 			phy_reg = DC_AL_ANER;
931 			break;
932 		default:
933 			if_printf(&sc->arpcom.ac_if,
934 				  "phy_write: bad phy register %x\n", reg);
935 			return(0);
936 			break;
937 		}
938 
939 		CSR_WRITE_4(sc, phy_reg, data);
940 		return(0);
941 	}
942 
943 	frame.mii_phyaddr = phy;
944 	frame.mii_regaddr = reg;
945 	frame.mii_data = data;
946 
947 	if (sc->dc_type == DC_TYPE_98713) {
948 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
949 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
950 	}
951 	dc_mii_writereg(sc, &frame);
952 	if (sc->dc_type == DC_TYPE_98713)
953 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
954 
955 	return(0);
956 }
957 
958 static void
959 dc_miibus_statchg(device_t dev)
960 {
961 	struct dc_softc		*sc;
962 	struct mii_data		*mii;
963 	struct ifmedia		*ifm;
964 
965 	sc = device_get_softc(dev);
966 	if (DC_IS_ADMTEK(sc))
967 		return;
968 
969 	mii = device_get_softc(sc->dc_miibus);
970 	ifm = &mii->mii_media;
971 	if (DC_IS_DAVICOM(sc) &&
972 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
973 		dc_setcfg(sc, ifm->ifm_media);
974 		sc->dc_if_media = ifm->ifm_media;
975 	} else {
976 		dc_setcfg(sc, mii->mii_media_active);
977 		sc->dc_if_media = mii->mii_media_active;
978 	}
979 
980 	return;
981 }
982 
983 /*
984  * Special support for DM9102A cards with HomePNA PHYs. Note:
985  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
986  * to be impossible to talk to the management interface of the DM9801
987  * PHY (its MDIO pin is not connected to anything). Consequently,
988  * the driver has to just 'know' about the additional mode and deal
989  * with it itself. *sigh*
990  */
991 static void
992 dc_miibus_mediainit(device_t dev)
993 {
994 	struct dc_softc		*sc;
995 	struct mii_data		*mii;
996 	struct ifmedia		*ifm;
997 	int			rev;
998 
999 	rev = pci_get_revid(dev);
1000 
1001 	sc = device_get_softc(dev);
1002 	mii = device_get_softc(sc->dc_miibus);
1003 	ifm = &mii->mii_media;
1004 
1005 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
1006 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
1007 
1008 	return;
1009 }
1010 
1011 #define DC_BITS_512	9
1012 #define DC_BITS_128	7
1013 #define DC_BITS_64	6
1014 
1015 static u_int32_t
1016 dc_crc_mask(struct dc_softc *sc)
1017 {
1018 	/*
1019 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1020 	 * chips is only 128 bits wide.
1021 	 */
1022 	if (sc->dc_flags & DC_128BIT_HASH)
1023 		return ((1 << DC_BITS_128) - 1);
1024 
1025 	/* The hash table on the MX98715BEC is only 64 bits wide. */
1026 	if (sc->dc_flags & DC_64BIT_HASH)
1027 		return ((1 << DC_BITS_64) - 1);
1028 
1029 	return ((1 << DC_BITS_512) - 1);
1030 }
1031 
1032 /*
1033  * 21143-style RX filter setup routine. Filter programming is done by
1034  * downloading a special setup frame into the TX engine. 21143, Macronix,
1035  * PNIC, PNIC II and Davicom chips are programmed this way.
1036  *
1037  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1038  * address (our node address) and a 512-bit hash filter for multicast
1039  * frames. We also sneak the broadcast address into the hash filter since
1040  * we need that too.
1041  */
1042 void
1043 dc_setfilt_21143(struct dc_softc *sc)
1044 {
1045 	struct dc_desc		*sframe;
1046 	u_int32_t		h, crc_mask, *sp;
1047 	struct ifmultiaddr	*ifma;
1048 	struct ifnet		*ifp;
1049 	int			i;
1050 
1051 	ifp = &sc->arpcom.ac_if;
1052 
1053 	i = sc->dc_cdata.dc_tx_prod;
1054 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1055 	sc->dc_cdata.dc_tx_cnt++;
1056 	sframe = &sc->dc_ldata->dc_tx_list[i];
1057 	sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
1058 	bzero((char *)sp, DC_SFRAME_LEN);
1059 
1060 	sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
1061 	sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
1062 	    DC_FILTER_HASHPERF | DC_TXCTL_FINT;
1063 
1064 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
1065 
1066 	/* If we want promiscuous mode, set the allframes bit. */
1067 	if (ifp->if_flags & IFF_PROMISC)
1068 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1069 	else
1070 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1071 
1072 	if (ifp->if_flags & IFF_ALLMULTI)
1073 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1074 	else
1075 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1076 
1077 	crc_mask = dc_crc_mask(sc);
1078 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1079 		if (ifma->ifma_addr->sa_family != AF_LINK)
1080 			continue;
1081 		h = ether_crc32_le(
1082 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1083 			ETHER_ADDR_LEN) & crc_mask;
1084 		sp[h >> 4] |= 1 << (h & 0xF);
1085 	}
1086 
1087 	if (ifp->if_flags & IFF_BROADCAST) {
1088 		h = ether_crc32_le(ifp->if_broadcastaddr,
1089 				   ETHER_ADDR_LEN) & crc_mask;
1090 		sp[h >> 4] |= 1 << (h & 0xF);
1091 	}
1092 
1093 	/* Set our MAC address */
1094 	sp[39] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
1095 	sp[40] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
1096 	sp[41] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
1097 
1098 	sframe->dc_status = DC_TXSTAT_OWN;
1099 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1100 
1101 	/*
1102 	 * The PNIC takes an exceedingly long time to process its
1103 	 * setup frame; wait 10ms after posting the setup frame
1104 	 * before proceeding, just so it has time to swallow its
1105 	 * medicine.
1106 	 */
1107 	DELAY(10000);
1108 
1109 	ifp->if_timer = 5;
1110 
1111 	return;
1112 }
1113 
1114 void
1115 dc_setfilt_admtek(struct dc_softc *sc)
1116 {
1117 	struct ifnet		*ifp;
1118 	int			h = 0;
1119 	u_int32_t		crc_mask;
1120 	u_int32_t		hashes[2] = { 0, 0 };
1121 	struct ifmultiaddr	*ifma;
1122 
1123 	ifp = &sc->arpcom.ac_if;
1124 
1125 	/* Init our MAC address */
1126 	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1127 	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1128 
1129 	/* If we want promiscuous mode, set the allframes bit. */
1130 	if (ifp->if_flags & IFF_PROMISC)
1131 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1132 	else
1133 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1134 
1135 	if (ifp->if_flags & IFF_ALLMULTI)
1136 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1137 	else
1138 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1139 
1140 	/* first, zot all the existing hash bits */
1141 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1142 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1143 
1144 	/*
1145 	 * If we're already in promisc or allmulti mode, we
1146 	 * don't have to bother programming the multicast filter.
1147 	 */
1148 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1149 		return;
1150 
1151 	/* now program new ones */
1152 	if (DC_IS_CENTAUR(sc))
1153 		crc_mask = dc_crc_mask(sc);
1154 	else
1155 		crc_mask = 0x3f;
1156 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1157 		if (ifma->ifma_addr->sa_family != AF_LINK)
1158 			continue;
1159 		if (DC_IS_CENTAUR(sc)) {
1160 			h = ether_crc32_le(
1161 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1162 				ETHER_ADDR_LEN) & crc_mask;
1163 		} else {
1164 			h = ether_crc32_be(
1165 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1166 				ETHER_ADDR_LEN);
1167 			h = (h >> 26) & crc_mask;
1168 		}
1169 		if (h < 32)
1170 			hashes[0] |= (1 << h);
1171 		else
1172 			hashes[1] |= (1 << (h - 32));
1173 	}
1174 
1175 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1176 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1177 
1178 	return;
1179 }
1180 
1181 void
1182 dc_setfilt_asix(struct dc_softc *sc)
1183 {
1184 	struct ifnet		*ifp;
1185 	int			h = 0;
1186 	u_int32_t		hashes[2] = { 0, 0 };
1187 	struct ifmultiaddr	*ifma;
1188 
1189 	ifp = &sc->arpcom.ac_if;
1190 
1191         /* Init our MAC address */
1192         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1193         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1194 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1195         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1196         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1197 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1198 
1199 	/* If we want promiscuous mode, set the allframes bit. */
1200 	if (ifp->if_flags & IFF_PROMISC)
1201 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1202 	else
1203 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1204 
1205 	if (ifp->if_flags & IFF_ALLMULTI)
1206 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1207 	else
1208 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1209 
1210 	/*
1211 	 * The ASIX chip has a special bit to enable reception
1212 	 * of broadcast frames.
1213 	 */
1214 	if (ifp->if_flags & IFF_BROADCAST)
1215 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1216 	else
1217 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1218 
1219 	/* first, zot all the existing hash bits */
1220 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1221 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1222 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1223 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1224 
1225 	/*
1226 	 * If we're already in promisc or allmulti mode, we
1227 	 * don't have to bother programming the multicast filter.
1228 	 */
1229 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1230 		return;
1231 
1232 	/* now program new ones */
1233 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1234 		if (ifma->ifma_addr->sa_family != AF_LINK)
1235 			continue;
1236 		h = ether_crc32_be(
1237 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1238 			ETHER_ADDR_LEN);
1239 		h = (h >> 26) & 0x3f;
1240 		if (h < 32)
1241 			hashes[0] |= (1 << h);
1242 		else
1243 			hashes[1] |= (1 << (h - 32));
1244 	}
1245 
1246 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1247 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1248 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1249 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1250 
1251 	return;
1252 }
1253 
1254 void
1255 dc_setfilt_xircom(struct dc_softc *sc)
1256 {
1257 	struct dc_desc		*sframe;
1258 	u_int32_t		h, *sp;
1259 	struct ifmultiaddr	*ifma;
1260 	struct ifnet		*ifp;
1261 	int			i;
1262 
1263 	ifp = &sc->arpcom.ac_if;
1264 	KASSERT(ifp->if_flags & IFF_RUNNING,
1265 		("%s is not running yet\n", ifp->if_xname));
1266 
1267 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1268 
1269 	i = sc->dc_cdata.dc_tx_prod;
1270 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1271 	sc->dc_cdata.dc_tx_cnt++;
1272 	sframe = &sc->dc_ldata->dc_tx_list[i];
1273 	sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
1274 	bzero(sp, DC_SFRAME_LEN);
1275 
1276 	sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
1277 	sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
1278 	    DC_FILTER_HASHPERF | DC_TXCTL_FINT;
1279 
1280 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
1281 
1282 	/* If we want promiscuous mode, set the allframes bit. */
1283 	if (ifp->if_flags & IFF_PROMISC)
1284 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1285 	else
1286 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1287 
1288 	if (ifp->if_flags & IFF_ALLMULTI)
1289  		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1290 	else
1291 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1292 
1293 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1294 		if (ifma->ifma_addr->sa_family != AF_LINK)
1295 			continue;
1296 		h = dc_mchash_xircom(sc,
1297 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1298 		sp[h >> 4] |= 1 << (h & 0xF);
1299 	}
1300 
1301 	if (ifp->if_flags & IFF_BROADCAST) {
1302 		h = dc_mchash_xircom(sc, (caddr_t)&etherbroadcastaddr);
1303 		sp[h >> 4] |= 1 << (h & 0xF);
1304 	}
1305 
1306 	/* Set our MAC address */
1307 	sp[0] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
1308 	sp[1] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
1309 	sp[2] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
1310 
1311 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1312 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1313 	sframe->dc_status = DC_TXSTAT_OWN;
1314 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1315 
1316 	/*
1317 	 * wait some time...
1318 	 */
1319 	DELAY(1000);
1320 
1321 	ifp->if_timer = 5;
1322 }
1323 
1324 static void
1325 dc_setfilt(struct dc_softc *sc)
1326 {
1327 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1328 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1329 		dc_setfilt_21143(sc);
1330 
1331 	if (DC_IS_ASIX(sc))
1332 		dc_setfilt_asix(sc);
1333 
1334 	if (DC_IS_ADMTEK(sc))
1335 		dc_setfilt_admtek(sc);
1336 
1337 	if (DC_IS_XIRCOM(sc))
1338 		dc_setfilt_xircom(sc);
1339 }
1340 
1341 /*
1342  * In order to fiddle with the
1343  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
1344  * first have to put the transmit and/or receive logic in the idle state.
1345  */
1346 static void
1347 dc_setcfg(struct dc_softc *sc, int media)
1348 {
1349 	int			i, restart = 0;
1350 	u_int32_t		isr;
1351 
1352 	if (IFM_SUBTYPE(media) == IFM_NONE)
1353 		return;
1354 
1355 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)) {
1356 		restart = 1;
1357 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1358 
1359 		for (i = 0; i < DC_TIMEOUT; i++) {
1360 			isr = CSR_READ_4(sc, DC_ISR);
1361 			if ((isr & DC_ISR_TX_IDLE) &&
1362 			    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1363 			     (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1364 				break;
1365 			DELAY(10);
1366 		}
1367 
1368 		if (i == DC_TIMEOUT) {
1369 			if_printf(&sc->arpcom.ac_if,
1370 			    "failed to force tx and rx to idle state\n");
1371 		}
1372 	}
1373 
1374 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1375 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1376 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1377 		if (sc->dc_pmode == DC_PMODE_MII) {
1378 			int	watchdogreg;
1379 
1380 			if (DC_IS_INTEL(sc)) {
1381 			/* there's a write enable bit here that reads as 1 */
1382 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1383 				watchdogreg &= ~DC_WDOG_CTLWREN;
1384 				watchdogreg |= DC_WDOG_JABBERDIS;
1385 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1386 			} else {
1387 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1388 			}
1389 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1390 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1391 			if (sc->dc_type == DC_TYPE_98713)
1392 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1393 				    DC_NETCFG_SCRAMBLER));
1394 			if (!DC_IS_DAVICOM(sc))
1395 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1396 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1397 			if (DC_IS_INTEL(sc))
1398 				dc_apply_fixup(sc, IFM_AUTO);
1399 		} else {
1400 			if (DC_IS_PNIC(sc)) {
1401 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1402 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1403 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1404 			}
1405 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1406 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1407 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1408 			if (DC_IS_INTEL(sc))
1409 				dc_apply_fixup(sc,
1410 				    (media & IFM_GMASK) == IFM_FDX ?
1411 				    IFM_100_TX|IFM_FDX : IFM_100_TX);
1412 		}
1413 	}
1414 
1415 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1416 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1417 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1418 		if (sc->dc_pmode == DC_PMODE_MII) {
1419 			int	watchdogreg;
1420 
1421 			/* there's a write enable bit here that reads as 1 */
1422 			if (DC_IS_INTEL(sc)) {
1423 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1424 				watchdogreg &= ~DC_WDOG_CTLWREN;
1425 				watchdogreg |= DC_WDOG_JABBERDIS;
1426 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1427 			} else {
1428 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1429 			}
1430 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1431 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1432 			if (sc->dc_type == DC_TYPE_98713)
1433 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1434 			if (!DC_IS_DAVICOM(sc))
1435 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1436 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1437 			if (DC_IS_INTEL(sc))
1438 				dc_apply_fixup(sc, IFM_AUTO);
1439 		} else {
1440 			if (DC_IS_PNIC(sc)) {
1441 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1442 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1443 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1444 			}
1445 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1446 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1447 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1448 			if (DC_IS_INTEL(sc)) {
1449 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1450 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1451 				if ((media & IFM_GMASK) == IFM_FDX)
1452 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1453 				else
1454 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1455 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1456 				DC_CLRBIT(sc, DC_10BTCTRL,
1457 				    DC_TCTL_AUTONEGENBL);
1458 				dc_apply_fixup(sc,
1459 				    (media & IFM_GMASK) == IFM_FDX ?
1460 				    IFM_10_T|IFM_FDX : IFM_10_T);
1461 				DELAY(20000);
1462 			}
1463 		}
1464 	}
1465 
1466 	/*
1467 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1468 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1469 	 * on the external MII port.
1470 	 */
1471 	if (DC_IS_DAVICOM(sc)) {
1472 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1473 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1474 			sc->dc_link = 1;
1475 		} else {
1476 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1477 		}
1478 	}
1479 
1480 	if ((media & IFM_GMASK) == IFM_FDX) {
1481 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1482 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1483 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1484 	} else {
1485 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1486 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1487 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1488 	}
1489 
1490 	if (restart)
1491 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON|DC_NETCFG_RX_ON);
1492 
1493 	return;
1494 }
1495 
1496 static void
1497 dc_reset(struct dc_softc *sc)
1498 {
1499 	int		i;
1500 
1501 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1502 
1503 	for (i = 0; i < DC_TIMEOUT; i++) {
1504 		DELAY(10);
1505 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1506 			break;
1507 	}
1508 
1509 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_XIRCOM(sc) ||
1510 	    DC_IS_CONEXANT(sc)) {
1511 		DELAY(10000);
1512 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1513 		i = 0;
1514 	}
1515 
1516 	if (i == DC_TIMEOUT)
1517 		if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
1518 
1519 	/* Wait a little while for the chip to get its brains in order. */
1520 	DELAY(1000);
1521 
1522 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1523 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1524 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1525 
1526 	/*
1527 	 * Bring the SIA out of reset. In some cases, it looks
1528 	 * like failing to unreset the SIA soon enough gets it
1529 	 * into a state where it will never come out of reset
1530 	 * until we reset the whole chip again.
1531 	 */
1532 	if (DC_IS_INTEL(sc)) {
1533 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1534 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1535 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1536 	}
1537 
1538         return;
1539 }
1540 
1541 static const struct dc_type *
1542 dc_devtype(device_t dev)
1543 {
1544 	const struct dc_type	*t;
1545 	u_int32_t		rev;
1546 
1547 	t = dc_devs;
1548 
1549 	while(t->dc_name != NULL) {
1550 		if ((pci_get_vendor(dev) == t->dc_vid) &&
1551 		    (pci_get_device(dev) == t->dc_did)) {
1552 			/* Check the PCI revision */
1553 			rev = pci_get_revid(dev);
1554 			if (t->dc_did == DC_DEVICEID_98713 &&
1555 			    rev >= DC_REVISION_98713A)
1556 				t++;
1557 			if (t->dc_did == DC_DEVICEID_98713_CP &&
1558 			    rev >= DC_REVISION_98713A)
1559 				t++;
1560 			if (t->dc_did == DC_DEVICEID_987x5 &&
1561 			    rev >= DC_REVISION_98715AEC_C)
1562 				t++;
1563 			if (t->dc_did == DC_DEVICEID_987x5 &&
1564 			    rev >= DC_REVISION_98725)
1565 				t++;
1566 			if (t->dc_did == DC_DEVICEID_AX88140A &&
1567 			    rev >= DC_REVISION_88141)
1568 				t++;
1569 			if (t->dc_did == DC_DEVICEID_82C168 &&
1570 			    rev >= DC_REVISION_82C169)
1571 				t++;
1572 			if (t->dc_did == DC_DEVICEID_DM9102 &&
1573 			    rev >= DC_REVISION_DM9102A)
1574 				t++;
1575 			return(t);
1576 		}
1577 		t++;
1578 	}
1579 
1580 	return(NULL);
1581 }
1582 
1583 /*
1584  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1585  * IDs against our list and return a device name if we find a match.
1586  * We do a little bit of extra work to identify the exact type of
1587  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1588  * but different revision IDs. The same is true for 98715/98715A
1589  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1590  * cases, the exact chip revision affects driver behavior.
1591  */
1592 static int
1593 dc_probe(device_t dev)
1594 {
1595 	const struct dc_type *t;
1596 
1597 	t = dc_devtype(dev);
1598 	if (t != NULL) {
1599 		struct dc_softc *sc = device_get_softc(dev);
1600 
1601 		/* Need this info to decide on a chip type. */
1602 		sc->dc_info = t;
1603 		device_set_desc(dev, t->dc_name);
1604 		return(0);
1605 	}
1606 
1607 	return(ENXIO);
1608 }
1609 
1610 static void
1611 dc_acpi(device_t dev)
1612 {
1613 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1614 		uint32_t iobase, membase, irq;
1615 		struct dc_softc *sc;
1616 
1617 		/* Save important PCI config data. */
1618 		iobase = pci_read_config(dev, DC_PCI_CFBIO, 4);
1619 		membase = pci_read_config(dev, DC_PCI_CFBMA, 4);
1620 		irq = pci_read_config(dev, DC_PCI_CFIT, 4);
1621 
1622 		sc = device_get_softc(dev);
1623 		/* Reset the power state. */
1624 		if_printf(&sc->arpcom.ac_if,
1625 			  "chip is in D%d power mode "
1626 			  "-- setting to D0\n", pci_get_powerstate(dev));
1627 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1628 
1629 		/* Restore PCI config data. */
1630 		pci_write_config(dev, DC_PCI_CFBIO, iobase, 4);
1631 		pci_write_config(dev, DC_PCI_CFBMA, membase, 4);
1632 		pci_write_config(dev, DC_PCI_CFIT, irq, 4);
1633 	}
1634 }
1635 
1636 static void
1637 dc_apply_fixup(struct dc_softc *sc, int media)
1638 {
1639 	struct dc_mediainfo	*m;
1640 	u_int8_t		*p;
1641 	int			i;
1642 	u_int32_t		reg;
1643 
1644 	m = sc->dc_mi;
1645 
1646 	while (m != NULL) {
1647 		if (m->dc_media == media)
1648 			break;
1649 		m = m->dc_next;
1650 	}
1651 
1652 	if (m == NULL)
1653 		return;
1654 
1655 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1656 		reg = (p[0] | (p[1] << 8)) << 16;
1657 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1658 	}
1659 
1660 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1661 		reg = (p[0] | (p[1] << 8)) << 16;
1662 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1663 	}
1664 
1665 	return;
1666 }
1667 
1668 static void
1669 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1670 {
1671 	struct dc_mediainfo	*m;
1672 
1673 	m = kmalloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1674 	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT){
1675 	case DC_SIA_CODE_10BT:
1676 		m->dc_media = IFM_10_T;
1677 		break;
1678 
1679 	case DC_SIA_CODE_10BT_FDX:
1680 		m->dc_media = IFM_10_T|IFM_FDX;
1681 		break;
1682 
1683 	case DC_SIA_CODE_10B2:
1684 		m->dc_media = IFM_10_2;
1685 		break;
1686 
1687 	case DC_SIA_CODE_10B5:
1688 		m->dc_media = IFM_10_5;
1689 		break;
1690 	}
1691 	if (l->dc_sia_code & DC_SIA_CODE_EXT){
1692 		m->dc_gp_len = 2;
1693 		m->dc_gp_ptr =
1694 		  (u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1695 	} else {
1696 	m->dc_gp_len = 2;
1697 	m->dc_gp_ptr =
1698 		  (u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1699 	}
1700 
1701 	m->dc_next = sc->dc_mi;
1702 	sc->dc_mi = m;
1703 
1704 	sc->dc_pmode = DC_PMODE_SIA;
1705 
1706 	return;
1707 }
1708 
1709 static void
1710 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1711 {
1712 	struct dc_mediainfo	*m;
1713 
1714 	m = kmalloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1715 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1716 		m->dc_media = IFM_100_TX;
1717 
1718 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1719 		m->dc_media = IFM_100_TX|IFM_FDX;
1720 
1721 	m->dc_gp_len = 2;
1722 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1723 
1724 	m->dc_next = sc->dc_mi;
1725 	sc->dc_mi = m;
1726 
1727 	sc->dc_pmode = DC_PMODE_SYM;
1728 
1729 	return;
1730 }
1731 
1732 static void
1733 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1734 {
1735 	u_int8_t		*p;
1736 	struct dc_mediainfo	*m;
1737 
1738 	m = kmalloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1739 	/* We abuse IFM_AUTO to represent MII. */
1740 	m->dc_media = IFM_AUTO;
1741 	m->dc_gp_len = l->dc_gpr_len;
1742 
1743 	p = (u_int8_t *)l;
1744 	p += sizeof(struct dc_eblock_mii);
1745 	m->dc_gp_ptr = p;
1746 	p += 2 * l->dc_gpr_len;
1747 	m->dc_reset_len = *p;
1748 	p++;
1749 	m->dc_reset_ptr = p;
1750 
1751 	m->dc_next = sc->dc_mi;
1752 	sc->dc_mi = m;
1753 
1754 	return;
1755 }
1756 
1757 static void
1758 dc_read_srom(struct dc_softc *sc, int bits)
1759 {
1760 	int size;
1761 
1762 	size = 2 << bits;
1763 	sc->dc_srom = kmalloc(size, M_DEVBUF, M_INTWAIT);
1764 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1765 }
1766 
1767 static void
1768 dc_parse_21143_srom(struct dc_softc *sc)
1769 {
1770 	struct dc_leaf_hdr	*lhdr;
1771 	struct dc_eblock_hdr	*hdr;
1772 	int			i, loff;
1773 	char			*ptr;
1774 	int			have_mii;
1775 
1776 	have_mii = 0;
1777 	loff = sc->dc_srom[27];
1778 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1779 
1780 	ptr = (char *)lhdr;
1781 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1782 	/*
1783 	 * Look if we got a MII media block.
1784 	 */
1785 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1786 		hdr = (struct dc_eblock_hdr *)ptr;
1787 		if (hdr->dc_type == DC_EBLOCK_MII)
1788 		    have_mii++;
1789 
1790 		ptr += (hdr->dc_len & 0x7F);
1791 		ptr++;
1792 	}
1793 
1794 	/*
1795 	 * Do the same thing again. Only use SIA and SYM media
1796 	 * blocks if no MII media block is available.
1797 	 */
1798 	ptr = (char *)lhdr;
1799 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1800 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1801 		hdr = (struct dc_eblock_hdr *)ptr;
1802 		switch(hdr->dc_type) {
1803 		case DC_EBLOCK_MII:
1804 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1805 			break;
1806 		case DC_EBLOCK_SIA:
1807 			if (! have_mii)
1808 				dc_decode_leaf_sia(sc,
1809 				    (struct dc_eblock_sia *)hdr);
1810 			break;
1811 		case DC_EBLOCK_SYM:
1812 			if (! have_mii)
1813 				dc_decode_leaf_sym(sc,
1814 				    (struct dc_eblock_sym *)hdr);
1815 			break;
1816 		default:
1817 			/* Don't care. Yet. */
1818 			break;
1819 		}
1820 		ptr += (hdr->dc_len & 0x7F);
1821 		ptr++;
1822 	}
1823 
1824 	return;
1825 }
1826 
1827 /*
1828  * Attach the interface. Allocate softc structures, do ifmedia
1829  * setup and ethernet/BPF attach.
1830  */
1831 static int
1832 dc_attach(device_t dev)
1833 {
1834 	int			tmp = 0;
1835 	u_char			eaddr[ETHER_ADDR_LEN];
1836 	u_int32_t		command;
1837 	struct dc_softc		*sc;
1838 	struct ifnet		*ifp;
1839 	u_int32_t		revision;
1840 	int			error = 0, rid, mac_offset;
1841 	uint8_t			*mac;
1842 
1843 	sc = device_get_softc(dev);
1844 	callout_init(&sc->dc_stat_timer);
1845 
1846 	ifp = &sc->arpcom.ac_if;
1847 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1848 
1849 	/*
1850 	 * Handle power management nonsense.
1851 	 */
1852 	dc_acpi(dev);
1853 
1854 	/*
1855 	 * Map control/status registers.
1856 	 */
1857 	pci_enable_busmaster(dev);
1858 
1859 	rid = DC_RID;
1860 	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
1861 
1862 	if (sc->dc_res == NULL) {
1863 		device_printf(dev, "couldn't map ports/memory\n");
1864 		error = ENXIO;
1865 		goto fail;
1866 	}
1867 
1868 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1869 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1870 
1871 	/* Allocate interrupt */
1872 	rid = 0;
1873 	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1874 	    RF_SHAREABLE | RF_ACTIVE);
1875 
1876 	if (sc->dc_irq == NULL) {
1877 		device_printf(dev, "couldn't map interrupt\n");
1878 		error = ENXIO;
1879 		goto fail;
1880 	}
1881 
1882 	revision = pci_get_revid(dev);
1883 
1884 	/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
1885 	if (sc->dc_info->dc_did != DC_DEVICEID_82C168 &&
1886 	    sc->dc_info->dc_did != DC_DEVICEID_X3201)
1887 		dc_eeprom_width(sc);
1888 
1889 	switch(sc->dc_info->dc_did) {
1890 	case DC_DEVICEID_21143:
1891 		sc->dc_type = DC_TYPE_21143;
1892 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1893 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1894 		/* Save EEPROM contents so we can parse them later. */
1895 		dc_read_srom(sc, sc->dc_romwidth);
1896 		break;
1897 	case DC_DEVICEID_DM9009:
1898 	case DC_DEVICEID_DM9100:
1899 	case DC_DEVICEID_DM9102:
1900 		sc->dc_type = DC_TYPE_DM9102;
1901 		sc->dc_flags |= DC_TX_COALESCE|DC_TX_INTR_ALWAYS;
1902 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_TX_STORENFWD;
1903 		sc->dc_flags |= DC_TX_ALIGN;
1904 		sc->dc_pmode = DC_PMODE_MII;
1905 		/* Increase the latency timer value. */
1906 		command = pci_read_config(dev, DC_PCI_CFLT, 4);
1907 		command &= 0xFFFF00FF;
1908 		command |= 0x00008000;
1909 		pci_write_config(dev, DC_PCI_CFLT, command, 4);
1910 		break;
1911 	case DC_DEVICEID_AL981:
1912 		sc->dc_type = DC_TYPE_AL981;
1913 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1914 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1915 		sc->dc_pmode = DC_PMODE_MII;
1916 		dc_read_srom(sc, sc->dc_romwidth);
1917 		break;
1918 	case DC_DEVICEID_AN985:
1919 	case DC_DEVICEID_ADM9511:
1920 	case DC_DEVICEID_ADM9513:
1921 	case DC_DEVICEID_FA511:
1922 	case DC_DEVICEID_EN2242:
1923 	case DC_DEVICEID_3CSOHOB:
1924 		sc->dc_type = DC_TYPE_AN985;
1925 		sc->dc_flags |= DC_64BIT_HASH;
1926 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1927 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1928 		sc->dc_pmode = DC_PMODE_MII;
1929 		break;
1930 	case DC_DEVICEID_98713:
1931 	case DC_DEVICEID_98713_CP:
1932 		if (revision < DC_REVISION_98713A) {
1933 			sc->dc_type = DC_TYPE_98713;
1934 		}
1935 		if (revision >= DC_REVISION_98713A) {
1936 			sc->dc_type = DC_TYPE_98713A;
1937 			sc->dc_flags |= DC_21143_NWAY;
1938 		}
1939 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1940 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1941 		break;
1942 	case DC_DEVICEID_987x5:
1943 	case DC_DEVICEID_EN1217:
1944 		/*
1945 		 * Macronix MX98715AEC-C/D/E parts have only a
1946 		 * 128-bit hash table. We need to deal with these
1947 		 * in the same manner as the PNIC II so that we
1948 		 * get the right number of bits out of the
1949 		 * CRC routine.
1950 		 */
1951 		if (revision >= DC_REVISION_98715AEC_C &&
1952 		    revision < DC_REVISION_98725)
1953 			sc->dc_flags |= DC_128BIT_HASH;
1954 		sc->dc_type = DC_TYPE_987x5;
1955 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1956 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1957 		break;
1958 	case DC_DEVICEID_98727:
1959 		sc->dc_type = DC_TYPE_987x5;
1960 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1961 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1962 		break;
1963 	case DC_DEVICEID_82C115:
1964 		sc->dc_type = DC_TYPE_PNICII;
1965 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR|DC_128BIT_HASH;
1966 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1967 		break;
1968 	case DC_DEVICEID_82C168:
1969 		sc->dc_type = DC_TYPE_PNIC;
1970 		sc->dc_flags |= DC_TX_STORENFWD|DC_TX_INTR_ALWAYS;
1971 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1972 		sc->dc_pnic_rx_buf = kmalloc(DC_RXLEN * 5, M_DEVBUF, M_WAITOK);
1973 		if (revision < DC_REVISION_82C169)
1974 			sc->dc_pmode = DC_PMODE_SYM;
1975 		break;
1976 	case DC_DEVICEID_AX88140A:
1977 		sc->dc_type = DC_TYPE_ASIX;
1978 		sc->dc_flags |= DC_TX_USE_TX_INTR|DC_TX_INTR_FIRSTFRAG;
1979 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1980 		sc->dc_pmode = DC_PMODE_MII;
1981 		break;
1982 	case DC_DEVICEID_RS7112:
1983 		sc->dc_type = DC_TYPE_CONEXANT;
1984 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
1985 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1986 		sc->dc_pmode = DC_PMODE_MII;
1987 		dc_read_srom(sc, sc->dc_romwidth);
1988 		break;
1989 	case DC_DEVICEID_X3201:
1990 		sc->dc_type = DC_TYPE_XIRCOM;
1991 		sc->dc_flags |= (DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
1992 				 DC_TX_ALIGN);
1993 		/*
1994 		 * We don't actually need to coalesce, but we're doing
1995 		 * it to obtain a double word aligned buffer.
1996 		 * The DC_TX_COALESCE flag is required.
1997 		 */
1998 		sc->dc_pmode = DC_PMODE_MII;
1999 		break;
2000 	default:
2001 		device_printf(dev, "unknown device: %x\n", sc->dc_info->dc_did);
2002 		break;
2003 	}
2004 
2005 	/* Save the cache line size. */
2006 	if (DC_IS_DAVICOM(sc))
2007 		sc->dc_cachesize = 0;
2008 	else
2009 		sc->dc_cachesize = pci_read_config(dev,
2010 		    DC_PCI_CFLT, 4) & 0xFF;
2011 
2012 	/* Reset the adapter. */
2013 	dc_reset(sc);
2014 
2015 	/* Take 21143 out of snooze mode */
2016 	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2017 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2018 		command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
2019 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2020 	}
2021 
2022 	/*
2023 	 * Try to learn something about the supported media.
2024 	 * We know that ASIX and ADMtek and Davicom devices
2025 	 * will *always* be using MII media, so that's a no-brainer.
2026 	 * The tricky ones are the Macronix/PNIC II and the
2027 	 * Intel 21143.
2028 	 */
2029 	if (DC_IS_INTEL(sc))
2030 		dc_parse_21143_srom(sc);
2031 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2032 		if (sc->dc_type == DC_TYPE_98713)
2033 			sc->dc_pmode = DC_PMODE_MII;
2034 		else
2035 			sc->dc_pmode = DC_PMODE_SYM;
2036 	} else if (!sc->dc_pmode)
2037 		sc->dc_pmode = DC_PMODE_MII;
2038 
2039 	/*
2040 	 * Get station address from the EEPROM.
2041 	 */
2042 	switch(sc->dc_type) {
2043 	case DC_TYPE_98713:
2044 	case DC_TYPE_98713A:
2045 	case DC_TYPE_987x5:
2046 	case DC_TYPE_PNICII:
2047 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2048 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2049 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2050 		break;
2051 	case DC_TYPE_PNIC:
2052 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2053 		break;
2054 	case DC_TYPE_DM9102:
2055 	case DC_TYPE_21143:
2056 	case DC_TYPE_ASIX:
2057 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2058 		break;
2059 	case DC_TYPE_AL981:
2060 	case DC_TYPE_AN985:
2061 		*(u_int32_t *)(&eaddr[0]) = CSR_READ_4(sc,DC_AL_PAR0);
2062 		*(u_int16_t *)(&eaddr[4]) = CSR_READ_4(sc,DC_AL_PAR1);
2063 		break;
2064 	case DC_TYPE_CONEXANT:
2065 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr, 6);
2066 		break;
2067 	case DC_TYPE_XIRCOM:
2068 		/* The MAC comes from the CIS */
2069 		mac = pci_get_ether(dev);
2070 		if (!mac) {
2071 			device_printf(dev, "No station address in CIS!\n");
2072 			error = ENXIO;
2073 			goto fail;
2074 		}
2075 		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2076 	 	break;
2077 	default:
2078 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2079 		break;
2080 	}
2081 
2082 	sc->dc_ldata = contigmalloc(sizeof(struct dc_list_data), M_DEVBUF,
2083 	    M_WAITOK | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
2084 
2085 	if (sc->dc_ldata == NULL) {
2086 		device_printf(dev, "no memory for list buffers!\n");
2087 		error = ENXIO;
2088 		goto fail;
2089 	}
2090 
2091 	ifp->if_softc = sc;
2092 	ifp->if_mtu = ETHERMTU;
2093 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2094 	ifp->if_ioctl = dc_ioctl;
2095 	ifp->if_start = dc_start;
2096 #ifdef DEVICE_POLLING
2097 	ifp->if_poll = dc_poll;
2098 #endif
2099 	ifp->if_watchdog = dc_watchdog;
2100 	ifp->if_init = dc_init;
2101 	ifp->if_baudrate = 10000000;
2102 	ifq_set_maxlen(&ifp->if_snd, DC_TX_LIST_CNT - 1);
2103 	ifq_set_ready(&ifp->if_snd);
2104 
2105 	/*
2106 	 * Do MII setup. If this is a 21143, check for a PHY on the
2107 	 * MII bus after applying any necessary fixups to twiddle the
2108 	 * GPIO bits. If we don't end up finding a PHY, restore the
2109 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2110 	 * driver instead.
2111 	 */
2112 	if (DC_IS_INTEL(sc)) {
2113 		dc_apply_fixup(sc, IFM_AUTO);
2114 		tmp = sc->dc_pmode;
2115 		sc->dc_pmode = DC_PMODE_MII;
2116 	}
2117 
2118 	/*
2119 	 * Setup General Purpose port mode and data so the tulip can talk
2120 	 * to the MII.  This needs to be done before mii_phy_probe so that
2121 	 * we can actually see them.
2122 	 */
2123 	if (DC_IS_XIRCOM(sc)) {
2124 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2125 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2126 		DELAY(10);
2127 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2128 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2129 		DELAY(10);
2130 	}
2131 
2132 	error = mii_phy_probe(dev, &sc->dc_miibus,
2133 	    dc_ifmedia_upd, dc_ifmedia_sts);
2134 
2135 	if (error && DC_IS_INTEL(sc)) {
2136 		sc->dc_pmode = tmp;
2137 		if (sc->dc_pmode != DC_PMODE_SIA)
2138 			sc->dc_pmode = DC_PMODE_SYM;
2139 		sc->dc_flags |= DC_21143_NWAY;
2140 		mii_phy_probe(dev, &sc->dc_miibus,
2141 		    dc_ifmedia_upd, dc_ifmedia_sts);
2142 		/*
2143 		 * For non-MII cards, we need to have the 21143
2144 		 * drive the LEDs. Except there are some systems
2145 		 * like the NEC VersaPro NoteBook PC which have no
2146 		 * LEDs, and twiddling these bits has adverse effects
2147 		 * on them. (I.e. you suddenly can't get a link.)
2148 		 */
2149 		if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
2150 			sc->dc_flags |= DC_TULIP_LEDS;
2151 		error = 0;
2152 	}
2153 
2154 	if (error) {
2155 		device_printf(dev, "MII without any PHY!\n");
2156 		error = ENXIO;
2157 		goto fail;
2158 	}
2159 
2160 	/*
2161 	 * Call MI attach routine.
2162 	 */
2163 	ether_ifattach(ifp, eaddr, NULL);
2164 
2165 	if (DC_IS_ADMTEK(sc)) {
2166 		/*
2167 		 * Set automatic TX underrun recovery for the ADMtek chips
2168 		 */
2169 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2170 	}
2171 
2172 	/*
2173 	 * Tell the upper layer(s) we support long frames.
2174 	 */
2175 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2176 
2177 	error = bus_setup_intr(dev, sc->dc_irq, INTR_MPSAFE,
2178 			       dc_intr, sc, &sc->dc_intrhand,
2179 			       ifp->if_serializer);
2180 	if (error) {
2181 		ether_ifdetach(ifp);
2182 		device_printf(dev, "couldn't set up irq\n");
2183 		goto fail;
2184 	}
2185 
2186 	ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->dc_irq));
2187 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
2188 
2189 	return(0);
2190 
2191 fail:
2192 	dc_detach(dev);
2193 	return(error);
2194 }
2195 
2196 static int
2197 dc_detach(device_t dev)
2198 {
2199 	struct dc_softc *sc = device_get_softc(dev);
2200 	struct ifnet *ifp = &sc->arpcom.ac_if;
2201 	struct dc_mediainfo *m;
2202 
2203 	if (device_is_attached(dev)) {
2204 		lwkt_serialize_enter(ifp->if_serializer);
2205 		dc_stop(sc);
2206 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2207 		lwkt_serialize_exit(ifp->if_serializer);
2208 
2209 		ether_ifdetach(ifp);
2210 	}
2211 
2212 	if (sc->dc_miibus)
2213 		device_delete_child(dev, sc->dc_miibus);
2214 	bus_generic_detach(dev);
2215 
2216 	if (sc->dc_irq)
2217 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2218 	if (sc->dc_res)
2219 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2220 
2221 	if (sc->dc_ldata)
2222 		contigfree(sc->dc_ldata, sizeof(struct dc_list_data), M_DEVBUF);
2223 	if (sc->dc_pnic_rx_buf != NULL)
2224 		kfree(sc->dc_pnic_rx_buf, M_DEVBUF);
2225 
2226 	while (sc->dc_mi != NULL) {
2227 		m = sc->dc_mi->dc_next;
2228 		kfree(sc->dc_mi, M_DEVBUF);
2229 		sc->dc_mi = m;
2230 	}
2231 
2232 	if (sc->dc_srom)
2233 		kfree(sc->dc_srom, M_DEVBUF);
2234 
2235 	return(0);
2236 }
2237 
2238 /*
2239  * Initialize the transmit descriptors.
2240  */
2241 static int
2242 dc_list_tx_init(struct dc_softc *sc)
2243 {
2244 	struct dc_chain_data	*cd;
2245 	struct dc_list_data	*ld;
2246 	int			i;
2247 
2248 	cd = &sc->dc_cdata;
2249 	ld = sc->dc_ldata;
2250 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2251 		if (i == (DC_TX_LIST_CNT - 1)) {
2252 			ld->dc_tx_list[i].dc_next =
2253 			    vtophys(&ld->dc_tx_list[0]);
2254 		} else {
2255 			ld->dc_tx_list[i].dc_next =
2256 			    vtophys(&ld->dc_tx_list[i + 1]);
2257 		}
2258 		cd->dc_tx_chain[i] = NULL;
2259 		ld->dc_tx_list[i].dc_data = 0;
2260 		ld->dc_tx_list[i].dc_ctl = 0;
2261 	}
2262 
2263 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2264 
2265 	return(0);
2266 }
2267 
2268 
2269 /*
2270  * Initialize the RX descriptors and allocate mbufs for them. Note that
2271  * we arrange the descriptors in a closed ring, so that the last descriptor
2272  * points back to the first.
2273  */
2274 static int
2275 dc_list_rx_init(struct dc_softc *sc)
2276 {
2277 	struct dc_chain_data	*cd;
2278 	struct dc_list_data	*ld;
2279 	int			i;
2280 
2281 	cd = &sc->dc_cdata;
2282 	ld = sc->dc_ldata;
2283 
2284 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2285 		if (dc_newbuf(sc, i, NULL) == ENOBUFS)
2286 			return(ENOBUFS);
2287 		if (i == (DC_RX_LIST_CNT - 1)) {
2288 			ld->dc_rx_list[i].dc_next =
2289 			    vtophys(&ld->dc_rx_list[0]);
2290 		} else {
2291 			ld->dc_rx_list[i].dc_next =
2292 			    vtophys(&ld->dc_rx_list[i + 1]);
2293 		}
2294 	}
2295 
2296 	cd->dc_rx_prod = 0;
2297 
2298 	return(0);
2299 }
2300 
2301 /*
2302  * Initialize an RX descriptor and attach an MBUF cluster.
2303  */
2304 static int
2305 dc_newbuf(struct dc_softc *sc, int i, struct mbuf *m)
2306 {
2307 	struct mbuf		*m_new = NULL;
2308 	struct dc_desc		*c;
2309 
2310 	c = &sc->dc_ldata->dc_rx_list[i];
2311 
2312 	if (m == NULL) {
2313 		m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
2314 		if (m_new == NULL)
2315 			return (ENOBUFS);
2316 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2317 	} else {
2318 		m_new = m;
2319 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2320 		m_new->m_data = m_new->m_ext.ext_buf;
2321 	}
2322 
2323 	m_adj(m_new, sizeof(u_int64_t));
2324 
2325 	/*
2326 	 * If this is a PNIC chip, zero the buffer. This is part
2327 	 * of the workaround for the receive bug in the 82c168 and
2328 	 * 82c169 chips.
2329 	 */
2330 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2331 		bzero((char *)mtod(m_new, char *), m_new->m_len);
2332 
2333 	sc->dc_cdata.dc_rx_chain[i] = m_new;
2334 	c->dc_data = vtophys(mtod(m_new, caddr_t));
2335 	c->dc_ctl = DC_RXCTL_RLINK | DC_RXLEN;
2336 	c->dc_status = DC_RXSTAT_OWN;
2337 
2338 	return(0);
2339 }
2340 
2341 /*
2342  * Grrrrr.
2343  * The PNIC chip has a terrible bug in it that manifests itself during
2344  * periods of heavy activity. The exact mode of failure if difficult to
2345  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2346  * will happen on slow machines. The bug is that sometimes instead of
2347  * uploading one complete frame during reception, it uploads what looks
2348  * like the entire contents of its FIFO memory. The frame we want is at
2349  * the end of the whole mess, but we never know exactly how much data has
2350  * been uploaded, so salvaging the frame is hard.
2351  *
2352  * There is only one way to do it reliably, and it's disgusting.
2353  * Here's what we know:
2354  *
2355  * - We know there will always be somewhere between one and three extra
2356  *   descriptors uploaded.
2357  *
2358  * - We know the desired received frame will always be at the end of the
2359  *   total data upload.
2360  *
2361  * - We know the size of the desired received frame because it will be
2362  *   provided in the length field of the status word in the last descriptor.
2363  *
2364  * Here's what we do:
2365  *
2366  * - When we allocate buffers for the receive ring, we bzero() them.
2367  *   This means that we know that the buffer contents should be all
2368  *   zeros, except for data uploaded by the chip.
2369  *
2370  * - We also force the PNIC chip to upload frames that include the
2371  *   ethernet CRC at the end.
2372  *
2373  * - We gather all of the bogus frame data into a single buffer.
2374  *
2375  * - We then position a pointer at the end of this buffer and scan
2376  *   backwards until we encounter the first non-zero byte of data.
2377  *   This is the end of the received frame. We know we will encounter
2378  *   some data at the end of the frame because the CRC will always be
2379  *   there, so even if the sender transmits a packet of all zeros,
2380  *   we won't be fooled.
2381  *
2382  * - We know the size of the actual received frame, so we subtract
2383  *   that value from the current pointer location. This brings us
2384  *   to the start of the actual received packet.
2385  *
2386  * - We copy this into an mbuf and pass it on, along with the actual
2387  *   frame length.
2388  *
2389  * The performance hit is tremendous, but it beats dropping frames all
2390  * the time.
2391  */
2392 
2393 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG|DC_RXSTAT_LASTFRAG)
2394 static void
2395 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2396 {
2397 	struct dc_desc		*cur_rx;
2398 	struct dc_desc		*c = NULL;
2399 	struct mbuf		*m = NULL;
2400 	unsigned char		*ptr;
2401 	int			i, total_len;
2402 	u_int32_t		rxstat = 0;
2403 
2404 	i = sc->dc_pnic_rx_bug_save;
2405 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2406 	ptr = sc->dc_pnic_rx_buf;
2407 	bzero(ptr, DC_RXLEN * 5);
2408 
2409 	/* Copy all the bytes from the bogus buffers. */
2410 	while (1) {
2411 		c = &sc->dc_ldata->dc_rx_list[i];
2412 		rxstat = c->dc_status;
2413 		m = sc->dc_cdata.dc_rx_chain[i];
2414 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2415 		ptr += DC_RXLEN;
2416 		/* If this is the last buffer, break out. */
2417 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2418 			break;
2419 		dc_newbuf(sc, i, m);
2420 		DC_INC(i, DC_RX_LIST_CNT);
2421 	}
2422 
2423 	/* Find the length of the actual receive frame. */
2424 	total_len = DC_RXBYTES(rxstat);
2425 
2426 	/* Scan backwards until we hit a non-zero byte. */
2427 	while(*ptr == 0x00)
2428 		ptr--;
2429 
2430 	/* Round off. */
2431 	if ((uintptr_t)(ptr) & 0x3)
2432 		ptr -= 1;
2433 
2434 	/* Now find the start of the frame. */
2435 	ptr -= total_len;
2436 	if (ptr < sc->dc_pnic_rx_buf)
2437 		ptr = sc->dc_pnic_rx_buf;
2438 
2439 	/*
2440 	 * Now copy the salvaged frame to the last mbuf and fake up
2441 	 * the status word to make it look like a successful
2442  	 * frame reception.
2443 	 */
2444 	dc_newbuf(sc, i, m);
2445 	bcopy(ptr, mtod(m, char *), total_len);
2446 	cur_rx->dc_status = rxstat | DC_RXSTAT_FIRSTFRAG;
2447 
2448 	return;
2449 }
2450 
2451 /*
2452  * This routine searches the RX ring for dirty descriptors in the
2453  * event that the rxeof routine falls out of sync with the chip's
2454  * current descriptor pointer. This may happen sometimes as a result
2455  * of a "no RX buffer available" condition that happens when the chip
2456  * consumes all of the RX buffers before the driver has a chance to
2457  * process the RX ring. This routine may need to be called more than
2458  * once to bring the driver back in sync with the chip, however we
2459  * should still be getting RX DONE interrupts to drive the search
2460  * for new packets in the RX ring, so we should catch up eventually.
2461  */
2462 static int
2463 dc_rx_resync(struct dc_softc *sc)
2464 {
2465 	int			i, pos;
2466 	struct dc_desc		*cur_rx;
2467 
2468 	pos = sc->dc_cdata.dc_rx_prod;
2469 
2470 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2471 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2472 		if (!(cur_rx->dc_status & DC_RXSTAT_OWN))
2473 			break;
2474 		DC_INC(pos, DC_RX_LIST_CNT);
2475 	}
2476 
2477 	/* If the ring really is empty, then just return. */
2478 	if (i == DC_RX_LIST_CNT)
2479 		return(0);
2480 
2481 	/* We've fallen behing the chip: catch it. */
2482 	sc->dc_cdata.dc_rx_prod = pos;
2483 
2484 	return(EAGAIN);
2485 }
2486 
2487 /*
2488  * A frame has been uploaded: pass the resulting mbuf chain up to
2489  * the higher level protocols.
2490  */
2491 static void
2492 dc_rxeof(struct dc_softc *sc)
2493 {
2494         struct mbuf		*m;
2495         struct ifnet		*ifp;
2496 	struct dc_desc		*cur_rx;
2497 	int			i, total_len = 0;
2498 	u_int32_t		rxstat;
2499 
2500 	ifp = &sc->arpcom.ac_if;
2501 	i = sc->dc_cdata.dc_rx_prod;
2502 
2503 	while(!(sc->dc_ldata->dc_rx_list[i].dc_status & DC_RXSTAT_OWN)) {
2504 
2505 #ifdef DEVICE_POLLING
2506 		if (ifp->if_flags & IFF_POLLING) {
2507 			if (sc->rxcycles <= 0)
2508 				break;
2509 			sc->rxcycles--;
2510 		}
2511 #endif /* DEVICE_POLLING */
2512 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2513 		rxstat = cur_rx->dc_status;
2514 		m = sc->dc_cdata.dc_rx_chain[i];
2515 		total_len = DC_RXBYTES(rxstat);
2516 
2517 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2518 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2519 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2520 					sc->dc_pnic_rx_bug_save = i;
2521 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2522 					DC_INC(i, DC_RX_LIST_CNT);
2523 					continue;
2524 				}
2525 				dc_pnic_rx_bug_war(sc, i);
2526 				rxstat = cur_rx->dc_status;
2527 				total_len = DC_RXBYTES(rxstat);
2528 			}
2529 		}
2530 
2531 		sc->dc_cdata.dc_rx_chain[i] = NULL;
2532 
2533 		/*
2534 		 * If an error occurs, update stats, clear the
2535 		 * status word and leave the mbuf cluster in place:
2536 		 * it should simply get re-used next time this descriptor
2537 		 * comes up in the ring.  However, don't report long
2538 		 * frames as errors since they could be vlans
2539 		 */
2540 		if ((rxstat & DC_RXSTAT_RXERR)){
2541 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2542 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2543 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2544 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2545 				ifp->if_ierrors++;
2546 				if (rxstat & DC_RXSTAT_COLLSEEN)
2547 					ifp->if_collisions++;
2548 				dc_newbuf(sc, i, m);
2549 				if (rxstat & DC_RXSTAT_CRCERR) {
2550 					DC_INC(i, DC_RX_LIST_CNT);
2551 					continue;
2552 				} else {
2553 					dc_init(sc);
2554 					return;
2555 				}
2556 			}
2557 		}
2558 
2559 		/* No errors; receive the packet. */
2560 		total_len -= ETHER_CRC_LEN;
2561 
2562 #ifdef __i386__
2563 		/*
2564 		 * On the x86 we do not have alignment problems, so try to
2565 		 * allocate a new buffer for the receive ring, and pass up
2566 		 * the one where the packet is already, saving the expensive
2567 		 * copy done in m_devget().
2568 		 * If we are on an architecture with alignment problems, or
2569 		 * if the allocation fails, then use m_devget and leave the
2570 		 * existing buffer in the receive ring.
2571 		 */
2572 		if (dc_quick && dc_newbuf(sc, i, NULL) == 0) {
2573 			m->m_pkthdr.rcvif = ifp;
2574 			m->m_pkthdr.len = m->m_len = total_len;
2575 			DC_INC(i, DC_RX_LIST_CNT);
2576 		} else
2577 #endif
2578 		{
2579 			struct mbuf *m0;
2580 
2581 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2582 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
2583 			dc_newbuf(sc, i, m);
2584 			DC_INC(i, DC_RX_LIST_CNT);
2585 			if (m0 == NULL) {
2586 				ifp->if_ierrors++;
2587 				continue;
2588 			}
2589 			m_adj(m0, ETHER_ALIGN);
2590 			m = m0;
2591 		}
2592 
2593 		ifp->if_ipackets++;
2594 		ifp->if_input(ifp, m);
2595 	}
2596 
2597 	sc->dc_cdata.dc_rx_prod = i;
2598 }
2599 
2600 /*
2601  * A frame was downloaded to the chip. It's safe for us to clean up
2602  * the list buffers.
2603  */
2604 
2605 static void
2606 dc_txeof(struct dc_softc *sc)
2607 {
2608 	struct dc_desc		*cur_tx = NULL;
2609 	struct ifnet		*ifp;
2610 	int			idx;
2611 
2612 	ifp = &sc->arpcom.ac_if;
2613 
2614 	/*
2615 	 * Go through our tx list and free mbufs for those
2616 	 * frames that have been transmitted.
2617 	 */
2618 	idx = sc->dc_cdata.dc_tx_cons;
2619 	while(idx != sc->dc_cdata.dc_tx_prod) {
2620 		u_int32_t		txstat;
2621 
2622 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2623 		txstat = cur_tx->dc_status;
2624 
2625 		if (txstat & DC_TXSTAT_OWN)
2626 			break;
2627 
2628 		if (!(cur_tx->dc_ctl & DC_TXCTL_LASTFRAG) ||
2629 		    cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2630 			if (cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2631 				/*
2632 				 * Yes, the PNIC is so brain damaged
2633 				 * that it will sometimes generate a TX
2634 				 * underrun error while DMAing the RX
2635 				 * filter setup frame. If we detect this,
2636 				 * we have to send the setup frame again,
2637 				 * or else the filter won't be programmed
2638 				 * correctly.
2639 				 */
2640 				if (DC_IS_PNIC(sc)) {
2641 					if (txstat & DC_TXSTAT_ERRSUM)
2642 						dc_setfilt(sc);
2643 				}
2644 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2645 			}
2646 			sc->dc_cdata.dc_tx_cnt--;
2647 			DC_INC(idx, DC_TX_LIST_CNT);
2648 			continue;
2649 		}
2650 
2651 		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
2652 			/*
2653 			 * XXX: Why does my Xircom taunt me so?
2654 			 * For some reason Conexant chips like
2655 			 * setting the CARRLOST flag even when
2656 			 * the carrier is there. In CURRENT we
2657 			 * have the same problem for Xircom
2658 			 * cards !
2659 			 */
2660 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2661 			    sc->dc_pmode == DC_PMODE_MII &&
2662 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2663 			    DC_TXSTAT_NOCARRIER)))
2664 				txstat &= ~DC_TXSTAT_ERRSUM;
2665 		} else {
2666 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2667 			    sc->dc_pmode == DC_PMODE_MII &&
2668 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2669 			    DC_TXSTAT_NOCARRIER|DC_TXSTAT_CARRLOST)))
2670 				txstat &= ~DC_TXSTAT_ERRSUM;
2671 		}
2672 
2673 		if (txstat & DC_TXSTAT_ERRSUM) {
2674 			ifp->if_oerrors++;
2675 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2676 				ifp->if_collisions++;
2677 			if (txstat & DC_TXSTAT_LATECOLL)
2678 				ifp->if_collisions++;
2679 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2680 				dc_init(sc);
2681 				return;
2682 			}
2683 		}
2684 
2685 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2686 
2687 		ifp->if_opackets++;
2688 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2689 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2690 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2691 		}
2692 
2693 		sc->dc_cdata.dc_tx_cnt--;
2694 		DC_INC(idx, DC_TX_LIST_CNT);
2695 	}
2696 
2697 	if (idx != sc->dc_cdata.dc_tx_cons) {
2698 	    	/* some buffers have been freed */
2699 		sc->dc_cdata.dc_tx_cons = idx;
2700 		ifp->if_flags &= ~IFF_OACTIVE;
2701 	}
2702 	ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
2703 
2704 	return;
2705 }
2706 
2707 static void
2708 dc_tick(void *xsc)
2709 {
2710 	struct dc_softc *sc = xsc;
2711 	struct ifnet *ifp = &sc->arpcom.ac_if;
2712 	struct mii_data *mii;
2713 	u_int32_t r;
2714 
2715 	lwkt_serialize_enter(ifp->if_serializer);
2716 
2717 	mii = device_get_softc(sc->dc_miibus);
2718 
2719 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2720 		if (sc->dc_flags & DC_21143_NWAY) {
2721 			r = CSR_READ_4(sc, DC_10BTSTAT);
2722 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2723 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2724 				sc->dc_link = 0;
2725 				mii_mediachg(mii);
2726 			}
2727 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2728 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2729 				sc->dc_link = 0;
2730 				mii_mediachg(mii);
2731 			}
2732 			if (sc->dc_link == 0)
2733 				mii_tick(mii);
2734 		} else {
2735 			r = CSR_READ_4(sc, DC_ISR);
2736 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2737 			    sc->dc_cdata.dc_tx_cnt == 0) {
2738 				mii_tick(mii);
2739 				if (!(mii->mii_media_status & IFM_ACTIVE))
2740 					sc->dc_link = 0;
2741 			}
2742 		}
2743 	} else {
2744 		mii_tick(mii);
2745 	}
2746 
2747 	/*
2748 	 * When the init routine completes, we expect to be able to send
2749 	 * packets right away, and in fact the network code will send a
2750 	 * gratuitous ARP the moment the init routine marks the interface
2751 	 * as running. However, even though the MAC may have been initialized,
2752 	 * there may be a delay of a few seconds before the PHY completes
2753 	 * autonegotiation and the link is brought up. Any transmissions
2754 	 * made during that delay will be lost. Dealing with this is tricky:
2755 	 * we can't just pause in the init routine while waiting for the
2756 	 * PHY to come ready since that would bring the whole system to
2757 	 * a screeching halt for several seconds.
2758 	 *
2759 	 * What we do here is prevent the TX start routine from sending
2760 	 * any packets until a link has been established. After the
2761 	 * interface has been initialized, the tick routine will poll
2762 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2763 	 * that time, packets will stay in the send queue, and once the
2764 	 * link comes up, they will be flushed out to the wire.
2765 	 */
2766 	if (!sc->dc_link) {
2767 		mii_pollstat(mii);
2768 		if (mii->mii_media_status & IFM_ACTIVE &&
2769 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2770 			sc->dc_link++;
2771 			if (!ifq_is_empty(&ifp->if_snd))
2772 				if_devstart(ifp);
2773 		}
2774 	}
2775 
2776 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2777 		callout_reset(&sc->dc_stat_timer, hz / 10, dc_tick, sc);
2778 	else
2779 		callout_reset(&sc->dc_stat_timer, hz, dc_tick, sc);
2780 
2781 	lwkt_serialize_exit(ifp->if_serializer);
2782 }
2783 
2784 /*
2785  * A transmit underrun has occurred.  Back off the transmit threshold,
2786  * or switch to store and forward mode if we have to.
2787  */
2788 static void
2789 dc_tx_underrun(struct dc_softc *sc)
2790 {
2791 	u_int32_t		isr;
2792 	int			i;
2793 
2794 	if (DC_IS_DAVICOM(sc))
2795 		dc_init(sc);
2796 
2797 	if (DC_IS_INTEL(sc)) {
2798 		/*
2799 		 * The real 21143 requires that the transmitter be idle
2800 		 * in order to change the transmit threshold or store
2801 		 * and forward state.
2802 		 */
2803 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2804 
2805 		for (i = 0; i < DC_TIMEOUT; i++) {
2806 			isr = CSR_READ_4(sc, DC_ISR);
2807 			if (isr & DC_ISR_TX_IDLE)
2808 				break;
2809 			DELAY(10);
2810 		}
2811 		if (i == DC_TIMEOUT) {
2812 			if_printf(&sc->arpcom.ac_if,
2813 				  "failed to force tx to idle state\n");
2814 			dc_init(sc);
2815 		}
2816 	}
2817 
2818 	if_printf(&sc->arpcom.ac_if, "TX underrun -- ");
2819 	sc->dc_txthresh += DC_TXTHRESH_INC;
2820 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
2821 		kprintf("using store and forward mode\n");
2822 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2823 	} else {
2824 		kprintf("increasing TX threshold\n");
2825 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
2826 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2827 	}
2828 
2829 	if (DC_IS_INTEL(sc))
2830 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2831 
2832 	return;
2833 }
2834 
2835 #ifdef DEVICE_POLLING
2836 
2837 static void
2838 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2839 {
2840 	struct	dc_softc *sc = ifp->if_softc;
2841 	u_int32_t status;
2842 
2843 	switch(cmd) {
2844 	case POLL_REGISTER:
2845 		/* Disable interrupts */
2846 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2847 		break;
2848 	case POLL_DEREGISTER:
2849 		/* Re-enable interrupts. */
2850 		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2851 		break;
2852 	case POLL_ONLY:
2853 		sc->rxcycles = count;
2854 		dc_rxeof(sc);
2855 		dc_txeof(sc);
2856 		if ((ifp->if_flags & IFF_OACTIVE) == 0 && !ifq_is_empty(&ifp->if_snd))
2857 			if_devstart(ifp);
2858 		break;
2859 	case POLL_AND_CHECK_STATUS:
2860 		sc->rxcycles = count;
2861 		dc_rxeof(sc);
2862 		dc_txeof(sc);
2863 		if ((ifp->if_flags & IFF_OACTIVE) == 0 && !ifq_is_empty(&ifp->if_snd))
2864 			if_devstart(ifp);
2865 		status = CSR_READ_4(sc, DC_ISR);
2866 		status &= (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF|
2867 			DC_ISR_TX_NOBUF|DC_ISR_TX_IDLE|DC_ISR_TX_UNDERRUN|
2868 			DC_ISR_BUS_ERR);
2869 		if (!status)
2870 			break;
2871 		/* ack what we have */
2872 		CSR_WRITE_4(sc, DC_ISR, status);
2873 
2874 		if (status & (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF) ) {
2875 			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
2876 			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
2877 
2878 			if (dc_rx_resync(sc))
2879 				dc_rxeof(sc);
2880 		}
2881 		/* restart transmit unit if necessary */
2882 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
2883 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2884 
2885 		if (status & DC_ISR_TX_UNDERRUN)
2886 			dc_tx_underrun(sc);
2887 
2888 		if (status & DC_ISR_BUS_ERR) {
2889 			if_printf(ifp, "dc_poll: bus error\n");
2890 			dc_reset(sc);
2891 			dc_init(sc);
2892 		}
2893 		break;
2894 	}
2895 }
2896 #endif /* DEVICE_POLLING */
2897 
2898 static void
2899 dc_intr(void *arg)
2900 {
2901 	struct dc_softc		*sc;
2902 	struct ifnet		*ifp;
2903 	u_int32_t		status;
2904 
2905 	sc = arg;
2906 
2907 	if (sc->suspended) {
2908 		return;
2909 	}
2910 
2911 	ifp = &sc->arpcom.ac_if;
2912 
2913 	if ( (CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
2914 		return ;
2915 
2916 	/* Suppress unwanted interrupts */
2917 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
2918 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
2919 			dc_stop(sc);
2920 		return;
2921 	}
2922 
2923 	/* Disable interrupts. */
2924 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2925 
2926 	while(((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) &&
2927 	      status != 0xFFFFFFFF) {
2928 
2929 		CSR_WRITE_4(sc, DC_ISR, status);
2930 
2931 		if (status & DC_ISR_RX_OK) {
2932 			int		curpkts;
2933 			curpkts = ifp->if_ipackets;
2934 			dc_rxeof(sc);
2935 			if (curpkts == ifp->if_ipackets) {
2936 				while(dc_rx_resync(sc))
2937 					dc_rxeof(sc);
2938 			}
2939 		}
2940 
2941 		if (status & (DC_ISR_TX_OK|DC_ISR_TX_NOBUF))
2942 			dc_txeof(sc);
2943 
2944 		if (status & DC_ISR_TX_IDLE) {
2945 			dc_txeof(sc);
2946 			if (sc->dc_cdata.dc_tx_cnt) {
2947 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2948 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2949 			}
2950 		}
2951 
2952 		if (status & DC_ISR_TX_UNDERRUN)
2953 			dc_tx_underrun(sc);
2954 
2955 		if ((status & DC_ISR_RX_WATDOGTIMEO)
2956 		    || (status & DC_ISR_RX_NOBUF)) {
2957 			int		curpkts;
2958 			curpkts = ifp->if_ipackets;
2959 			dc_rxeof(sc);
2960 			if (curpkts == ifp->if_ipackets) {
2961 				while(dc_rx_resync(sc))
2962 					dc_rxeof(sc);
2963 			}
2964 		}
2965 
2966 		if (status & DC_ISR_BUS_ERR) {
2967 			dc_reset(sc);
2968 			dc_init(sc);
2969 		}
2970 	}
2971 
2972 	/* Re-enable interrupts. */
2973 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2974 
2975 	if (!ifq_is_empty(&ifp->if_snd))
2976 		if_devstart(ifp);
2977 }
2978 
2979 /*
2980  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
2981  * pointers to the fragment pointers.
2982  */
2983 static int
2984 dc_encap(struct dc_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
2985 {
2986 	struct dc_desc		*f = NULL;
2987 	struct mbuf		*m;
2988 	int			frag, cur, cnt = 0;
2989 
2990 	/*
2991  	 * Start packing the mbufs in this chain into
2992 	 * the fragment pointers. Stop when we run out
2993  	 * of fragments or hit the end of the mbuf chain.
2994 	 */
2995 	m = m_head;
2996 	cur = frag = *txidx;
2997 
2998 	for (m = m_head; m != NULL; m = m->m_next) {
2999 		if (m->m_len != 0) {
3000 			if (sc->dc_flags & DC_TX_ADMTEK_WAR) {
3001 				if (*txidx != sc->dc_cdata.dc_tx_prod &&
3002 				    frag == (DC_TX_LIST_CNT - 1))
3003 					return(ENOBUFS);
3004 			}
3005 			if ((DC_TX_LIST_CNT -
3006 			    (sc->dc_cdata.dc_tx_cnt + cnt)) < 5)
3007 				return(ENOBUFS);
3008 
3009 			f = &sc->dc_ldata->dc_tx_list[frag];
3010 			f->dc_ctl = DC_TXCTL_TLINK | m->m_len;
3011 			if (cnt == 0) {
3012 				f->dc_status = 0;
3013 				f->dc_ctl |= DC_TXCTL_FIRSTFRAG;
3014 			} else
3015 				f->dc_status = DC_TXSTAT_OWN;
3016 			f->dc_data = vtophys(mtod(m, vm_offset_t));
3017 			cur = frag;
3018 			DC_INC(frag, DC_TX_LIST_CNT);
3019 			cnt++;
3020 		}
3021 	}
3022 
3023 	if (m != NULL)
3024 		return(ENOBUFS);
3025 
3026 	sc->dc_cdata.dc_tx_cnt += cnt;
3027 	sc->dc_cdata.dc_tx_chain[cur] = m_head;
3028 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_LASTFRAG;
3029 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3030 		sc->dc_ldata->dc_tx_list[*txidx].dc_ctl |= DC_TXCTL_FINT;
3031 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3032 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
3033 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
3034 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
3035 	sc->dc_ldata->dc_tx_list[*txidx].dc_status = DC_TXSTAT_OWN;
3036 	*txidx = frag;
3037 
3038 	return(0);
3039 }
3040 
3041 /*
3042  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3043  * to the mbuf data regions directly in the transmit lists. We also save a
3044  * copy of the pointers since the transmit list fragment pointers are
3045  * physical addresses.
3046  */
3047 
3048 static void
3049 dc_start(struct ifnet *ifp)
3050 {
3051 	struct dc_softc	*sc;
3052 	struct mbuf *m_head, *m_defragged;
3053 	int idx, need_trans;
3054 
3055 	sc = ifp->if_softc;
3056 
3057 	if (!sc->dc_link) {
3058 		ifq_purge(&ifp->if_snd);
3059 		return;
3060 	}
3061 
3062 	if (ifp->if_flags & IFF_OACTIVE)
3063 		return;
3064 
3065 	idx = sc->dc_cdata.dc_tx_prod;
3066 
3067 	need_trans = 0;
3068 	while(sc->dc_cdata.dc_tx_chain[idx] == NULL) {
3069 		m_defragged = NULL;
3070 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
3071 		if (m_head == NULL)
3072 			break;
3073 
3074 		if ((sc->dc_flags & DC_TX_COALESCE) &&
3075 		    (m_head->m_next != NULL || (sc->dc_flags & DC_TX_ALIGN))) {
3076 			/*
3077 			 * Check first if coalescing allows us to queue
3078 			 * the packet. We don't want to loose it if
3079 			 * the TX queue is full.
3080 			 */
3081 			if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3082 			    idx != sc->dc_cdata.dc_tx_prod &&
3083 			    idx == (DC_TX_LIST_CNT - 1)) {
3084 				ifp->if_flags |= IFF_OACTIVE;
3085 				ifq_prepend(&ifp->if_snd, m_head);
3086 				break;
3087 			}
3088 			if ((DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt) < 5) {
3089 				ifp->if_flags |= IFF_OACTIVE;
3090 				ifq_prepend(&ifp->if_snd, m_head);
3091 				break;
3092 			}
3093 
3094 			/* only coalesce if have >1 mbufs */
3095 			m_defragged = m_defrag(m_head, MB_DONTWAIT);
3096 			if (m_defragged == NULL) {
3097 				ifp->if_flags |= IFF_OACTIVE;
3098 				ifq_prepend(&ifp->if_snd, m_head);
3099 				break;
3100 			}
3101 			m_head = m_defragged;
3102 		}
3103 
3104 		if (dc_encap(sc, m_head, &idx)) {
3105 			if (m_defragged) {
3106 				/*
3107 				 * Throw away the original packet if the
3108 				 * defragged packet could not be encapsulated,
3109 				 * as well as the defragged packet.
3110 				 */
3111 				m_freem(m_head);
3112 			} else {
3113 				ifq_prepend(&ifp->if_snd, m_head);
3114 			}
3115 			ifp->if_flags |= IFF_OACTIVE;
3116 			break;
3117 		}
3118 
3119 		need_trans = 1;
3120 
3121 		/*
3122 		 * If there's a BPF listener, bounce a copy of this frame
3123 		 * to him.
3124 		 */
3125 		BPF_MTAP(ifp, m_head);
3126 
3127 		if (sc->dc_flags & DC_TX_ONE) {
3128 			ifp->if_flags |= IFF_OACTIVE;
3129 			break;
3130 		}
3131 	}
3132 
3133 	if (!need_trans)
3134 		return;
3135 
3136 	/* Transmit */
3137 	sc->dc_cdata.dc_tx_prod = idx;
3138 	if (!(sc->dc_flags & DC_TX_POLL))
3139 		CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3140 
3141 	/*
3142 	 * Set a timeout in case the chip goes out to lunch.
3143 	 */
3144 	ifp->if_timer = 5;
3145 }
3146 
3147 static void
3148 dc_init(void *xsc)
3149 {
3150 	struct dc_softc		*sc = xsc;
3151 	struct ifnet		*ifp = &sc->arpcom.ac_if;
3152 	struct mii_data		*mii;
3153 
3154 	mii = device_get_softc(sc->dc_miibus);
3155 
3156 	/*
3157 	 * Cancel pending I/O and free all RX/TX buffers.
3158 	 */
3159 	dc_stop(sc);
3160 	dc_reset(sc);
3161 
3162 	/*
3163 	 * Set cache alignment and burst length.
3164 	 */
3165 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3166 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3167 	else
3168 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME|DC_BUSCTL_MRLE);
3169 	/*
3170 	 * Evenly share the bus between receive and transmit process.
3171 	 */
3172 	if (DC_IS_INTEL(sc))
3173 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3174 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3175 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3176 	} else {
3177 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3178 	}
3179 	if (sc->dc_flags & DC_TX_POLL)
3180 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3181 	switch(sc->dc_cachesize) {
3182 	case 32:
3183 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3184 		break;
3185 	case 16:
3186 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3187 		break;
3188 	case 8:
3189 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3190 		break;
3191 	case 0:
3192 	default:
3193 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3194 		break;
3195 	}
3196 
3197 	if (sc->dc_flags & DC_TX_STORENFWD)
3198 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3199 	else {
3200 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3201 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3202 		} else {
3203 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3204 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3205 		}
3206 	}
3207 
3208 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3209 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3210 
3211 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3212 		/*
3213 		 * The app notes for the 98713 and 98715A say that
3214 		 * in order to have the chips operate properly, a magic
3215 		 * number must be written to CSR16. Macronix does not
3216 		 * document the meaning of these bits so there's no way
3217 		 * to know exactly what they do. The 98713 has a magic
3218 		 * number all its own; the rest all use a different one.
3219 		 */
3220 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3221 		if (sc->dc_type == DC_TYPE_98713)
3222 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3223 		else
3224 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3225 	}
3226 
3227 	if (DC_IS_XIRCOM(sc)) {
3228 		/*
3229 		 * Setup General Purpose Port mode and data so the tulip
3230 		 * can talk to the MII.
3231 		 */
3232 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3233 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3234 		DELAY(10);
3235 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3236 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3237 		DELAY(10);
3238  	}
3239 
3240 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3241 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3242 
3243 	/* Init circular RX list. */
3244 	if (dc_list_rx_init(sc) == ENOBUFS) {
3245 		if_printf(ifp, "initialization failed: no "
3246 			  "memory for rx buffers\n");
3247 		dc_stop(sc);
3248 		return;
3249 	}
3250 
3251 	/*
3252 	 * Init tx descriptors.
3253 	 */
3254 	dc_list_tx_init(sc);
3255 
3256 	/*
3257 	 * Load the address of the RX list.
3258 	 */
3259 	CSR_WRITE_4(sc, DC_RXADDR, vtophys(&sc->dc_ldata->dc_rx_list[0]));
3260 	CSR_WRITE_4(sc, DC_TXADDR, vtophys(&sc->dc_ldata->dc_tx_list[0]));
3261 
3262 	/*
3263 	 * Enable interrupts.
3264 	 */
3265 #ifdef DEVICE_POLLING
3266 	/*
3267 	 * ... but only if we are not polling, and make sure they are off in
3268 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3269 	 * after a reset.
3270 	 */
3271 	if (ifp->if_flags & IFF_POLLING)
3272 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3273 	else
3274 #endif
3275 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3276 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3277 
3278 	/* Enable transmitter. */
3279 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3280 
3281 	/*
3282 	 * If this is an Intel 21143 and we're not using the
3283 	 * MII port, program the LED control pins so we get
3284 	 * link and activity indications.
3285 	 */
3286 	if (sc->dc_flags & DC_TULIP_LEDS) {
3287 		CSR_WRITE_4(sc, DC_WATCHDOG,
3288 		    DC_WDOG_CTLWREN|DC_WDOG_LINK|DC_WDOG_ACTIVITY);
3289 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3290 	}
3291 
3292 	/*
3293 	 * Set IFF_RUNNING here to keep the assertion in dc_setfilt()
3294 	 * working.
3295 	 */
3296 	ifp->if_flags |= IFF_RUNNING;
3297 	ifp->if_flags &= ~IFF_OACTIVE;
3298 
3299 	/*
3300 	 * Load the RX/multicast filter. We do this sort of late
3301 	 * because the filter programming scheme on the 21143 and
3302 	 * some clones requires DMAing a setup frame via the TX
3303 	 * engine, and we need the transmitter enabled for that.
3304 	 */
3305 	dc_setfilt(sc);
3306 
3307 	/* Enable receiver. */
3308 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3309 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3310 
3311 	mii_mediachg(mii);
3312 	dc_setcfg(sc, sc->dc_if_media);
3313 
3314 	/* Don't start the ticker if this is a homePNA link. */
3315 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3316 		sc->dc_link = 1;
3317 	else {
3318 		if (sc->dc_flags & DC_21143_NWAY)
3319 			callout_reset(&sc->dc_stat_timer, hz/10, dc_tick, sc);
3320 		else
3321 			callout_reset(&sc->dc_stat_timer, hz, dc_tick, sc);
3322 	}
3323 }
3324 
3325 /*
3326  * Set media options.
3327  */
3328 static int
3329 dc_ifmedia_upd(struct ifnet *ifp)
3330 {
3331 	struct dc_softc		*sc;
3332 	struct mii_data		*mii;
3333 	struct ifmedia		*ifm;
3334 
3335 	sc = ifp->if_softc;
3336 	mii = device_get_softc(sc->dc_miibus);
3337 	mii_mediachg(mii);
3338 	ifm = &mii->mii_media;
3339 
3340 	if (DC_IS_DAVICOM(sc) &&
3341 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3342 		dc_setcfg(sc, ifm->ifm_media);
3343 	else
3344 		sc->dc_link = 0;
3345 
3346 	return(0);
3347 }
3348 
3349 /*
3350  * Report current media status.
3351  */
3352 static void
3353 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3354 {
3355 	struct dc_softc		*sc;
3356 	struct mii_data		*mii;
3357 	struct ifmedia		*ifm;
3358 
3359 	sc = ifp->if_softc;
3360 	mii = device_get_softc(sc->dc_miibus);
3361 	mii_pollstat(mii);
3362 	ifm = &mii->mii_media;
3363 	if (DC_IS_DAVICOM(sc)) {
3364 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3365 			ifmr->ifm_active = ifm->ifm_media;
3366 			ifmr->ifm_status = 0;
3367 			return;
3368 		}
3369 	}
3370 	ifmr->ifm_active = mii->mii_media_active;
3371 	ifmr->ifm_status = mii->mii_media_status;
3372 
3373 	return;
3374 }
3375 
3376 static int
3377 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3378 {
3379 	struct dc_softc		*sc = ifp->if_softc;
3380 	struct ifreq		*ifr = (struct ifreq *) data;
3381 	struct mii_data		*mii;
3382 	int			error = 0;
3383 
3384 	switch(command) {
3385 	case SIOCSIFFLAGS:
3386 		if (ifp->if_flags & IFF_UP) {
3387 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3388 				(IFF_PROMISC | IFF_ALLMULTI);
3389 			if (ifp->if_flags & IFF_RUNNING) {
3390 				if (need_setfilt)
3391 					dc_setfilt(sc);
3392 			} else {
3393 				sc->dc_txthresh = 0;
3394 				dc_init(sc);
3395 			}
3396 		} else {
3397 			if (ifp->if_flags & IFF_RUNNING)
3398 				dc_stop(sc);
3399 		}
3400 		sc->dc_if_flags = ifp->if_flags;
3401 		break;
3402 	case SIOCADDMULTI:
3403 	case SIOCDELMULTI:
3404 		if (ifp->if_flags & IFF_RUNNING)
3405 			dc_setfilt(sc);
3406 		break;
3407 	case SIOCGIFMEDIA:
3408 	case SIOCSIFMEDIA:
3409 		mii = device_get_softc(sc->dc_miibus);
3410 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3411 		break;
3412 	default:
3413 		error = ether_ioctl(ifp, command, data);
3414 		break;
3415 	}
3416 
3417 	return(error);
3418 }
3419 
3420 static void
3421 dc_watchdog(struct ifnet *ifp)
3422 {
3423 	struct dc_softc		*sc;
3424 
3425 	sc = ifp->if_softc;
3426 
3427 	ifp->if_oerrors++;
3428 	if_printf(ifp, "watchdog timeout\n");
3429 
3430 	dc_stop(sc);
3431 	dc_reset(sc);
3432 	dc_init(sc);
3433 
3434 	if (!ifq_is_empty(&ifp->if_snd))
3435 		if_devstart(ifp);
3436 }
3437 
3438 /*
3439  * Stop the adapter and free any mbufs allocated to the
3440  * RX and TX lists.
3441  */
3442 static void
3443 dc_stop(struct dc_softc *sc)
3444 {
3445 	int		i;
3446 	struct ifnet		*ifp;
3447 
3448 	ifp = &sc->arpcom.ac_if;
3449 	ifp->if_timer = 0;
3450 
3451 	callout_stop(&sc->dc_stat_timer);
3452 
3453 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3454 
3455 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON|DC_NETCFG_TX_ON));
3456 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3457 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3458 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3459 	sc->dc_link = 0;
3460 
3461 	/*
3462 	 * Free data in the RX lists.
3463 	 */
3464 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3465 		if (sc->dc_cdata.dc_rx_chain[i] != NULL) {
3466 			m_freem(sc->dc_cdata.dc_rx_chain[i]);
3467 			sc->dc_cdata.dc_rx_chain[i] = NULL;
3468 		}
3469 	}
3470 	bzero((char *)&sc->dc_ldata->dc_rx_list,
3471 		sizeof(sc->dc_ldata->dc_rx_list));
3472 
3473 	/*
3474 	 * Free the TX list buffers.
3475 	 */
3476 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3477 		if (sc->dc_cdata.dc_tx_chain[i] != NULL) {
3478 			if ((sc->dc_ldata->dc_tx_list[i].dc_ctl &
3479 			    DC_TXCTL_SETUP) ||
3480 			    !(sc->dc_ldata->dc_tx_list[i].dc_ctl &
3481 			    DC_TXCTL_LASTFRAG)) {
3482 				sc->dc_cdata.dc_tx_chain[i] = NULL;
3483 				continue;
3484 			}
3485 			m_freem(sc->dc_cdata.dc_tx_chain[i]);
3486 			sc->dc_cdata.dc_tx_chain[i] = NULL;
3487 		}
3488 	}
3489 	bzero((char *)&sc->dc_ldata->dc_tx_list,
3490 		sizeof(sc->dc_ldata->dc_tx_list));
3491 }
3492 
3493 /*
3494  * Stop all chip I/O so that the kernel's probe routines don't
3495  * get confused by errant DMAs when rebooting.
3496  */
3497 static void
3498 dc_shutdown(device_t dev)
3499 {
3500 	struct dc_softc	*sc;
3501 	struct ifnet *ifp;
3502 
3503 	sc = device_get_softc(dev);
3504 	ifp = &sc->arpcom.ac_if;
3505 	lwkt_serialize_enter(ifp->if_serializer);
3506 
3507 	dc_stop(sc);
3508 
3509 	lwkt_serialize_exit(ifp->if_serializer);
3510 }
3511 
3512 /*
3513  * Device suspend routine.  Stop the interface and save some PCI
3514  * settings in case the BIOS doesn't restore them properly on
3515  * resume.
3516  */
3517 static int
3518 dc_suspend(device_t dev)
3519 {
3520 	struct dc_softc	*sc = device_get_softc(dev);
3521 	struct ifnet *ifp = &sc->arpcom.ac_if;
3522 	int i;
3523 	lwkt_serialize_enter(ifp->if_serializer);
3524 
3525 	dc_stop(sc);
3526 	for (i = 0; i < 5; i++)
3527 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
3528 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
3529 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
3530 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
3531 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
3532 
3533 	sc->suspended = 1;
3534 
3535 	lwkt_serialize_exit(ifp->if_serializer);
3536 	return (0);
3537 }
3538 
3539 /*
3540  * Device resume routine.  Restore some PCI settings in case the BIOS
3541  * doesn't, re-enable busmastering, and restart the interface if
3542  * appropriate.
3543  */
3544 static int
3545 dc_resume(device_t dev)
3546 {
3547 	struct dc_softc *sc = device_get_softc(dev);
3548 	struct ifnet *ifp = &sc->arpcom.ac_if;
3549 	int i;
3550 
3551 	lwkt_serialize_enter(ifp->if_serializer);
3552 	dc_acpi(dev);
3553 
3554 	/* better way to do this? */
3555 	for (i = 0; i < 5; i++)
3556 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
3557 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
3558 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
3559 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
3560 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
3561 
3562 	/* reenable busmastering */
3563 	pci_enable_busmaster(dev);
3564 	pci_enable_io(dev, DC_RES);
3565 
3566         /* reinitialize interface if necessary */
3567         if (ifp->if_flags & IFF_UP)
3568                 dc_init(sc);
3569 
3570 	sc->suspended = 0;
3571 	lwkt_serialize_exit(ifp->if_serializer);
3572 
3573 	return (0);
3574 }
3575 
3576 static uint32_t
3577 dc_mchash_xircom(struct dc_softc *sc, const uint8_t *addr)
3578 {
3579 	uint32_t crc;
3580 
3581 	/* Compute CRC for the address value. */
3582 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
3583 
3584 	if ((crc & 0x180) == 0x180)
3585 		return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
3586 	else
3587 		return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 + (12 << 4));
3588 }
3589