xref: /dragonfly/sys/dev/netif/em/if_em.c (revision 19fe1c42)
1 /*
2  *
3  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
4  *
5  * Copyright (c) 2001-2006, Intel Corporation
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions are met:
10  *
11  *  1. Redistributions of source code must retain the above copyright notice,
12  *     this list of conditions and the following disclaimer.
13  *
14  *  2. Redistributions in binary form must reproduce the above copyright
15  *     notice, this list of conditions and the following disclaimer in the
16  *     documentation and/or other materials provided with the distribution.
17  *
18  *  3. Neither the name of the Intel Corporation nor the names of its
19  *     contributors may be used to endorse or promote products derived from
20  *     this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
23  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
26  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
36  *
37  * This code is derived from software contributed to The DragonFly Project
38  * by Matthew Dillon <dillon@backplane.com>
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  *
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in
48  *    the documentation and/or other materials provided with the
49  *    distribution.
50  * 3. Neither the name of The DragonFly Project nor the names of its
51  *    contributors may be used to endorse or promote products derived
52  *    from this software without specific, prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
55  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
56  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
57  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
58  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
59  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
60  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
61  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
62  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
63  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
64  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  *
67  * $DragonFly: src/sys/dev/netif/em/if_em.c,v 1.80 2008/09/17 08:51:29 sephe Exp $
68  * $FreeBSD$
69  */
70 /*
71  * SERIALIZATION API RULES:
72  *
73  * - If the driver uses the same serializer for the interrupt as for the
74  *   ifnet, most of the serialization will be done automatically for the
75  *   driver.
76  *
77  * - ifmedia entry points will be serialized by the ifmedia code using the
78  *   ifnet serializer.
79  *
80  * - if_* entry points except for if_input will be serialized by the IF
81  *   and protocol layers.
82  *
83  * - The device driver must be sure to serialize access from timeout code
84  *   installed by the device driver.
85  *
86  * - The device driver typically holds the serializer at the time it wishes
87  *   to call if_input.  If so, it should pass the serializer to if_input and
88  *   note that the serializer might be dropped temporarily by if_input
89  *   (e.g. in case it has to bridge the packet to another interface).
90  *
91  *   NOTE!  Since callers into the device driver hold the ifnet serializer,
92  *   the device driver may be holding a serializer at the time it calls
93  *   if_input even if it is not serializer-aware.
94  */
95 
96 #include "opt_polling.h"
97 #include "opt_inet.h"
98 #include "opt_serializer.h"
99 
100 #include <sys/param.h>
101 #include <sys/bus.h>
102 #include <sys/endian.h>
103 #include <sys/interrupt.h>
104 #include <sys/kernel.h>
105 #include <sys/ktr.h>
106 #include <sys/malloc.h>
107 #include <sys/mbuf.h>
108 #include <sys/module.h>
109 #include <sys/rman.h>
110 #include <sys/serialize.h>
111 #include <sys/socket.h>
112 #include <sys/sockio.h>
113 #include <sys/sysctl.h>
114 
115 #include <net/bpf.h>
116 #include <net/ethernet.h>
117 #include <net/if.h>
118 #include <net/if_arp.h>
119 #include <net/if_dl.h>
120 #include <net/if_media.h>
121 #include <net/if_types.h>
122 #include <net/ifq_var.h>
123 #include <net/vlan/if_vlan_var.h>
124 #include <net/vlan/if_vlan_ether.h>
125 
126 #ifdef INET
127 #include <netinet/in.h>
128 #include <netinet/in_systm.h>
129 #include <netinet/in_var.h>
130 #include <netinet/ip.h>
131 #include <netinet/tcp.h>
132 #include <netinet/udp.h>
133 #endif
134 
135 #include <dev/netif/em/if_em_hw.h>
136 #include <dev/netif/em/if_em.h>
137 
138 #define EM_X60_WORKAROUND
139 
140 /*********************************************************************
141  *  Set this to one to display debug statistics
142  *********************************************************************/
143 int	em_display_debug_stats = 0;
144 
145 /*********************************************************************
146  *  Driver version
147  *********************************************************************/
148 
149 char em_driver_version[] = "6.2.9";
150 
151 
152 /*********************************************************************
153  *  PCI Device ID Table
154  *
155  *  Used by probe to select devices to load on
156  *  Last field stores an index into em_strings
157  *  Last entry must be all 0s
158  *
159  *  { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
160  *********************************************************************/
161 
162 static em_vendor_info_t em_vendor_info_array[] =
163 {
164 	/* Intel(R) PRO/1000 Network Connection */
165 	{ 0x8086, E1000_DEV_ID_82540EM,		PCI_ANY_ID, PCI_ANY_ID, 0},
166 	{ 0x8086, E1000_DEV_ID_82540EM_LOM,	PCI_ANY_ID, PCI_ANY_ID, 0},
167 	{ 0x8086, E1000_DEV_ID_82540EP,		PCI_ANY_ID, PCI_ANY_ID, 0},
168 	{ 0x8086, E1000_DEV_ID_82540EP_LOM,	PCI_ANY_ID, PCI_ANY_ID, 0},
169 	{ 0x8086, E1000_DEV_ID_82540EP_LP,	PCI_ANY_ID, PCI_ANY_ID, 0},
170 
171 	{ 0x8086, E1000_DEV_ID_82541EI,		PCI_ANY_ID, PCI_ANY_ID, 0},
172 	{ 0x8086, E1000_DEV_ID_82541ER,		PCI_ANY_ID, PCI_ANY_ID, 0},
173 	{ 0x8086, E1000_DEV_ID_82541ER_LOM,	PCI_ANY_ID, PCI_ANY_ID, 0},
174 	{ 0x8086, E1000_DEV_ID_82541EI_MOBILE,	PCI_ANY_ID, PCI_ANY_ID, 0},
175 	{ 0x8086, E1000_DEV_ID_82541GI,		PCI_ANY_ID, PCI_ANY_ID, 0},
176 	{ 0x8086, E1000_DEV_ID_82541GI_LF,	PCI_ANY_ID, PCI_ANY_ID, 0},
177 	{ 0x8086, E1000_DEV_ID_82541GI_MOBILE,	PCI_ANY_ID, PCI_ANY_ID, 0},
178 
179 	{ 0x8086, E1000_DEV_ID_82542,		PCI_ANY_ID, PCI_ANY_ID, 0},
180 
181 	{ 0x8086, E1000_DEV_ID_82543GC_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
182 	{ 0x8086, E1000_DEV_ID_82543GC_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
183 
184 	{ 0x8086, E1000_DEV_ID_82544EI_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
185 	{ 0x8086, E1000_DEV_ID_82544EI_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
186 	{ 0x8086, E1000_DEV_ID_82544GC_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
187 	{ 0x8086, E1000_DEV_ID_82544GC_LOM,	PCI_ANY_ID, PCI_ANY_ID, 0},
188 
189 	{ 0x8086, E1000_DEV_ID_82545EM_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
190 	{ 0x8086, E1000_DEV_ID_82545EM_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
191 	{ 0x8086, E1000_DEV_ID_82545GM_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
192 	{ 0x8086, E1000_DEV_ID_82545GM_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
193 	{ 0x8086, E1000_DEV_ID_82545GM_SERDES,	PCI_ANY_ID, PCI_ANY_ID, 0},
194 
195 	{ 0x8086, E1000_DEV_ID_82546EB_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
196 	{ 0x8086, E1000_DEV_ID_82546EB_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
197 	{ 0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
198 	{ 0x8086, E1000_DEV_ID_82546GB_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
199 	{ 0x8086, E1000_DEV_ID_82546GB_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
200 	{ 0x8086, E1000_DEV_ID_82546GB_SERDES,	PCI_ANY_ID, PCI_ANY_ID, 0},
201 	{ 0x8086, E1000_DEV_ID_82546GB_PCIE,	PCI_ANY_ID, PCI_ANY_ID, 0},
202 	{ 0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
203 	{ 0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3,
204 						PCI_ANY_ID, PCI_ANY_ID, 0},
205 
206 	{ 0x8086, E1000_DEV_ID_82547EI,		PCI_ANY_ID, PCI_ANY_ID, 0},
207 	{ 0x8086, E1000_DEV_ID_82547EI_MOBILE,	PCI_ANY_ID, PCI_ANY_ID, 0},
208 	{ 0x8086, E1000_DEV_ID_82547GI,		PCI_ANY_ID, PCI_ANY_ID, 0},
209 
210 	{ 0x8086, E1000_DEV_ID_82571EB_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
211 	{ 0x8086, E1000_DEV_ID_82571EB_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
212 	{ 0x8086, E1000_DEV_ID_82571EB_SERDES,	PCI_ANY_ID, PCI_ANY_ID, 0},
213 	{ 0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER,
214 						PCI_ANY_ID, PCI_ANY_ID, 0},
215 	{ 0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE,
216 						PCI_ANY_ID, PCI_ANY_ID, 0},
217 
218 	{ 0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER,
219 						PCI_ANY_ID, PCI_ANY_ID, 0},
220 	{ 0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER,
221 						PCI_ANY_ID, PCI_ANY_ID, 0},
222 	{ 0x8086, E1000_DEV_ID_82572EI_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
223 	{ 0x8086, E1000_DEV_ID_82572EI_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
224 	{ 0x8086, E1000_DEV_ID_82572EI_SERDES,	PCI_ANY_ID, PCI_ANY_ID, 0},
225 	{ 0x8086, E1000_DEV_ID_82572EI,		PCI_ANY_ID, PCI_ANY_ID, 0},
226 
227 	{ 0x8086, E1000_DEV_ID_82573E,		PCI_ANY_ID, PCI_ANY_ID, 0},
228 	{ 0x8086, E1000_DEV_ID_82573E_IAMT,	PCI_ANY_ID, PCI_ANY_ID, 0},
229 	{ 0x8086, E1000_DEV_ID_82573L,		PCI_ANY_ID, PCI_ANY_ID, 0},
230 
231 	{ 0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT,
232 						PCI_ANY_ID, PCI_ANY_ID, 0},
233 	{ 0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT,
234 						PCI_ANY_ID, PCI_ANY_ID, 0},
235 	{ 0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT,
236 						PCI_ANY_ID, PCI_ANY_ID, 0},
237 	{ 0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT,
238 						PCI_ANY_ID, PCI_ANY_ID, 0},
239 
240 	{ 0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT,	PCI_ANY_ID, PCI_ANY_ID, 0},
241 	{ 0x8086, E1000_DEV_ID_ICH8_IGP_AMT,	PCI_ANY_ID, PCI_ANY_ID, 0},
242 	{ 0x8086, E1000_DEV_ID_ICH8_IGP_C,	PCI_ANY_ID, PCI_ANY_ID, 0},
243 	{ 0x8086, E1000_DEV_ID_ICH8_IFE,	PCI_ANY_ID, PCI_ANY_ID, 0},
244 	{ 0x8086, E1000_DEV_ID_ICH8_IFE_GT,	PCI_ANY_ID, PCI_ANY_ID, 0},
245 	{ 0x8086, E1000_DEV_ID_ICH8_IFE_G,	PCI_ANY_ID, PCI_ANY_ID, 0},
246 	{ 0x8086, E1000_DEV_ID_ICH8_IGP_M,	PCI_ANY_ID, PCI_ANY_ID, 0},
247 
248 	{ 0x8086, E1000_DEV_ID_ICH9_IGP_AMT,	PCI_ANY_ID, PCI_ANY_ID, 0},
249 	{ 0x8086, E1000_DEV_ID_ICH9_IGP_C,	PCI_ANY_ID, PCI_ANY_ID, 0},
250 	{ 0x8086, E1000_DEV_ID_ICH9_IFE,	PCI_ANY_ID, PCI_ANY_ID, 0},
251 	{ 0x8086, E1000_DEV_ID_ICH9_IFE_GT,	PCI_ANY_ID, PCI_ANY_ID, 0},
252 	{ 0x8086, E1000_DEV_ID_ICH9_IFE_G,	PCI_ANY_ID, PCI_ANY_ID, 0},
253 
254 	{ 0x8086, E1000_DEV_ID_82575EB_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
255 	{ 0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES,
256 						PCI_ANY_ID, PCI_ANY_ID, 0},
257 	{ 0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER,
258 						PCI_ANY_ID, PCI_ANY_ID, 0},
259 	{ 0x8086, 0x101A, PCI_ANY_ID, PCI_ANY_ID, 0},
260 	{ 0x8086, 0x1014, PCI_ANY_ID, PCI_ANY_ID, 0},
261 	/* required last entry */
262 	{ 0, 0, 0, 0, 0}
263 };
264 
265 /*********************************************************************
266  *  Table of branding strings for all supported NICs.
267  *********************************************************************/
268 
269 static const char *em_strings[] = {
270 	"Intel(R) PRO/1000 Network Connection"
271 };
272 
273 /*********************************************************************
274  *  Function prototypes
275  *********************************************************************/
276 static int	em_probe(device_t);
277 static int	em_attach(device_t);
278 static int	em_detach(device_t);
279 static int	em_shutdown(device_t);
280 static void	em_intr(void *);
281 static int	em_suspend(device_t);
282 static int	em_resume(device_t);
283 static void	em_start(struct ifnet *);
284 static int	em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
285 static void	em_watchdog(struct ifnet *);
286 static void	em_init(void *);
287 static void	em_stop(void *);
288 static void	em_media_status(struct ifnet *, struct ifmediareq *);
289 static int	em_media_change(struct ifnet *);
290 static void	em_identify_hardware(struct adapter *);
291 static int	em_allocate_pci_resources(device_t);
292 static void	em_free_pci_resources(device_t);
293 static void	em_local_timer(void *);
294 static int	em_hardware_init(struct adapter *);
295 static void	em_setup_interface(device_t, struct adapter *);
296 static int	em_setup_transmit_structures(struct adapter *);
297 static void	em_initialize_transmit_unit(struct adapter *);
298 static int	em_setup_receive_structures(struct adapter *);
299 static void	em_initialize_receive_unit(struct adapter *);
300 static void	em_enable_intr(struct adapter *);
301 static void	em_disable_intr(struct adapter *);
302 static void	em_free_transmit_structures(struct adapter *);
303 static void	em_free_receive_structures(struct adapter *);
304 static void	em_update_stats_counters(struct adapter *);
305 static void	em_txeof(struct adapter *);
306 static int	em_allocate_receive_structures(struct adapter *);
307 static void	em_rxeof(struct adapter *, int);
308 static void	em_receive_checksum(struct adapter *, struct em_rx_desc *,
309 				    struct mbuf *);
310 static void	em_transmit_checksum_setup(struct adapter *, struct mbuf *,
311 					   uint32_t *, uint32_t *);
312 static void	em_set_promisc(struct adapter *);
313 static void	em_disable_promisc(struct adapter *);
314 static void	em_set_multi(struct adapter *);
315 static void	em_print_hw_stats(struct adapter *);
316 static void	em_update_link_status(struct adapter *);
317 static int	em_get_buf(int i, struct adapter *, struct mbuf *, int how);
318 static void	em_enable_vlans(struct adapter *);
319 static void	em_disable_vlans(struct adapter *) __unused;
320 static int	em_encap(struct adapter *, struct mbuf *);
321 static void	em_smartspeed(struct adapter *);
322 static int	em_82547_fifo_workaround(struct adapter *, int);
323 static void	em_82547_update_fifo_head(struct adapter *, int);
324 static int	em_82547_tx_fifo_reset(struct adapter *);
325 static void	em_82547_move_tail(void *);
326 static void	em_82547_move_tail_serialized(struct adapter *);
327 static int	em_dma_malloc(struct adapter *, bus_size_t,
328 			      struct em_dma_alloc *);
329 static void	em_dma_free(struct adapter *, struct em_dma_alloc *);
330 static void	em_print_debug_info(struct adapter *);
331 static int	em_is_valid_ether_addr(uint8_t *);
332 static int	em_sysctl_stats(SYSCTL_HANDLER_ARGS);
333 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
334 static uint32_t	em_fill_descriptors(bus_addr_t address, uint32_t length,
335 				   PDESC_ARRAY desc_array);
336 static int	em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
337 static int	em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
338 static void	em_add_int_delay_sysctl(struct adapter *, const char *,
339 					const char *,
340 					struct em_int_delay_info *, int, int);
341 
342 /*********************************************************************
343  *  FreeBSD Device Interface Entry Points
344  *********************************************************************/
345 
346 static device_method_t em_methods[] = {
347 	/* Device interface */
348 	DEVMETHOD(device_probe, em_probe),
349 	DEVMETHOD(device_attach, em_attach),
350 	DEVMETHOD(device_detach, em_detach),
351 	DEVMETHOD(device_shutdown, em_shutdown),
352 	DEVMETHOD(device_suspend, em_suspend),
353 	DEVMETHOD(device_resume, em_resume),
354 	{0, 0}
355 };
356 
357 static driver_t em_driver = {
358 	"em", em_methods, sizeof(struct adapter),
359 };
360 
361 static devclass_t em_devclass;
362 
363 DECLARE_DUMMY_MODULE(if_em);
364 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, 0, 0);
365 
366 /*********************************************************************
367  *  Tunable default values.
368  *********************************************************************/
369 
370 #define E1000_TICKS_TO_USECS(ticks)	((1024 * (ticks) + 500) / 1000)
371 #define E1000_USECS_TO_TICKS(usecs)	((1000 * (usecs) + 512) / 1024)
372 
373 static int em_tx_int_delay_dflt = E1000_TICKS_TO_USECS(EM_TIDV);
374 static int em_rx_int_delay_dflt = E1000_TICKS_TO_USECS(EM_RDTR);
375 static int em_tx_abs_int_delay_dflt = E1000_TICKS_TO_USECS(EM_TADV);
376 static int em_rx_abs_int_delay_dflt = E1000_TICKS_TO_USECS(EM_RADV);
377 static int em_int_throttle_ceil = 10000;
378 static int em_rxd = EM_DEFAULT_RXD;
379 static int em_txd = EM_DEFAULT_TXD;
380 static int em_smart_pwr_down = FALSE;
381 
382 TUNABLE_INT("hw.em.tx_int_delay", &em_tx_int_delay_dflt);
383 TUNABLE_INT("hw.em.rx_int_delay", &em_rx_int_delay_dflt);
384 TUNABLE_INT("hw.em.tx_abs_int_delay", &em_tx_abs_int_delay_dflt);
385 TUNABLE_INT("hw.em.rx_abs_int_delay", &em_rx_abs_int_delay_dflt);
386 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
387 TUNABLE_INT("hw.em.rxd", &em_rxd);
388 TUNABLE_INT("hw.em.txd", &em_txd);
389 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
390 
391 /*
392  * Kernel trace for characterization of operations
393  */
394 #if !defined(KTR_IF_EM)
395 #define KTR_IF_EM	KTR_ALL
396 #endif
397 KTR_INFO_MASTER(if_em);
398 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin", 0);
399 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end", 0);
400 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet", 0);
401 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet", 0);
402 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean", 0);
403 #define logif(name)	KTR_LOG(if_em_ ## name)
404 
405 /*********************************************************************
406  *  Device identification routine
407  *
408  *  em_probe determines if the driver should be loaded on
409  *  adapter based on PCI vendor/device id of the adapter.
410  *
411  *  return 0 on success, positive on failure
412  *********************************************************************/
413 
414 static int
415 em_probe(device_t dev)
416 {
417 	em_vendor_info_t *ent;
418 
419 	uint16_t pci_vendor_id = 0;
420 	uint16_t pci_device_id = 0;
421 	uint16_t pci_subvendor_id = 0;
422 	uint16_t pci_subdevice_id = 0;
423 	char adapter_name[60];
424 
425 	INIT_DEBUGOUT("em_probe: begin");
426 
427 	pci_vendor_id = pci_get_vendor(dev);
428 	if (pci_vendor_id != EM_VENDOR_ID)
429 		return (ENXIO);
430 
431 	pci_device_id = pci_get_device(dev);
432 	pci_subvendor_id = pci_get_subvendor(dev);
433 	pci_subdevice_id = pci_get_subdevice(dev);
434 
435 	ent = em_vendor_info_array;
436 	while (ent->vendor_id != 0) {
437 		if ((pci_vendor_id == ent->vendor_id) &&
438 		    (pci_device_id == ent->device_id) &&
439 
440 		    ((pci_subvendor_id == ent->subvendor_id) ||
441 		     (ent->subvendor_id == PCI_ANY_ID)) &&
442 
443 		    ((pci_subdevice_id == ent->subdevice_id) ||
444 		     (ent->subdevice_id == PCI_ANY_ID))) {
445 			ksnprintf(adapter_name, sizeof(adapter_name),
446 				 "%s, Version - %s",  em_strings[ent->index],
447 				 em_driver_version);
448 			device_set_desc_copy(dev, adapter_name);
449 			device_set_async_attach(dev, TRUE);
450 			return (0);
451 		}
452 		ent++;
453 	}
454 
455 	return (ENXIO);
456 }
457 
458 /*********************************************************************
459  *  Device initialization routine
460  *
461  *  The attach entry point is called when the driver is being loaded.
462  *  This routine identifies the type of hardware, allocates all resources
463  *  and initializes the hardware.
464  *
465  *  return 0 on success, positive on failure
466  *********************************************************************/
467 
468 static int
469 em_attach(device_t dev)
470 {
471 	struct adapter *adapter;
472 	struct ifnet *ifp;
473 	int tsize, rsize;
474 	int error = 0;
475 
476 	INIT_DEBUGOUT("em_attach: begin");
477 
478 	adapter = device_get_softc(dev);
479 	ifp = &adapter->interface_data.ac_if;
480 
481 	callout_init(&adapter->timer);
482 	callout_init(&adapter->tx_fifo_timer);
483 
484 	adapter->dev = dev;
485 	adapter->osdep.dev = dev;
486 
487 	/* SYSCTL stuff */
488 	sysctl_ctx_init(&adapter->sysctl_ctx);
489 	adapter->sysctl_tree = SYSCTL_ADD_NODE(&adapter->sysctl_ctx,
490 					       SYSCTL_STATIC_CHILDREN(_hw),
491 					       OID_AUTO,
492 					       device_get_nameunit(dev),
493 					       CTLFLAG_RD,
494 					       0, "");
495 
496 	if (adapter->sysctl_tree == NULL) {
497 		device_printf(dev, "Unable to create sysctl tree\n");
498 		return EIO;
499 	}
500 
501 	SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
502 			SYSCTL_CHILDREN(adapter->sysctl_tree),
503 			OID_AUTO, "debug_info", CTLTYPE_INT|CTLFLAG_RW,
504 			(void *)adapter, 0,
505 			em_sysctl_debug_info, "I", "Debug Information");
506 
507 	SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
508 			SYSCTL_CHILDREN(adapter->sysctl_tree),
509 			OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW,
510 			(void *)adapter, 0,
511 			em_sysctl_stats, "I", "Statistics");
512 
513 	/* Determine hardware revision */
514 	em_identify_hardware(adapter);
515 
516 	/* Set up some sysctls for the tunable interrupt delays */
517 	em_add_int_delay_sysctl(adapter, "rx_int_delay",
518 				"receive interrupt delay in usecs",
519 				&adapter->rx_int_delay,
520 				E1000_REG_OFFSET(&adapter->hw, RDTR),
521 				em_rx_int_delay_dflt);
522 	em_add_int_delay_sysctl(adapter, "tx_int_delay",
523 				"transmit interrupt delay in usecs",
524 				&adapter->tx_int_delay,
525 				E1000_REG_OFFSET(&adapter->hw, TIDV),
526 				em_tx_int_delay_dflt);
527 	if (adapter->hw.mac_type >= em_82540) {
528 		em_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
529 					"receive interrupt delay limit in usecs",
530 					&adapter->rx_abs_int_delay,
531 					E1000_REG_OFFSET(&adapter->hw, RADV),
532 					em_rx_abs_int_delay_dflt);
533 		em_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
534 					"transmit interrupt delay limit in usecs",
535 					&adapter->tx_abs_int_delay,
536 					E1000_REG_OFFSET(&adapter->hw, TADV),
537 					em_tx_abs_int_delay_dflt);
538 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
539 			SYSCTL_CHILDREN(adapter->sysctl_tree),
540 			OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW,
541 			adapter, 0, em_sysctl_int_throttle, "I", NULL);
542 	}
543 
544 	/*
545 	 * Validate number of transmit and receive descriptors. It
546 	 * must not exceed hardware maximum, and must be multiple
547 	 * of EM_DBA_ALIGN.
548 	 */
549 	if (((em_txd * sizeof(struct em_tx_desc)) % EM_DBA_ALIGN) != 0 ||
550 	    (adapter->hw.mac_type >= em_82544 && em_txd > EM_MAX_TXD) ||
551 	    (adapter->hw.mac_type < em_82544 && em_txd > EM_MAX_TXD_82543) ||
552 	    (em_txd < EM_MIN_TXD)) {
553 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
554 			      EM_DEFAULT_TXD, em_txd);
555 		adapter->num_tx_desc = EM_DEFAULT_TXD;
556 	} else {
557 		adapter->num_tx_desc = em_txd;
558 	}
559 
560 	if (((em_rxd * sizeof(struct em_rx_desc)) % EM_DBA_ALIGN) != 0 ||
561 	    (adapter->hw.mac_type >= em_82544 && em_rxd > EM_MAX_RXD) ||
562 	    (adapter->hw.mac_type < em_82544 && em_rxd > EM_MAX_RXD_82543) ||
563 	    (em_rxd < EM_MIN_RXD)) {
564 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
565 			      EM_DEFAULT_RXD, em_rxd);
566 		adapter->num_rx_desc = EM_DEFAULT_RXD;
567 	} else {
568 		adapter->num_rx_desc = em_rxd;
569 	}
570 
571 	SYSCTL_ADD_INT(&adapter->sysctl_ctx,
572 		       SYSCTL_CHILDREN(adapter->sysctl_tree), OID_AUTO, "rxd",
573 		       CTLFLAG_RD, &adapter->num_rx_desc, 0, NULL);
574 	SYSCTL_ADD_INT(&adapter->sysctl_ctx,
575 		       SYSCTL_CHILDREN(adapter->sysctl_tree), OID_AUTO, "txd",
576 		       CTLFLAG_RD, &adapter->num_tx_desc, 0, NULL);
577 
578 	adapter->hw.autoneg = DO_AUTO_NEG;
579 	adapter->hw.wait_autoneg_complete = WAIT_FOR_AUTO_NEG_DEFAULT;
580 	adapter->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT;
581 	adapter->hw.tbi_compatibility_en = TRUE;
582 	adapter->rx_buffer_len = EM_RXBUFFER_2048;
583 
584 	adapter->hw.phy_init_script = 1;
585 	adapter->hw.phy_reset_disable = FALSE;
586 
587 #ifndef EM_MASTER_SLAVE
588 	adapter->hw.master_slave = em_ms_hw_default;
589 #else
590 	adapter->hw.master_slave = EM_MASTER_SLAVE;
591 #endif
592 
593 	/*
594 	 * Set the max frame size assuming standard ethernet
595 	 * sized frames.
596 	 */
597 	adapter->hw.max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
598 
599 	adapter->hw.min_frame_size =
600 	    MINIMUM_ETHERNET_PACKET_SIZE + ETHER_CRC_LEN;
601 
602 	/*
603 	 * This controls when hardware reports transmit completion
604 	 * status.
605 	 */
606 	adapter->hw.report_tx_early = 1;
607 
608 	error = em_allocate_pci_resources(dev);
609 	if (error)
610 		goto fail;
611 
612 	/* Initialize eeprom parameters */
613 	em_init_eeprom_params(&adapter->hw);
614 
615 	tsize = roundup2(adapter->num_tx_desc * sizeof(struct em_tx_desc),
616 			 EM_DBA_ALIGN);
617 
618 	/* Allocate Transmit Descriptor ring */
619 	error = em_dma_malloc(adapter, tsize, &adapter->txdma);
620 	if (error) {
621 		device_printf(dev, "Unable to allocate TxDescriptor memory\n");
622 		goto fail;
623 	}
624 	adapter->tx_desc_base = (struct em_tx_desc *)adapter->txdma.dma_vaddr;
625 
626 	rsize = roundup2(adapter->num_rx_desc * sizeof(struct em_rx_desc),
627 			 EM_DBA_ALIGN);
628 
629 	/* Allocate Receive Descriptor ring */
630 	error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
631 	if (error) {
632 		device_printf(dev, "Unable to allocate rx_desc memory\n");
633 		goto fail;
634 	}
635 	adapter->rx_desc_base = (struct em_rx_desc *)adapter->rxdma.dma_vaddr;
636 
637 	/* Initialize the hardware */
638 	if (em_hardware_init(adapter)) {
639 		device_printf(dev, "Unable to initialize the hardware\n");
640 		error = EIO;
641 		goto fail;
642 	}
643 
644 	/* Copy the permanent MAC address out of the EEPROM */
645 	if (em_read_mac_addr(&adapter->hw) < 0) {
646 		device_printf(dev,
647 			      "EEPROM read error while reading MAC address\n");
648 		error = EIO;
649 		goto fail;
650 	}
651 
652 	if (!em_is_valid_ether_addr(adapter->hw.mac_addr)) {
653 		device_printf(dev, "Invalid MAC address\n");
654 		error = EIO;
655 		goto fail;
656 	}
657 
658 	/* Setup OS specific network interface */
659 	em_setup_interface(dev, adapter);
660 
661 	/* Initialize statistics */
662 	em_clear_hw_cntrs(&adapter->hw);
663 	em_update_stats_counters(adapter);
664 	adapter->hw.get_link_status = 1;
665 	em_update_link_status(adapter);
666 
667 	/* Indicate SOL/IDER usage */
668 	if (em_check_phy_reset_block(&adapter->hw)) {
669 		device_printf(dev, "PHY reset is blocked due to "
670 			      "SOL/IDER session.\n");
671 	}
672 
673 	/* Identify 82544 on PCIX */
674 	em_get_bus_info(&adapter->hw);
675 	if (adapter->hw.bus_type == em_bus_type_pcix &&
676 	    adapter->hw.mac_type == em_82544)
677 		adapter->pcix_82544 = TRUE;
678 	else
679 		adapter->pcix_82544 = FALSE;
680 
681 	error = bus_setup_intr(dev, adapter->res_interrupt, INTR_MPSAFE,
682 			   em_intr, adapter,
683 			   &adapter->int_handler_tag, ifp->if_serializer);
684 	if (error) {
685 		device_printf(dev, "Error registering interrupt handler!\n");
686 		ether_ifdetach(ifp);
687 		goto fail;
688 	}
689 
690 	ifp->if_cpuid = ithread_cpuid(rman_get_start(adapter->res_interrupt));
691 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
692 	INIT_DEBUGOUT("em_attach: end");
693 	return(0);
694 
695 fail:
696 	em_detach(dev);
697 	return(error);
698 }
699 
700 /*********************************************************************
701  *  Device removal routine
702  *
703  *  The detach entry point is called when the driver is being removed.
704  *  This routine stops the adapter and deallocates all the resources
705  *  that were allocated for driver operation.
706  *
707  *  return 0 on success, positive on failure
708  *********************************************************************/
709 
710 static int
711 em_detach(device_t dev)
712 {
713 	struct adapter *adapter = device_get_softc(dev);
714 
715 	INIT_DEBUGOUT("em_detach: begin");
716 
717 	if (device_is_attached(dev)) {
718 		struct ifnet *ifp = &adapter->interface_data.ac_if;
719 
720 		lwkt_serialize_enter(ifp->if_serializer);
721 		adapter->in_detach = 1;
722 		em_stop(adapter);
723 		em_phy_hw_reset(&adapter->hw);
724 		bus_teardown_intr(dev, adapter->res_interrupt,
725 				  adapter->int_handler_tag);
726 		lwkt_serialize_exit(ifp->if_serializer);
727 
728 		ether_ifdetach(ifp);
729 	}
730 	bus_generic_detach(dev);
731 
732 	em_free_pci_resources(dev);
733 
734 	/* Free Transmit Descriptor ring */
735 	if (adapter->tx_desc_base != NULL) {
736 		em_dma_free(adapter, &adapter->txdma);
737 		adapter->tx_desc_base = NULL;
738 	}
739 
740 	/* Free Receive Descriptor ring */
741 	if (adapter->rx_desc_base != NULL) {
742 		em_dma_free(adapter, &adapter->rxdma);
743 		adapter->rx_desc_base = NULL;
744 	}
745 
746 	/* Free sysctl tree */
747 	if (adapter->sysctl_tree != NULL) {
748 		adapter->sysctl_tree = NULL;
749 		sysctl_ctx_free(&adapter->sysctl_ctx);
750 	}
751 
752 	return (0);
753 }
754 
755 /*********************************************************************
756  *
757  *  Shutdown entry point
758  *
759  **********************************************************************/
760 
761 static int
762 em_shutdown(device_t dev)
763 {
764 	struct adapter *adapter = device_get_softc(dev);
765 	struct ifnet *ifp = &adapter->interface_data.ac_if;
766 
767 	lwkt_serialize_enter(ifp->if_serializer);
768 	em_stop(adapter);
769 	lwkt_serialize_exit(ifp->if_serializer);
770 
771 	return (0);
772 }
773 
774 /*
775  * Suspend/resume device methods.
776  */
777 static int
778 em_suspend(device_t dev)
779 {
780 	struct adapter *adapter = device_get_softc(dev);
781 	struct ifnet *ifp = &adapter->interface_data.ac_if;
782 
783 	lwkt_serialize_enter(ifp->if_serializer);
784 	em_stop(adapter);
785 	lwkt_serialize_exit(ifp->if_serializer);
786 	return (0);
787 }
788 
789 static int
790 em_resume(device_t dev)
791 {
792 	struct adapter *adapter = device_get_softc(dev);
793 	struct ifnet *ifp = &adapter->interface_data.ac_if;
794 
795 	lwkt_serialize_enter(ifp->if_serializer);
796 	ifp->if_flags &= ~IFF_RUNNING;
797 	em_init(adapter);
798 	if_devstart(ifp);
799 	lwkt_serialize_exit(ifp->if_serializer);
800 
801 	return bus_generic_resume(dev);
802 }
803 
804 /*********************************************************************
805  *  Transmit entry point
806  *
807  *  em_start is called by the stack to initiate a transmit.
808  *  The driver will remain in this routine as long as there are
809  *  packets to transmit and transmit resources are available.
810  *  In case resources are not available stack is notified and
811  *  the packet is requeued.
812  **********************************************************************/
813 
814 static void
815 em_start(struct ifnet *ifp)
816 {
817 	struct mbuf *m_head;
818 	struct adapter *adapter = ifp->if_softc;
819 
820 	ASSERT_SERIALIZED(ifp->if_serializer);
821 
822 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
823 		return;
824 	if (!adapter->link_active) {
825 		ifq_purge(&ifp->if_snd);
826 		return;
827 	}
828 	while (!ifq_is_empty(&ifp->if_snd)) {
829 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
830 		if (m_head == NULL)
831 			break;
832 
833 		logif(pkt_txqueue);
834 		if (em_encap(adapter, m_head)) {
835 			ifp->if_flags |= IFF_OACTIVE;
836 			ifq_prepend(&ifp->if_snd, m_head);
837 			break;
838 		}
839 
840 		/* Send a copy of the frame to the BPF listener */
841 		ETHER_BPF_MTAP(ifp, m_head);
842 
843 		/* Set timeout in case hardware has problems transmitting. */
844 		ifp->if_timer = EM_TX_TIMEOUT;
845 	}
846 }
847 
848 /*********************************************************************
849  *  Ioctl entry point
850  *
851  *  em_ioctl is called when the user wants to configure the
852  *  interface.
853  *
854  *  return 0 on success, positive on failure
855  **********************************************************************/
856 
857 static int
858 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
859 {
860 	int max_frame_size, mask, error = 0, reinit = 0;
861 	struct ifreq *ifr = (struct ifreq *) data;
862 	struct adapter *adapter = ifp->if_softc;
863 	uint16_t eeprom_data = 0;
864 
865 	ASSERT_SERIALIZED(ifp->if_serializer);
866 
867 	if (adapter->in_detach)
868 		return 0;
869 
870 	switch (command) {
871 	case SIOCSIFMTU:
872 		IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
873 		switch (adapter->hw.mac_type) {
874 		case em_82573:
875 			/*
876 			 * 82573 only supports jumbo frames
877 			 * if ASPM is disabled.
878 			 */
879 			em_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3,
880 			    1, &eeprom_data);
881 			if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) {
882 				max_frame_size = ETHER_MAX_LEN;
883 				break;
884 			}
885 			/* Allow Jumbo frames */
886 			/* FALLTHROUGH */
887 		case em_82571:
888 		case em_82572:
889 		case em_ich9lan:
890 		case em_80003es2lan:	/* Limit Jumbo Frame size */
891 			max_frame_size = 9234;
892 			break;
893 		case em_ich8lan:
894 			/* ICH8 does not support jumbo frames */
895 			max_frame_size = ETHER_MAX_LEN;
896 			break;
897 		default:
898 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
899 			break;
900 		}
901 		if (ifr->ifr_mtu >
902 			max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
903 			error = EINVAL;
904 		} else {
905 			ifp->if_mtu = ifr->ifr_mtu;
906 			adapter->hw.max_frame_size =
907 			ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
908 			ifp->if_flags &= ~IFF_RUNNING;
909 			em_init(adapter);
910 		}
911 		break;
912 	case SIOCSIFFLAGS:
913 		IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFFLAGS "
914 			       "(Set Interface Flags)");
915 		if (ifp->if_flags & IFF_UP) {
916 			if (!(ifp->if_flags & IFF_RUNNING)) {
917 				em_init(adapter);
918 			} else if ((ifp->if_flags ^ adapter->if_flags) &
919 				   (IFF_PROMISC | IFF_ALLMULTI)) {
920 				em_disable_promisc(adapter);
921 				em_set_promisc(adapter);
922 			}
923 		} else {
924 			if (ifp->if_flags & IFF_RUNNING)
925 				em_stop(adapter);
926 		}
927 		adapter->if_flags = ifp->if_flags;
928 		break;
929 	case SIOCADDMULTI:
930 	case SIOCDELMULTI:
931 		IOCTL_DEBUGOUT("ioctl rcv'd: SIOC(ADD|DEL)MULTI");
932 		if (ifp->if_flags & IFF_RUNNING) {
933 			em_disable_intr(adapter);
934 			em_set_multi(adapter);
935 			if (adapter->hw.mac_type == em_82542_rev2_0)
936 				em_initialize_receive_unit(adapter);
937 #ifdef DEVICE_POLLING
938 			/* Do not enable interrupt if polling(4) is enabled */
939 			if ((ifp->if_flags & IFF_POLLING) == 0)
940 #endif
941 			em_enable_intr(adapter);
942 		}
943 		break;
944 	case SIOCSIFMEDIA:
945 		/* Check SOL/IDER usage */
946 		if (em_check_phy_reset_block(&adapter->hw)) {
947 			if_printf(ifp, "Media change is blocked due to "
948 				  "SOL/IDER session.\n");
949 			break;
950 		}
951 		/* FALLTHROUGH */
952 	case SIOCGIFMEDIA:
953 		IOCTL_DEBUGOUT("ioctl rcv'd: SIOCxIFMEDIA "
954 			       "(Get/Set Interface Media)");
955 		error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
956 		break;
957 	case SIOCSIFCAP:
958 		IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFCAP (Set Capabilities)");
959 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
960 		if (mask & IFCAP_HWCSUM) {
961 			ifp->if_capenable ^= IFCAP_HWCSUM;
962 			reinit = 1;
963 		}
964 		if (mask & IFCAP_VLAN_HWTAGGING) {
965 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
966 			reinit = 1;
967 		}
968 		if (reinit && (ifp->if_flags & IFF_RUNNING)) {
969 			ifp->if_flags &= ~IFF_RUNNING;
970 			em_init(adapter);
971 		}
972 		break;
973 	default:
974 		error = ether_ioctl(ifp, command, data);
975 		break;
976 	}
977 
978 	return (error);
979 }
980 
981 /*********************************************************************
982  *  Watchdog entry point
983  *
984  *  This routine is called whenever hardware quits transmitting.
985  *
986  **********************************************************************/
987 
988 static void
989 em_watchdog(struct ifnet *ifp)
990 {
991 	struct adapter *adapter = ifp->if_softc;
992 
993 	/*
994 	 * If we are in this routine because of pause frames, then
995 	 * don't reset the hardware.
996 	 */
997 	if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_TXOFF) {
998 		ifp->if_timer = EM_TX_TIMEOUT;
999 		return;
1000 	}
1001 
1002 	if (em_check_for_link(&adapter->hw) == 0)
1003 		if_printf(ifp, "watchdog timeout -- resetting\n");
1004 
1005 	ifp->if_flags &= ~IFF_RUNNING;
1006 	em_init(adapter);
1007 
1008 	adapter->watchdog_timeouts++;
1009 }
1010 
1011 /*********************************************************************
1012  *  Init entry point
1013  *
1014  *  This routine is used in two ways. It is used by the stack as
1015  *  init entry point in network interface structure. It is also used
1016  *  by the driver as a hw/sw initialization routine to get to a
1017  *  consistent state.
1018  *
1019  *  return 0 on success, positive on failure
1020  **********************************************************************/
1021 
1022 static void
1023 em_init(void *arg)
1024 {
1025 	struct adapter *adapter = arg;
1026 	uint32_t pba;
1027 	struct ifnet *ifp = &adapter->interface_data.ac_if;
1028 
1029 	ASSERT_SERIALIZED(ifp->if_serializer);
1030 
1031 	INIT_DEBUGOUT("em_init: begin");
1032 
1033 	if (ifp->if_flags & IFF_RUNNING)
1034 		return;
1035 
1036 	em_stop(adapter);
1037 
1038 	/*
1039 	 * Packet Buffer Allocation (PBA)
1040 	 * Writing PBA sets the receive portion of the buffer
1041 	 * the remainder is used for the transmit buffer.
1042 	 *
1043 	 * Devices before the 82547 had a Packet Buffer of 64K.
1044 	 *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
1045 	 * After the 82547 the buffer was reduced to 40K.
1046 	 *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
1047 	 *   Note: default does not leave enough room for Jumbo Frame >10k.
1048 	 */
1049 	switch (adapter->hw.mac_type) {
1050 	case em_82547:
1051 	case em_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
1052 		if (adapter->hw.max_frame_size > EM_RXBUFFER_8192)
1053 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
1054 		else
1055 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
1056 
1057 		adapter->tx_fifo_head = 0;
1058 		adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
1059 		adapter->tx_fifo_size =
1060 			(E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
1061 		break;
1062 	/* Total Packet Buffer on these is 48K */
1063 	case em_82571:
1064 	case em_82572:
1065 	case em_80003es2lan:
1066 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1067 		break;
1068 	case em_82573: /* 82573: Total Packet Buffer is 32K */
1069 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1070 		break;
1071 	case em_ich8lan:
1072 		pba = E1000_PBA_8K;
1073 		break;
1074 	case em_ich9lan:
1075 #define E1000_PBA_10K   0x000A
1076 		pba = E1000_PBA_10K;
1077 		break;
1078 	default:
1079 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1080 		if(adapter->hw.max_frame_size > EM_RXBUFFER_8192)
1081 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1082 		else
1083 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1084 	}
1085 
1086 	INIT_DEBUGOUT1("em_init: pba=%dK",pba);
1087 	E1000_WRITE_REG(&adapter->hw, PBA, pba);
1088 
1089 	/* Get the latest mac address, User can use a LAA */
1090 	bcopy(adapter->interface_data.ac_enaddr, adapter->hw.mac_addr,
1091 	      ETHER_ADDR_LEN);
1092 
1093 	/* Initialize the hardware */
1094 	if (em_hardware_init(adapter)) {
1095 		if_printf(ifp, "Unable to initialize the hardware\n");
1096 		return;
1097 	}
1098 	em_update_link_status(adapter);
1099 
1100 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1101 		em_enable_vlans(adapter);
1102 
1103 	/* Set hardware offload abilities */
1104 	if (adapter->hw.mac_type >= em_82543) {
1105 		if (ifp->if_capenable & IFCAP_TXCSUM)
1106 			ifp->if_hwassist = EM_CHECKSUM_FEATURES;
1107 		else
1108 			ifp->if_hwassist = 0;
1109 	}
1110 
1111 	/* Prepare transmit descriptors and buffers */
1112 	if (em_setup_transmit_structures(adapter)) {
1113 		if_printf(ifp, "Could not setup transmit structures\n");
1114 		em_stop(adapter);
1115 		return;
1116 	}
1117 	em_initialize_transmit_unit(adapter);
1118 
1119 	/* Setup Multicast table */
1120 	em_set_multi(adapter);
1121 
1122 	/* Prepare receive descriptors and buffers */
1123 	if (em_setup_receive_structures(adapter)) {
1124 		if_printf(ifp, "Could not setup receive structures\n");
1125 		em_stop(adapter);
1126 		return;
1127 	}
1128 	em_initialize_receive_unit(adapter);
1129 
1130 	/* Don't lose promiscuous settings */
1131 	em_set_promisc(adapter);
1132 
1133 	ifp->if_flags |= IFF_RUNNING;
1134 	ifp->if_flags &= ~IFF_OACTIVE;
1135 
1136 	callout_reset(&adapter->timer, hz, em_local_timer, adapter);
1137 	em_clear_hw_cntrs(&adapter->hw);
1138 
1139 #ifdef DEVICE_POLLING
1140 	/* Do not enable interrupt if polling(4) is enabled */
1141 	if (ifp->if_flags & IFF_POLLING)
1142 		em_disable_intr(adapter);
1143 	else
1144 #endif
1145 	em_enable_intr(adapter);
1146 
1147 	/* Don't reset the phy next time init gets called */
1148 	adapter->hw.phy_reset_disable = TRUE;
1149 }
1150 
1151 #ifdef DEVICE_POLLING
1152 
1153 static void
1154 em_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1155 {
1156 	struct adapter *adapter = ifp->if_softc;
1157 	uint32_t reg_icr;
1158 
1159 	ASSERT_SERIALIZED(ifp->if_serializer);
1160 
1161 	switch(cmd) {
1162 	case POLL_REGISTER:
1163 		em_disable_intr(adapter);
1164 		break;
1165 	case POLL_DEREGISTER:
1166 		em_enable_intr(adapter);
1167 		break;
1168 	case POLL_AND_CHECK_STATUS:
1169 		reg_icr = E1000_READ_REG(&adapter->hw, ICR);
1170 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1171 			callout_stop(&adapter->timer);
1172 			adapter->hw.get_link_status = 1;
1173 			em_check_for_link(&adapter->hw);
1174 			em_update_link_status(adapter);
1175 			callout_reset(&adapter->timer, hz, em_local_timer,
1176 				      adapter);
1177 		}
1178 		/* fall through */
1179 	case POLL_ONLY:
1180 		if (ifp->if_flags & IFF_RUNNING) {
1181 			em_rxeof(adapter, count);
1182 			em_txeof(adapter);
1183 
1184 			if (!ifq_is_empty(&ifp->if_snd))
1185 				if_devstart(ifp);
1186 		}
1187 		break;
1188 	}
1189 }
1190 
1191 #endif /* DEVICE_POLLING */
1192 
1193 /*********************************************************************
1194  *
1195  *  Interrupt Service routine
1196  *
1197  *********************************************************************/
1198 static void
1199 em_intr(void *arg)
1200 {
1201 	uint32_t reg_icr;
1202 	struct ifnet *ifp;
1203 	struct adapter *adapter = arg;
1204 
1205 	ifp = &adapter->interface_data.ac_if;
1206 
1207 	logif(intr_beg);
1208 	ASSERT_SERIALIZED(ifp->if_serializer);
1209 
1210 	reg_icr = E1000_READ_REG(&adapter->hw, ICR);
1211 	if ((adapter->hw.mac_type >= em_82571 &&
1212 	     (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1213 	    reg_icr == 0) {
1214 		logif(intr_end);
1215 		return;
1216 	}
1217 
1218 	/*
1219 	 * XXX: some laptops trigger several spurious interrupts on em(4)
1220 	 * when in the resume cycle. The ICR register reports all-ones
1221 	 * value in this case. Processing such interrupts would lead to
1222 	 * a freeze. I don't know why.
1223 	 */
1224 	if (reg_icr == 0xffffffff) {
1225 		logif(intr_end);
1226 		return;
1227 	}
1228 
1229 	/*
1230 	 * note: do not attempt to improve efficiency by looping.  This
1231 	 * only results in unnecessary piecemeal collection of received
1232 	 * packets and unnecessary piecemeal cleanups of the transmit ring.
1233 	 */
1234 	if (ifp->if_flags & IFF_RUNNING) {
1235 		em_rxeof(adapter, -1);
1236 		em_txeof(adapter);
1237 	}
1238 
1239 	/* Link status change */
1240 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1241 		callout_stop(&adapter->timer);
1242 		adapter->hw.get_link_status = 1;
1243 		em_check_for_link(&adapter->hw);
1244 		em_update_link_status(adapter);
1245 		callout_reset(&adapter->timer, hz, em_local_timer, adapter);
1246 	}
1247 
1248 	if (reg_icr & E1000_ICR_RXO)
1249 		adapter->rx_overruns++;
1250 
1251 	if ((ifp->if_flags & IFF_RUNNING) && !ifq_is_empty(&ifp->if_snd))
1252 		if_devstart(ifp);
1253 
1254 	logif(intr_end);
1255 }
1256 
1257 /*********************************************************************
1258  *
1259  *  Media Ioctl callback
1260  *
1261  *  This routine is called whenever the user queries the status of
1262  *  the interface using ifconfig.
1263  *
1264  **********************************************************************/
1265 static void
1266 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1267 {
1268 	struct adapter *adapter = ifp->if_softc;
1269 	u_char fiber_type = IFM_1000_SX;
1270 
1271 	INIT_DEBUGOUT("em_media_status: begin");
1272 
1273 	ASSERT_SERIALIZED(ifp->if_serializer);
1274 
1275 	em_check_for_link(&adapter->hw);
1276 	em_update_link_status(adapter);
1277 
1278 	ifmr->ifm_status = IFM_AVALID;
1279 	ifmr->ifm_active = IFM_ETHER;
1280 
1281 	if (!adapter->link_active)
1282 		return;
1283 
1284 	ifmr->ifm_status |= IFM_ACTIVE;
1285 
1286 	if (adapter->hw.media_type == em_media_type_fiber ||
1287 	    adapter->hw.media_type == em_media_type_internal_serdes) {
1288 		if (adapter->hw.mac_type == em_82545)
1289 			fiber_type = IFM_1000_LX;
1290 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1291 	} else {
1292 		switch (adapter->link_speed) {
1293 		case 10:
1294 			ifmr->ifm_active |= IFM_10_T;
1295 			break;
1296 		case 100:
1297 			ifmr->ifm_active |= IFM_100_TX;
1298 			break;
1299 		case 1000:
1300 			ifmr->ifm_active |= IFM_1000_T;
1301 			break;
1302 		}
1303 		if (adapter->link_duplex == FULL_DUPLEX)
1304 			ifmr->ifm_active |= IFM_FDX;
1305 		else
1306 			ifmr->ifm_active |= IFM_HDX;
1307 	}
1308 }
1309 
1310 /*********************************************************************
1311  *
1312  *  Media Ioctl callback
1313  *
1314  *  This routine is called when the user changes speed/duplex using
1315  *  media/mediopt option with ifconfig.
1316  *
1317  **********************************************************************/
1318 static int
1319 em_media_change(struct ifnet *ifp)
1320 {
1321 	struct adapter *adapter = ifp->if_softc;
1322 	struct ifmedia *ifm = &adapter->media;
1323 
1324 	INIT_DEBUGOUT("em_media_change: begin");
1325 
1326 	ASSERT_SERIALIZED(ifp->if_serializer);
1327 
1328 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1329 		return (EINVAL);
1330 
1331 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1332 	case IFM_AUTO:
1333 		adapter->hw.autoneg = DO_AUTO_NEG;
1334 		adapter->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1335 		break;
1336 	case IFM_1000_LX:
1337 	case IFM_1000_SX:
1338 	case IFM_1000_T:
1339 		adapter->hw.autoneg = DO_AUTO_NEG;
1340 		adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
1341 		break;
1342 	case IFM_100_TX:
1343 		adapter->hw.autoneg = FALSE;
1344 		adapter->hw.autoneg_advertised = 0;
1345 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1346 			adapter->hw.forced_speed_duplex = em_100_full;
1347 		else
1348 			adapter->hw.forced_speed_duplex = em_100_half;
1349 		break;
1350 	case IFM_10_T:
1351 		adapter->hw.autoneg = FALSE;
1352 		adapter->hw.autoneg_advertised = 0;
1353 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1354 			adapter->hw.forced_speed_duplex = em_10_full;
1355 		else
1356 			adapter->hw.forced_speed_duplex = em_10_half;
1357 		break;
1358 	default:
1359 		if_printf(ifp, "Unsupported media type\n");
1360 	}
1361 	/*
1362 	 * As the speed/duplex settings may have changed we need to
1363 	 * reset the PHY.
1364 	 */
1365 	adapter->hw.phy_reset_disable = FALSE;
1366 
1367 	ifp->if_flags &= ~IFF_RUNNING;
1368 	em_init(adapter);
1369 
1370 	return(0);
1371 }
1372 
1373 static void
1374 em_tx_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize,
1375 	 int error)
1376 {
1377 	struct em_q *q = arg;
1378 
1379 	if (error)
1380 		return;
1381 	KASSERT(nsegs <= EM_MAX_SCATTER,
1382 		("Too many DMA segments returned when mapping tx packet"));
1383 	q->nsegs = nsegs;
1384 	bcopy(seg, q->segs, nsegs * sizeof(seg[0]));
1385 }
1386 
1387 /*********************************************************************
1388  *
1389  *  This routine maps the mbufs to tx descriptors.
1390  *
1391  *  return 0 on success, positive on failure
1392  **********************************************************************/
1393 static int
1394 em_encap(struct adapter *adapter, struct mbuf *m_head)
1395 {
1396 	uint32_t txd_upper = 0, txd_lower = 0, txd_used = 0, txd_saved = 0;
1397 	int i, j, error, last = 0;
1398 
1399 	struct em_q q;
1400 	struct em_buffer *tx_buffer = NULL, *tx_buffer_first;
1401 	bus_dmamap_t map;
1402 	struct em_tx_desc *current_tx_desc = NULL;
1403 	struct ifnet *ifp = &adapter->interface_data.ac_if;
1404 
1405 	/*
1406 	 * Force a cleanup if number of TX descriptors
1407 	 * available hits the threshold
1408 	 */
1409 	if (adapter->num_tx_desc_avail <= EM_TX_CLEANUP_THRESHOLD) {
1410 		em_txeof(adapter);
1411 		if (adapter->num_tx_desc_avail <= EM_TX_CLEANUP_THRESHOLD) {
1412 			adapter->no_tx_desc_avail1++;
1413 			return (ENOBUFS);
1414 		}
1415 	}
1416 
1417 	/*
1418 	 * Capture the first descriptor index, this descriptor will have
1419 	 * the index of the EOP which is the only one that now gets a
1420 	 * DONE bit writeback.
1421 	 */
1422 	tx_buffer_first = &adapter->tx_buffer_area[adapter->next_avail_tx_desc];
1423 
1424 	/*
1425 	 * Map the packet for DMA.
1426 	 */
1427 	map = tx_buffer_first->map;
1428 	error = bus_dmamap_load_mbuf(adapter->txtag, map, m_head, em_tx_cb,
1429 				     &q, BUS_DMA_NOWAIT);
1430 	if (error != 0) {
1431 		adapter->no_tx_dma_setup++;
1432 		return (error);
1433 	}
1434 	KASSERT(q.nsegs != 0, ("em_encap: empty packet"));
1435 
1436 	if (q.nsegs > (adapter->num_tx_desc_avail - 2)) {
1437 		adapter->no_tx_desc_avail2++;
1438 		error = ENOBUFS;
1439 		goto fail;
1440 	}
1441 
1442 	if (ifp->if_hwassist > 0) {
1443 		em_transmit_checksum_setup(adapter,  m_head,
1444 					   &txd_upper, &txd_lower);
1445 	}
1446 
1447 	i = adapter->next_avail_tx_desc;
1448 	if (adapter->pcix_82544)
1449 		txd_saved = i;
1450 
1451 	/* Set up our transmit descriptors */
1452 	for (j = 0; j < q.nsegs; j++) {
1453 		/* If adapter is 82544 and on PCIX bus */
1454 		if(adapter->pcix_82544) {
1455 			DESC_ARRAY desc_array;
1456 			uint32_t array_elements, counter;
1457 
1458 			/*
1459 			 * Check the Address and Length combination and
1460 			 * split the data accordingly
1461 			 */
1462 			array_elements = em_fill_descriptors(q.segs[j].ds_addr,
1463 						q.segs[j].ds_len, &desc_array);
1464 			for (counter = 0; counter < array_elements; counter++) {
1465 				if (txd_used == adapter->num_tx_desc_avail) {
1466 					adapter->next_avail_tx_desc = txd_saved;
1467 					adapter->no_tx_desc_avail2++;
1468 					error = ENOBUFS;
1469 					goto fail;
1470 				}
1471 				tx_buffer = &adapter->tx_buffer_area[i];
1472 				current_tx_desc = &adapter->tx_desc_base[i];
1473 				current_tx_desc->buffer_addr = htole64(
1474 					desc_array.descriptor[counter].address);
1475 				current_tx_desc->lower.data = htole32(
1476 					adapter->txd_cmd | txd_lower |
1477 					(uint16_t)desc_array.descriptor[counter].length);
1478 				current_tx_desc->upper.data = htole32(txd_upper);
1479 
1480 				last = i;
1481 				if (++i == adapter->num_tx_desc)
1482 					i = 0;
1483 
1484 				tx_buffer->m_head = NULL;
1485 				tx_buffer->next_eop = -1;
1486 				txd_used++;
1487 			}
1488 		} else {
1489 			tx_buffer = &adapter->tx_buffer_area[i];
1490 			current_tx_desc = &adapter->tx_desc_base[i];
1491 
1492 			current_tx_desc->buffer_addr = htole64(q.segs[j].ds_addr);
1493 			current_tx_desc->lower.data = htole32(
1494 				adapter->txd_cmd | txd_lower | q.segs[j].ds_len);
1495 			current_tx_desc->upper.data = htole32(txd_upper);
1496 
1497 			last = i;
1498 			if (++i == adapter->num_tx_desc)
1499 				i = 0;
1500 
1501 			tx_buffer->m_head = NULL;
1502 			tx_buffer->next_eop = -1;
1503 		}
1504 	}
1505 
1506 	adapter->next_avail_tx_desc = i;
1507 	if (adapter->pcix_82544)
1508 		adapter->num_tx_desc_avail -= txd_used;
1509 	else
1510 		adapter->num_tx_desc_avail -= q.nsegs;
1511 
1512 	/* Find out if we are in vlan mode */
1513 	if (m_head->m_flags & M_VLANTAG) {
1514 		/* Set the vlan id */
1515 		current_tx_desc->upper.fields.special =
1516 			htole16(m_head->m_pkthdr.ether_vlantag);
1517 
1518 		/* Tell hardware to add tag */
1519 		current_tx_desc->lower.data |= htole32(E1000_TXD_CMD_VLE);
1520 	}
1521 
1522 	tx_buffer->m_head = m_head;
1523 	tx_buffer_first->map = tx_buffer->map;
1524 	tx_buffer->map = map;
1525 	bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1526 
1527 	/*
1528 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1529 	 * and Report Status (RS)
1530 	 */
1531 	current_tx_desc->lower.data |=
1532 		htole32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
1533 
1534 	/*
1535 	 * Keep track in the first buffer which descriptor will be
1536 	 * written back.
1537 	 */
1538 	tx_buffer_first->next_eop = last;
1539 
1540 	bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
1541 			BUS_DMASYNC_PREWRITE);
1542 
1543 	/*
1544 	 * Advance the Transmit Descriptor Tail (Tdt), this tells the E1000
1545 	 * that this frame is available to transmit.
1546 	 */
1547 	if (adapter->hw.mac_type == em_82547 &&
1548 	    adapter->link_duplex == HALF_DUPLEX) {
1549 		em_82547_move_tail_serialized(adapter);
1550 	} else {
1551 		E1000_WRITE_REG(&adapter->hw, TDT, i);
1552 		if (adapter->hw.mac_type == em_82547) {
1553 			em_82547_update_fifo_head(adapter,
1554 						  m_head->m_pkthdr.len);
1555 		}
1556 	}
1557 
1558 	return (0);
1559 fail:
1560 	bus_dmamap_unload(adapter->txtag, map);
1561 	return error;
1562 }
1563 
1564 /*********************************************************************
1565  *
1566  * 82547 workaround to avoid controller hang in half-duplex environment.
1567  * The workaround is to avoid queuing a large packet that would span
1568  * the internal Tx FIFO ring boundary. We need to reset the FIFO pointers
1569  * in this case. We do that only when FIFO is quiescent.
1570  *
1571  **********************************************************************/
1572 static void
1573 em_82547_move_tail(void *arg)
1574 {
1575 	struct adapter *adapter = arg;
1576 	struct ifnet *ifp = &adapter->interface_data.ac_if;
1577 
1578 	lwkt_serialize_enter(ifp->if_serializer);
1579 	em_82547_move_tail_serialized(adapter);
1580 	lwkt_serialize_exit(ifp->if_serializer);
1581 }
1582 
1583 static void
1584 em_82547_move_tail_serialized(struct adapter *adapter)
1585 {
1586 	uint16_t hw_tdt;
1587 	uint16_t sw_tdt;
1588 	struct em_tx_desc *tx_desc;
1589 	uint16_t length = 0;
1590 	boolean_t eop = 0;
1591 
1592 	hw_tdt = E1000_READ_REG(&adapter->hw, TDT);
1593 	sw_tdt = adapter->next_avail_tx_desc;
1594 
1595 	while (hw_tdt != sw_tdt) {
1596 		tx_desc = &adapter->tx_desc_base[hw_tdt];
1597 		length += tx_desc->lower.flags.length;
1598 		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1599 		if (++hw_tdt == adapter->num_tx_desc)
1600 			hw_tdt = 0;
1601 
1602 		if (eop) {
1603 			if (em_82547_fifo_workaround(adapter, length)) {
1604 				adapter->tx_fifo_wrk_cnt++;
1605 				callout_reset(&adapter->tx_fifo_timer, 1,
1606 					em_82547_move_tail, adapter);
1607 				break;
1608 			}
1609 			E1000_WRITE_REG(&adapter->hw, TDT, hw_tdt);
1610 			em_82547_update_fifo_head(adapter, length);
1611 			length = 0;
1612 		}
1613 	}
1614 }
1615 
1616 static int
1617 em_82547_fifo_workaround(struct adapter *adapter, int len)
1618 {
1619 	int fifo_space, fifo_pkt_len;
1620 
1621 	fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1622 
1623 	if (adapter->link_duplex == HALF_DUPLEX) {
1624 		fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1625 
1626 		if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1627 			if (em_82547_tx_fifo_reset(adapter))
1628 				return (0);
1629 			else
1630 				return (1);
1631 		}
1632 	}
1633 
1634 	return (0);
1635 }
1636 
1637 static void
1638 em_82547_update_fifo_head(struct adapter *adapter, int len)
1639 {
1640 	int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1641 
1642 	/* tx_fifo_head is always 16 byte aligned */
1643 	adapter->tx_fifo_head += fifo_pkt_len;
1644 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1645 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
1646 }
1647 
1648 static int
1649 em_82547_tx_fifo_reset(struct adapter *adapter)
1650 {
1651 	uint32_t tctl;
1652 
1653 	if (E1000_READ_REG(&adapter->hw, TDT) == E1000_READ_REG(&adapter->hw, TDH) &&
1654 	    E1000_READ_REG(&adapter->hw, TDFT) == E1000_READ_REG(&adapter->hw, TDFH) &&
1655 	    E1000_READ_REG(&adapter->hw, TDFTS) == E1000_READ_REG(&adapter->hw, TDFHS) &&
1656 	    E1000_READ_REG(&adapter->hw, TDFPC) == 0) {
1657 		/* Disable TX unit */
1658 		tctl = E1000_READ_REG(&adapter->hw, TCTL);
1659 		E1000_WRITE_REG(&adapter->hw, TCTL, tctl & ~E1000_TCTL_EN);
1660 
1661 		/* Reset FIFO pointers */
1662 		E1000_WRITE_REG(&adapter->hw, TDFT,  adapter->tx_head_addr);
1663 		E1000_WRITE_REG(&adapter->hw, TDFH,  adapter->tx_head_addr);
1664 		E1000_WRITE_REG(&adapter->hw, TDFTS, adapter->tx_head_addr);
1665 		E1000_WRITE_REG(&adapter->hw, TDFHS, adapter->tx_head_addr);
1666 
1667 		/* Re-enable TX unit */
1668 		E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
1669 		E1000_WRITE_FLUSH(&adapter->hw);
1670 
1671 		adapter->tx_fifo_head = 0;
1672 		adapter->tx_fifo_reset_cnt++;
1673 
1674 		return (TRUE);
1675 	} else {
1676 		return (FALSE);
1677 	}
1678 }
1679 
1680 static void
1681 em_set_promisc(struct adapter *adapter)
1682 {
1683 	uint32_t reg_rctl;
1684 	struct ifnet *ifp = &adapter->interface_data.ac_if;
1685 
1686 	reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1687 
1688 	if (ifp->if_flags & IFF_PROMISC) {
1689 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1690 		E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1691 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1692 		reg_rctl |= E1000_RCTL_MPE;
1693 		reg_rctl &= ~E1000_RCTL_UPE;
1694 		E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1695 	}
1696 }
1697 
1698 static void
1699 em_disable_promisc(struct adapter *adapter)
1700 {
1701 	uint32_t reg_rctl;
1702 
1703 	reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1704 
1705 	reg_rctl &= (~E1000_RCTL_UPE);
1706 	reg_rctl &= (~E1000_RCTL_MPE);
1707 	E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1708 }
1709 
1710 /*********************************************************************
1711  *  Multicast Update
1712  *
1713  *  This routine is called whenever multicast address list is updated.
1714  *
1715  **********************************************************************/
1716 
1717 static void
1718 em_set_multi(struct adapter *adapter)
1719 {
1720 	uint32_t reg_rctl = 0;
1721 	uint8_t mta[MAX_NUM_MULTICAST_ADDRESSES * ETH_LENGTH_OF_ADDRESS];
1722 	struct ifmultiaddr *ifma;
1723 	int mcnt = 0;
1724 	struct ifnet *ifp = &adapter->interface_data.ac_if;
1725 
1726 	IOCTL_DEBUGOUT("em_set_multi: begin");
1727 
1728 	if (adapter->hw.mac_type == em_82542_rev2_0) {
1729 		reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1730 		if (adapter->hw.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1731 			em_pci_clear_mwi(&adapter->hw);
1732 		reg_rctl |= E1000_RCTL_RST;
1733 		E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1734 		msec_delay(5);
1735 	}
1736 
1737 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1738 		if (ifma->ifma_addr->sa_family != AF_LINK)
1739 			continue;
1740 
1741 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1742 			break;
1743 
1744 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1745 		      &mta[mcnt*ETH_LENGTH_OF_ADDRESS], ETH_LENGTH_OF_ADDRESS);
1746 		mcnt++;
1747 	}
1748 
1749 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1750 		reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1751 		reg_rctl |= E1000_RCTL_MPE;
1752 		E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1753 	} else {
1754 		em_mc_addr_list_update(&adapter->hw, mta, mcnt, 0, 1);
1755 	}
1756 
1757 	if (adapter->hw.mac_type == em_82542_rev2_0) {
1758 		reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1759 		reg_rctl &= ~E1000_RCTL_RST;
1760 		E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1761 		msec_delay(5);
1762 		if (adapter->hw.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1763                         em_pci_set_mwi(&adapter->hw);
1764 	}
1765 }
1766 
1767 /*********************************************************************
1768  *  Timer routine
1769  *
1770  *  This routine checks for link status and updates statistics.
1771  *
1772  **********************************************************************/
1773 
1774 static void
1775 em_local_timer(void *arg)
1776 {
1777 	struct ifnet *ifp;
1778 	struct adapter *adapter = arg;
1779 	ifp = &adapter->interface_data.ac_if;
1780 
1781 	lwkt_serialize_enter(ifp->if_serializer);
1782 
1783 	em_check_for_link(&adapter->hw);
1784 	em_update_link_status(adapter);
1785 	em_update_stats_counters(adapter);
1786 	if (em_display_debug_stats && ifp->if_flags & IFF_RUNNING)
1787 		em_print_hw_stats(adapter);
1788 	em_smartspeed(adapter);
1789 
1790 	callout_reset(&adapter->timer, hz, em_local_timer, adapter);
1791 
1792 	lwkt_serialize_exit(ifp->if_serializer);
1793 }
1794 
1795 static void
1796 em_update_link_status(struct adapter *adapter)
1797 {
1798 	struct ifnet *ifp;
1799 	ifp = &adapter->interface_data.ac_if;
1800 
1801 	if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU) {
1802 		if (adapter->link_active == 0) {
1803 			em_get_speed_and_duplex(&adapter->hw,
1804 						&adapter->link_speed,
1805 						&adapter->link_duplex);
1806 			/* Check if we may set SPEED_MODE bit on PCI-E */
1807 			if (adapter->link_speed == SPEED_1000 &&
1808 			    (adapter->hw.mac_type == em_82571 ||
1809 			     adapter->hw.mac_type == em_82572)) {
1810 				int tarc0;
1811 
1812 				tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
1813 				tarc0 |= SPEED_MODE_BIT;
1814 				E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
1815 			}
1816 			if (bootverbose) {
1817 				if_printf(&adapter->interface_data.ac_if,
1818 					  "Link is up %d Mbps %s\n",
1819 					  adapter->link_speed,
1820 					  adapter->link_duplex == FULL_DUPLEX ?
1821 						"Full Duplex" : "Half Duplex");
1822 			}
1823 			adapter->link_active = 1;
1824 			adapter->smartspeed = 0;
1825 			ifp->if_baudrate = adapter->link_speed * 1000000;
1826 			ifp->if_link_state = LINK_STATE_UP;
1827 			if_link_state_change(ifp);
1828 		}
1829 	} else {
1830 		if (adapter->link_active == 1) {
1831 			ifp->if_baudrate = 0;
1832 			adapter->link_speed = 0;
1833 			adapter->link_duplex = 0;
1834 			if (bootverbose) {
1835 				if_printf(&adapter->interface_data.ac_if,
1836 					  "Link is Down\n");
1837 			}
1838 			adapter->link_active = 0;
1839 			ifp->if_link_state = LINK_STATE_DOWN;
1840 			if_link_state_change(ifp);
1841 		}
1842 	}
1843 }
1844 
1845 /*********************************************************************
1846  *
1847  *  This routine disables all traffic on the adapter by issuing a
1848  *  global reset on the MAC and deallocates TX/RX buffers.
1849  *
1850  **********************************************************************/
1851 
1852 static void
1853 em_stop(void *arg)
1854 {
1855 	struct ifnet   *ifp;
1856 	struct adapter * adapter = arg;
1857 	ifp = &adapter->interface_data.ac_if;
1858 
1859 	ASSERT_SERIALIZED(ifp->if_serializer);
1860 
1861 	INIT_DEBUGOUT("em_stop: begin");
1862 	em_disable_intr(adapter);
1863 	em_reset_hw(&adapter->hw);
1864 	callout_stop(&adapter->timer);
1865 	callout_stop(&adapter->tx_fifo_timer);
1866 	em_free_transmit_structures(adapter);
1867 	em_free_receive_structures(adapter);
1868 
1869 	/* Tell the stack that the interface is no longer active */
1870 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1871 	ifp->if_timer = 0;
1872 }
1873 
1874 /*********************************************************************
1875  *
1876  *  Determine hardware revision.
1877  *
1878  **********************************************************************/
1879 static void
1880 em_identify_hardware(struct adapter *adapter)
1881 {
1882 	device_t dev = adapter->dev;
1883 
1884 	/* Make sure our PCI config space has the necessary stuff set */
1885 	adapter->hw.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
1886 	if (!((adapter->hw.pci_cmd_word & PCIM_CMD_BUSMASTEREN) &&
1887 	      (adapter->hw.pci_cmd_word & PCIM_CMD_MEMEN))) {
1888 		device_printf(dev, "Memory Access and/or Bus Master bits "
1889 			      "were not set!\n");
1890 		adapter->hw.pci_cmd_word |= PCIM_CMD_BUSMASTEREN |
1891 					    PCIM_CMD_MEMEN;
1892 		pci_write_config(dev, PCIR_COMMAND,
1893 				 adapter->hw.pci_cmd_word, 2);
1894 	}
1895 
1896 	/* Save off the information about this board */
1897 	adapter->hw.vendor_id = pci_get_vendor(dev);
1898 	adapter->hw.device_id = pci_get_device(dev);
1899 	adapter->hw.revision_id = pci_get_revid(dev);
1900 	adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
1901 	adapter->hw.subsystem_id = pci_get_subdevice(dev);
1902 
1903 	/* Identify the MAC */
1904 	if (em_set_mac_type(&adapter->hw))
1905 		device_printf(dev, "Unknown MAC Type\n");
1906 
1907 	if (adapter->hw.mac_type == em_82541 ||
1908 	    adapter->hw.mac_type == em_82541_rev_2 ||
1909 	    adapter->hw.mac_type == em_82547 ||
1910 	    adapter->hw.mac_type == em_82547_rev_2)
1911 		adapter->hw.phy_init_script = TRUE;
1912 }
1913 
1914 static int
1915 em_allocate_pci_resources(device_t dev)
1916 {
1917 	struct adapter *adapter = device_get_softc(dev);
1918 	int rid;
1919 
1920 	rid = PCIR_BAR(0);
1921 	adapter->res_memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1922 						     &rid, RF_ACTIVE);
1923 	if (adapter->res_memory == NULL) {
1924 		device_printf(dev, "Unable to allocate bus resource: memory\n");
1925 		return ENXIO;
1926 	}
1927 	adapter->osdep.mem_bus_space_tag =
1928 		rman_get_bustag(adapter->res_memory);
1929 	adapter->osdep.mem_bus_space_handle =
1930 	    rman_get_bushandle(adapter->res_memory);
1931 	adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
1932 
1933 	if (adapter->hw.mac_type > em_82543) {
1934 		/* Figure our where our IO BAR is ? */
1935 		for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
1936 			uint32_t val;
1937 
1938 			val = pci_read_config(dev, rid, 4);
1939 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
1940 				adapter->io_rid = rid;
1941 				break;
1942 			}
1943 			rid += 4;
1944 			/* check for 64bit BAR */
1945 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
1946 				rid += 4;
1947 		}
1948 		if (rid >= PCIR_CIS) {
1949 			device_printf(dev, "Unable to locate IO BAR\n");
1950 			return (ENXIO);
1951  		}
1952 
1953 		adapter->res_ioport = bus_alloc_resource_any(dev,
1954 		    SYS_RES_IOPORT, &adapter->io_rid, RF_ACTIVE);
1955 		if (!(adapter->res_ioport)) {
1956 			device_printf(dev, "Unable to allocate bus resource: "
1957 				      "ioport\n");
1958 			return ENXIO;
1959 		}
1960 		adapter->hw.io_base = 0;
1961 		adapter->osdep.io_bus_space_tag =
1962 			rman_get_bustag(adapter->res_ioport);
1963 		adapter->osdep.io_bus_space_handle =
1964 			rman_get_bushandle(adapter->res_ioport);
1965 	}
1966 
1967 	/* For ICH8 we need to find the flash memory. */
1968 	if ((adapter->hw.mac_type == em_ich8lan) ||
1969 	    (adapter->hw.mac_type == em_ich9lan)) {
1970 		rid = EM_FLASH;
1971 		adapter->flash_mem = bus_alloc_resource_any(dev,
1972 		    SYS_RES_MEMORY, &rid, RF_ACTIVE);
1973 		if (adapter->flash_mem == NULL) {
1974 			device_printf(dev, "Unable to allocate bus resource: "
1975 				      "flash memory\n");
1976 			return ENXIO;
1977 		}
1978 		adapter->osdep.flash_bus_space_tag =
1979 		    rman_get_bustag(adapter->flash_mem);
1980 		adapter->osdep.flash_bus_space_handle =
1981 		    rman_get_bushandle(adapter->flash_mem);
1982 	}
1983 
1984 	rid = 0x0;
1985 	adapter->res_interrupt = bus_alloc_resource_any(dev, SYS_RES_IRQ,
1986 	    &rid, RF_SHAREABLE | RF_ACTIVE);
1987 	if (adapter->res_interrupt == NULL) {
1988 		device_printf(dev, "Unable to allocate bus resource: "
1989 			      "interrupt\n");
1990 		return ENXIO;
1991 	}
1992 
1993 	adapter->hw.back = &adapter->osdep;
1994 
1995 	return 0;
1996 }
1997 
1998 static void
1999 em_free_pci_resources(device_t dev)
2000 {
2001 	struct adapter *adapter = device_get_softc(dev);
2002 
2003 	if (adapter->res_interrupt != NULL) {
2004 		bus_release_resource(dev, SYS_RES_IRQ, 0,
2005 				     adapter->res_interrupt);
2006 	}
2007 	if (adapter->res_memory != NULL) {
2008 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
2009 				     adapter->res_memory);
2010 	}
2011 
2012 	if (adapter->res_ioport != NULL) {
2013 		bus_release_resource(dev, SYS_RES_IOPORT, adapter->io_rid,
2014 				     adapter->res_ioport);
2015 	}
2016 
2017 	if (adapter->flash_mem != NULL) {
2018 		bus_release_resource(dev, SYS_RES_MEMORY, EM_FLASH,
2019 				     adapter->flash_mem);
2020 	}
2021 }
2022 
2023 /*********************************************************************
2024  *
2025  *  Initialize the hardware to a configuration as specified by the
2026  *  adapter structure. The controller is reset, the EEPROM is
2027  *  verified, the MAC address is set, then the shared initialization
2028  *  routines are called.
2029  *
2030  **********************************************************************/
2031 static int
2032 em_hardware_init(struct adapter *adapter)
2033 {
2034 	uint16_t	rx_buffer_size;
2035 
2036 	INIT_DEBUGOUT("em_hardware_init: begin");
2037 	/* Issue a global reset */
2038 	em_reset_hw(&adapter->hw);
2039 
2040 	/* When hardware is reset, fifo_head is also reset */
2041 	adapter->tx_fifo_head = 0;
2042 
2043 	/* Make sure we have a good EEPROM before we read from it */
2044 	if (em_validate_eeprom_checksum(&adapter->hw) < 0) {
2045 		if (em_validate_eeprom_checksum(&adapter->hw) < 0) {
2046 			device_printf(adapter->dev,
2047 				      "The EEPROM Checksum Is Not Valid\n");
2048 			return (EIO);
2049 		}
2050 	}
2051 
2052 	if (em_read_part_num(&adapter->hw, &(adapter->part_num)) < 0) {
2053 		device_printf(adapter->dev,
2054 			      "EEPROM read error while reading part number\n");
2055 		return (EIO);
2056 	}
2057 
2058 	/* Set up smart power down as default off on newer adapters. */
2059 	if (!em_smart_pwr_down &&
2060 	    (adapter->hw.mac_type == em_82571 ||
2061 	     adapter->hw.mac_type == em_82572)) {
2062 		uint16_t phy_tmp = 0;
2063 
2064 		/* Speed up time to link by disabling smart power down. */
2065 		em_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
2066 				&phy_tmp);
2067 		phy_tmp &= ~IGP02E1000_PM_SPD;
2068 		em_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
2069 				 phy_tmp);
2070 	}
2071 
2072 	/*
2073 	 * These parameters control the automatic generation (Tx) and
2074 	 * response (Rx) to Ethernet PAUSE frames.
2075 	 * - High water mark should allow for at least two frames to be
2076 	 *   received after sending an XOFF.
2077 	 * - Low water mark works best when it is very near the high water mark.
2078 	 *   This allows the receiver to restart by sending XON when it has
2079 	 *   drained a bit.  Here we use an arbitary value of 1500 which will
2080 	 *   restart after one full frame is pulled from the buffer.  There
2081 	 *   could be several smaller frames in the buffer and if so they will
2082 	 *   not trigger the XON until their total number reduces the buffer
2083 	 *   by 1500.
2084 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2085 	 */
2086 	rx_buffer_size = ((E1000_READ_REG(&adapter->hw, PBA) & 0xffff) << 10);
2087 
2088 	adapter->hw.fc_high_water =
2089 	    rx_buffer_size - roundup2(adapter->hw.max_frame_size, 1024);
2090 	adapter->hw.fc_low_water = adapter->hw.fc_high_water - 1500;
2091 	if (adapter->hw.mac_type == em_80003es2lan)
2092 		adapter->hw.fc_pause_time = 0xFFFF;
2093 	else
2094 		adapter->hw.fc_pause_time = 1000;
2095 	adapter->hw.fc_send_xon = TRUE;
2096 	adapter->hw.fc = E1000_FC_FULL;
2097 
2098 	if (em_init_hw(&adapter->hw) < 0) {
2099 		device_printf(adapter->dev, "Hardware Initialization Failed");
2100 		return (EIO);
2101 	}
2102 
2103 	em_check_for_link(&adapter->hw);
2104 
2105 	return (0);
2106 }
2107 
2108 /*********************************************************************
2109  *
2110  *  Setup networking device structure and register an interface.
2111  *
2112  **********************************************************************/
2113 static void
2114 em_setup_interface(device_t dev, struct adapter *adapter)
2115 {
2116 	struct ifnet *ifp;
2117 	u_char fiber_type = IFM_1000_SX;	/* default type */
2118 	INIT_DEBUGOUT("em_setup_interface: begin");
2119 
2120 	ifp = &adapter->interface_data.ac_if;
2121 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2122 	ifp->if_mtu = ETHERMTU;
2123 	ifp->if_baudrate = 1000000000;
2124 	ifp->if_init =  em_init;
2125 	ifp->if_softc = adapter;
2126 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2127 	ifp->if_ioctl = em_ioctl;
2128 	ifp->if_start = em_start;
2129 #ifdef DEVICE_POLLING
2130 	ifp->if_poll = em_poll;
2131 #endif
2132 	ifp->if_watchdog = em_watchdog;
2133 	ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2134 	ifq_set_ready(&ifp->if_snd);
2135 
2136 	if (adapter->hw.mac_type >= em_82543)
2137 		ifp->if_capabilities |= IFCAP_HWCSUM;
2138 
2139 	ifp->if_capenable = ifp->if_capabilities;
2140 
2141 	ether_ifattach(ifp, adapter->hw.mac_addr, NULL);
2142 
2143 #ifdef PROFILE_SERIALIZER
2144 	SYSCTL_ADD_UINT(&adapter->sysctl_ctx,
2145 			SYSCTL_CHILDREN(adapter->sysctl_tree), OID_AUTO,
2146 			"serializer_sleep", CTLFLAG_RW,
2147 			&ifp->if_serializer->sleep_cnt, 0, NULL);
2148 	SYSCTL_ADD_UINT(&adapter->sysctl_ctx,
2149 			SYSCTL_CHILDREN(adapter->sysctl_tree), OID_AUTO,
2150 			"serializer_tryfail", CTLFLAG_RW,
2151 			&ifp->if_serializer->tryfail_cnt, 0, NULL);
2152 	SYSCTL_ADD_UINT(&adapter->sysctl_ctx,
2153 			SYSCTL_CHILDREN(adapter->sysctl_tree), OID_AUTO,
2154 			"serializer_enter", CTLFLAG_RW,
2155 			&ifp->if_serializer->enter_cnt, 0, NULL);
2156 	SYSCTL_ADD_UINT(&adapter->sysctl_ctx,
2157 			SYSCTL_CHILDREN(adapter->sysctl_tree), OID_AUTO,
2158 			"serializer_try", CTLFLAG_RW,
2159 			&ifp->if_serializer->try_cnt, 0, NULL);
2160 #endif
2161 
2162 	/*
2163 	 * Tell the upper layer(s) we support long frames.
2164 	 */
2165 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2166 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2167 	ifp->if_capenable |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2168 
2169 	/*
2170 	 * Specify the media types supported by this adapter and register
2171 	 * callbacks to update media and link information
2172 	 */
2173 	ifmedia_init(&adapter->media, IFM_IMASK, em_media_change,
2174 		     em_media_status);
2175 	if (adapter->hw.media_type == em_media_type_fiber ||
2176 	    adapter->hw.media_type == em_media_type_internal_serdes) {
2177 		if (adapter->hw.mac_type == em_82545)
2178 			fiber_type = IFM_1000_LX;
2179 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
2180 			    0, NULL);
2181 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2182 	} else {
2183 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2184 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2185 			    0, NULL);
2186 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2187 			    0, NULL);
2188 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2189 			    0, NULL);
2190 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX,
2191 			    0, NULL);
2192 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL);
2193 	}
2194 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2195 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2196 }
2197 
2198 /*********************************************************************
2199  *
2200  *  Workaround for SmartSpeed on 82541 and 82547 controllers
2201  *
2202  **********************************************************************/
2203 static void
2204 em_smartspeed(struct adapter *adapter)
2205 {
2206 	uint16_t phy_tmp;
2207 
2208 	if (adapter->link_active || (adapter->hw.phy_type != em_phy_igp) ||
2209 	    !adapter->hw.autoneg ||
2210 	    !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
2211 		return;
2212 
2213 	if (adapter->smartspeed == 0) {
2214 		/*
2215 		 * If Master/Slave config fault is asserted twice,
2216 		 * we assume back-to-back.
2217 		 */
2218 		em_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2219 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2220 			return;
2221 		em_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2222 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2223 			em_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2224 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2225 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2226 				em_write_phy_reg(&adapter->hw,
2227 						 PHY_1000T_CTRL, phy_tmp);
2228 				adapter->smartspeed++;
2229 				if (adapter->hw.autoneg &&
2230 				    !em_phy_setup_autoneg(&adapter->hw) &&
2231 				    !em_read_phy_reg(&adapter->hw, PHY_CTRL,
2232 						     &phy_tmp)) {
2233 					phy_tmp |= (MII_CR_AUTO_NEG_EN |
2234 						    MII_CR_RESTART_AUTO_NEG);
2235 					em_write_phy_reg(&adapter->hw,
2236 							 PHY_CTRL, phy_tmp);
2237 				}
2238 			}
2239 		}
2240 		return;
2241 	} else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2242 		/* If still no link, perhaps using 2/3 pair cable */
2243 		em_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2244 		phy_tmp |= CR_1000T_MS_ENABLE;
2245 		em_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2246 		if (adapter->hw.autoneg &&
2247 		    !em_phy_setup_autoneg(&adapter->hw) &&
2248 		    !em_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_tmp)) {
2249 			phy_tmp |= (MII_CR_AUTO_NEG_EN |
2250 				    MII_CR_RESTART_AUTO_NEG);
2251 			em_write_phy_reg(&adapter->hw, PHY_CTRL, phy_tmp);
2252 		}
2253 	}
2254 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2255 	if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2256 		adapter->smartspeed = 0;
2257 }
2258 
2259 /*
2260  * Manage DMA'able memory.
2261  */
2262 static void
2263 em_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2264 {
2265 	if (error)
2266 		return;
2267 	*(bus_addr_t *)arg = segs->ds_addr;
2268 }
2269 
2270 static int
2271 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2272 	      struct em_dma_alloc *dma)
2273 {
2274 	device_t dev = adapter->dev;
2275 	int error;
2276 
2277 	error = bus_dma_tag_create(NULL,		/* parent */
2278 				   EM_DBA_ALIGN, 0,	/* alignment, bounds */
2279 				   BUS_SPACE_MAXADDR,	/* lowaddr */
2280 				   BUS_SPACE_MAXADDR,	/* highaddr */
2281 				   NULL, NULL,		/* filter, filterarg */
2282 				   size,		/* maxsize */
2283 				   1,			/* nsegments */
2284 				   size,		/* maxsegsize */
2285 				   0,			/* flags */
2286 				   &dma->dma_tag);
2287 	if (error) {
2288 		device_printf(dev, "%s: bus_dma_tag_create failed; error %d\n",
2289 			      __func__, error);
2290 		return error;
2291 	}
2292 
2293 	error = bus_dmamem_alloc(dma->dma_tag, (void**)&dma->dma_vaddr,
2294 				 BUS_DMA_WAITOK, &dma->dma_map);
2295 	if (error) {
2296 		device_printf(dev, "%s: bus_dmammem_alloc failed; "
2297 			      "size %llu, error %d\n",
2298 			      __func__, (uintmax_t)size, error);
2299 		goto fail;
2300 	}
2301 
2302 	error = bus_dmamap_load(dma->dma_tag, dma->dma_map,
2303 				dma->dma_vaddr, size,
2304 				em_dmamap_cb, &dma->dma_paddr,
2305 				BUS_DMA_WAITOK);
2306 	if (error) {
2307 		device_printf(dev, "%s: bus_dmamap_load failed; error %u\n",
2308 			      __func__, error);
2309 		bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2310 		goto fail;
2311 	}
2312 
2313 	return 0;
2314 fail:
2315 	bus_dma_tag_destroy(dma->dma_tag);
2316 	dma->dma_tag = NULL;
2317 	return error;
2318 }
2319 
2320 static void
2321 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2322 {
2323 	if (dma->dma_tag != NULL) {
2324 		bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2325 		bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2326 		bus_dma_tag_destroy(dma->dma_tag);
2327 		dma->dma_tag = NULL;
2328 	}
2329 }
2330 
2331 /*********************************************************************
2332  *
2333  *  Allocate and initialize transmit structures.
2334  *
2335  **********************************************************************/
2336 static int
2337 em_setup_transmit_structures(struct adapter *adapter)
2338 {
2339 	struct em_buffer *tx_buffer;
2340 	bus_size_t size;
2341 	int error, i;
2342 
2343 	/*
2344 	 * Setup DMA descriptor areas.
2345 	 */
2346 	size = roundup2(adapter->hw.max_frame_size, MCLBYTES);
2347 	if (bus_dma_tag_create(NULL,			/* parent */
2348 			       1, 0,			/* alignment, bounds */
2349 			       BUS_SPACE_MAXADDR,	/* lowaddr */
2350 			       BUS_SPACE_MAXADDR,	/* highaddr */
2351 			       NULL, NULL,		/* filter, filterarg */
2352 			       size,			/* maxsize */
2353 			       EM_MAX_SCATTER,		/* nsegments */
2354 			       size,			/* maxsegsize */
2355 			       0,			/* flags */
2356 			       &adapter->txtag)) {
2357 		device_printf(adapter->dev, "Unable to allocate TX DMA tag\n");
2358 		return(ENOMEM);
2359 	}
2360 
2361 	adapter->tx_buffer_area =
2362 		kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2363 			M_DEVBUF, M_WAITOK | M_ZERO);
2364 
2365 	bzero(adapter->tx_desc_base,
2366 	      sizeof(struct em_tx_desc) * adapter->num_tx_desc);
2367 	tx_buffer = adapter->tx_buffer_area;
2368 	for (i = 0; i < adapter->num_tx_desc; i++) {
2369 		error = bus_dmamap_create(adapter->txtag, 0, &tx_buffer->map);
2370 		if (error) {
2371 			device_printf(adapter->dev,
2372 				      "Unable to create TX DMA map\n");
2373 			goto fail;
2374 		}
2375 		tx_buffer++;
2376 	}
2377 
2378 	adapter->next_avail_tx_desc = 0;
2379 	adapter->next_tx_to_clean = 0;
2380 
2381 	/* Set number of descriptors available */
2382 	adapter->num_tx_desc_avail = adapter->num_tx_desc;
2383 
2384 	/* Set checksum context */
2385 	adapter->active_checksum_context = OFFLOAD_NONE;
2386 
2387 	bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
2388 			BUS_DMASYNC_PREWRITE);
2389 
2390 	return (0);
2391 fail:
2392 	em_free_transmit_structures(adapter);
2393 	return (error);
2394 }
2395 
2396 /*********************************************************************
2397  *
2398  *  Enable transmit unit.
2399  *
2400  **********************************************************************/
2401 static void
2402 em_initialize_transmit_unit(struct adapter *adapter)
2403 {
2404 	uint32_t reg_tctl;
2405 	uint32_t reg_tipg = 0;
2406 	uint64_t bus_addr;
2407 
2408 	INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
2409 
2410 	/* Setup the Base and Length of the Tx Descriptor Ring */
2411 	bus_addr = adapter->txdma.dma_paddr;
2412 	E1000_WRITE_REG(&adapter->hw, TDLEN,
2413 			adapter->num_tx_desc * sizeof(struct em_tx_desc));
2414 	E1000_WRITE_REG(&adapter->hw, TDBAH, (uint32_t)(bus_addr >> 32));
2415 	E1000_WRITE_REG(&adapter->hw, TDBAL, (uint32_t)bus_addr);
2416 
2417 	/* Setup the HW Tx Head and Tail descriptor pointers */
2418 	E1000_WRITE_REG(&adapter->hw, TDT, 0);
2419 	E1000_WRITE_REG(&adapter->hw, TDH, 0);
2420 
2421 	HW_DEBUGOUT2("Base = %x, Length = %x\n",
2422 		     E1000_READ_REG(&adapter->hw, TDBAL),
2423 		     E1000_READ_REG(&adapter->hw, TDLEN));
2424 
2425 	/* Set the default values for the Tx Inter Packet Gap timer */
2426 	switch (adapter->hw.mac_type) {
2427 	case em_82542_rev2_0:
2428 	case em_82542_rev2_1:
2429 		reg_tipg = DEFAULT_82542_TIPG_IPGT;
2430 		reg_tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2431 		reg_tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2432 		break;
2433 	case em_80003es2lan:
2434 		reg_tipg = DEFAULT_82543_TIPG_IPGR1;
2435 		reg_tipg |=
2436 		    DEFAULT_80003ES2LAN_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2437 		break;
2438 	default:
2439 		if (adapter->hw.media_type == em_media_type_fiber ||
2440 		    adapter->hw.media_type == em_media_type_internal_serdes)
2441 			reg_tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2442 		else
2443 			reg_tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2444 		reg_tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2445 		reg_tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2446 	}
2447 
2448 	E1000_WRITE_REG(&adapter->hw, TIPG, reg_tipg);
2449 	E1000_WRITE_REG(&adapter->hw, TIDV, adapter->tx_int_delay.value);
2450 	if (adapter->hw.mac_type >= em_82540) {
2451 		E1000_WRITE_REG(&adapter->hw, TADV,
2452 				adapter->tx_abs_int_delay.value);
2453 	}
2454 
2455 	/* Program the Transmit Control Register */
2456 	reg_tctl = E1000_TCTL_PSP | E1000_TCTL_EN |
2457 		   (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2458 	if (adapter->hw.mac_type >= em_82571)
2459 		reg_tctl |= E1000_TCTL_MULR;
2460 	if (adapter->link_duplex == 1)
2461 		reg_tctl |= E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT;
2462 	else
2463 		reg_tctl |= E1000_HDX_COLLISION_DISTANCE << E1000_COLD_SHIFT;
2464 
2465 	/* This write will effectively turn on the transmit unit. */
2466 	E1000_WRITE_REG(&adapter->hw, TCTL, reg_tctl);
2467 
2468 	/* Setup Transmit Descriptor Base Settings */
2469 	adapter->txd_cmd = E1000_TXD_CMD_IFCS;
2470 
2471 	if (adapter->tx_int_delay.value > 0)
2472 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2473 }
2474 
2475 /*********************************************************************
2476  *
2477  *  Free all transmit related data structures.
2478  *
2479  **********************************************************************/
2480 static void
2481 em_free_transmit_structures(struct adapter *adapter)
2482 {
2483 	struct em_buffer *tx_buffer;
2484 	int i;
2485 
2486 	INIT_DEBUGOUT("free_transmit_structures: begin");
2487 
2488 	if (adapter->tx_buffer_area != NULL) {
2489 		tx_buffer = adapter->tx_buffer_area;
2490 		for (i = 0; i < adapter->num_tx_desc; i++, tx_buffer++) {
2491 			if (tx_buffer->m_head != NULL) {
2492 				bus_dmamap_unload(adapter->txtag,
2493 						  tx_buffer->map);
2494 				m_freem(tx_buffer->m_head);
2495 			}
2496 
2497 			if (tx_buffer->map != NULL) {
2498 				bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2499 				tx_buffer->map = NULL;
2500  			}
2501 			tx_buffer->m_head = NULL;
2502 		}
2503 	}
2504 	if (adapter->tx_buffer_area != NULL) {
2505 		kfree(adapter->tx_buffer_area, M_DEVBUF);
2506 		adapter->tx_buffer_area = NULL;
2507 	}
2508 	if (adapter->txtag != NULL) {
2509 		bus_dma_tag_destroy(adapter->txtag);
2510 		adapter->txtag = NULL;
2511 	}
2512 }
2513 
2514 /*********************************************************************
2515  *
2516  *  The offload context needs to be set when we transfer the first
2517  *  packet of a particular protocol (TCP/UDP). We change the
2518  *  context only if the protocol type changes.
2519  *
2520  **********************************************************************/
2521 static void
2522 em_transmit_checksum_setup(struct adapter *adapter,
2523 			   struct mbuf *mp,
2524 			   uint32_t *txd_upper,
2525 			   uint32_t *txd_lower)
2526 {
2527 	struct em_context_desc *TXD;
2528 	struct em_buffer *tx_buffer;
2529 	int curr_txd;
2530 
2531 	if (mp->m_pkthdr.csum_flags) {
2532 		if (mp->m_pkthdr.csum_flags & CSUM_TCP) {
2533 			*txd_upper = E1000_TXD_POPTS_TXSM << 8;
2534 			*txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2535 			if (adapter->active_checksum_context == OFFLOAD_TCP_IP)
2536 				return;
2537 			else
2538 				adapter->active_checksum_context = OFFLOAD_TCP_IP;
2539 		} else if (mp->m_pkthdr.csum_flags & CSUM_UDP) {
2540 			*txd_upper = E1000_TXD_POPTS_TXSM << 8;
2541 			*txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2542 			if (adapter->active_checksum_context == OFFLOAD_UDP_IP)
2543 				return;
2544 			else
2545 				adapter->active_checksum_context = OFFLOAD_UDP_IP;
2546 		} else {
2547 			*txd_upper = 0;
2548 			*txd_lower = 0;
2549 			return;
2550 		}
2551 	} else {
2552 		*txd_upper = 0;
2553 		*txd_lower = 0;
2554 		return;
2555 	}
2556 
2557 	/*
2558 	 * If we reach this point, the checksum offload context
2559 	 * needs to be reset.
2560 	 */
2561 	curr_txd = adapter->next_avail_tx_desc;
2562 	tx_buffer = &adapter->tx_buffer_area[curr_txd];
2563 	TXD = (struct em_context_desc *) &adapter->tx_desc_base[curr_txd];
2564 
2565 	TXD->lower_setup.ip_fields.ipcss = ETHER_HDR_LEN;
2566 	TXD->lower_setup.ip_fields.ipcso =
2567 	    ETHER_HDR_LEN + offsetof(struct ip, ip_sum);
2568 	TXD->lower_setup.ip_fields.ipcse =
2569 	    htole16(ETHER_HDR_LEN + sizeof(struct ip) - 1);
2570 
2571 	TXD->upper_setup.tcp_fields.tucss =
2572 	    ETHER_HDR_LEN + sizeof(struct ip);
2573 	TXD->upper_setup.tcp_fields.tucse = htole16(0);
2574 
2575 	if (adapter->active_checksum_context == OFFLOAD_TCP_IP) {
2576 		TXD->upper_setup.tcp_fields.tucso =
2577 			ETHER_HDR_LEN + sizeof(struct ip) +
2578 			offsetof(struct tcphdr, th_sum);
2579 	} else if (adapter->active_checksum_context == OFFLOAD_UDP_IP) {
2580 		TXD->upper_setup.tcp_fields.tucso =
2581 			ETHER_HDR_LEN + sizeof(struct ip) +
2582 			offsetof(struct udphdr, uh_sum);
2583 	}
2584 
2585 	TXD->tcp_seg_setup.data = htole32(0);
2586 	TXD->cmd_and_length = htole32(adapter->txd_cmd | E1000_TXD_CMD_DEXT);
2587 
2588 	tx_buffer->m_head = NULL;
2589 	tx_buffer->next_eop = -1;
2590 
2591 	if (++curr_txd == adapter->num_tx_desc)
2592 		curr_txd = 0;
2593 
2594 	adapter->num_tx_desc_avail--;
2595 	adapter->next_avail_tx_desc = curr_txd;
2596 }
2597 
2598 /**********************************************************************
2599  *
2600  *  Examine each tx_buffer in the used queue. If the hardware is done
2601  *  processing the packet then free associated resources. The
2602  *  tx_buffer is put back on the free queue.
2603  *
2604  **********************************************************************/
2605 
2606 static void
2607 em_txeof(struct adapter *adapter)
2608 {
2609 	int first, last, done, num_avail;
2610 	struct em_buffer *tx_buffer;
2611 	struct em_tx_desc *tx_desc, *eop_desc;
2612 	struct ifnet *ifp = &adapter->interface_data.ac_if;
2613 
2614 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2615 		return;
2616 
2617 	num_avail = adapter->num_tx_desc_avail;
2618 	first = adapter->next_tx_to_clean;
2619 	tx_desc = &adapter->tx_desc_base[first];
2620 	tx_buffer = &adapter->tx_buffer_area[first];
2621 	last = tx_buffer->next_eop;
2622 	KKASSERT(last >= 0 && last < adapter->num_tx_desc);
2623 	eop_desc = &adapter->tx_desc_base[last];
2624 
2625 	/*
2626 	 * Now caculate the terminating index for the cleanup loop below
2627 	 */
2628 	if (++last == adapter->num_tx_desc)
2629 		last = 0;
2630 	done = last;
2631 
2632 	bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
2633 			BUS_DMASYNC_POSTREAD);
2634 
2635 	while (eop_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2636 		while (first != done) {
2637 			tx_desc->upper.data = 0;
2638 			tx_desc->lower.data = 0;
2639 			num_avail++;
2640 
2641 			logif(pkt_txclean);
2642 
2643 			if (tx_buffer->m_head) {
2644 				ifp->if_opackets++;
2645 				bus_dmamap_sync(adapter->txtag, tx_buffer->map,
2646 						BUS_DMASYNC_POSTWRITE);
2647 				bus_dmamap_unload(adapter->txtag,
2648 						  tx_buffer->map);
2649 
2650 				m_freem(tx_buffer->m_head);
2651 				tx_buffer->m_head = NULL;
2652 			}
2653 			tx_buffer->next_eop = -1;
2654 
2655 			if (++first == adapter->num_tx_desc)
2656 				first = 0;
2657 
2658 			tx_buffer = &adapter->tx_buffer_area[first];
2659 			tx_desc = &adapter->tx_desc_base[first];
2660 		}
2661 		/* See if we can continue to the next packet */
2662 		last = tx_buffer->next_eop;
2663 		if (last != -1) {
2664 			KKASSERT(last >= 0 && last < adapter->num_tx_desc);
2665 			eop_desc = &adapter->tx_desc_base[last];
2666 			if (++last == adapter->num_tx_desc)
2667 				last = 0;
2668 			done = last;
2669 		} else {
2670 			break;
2671 		}
2672 	}
2673 
2674 	bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
2675 			BUS_DMASYNC_PREWRITE);
2676 
2677 	adapter->next_tx_to_clean = first;
2678 
2679 	/*
2680 	 * If we have enough room, clear IFF_OACTIVE to tell the stack
2681 	 * that it is OK to send packets.
2682 	 * If there are no pending descriptors, clear the timeout. Otherwise,
2683 	 * if some descriptors have been freed, restart the timeout.
2684 	 */
2685 	if (num_avail > EM_TX_CLEANUP_THRESHOLD) {
2686 		ifp->if_flags &= ~IFF_OACTIVE;
2687 		if (num_avail == adapter->num_tx_desc)
2688 			ifp->if_timer = 0;
2689 		else if (num_avail == adapter->num_tx_desc_avail)
2690 			ifp->if_timer = EM_TX_TIMEOUT;
2691 	}
2692 	adapter->num_tx_desc_avail = num_avail;
2693 }
2694 
2695 /*********************************************************************
2696  *
2697  *  Get a buffer from system mbuf buffer pool.
2698  *
2699  **********************************************************************/
2700 static int
2701 em_get_buf(int i, struct adapter *adapter, struct mbuf *nmp, int how)
2702 {
2703 	struct mbuf *mp = nmp;
2704 	struct em_buffer *rx_buffer;
2705 	struct ifnet *ifp;
2706 	bus_addr_t paddr;
2707 	int error;
2708 
2709 	ifp = &adapter->interface_data.ac_if;
2710 
2711 	if (mp == NULL) {
2712 		mp = m_getcl(how, MT_DATA, M_PKTHDR);
2713 		if (mp == NULL) {
2714 			adapter->mbuf_cluster_failed++;
2715 			return (ENOBUFS);
2716 		}
2717 		mp->m_len = mp->m_pkthdr.len = MCLBYTES;
2718 	} else {
2719 		mp->m_len = mp->m_pkthdr.len = MCLBYTES;
2720 		mp->m_data = mp->m_ext.ext_buf;
2721 		mp->m_next = NULL;
2722 	}
2723 
2724 	if (ifp->if_mtu <= ETHERMTU)
2725 		m_adj(mp, ETHER_ALIGN);
2726 
2727 	rx_buffer = &adapter->rx_buffer_area[i];
2728 
2729 	/*
2730 	 * Using memory from the mbuf cluster pool, invoke the
2731 	 * bus_dma machinery to arrange the memory mapping.
2732 	 */
2733 	error = bus_dmamap_load(adapter->rxtag, rx_buffer->map,
2734 				mtod(mp, void *), mp->m_len,
2735 				em_dmamap_cb, &paddr, 0);
2736 	if (error) {
2737 		m_freem(mp);
2738 		return (error);
2739 	}
2740 	rx_buffer->m_head = mp;
2741 	adapter->rx_desc_base[i].buffer_addr = htole64(paddr);
2742 	bus_dmamap_sync(adapter->rxtag, rx_buffer->map, BUS_DMASYNC_PREREAD);
2743 
2744 	return (0);
2745 }
2746 
2747 /*********************************************************************
2748  *
2749  *  Allocate memory for rx_buffer structures. Since we use one
2750  *  rx_buffer per received packet, the maximum number of rx_buffer's
2751  *  that we'll need is equal to the number of receive descriptors
2752  *  that we've allocated.
2753  *
2754  **********************************************************************/
2755 static int
2756 em_allocate_receive_structures(struct adapter *adapter)
2757 {
2758 	int i, error, size;
2759 	struct em_buffer *rx_buffer;
2760 
2761 	size = adapter->num_rx_desc * sizeof(struct em_buffer);
2762 	adapter->rx_buffer_area = kmalloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
2763 
2764 	error = bus_dma_tag_create(NULL,		/* parent */
2765 				   1, 0,		/* alignment, bounds */
2766 				   BUS_SPACE_MAXADDR,	/* lowaddr */
2767 				   BUS_SPACE_MAXADDR,	/* highaddr */
2768 				   NULL, NULL,		/* filter, filterarg */
2769 				   MCLBYTES,		/* maxsize */
2770 				   1,			/* nsegments */
2771 				   MCLBYTES,		/* maxsegsize */
2772 				   0,			/* flags */
2773 				   &adapter->rxtag);
2774 	if (error) {
2775 		device_printf(adapter->dev, "%s: bus_dma_tag_create failed; "
2776 			      "error %u\n", __func__, error);
2777 		goto fail;
2778 	}
2779 
2780 	rx_buffer = adapter->rx_buffer_area;
2781 	for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) {
2782 		error = bus_dmamap_create(adapter->rxtag, BUS_DMA_NOWAIT,
2783 					  &rx_buffer->map);
2784 		if (error) {
2785 			device_printf(adapter->dev,
2786 				      "%s: bus_dmamap_create failed; "
2787 				      "error %u\n", __func__, error);
2788 			goto fail;
2789 		}
2790 	}
2791 
2792 	for (i = 0; i < adapter->num_rx_desc; i++) {
2793 		error = em_get_buf(i, adapter, NULL, MB_DONTWAIT);
2794 		if (error)
2795 			goto fail;
2796 	}
2797 
2798 	bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
2799 			BUS_DMASYNC_PREWRITE);
2800 
2801 	return (0);
2802 fail:
2803 	em_free_receive_structures(adapter);
2804 	return (error);
2805 }
2806 
2807 /*********************************************************************
2808  *
2809  *  Allocate and initialize receive structures.
2810  *
2811  **********************************************************************/
2812 static int
2813 em_setup_receive_structures(struct adapter *adapter)
2814 {
2815 	int error;
2816 
2817 	bzero(adapter->rx_desc_base,
2818 	      sizeof(struct em_rx_desc) * adapter->num_rx_desc);
2819 
2820 	error = em_allocate_receive_structures(adapter);
2821 	if (error)
2822 		return (error);
2823 
2824 	/* Setup our descriptor pointers */
2825 	adapter->next_rx_desc_to_check = 0;
2826 
2827 	return (0);
2828 }
2829 
2830 /*********************************************************************
2831  *
2832  *  Enable receive unit.
2833  *
2834  **********************************************************************/
2835 static void
2836 em_initialize_receive_unit(struct adapter *adapter)
2837 {
2838 	uint32_t reg_rctl;
2839 	uint32_t reg_rxcsum;
2840 	struct ifnet *ifp;
2841 	uint64_t bus_addr;
2842 
2843 	INIT_DEBUGOUT("em_initialize_receive_unit: begin");
2844 
2845 	ifp = &adapter->interface_data.ac_if;
2846 
2847 	/*
2848 	 * Make sure receives are disabled while setting
2849 	 * up the descriptor ring
2850 	 */
2851 	E1000_WRITE_REG(&adapter->hw, RCTL, 0);
2852 
2853 	/* Set the Receive Delay Timer Register */
2854 	E1000_WRITE_REG(&adapter->hw, RDTR,
2855 			adapter->rx_int_delay.value | E1000_RDT_FPDB);
2856 
2857 	if(adapter->hw.mac_type >= em_82540) {
2858 		E1000_WRITE_REG(&adapter->hw, RADV,
2859 				adapter->rx_abs_int_delay.value);
2860 
2861 		/* Set the interrupt throttling rate in 256ns increments */
2862 		if (em_int_throttle_ceil) {
2863 			E1000_WRITE_REG(&adapter->hw, ITR,
2864 				1000000000 / 256 / em_int_throttle_ceil);
2865 		} else {
2866 			E1000_WRITE_REG(&adapter->hw, ITR, 0);
2867 		}
2868 	}
2869 
2870 	/* Setup the Base and Length of the Rx Descriptor Ring */
2871 	bus_addr = adapter->rxdma.dma_paddr;
2872 	E1000_WRITE_REG(&adapter->hw, RDLEN, adapter->num_rx_desc *
2873 			sizeof(struct em_rx_desc));
2874 	E1000_WRITE_REG(&adapter->hw, RDBAH, (uint32_t)(bus_addr >> 32));
2875 	E1000_WRITE_REG(&adapter->hw, RDBAL, (uint32_t)bus_addr);
2876 
2877 	/* Setup the Receive Control Register */
2878 	reg_rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2879 		   E1000_RCTL_RDMTS_HALF |
2880 		   (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
2881 
2882 	if (adapter->hw.tbi_compatibility_on == TRUE)
2883 		reg_rctl |= E1000_RCTL_SBP;
2884 
2885 	switch (adapter->rx_buffer_len) {
2886 	default:
2887 	case EM_RXBUFFER_2048:
2888 		reg_rctl |= E1000_RCTL_SZ_2048;
2889 		break;
2890 	case EM_RXBUFFER_4096:
2891 		reg_rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX |
2892 			    E1000_RCTL_LPE;
2893 		break;
2894 	case EM_RXBUFFER_8192:
2895 		reg_rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX |
2896 			    E1000_RCTL_LPE;
2897 		break;
2898 	case EM_RXBUFFER_16384:
2899 		reg_rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX |
2900 			    E1000_RCTL_LPE;
2901 		break;
2902 	}
2903 
2904 	if (ifp->if_mtu > ETHERMTU)
2905 		reg_rctl |= E1000_RCTL_LPE;
2906 
2907 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
2908 	if ((adapter->hw.mac_type >= em_82543) &&
2909 	    (ifp->if_capenable & IFCAP_RXCSUM)) {
2910 		reg_rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM);
2911 		reg_rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
2912 		E1000_WRITE_REG(&adapter->hw, RXCSUM, reg_rxcsum);
2913 	}
2914 
2915 #ifdef EM_X60_WORKAROUND
2916 	if (adapter->hw.mac_type == em_82573)
2917 		E1000_WRITE_REG(&adapter->hw, RDTR, 32);
2918 #endif
2919 
2920 	/* Enable Receives */
2921 	E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
2922 
2923 	/* Setup the HW Rx Head and Tail Descriptor Pointers */
2924 	E1000_WRITE_REG(&adapter->hw, RDH, 0);
2925 	E1000_WRITE_REG(&adapter->hw, RDT, adapter->num_rx_desc - 1);
2926 }
2927 
2928 /*********************************************************************
2929  *
2930  *  Free receive related data structures.
2931  *
2932  **********************************************************************/
2933 static void
2934 em_free_receive_structures(struct adapter *adapter)
2935 {
2936 	struct em_buffer *rx_buffer;
2937 	int i;
2938 
2939 	INIT_DEBUGOUT("free_receive_structures: begin");
2940 
2941 	if (adapter->rx_buffer_area != NULL) {
2942 		rx_buffer = adapter->rx_buffer_area;
2943 		for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) {
2944 			if (rx_buffer->m_head != NULL) {
2945 				bus_dmamap_unload(adapter->rxtag,
2946 						  rx_buffer->map);
2947 				m_freem(rx_buffer->m_head);
2948 				rx_buffer->m_head = NULL;
2949 			}
2950 			if (rx_buffer->map != NULL) {
2951 				bus_dmamap_destroy(adapter->rxtag,
2952 						   rx_buffer->map);
2953 				rx_buffer->map = NULL;
2954 			}
2955 		}
2956 	}
2957 	if (adapter->rx_buffer_area != NULL) {
2958 		kfree(adapter->rx_buffer_area, M_DEVBUF);
2959 		adapter->rx_buffer_area = NULL;
2960 	}
2961 	if (adapter->rxtag != NULL) {
2962 		bus_dma_tag_destroy(adapter->rxtag);
2963 		adapter->rxtag = NULL;
2964 	}
2965 }
2966 
2967 /*********************************************************************
2968  *
2969  *  This routine executes in interrupt context. It replenishes
2970  *  the mbufs in the descriptor and sends data which has been
2971  *  dma'ed into host memory to upper layer.
2972  *
2973  *  We loop at most count times if count is > 0, or until done if
2974  *  count < 0.
2975  *
2976  *********************************************************************/
2977 static void
2978 em_rxeof(struct adapter *adapter, int count)
2979 {
2980 	struct ifnet *ifp;
2981 	struct mbuf *mp;
2982 	uint8_t accept_frame = 0;
2983 	uint8_t eop = 0;
2984 	uint16_t len, desc_len, prev_len_adj;
2985 	int i;
2986 	struct mbuf_chain chain[MAXCPU];
2987 
2988 	/* Pointer to the receive descriptor being examined. */
2989 	struct em_rx_desc *current_desc;
2990 
2991 	ifp = &adapter->interface_data.ac_if;
2992 	i = adapter->next_rx_desc_to_check;
2993 	current_desc = &adapter->rx_desc_base[i];
2994 
2995 	bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
2996 			BUS_DMASYNC_POSTREAD);
2997 
2998 	if (!(current_desc->status & E1000_RXD_STAT_DD))
2999 		return;
3000 
3001 	ether_input_chain_init(chain);
3002 
3003 	while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3004 		logif(pkt_receive);
3005 		mp = adapter->rx_buffer_area[i].m_head;
3006 		bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3007 				BUS_DMASYNC_POSTREAD);
3008 		bus_dmamap_unload(adapter->rxtag,
3009 				  adapter->rx_buffer_area[i].map);
3010 
3011 		accept_frame = 1;
3012 		prev_len_adj = 0;
3013 		desc_len = le16toh(current_desc->length);
3014 		if (current_desc->status & E1000_RXD_STAT_EOP) {
3015 			count--;
3016 			eop = 1;
3017 			if (desc_len < ETHER_CRC_LEN) {
3018 				len = 0;
3019 				prev_len_adj = ETHER_CRC_LEN - desc_len;
3020 			} else {
3021 				len = desc_len - ETHER_CRC_LEN;
3022 			}
3023 		} else {
3024 			eop = 0;
3025 			len = desc_len;
3026 		}
3027 
3028 		if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3029 			uint8_t last_byte;
3030 			uint32_t pkt_len = desc_len;
3031 
3032 			if (adapter->fmp != NULL)
3033 				pkt_len += adapter->fmp->m_pkthdr.len;
3034 
3035 			last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3036 
3037 			if (TBI_ACCEPT(&adapter->hw, current_desc->status,
3038 				       current_desc->errors,
3039 				       pkt_len, last_byte)) {
3040 				em_tbi_adjust_stats(&adapter->hw,
3041 						    &adapter->stats,
3042 						    pkt_len,
3043 						    adapter->hw.mac_addr);
3044 				if (len > 0)
3045 					len--;
3046 			} else {
3047 				accept_frame = 0;
3048 			}
3049 		}
3050 
3051 		if (accept_frame) {
3052 			if (em_get_buf(i, adapter, NULL, MB_DONTWAIT) == ENOBUFS) {
3053 				adapter->dropped_pkts++;
3054 				em_get_buf(i, adapter, mp, MB_DONTWAIT);
3055 				if (adapter->fmp != NULL)
3056 					m_freem(adapter->fmp);
3057 				adapter->fmp = NULL;
3058 				adapter->lmp = NULL;
3059 				goto skip;
3060 			}
3061 
3062 			/* Assign correct length to the current fragment */
3063 			mp->m_len = len;
3064 
3065 			if (adapter->fmp == NULL) {
3066 				mp->m_pkthdr.len = len;
3067 				adapter->fmp = mp;	 /* Store the first mbuf */
3068 				adapter->lmp = mp;
3069 			} else {
3070 				/* Chain mbuf's together */
3071 				/*
3072 				 * Adjust length of previous mbuf in chain if
3073 				 * we received less than 4 bytes in the last
3074 				 * descriptor.
3075 				 */
3076 				if (prev_len_adj > 0) {
3077 					adapter->lmp->m_len -= prev_len_adj;
3078 					adapter->fmp->m_pkthdr.len -= prev_len_adj;
3079 				}
3080 				adapter->lmp->m_next = mp;
3081 				adapter->lmp = adapter->lmp->m_next;
3082 				adapter->fmp->m_pkthdr.len += len;
3083 			}
3084 
3085 			if (eop) {
3086 				adapter->fmp->m_pkthdr.rcvif = ifp;
3087 				ifp->if_ipackets++;
3088 
3089 				em_receive_checksum(adapter, current_desc,
3090 						    adapter->fmp);
3091 				if (current_desc->status & E1000_RXD_STAT_VP) {
3092 					adapter->fmp->m_flags |= M_VLANTAG;
3093 					adapter->fmp->m_pkthdr.ether_vlantag =
3094 						(current_desc->special &
3095 						 E1000_RXD_SPC_VLAN_MASK);
3096 				}
3097 				ether_input_chain(ifp, adapter->fmp, chain);
3098 				adapter->fmp = NULL;
3099 				adapter->lmp = NULL;
3100 			}
3101 		} else {
3102 			adapter->dropped_pkts++;
3103 			em_get_buf(i, adapter, mp, MB_DONTWAIT);
3104 			if (adapter->fmp != NULL)
3105 				m_freem(adapter->fmp);
3106 			adapter->fmp = NULL;
3107 			adapter->lmp = NULL;
3108 		}
3109 
3110 skip:
3111 		/* Zero out the receive descriptors status. */
3112 		current_desc->status = 0;
3113 
3114 		/* Advance our pointers to the next descriptor. */
3115 		if (++i == adapter->num_rx_desc) {
3116 			i = 0;
3117 			current_desc = adapter->rx_desc_base;
3118 		} else {
3119 			current_desc++;
3120 		}
3121 	}
3122 
3123 	ether_input_dispatch(chain);
3124 
3125 	bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
3126 			BUS_DMASYNC_PREWRITE);
3127 
3128 	adapter->next_rx_desc_to_check = i;
3129 
3130 	/* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3131 	if (--i < 0)
3132 		i = adapter->num_rx_desc - 1;
3133 
3134 	E1000_WRITE_REG(&adapter->hw, RDT, i);
3135 }
3136 
3137 /*********************************************************************
3138  *
3139  *  Verify that the hardware indicated that the checksum is valid.
3140  *  Inform the stack about the status of checksum so that stack
3141  *  doesn't spend time verifying the checksum.
3142  *
3143  *********************************************************************/
3144 static void
3145 em_receive_checksum(struct adapter *adapter,
3146 		    struct em_rx_desc *rx_desc,
3147 		    struct mbuf *mp)
3148 {
3149 	/* 82543 or newer only */
3150 	if ((adapter->hw.mac_type < em_82543) ||
3151 	    /* Ignore Checksum bit is set */
3152 	    (rx_desc->status & E1000_RXD_STAT_IXSM)) {
3153 		mp->m_pkthdr.csum_flags = 0;
3154 		return;
3155 	}
3156 
3157 	if (rx_desc->status & E1000_RXD_STAT_IPCS) {
3158 		/* Did it pass? */
3159 		if (!(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3160 			/* IP Checksum Good */
3161 			mp->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
3162 			mp->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3163 		} else {
3164 			mp->m_pkthdr.csum_flags = 0;
3165 		}
3166 	}
3167 
3168 	if (rx_desc->status & E1000_RXD_STAT_TCPCS) {
3169 		/* Did it pass? */
3170 		if (!(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3171 			mp->m_pkthdr.csum_flags |=
3172 			(CSUM_DATA_VALID | CSUM_PSEUDO_HDR |
3173 			 CSUM_FRAG_NOT_CHECKED);
3174 			mp->m_pkthdr.csum_data = htons(0xffff);
3175 		}
3176 	}
3177 }
3178 
3179 
3180 static void
3181 em_enable_vlans(struct adapter *adapter)
3182 {
3183 	uint32_t ctrl;
3184 
3185 	E1000_WRITE_REG(&adapter->hw, VET, ETHERTYPE_VLAN);
3186 
3187 	ctrl = E1000_READ_REG(&adapter->hw, CTRL);
3188 	ctrl |= E1000_CTRL_VME;
3189 	E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
3190 }
3191 
3192 static void
3193 em_disable_vlans(struct adapter *adapter)
3194 {
3195 	uint32_t ctrl;
3196 
3197 	ctrl = E1000_READ_REG(&adapter->hw, CTRL);
3198 	ctrl &= ~E1000_CTRL_VME;
3199 	E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
3200 }
3201 
3202 /*
3203  * note: we must call bus_enable_intr() prior to enabling the hardware
3204  * interrupt and bus_disable_intr() after disabling the hardware interrupt
3205  * in order to avoid handler execution races from scheduled interrupt
3206  * threads.
3207  */
3208 static void
3209 em_enable_intr(struct adapter *adapter)
3210 {
3211 	struct ifnet *ifp = &adapter->interface_data.ac_if;
3212 
3213 	if ((ifp->if_flags & IFF_POLLING) == 0) {
3214 		lwkt_serialize_handler_enable(ifp->if_serializer);
3215 		E1000_WRITE_REG(&adapter->hw, IMS, (IMS_ENABLE_MASK));
3216 	}
3217 }
3218 
3219 static void
3220 em_disable_intr(struct adapter *adapter)
3221 {
3222 	/*
3223 	 * The first version of 82542 had an errata where when link was forced
3224 	 * it would stay up even up even if the cable was disconnected.
3225 	 * Sequence errors were used to detect the disconnect and then the
3226 	 * driver would unforce the link.  This code in the in the ISR.  For
3227 	 * this to work correctly the Sequence error interrupt had to be
3228 	 * enabled all the time.
3229 	 */
3230 	if (adapter->hw.mac_type == em_82542_rev2_0) {
3231 		E1000_WRITE_REG(&adapter->hw, IMC,
3232 				(0xffffffff & ~E1000_IMC_RXSEQ));
3233 	} else {
3234 		E1000_WRITE_REG(&adapter->hw, IMC, 0xffffffff);
3235 	}
3236 
3237 	lwkt_serialize_handler_disable(adapter->interface_data.ac_if.if_serializer);
3238 }
3239 
3240 static int
3241 em_is_valid_ether_addr(uint8_t *addr)
3242 {
3243 	static const char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3244 
3245 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3246 		return (FALSE);
3247 	else
3248 		return (TRUE);
3249 }
3250 
3251 void
3252 em_write_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t *value)
3253 {
3254 	pci_write_config(((struct em_osdep *)hw->back)->dev, reg, *value, 2);
3255 }
3256 
3257 void
3258 em_read_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t *value)
3259 {
3260 	*value = pci_read_config(((struct em_osdep *)hw->back)->dev, reg, 2);
3261 }
3262 
3263 void
3264 em_pci_set_mwi(struct em_hw *hw)
3265 {
3266 	pci_write_config(((struct em_osdep *)hw->back)->dev, PCIR_COMMAND,
3267 			 (hw->pci_cmd_word | CMD_MEM_WRT_INVALIDATE), 2);
3268 }
3269 
3270 void
3271 em_pci_clear_mwi(struct em_hw *hw)
3272 {
3273 	pci_write_config(((struct em_osdep *)hw->back)->dev, PCIR_COMMAND,
3274 			 (hw->pci_cmd_word & ~CMD_MEM_WRT_INVALIDATE), 2);
3275 }
3276 
3277 uint32_t
3278 em_io_read(struct em_hw *hw, unsigned long port)
3279 {
3280 	struct em_osdep *io = hw->back;
3281 
3282 	return bus_space_read_4(io->io_bus_space_tag,
3283 				io->io_bus_space_handle, port);
3284 }
3285 
3286 void
3287 em_io_write(struct em_hw *hw, unsigned long port, uint32_t value)
3288 {
3289 	struct em_osdep *io = hw->back;
3290 
3291 	bus_space_write_4(io->io_bus_space_tag,
3292 			  io->io_bus_space_handle, port, value);
3293 }
3294 
3295 /*
3296  * We may eventually really do this, but its unnecessary
3297  * for now so we just return unsupported.
3298  */
3299 int32_t
3300 em_read_pcie_cap_reg(struct em_hw *hw, uint32_t reg, uint16_t *value)
3301 {
3302 	return (0);
3303 }
3304 
3305 
3306 /*********************************************************************
3307  * 82544 Coexistence issue workaround.
3308  *    There are 2 issues.
3309  *	1. Transmit Hang issue.
3310  *    To detect this issue, following equation can be used...
3311  *          SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3312  *          If SUM[3:0] is in between 1 to 4, we will have this issue.
3313  *
3314  *	2. DAC issue.
3315  *    To detect this issue, following equation can be used...
3316  *          SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3317  *          If SUM[3:0] is in between 9 to c, we will have this issue.
3318  *
3319  *
3320  *    WORKAROUND:
3321  *          Make sure we do not have ending address as 1,2,3,4(Hang) or
3322  *          9,a,b,c (DAC)
3323  *
3324 *************************************************************************/
3325 static uint32_t
3326 em_fill_descriptors(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3327 {
3328 	/* Since issue is sensitive to length and address.*/
3329 	/* Let us first check the address...*/
3330 	uint32_t safe_terminator;
3331 	if (length <= 4) {
3332 		desc_array->descriptor[0].address = address;
3333 		desc_array->descriptor[0].length = length;
3334 		desc_array->elements = 1;
3335 		return (desc_array->elements);
3336 	}
3337 	safe_terminator = (uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3338 	/* if it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3339 	if (safe_terminator == 0 ||
3340 	    (safe_terminator > 4 && safe_terminator < 9) ||
3341 	    (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3342 		desc_array->descriptor[0].address = address;
3343 		desc_array->descriptor[0].length = length;
3344 		desc_array->elements = 1;
3345 		return (desc_array->elements);
3346 	}
3347 
3348 	desc_array->descriptor[0].address = address;
3349 	desc_array->descriptor[0].length = length - 4;
3350 	desc_array->descriptor[1].address = address + (length - 4);
3351 	desc_array->descriptor[1].length = 4;
3352 	desc_array->elements = 2;
3353 	return (desc_array->elements);
3354 }
3355 
3356 /**********************************************************************
3357  *
3358  *  Update the board statistics counters.
3359  *
3360  **********************************************************************/
3361 static void
3362 em_update_stats_counters(struct adapter *adapter)
3363 {
3364 	struct ifnet   *ifp;
3365 
3366 	if (adapter->hw.media_type == em_media_type_copper ||
3367 	    (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
3368 		adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, SYMERRS);
3369 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, SEC);
3370 	}
3371 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, CRCERRS);
3372 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, MPC);
3373 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, SCC);
3374 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, ECOL);
3375 
3376 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, MCC);
3377 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, LATECOL);
3378 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, COLC);
3379 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, DC);
3380 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, RLEC);
3381 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, XONRXC);
3382 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, XONTXC);
3383 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, XOFFRXC);
3384 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, XOFFTXC);
3385 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, FCRUC);
3386 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, PRC64);
3387 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, PRC127);
3388 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, PRC255);
3389 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, PRC511);
3390 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, PRC1023);
3391 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, PRC1522);
3392 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, GPRC);
3393 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, BPRC);
3394 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, MPRC);
3395 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, GPTC);
3396 
3397 	/* For the 64-bit byte counters the low dword must be read first. */
3398 	/* Both registers clear on the read of the high dword */
3399 
3400 	adapter->stats.gorcl += E1000_READ_REG(&adapter->hw, GORCL);
3401 	adapter->stats.gorch += E1000_READ_REG(&adapter->hw, GORCH);
3402 	adapter->stats.gotcl += E1000_READ_REG(&adapter->hw, GOTCL);
3403 	adapter->stats.gotch += E1000_READ_REG(&adapter->hw, GOTCH);
3404 
3405 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, RNBC);
3406 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, RUC);
3407 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, RFC);
3408 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, ROC);
3409 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, RJC);
3410 
3411 	adapter->stats.torl += E1000_READ_REG(&adapter->hw, TORL);
3412 	adapter->stats.torh += E1000_READ_REG(&adapter->hw, TORH);
3413 	adapter->stats.totl += E1000_READ_REG(&adapter->hw, TOTL);
3414 	adapter->stats.toth += E1000_READ_REG(&adapter->hw, TOTH);
3415 
3416 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, TPR);
3417 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, TPT);
3418 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, PTC64);
3419 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, PTC127);
3420 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, PTC255);
3421 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, PTC511);
3422 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, PTC1023);
3423 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, PTC1522);
3424 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, MPTC);
3425 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, BPTC);
3426 
3427 	if (adapter->hw.mac_type >= em_82543) {
3428 		adapter->stats.algnerrc +=
3429 		    E1000_READ_REG(&adapter->hw, ALGNERRC);
3430 		adapter->stats.rxerrc +=
3431 		    E1000_READ_REG(&adapter->hw, RXERRC);
3432 		adapter->stats.tncrs +=
3433 		    E1000_READ_REG(&adapter->hw, TNCRS);
3434 		adapter->stats.cexterr +=
3435 		    E1000_READ_REG(&adapter->hw, CEXTERR);
3436 		adapter->stats.tsctc +=
3437 		    E1000_READ_REG(&adapter->hw, TSCTC);
3438 		adapter->stats.tsctfc +=
3439 		    E1000_READ_REG(&adapter->hw, TSCTFC);
3440 	}
3441 	ifp = &adapter->interface_data.ac_if;
3442 
3443 	/* Fill out the OS statistics structure */
3444 	ifp->if_collisions = adapter->stats.colc;
3445 
3446 	/* Rx Errors */
3447 	ifp->if_ierrors =
3448 		adapter->dropped_pkts +
3449 		adapter->stats.rxerrc +
3450 		adapter->stats.crcerrs +
3451 		adapter->stats.algnerrc +
3452 		adapter->stats.ruc + adapter->stats.roc +
3453 		adapter->stats.mpc + adapter->stats.cexterr +
3454 		adapter->rx_overruns;
3455 
3456 	/* Tx Errors */
3457 	ifp->if_oerrors = adapter->stats.ecol + adapter->stats.latecol +
3458 			  adapter->watchdog_timeouts;
3459 }
3460 
3461 
3462 /**********************************************************************
3463  *
3464  *  This routine is called only when em_display_debug_stats is enabled.
3465  *  This routine provides a way to take a look at important statistics
3466  *  maintained by the driver and hardware.
3467  *
3468  **********************************************************************/
3469 static void
3470 em_print_debug_info(struct adapter *adapter)
3471 {
3472 	device_t dev= adapter->dev;
3473 	uint8_t *hw_addr = adapter->hw.hw_addr;
3474 
3475 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3476 	device_printf(dev, "CTRL  = 0x%x RCTL = 0x%x\n",
3477 		      E1000_READ_REG(&adapter->hw, CTRL),
3478 		      E1000_READ_REG(&adapter->hw, RCTL));
3479 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk\n",
3480 		      ((E1000_READ_REG(&adapter->hw, PBA) & 0xffff0000) >> 16),
3481 		      (E1000_READ_REG(&adapter->hw, PBA) & 0xffff));
3482 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3483 		      adapter->hw.fc_high_water, adapter->hw.fc_low_water);
3484 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3485 		      E1000_READ_REG(&adapter->hw, TIDV),
3486 		      E1000_READ_REG(&adapter->hw, TADV));
3487 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3488 		      E1000_READ_REG(&adapter->hw, RDTR),
3489 		      E1000_READ_REG(&adapter->hw, RADV));
3490 	device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
3491 		      (long long)adapter->tx_fifo_wrk_cnt,
3492 		      (long long)adapter->tx_fifo_reset_cnt);
3493 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3494 		      E1000_READ_REG(&adapter->hw, TDH),
3495 		      E1000_READ_REG(&adapter->hw, TDT));
3496 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3497 		      adapter->num_tx_desc_avail);
3498 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3499 		      adapter->no_tx_desc_avail1);
3500 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3501 		      adapter->no_tx_desc_avail2);
3502 	device_printf(dev, "Std mbuf failed = %ld\n",
3503 		      adapter->mbuf_alloc_failed);
3504 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3505 		      adapter->mbuf_cluster_failed);
3506 	device_printf(dev, "Driver dropped packets = %ld\n",
3507 		      adapter->dropped_pkts);
3508 }
3509 
3510 static void
3511 em_print_hw_stats(struct adapter *adapter)
3512 {
3513 	device_t dev= adapter->dev;
3514 
3515 	device_printf(dev, "Excessive collisions = %lld\n",
3516 		      (long long)adapter->stats.ecol);
3517 	device_printf(dev, "Symbol errors = %lld\n",
3518 		      (long long)adapter->stats.symerrs);
3519 	device_printf(dev, "Sequence errors = %lld\n",
3520 		      (long long)adapter->stats.sec);
3521 	device_printf(dev, "Defer count = %lld\n",
3522 		      (long long)adapter->stats.dc);
3523 
3524 	device_printf(dev, "Missed Packets = %lld\n",
3525 		      (long long)adapter->stats.mpc);
3526 	device_printf(dev, "Receive No Buffers = %lld\n",
3527 		      (long long)adapter->stats.rnbc);
3528 	/* RLEC is inaccurate on some hardware, calculate our own. */
3529 	device_printf(dev, "Receive Length errors = %lld\n",
3530 		      (long long)adapter->stats.roc +
3531 		      (long long)adapter->stats.ruc);
3532 	device_printf(dev, "Receive errors = %lld\n",
3533 		      (long long)adapter->stats.rxerrc);
3534 	device_printf(dev, "Crc errors = %lld\n",
3535 		      (long long)adapter->stats.crcerrs);
3536 	device_printf(dev, "Alignment errors = %lld\n",
3537 		      (long long)adapter->stats.algnerrc);
3538 	device_printf(dev, "Carrier extension errors = %lld\n",
3539 		      (long long)adapter->stats.cexterr);
3540 	device_printf(dev, "RX overruns = %lu\n", adapter->rx_overruns);
3541 	device_printf(dev, "Watchdog timeouts = %lu\n",
3542 		      adapter->watchdog_timeouts);
3543 
3544 	device_printf(dev, "XON Rcvd = %lld\n",
3545 		      (long long)adapter->stats.xonrxc);
3546 	device_printf(dev, "XON Xmtd = %lld\n",
3547 		      (long long)adapter->stats.xontxc);
3548 	device_printf(dev, "XOFF Rcvd = %lld\n",
3549 		      (long long)adapter->stats.xoffrxc);
3550 	device_printf(dev, "XOFF Xmtd = %lld\n",
3551 		      (long long)adapter->stats.xofftxc);
3552 
3553 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3554 		      (long long)adapter->stats.gprc);
3555 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3556 		      (long long)adapter->stats.gptc);
3557 }
3558 
3559 static int
3560 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3561 {
3562 	int error;
3563 	int result;
3564 	struct adapter *adapter;
3565 
3566 	result = -1;
3567 	error = sysctl_handle_int(oidp, &result, 0, req);
3568 
3569 	if (error || !req->newptr)
3570 		return (error);
3571 
3572 	if (result == 1) {
3573 		adapter = (struct adapter *)arg1;
3574 		em_print_debug_info(adapter);
3575 	}
3576 
3577 	return (error);
3578 }
3579 
3580 static int
3581 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
3582 {
3583 	int error;
3584 	int result;
3585 	struct adapter *adapter;
3586 
3587 	result = -1;
3588 	error = sysctl_handle_int(oidp, &result, 0, req);
3589 
3590 	if (error || !req->newptr)
3591 		return (error);
3592 
3593 	if (result == 1) {
3594 		adapter = (struct adapter *)arg1;
3595 		em_print_hw_stats(adapter);
3596 	}
3597 
3598 	return (error);
3599 }
3600 
3601 static int
3602 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
3603 {
3604 	struct em_int_delay_info *info;
3605 	struct adapter *adapter;
3606 	uint32_t regval;
3607 	int error;
3608 	int usecs;
3609 	int ticks;
3610 
3611 	info = (struct em_int_delay_info *)arg1;
3612 	adapter = info->adapter;
3613 	usecs = info->value;
3614 	error = sysctl_handle_int(oidp, &usecs, 0, req);
3615 	if (error != 0 || req->newptr == NULL)
3616 		return (error);
3617 	if (usecs < 0 || usecs > E1000_TICKS_TO_USECS(65535))
3618 		return (EINVAL);
3619 	info->value = usecs;
3620 	ticks = E1000_USECS_TO_TICKS(usecs);
3621 
3622 	lwkt_serialize_enter(adapter->interface_data.ac_if.if_serializer);
3623 	regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
3624 	regval = (regval & ~0xffff) | (ticks & 0xffff);
3625 	/* Handle a few special cases. */
3626 	switch (info->offset) {
3627 	case E1000_RDTR:
3628 	case E1000_82542_RDTR:
3629 		regval |= E1000_RDT_FPDB;
3630 		break;
3631 	case E1000_TIDV:
3632 	case E1000_82542_TIDV:
3633 		if (ticks == 0) {
3634 			adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
3635 			/* Don't write 0 into the TIDV register. */
3636 			regval++;
3637 		} else
3638 			adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3639 		break;
3640 	}
3641 	E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
3642 	lwkt_serialize_exit(adapter->interface_data.ac_if.if_serializer);
3643 	return (0);
3644 }
3645 
3646 static void
3647 em_add_int_delay_sysctl(struct adapter *adapter, const char *name,
3648 			const char *description, struct em_int_delay_info *info,
3649 			int offset, int value)
3650 {
3651 	info->adapter = adapter;
3652 	info->offset = offset;
3653 	info->value = value;
3654 	SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
3655 			SYSCTL_CHILDREN(adapter->sysctl_tree),
3656 			OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW,
3657 			info, 0, em_sysctl_int_delay, "I", description);
3658 }
3659 
3660 static int
3661 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3662 {
3663 	struct adapter *adapter = (void *)arg1;
3664 	int error;
3665 	int throttle;
3666 
3667 	throttle = em_int_throttle_ceil;
3668 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3669 	if (error || req->newptr == NULL)
3670 		return error;
3671 	if (throttle < 0 || throttle > 1000000000 / 256)
3672 		return EINVAL;
3673 	if (throttle) {
3674 		/*
3675 		 * Set the interrupt throttling rate in 256ns increments,
3676 		 * recalculate sysctl value assignment to get exact frequency.
3677 		 */
3678 		throttle = 1000000000 / 256 / throttle;
3679 		lwkt_serialize_enter(adapter->interface_data.ac_if.if_serializer);
3680 		em_int_throttle_ceil = 1000000000 / 256 / throttle;
3681 		E1000_WRITE_REG(&adapter->hw, ITR, throttle);
3682 		lwkt_serialize_exit(adapter->interface_data.ac_if.if_serializer);
3683 	} else {
3684 		lwkt_serialize_enter(adapter->interface_data.ac_if.if_serializer);
3685 		em_int_throttle_ceil = 0;
3686 		E1000_WRITE_REG(&adapter->hw, ITR, 0);
3687 		lwkt_serialize_exit(adapter->interface_data.ac_if.if_serializer);
3688 	}
3689 	device_printf(adapter->dev, "Interrupt moderation set to %d/sec\n",
3690 			em_int_throttle_ceil);
3691 	return 0;
3692 }
3693