xref: /dragonfly/sys/dev/netif/em/if_em.c (revision 78478697)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2014, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  */
67 /*
68  * SERIALIZATION API RULES:
69  *
70  * - We must call lwkt_serialize_handler_enable() prior to enabling the
71  *   hardware interrupt and lwkt_serialize_handler_disable() after disabling
72  *   the hardware interrupt in order to avoid handler execution races from
73  *   scheduled interrupt threads.
74  */
75 
76 #include "opt_ifpoll.h"
77 
78 #include <sys/param.h>
79 #include <sys/bus.h>
80 #include <sys/endian.h>
81 #include <sys/interrupt.h>
82 #include <sys/kernel.h>
83 #include <sys/ktr.h>
84 #include <sys/malloc.h>
85 #include <sys/mbuf.h>
86 #include <sys/proc.h>
87 #include <sys/rman.h>
88 #include <sys/serialize.h>
89 #include <sys/socket.h>
90 #include <sys/sockio.h>
91 #include <sys/sysctl.h>
92 #include <sys/systm.h>
93 
94 #include <net/bpf.h>
95 #include <net/ethernet.h>
96 #include <net/if.h>
97 #include <net/if_arp.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_poll.h>
101 #include <net/ifq_var.h>
102 #include <net/vlan/if_vlan_var.h>
103 #include <net/vlan/if_vlan_ether.h>
104 
105 #include <netinet/ip.h>
106 #include <netinet/tcp.h>
107 #include <netinet/udp.h>
108 
109 #include <bus/pci/pcivar.h>
110 #include <bus/pci/pcireg.h>
111 
112 #include <dev/netif/ig_hal/e1000_api.h>
113 #include <dev/netif/ig_hal/e1000_82571.h>
114 #include <dev/netif/ig_hal/e1000_dragonfly.h>
115 #include <dev/netif/em/if_em.h>
116 
117 #define DEBUG_HW 0
118 
119 #define EM_NAME	"Intel(R) PRO/1000 Network Connection "
120 #define EM_VER	" 7.4.2"
121 
122 #define _EM_DEVICE(id, ret)	\
123 	{ EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
124 #define EM_EMX_DEVICE(id)	_EM_DEVICE(id, -100)
125 #define EM_DEVICE(id)		_EM_DEVICE(id, 0)
126 #define EM_DEVICE_NULL	{ 0, 0, 0, NULL }
127 
128 static const struct em_vendor_info em_vendor_info_array[] = {
129 	EM_DEVICE(82540EM),
130 	EM_DEVICE(82540EM_LOM),
131 	EM_DEVICE(82540EP),
132 	EM_DEVICE(82540EP_LOM),
133 	EM_DEVICE(82540EP_LP),
134 
135 	EM_DEVICE(82541EI),
136 	EM_DEVICE(82541ER),
137 	EM_DEVICE(82541ER_LOM),
138 	EM_DEVICE(82541EI_MOBILE),
139 	EM_DEVICE(82541GI),
140 	EM_DEVICE(82541GI_LF),
141 	EM_DEVICE(82541GI_MOBILE),
142 
143 	EM_DEVICE(82542),
144 
145 	EM_DEVICE(82543GC_FIBER),
146 	EM_DEVICE(82543GC_COPPER),
147 
148 	EM_DEVICE(82544EI_COPPER),
149 	EM_DEVICE(82544EI_FIBER),
150 	EM_DEVICE(82544GC_COPPER),
151 	EM_DEVICE(82544GC_LOM),
152 
153 	EM_DEVICE(82545EM_COPPER),
154 	EM_DEVICE(82545EM_FIBER),
155 	EM_DEVICE(82545GM_COPPER),
156 	EM_DEVICE(82545GM_FIBER),
157 	EM_DEVICE(82545GM_SERDES),
158 
159 	EM_DEVICE(82546EB_COPPER),
160 	EM_DEVICE(82546EB_FIBER),
161 	EM_DEVICE(82546EB_QUAD_COPPER),
162 	EM_DEVICE(82546GB_COPPER),
163 	EM_DEVICE(82546GB_FIBER),
164 	EM_DEVICE(82546GB_SERDES),
165 	EM_DEVICE(82546GB_PCIE),
166 	EM_DEVICE(82546GB_QUAD_COPPER),
167 	EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
168 
169 	EM_DEVICE(82547EI),
170 	EM_DEVICE(82547EI_MOBILE),
171 	EM_DEVICE(82547GI),
172 
173 	EM_EMX_DEVICE(82571EB_COPPER),
174 	EM_EMX_DEVICE(82571EB_FIBER),
175 	EM_EMX_DEVICE(82571EB_SERDES),
176 	EM_EMX_DEVICE(82571EB_SERDES_DUAL),
177 	EM_EMX_DEVICE(82571EB_SERDES_QUAD),
178 	EM_EMX_DEVICE(82571EB_QUAD_COPPER),
179 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
180 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
181 	EM_EMX_DEVICE(82571EB_QUAD_FIBER),
182 	EM_EMX_DEVICE(82571PT_QUAD_COPPER),
183 
184 	EM_EMX_DEVICE(82572EI_COPPER),
185 	EM_EMX_DEVICE(82572EI_FIBER),
186 	EM_EMX_DEVICE(82572EI_SERDES),
187 	EM_EMX_DEVICE(82572EI),
188 
189 	EM_EMX_DEVICE(82573E),
190 	EM_EMX_DEVICE(82573E_IAMT),
191 	EM_EMX_DEVICE(82573L),
192 
193 	EM_DEVICE(82583V),
194 
195 	EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
196 	EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
197 	EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
198 	EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
199 
200 	EM_DEVICE(ICH8_IGP_M_AMT),
201 	EM_DEVICE(ICH8_IGP_AMT),
202 	EM_DEVICE(ICH8_IGP_C),
203 	EM_DEVICE(ICH8_IFE),
204 	EM_DEVICE(ICH8_IFE_GT),
205 	EM_DEVICE(ICH8_IFE_G),
206 	EM_DEVICE(ICH8_IGP_M),
207 	EM_DEVICE(ICH8_82567V_3),
208 
209 	EM_DEVICE(ICH9_IGP_M_AMT),
210 	EM_DEVICE(ICH9_IGP_AMT),
211 	EM_DEVICE(ICH9_IGP_C),
212 	EM_DEVICE(ICH9_IGP_M),
213 	EM_DEVICE(ICH9_IGP_M_V),
214 	EM_DEVICE(ICH9_IFE),
215 	EM_DEVICE(ICH9_IFE_GT),
216 	EM_DEVICE(ICH9_IFE_G),
217 	EM_DEVICE(ICH9_BM),
218 
219 	EM_EMX_DEVICE(82574L),
220 	EM_EMX_DEVICE(82574LA),
221 
222 	EM_DEVICE(ICH10_R_BM_LM),
223 	EM_DEVICE(ICH10_R_BM_LF),
224 	EM_DEVICE(ICH10_R_BM_V),
225 	EM_DEVICE(ICH10_D_BM_LM),
226 	EM_DEVICE(ICH10_D_BM_LF),
227 	EM_DEVICE(ICH10_D_BM_V),
228 
229 	EM_DEVICE(PCH_M_HV_LM),
230 	EM_DEVICE(PCH_M_HV_LC),
231 	EM_DEVICE(PCH_D_HV_DM),
232 	EM_DEVICE(PCH_D_HV_DC),
233 
234 	EM_DEVICE(PCH2_LV_LM),
235 	EM_DEVICE(PCH2_LV_V),
236 
237 	EM_EMX_DEVICE(PCH_LPT_I217_LM),
238 	EM_EMX_DEVICE(PCH_LPT_I217_V),
239 	EM_EMX_DEVICE(PCH_LPTLP_I218_LM),
240 	EM_EMX_DEVICE(PCH_LPTLP_I218_V),
241 	EM_EMX_DEVICE(PCH_I218_LM2),
242 	EM_EMX_DEVICE(PCH_I218_V2),
243 	EM_EMX_DEVICE(PCH_I218_LM3),
244 	EM_EMX_DEVICE(PCH_I218_V3),
245 
246 	/* required last entry */
247 	EM_DEVICE_NULL
248 };
249 
250 static int	em_probe(device_t);
251 static int	em_attach(device_t);
252 static int	em_detach(device_t);
253 static int	em_shutdown(device_t);
254 static int	em_suspend(device_t);
255 static int	em_resume(device_t);
256 
257 static void	em_init(void *);
258 static void	em_stop(struct adapter *);
259 static int	em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
260 static void	em_start(struct ifnet *, struct ifaltq_subque *);
261 #ifdef IFPOLL_ENABLE
262 static void	em_npoll(struct ifnet *, struct ifpoll_info *);
263 static void	em_npoll_compat(struct ifnet *, void *, int);
264 #endif
265 static void	em_watchdog(struct ifnet *);
266 static void	em_media_status(struct ifnet *, struct ifmediareq *);
267 static int	em_media_change(struct ifnet *);
268 static void	em_timer(void *);
269 
270 static void	em_intr(void *);
271 static void	em_intr_mask(void *);
272 static void	em_intr_body(struct adapter *, boolean_t);
273 static void	em_rxeof(struct adapter *, int);
274 static void	em_txeof(struct adapter *);
275 static void	em_tx_collect(struct adapter *);
276 static void	em_tx_purge(struct adapter *);
277 static void	em_enable_intr(struct adapter *);
278 static void	em_disable_intr(struct adapter *);
279 
280 static int	em_dma_malloc(struct adapter *, bus_size_t,
281 		    struct em_dma_alloc *);
282 static void	em_dma_free(struct adapter *, struct em_dma_alloc *);
283 static void	em_init_tx_ring(struct adapter *);
284 static int	em_init_rx_ring(struct adapter *);
285 static int	em_create_tx_ring(struct adapter *);
286 static int	em_create_rx_ring(struct adapter *);
287 static void	em_destroy_tx_ring(struct adapter *, int);
288 static void	em_destroy_rx_ring(struct adapter *, int);
289 static int	em_newbuf(struct adapter *, int, int);
290 static int	em_encap(struct adapter *, struct mbuf **, int *, int *);
291 static void	em_rxcsum(struct adapter *, struct e1000_rx_desc *,
292 		    struct mbuf *);
293 static int	em_txcsum(struct adapter *, struct mbuf *,
294 		    uint32_t *, uint32_t *);
295 static int	em_tso_pullup(struct adapter *, struct mbuf **);
296 static int	em_tso_setup(struct adapter *, struct mbuf *,
297 		    uint32_t *, uint32_t *);
298 
299 static int	em_get_hw_info(struct adapter *);
300 static int 	em_is_valid_eaddr(const uint8_t *);
301 static int	em_alloc_pci_res(struct adapter *);
302 static void	em_free_pci_res(struct adapter *);
303 static int	em_reset(struct adapter *);
304 static void	em_setup_ifp(struct adapter *);
305 static void	em_init_tx_unit(struct adapter *);
306 static void	em_init_rx_unit(struct adapter *);
307 static void	em_update_stats(struct adapter *);
308 static void	em_set_promisc(struct adapter *);
309 static void	em_disable_promisc(struct adapter *);
310 static void	em_set_multi(struct adapter *);
311 static void	em_update_link_status(struct adapter *);
312 static void	em_smartspeed(struct adapter *);
313 static void	em_set_itr(struct adapter *, uint32_t);
314 static void	em_disable_aspm(struct adapter *);
315 
316 /* Hardware workarounds */
317 static int	em_82547_fifo_workaround(struct adapter *, int);
318 static void	em_82547_update_fifo_head(struct adapter *, int);
319 static int	em_82547_tx_fifo_reset(struct adapter *);
320 static void	em_82547_move_tail(void *);
321 static void	em_82547_move_tail_serialized(struct adapter *);
322 static uint32_t	em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
323 
324 static void	em_print_debug_info(struct adapter *);
325 static void	em_print_nvm_info(struct adapter *);
326 static void	em_print_hw_stats(struct adapter *);
327 
328 static int	em_sysctl_stats(SYSCTL_HANDLER_ARGS);
329 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
330 static int	em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
331 static int	em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
332 static void	em_add_sysctl(struct adapter *adapter);
333 
334 /* Management and WOL Support */
335 static void	em_get_mgmt(struct adapter *);
336 static void	em_rel_mgmt(struct adapter *);
337 static void	em_get_hw_control(struct adapter *);
338 static void	em_rel_hw_control(struct adapter *);
339 static void	em_enable_wol(device_t);
340 
341 static device_method_t em_methods[] = {
342 	/* Device interface */
343 	DEVMETHOD(device_probe,		em_probe),
344 	DEVMETHOD(device_attach,	em_attach),
345 	DEVMETHOD(device_detach,	em_detach),
346 	DEVMETHOD(device_shutdown,	em_shutdown),
347 	DEVMETHOD(device_suspend,	em_suspend),
348 	DEVMETHOD(device_resume,	em_resume),
349 	DEVMETHOD_END
350 };
351 
352 static driver_t em_driver = {
353 	"em",
354 	em_methods,
355 	sizeof(struct adapter),
356 };
357 
358 static devclass_t em_devclass;
359 
360 DECLARE_DUMMY_MODULE(if_em);
361 MODULE_DEPEND(em, ig_hal, 1, 1, 1);
362 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, NULL, NULL);
363 
364 /*
365  * Tunables
366  */
367 static int	em_int_throttle_ceil = EM_DEFAULT_ITR;
368 static int	em_rxd = EM_DEFAULT_RXD;
369 static int	em_txd = EM_DEFAULT_TXD;
370 static int	em_smart_pwr_down = 0;
371 
372 /* Controls whether promiscuous also shows bad packets */
373 static int	em_debug_sbp = FALSE;
374 
375 static int	em_82573_workaround = 1;
376 static int	em_msi_enable = 1;
377 
378 static char	em_flowctrl[IFM_ETH_FC_STRLEN] = IFM_ETH_FC_RXPAUSE;
379 
380 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
381 TUNABLE_INT("hw.em.rxd", &em_rxd);
382 TUNABLE_INT("hw.em.txd", &em_txd);
383 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
384 TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
385 TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
386 TUNABLE_INT("hw.em.msi.enable", &em_msi_enable);
387 TUNABLE_STR("hw.em.flow_ctrl", em_flowctrl, sizeof(em_flowctrl));
388 
389 /* Global used in WOL setup with multiport cards */
390 static int	em_global_quad_port_a = 0;
391 
392 /* Set this to one to display debug statistics */
393 static int	em_display_debug_stats = 0;
394 
395 #if !defined(KTR_IF_EM)
396 #define KTR_IF_EM	KTR_ALL
397 #endif
398 KTR_INFO_MASTER(if_em);
399 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin");
400 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end");
401 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet");
402 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet");
403 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean");
404 #define logif(name)	KTR_LOG(if_em_ ## name)
405 
406 static int
407 em_probe(device_t dev)
408 {
409 	const struct em_vendor_info *ent;
410 	uint16_t vid, did;
411 
412 	vid = pci_get_vendor(dev);
413 	did = pci_get_device(dev);
414 
415 	for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
416 		if (vid == ent->vendor_id && did == ent->device_id) {
417 			device_set_desc(dev, ent->desc);
418 			device_set_async_attach(dev, TRUE);
419 			return (ent->ret);
420 		}
421 	}
422 	return (ENXIO);
423 }
424 
425 static int
426 em_attach(device_t dev)
427 {
428 	struct adapter *adapter = device_get_softc(dev);
429 	struct ifnet *ifp = &adapter->arpcom.ac_if;
430 	int tsize, rsize;
431 	int error = 0;
432 	uint16_t eeprom_data, device_id, apme_mask;
433 	driver_intr_t *intr_func;
434 	char flowctrl[IFM_ETH_FC_STRLEN];
435 
436 	adapter->dev = adapter->osdep.dev = dev;
437 
438 	callout_init_mp(&adapter->timer);
439 	callout_init_mp(&adapter->tx_fifo_timer);
440 
441 	ifmedia_init(&adapter->media, IFM_IMASK | IFM_ETH_FCMASK,
442 	    em_media_change, em_media_status);
443 
444 	/* Determine hardware and mac info */
445 	error = em_get_hw_info(adapter);
446 	if (error) {
447 		device_printf(dev, "Identify hardware failed\n");
448 		goto fail;
449 	}
450 
451 	/* Setup PCI resources */
452 	error = em_alloc_pci_res(adapter);
453 	if (error) {
454 		device_printf(dev, "Allocation of PCI resources failed\n");
455 		goto fail;
456 	}
457 
458 	/*
459 	 * For ICH8 and family we need to map the flash memory,
460 	 * and this must happen after the MAC is identified.
461 	 */
462 	if (adapter->hw.mac.type == e1000_ich8lan ||
463 	    adapter->hw.mac.type == e1000_ich9lan ||
464 	    adapter->hw.mac.type == e1000_ich10lan ||
465 	    adapter->hw.mac.type == e1000_pchlan ||
466 	    adapter->hw.mac.type == e1000_pch2lan ||
467 	    adapter->hw.mac.type == e1000_pch_lpt) {
468 		adapter->flash_rid = EM_BAR_FLASH;
469 
470 		adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
471 					&adapter->flash_rid, RF_ACTIVE);
472 		if (adapter->flash == NULL) {
473 			device_printf(dev, "Mapping of Flash failed\n");
474 			error = ENXIO;
475 			goto fail;
476 		}
477 		adapter->osdep.flash_bus_space_tag =
478 		    rman_get_bustag(adapter->flash);
479 		adapter->osdep.flash_bus_space_handle =
480 		    rman_get_bushandle(adapter->flash);
481 
482 		/*
483 		 * This is used in the shared code
484 		 * XXX this goof is actually not used.
485 		 */
486 		adapter->hw.flash_address = (uint8_t *)adapter->flash;
487 	}
488 
489 	switch (adapter->hw.mac.type) {
490 	case e1000_82571:
491 	case e1000_82572:
492 	case e1000_pch_lpt:
493 		/*
494 		 * Pullup extra 4bytes into the first data segment for
495 		 * TSO, see:
496 		 * 82571/82572 specification update errata #7
497 		 *
498 		 * Same applies to I217 (and maybe I218).
499 		 *
500 		 * NOTE:
501 		 * 4bytes instead of 2bytes, which are mentioned in the
502 		 * errata, are pulled; mainly to keep rest of the data
503 		 * properly aligned.
504 		 */
505 		adapter->flags |= EM_FLAG_TSO_PULLEX;
506 		/* FALL THROUGH */
507 
508 	default:
509 		if (pci_is_pcie(dev))
510 			adapter->flags |= EM_FLAG_TSO;
511 		break;
512 	}
513 
514 	/* Do Shared Code initialization */
515 	if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
516 		device_printf(dev, "Setup of Shared code failed\n");
517 		error = ENXIO;
518 		goto fail;
519 	}
520 
521 	e1000_get_bus_info(&adapter->hw);
522 
523 	/*
524 	 * Validate number of transmit and receive descriptors.  It
525 	 * must not exceed hardware maximum, and must be multiple
526 	 * of E1000_DBA_ALIGN.
527 	 */
528 	if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
529 	    (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
530 	    (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
531 	    em_txd < EM_MIN_TXD) {
532 		if (adapter->hw.mac.type < e1000_82544)
533 			adapter->num_tx_desc = EM_MAX_TXD_82543;
534 		else
535 			adapter->num_tx_desc = EM_DEFAULT_TXD;
536 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
537 		    adapter->num_tx_desc, em_txd);
538 	} else {
539 		adapter->num_tx_desc = em_txd;
540 	}
541 	if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
542 	    (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
543 	    (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
544 	    em_rxd < EM_MIN_RXD) {
545 		if (adapter->hw.mac.type < e1000_82544)
546 			adapter->num_rx_desc = EM_MAX_RXD_82543;
547 		else
548 			adapter->num_rx_desc = EM_DEFAULT_RXD;
549 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
550 		    adapter->num_rx_desc, em_rxd);
551 	} else {
552 		adapter->num_rx_desc = em_rxd;
553 	}
554 
555 	adapter->hw.mac.autoneg = DO_AUTO_NEG;
556 	adapter->hw.phy.autoneg_wait_to_complete = FALSE;
557 	adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
558 	adapter->rx_buffer_len = MCLBYTES;
559 
560 	/*
561 	 * Interrupt throttle rate
562 	 */
563 	if (em_int_throttle_ceil == 0) {
564 		adapter->int_throttle_ceil = 0;
565 	} else {
566 		int throttle = em_int_throttle_ceil;
567 
568 		if (throttle < 0)
569 			throttle = EM_DEFAULT_ITR;
570 
571 		/* Recalculate the tunable value to get the exact frequency. */
572 		throttle = 1000000000 / 256 / throttle;
573 
574 		/* Upper 16bits of ITR is reserved and should be zero */
575 		if (throttle & 0xffff0000)
576 			throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
577 
578 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
579 	}
580 
581 	e1000_init_script_state_82541(&adapter->hw, TRUE);
582 	e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
583 
584 	/* Copper options */
585 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
586 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
587 		adapter->hw.phy.disable_polarity_correction = FALSE;
588 		adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
589 	}
590 
591 	/* Set the frame limits assuming standard ethernet sized frames. */
592 	adapter->hw.mac.max_frame_size =
593 	    ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
594 	adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
595 
596 	/* This controls when hardware reports transmit completion status. */
597 	adapter->hw.mac.report_tx_early = 1;
598 
599 	/*
600 	 * Create top level busdma tag
601 	 */
602 	error = bus_dma_tag_create(NULL, 1, 0,
603 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
604 			NULL, NULL,
605 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
606 			0, &adapter->parent_dtag);
607 	if (error) {
608 		device_printf(dev, "could not create top level DMA tag\n");
609 		goto fail;
610 	}
611 
612 	/*
613 	 * Allocate Transmit Descriptor ring
614 	 */
615 	tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
616 			 EM_DBA_ALIGN);
617 	error = em_dma_malloc(adapter, tsize, &adapter->txdma);
618 	if (error) {
619 		device_printf(dev, "Unable to allocate tx_desc memory\n");
620 		goto fail;
621 	}
622 	adapter->tx_desc_base = adapter->txdma.dma_vaddr;
623 
624 	/*
625 	 * Allocate Receive Descriptor ring
626 	 */
627 	rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
628 			 EM_DBA_ALIGN);
629 	error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
630 	if (error) {
631 		device_printf(dev, "Unable to allocate rx_desc memory\n");
632 		goto fail;
633 	}
634 	adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
635 
636 	/* Allocate multicast array memory. */
637 	adapter->mta = kmalloc(ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
638 	    M_DEVBUF, M_WAITOK);
639 
640 	/* Indicate SOL/IDER usage */
641 	if (e1000_check_reset_block(&adapter->hw)) {
642 		device_printf(dev,
643 		    "PHY reset is blocked due to SOL/IDER session.\n");
644 	}
645 
646 	/* Disable EEE */
647 	adapter->hw.dev_spec.ich8lan.eee_disable = 1;
648 
649 	/*
650 	 * Start from a known state, this is important in reading the
651 	 * nvm and mac from that.
652 	 */
653 	e1000_reset_hw(&adapter->hw);
654 
655 	/* Make sure we have a good EEPROM before we read from it */
656 	if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
657 		/*
658 		 * Some PCI-E parts fail the first check due to
659 		 * the link being in sleep state, call it again,
660 		 * if it fails a second time its a real issue.
661 		 */
662 		if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
663 			device_printf(dev,
664 			    "The EEPROM Checksum Is Not Valid\n");
665 			error = EIO;
666 			goto fail;
667 		}
668 	}
669 
670 	/* Copy the permanent MAC address out of the EEPROM */
671 	if (e1000_read_mac_addr(&adapter->hw) < 0) {
672 		device_printf(dev, "EEPROM read error while reading MAC"
673 		    " address\n");
674 		error = EIO;
675 		goto fail;
676 	}
677 	if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
678 		device_printf(dev, "Invalid MAC address\n");
679 		error = EIO;
680 		goto fail;
681 	}
682 
683 	/* Disable ULP support */
684 	e1000_disable_ulp_lpt_lp(&adapter->hw, TRUE);
685 
686 	/* Allocate transmit descriptors and buffers */
687 	error = em_create_tx_ring(adapter);
688 	if (error) {
689 		device_printf(dev, "Could not setup transmit structures\n");
690 		goto fail;
691 	}
692 
693 	/* Allocate receive descriptors and buffers */
694 	error = em_create_rx_ring(adapter);
695 	if (error) {
696 		device_printf(dev, "Could not setup receive structures\n");
697 		goto fail;
698 	}
699 
700 	/* Manually turn off all interrupts */
701 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
702 
703 	/* Determine if we have to control management hardware */
704 	if (e1000_enable_mng_pass_thru(&adapter->hw))
705 		adapter->flags |= EM_FLAG_HAS_MGMT;
706 
707 	/*
708 	 * Setup Wake-on-Lan
709 	 */
710 	apme_mask = EM_EEPROM_APME;
711 	eeprom_data = 0;
712 	switch (adapter->hw.mac.type) {
713 	case e1000_82542:
714 	case e1000_82543:
715 		break;
716 
717 	case e1000_82573:
718 	case e1000_82583:
719 		adapter->flags |= EM_FLAG_HAS_AMT;
720 		/* FALL THROUGH */
721 
722 	case e1000_82546:
723 	case e1000_82546_rev_3:
724 	case e1000_82571:
725 	case e1000_82572:
726 	case e1000_80003es2lan:
727 		if (adapter->hw.bus.func == 1) {
728 			e1000_read_nvm(&adapter->hw,
729 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
730 		} else {
731 			e1000_read_nvm(&adapter->hw,
732 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
733 		}
734 		break;
735 
736 	case e1000_ich8lan:
737 	case e1000_ich9lan:
738 	case e1000_ich10lan:
739 	case e1000_pchlan:
740 	case e1000_pch2lan:
741 		apme_mask = E1000_WUC_APME;
742 		adapter->flags |= EM_FLAG_HAS_AMT;
743 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
744 		break;
745 
746 	default:
747 		e1000_read_nvm(&adapter->hw,
748 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
749 		break;
750 	}
751 	if (eeprom_data & apme_mask)
752 		adapter->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
753 
754 	/*
755          * We have the eeprom settings, now apply the special cases
756          * where the eeprom may be wrong or the board won't support
757          * wake on lan on a particular port
758 	 */
759 	device_id = pci_get_device(dev);
760         switch (device_id) {
761 	case E1000_DEV_ID_82546GB_PCIE:
762 		adapter->wol = 0;
763 		break;
764 
765 	case E1000_DEV_ID_82546EB_FIBER:
766 	case E1000_DEV_ID_82546GB_FIBER:
767 	case E1000_DEV_ID_82571EB_FIBER:
768 		/*
769 		 * Wake events only supported on port A for dual fiber
770 		 * regardless of eeprom setting
771 		 */
772 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
773 		    E1000_STATUS_FUNC_1)
774 			adapter->wol = 0;
775 		break;
776 
777 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
778 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
779 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
780 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
781                 /* if quad port adapter, disable WoL on all but port A */
782 		if (em_global_quad_port_a != 0)
783 			adapter->wol = 0;
784 		/* Reset for multiple quad port adapters */
785 		if (++em_global_quad_port_a == 4)
786 			em_global_quad_port_a = 0;
787                 break;
788 	}
789 
790 	/* XXX disable wol */
791 	adapter->wol = 0;
792 
793 	/* Setup flow control. */
794 	device_getenv_string(dev, "flow_ctrl", flowctrl, sizeof(flowctrl),
795 	    em_flowctrl);
796 	adapter->ifm_flowctrl = ifmedia_str2ethfc(flowctrl);
797 	if (adapter->hw.mac.type == e1000_pchlan) {
798 		/* Only PAUSE reception is supported on PCH */
799 		adapter->ifm_flowctrl &= ~IFM_ETH_TXPAUSE;
800 	}
801 
802 	/* Setup OS specific network interface */
803 	em_setup_ifp(adapter);
804 
805 	/* Add sysctl tree, must after em_setup_ifp() */
806 	em_add_sysctl(adapter);
807 
808 #ifdef IFPOLL_ENABLE
809 	/* Polling setup */
810 	ifpoll_compat_setup(&adapter->npoll,
811 	    device_get_sysctl_ctx(dev), device_get_sysctl_tree(dev),
812 	    device_get_unit(dev), ifp->if_serializer);
813 #endif
814 
815 	/* Reset the hardware */
816 	error = em_reset(adapter);
817 	if (error) {
818 		/*
819 		 * Some 82573 parts fail the first reset, call it again,
820 		 * if it fails a second time its a real issue.
821 		 */
822 		error = em_reset(adapter);
823 		if (error) {
824 			device_printf(dev, "Unable to reset the hardware\n");
825 			ether_ifdetach(ifp);
826 			goto fail;
827 		}
828 	}
829 
830 	/* Initialize statistics */
831 	em_update_stats(adapter);
832 
833 	adapter->hw.mac.get_link_status = 1;
834 	em_update_link_status(adapter);
835 
836 	/* Do we need workaround for 82544 PCI-X adapter? */
837 	if (adapter->hw.bus.type == e1000_bus_type_pcix &&
838 	    adapter->hw.mac.type == e1000_82544)
839 		adapter->pcix_82544 = TRUE;
840 	else
841 		adapter->pcix_82544 = FALSE;
842 
843 	if (adapter->pcix_82544) {
844 		/*
845 		 * 82544 on PCI-X may split one TX segment
846 		 * into two TX descs, so we double its number
847 		 * of spare TX desc here.
848 		 */
849 		adapter->spare_tx_desc = 2 * EM_TX_SPARE;
850 	} else {
851 		adapter->spare_tx_desc = EM_TX_SPARE;
852 	}
853 	if (adapter->flags & EM_FLAG_TSO)
854 		adapter->spare_tx_desc = EM_TX_SPARE_TSO;
855 	adapter->tx_wreg_nsegs = EM_DEFAULT_TXWREG;
856 
857 	/*
858 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
859 	 * and tx_int_nsegs:
860 	 * (spare_tx_desc + EM_TX_RESERVED) <=
861 	 * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
862 	 */
863 	adapter->oact_tx_desc = adapter->num_tx_desc / 8;
864 	if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
865 		adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
866 	if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
867 		adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
868 
869 	adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
870 	if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
871 		adapter->tx_int_nsegs = adapter->oact_tx_desc;
872 
873 	/* Non-AMT based hardware can now take control from firmware */
874 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
875 	    EM_FLAG_HAS_MGMT && adapter->hw.mac.type >= e1000_82571)
876 		em_get_hw_control(adapter);
877 
878 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
879 
880 	/*
881 	 * Missing Interrupt Following ICR read:
882 	 *
883 	 * 82571/82572 specification update errata #76
884 	 * 82573 specification update errata #31
885 	 * 82574 specification update errata #12
886 	 * 82583 specification update errata #4
887 	 */
888 	intr_func = em_intr;
889 	if ((adapter->flags & EM_FLAG_SHARED_INTR) &&
890 	    (adapter->hw.mac.type == e1000_82571 ||
891 	     adapter->hw.mac.type == e1000_82572 ||
892 	     adapter->hw.mac.type == e1000_82573 ||
893 	     adapter->hw.mac.type == e1000_82574 ||
894 	     adapter->hw.mac.type == e1000_82583))
895 		intr_func = em_intr_mask;
896 
897 	error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
898 			       intr_func, adapter, &adapter->intr_tag,
899 			       ifp->if_serializer);
900 	if (error) {
901 		device_printf(dev, "Failed to register interrupt handler");
902 		ether_ifdetach(ifp);
903 		goto fail;
904 	}
905 	return (0);
906 fail:
907 	em_detach(dev);
908 	return (error);
909 }
910 
911 static int
912 em_detach(device_t dev)
913 {
914 	struct adapter *adapter = device_get_softc(dev);
915 
916 	if (device_is_attached(dev)) {
917 		struct ifnet *ifp = &adapter->arpcom.ac_if;
918 
919 		lwkt_serialize_enter(ifp->if_serializer);
920 
921 		em_stop(adapter);
922 
923 		e1000_phy_hw_reset(&adapter->hw);
924 
925 		em_rel_mgmt(adapter);
926 		em_rel_hw_control(adapter);
927 
928 		if (adapter->wol) {
929 			E1000_WRITE_REG(&adapter->hw, E1000_WUC,
930 					E1000_WUC_PME_EN);
931 			E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
932 			em_enable_wol(dev);
933 		}
934 
935 		bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
936 
937 		lwkt_serialize_exit(ifp->if_serializer);
938 
939 		ether_ifdetach(ifp);
940 	} else if (adapter->memory != NULL) {
941 		em_rel_hw_control(adapter);
942 	}
943 
944 	ifmedia_removeall(&adapter->media);
945 	bus_generic_detach(dev);
946 
947 	em_free_pci_res(adapter);
948 
949 	em_destroy_tx_ring(adapter, adapter->num_tx_desc);
950 	em_destroy_rx_ring(adapter, adapter->num_rx_desc);
951 
952 	/* Free Transmit Descriptor ring */
953 	if (adapter->tx_desc_base)
954 		em_dma_free(adapter, &adapter->txdma);
955 
956 	/* Free Receive Descriptor ring */
957 	if (adapter->rx_desc_base)
958 		em_dma_free(adapter, &adapter->rxdma);
959 
960 	/* Free top level busdma tag */
961 	if (adapter->parent_dtag != NULL)
962 		bus_dma_tag_destroy(adapter->parent_dtag);
963 
964 	if (adapter->mta != NULL)
965 		kfree(adapter->mta, M_DEVBUF);
966 
967 	return (0);
968 }
969 
970 static int
971 em_shutdown(device_t dev)
972 {
973 	return em_suspend(dev);
974 }
975 
976 static int
977 em_suspend(device_t dev)
978 {
979 	struct adapter *adapter = device_get_softc(dev);
980 	struct ifnet *ifp = &adapter->arpcom.ac_if;
981 
982 	lwkt_serialize_enter(ifp->if_serializer);
983 
984 	em_stop(adapter);
985 
986 	em_rel_mgmt(adapter);
987 	em_rel_hw_control(adapter);
988 
989 	if (adapter->wol) {
990 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
991 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
992 		em_enable_wol(dev);
993 	}
994 
995 	lwkt_serialize_exit(ifp->if_serializer);
996 
997 	return bus_generic_suspend(dev);
998 }
999 
1000 static int
1001 em_resume(device_t dev)
1002 {
1003 	struct adapter *adapter = device_get_softc(dev);
1004 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1005 
1006 	lwkt_serialize_enter(ifp->if_serializer);
1007 
1008 	if (adapter->hw.mac.type == e1000_pch2lan)
1009 		e1000_resume_workarounds_pchlan(&adapter->hw);
1010 
1011 	em_init(adapter);
1012 	em_get_mgmt(adapter);
1013 	if_devstart(ifp);
1014 
1015 	lwkt_serialize_exit(ifp->if_serializer);
1016 
1017 	return bus_generic_resume(dev);
1018 }
1019 
1020 static void
1021 em_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1022 {
1023 	struct adapter *adapter = ifp->if_softc;
1024 	struct mbuf *m_head;
1025 	int idx = -1, nsegs = 0;
1026 
1027 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1028 	ASSERT_SERIALIZED(ifp->if_serializer);
1029 
1030 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1031 		return;
1032 
1033 	if (!adapter->link_active) {
1034 		ifq_purge(&ifp->if_snd);
1035 		return;
1036 	}
1037 
1038 	while (!ifq_is_empty(&ifp->if_snd)) {
1039 		/* Now do we at least have a minimal? */
1040 		if (EM_IS_OACTIVE(adapter)) {
1041 			em_tx_collect(adapter);
1042 			if (EM_IS_OACTIVE(adapter)) {
1043 				ifq_set_oactive(&ifp->if_snd);
1044 				adapter->no_tx_desc_avail1++;
1045 				break;
1046 			}
1047 		}
1048 
1049 		logif(pkt_txqueue);
1050 		m_head = ifq_dequeue(&ifp->if_snd);
1051 		if (m_head == NULL)
1052 			break;
1053 
1054 		if (em_encap(adapter, &m_head, &nsegs, &idx)) {
1055 			IFNET_STAT_INC(ifp, oerrors, 1);
1056 			em_tx_collect(adapter);
1057 			continue;
1058 		}
1059 
1060 		/*
1061 		 * TX interrupt are aggressively aggregated, so increasing
1062 		 * opackets at TX interrupt time will make the opackets
1063 		 * statistics vastly inaccurate; we do the opackets increment
1064 		 * now.
1065 		 */
1066 		IFNET_STAT_INC(ifp, opackets, 1);
1067 
1068 		if (nsegs >= adapter->tx_wreg_nsegs && idx >= 0) {
1069 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1070 			nsegs = 0;
1071 			idx = -1;
1072 		}
1073 
1074 		/* Send a copy of the frame to the BPF listener */
1075 		ETHER_BPF_MTAP(ifp, m_head);
1076 
1077 		/* Set timeout in case hardware has problems transmitting. */
1078 		ifp->if_timer = EM_TX_TIMEOUT;
1079 	}
1080 	if (idx >= 0)
1081 		E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1082 }
1083 
1084 static int
1085 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1086 {
1087 	struct adapter *adapter = ifp->if_softc;
1088 	struct ifreq *ifr = (struct ifreq *)data;
1089 	uint16_t eeprom_data = 0;
1090 	int max_frame_size, mask, reinit;
1091 	int error = 0;
1092 
1093 	ASSERT_SERIALIZED(ifp->if_serializer);
1094 
1095 	switch (command) {
1096 	case SIOCSIFMTU:
1097 		switch (adapter->hw.mac.type) {
1098 		case e1000_82573:
1099 			/*
1100 			 * 82573 only supports jumbo frames
1101 			 * if ASPM is disabled.
1102 			 */
1103 			e1000_read_nvm(&adapter->hw,
1104 			    NVM_INIT_3GIO_3, 1, &eeprom_data);
1105 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1106 				max_frame_size = ETHER_MAX_LEN;
1107 				break;
1108 			}
1109 			/* FALL THROUGH */
1110 
1111 		/* Limit Jumbo Frame size */
1112 		case e1000_82571:
1113 		case e1000_82572:
1114 		case e1000_ich9lan:
1115 		case e1000_ich10lan:
1116 		case e1000_pch2lan:
1117 		case e1000_pch_lpt:
1118 		case e1000_82574:
1119 		case e1000_82583:
1120 		case e1000_80003es2lan:
1121 			max_frame_size = 9234;
1122 			break;
1123 
1124 		case e1000_pchlan:
1125 			max_frame_size = 4096;
1126 			break;
1127 
1128 		/* Adapters that do not support jumbo frames */
1129 		case e1000_82542:
1130 		case e1000_ich8lan:
1131 			max_frame_size = ETHER_MAX_LEN;
1132 			break;
1133 
1134 		default:
1135 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1136 			break;
1137 		}
1138 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1139 		    ETHER_CRC_LEN) {
1140 			error = EINVAL;
1141 			break;
1142 		}
1143 
1144 		ifp->if_mtu = ifr->ifr_mtu;
1145 		adapter->hw.mac.max_frame_size =
1146 		    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1147 
1148 		if (ifp->if_flags & IFF_RUNNING)
1149 			em_init(adapter);
1150 		break;
1151 
1152 	case SIOCSIFFLAGS:
1153 		if (ifp->if_flags & IFF_UP) {
1154 			if ((ifp->if_flags & IFF_RUNNING)) {
1155 				if ((ifp->if_flags ^ adapter->if_flags) &
1156 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1157 					em_disable_promisc(adapter);
1158 					em_set_promisc(adapter);
1159 				}
1160 			} else {
1161 				em_init(adapter);
1162 			}
1163 		} else if (ifp->if_flags & IFF_RUNNING) {
1164 			em_stop(adapter);
1165 		}
1166 		adapter->if_flags = ifp->if_flags;
1167 		break;
1168 
1169 	case SIOCADDMULTI:
1170 	case SIOCDELMULTI:
1171 		if (ifp->if_flags & IFF_RUNNING) {
1172 			em_disable_intr(adapter);
1173 			em_set_multi(adapter);
1174 			if (adapter->hw.mac.type == e1000_82542 &&
1175 			    adapter->hw.revision_id == E1000_REVISION_2)
1176 				em_init_rx_unit(adapter);
1177 #ifdef IFPOLL_ENABLE
1178 			if (!(ifp->if_flags & IFF_NPOLLING))
1179 #endif
1180 				em_enable_intr(adapter);
1181 		}
1182 		break;
1183 
1184 	case SIOCSIFMEDIA:
1185 		/* Check SOL/IDER usage */
1186 		if (e1000_check_reset_block(&adapter->hw)) {
1187 			device_printf(adapter->dev, "Media change is"
1188 			    " blocked due to SOL/IDER session.\n");
1189 			break;
1190 		}
1191 		/* FALL THROUGH */
1192 
1193 	case SIOCGIFMEDIA:
1194 		error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1195 		break;
1196 
1197 	case SIOCSIFCAP:
1198 		reinit = 0;
1199 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1200 		if (mask & IFCAP_RXCSUM) {
1201 			ifp->if_capenable ^= IFCAP_RXCSUM;
1202 			reinit = 1;
1203 		}
1204 		if (mask & IFCAP_TXCSUM) {
1205 			ifp->if_capenable ^= IFCAP_TXCSUM;
1206 			if (ifp->if_capenable & IFCAP_TXCSUM)
1207 				ifp->if_hwassist |= EM_CSUM_FEATURES;
1208 			else
1209 				ifp->if_hwassist &= ~EM_CSUM_FEATURES;
1210 		}
1211 		if (mask & IFCAP_TSO) {
1212 			ifp->if_capenable ^= IFCAP_TSO;
1213 			if (ifp->if_capenable & IFCAP_TSO)
1214 				ifp->if_hwassist |= CSUM_TSO;
1215 			else
1216 				ifp->if_hwassist &= ~CSUM_TSO;
1217 		}
1218 		if (mask & IFCAP_VLAN_HWTAGGING) {
1219 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1220 			reinit = 1;
1221 		}
1222 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1223 			em_init(adapter);
1224 		break;
1225 
1226 	default:
1227 		error = ether_ioctl(ifp, command, data);
1228 		break;
1229 	}
1230 	return (error);
1231 }
1232 
1233 static void
1234 em_watchdog(struct ifnet *ifp)
1235 {
1236 	struct adapter *adapter = ifp->if_softc;
1237 
1238 	ASSERT_SERIALIZED(ifp->if_serializer);
1239 
1240 	/*
1241 	 * The timer is set to 5 every time start queues a packet.
1242 	 * Then txeof keeps resetting it as long as it cleans at
1243 	 * least one descriptor.
1244 	 * Finally, anytime all descriptors are clean the timer is
1245 	 * set to 0.
1246 	 */
1247 
1248 	if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1249 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1250 		/*
1251 		 * If we reach here, all TX jobs are completed and
1252 		 * the TX engine should have been idled for some time.
1253 		 * We don't need to call if_devstart() here.
1254 		 */
1255 		ifq_clr_oactive(&ifp->if_snd);
1256 		ifp->if_timer = 0;
1257 		return;
1258 	}
1259 
1260 	/*
1261 	 * If we are in this routine because of pause frames, then
1262 	 * don't reset the hardware.
1263 	 */
1264 	if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1265 	    E1000_STATUS_TXOFF) {
1266 		ifp->if_timer = EM_TX_TIMEOUT;
1267 		return;
1268 	}
1269 
1270 	if (e1000_check_for_link(&adapter->hw) == 0)
1271 		if_printf(ifp, "watchdog timeout -- resetting\n");
1272 
1273 	IFNET_STAT_INC(ifp, oerrors, 1);
1274 	adapter->watchdog_events++;
1275 
1276 	em_init(adapter);
1277 
1278 	if (!ifq_is_empty(&ifp->if_snd))
1279 		if_devstart(ifp);
1280 }
1281 
1282 static void
1283 em_init(void *xsc)
1284 {
1285 	struct adapter *adapter = xsc;
1286 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1287 	device_t dev = adapter->dev;
1288 
1289 	ASSERT_SERIALIZED(ifp->if_serializer);
1290 
1291 	em_stop(adapter);
1292 
1293 	/* Get the latest mac address, User can use a LAA */
1294         bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1295 
1296 	/* Put the address into the Receive Address Array */
1297 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1298 
1299 	/*
1300 	 * With the 82571 adapter, RAR[0] may be overwritten
1301 	 * when the other port is reset, we make a duplicate
1302 	 * in RAR[14] for that eventuality, this assures
1303 	 * the interface continues to function.
1304 	 */
1305 	if (adapter->hw.mac.type == e1000_82571) {
1306 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1307 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1308 		    E1000_RAR_ENTRIES - 1);
1309 	}
1310 
1311 	/* Reset the hardware */
1312 	if (em_reset(adapter)) {
1313 		device_printf(dev, "Unable to reset the hardware\n");
1314 		/* XXX em_stop()? */
1315 		return;
1316 	}
1317 	em_update_link_status(adapter);
1318 
1319 	/* Setup VLAN support, basic and offload if available */
1320 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1321 
1322 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1323 		uint32_t ctrl;
1324 
1325 		ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1326 		ctrl |= E1000_CTRL_VME;
1327 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1328 	}
1329 
1330 	/* Configure for OS presence */
1331 	em_get_mgmt(adapter);
1332 
1333 	/* Prepare transmit descriptors and buffers */
1334 	em_init_tx_ring(adapter);
1335 	em_init_tx_unit(adapter);
1336 
1337 	/* Setup Multicast table */
1338 	em_set_multi(adapter);
1339 
1340 	/* Prepare receive descriptors and buffers */
1341 	if (em_init_rx_ring(adapter)) {
1342 		device_printf(dev, "Could not setup receive structures\n");
1343 		em_stop(adapter);
1344 		return;
1345 	}
1346 	em_init_rx_unit(adapter);
1347 
1348 	/* Don't lose promiscuous settings */
1349 	em_set_promisc(adapter);
1350 
1351 	ifp->if_flags |= IFF_RUNNING;
1352 	ifq_clr_oactive(&ifp->if_snd);
1353 
1354 	callout_reset(&adapter->timer, hz, em_timer, adapter);
1355 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1356 
1357 	/* MSI/X configuration for 82574 */
1358 	if (adapter->hw.mac.type == e1000_82574) {
1359 		int tmp;
1360 
1361 		tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1362 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1363 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1364 		/*
1365 		 * XXX MSIX
1366 		 * Set the IVAR - interrupt vector routing.
1367 		 * Each nibble represents a vector, high bit
1368 		 * is enable, other 3 bits are the MSIX table
1369 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1370 		 * Link (other) to 2, hence the magic number.
1371 		 */
1372 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1373 	}
1374 
1375 #ifdef IFPOLL_ENABLE
1376 	/*
1377 	 * Only enable interrupts if we are not polling, make sure
1378 	 * they are off otherwise.
1379 	 */
1380 	if (ifp->if_flags & IFF_NPOLLING)
1381 		em_disable_intr(adapter);
1382 	else
1383 #endif /* IFPOLL_ENABLE */
1384 		em_enable_intr(adapter);
1385 
1386 	/* AMT based hardware can now take control from firmware */
1387 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
1388 	    (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT) &&
1389 	    adapter->hw.mac.type >= e1000_82571)
1390 		em_get_hw_control(adapter);
1391 }
1392 
1393 #ifdef IFPOLL_ENABLE
1394 
1395 static void
1396 em_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
1397 {
1398 	struct adapter *adapter = ifp->if_softc;
1399 
1400 	ASSERT_SERIALIZED(ifp->if_serializer);
1401 
1402 	if (adapter->npoll.ifpc_stcount-- == 0) {
1403 		uint32_t reg_icr;
1404 
1405 		adapter->npoll.ifpc_stcount = adapter->npoll.ifpc_stfrac;
1406 
1407 		reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1408 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1409 			callout_stop(&adapter->timer);
1410 			adapter->hw.mac.get_link_status = 1;
1411 			em_update_link_status(adapter);
1412 			callout_reset(&adapter->timer, hz, em_timer, adapter);
1413 		}
1414 	}
1415 
1416 	em_rxeof(adapter, count);
1417 	em_txeof(adapter);
1418 
1419 	if (!ifq_is_empty(&ifp->if_snd))
1420 		if_devstart(ifp);
1421 }
1422 
1423 static void
1424 em_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1425 {
1426 	struct adapter *adapter = ifp->if_softc;
1427 
1428 	ASSERT_SERIALIZED(ifp->if_serializer);
1429 
1430 	if (info != NULL) {
1431 		int cpuid = adapter->npoll.ifpc_cpuid;
1432 
1433                 info->ifpi_rx[cpuid].poll_func = em_npoll_compat;
1434 		info->ifpi_rx[cpuid].arg = NULL;
1435 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
1436 
1437 		if (ifp->if_flags & IFF_RUNNING)
1438 			em_disable_intr(adapter);
1439 		ifq_set_cpuid(&ifp->if_snd, cpuid);
1440 	} else {
1441 		if (ifp->if_flags & IFF_RUNNING)
1442 			em_enable_intr(adapter);
1443 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
1444 	}
1445 }
1446 
1447 #endif /* IFPOLL_ENABLE */
1448 
1449 static void
1450 em_intr(void *xsc)
1451 {
1452 	em_intr_body(xsc, TRUE);
1453 }
1454 
1455 static void
1456 em_intr_body(struct adapter *adapter, boolean_t chk_asserted)
1457 {
1458 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1459 	uint32_t reg_icr;
1460 
1461 	logif(intr_beg);
1462 	ASSERT_SERIALIZED(ifp->if_serializer);
1463 
1464 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1465 
1466 	if (chk_asserted &&
1467 	    ((adapter->hw.mac.type >= e1000_82571 &&
1468 	      (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1469 	     reg_icr == 0)) {
1470 		logif(intr_end);
1471 		return;
1472 	}
1473 
1474 	/*
1475 	 * XXX: some laptops trigger several spurious interrupts
1476 	 * on em(4) when in the resume cycle. The ICR register
1477 	 * reports all-ones value in this case. Processing such
1478 	 * interrupts would lead to a freeze. I don't know why.
1479 	 */
1480 	if (reg_icr == 0xffffffff) {
1481 		logif(intr_end);
1482 		return;
1483 	}
1484 
1485 	if (ifp->if_flags & IFF_RUNNING) {
1486 		if (reg_icr &
1487 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1488 			em_rxeof(adapter, -1);
1489 		if (reg_icr & E1000_ICR_TXDW) {
1490 			em_txeof(adapter);
1491 			if (!ifq_is_empty(&ifp->if_snd))
1492 				if_devstart(ifp);
1493 		}
1494 	}
1495 
1496 	/* Link status change */
1497 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1498 		callout_stop(&adapter->timer);
1499 		adapter->hw.mac.get_link_status = 1;
1500 		em_update_link_status(adapter);
1501 
1502 		/* Deal with TX cruft when link lost */
1503 		em_tx_purge(adapter);
1504 
1505 		callout_reset(&adapter->timer, hz, em_timer, adapter);
1506 	}
1507 
1508 	if (reg_icr & E1000_ICR_RXO)
1509 		adapter->rx_overruns++;
1510 
1511 	logif(intr_end);
1512 }
1513 
1514 static void
1515 em_intr_mask(void *xsc)
1516 {
1517 	struct adapter *adapter = xsc;
1518 
1519 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
1520 	/*
1521 	 * NOTE:
1522 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1523 	 * so don't check it.
1524 	 */
1525 	em_intr_body(adapter, FALSE);
1526 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, IMS_ENABLE_MASK);
1527 }
1528 
1529 static void
1530 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1531 {
1532 	struct adapter *adapter = ifp->if_softc;
1533 
1534 	ASSERT_SERIALIZED(ifp->if_serializer);
1535 
1536 	em_update_link_status(adapter);
1537 
1538 	ifmr->ifm_status = IFM_AVALID;
1539 	ifmr->ifm_active = IFM_ETHER;
1540 
1541 	if (!adapter->link_active) {
1542 		if (adapter->hw.mac.autoneg)
1543 			ifmr->ifm_active |= IFM_NONE;
1544 		else
1545 			ifmr->ifm_active = adapter->media.ifm_media;
1546 		return;
1547 	}
1548 
1549 	ifmr->ifm_status |= IFM_ACTIVE;
1550 	if (adapter->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
1551 		ifmr->ifm_active |= adapter->ifm_flowctrl;
1552 
1553 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1554 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1555 		u_char fiber_type = IFM_1000_SX;
1556 
1557 		if (adapter->hw.mac.type == e1000_82545)
1558 			fiber_type = IFM_1000_LX;
1559 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1560 	} else {
1561 		switch (adapter->link_speed) {
1562 		case 10:
1563 			ifmr->ifm_active |= IFM_10_T;
1564 			break;
1565 		case 100:
1566 			ifmr->ifm_active |= IFM_100_TX;
1567 			break;
1568 
1569 		case 1000:
1570 			ifmr->ifm_active |= IFM_1000_T;
1571 			break;
1572 		}
1573 		if (adapter->link_duplex == FULL_DUPLEX)
1574 			ifmr->ifm_active |= IFM_FDX;
1575 		else
1576 			ifmr->ifm_active |= IFM_HDX;
1577 	}
1578 	if (ifmr->ifm_active & IFM_FDX) {
1579 		ifmr->ifm_active |=
1580 		    e1000_fc2ifmedia(adapter->hw.fc.current_mode);
1581 	}
1582 }
1583 
1584 static int
1585 em_media_change(struct ifnet *ifp)
1586 {
1587 	struct adapter *adapter = ifp->if_softc;
1588 	struct ifmedia *ifm = &adapter->media;
1589 
1590 	ASSERT_SERIALIZED(ifp->if_serializer);
1591 
1592 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1593 		return (EINVAL);
1594 
1595 	if (adapter->hw.mac.type == e1000_pchlan &&
1596 	    (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE)) {
1597 		if (bootverbose)
1598 			if_printf(ifp, "TX PAUSE is not supported on PCH\n");
1599 		return EINVAL;
1600 	}
1601 
1602 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1603 	case IFM_AUTO:
1604 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1605 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1606 		break;
1607 
1608 	case IFM_1000_LX:
1609 	case IFM_1000_SX:
1610 	case IFM_1000_T:
1611 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1612 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1613 		break;
1614 
1615 	case IFM_100_TX:
1616 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1617 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1618 		} else {
1619 			if (IFM_OPTIONS(ifm->ifm_media) &
1620 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1621 				if (bootverbose) {
1622 					if_printf(ifp, "Flow control is not "
1623 					    "allowed for half-duplex\n");
1624 				}
1625 				return EINVAL;
1626 			}
1627 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1628 		}
1629 		adapter->hw.mac.autoneg = FALSE;
1630 		adapter->hw.phy.autoneg_advertised = 0;
1631 		break;
1632 
1633 	case IFM_10_T:
1634 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1635 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1636 		} else {
1637 			if (IFM_OPTIONS(ifm->ifm_media) &
1638 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1639 				if (bootverbose) {
1640 					if_printf(ifp, "Flow control is not "
1641 					    "allowed for half-duplex\n");
1642 				}
1643 				return EINVAL;
1644 			}
1645 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1646 		}
1647 		adapter->hw.mac.autoneg = FALSE;
1648 		adapter->hw.phy.autoneg_advertised = 0;
1649 		break;
1650 
1651 	default:
1652 		if (bootverbose) {
1653 			if_printf(ifp, "Unsupported media type %d\n",
1654 			    IFM_SUBTYPE(ifm->ifm_media));
1655 		}
1656 		return EINVAL;
1657 	}
1658 	adapter->ifm_flowctrl = ifm->ifm_media & IFM_ETH_FCMASK;
1659 
1660 	if (ifp->if_flags & IFF_RUNNING)
1661 		em_init(adapter);
1662 
1663 	return (0);
1664 }
1665 
1666 static int
1667 em_encap(struct adapter *adapter, struct mbuf **m_headp,
1668     int *segs_used, int *idx)
1669 {
1670 	bus_dma_segment_t segs[EM_MAX_SCATTER];
1671 	bus_dmamap_t map;
1672 	struct em_buffer *tx_buffer, *tx_buffer_mapped;
1673 	struct e1000_tx_desc *ctxd = NULL;
1674 	struct mbuf *m_head = *m_headp;
1675 	uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1676 	int maxsegs, nsegs, i, j, first, last = 0, error;
1677 
1678 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1679 		error = em_tso_pullup(adapter, m_headp);
1680 		if (error)
1681 			return error;
1682 		m_head = *m_headp;
1683 	}
1684 
1685 	txd_upper = txd_lower = 0;
1686 	txd_used = 0;
1687 
1688 	/*
1689 	 * Capture the first descriptor index, this descriptor
1690 	 * will have the index of the EOP which is the only one
1691 	 * that now gets a DONE bit writeback.
1692 	 */
1693 	first = adapter->next_avail_tx_desc;
1694 	tx_buffer = &adapter->tx_buffer_area[first];
1695 	tx_buffer_mapped = tx_buffer;
1696 	map = tx_buffer->map;
1697 
1698 	maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1699 	KASSERT(maxsegs >= adapter->spare_tx_desc,
1700 		("not enough spare TX desc"));
1701 	if (adapter->pcix_82544) {
1702 		/* Half it; see the comment in em_attach() */
1703 		maxsegs >>= 1;
1704 	}
1705 	if (maxsegs > EM_MAX_SCATTER)
1706 		maxsegs = EM_MAX_SCATTER;
1707 
1708 	error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1709 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1710 	if (error) {
1711 		if (error == ENOBUFS)
1712 			adapter->mbuf_alloc_failed++;
1713 		else
1714 			adapter->no_tx_dma_setup++;
1715 
1716 		m_freem(*m_headp);
1717 		*m_headp = NULL;
1718 		return error;
1719 	}
1720         bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1721 
1722 	m_head = *m_headp;
1723 	adapter->tx_nsegs += nsegs;
1724 	*segs_used += nsegs;
1725 
1726 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1727 		/* TSO will consume one TX desc */
1728 		i = em_tso_setup(adapter, m_head, &txd_upper, &txd_lower);
1729 		adapter->tx_nsegs += i;
1730 		*segs_used += i;
1731 	} else if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1732 		/* TX csum offloading will consume one TX desc */
1733 		i = em_txcsum(adapter, m_head, &txd_upper, &txd_lower);
1734 		adapter->tx_nsegs += i;
1735 		*segs_used += i;
1736 	}
1737 
1738         /* Handle VLAN tag */
1739 	if (m_head->m_flags & M_VLANTAG) {
1740 		/* Set the vlan id. */
1741 		txd_upper |= (htole16(m_head->m_pkthdr.ether_vlantag) << 16);
1742 		/* Tell hardware to add tag */
1743 		txd_lower |= htole32(E1000_TXD_CMD_VLE);
1744 	}
1745 
1746 	i = adapter->next_avail_tx_desc;
1747 
1748 	/* Set up our transmit descriptors */
1749 	for (j = 0; j < nsegs; j++) {
1750 		/* If adapter is 82544 and on PCIX bus */
1751 		if(adapter->pcix_82544) {
1752 			DESC_ARRAY desc_array;
1753 			uint32_t array_elements, counter;
1754 
1755 			/*
1756 			 * Check the Address and Length combination and
1757 			 * split the data accordingly
1758 			 */
1759 			array_elements = em_82544_fill_desc(segs[j].ds_addr,
1760 						segs[j].ds_len, &desc_array);
1761 			for (counter = 0; counter < array_elements; counter++) {
1762 				KKASSERT(txd_used < adapter->num_tx_desc_avail);
1763 
1764 				tx_buffer = &adapter->tx_buffer_area[i];
1765 				ctxd = &adapter->tx_desc_base[i];
1766 
1767 				ctxd->buffer_addr = htole64(
1768 				    desc_array.descriptor[counter].address);
1769 				ctxd->lower.data = htole32(
1770 				    E1000_TXD_CMD_IFCS | txd_lower |
1771 				    desc_array.descriptor[counter].length);
1772 				ctxd->upper.data = htole32(txd_upper);
1773 
1774 				last = i;
1775 				if (++i == adapter->num_tx_desc)
1776 					i = 0;
1777 
1778 				txd_used++;
1779                         }
1780 		} else {
1781 			tx_buffer = &adapter->tx_buffer_area[i];
1782 			ctxd = &adapter->tx_desc_base[i];
1783 
1784 			ctxd->buffer_addr = htole64(segs[j].ds_addr);
1785 			ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1786 						   txd_lower | segs[j].ds_len);
1787 			ctxd->upper.data = htole32(txd_upper);
1788 
1789 			last = i;
1790 			if (++i == adapter->num_tx_desc)
1791 				i = 0;
1792 		}
1793 	}
1794 
1795 	adapter->next_avail_tx_desc = i;
1796 	if (adapter->pcix_82544) {
1797 		KKASSERT(adapter->num_tx_desc_avail > txd_used);
1798 		adapter->num_tx_desc_avail -= txd_used;
1799 	} else {
1800 		KKASSERT(adapter->num_tx_desc_avail > nsegs);
1801 		adapter->num_tx_desc_avail -= nsegs;
1802 	}
1803 
1804 	tx_buffer->m_head = m_head;
1805 	tx_buffer_mapped->map = tx_buffer->map;
1806 	tx_buffer->map = map;
1807 
1808 	if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1809 		adapter->tx_nsegs = 0;
1810 
1811 		/*
1812 		 * Report Status (RS) is turned on
1813 		 * every tx_int_nsegs descriptors.
1814 		 */
1815 		cmd = E1000_TXD_CMD_RS;
1816 
1817 		/*
1818 		 * Keep track of the descriptor, which will
1819 		 * be written back by hardware.
1820 		 */
1821 		adapter->tx_dd[adapter->tx_dd_tail] = last;
1822 		EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1823 		KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1824 	}
1825 
1826 	/*
1827 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1828 	 */
1829 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1830 
1831 	if (adapter->hw.mac.type == e1000_82547) {
1832 		/*
1833 		 * Advance the Transmit Descriptor Tail (TDT), this tells the
1834 		 * E1000 that this frame is available to transmit.
1835 		 */
1836 		if (adapter->link_duplex == HALF_DUPLEX) {
1837 			em_82547_move_tail_serialized(adapter);
1838 		} else {
1839 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1840 			em_82547_update_fifo_head(adapter,
1841 			    m_head->m_pkthdr.len);
1842 		}
1843 	} else {
1844 		/*
1845 		 * Defer TDT updating, until enough descriptors are setup
1846 		 */
1847 		*idx = i;
1848 	}
1849 	return (0);
1850 }
1851 
1852 /*
1853  * 82547 workaround to avoid controller hang in half-duplex environment.
1854  * The workaround is to avoid queuing a large packet that would span
1855  * the internal Tx FIFO ring boundary.  We need to reset the FIFO pointers
1856  * in this case.  We do that only when FIFO is quiescent.
1857  */
1858 static void
1859 em_82547_move_tail_serialized(struct adapter *adapter)
1860 {
1861 	struct e1000_tx_desc *tx_desc;
1862 	uint16_t hw_tdt, sw_tdt, length = 0;
1863 	bool eop = 0;
1864 
1865 	ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
1866 
1867 	hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
1868 	sw_tdt = adapter->next_avail_tx_desc;
1869 
1870 	while (hw_tdt != sw_tdt) {
1871 		tx_desc = &adapter->tx_desc_base[hw_tdt];
1872 		length += tx_desc->lower.flags.length;
1873 		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1874 		if (++hw_tdt == adapter->num_tx_desc)
1875 			hw_tdt = 0;
1876 
1877 		if (eop) {
1878 			if (em_82547_fifo_workaround(adapter, length)) {
1879 				adapter->tx_fifo_wrk_cnt++;
1880 				callout_reset(&adapter->tx_fifo_timer, 1,
1881 					em_82547_move_tail, adapter);
1882 				break;
1883 			}
1884 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
1885 			em_82547_update_fifo_head(adapter, length);
1886 			length = 0;
1887 		}
1888 	}
1889 }
1890 
1891 static void
1892 em_82547_move_tail(void *xsc)
1893 {
1894 	struct adapter *adapter = xsc;
1895 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1896 
1897 	lwkt_serialize_enter(ifp->if_serializer);
1898 	em_82547_move_tail_serialized(adapter);
1899 	lwkt_serialize_exit(ifp->if_serializer);
1900 }
1901 
1902 static int
1903 em_82547_fifo_workaround(struct adapter *adapter, int len)
1904 {
1905 	int fifo_space, fifo_pkt_len;
1906 
1907 	fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1908 
1909 	if (adapter->link_duplex == HALF_DUPLEX) {
1910 		fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1911 
1912 		if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1913 			if (em_82547_tx_fifo_reset(adapter))
1914 				return (0);
1915 			else
1916 				return (1);
1917 		}
1918 	}
1919 	return (0);
1920 }
1921 
1922 static void
1923 em_82547_update_fifo_head(struct adapter *adapter, int len)
1924 {
1925 	int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1926 
1927 	/* tx_fifo_head is always 16 byte aligned */
1928 	adapter->tx_fifo_head += fifo_pkt_len;
1929 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1930 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
1931 }
1932 
1933 static int
1934 em_82547_tx_fifo_reset(struct adapter *adapter)
1935 {
1936 	uint32_t tctl;
1937 
1938 	if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1939 	     E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
1940 	    (E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
1941 	     E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
1942 	    (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
1943 	     E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
1944 	    (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
1945 		/* Disable TX unit */
1946 		tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
1947 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
1948 		    tctl & ~E1000_TCTL_EN);
1949 
1950 		/* Reset FIFO pointers */
1951 		E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
1952 		    adapter->tx_head_addr);
1953 		E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
1954 		    adapter->tx_head_addr);
1955 		E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
1956 		    adapter->tx_head_addr);
1957 		E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
1958 		    adapter->tx_head_addr);
1959 
1960 		/* Re-enable TX unit */
1961 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
1962 		E1000_WRITE_FLUSH(&adapter->hw);
1963 
1964 		adapter->tx_fifo_head = 0;
1965 		adapter->tx_fifo_reset_cnt++;
1966 
1967 		return (TRUE);
1968 	} else {
1969 		return (FALSE);
1970 	}
1971 }
1972 
1973 static void
1974 em_set_promisc(struct adapter *adapter)
1975 {
1976 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1977 	uint32_t reg_rctl;
1978 
1979 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1980 
1981 	if (ifp->if_flags & IFF_PROMISC) {
1982 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1983 		/* Turn this on if you want to see bad packets */
1984 		if (em_debug_sbp)
1985 			reg_rctl |= E1000_RCTL_SBP;
1986 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1987 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1988 		reg_rctl |= E1000_RCTL_MPE;
1989 		reg_rctl &= ~E1000_RCTL_UPE;
1990 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1991 	}
1992 }
1993 
1994 static void
1995 em_disable_promisc(struct adapter *adapter)
1996 {
1997 	uint32_t reg_rctl;
1998 
1999 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2000 
2001 	reg_rctl &= ~E1000_RCTL_UPE;
2002 	reg_rctl &= ~E1000_RCTL_MPE;
2003 	reg_rctl &= ~E1000_RCTL_SBP;
2004 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2005 }
2006 
2007 static void
2008 em_set_multi(struct adapter *adapter)
2009 {
2010 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2011 	struct ifmultiaddr *ifma;
2012 	uint32_t reg_rctl = 0;
2013 	uint8_t *mta;
2014 	int mcnt = 0;
2015 
2016 	mta = adapter->mta;
2017 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
2018 
2019 	if (adapter->hw.mac.type == e1000_82542 &&
2020 	    adapter->hw.revision_id == E1000_REVISION_2) {
2021 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2022 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2023 			e1000_pci_clear_mwi(&adapter->hw);
2024 		reg_rctl |= E1000_RCTL_RST;
2025 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2026 		msec_delay(5);
2027 	}
2028 
2029 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2030 		if (ifma->ifma_addr->sa_family != AF_LINK)
2031 			continue;
2032 
2033 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
2034 			break;
2035 
2036 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2037 		    &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
2038 		mcnt++;
2039 	}
2040 
2041 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
2042 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2043 		reg_rctl |= E1000_RCTL_MPE;
2044 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2045 	} else {
2046 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
2047 	}
2048 
2049 	if (adapter->hw.mac.type == e1000_82542 &&
2050 	    adapter->hw.revision_id == E1000_REVISION_2) {
2051 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2052 		reg_rctl &= ~E1000_RCTL_RST;
2053 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2054 		msec_delay(5);
2055 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2056 			e1000_pci_set_mwi(&adapter->hw);
2057 	}
2058 }
2059 
2060 /*
2061  * This routine checks for link status and updates statistics.
2062  */
2063 static void
2064 em_timer(void *xsc)
2065 {
2066 	struct adapter *adapter = xsc;
2067 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2068 
2069 	lwkt_serialize_enter(ifp->if_serializer);
2070 
2071 	em_update_link_status(adapter);
2072 	em_update_stats(adapter);
2073 
2074 	/* Reset LAA into RAR[0] on 82571 */
2075 	if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
2076 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2077 
2078 	if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
2079 		em_print_hw_stats(adapter);
2080 
2081 	em_smartspeed(adapter);
2082 
2083 	callout_reset(&adapter->timer, hz, em_timer, adapter);
2084 
2085 	lwkt_serialize_exit(ifp->if_serializer);
2086 }
2087 
2088 static void
2089 em_update_link_status(struct adapter *adapter)
2090 {
2091 	struct e1000_hw *hw = &adapter->hw;
2092 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2093 	device_t dev = adapter->dev;
2094 	uint32_t link_check = 0;
2095 
2096 	/* Get the cached link value or read phy for real */
2097 	switch (hw->phy.media_type) {
2098 	case e1000_media_type_copper:
2099 		if (hw->mac.get_link_status) {
2100 			/* Do the work to read phy */
2101 			e1000_check_for_link(hw);
2102 			link_check = !hw->mac.get_link_status;
2103 			if (link_check) /* ESB2 fix */
2104 				e1000_cfg_on_link_up(hw);
2105 		} else {
2106 			link_check = TRUE;
2107 		}
2108 		break;
2109 
2110 	case e1000_media_type_fiber:
2111 		e1000_check_for_link(hw);
2112 		link_check =
2113 			E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
2114 		break;
2115 
2116 	case e1000_media_type_internal_serdes:
2117 		e1000_check_for_link(hw);
2118 		link_check = adapter->hw.mac.serdes_has_link;
2119 		break;
2120 
2121 	case e1000_media_type_unknown:
2122 	default:
2123 		break;
2124 	}
2125 
2126 	/* Now check for a transition */
2127 	if (link_check && adapter->link_active == 0) {
2128 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
2129 		    &adapter->link_duplex);
2130 
2131 		/*
2132 		 * Check if we should enable/disable SPEED_MODE bit on
2133 		 * 82571/82572
2134 		 */
2135 		if (adapter->link_speed != SPEED_1000 &&
2136 		    (hw->mac.type == e1000_82571 ||
2137 		     hw->mac.type == e1000_82572)) {
2138 			int tarc0;
2139 
2140 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2141 			tarc0 &= ~SPEED_MODE_BIT;
2142 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2143 		}
2144 		if (bootverbose) {
2145 			char flowctrl[IFM_ETH_FC_STRLEN];
2146 
2147 			e1000_fc2str(hw->fc.current_mode, flowctrl,
2148 			    sizeof(flowctrl));
2149 			device_printf(dev, "Link is up %d Mbps %s, "
2150 			    "Flow control: %s\n",
2151 			    adapter->link_speed,
2152 			    (adapter->link_duplex == FULL_DUPLEX) ?
2153 			    "Full Duplex" : "Half Duplex",
2154 			    flowctrl);
2155 		}
2156 		if (adapter->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
2157 			e1000_force_flowctrl(hw, adapter->ifm_flowctrl);
2158 		adapter->link_active = 1;
2159 		adapter->smartspeed = 0;
2160 		ifp->if_baudrate = adapter->link_speed * 1000000;
2161 		ifp->if_link_state = LINK_STATE_UP;
2162 		if_link_state_change(ifp);
2163 	} else if (!link_check && adapter->link_active == 1) {
2164 		ifp->if_baudrate = adapter->link_speed = 0;
2165 		adapter->link_duplex = 0;
2166 		if (bootverbose)
2167 			device_printf(dev, "Link is Down\n");
2168 		adapter->link_active = 0;
2169 #if 0
2170 		/* Link down, disable watchdog */
2171 		if->if_timer = 0;
2172 #endif
2173 		ifp->if_link_state = LINK_STATE_DOWN;
2174 		if_link_state_change(ifp);
2175 	}
2176 }
2177 
2178 static void
2179 em_stop(struct adapter *adapter)
2180 {
2181 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2182 	int i;
2183 
2184 	ASSERT_SERIALIZED(ifp->if_serializer);
2185 
2186 	em_disable_intr(adapter);
2187 
2188 	callout_stop(&adapter->timer);
2189 	callout_stop(&adapter->tx_fifo_timer);
2190 
2191 	ifp->if_flags &= ~IFF_RUNNING;
2192 	ifq_clr_oactive(&ifp->if_snd);
2193 	ifp->if_timer = 0;
2194 
2195 	e1000_reset_hw(&adapter->hw);
2196 	if (adapter->hw.mac.type >= e1000_82544)
2197 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2198 
2199 	for (i = 0; i < adapter->num_tx_desc; i++) {
2200 		struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2201 
2202 		if (tx_buffer->m_head != NULL) {
2203 			bus_dmamap_unload(adapter->txtag, tx_buffer->map);
2204 			m_freem(tx_buffer->m_head);
2205 			tx_buffer->m_head = NULL;
2206 		}
2207 	}
2208 
2209 	for (i = 0; i < adapter->num_rx_desc; i++) {
2210 		struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2211 
2212 		if (rx_buffer->m_head != NULL) {
2213 			bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2214 			m_freem(rx_buffer->m_head);
2215 			rx_buffer->m_head = NULL;
2216 		}
2217 	}
2218 
2219 	if (adapter->fmp != NULL)
2220 		m_freem(adapter->fmp);
2221 	adapter->fmp = NULL;
2222 	adapter->lmp = NULL;
2223 
2224 	adapter->csum_flags = 0;
2225 	adapter->csum_lhlen = 0;
2226 	adapter->csum_iphlen = 0;
2227 	adapter->csum_thlen = 0;
2228 	adapter->csum_mss = 0;
2229 	adapter->csum_pktlen = 0;
2230 
2231 	adapter->tx_dd_head = 0;
2232 	adapter->tx_dd_tail = 0;
2233 	adapter->tx_nsegs = 0;
2234 }
2235 
2236 static int
2237 em_get_hw_info(struct adapter *adapter)
2238 {
2239 	device_t dev = adapter->dev;
2240 
2241 	/* Save off the information about this board */
2242 	adapter->hw.vendor_id = pci_get_vendor(dev);
2243 	adapter->hw.device_id = pci_get_device(dev);
2244 	adapter->hw.revision_id = pci_get_revid(dev);
2245 	adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2246 	adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2247 
2248 	/* Do Shared Code Init and Setup */
2249 	if (e1000_set_mac_type(&adapter->hw))
2250 		return ENXIO;
2251 	return 0;
2252 }
2253 
2254 static int
2255 em_alloc_pci_res(struct adapter *adapter)
2256 {
2257 	device_t dev = adapter->dev;
2258 	u_int intr_flags;
2259 	int val, rid, msi_enable;
2260 
2261 	/* Enable bus mastering */
2262 	pci_enable_busmaster(dev);
2263 
2264 	adapter->memory_rid = EM_BAR_MEM;
2265 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2266 				&adapter->memory_rid, RF_ACTIVE);
2267 	if (adapter->memory == NULL) {
2268 		device_printf(dev, "Unable to allocate bus resource: memory\n");
2269 		return (ENXIO);
2270 	}
2271 	adapter->osdep.mem_bus_space_tag =
2272 	    rman_get_bustag(adapter->memory);
2273 	adapter->osdep.mem_bus_space_handle =
2274 	    rman_get_bushandle(adapter->memory);
2275 
2276 	/* XXX This is quite goofy, it is not actually used */
2277 	adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2278 
2279 	/* Only older adapters use IO mapping */
2280 	if (adapter->hw.mac.type > e1000_82543 &&
2281 	    adapter->hw.mac.type < e1000_82571) {
2282 		/* Figure our where our IO BAR is ? */
2283 		for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2284 			val = pci_read_config(dev, rid, 4);
2285 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2286 				adapter->io_rid = rid;
2287 				break;
2288 			}
2289 			rid += 4;
2290 			/* check for 64bit BAR */
2291 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2292 				rid += 4;
2293 		}
2294 		if (rid >= PCIR_CARDBUSCIS) {
2295 			device_printf(dev, "Unable to locate IO BAR\n");
2296 			return (ENXIO);
2297 		}
2298 		adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2299 					&adapter->io_rid, RF_ACTIVE);
2300 		if (adapter->ioport == NULL) {
2301 			device_printf(dev, "Unable to allocate bus resource: "
2302 			    "ioport\n");
2303 			return (ENXIO);
2304 		}
2305 		adapter->hw.io_base = 0;
2306 		adapter->osdep.io_bus_space_tag =
2307 		    rman_get_bustag(adapter->ioport);
2308 		adapter->osdep.io_bus_space_handle =
2309 		    rman_get_bushandle(adapter->ioport);
2310 	}
2311 
2312 	/*
2313 	 * Don't enable MSI-X on 82574, see:
2314 	 * 82574 specification update errata #15
2315 	 *
2316 	 * Don't enable MSI on PCI/PCI-X chips, see:
2317 	 * 82540 specification update errata #6
2318 	 * 82545 specification update errata #4
2319 	 *
2320 	 * Don't enable MSI on 82571/82572, see:
2321 	 * 82571/82572 specification update errata #63
2322 	 */
2323 	msi_enable = em_msi_enable;
2324 	if (msi_enable &&
2325 	    (!pci_is_pcie(dev) ||
2326 	     adapter->hw.mac.type == e1000_82571 ||
2327 	     adapter->hw.mac.type == e1000_82572))
2328 		msi_enable = 0;
2329 
2330 	adapter->intr_type = pci_alloc_1intr(dev, msi_enable,
2331 	    &adapter->intr_rid, &intr_flags);
2332 
2333 	if (adapter->intr_type == PCI_INTR_TYPE_LEGACY) {
2334 		int unshared;
2335 
2336 		unshared = device_getenv_int(dev, "irq.unshared", 0);
2337 		if (!unshared) {
2338 			adapter->flags |= EM_FLAG_SHARED_INTR;
2339 			if (bootverbose)
2340 				device_printf(dev, "IRQ shared\n");
2341 		} else {
2342 			intr_flags &= ~RF_SHAREABLE;
2343 			if (bootverbose)
2344 				device_printf(dev, "IRQ unshared\n");
2345 		}
2346 	}
2347 
2348 	adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2349 	    &adapter->intr_rid, intr_flags);
2350 	if (adapter->intr_res == NULL) {
2351 		device_printf(dev, "Unable to allocate bus resource: "
2352 		    "interrupt\n");
2353 		return (ENXIO);
2354 	}
2355 
2356 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2357 	adapter->hw.back = &adapter->osdep;
2358 	return (0);
2359 }
2360 
2361 static void
2362 em_free_pci_res(struct adapter *adapter)
2363 {
2364 	device_t dev = adapter->dev;
2365 
2366 	if (adapter->intr_res != NULL) {
2367 		bus_release_resource(dev, SYS_RES_IRQ,
2368 		    adapter->intr_rid, adapter->intr_res);
2369 	}
2370 
2371 	if (adapter->intr_type == PCI_INTR_TYPE_MSI)
2372 		pci_release_msi(dev);
2373 
2374 	if (adapter->memory != NULL) {
2375 		bus_release_resource(dev, SYS_RES_MEMORY,
2376 		    adapter->memory_rid, adapter->memory);
2377 	}
2378 
2379 	if (adapter->flash != NULL) {
2380 		bus_release_resource(dev, SYS_RES_MEMORY,
2381 		    adapter->flash_rid, adapter->flash);
2382 	}
2383 
2384 	if (adapter->ioport != NULL) {
2385 		bus_release_resource(dev, SYS_RES_IOPORT,
2386 		    adapter->io_rid, adapter->ioport);
2387 	}
2388 }
2389 
2390 static int
2391 em_reset(struct adapter *adapter)
2392 {
2393 	device_t dev = adapter->dev;
2394 	uint16_t rx_buffer_size;
2395 	uint32_t pba;
2396 
2397 	/* When hardware is reset, fifo_head is also reset */
2398 	adapter->tx_fifo_head = 0;
2399 
2400 	/* Set up smart power down as default off on newer adapters. */
2401 	if (!em_smart_pwr_down &&
2402 	    (adapter->hw.mac.type == e1000_82571 ||
2403 	     adapter->hw.mac.type == e1000_82572)) {
2404 		uint16_t phy_tmp = 0;
2405 
2406 		/* Speed up time to link by disabling smart power down. */
2407 		e1000_read_phy_reg(&adapter->hw,
2408 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2409 		phy_tmp &= ~IGP02E1000_PM_SPD;
2410 		e1000_write_phy_reg(&adapter->hw,
2411 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2412 	}
2413 
2414 	/*
2415 	 * Packet Buffer Allocation (PBA)
2416 	 * Writing PBA sets the receive portion of the buffer
2417 	 * the remainder is used for the transmit buffer.
2418 	 *
2419 	 * Devices before the 82547 had a Packet Buffer of 64K.
2420 	 *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
2421 	 * After the 82547 the buffer was reduced to 40K.
2422 	 *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
2423 	 *   Note: default does not leave enough room for Jumbo Frame >10k.
2424 	 */
2425 	switch (adapter->hw.mac.type) {
2426 	case e1000_82547:
2427 	case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
2428 		if (adapter->hw.mac.max_frame_size > 8192)
2429 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
2430 		else
2431 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
2432 		adapter->tx_fifo_head = 0;
2433 		adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
2434 		adapter->tx_fifo_size =
2435 		    (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
2436 		break;
2437 
2438 	/* Total Packet Buffer on these is 48K */
2439 	case e1000_82571:
2440 	case e1000_82572:
2441 	case e1000_80003es2lan:
2442 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2443 		break;
2444 
2445 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2446 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2447 		break;
2448 
2449 	case e1000_82574:
2450 	case e1000_82583:
2451 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2452 		break;
2453 
2454 	case e1000_ich8lan:
2455 		pba = E1000_PBA_8K;
2456 		break;
2457 
2458 	case e1000_ich9lan:
2459 	case e1000_ich10lan:
2460 #define E1000_PBA_10K	0x000A
2461 		pba = E1000_PBA_10K;
2462 		break;
2463 
2464 	case e1000_pchlan:
2465 	case e1000_pch2lan:
2466 	case e1000_pch_lpt:
2467 		pba = E1000_PBA_26K;
2468 		break;
2469 
2470 	default:
2471 		/* Devices before 82547 had a Packet Buffer of 64K.   */
2472 		if (adapter->hw.mac.max_frame_size > 8192)
2473 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2474 		else
2475 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2476 	}
2477 	E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2478 
2479 	/*
2480 	 * These parameters control the automatic generation (Tx) and
2481 	 * response (Rx) to Ethernet PAUSE frames.
2482 	 * - High water mark should allow for at least two frames to be
2483 	 *   received after sending an XOFF.
2484 	 * - Low water mark works best when it is very near the high water mark.
2485 	 *   This allows the receiver to restart by sending XON when it has
2486 	 *   drained a bit. Here we use an arbitary value of 1500 which will
2487 	 *   restart after one full frame is pulled from the buffer. There
2488 	 *   could be several smaller frames in the buffer and if so they will
2489 	 *   not trigger the XON until their total number reduces the buffer
2490 	 *   by 1500.
2491 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2492 	 */
2493 	rx_buffer_size =
2494 		(E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2495 
2496 	adapter->hw.fc.high_water = rx_buffer_size -
2497 	    roundup2(adapter->hw.mac.max_frame_size, 1024);
2498 	adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2499 
2500 	if (adapter->hw.mac.type == e1000_80003es2lan)
2501 		adapter->hw.fc.pause_time = 0xFFFF;
2502 	else
2503 		adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2504 
2505 	adapter->hw.fc.send_xon = TRUE;
2506 
2507 	adapter->hw.fc.requested_mode = e1000_ifmedia2fc(adapter->ifm_flowctrl);
2508 
2509 	/*
2510 	 * Device specific overrides/settings
2511 	 */
2512 	switch (adapter->hw.mac.type) {
2513 	case e1000_pchlan:
2514 		KASSERT(adapter->hw.fc.requested_mode == e1000_fc_rx_pause ||
2515 		    adapter->hw.fc.requested_mode == e1000_fc_none,
2516 		    ("unsupported flow control on PCH %d",
2517 		     adapter->hw.fc.requested_mode));
2518 		adapter->hw.fc.pause_time = 0xFFFF; /* override */
2519 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2520 			adapter->hw.fc.high_water = 0x3500;
2521 			adapter->hw.fc.low_water = 0x1500;
2522 		} else {
2523 			adapter->hw.fc.high_water = 0x5000;
2524 			adapter->hw.fc.low_water = 0x3000;
2525 		}
2526 		adapter->hw.fc.refresh_time = 0x1000;
2527 		break;
2528 
2529 	case e1000_pch2lan:
2530 	case e1000_pch_lpt:
2531 		adapter->hw.fc.high_water = 0x5C20;
2532 		adapter->hw.fc.low_water = 0x5048;
2533 		adapter->hw.fc.pause_time = 0x0650;
2534 		adapter->hw.fc.refresh_time = 0x0400;
2535 		/* Jumbos need adjusted PBA */
2536 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU)
2537 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 12);
2538 		else
2539 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 26);
2540 		break;
2541 
2542 	case e1000_ich9lan:
2543 	case e1000_ich10lan:
2544 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2545 			adapter->hw.fc.high_water = 0x2800;
2546 			adapter->hw.fc.low_water =
2547 			    adapter->hw.fc.high_water - 8;
2548 			break;
2549 		}
2550 		/* FALL THROUGH */
2551 	default:
2552 		if (adapter->hw.mac.type == e1000_80003es2lan)
2553 			adapter->hw.fc.pause_time = 0xFFFF;
2554 		break;
2555 	}
2556 
2557 	/* Issue a global reset */
2558 	e1000_reset_hw(&adapter->hw);
2559 	if (adapter->hw.mac.type >= e1000_82544)
2560 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2561 	em_disable_aspm(adapter);
2562 
2563 	if (e1000_init_hw(&adapter->hw) < 0) {
2564 		device_printf(dev, "Hardware Initialization Failed\n");
2565 		return (EIO);
2566 	}
2567 
2568 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
2569 	e1000_get_phy_info(&adapter->hw);
2570 	e1000_check_for_link(&adapter->hw);
2571 
2572 	return (0);
2573 }
2574 
2575 static void
2576 em_setup_ifp(struct adapter *adapter)
2577 {
2578 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2579 
2580 	if_initname(ifp, device_get_name(adapter->dev),
2581 		    device_get_unit(adapter->dev));
2582 	ifp->if_softc = adapter;
2583 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2584 	ifp->if_init =  em_init;
2585 	ifp->if_ioctl = em_ioctl;
2586 	ifp->if_start = em_start;
2587 #ifdef IFPOLL_ENABLE
2588 	ifp->if_npoll = em_npoll;
2589 #endif
2590 	ifp->if_watchdog = em_watchdog;
2591 	ifp->if_nmbclusters = adapter->num_rx_desc;
2592 	ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2593 	ifq_set_ready(&ifp->if_snd);
2594 
2595 	ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2596 
2597 	ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2598 	if (adapter->hw.mac.type >= e1000_82543)
2599 		ifp->if_capabilities |= IFCAP_HWCSUM;
2600 	if (adapter->flags & EM_FLAG_TSO)
2601 		ifp->if_capabilities |= IFCAP_TSO;
2602 	ifp->if_capenable = ifp->if_capabilities;
2603 
2604 	if (ifp->if_capenable & IFCAP_TXCSUM)
2605 		ifp->if_hwassist |= EM_CSUM_FEATURES;
2606 	if (ifp->if_capenable & IFCAP_TSO)
2607 		ifp->if_hwassist |= CSUM_TSO;
2608 
2609 	/*
2610 	 * Tell the upper layer(s) we support long frames.
2611 	 */
2612 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2613 
2614 	/*
2615 	 * Specify the media types supported by this adapter and register
2616 	 * callbacks to update media and link information
2617 	 */
2618 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2619 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2620 		u_char fiber_type = IFM_1000_SX; /* default type */
2621 
2622 		if (adapter->hw.mac.type == e1000_82545)
2623 			fiber_type = IFM_1000_LX;
2624 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
2625 			    0, NULL);
2626 	} else {
2627 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2628 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2629 			    0, NULL);
2630 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2631 			    0, NULL);
2632 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2633 			    0, NULL);
2634 		if (adapter->hw.phy.type != e1000_phy_ife) {
2635 			ifmedia_add(&adapter->media,
2636 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2637 		}
2638 	}
2639 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2640 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO |
2641 	    adapter->ifm_flowctrl);
2642 }
2643 
2644 
2645 /*
2646  * Workaround for SmartSpeed on 82541 and 82547 controllers
2647  */
2648 static void
2649 em_smartspeed(struct adapter *adapter)
2650 {
2651 	uint16_t phy_tmp;
2652 
2653 	if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2654 	    adapter->hw.mac.autoneg == 0 ||
2655 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2656 		return;
2657 
2658 	if (adapter->smartspeed == 0) {
2659 		/*
2660 		 * If Master/Slave config fault is asserted twice,
2661 		 * we assume back-to-back
2662 		 */
2663 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2664 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2665 			return;
2666 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2667 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2668 			e1000_read_phy_reg(&adapter->hw,
2669 			    PHY_1000T_CTRL, &phy_tmp);
2670 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2671 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2672 				e1000_write_phy_reg(&adapter->hw,
2673 				    PHY_1000T_CTRL, phy_tmp);
2674 				adapter->smartspeed++;
2675 				if (adapter->hw.mac.autoneg &&
2676 				    !e1000_phy_setup_autoneg(&adapter->hw) &&
2677 				    !e1000_read_phy_reg(&adapter->hw,
2678 				     PHY_CONTROL, &phy_tmp)) {
2679 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2680 						   MII_CR_RESTART_AUTO_NEG;
2681 					e1000_write_phy_reg(&adapter->hw,
2682 					    PHY_CONTROL, phy_tmp);
2683 				}
2684 			}
2685 		}
2686 		return;
2687 	} else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2688 		/* If still no link, perhaps using 2/3 pair cable */
2689 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2690 		phy_tmp |= CR_1000T_MS_ENABLE;
2691 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2692 		if (adapter->hw.mac.autoneg &&
2693 		    !e1000_phy_setup_autoneg(&adapter->hw) &&
2694 		    !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2695 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2696 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2697 		}
2698 	}
2699 
2700 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2701 	if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2702 		adapter->smartspeed = 0;
2703 }
2704 
2705 static int
2706 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2707 	      struct em_dma_alloc *dma)
2708 {
2709 	dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2710 				EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2711 				&dma->dma_tag, &dma->dma_map,
2712 				&dma->dma_paddr);
2713 	if (dma->dma_vaddr == NULL)
2714 		return ENOMEM;
2715 	else
2716 		return 0;
2717 }
2718 
2719 static void
2720 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2721 {
2722 	if (dma->dma_tag == NULL)
2723 		return;
2724 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2725 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2726 	bus_dma_tag_destroy(dma->dma_tag);
2727 }
2728 
2729 static int
2730 em_create_tx_ring(struct adapter *adapter)
2731 {
2732 	device_t dev = adapter->dev;
2733 	struct em_buffer *tx_buffer;
2734 	int error, i;
2735 
2736 	adapter->tx_buffer_area =
2737 		kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2738 			M_DEVBUF, M_WAITOK | M_ZERO);
2739 
2740 	/*
2741 	 * Create DMA tags for tx buffers
2742 	 */
2743 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2744 			1, 0,			/* alignment, bounds */
2745 			BUS_SPACE_MAXADDR,	/* lowaddr */
2746 			BUS_SPACE_MAXADDR,	/* highaddr */
2747 			NULL, NULL,		/* filter, filterarg */
2748 			EM_TSO_SIZE,		/* maxsize */
2749 			EM_MAX_SCATTER,		/* nsegments */
2750 			PAGE_SIZE,		/* maxsegsize */
2751 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2752 			BUS_DMA_ONEBPAGE,	/* flags */
2753 			&adapter->txtag);
2754 	if (error) {
2755 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2756 		kfree(adapter->tx_buffer_area, M_DEVBUF);
2757 		adapter->tx_buffer_area = NULL;
2758 		return error;
2759 	}
2760 
2761 	/*
2762 	 * Create DMA maps for tx buffers
2763 	 */
2764 	for (i = 0; i < adapter->num_tx_desc; i++) {
2765 		tx_buffer = &adapter->tx_buffer_area[i];
2766 
2767 		error = bus_dmamap_create(adapter->txtag,
2768 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2769 					  &tx_buffer->map);
2770 		if (error) {
2771 			device_printf(dev, "Unable to create TX DMA map\n");
2772 			em_destroy_tx_ring(adapter, i);
2773 			return error;
2774 		}
2775 	}
2776 	return (0);
2777 }
2778 
2779 static void
2780 em_init_tx_ring(struct adapter *adapter)
2781 {
2782 	/* Clear the old ring contents */
2783 	bzero(adapter->tx_desc_base,
2784 	    (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2785 
2786 	/* Reset state */
2787 	adapter->next_avail_tx_desc = 0;
2788 	adapter->next_tx_to_clean = 0;
2789 	adapter->num_tx_desc_avail = adapter->num_tx_desc;
2790 }
2791 
2792 static void
2793 em_init_tx_unit(struct adapter *adapter)
2794 {
2795 	uint32_t tctl, tarc, tipg = 0;
2796 	uint64_t bus_addr;
2797 
2798 	/* Setup the Base and Length of the Tx Descriptor Ring */
2799 	bus_addr = adapter->txdma.dma_paddr;
2800 	E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2801 	    adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2802 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2803 	    (uint32_t)(bus_addr >> 32));
2804 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2805 	    (uint32_t)bus_addr);
2806 	/* Setup the HW Tx Head and Tail descriptor pointers */
2807 	E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2808 	E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2809 
2810 	/* Set the default values for the Tx Inter Packet Gap timer */
2811 	switch (adapter->hw.mac.type) {
2812 	case e1000_82542:
2813 		tipg = DEFAULT_82542_TIPG_IPGT;
2814 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2815 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2816 		break;
2817 
2818 	case e1000_80003es2lan:
2819 		tipg = DEFAULT_82543_TIPG_IPGR1;
2820 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2821 		    E1000_TIPG_IPGR2_SHIFT;
2822 		break;
2823 
2824 	default:
2825 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2826 		    adapter->hw.phy.media_type ==
2827 		    e1000_media_type_internal_serdes)
2828 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2829 		else
2830 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2831 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2832 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2833 		break;
2834 	}
2835 
2836 	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2837 
2838 	/* NOTE: 0 is not allowed for TIDV */
2839 	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
2840 	if(adapter->hw.mac.type >= e1000_82540)
2841 		E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
2842 
2843 	if (adapter->hw.mac.type == e1000_82571 ||
2844 	    adapter->hw.mac.type == e1000_82572) {
2845 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2846 		tarc |= SPEED_MODE_BIT;
2847 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2848 	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
2849 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2850 		tarc |= 1;
2851 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2852 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2853 		tarc |= 1;
2854 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2855 	}
2856 
2857 	/* Program the Transmit Control Register */
2858 	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2859 	tctl &= ~E1000_TCTL_CT;
2860 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2861 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2862 
2863 	if (adapter->hw.mac.type >= e1000_82571)
2864 		tctl |= E1000_TCTL_MULR;
2865 
2866 	/* This write will effectively turn on the transmit unit. */
2867 	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2868 
2869 	if (adapter->hw.mac.type == e1000_82571 ||
2870 	    adapter->hw.mac.type == e1000_82572 ||
2871 	    adapter->hw.mac.type == e1000_80003es2lan) {
2872 		/* Bit 28 of TARC1 must be cleared when MULR is enabled */
2873 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2874 		tarc &= ~(1 << 28);
2875 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2876 	}
2877 }
2878 
2879 static void
2880 em_destroy_tx_ring(struct adapter *adapter, int ndesc)
2881 {
2882 	struct em_buffer *tx_buffer;
2883 	int i;
2884 
2885 	if (adapter->tx_buffer_area == NULL)
2886 		return;
2887 
2888 	for (i = 0; i < ndesc; i++) {
2889 		tx_buffer = &adapter->tx_buffer_area[i];
2890 
2891 		KKASSERT(tx_buffer->m_head == NULL);
2892 		bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2893 	}
2894 	bus_dma_tag_destroy(adapter->txtag);
2895 
2896 	kfree(adapter->tx_buffer_area, M_DEVBUF);
2897 	adapter->tx_buffer_area = NULL;
2898 }
2899 
2900 /*
2901  * The offload context needs to be set when we transfer the first
2902  * packet of a particular protocol (TCP/UDP).  This routine has been
2903  * enhanced to deal with inserted VLAN headers.
2904  *
2905  * If the new packet's ether header length, ip header length and
2906  * csum offloading type are same as the previous packet, we should
2907  * avoid allocating a new csum context descriptor; mainly to take
2908  * advantage of the pipeline effect of the TX data read request.
2909  *
2910  * This function returns number of TX descrptors allocated for
2911  * csum context.
2912  */
2913 static int
2914 em_txcsum(struct adapter *adapter, struct mbuf *mp,
2915 	  uint32_t *txd_upper, uint32_t *txd_lower)
2916 {
2917 	struct e1000_context_desc *TXD;
2918 	int curr_txd, ehdrlen, csum_flags;
2919 	uint32_t cmd, hdr_len, ip_hlen;
2920 
2921 	csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
2922 	ip_hlen = mp->m_pkthdr.csum_iphlen;
2923 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2924 
2925 	if (adapter->csum_lhlen == ehdrlen &&
2926 	    adapter->csum_iphlen == ip_hlen &&
2927 	    adapter->csum_flags == csum_flags) {
2928 		/*
2929 		 * Same csum offload context as the previous packets;
2930 		 * just return.
2931 		 */
2932 		*txd_upper = adapter->csum_txd_upper;
2933 		*txd_lower = adapter->csum_txd_lower;
2934 		return 0;
2935 	}
2936 
2937 	/*
2938 	 * Setup a new csum offload context.
2939 	 */
2940 
2941 	curr_txd = adapter->next_avail_tx_desc;
2942 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
2943 
2944 	cmd = 0;
2945 
2946 	/* Setup of IP header checksum. */
2947 	if (csum_flags & CSUM_IP) {
2948 		/*
2949 		 * Start offset for header checksum calculation.
2950 		 * End offset for header checksum calculation.
2951 		 * Offset of place to put the checksum.
2952 		 */
2953 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2954 		TXD->lower_setup.ip_fields.ipcse =
2955 		    htole16(ehdrlen + ip_hlen - 1);
2956 		TXD->lower_setup.ip_fields.ipcso =
2957 		    ehdrlen + offsetof(struct ip, ip_sum);
2958 		cmd |= E1000_TXD_CMD_IP;
2959 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2960 	}
2961 	hdr_len = ehdrlen + ip_hlen;
2962 
2963 	if (csum_flags & CSUM_TCP) {
2964 		/*
2965 		 * Start offset for payload checksum calculation.
2966 		 * End offset for payload checksum calculation.
2967 		 * Offset of place to put the checksum.
2968 		 */
2969 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2970 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2971 		TXD->upper_setup.tcp_fields.tucso =
2972 		    hdr_len + offsetof(struct tcphdr, th_sum);
2973 		cmd |= E1000_TXD_CMD_TCP;
2974 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2975 	} else if (csum_flags & CSUM_UDP) {
2976 		/*
2977 		 * Start offset for header checksum calculation.
2978 		 * End offset for header checksum calculation.
2979 		 * Offset of place to put the checksum.
2980 		 */
2981 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2982 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2983 		TXD->upper_setup.tcp_fields.tucso =
2984 		    hdr_len + offsetof(struct udphdr, uh_sum);
2985 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2986 	}
2987 
2988 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2989 		     E1000_TXD_DTYP_D;		/* Data descr */
2990 
2991 	/* Save the information for this csum offloading context */
2992 	adapter->csum_lhlen = ehdrlen;
2993 	adapter->csum_iphlen = ip_hlen;
2994 	adapter->csum_flags = csum_flags;
2995 	adapter->csum_txd_upper = *txd_upper;
2996 	adapter->csum_txd_lower = *txd_lower;
2997 
2998 	TXD->tcp_seg_setup.data = htole32(0);
2999 	TXD->cmd_and_length =
3000 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
3001 
3002 	if (++curr_txd == adapter->num_tx_desc)
3003 		curr_txd = 0;
3004 
3005 	KKASSERT(adapter->num_tx_desc_avail > 0);
3006 	adapter->num_tx_desc_avail--;
3007 
3008 	adapter->next_avail_tx_desc = curr_txd;
3009 	return 1;
3010 }
3011 
3012 static void
3013 em_txeof(struct adapter *adapter)
3014 {
3015 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3016 	struct em_buffer *tx_buffer;
3017 	int first, num_avail;
3018 
3019 	if (adapter->tx_dd_head == adapter->tx_dd_tail)
3020 		return;
3021 
3022 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3023 		return;
3024 
3025 	num_avail = adapter->num_tx_desc_avail;
3026 	first = adapter->next_tx_to_clean;
3027 
3028 	while (adapter->tx_dd_head != adapter->tx_dd_tail) {
3029 		struct e1000_tx_desc *tx_desc;
3030 		int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3031 
3032 		tx_desc = &adapter->tx_desc_base[dd_idx];
3033 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
3034 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
3035 
3036 			if (++dd_idx == adapter->num_tx_desc)
3037 				dd_idx = 0;
3038 
3039 			while (first != dd_idx) {
3040 				logif(pkt_txclean);
3041 
3042 				num_avail++;
3043 
3044 				tx_buffer = &adapter->tx_buffer_area[first];
3045 				if (tx_buffer->m_head) {
3046 					bus_dmamap_unload(adapter->txtag,
3047 							  tx_buffer->map);
3048 					m_freem(tx_buffer->m_head);
3049 					tx_buffer->m_head = NULL;
3050 				}
3051 
3052 				if (++first == adapter->num_tx_desc)
3053 					first = 0;
3054 			}
3055 		} else {
3056 			break;
3057 		}
3058 	}
3059 	adapter->next_tx_to_clean = first;
3060 	adapter->num_tx_desc_avail = num_avail;
3061 
3062 	if (adapter->tx_dd_head == adapter->tx_dd_tail) {
3063 		adapter->tx_dd_head = 0;
3064 		adapter->tx_dd_tail = 0;
3065 	}
3066 
3067 	if (!EM_IS_OACTIVE(adapter)) {
3068 		ifq_clr_oactive(&ifp->if_snd);
3069 
3070 		/* All clean, turn off the timer */
3071 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3072 			ifp->if_timer = 0;
3073 	}
3074 }
3075 
3076 static void
3077 em_tx_collect(struct adapter *adapter)
3078 {
3079 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3080 	struct em_buffer *tx_buffer;
3081 	int tdh, first, num_avail, dd_idx = -1;
3082 
3083 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3084 		return;
3085 
3086 	tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
3087 	if (tdh == adapter->next_tx_to_clean)
3088 		return;
3089 
3090 	if (adapter->tx_dd_head != adapter->tx_dd_tail)
3091 		dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3092 
3093 	num_avail = adapter->num_tx_desc_avail;
3094 	first = adapter->next_tx_to_clean;
3095 
3096 	while (first != tdh) {
3097 		logif(pkt_txclean);
3098 
3099 		num_avail++;
3100 
3101 		tx_buffer = &adapter->tx_buffer_area[first];
3102 		if (tx_buffer->m_head) {
3103 			bus_dmamap_unload(adapter->txtag,
3104 					  tx_buffer->map);
3105 			m_freem(tx_buffer->m_head);
3106 			tx_buffer->m_head = NULL;
3107 		}
3108 
3109 		if (first == dd_idx) {
3110 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
3111 			if (adapter->tx_dd_head == adapter->tx_dd_tail) {
3112 				adapter->tx_dd_head = 0;
3113 				adapter->tx_dd_tail = 0;
3114 				dd_idx = -1;
3115 			} else {
3116 				dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3117 			}
3118 		}
3119 
3120 		if (++first == adapter->num_tx_desc)
3121 			first = 0;
3122 	}
3123 	adapter->next_tx_to_clean = first;
3124 	adapter->num_tx_desc_avail = num_avail;
3125 
3126 	if (!EM_IS_OACTIVE(adapter)) {
3127 		ifq_clr_oactive(&ifp->if_snd);
3128 
3129 		/* All clean, turn off the timer */
3130 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3131 			ifp->if_timer = 0;
3132 	}
3133 }
3134 
3135 /*
3136  * When Link is lost sometimes there is work still in the TX ring
3137  * which will result in a watchdog, rather than allow that do an
3138  * attempted cleanup and then reinit here.  Note that this has been
3139  * seens mostly with fiber adapters.
3140  */
3141 static void
3142 em_tx_purge(struct adapter *adapter)
3143 {
3144 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3145 
3146 	if (!adapter->link_active && ifp->if_timer) {
3147 		em_tx_collect(adapter);
3148 		if (ifp->if_timer) {
3149 			if_printf(ifp, "Link lost, TX pending, reinit\n");
3150 			ifp->if_timer = 0;
3151 			em_init(adapter);
3152 		}
3153 	}
3154 }
3155 
3156 static int
3157 em_newbuf(struct adapter *adapter, int i, int init)
3158 {
3159 	struct mbuf *m;
3160 	bus_dma_segment_t seg;
3161 	bus_dmamap_t map;
3162 	struct em_buffer *rx_buffer;
3163 	int error, nseg;
3164 
3165 	m = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
3166 	if (m == NULL) {
3167 		adapter->mbuf_cluster_failed++;
3168 		if (init) {
3169 			if_printf(&adapter->arpcom.ac_if,
3170 				  "Unable to allocate RX mbuf\n");
3171 		}
3172 		return (ENOBUFS);
3173 	}
3174 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3175 
3176 	if (adapter->hw.mac.max_frame_size <= MCLBYTES - ETHER_ALIGN)
3177 		m_adj(m, ETHER_ALIGN);
3178 
3179 	error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
3180 			adapter->rx_sparemap, m,
3181 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
3182 	if (error) {
3183 		m_freem(m);
3184 		if (init) {
3185 			if_printf(&adapter->arpcom.ac_if,
3186 				  "Unable to load RX mbuf\n");
3187 		}
3188 		return (error);
3189 	}
3190 
3191 	rx_buffer = &adapter->rx_buffer_area[i];
3192 	if (rx_buffer->m_head != NULL)
3193 		bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
3194 
3195 	map = rx_buffer->map;
3196 	rx_buffer->map = adapter->rx_sparemap;
3197 	adapter->rx_sparemap = map;
3198 
3199 	rx_buffer->m_head = m;
3200 
3201 	adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
3202 	return (0);
3203 }
3204 
3205 static int
3206 em_create_rx_ring(struct adapter *adapter)
3207 {
3208 	device_t dev = adapter->dev;
3209 	struct em_buffer *rx_buffer;
3210 	int i, error;
3211 
3212 	adapter->rx_buffer_area =
3213 		kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
3214 			M_DEVBUF, M_WAITOK | M_ZERO);
3215 
3216 	/*
3217 	 * Create DMA tag for rx buffers
3218 	 */
3219 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
3220 			1, 0,			/* alignment, bounds */
3221 			BUS_SPACE_MAXADDR,	/* lowaddr */
3222 			BUS_SPACE_MAXADDR,	/* highaddr */
3223 			NULL, NULL,		/* filter, filterarg */
3224 			MCLBYTES,		/* maxsize */
3225 			1,			/* nsegments */
3226 			MCLBYTES,		/* maxsegsize */
3227 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
3228 			&adapter->rxtag);
3229 	if (error) {
3230 		device_printf(dev, "Unable to allocate RX DMA tag\n");
3231 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3232 		adapter->rx_buffer_area = NULL;
3233 		return error;
3234 	}
3235 
3236 	/*
3237 	 * Create spare DMA map for rx buffers
3238 	 */
3239 	error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3240 				  &adapter->rx_sparemap);
3241 	if (error) {
3242 		device_printf(dev, "Unable to create spare RX DMA map\n");
3243 		bus_dma_tag_destroy(adapter->rxtag);
3244 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3245 		adapter->rx_buffer_area = NULL;
3246 		return error;
3247 	}
3248 
3249 	/*
3250 	 * Create DMA maps for rx buffers
3251 	 */
3252 	for (i = 0; i < adapter->num_rx_desc; i++) {
3253 		rx_buffer = &adapter->rx_buffer_area[i];
3254 
3255 		error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3256 					  &rx_buffer->map);
3257 		if (error) {
3258 			device_printf(dev, "Unable to create RX DMA map\n");
3259 			em_destroy_rx_ring(adapter, i);
3260 			return error;
3261 		}
3262 	}
3263 	return (0);
3264 }
3265 
3266 static int
3267 em_init_rx_ring(struct adapter *adapter)
3268 {
3269 	int i, error;
3270 
3271 	/* Reset descriptor ring */
3272 	bzero(adapter->rx_desc_base,
3273 	    (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3274 
3275 	/* Allocate new ones. */
3276 	for (i = 0; i < adapter->num_rx_desc; i++) {
3277 		error = em_newbuf(adapter, i, 1);
3278 		if (error)
3279 			return (error);
3280 	}
3281 
3282 	/* Setup our descriptor pointers */
3283 	adapter->next_rx_desc_to_check = 0;
3284 
3285 	return (0);
3286 }
3287 
3288 static void
3289 em_init_rx_unit(struct adapter *adapter)
3290 {
3291 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3292 	uint64_t bus_addr;
3293 	uint32_t rctl;
3294 
3295 	/*
3296 	 * Make sure receives are disabled while setting
3297 	 * up the descriptor ring
3298 	 */
3299 	rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3300 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3301 
3302 	if (adapter->hw.mac.type >= e1000_82540) {
3303 		uint32_t itr;
3304 
3305 		/*
3306 		 * Set the interrupt throttling rate. Value is calculated
3307 		 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3308 		 */
3309 		if (adapter->int_throttle_ceil)
3310 			itr = 1000000000 / 256 / adapter->int_throttle_ceil;
3311 		else
3312 			itr = 0;
3313 		em_set_itr(adapter, itr);
3314 	}
3315 
3316 	/* Disable accelerated ackknowledge */
3317 	if (adapter->hw.mac.type == e1000_82574) {
3318 		E1000_WRITE_REG(&adapter->hw,
3319 		    E1000_RFCTL, E1000_RFCTL_ACK_DIS);
3320 	}
3321 
3322 	/* Receive Checksum Offload for TCP and UDP */
3323 	if (ifp->if_capenable & IFCAP_RXCSUM) {
3324 		uint32_t rxcsum;
3325 
3326 		rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3327 		rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3328 		E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3329 	}
3330 
3331 	/*
3332 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3333 	 * long latencies are observed, like Lenovo X60. This
3334 	 * change eliminates the problem, but since having positive
3335 	 * values in RDTR is a known source of problems on other
3336 	 * platforms another solution is being sought.
3337 	 */
3338 	if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3339 		E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3340 		E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3341 	}
3342 
3343 	/*
3344 	 * Setup the Base and Length of the Rx Descriptor Ring
3345 	 */
3346 	bus_addr = adapter->rxdma.dma_paddr;
3347 	E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3348 	    adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3349 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3350 	    (uint32_t)(bus_addr >> 32));
3351 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3352 	    (uint32_t)bus_addr);
3353 
3354 	/*
3355 	 * Setup the HW Rx Head and Tail Descriptor Pointers
3356 	 */
3357 	E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3358 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3359 
3360 	/* Set PTHRESH for improved jumbo performance */
3361 	if (((adapter->hw.mac.type == e1000_ich9lan) ||
3362 	    (adapter->hw.mac.type == e1000_pch2lan) ||
3363 	    (adapter->hw.mac.type == e1000_ich10lan)) &&
3364 	    (ifp->if_mtu > ETHERMTU)) {
3365 		uint32_t rxdctl;
3366 
3367 		rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3368 		E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0), rxdctl | 3);
3369 	}
3370 
3371 	if (adapter->hw.mac.type >= e1000_pch2lan) {
3372 		if (ifp->if_mtu > ETHERMTU)
3373 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, TRUE);
3374 		else
3375 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, FALSE);
3376 	}
3377 
3378 	/* Setup the Receive Control Register */
3379 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3380 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3381 		E1000_RCTL_RDMTS_HALF |
3382 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3383 
3384 	/* Make sure VLAN Filters are off */
3385 	rctl &= ~E1000_RCTL_VFE;
3386 
3387 	if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3388 		rctl |= E1000_RCTL_SBP;
3389 	else
3390 		rctl &= ~E1000_RCTL_SBP;
3391 
3392 	switch (adapter->rx_buffer_len) {
3393 	default:
3394 	case 2048:
3395 		rctl |= E1000_RCTL_SZ_2048;
3396 		break;
3397 
3398 	case 4096:
3399 		rctl |= E1000_RCTL_SZ_4096 |
3400 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3401 		break;
3402 
3403 	case 8192:
3404 		rctl |= E1000_RCTL_SZ_8192 |
3405 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3406 		break;
3407 
3408 	case 16384:
3409 		rctl |= E1000_RCTL_SZ_16384 |
3410 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3411 		break;
3412 	}
3413 
3414 	if (ifp->if_mtu > ETHERMTU)
3415 		rctl |= E1000_RCTL_LPE;
3416 	else
3417 		rctl &= ~E1000_RCTL_LPE;
3418 
3419 	/* Enable Receives */
3420 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3421 }
3422 
3423 static void
3424 em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3425 {
3426 	struct em_buffer *rx_buffer;
3427 	int i;
3428 
3429 	if (adapter->rx_buffer_area == NULL)
3430 		return;
3431 
3432 	for (i = 0; i < ndesc; i++) {
3433 		rx_buffer = &adapter->rx_buffer_area[i];
3434 
3435 		KKASSERT(rx_buffer->m_head == NULL);
3436 		bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3437 	}
3438 	bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3439 	bus_dma_tag_destroy(adapter->rxtag);
3440 
3441 	kfree(adapter->rx_buffer_area, M_DEVBUF);
3442 	adapter->rx_buffer_area = NULL;
3443 }
3444 
3445 static void
3446 em_rxeof(struct adapter *adapter, int count)
3447 {
3448 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3449 	uint8_t status, accept_frame = 0, eop = 0;
3450 	uint16_t len, desc_len, prev_len_adj;
3451 	struct e1000_rx_desc *current_desc;
3452 	struct mbuf *mp;
3453 	int i;
3454 
3455 	i = adapter->next_rx_desc_to_check;
3456 	current_desc = &adapter->rx_desc_base[i];
3457 
3458 	if (!(current_desc->status & E1000_RXD_STAT_DD))
3459 		return;
3460 
3461 	while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3462 		struct mbuf *m = NULL;
3463 
3464 		logif(pkt_receive);
3465 
3466 		mp = adapter->rx_buffer_area[i].m_head;
3467 
3468 		/*
3469 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3470 		 * needs to access the last received byte in the mbuf.
3471 		 */
3472 		bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3473 				BUS_DMASYNC_POSTREAD);
3474 
3475 		accept_frame = 1;
3476 		prev_len_adj = 0;
3477 		desc_len = le16toh(current_desc->length);
3478 		status = current_desc->status;
3479 		if (status & E1000_RXD_STAT_EOP) {
3480 			count--;
3481 			eop = 1;
3482 			if (desc_len < ETHER_CRC_LEN) {
3483 				len = 0;
3484 				prev_len_adj = ETHER_CRC_LEN - desc_len;
3485 			} else {
3486 				len = desc_len - ETHER_CRC_LEN;
3487 			}
3488 		} else {
3489 			eop = 0;
3490 			len = desc_len;
3491 		}
3492 
3493 		if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3494 			uint8_t	last_byte;
3495 			uint32_t pkt_len = desc_len;
3496 
3497 			if (adapter->fmp != NULL)
3498 				pkt_len += adapter->fmp->m_pkthdr.len;
3499 
3500 			last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3501 			if (TBI_ACCEPT(&adapter->hw, status,
3502 			    current_desc->errors, pkt_len, last_byte,
3503 			    adapter->min_frame_size,
3504 			    adapter->hw.mac.max_frame_size)) {
3505 				e1000_tbi_adjust_stats_82543(&adapter->hw,
3506 				    &adapter->stats, pkt_len,
3507 				    adapter->hw.mac.addr,
3508 				    adapter->hw.mac.max_frame_size);
3509 				if (len > 0)
3510 					len--;
3511 			} else {
3512 				accept_frame = 0;
3513 			}
3514 		}
3515 
3516 		if (accept_frame) {
3517 			if (em_newbuf(adapter, i, 0) != 0) {
3518 				IFNET_STAT_INC(ifp, iqdrops, 1);
3519 				goto discard;
3520 			}
3521 
3522 			/* Assign correct length to the current fragment */
3523 			mp->m_len = len;
3524 
3525 			if (adapter->fmp == NULL) {
3526 				mp->m_pkthdr.len = len;
3527 				adapter->fmp = mp; /* Store the first mbuf */
3528 				adapter->lmp = mp;
3529 			} else {
3530 				/*
3531 				 * Chain mbuf's together
3532 				 */
3533 
3534 				/*
3535 				 * Adjust length of previous mbuf in chain if
3536 				 * we received less than 4 bytes in the last
3537 				 * descriptor.
3538 				 */
3539 				if (prev_len_adj > 0) {
3540 					adapter->lmp->m_len -= prev_len_adj;
3541 					adapter->fmp->m_pkthdr.len -=
3542 					    prev_len_adj;
3543 				}
3544 				adapter->lmp->m_next = mp;
3545 				adapter->lmp = adapter->lmp->m_next;
3546 				adapter->fmp->m_pkthdr.len += len;
3547 			}
3548 
3549 			if (eop) {
3550 				adapter->fmp->m_pkthdr.rcvif = ifp;
3551 				IFNET_STAT_INC(ifp, ipackets, 1);
3552 
3553 				if (ifp->if_capenable & IFCAP_RXCSUM) {
3554 					em_rxcsum(adapter, current_desc,
3555 						  adapter->fmp);
3556 				}
3557 
3558 				if (status & E1000_RXD_STAT_VP) {
3559 					adapter->fmp->m_pkthdr.ether_vlantag =
3560 					    (le16toh(current_desc->special) &
3561 					    E1000_RXD_SPC_VLAN_MASK);
3562 					adapter->fmp->m_flags |= M_VLANTAG;
3563 				}
3564 				m = adapter->fmp;
3565 				adapter->fmp = NULL;
3566 				adapter->lmp = NULL;
3567 			}
3568 		} else {
3569 			IFNET_STAT_INC(ifp, ierrors, 1);
3570 discard:
3571 #ifdef foo
3572 			/* Reuse loaded DMA map and just update mbuf chain */
3573 			mp = adapter->rx_buffer_area[i].m_head;
3574 			mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3575 			mp->m_data = mp->m_ext.ext_buf;
3576 			mp->m_next = NULL;
3577 			if (adapter->hw.mac.max_frame_size <=
3578 			    (MCLBYTES - ETHER_ALIGN))
3579 				m_adj(mp, ETHER_ALIGN);
3580 #endif
3581 			if (adapter->fmp != NULL) {
3582 				m_freem(adapter->fmp);
3583 				adapter->fmp = NULL;
3584 				adapter->lmp = NULL;
3585 			}
3586 			m = NULL;
3587 		}
3588 
3589 		/* Zero out the receive descriptors status. */
3590 		current_desc->status = 0;
3591 
3592 		if (m != NULL)
3593 			ifp->if_input(ifp, m, NULL, -1);
3594 
3595 		/* Advance our pointers to the next descriptor. */
3596 		if (++i == adapter->num_rx_desc)
3597 			i = 0;
3598 		current_desc = &adapter->rx_desc_base[i];
3599 	}
3600 	adapter->next_rx_desc_to_check = i;
3601 
3602 	/* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3603 	if (--i < 0)
3604 		i = adapter->num_rx_desc - 1;
3605 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3606 }
3607 
3608 static void
3609 em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3610 	  struct mbuf *mp)
3611 {
3612 	/* 82543 or newer only */
3613 	if (adapter->hw.mac.type < e1000_82543 ||
3614 	    /* Ignore Checksum bit is set */
3615 	    (rx_desc->status & E1000_RXD_STAT_IXSM))
3616 		return;
3617 
3618 	if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3619 	    !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3620 		/* IP Checksum Good */
3621 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3622 	}
3623 
3624 	if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3625 	    !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3626 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3627 					   CSUM_PSEUDO_HDR |
3628 					   CSUM_FRAG_NOT_CHECKED;
3629 		mp->m_pkthdr.csum_data = htons(0xffff);
3630 	}
3631 }
3632 
3633 static void
3634 em_enable_intr(struct adapter *adapter)
3635 {
3636 	uint32_t ims_mask = IMS_ENABLE_MASK;
3637 
3638 	lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3639 
3640 #if 0
3641 	/* XXX MSIX */
3642 	if (adapter->hw.mac.type == e1000_82574) {
3643 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, EM_MSIX_MASK);
3644 		ims_mask |= EM_MSIX_MASK;
3645         }
3646 #endif
3647 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, ims_mask);
3648 }
3649 
3650 static void
3651 em_disable_intr(struct adapter *adapter)
3652 {
3653 	uint32_t clear = 0xffffffff;
3654 
3655 	/*
3656 	 * The first version of 82542 had an errata where when link was forced
3657 	 * it would stay up even up even if the cable was disconnected.
3658 	 * Sequence errors were used to detect the disconnect and then the
3659 	 * driver would unforce the link.  This code in the in the ISR.  For
3660 	 * this to work correctly the Sequence error interrupt had to be
3661 	 * enabled all the time.
3662 	 */
3663 	if (adapter->hw.mac.type == e1000_82542 &&
3664 	    adapter->hw.revision_id == E1000_REVISION_2)
3665 		clear &= ~E1000_ICR_RXSEQ;
3666 	else if (adapter->hw.mac.type == e1000_82574)
3667 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, 0);
3668 
3669 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3670 
3671 	adapter->npoll.ifpc_stcount = 0;
3672 
3673 	lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3674 }
3675 
3676 /*
3677  * Bit of a misnomer, what this really means is
3678  * to enable OS management of the system... aka
3679  * to disable special hardware management features
3680  */
3681 static void
3682 em_get_mgmt(struct adapter *adapter)
3683 {
3684 	/* A shared code workaround */
3685 #define E1000_82542_MANC2H E1000_MANC2H
3686 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3687 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3688 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3689 
3690 		/* disable hardware interception of ARP */
3691 		manc &= ~(E1000_MANC_ARP_EN);
3692 
3693                 /* enable receiving management packets to the host */
3694                 if (adapter->hw.mac.type >= e1000_82571) {
3695 			manc |= E1000_MANC_EN_MNG2HOST;
3696 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3697 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3698 			manc2h |= E1000_MNG2HOST_PORT_623;
3699 			manc2h |= E1000_MNG2HOST_PORT_664;
3700 			E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3701 		}
3702 
3703 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3704 	}
3705 }
3706 
3707 /*
3708  * Give control back to hardware management
3709  * controller if there is one.
3710  */
3711 static void
3712 em_rel_mgmt(struct adapter *adapter)
3713 {
3714 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3715 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3716 
3717 		/* re-enable hardware interception of ARP */
3718 		manc |= E1000_MANC_ARP_EN;
3719 
3720 		if (adapter->hw.mac.type >= e1000_82571)
3721 			manc &= ~E1000_MANC_EN_MNG2HOST;
3722 
3723 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3724 	}
3725 }
3726 
3727 /*
3728  * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3729  * For ASF and Pass Through versions of f/w this means that
3730  * the driver is loaded.  For AMT version (only with 82573)
3731  * of the f/w this means that the network i/f is open.
3732  */
3733 static void
3734 em_get_hw_control(struct adapter *adapter)
3735 {
3736 	/* Let firmware know the driver has taken over */
3737 	if (adapter->hw.mac.type == e1000_82573) {
3738 		uint32_t swsm;
3739 
3740 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3741 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3742 		    swsm | E1000_SWSM_DRV_LOAD);
3743 	} else {
3744 		uint32_t ctrl_ext;
3745 
3746 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3747 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3748 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3749 	}
3750 	adapter->flags |= EM_FLAG_HW_CTRL;
3751 }
3752 
3753 /*
3754  * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3755  * For ASF and Pass Through versions of f/w this means that the
3756  * driver is no longer loaded.  For AMT version (only with 82573)
3757  * of the f/w this means that the network i/f is closed.
3758  */
3759 static void
3760 em_rel_hw_control(struct adapter *adapter)
3761 {
3762 	if ((adapter->flags & EM_FLAG_HW_CTRL) == 0)
3763 		return;
3764 	adapter->flags &= ~EM_FLAG_HW_CTRL;
3765 
3766 	/* Let firmware taken over control of h/w */
3767 	if (adapter->hw.mac.type == e1000_82573) {
3768 		uint32_t swsm;
3769 
3770 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3771 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3772 		    swsm & ~E1000_SWSM_DRV_LOAD);
3773 	} else {
3774 		uint32_t ctrl_ext;
3775 
3776 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3777 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3778 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3779 	}
3780 }
3781 
3782 static int
3783 em_is_valid_eaddr(const uint8_t *addr)
3784 {
3785 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3786 
3787 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3788 		return (FALSE);
3789 
3790 	return (TRUE);
3791 }
3792 
3793 /*
3794  * Enable PCI Wake On Lan capability
3795  */
3796 void
3797 em_enable_wol(device_t dev)
3798 {
3799 	uint16_t cap, status;
3800 	uint8_t id;
3801 
3802 	/* First find the capabilities pointer*/
3803 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3804 
3805 	/* Read the PM Capabilities */
3806 	id = pci_read_config(dev, cap, 1);
3807 	if (id != PCIY_PMG)     /* Something wrong */
3808 		return;
3809 
3810 	/*
3811 	 * OK, we have the power capabilities,
3812 	 * so now get the status register
3813 	 */
3814 	cap += PCIR_POWER_STATUS;
3815 	status = pci_read_config(dev, cap, 2);
3816 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3817 	pci_write_config(dev, cap, status, 2);
3818 }
3819 
3820 
3821 /*
3822  * 82544 Coexistence issue workaround.
3823  *    There are 2 issues.
3824  *       1. Transmit Hang issue.
3825  *    To detect this issue, following equation can be used...
3826  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3827  *	  If SUM[3:0] is in between 1 to 4, we will have this issue.
3828  *
3829  *       2. DAC issue.
3830  *    To detect this issue, following equation can be used...
3831  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3832  *	  If SUM[3:0] is in between 9 to c, we will have this issue.
3833  *
3834  *    WORKAROUND:
3835  *	  Make sure we do not have ending address
3836  *	  as 1,2,3,4(Hang) or 9,a,b,c (DAC)
3837  */
3838 static uint32_t
3839 em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3840 {
3841 	uint32_t safe_terminator;
3842 
3843 	/*
3844 	 * Since issue is sensitive to length and address.
3845 	 * Let us first check the address...
3846 	 */
3847 	if (length <= 4) {
3848 		desc_array->descriptor[0].address = address;
3849 		desc_array->descriptor[0].length = length;
3850 		desc_array->elements = 1;
3851 		return (desc_array->elements);
3852 	}
3853 
3854 	safe_terminator =
3855 	(uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3856 
3857 	/* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3858 	if (safe_terminator == 0 ||
3859 	    (safe_terminator > 4 && safe_terminator < 9) ||
3860 	    (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3861 		desc_array->descriptor[0].address = address;
3862 		desc_array->descriptor[0].length = length;
3863 		desc_array->elements = 1;
3864 		return (desc_array->elements);
3865 	}
3866 
3867 	desc_array->descriptor[0].address = address;
3868 	desc_array->descriptor[0].length = length - 4;
3869 	desc_array->descriptor[1].address = address + (length - 4);
3870 	desc_array->descriptor[1].length = 4;
3871 	desc_array->elements = 2;
3872 	return (desc_array->elements);
3873 }
3874 
3875 static void
3876 em_update_stats(struct adapter *adapter)
3877 {
3878 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3879 
3880 	if (adapter->hw.phy.media_type == e1000_media_type_copper ||
3881 	    (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3882 		adapter->stats.symerrs +=
3883 			E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3884 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3885 	}
3886 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3887 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3888 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3889 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3890 
3891 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3892 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3893 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3894 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3895 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3896 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3897 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3898 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3899 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3900 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3901 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3902 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3903 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3904 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3905 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3906 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3907 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3908 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3909 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3910 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3911 
3912 	/* For the 64-bit byte counters the low dword must be read first. */
3913 	/* Both registers clear on the read of the high dword */
3914 
3915 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
3916 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
3917 
3918 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3919 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3920 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3921 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3922 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3923 
3924 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3925 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3926 
3927 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3928 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3929 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3930 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3931 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3932 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3933 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3934 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3935 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3936 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3937 
3938 	if (adapter->hw.mac.type >= e1000_82543) {
3939 		adapter->stats.algnerrc +=
3940 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3941 		adapter->stats.rxerrc +=
3942 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3943 		adapter->stats.tncrs +=
3944 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3945 		adapter->stats.cexterr +=
3946 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3947 		adapter->stats.tsctc +=
3948 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3949 		adapter->stats.tsctfc +=
3950 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3951 	}
3952 
3953 	IFNET_STAT_SET(ifp, collisions, adapter->stats.colc);
3954 
3955 	/* Rx Errors */
3956 	IFNET_STAT_SET(ifp, ierrors,
3957 	    adapter->dropped_pkts + adapter->stats.rxerrc +
3958 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
3959 	    adapter->stats.ruc + adapter->stats.roc +
3960 	    adapter->stats.mpc + adapter->stats.cexterr);
3961 
3962 	/* Tx Errors */
3963 	IFNET_STAT_SET(ifp, oerrors,
3964 	    adapter->stats.ecol + adapter->stats.latecol +
3965 	    adapter->watchdog_events);
3966 }
3967 
3968 static void
3969 em_print_debug_info(struct adapter *adapter)
3970 {
3971 	device_t dev = adapter->dev;
3972 	uint8_t *hw_addr = adapter->hw.hw_addr;
3973 
3974 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3975 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3976 	    E1000_READ_REG(&adapter->hw, E1000_CTRL),
3977 	    E1000_READ_REG(&adapter->hw, E1000_RCTL));
3978 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3979 	    ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
3980 	    (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
3981 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3982 	    adapter->hw.fc.high_water,
3983 	    adapter->hw.fc.low_water);
3984 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3985 	    E1000_READ_REG(&adapter->hw, E1000_TIDV),
3986 	    E1000_READ_REG(&adapter->hw, E1000_TADV));
3987 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3988 	    E1000_READ_REG(&adapter->hw, E1000_RDTR),
3989 	    E1000_READ_REG(&adapter->hw, E1000_RADV));
3990 	device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
3991 	    (long long)adapter->tx_fifo_wrk_cnt,
3992 	    (long long)adapter->tx_fifo_reset_cnt);
3993 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3994 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
3995 	    E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
3996 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3997 	    E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
3998 	    E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
3999 	device_printf(dev, "Num Tx descriptors avail = %d\n",
4000 	    adapter->num_tx_desc_avail);
4001 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
4002 	    adapter->no_tx_desc_avail1);
4003 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
4004 	    adapter->no_tx_desc_avail2);
4005 	device_printf(dev, "Std mbuf failed = %ld\n",
4006 	    adapter->mbuf_alloc_failed);
4007 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
4008 	    adapter->mbuf_cluster_failed);
4009 	device_printf(dev, "Driver dropped packets = %ld\n",
4010 	    adapter->dropped_pkts);
4011 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
4012 	    adapter->no_tx_dma_setup);
4013 }
4014 
4015 static void
4016 em_print_hw_stats(struct adapter *adapter)
4017 {
4018 	device_t dev = adapter->dev;
4019 
4020 	device_printf(dev, "Excessive collisions = %lld\n",
4021 	    (long long)adapter->stats.ecol);
4022 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
4023 	device_printf(dev, "Symbol errors = %lld\n",
4024 	    (long long)adapter->stats.symerrs);
4025 #endif
4026 	device_printf(dev, "Sequence errors = %lld\n",
4027 	    (long long)adapter->stats.sec);
4028 	device_printf(dev, "Defer count = %lld\n",
4029 	    (long long)adapter->stats.dc);
4030 	device_printf(dev, "Missed Packets = %lld\n",
4031 	    (long long)adapter->stats.mpc);
4032 	device_printf(dev, "Receive No Buffers = %lld\n",
4033 	    (long long)adapter->stats.rnbc);
4034 	/* RLEC is inaccurate on some hardware, calculate our own. */
4035 	device_printf(dev, "Receive Length Errors = %lld\n",
4036 	    ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
4037 	device_printf(dev, "Receive errors = %lld\n",
4038 	    (long long)adapter->stats.rxerrc);
4039 	device_printf(dev, "Crc errors = %lld\n",
4040 	    (long long)adapter->stats.crcerrs);
4041 	device_printf(dev, "Alignment errors = %lld\n",
4042 	    (long long)adapter->stats.algnerrc);
4043 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
4044 	    (long long)adapter->stats.cexterr);
4045 	device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
4046 	device_printf(dev, "watchdog timeouts = %ld\n",
4047 	    adapter->watchdog_events);
4048 	device_printf(dev, "XON Rcvd = %lld\n",
4049 	    (long long)adapter->stats.xonrxc);
4050 	device_printf(dev, "XON Xmtd = %lld\n",
4051 	    (long long)adapter->stats.xontxc);
4052 	device_printf(dev, "XOFF Rcvd = %lld\n",
4053 	    (long long)adapter->stats.xoffrxc);
4054 	device_printf(dev, "XOFF Xmtd = %lld\n",
4055 	    (long long)adapter->stats.xofftxc);
4056 	device_printf(dev, "Good Packets Rcvd = %lld\n",
4057 	    (long long)adapter->stats.gprc);
4058 	device_printf(dev, "Good Packets Xmtd = %lld\n",
4059 	    (long long)adapter->stats.gptc);
4060 }
4061 
4062 static void
4063 em_print_nvm_info(struct adapter *adapter)
4064 {
4065 	uint16_t eeprom_data;
4066 	int i, j, row = 0;
4067 
4068 	/* Its a bit crude, but it gets the job done */
4069 	kprintf("\nInterface EEPROM Dump:\n");
4070 	kprintf("Offset\n0x0000  ");
4071 	for (i = 0, j = 0; i < 32; i++, j++) {
4072 		if (j == 8) { /* Make the offset block */
4073 			j = 0; ++row;
4074 			kprintf("\n0x00%x0  ",row);
4075 		}
4076 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
4077 		kprintf("%04x ", eeprom_data);
4078 	}
4079 	kprintf("\n");
4080 }
4081 
4082 static int
4083 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4084 {
4085 	struct adapter *adapter;
4086 	struct ifnet *ifp;
4087 	int error, result;
4088 
4089 	result = -1;
4090 	error = sysctl_handle_int(oidp, &result, 0, req);
4091 	if (error || !req->newptr)
4092 		return (error);
4093 
4094 	adapter = (struct adapter *)arg1;
4095 	ifp = &adapter->arpcom.ac_if;
4096 
4097 	lwkt_serialize_enter(ifp->if_serializer);
4098 
4099 	if (result == 1)
4100 		em_print_debug_info(adapter);
4101 
4102 	/*
4103 	 * This value will cause a hex dump of the
4104 	 * first 32 16-bit words of the EEPROM to
4105 	 * the screen.
4106 	 */
4107 	if (result == 2)
4108 		em_print_nvm_info(adapter);
4109 
4110 	lwkt_serialize_exit(ifp->if_serializer);
4111 
4112 	return (error);
4113 }
4114 
4115 static int
4116 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
4117 {
4118 	int error, result;
4119 
4120 	result = -1;
4121 	error = sysctl_handle_int(oidp, &result, 0, req);
4122 	if (error || !req->newptr)
4123 		return (error);
4124 
4125 	if (result == 1) {
4126 		struct adapter *adapter = (struct adapter *)arg1;
4127 		struct ifnet *ifp = &adapter->arpcom.ac_if;
4128 
4129 		lwkt_serialize_enter(ifp->if_serializer);
4130 		em_print_hw_stats(adapter);
4131 		lwkt_serialize_exit(ifp->if_serializer);
4132 	}
4133 	return (error);
4134 }
4135 
4136 static void
4137 em_add_sysctl(struct adapter *adapter)
4138 {
4139 	struct sysctl_ctx_list *ctx;
4140 	struct sysctl_oid *tree;
4141 
4142 	ctx = device_get_sysctl_ctx(adapter->dev);
4143 	tree = device_get_sysctl_tree(adapter->dev);
4144 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4145 	    OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4146 	    em_sysctl_debug_info, "I", "Debug Information");
4147 
4148 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4149 	    OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4150 	    em_sysctl_stats, "I", "Statistics");
4151 
4152 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4153 	    OID_AUTO, "rxd", CTLFLAG_RD,
4154 	    &adapter->num_rx_desc, 0, NULL);
4155 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4156 	    OID_AUTO, "txd", CTLFLAG_RD,
4157 	    &adapter->num_tx_desc, 0, NULL);
4158 
4159 	if (adapter->hw.mac.type >= e1000_82540) {
4160 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4161 		    OID_AUTO, "int_throttle_ceil",
4162 		    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4163 		    em_sysctl_int_throttle, "I",
4164 		    "interrupt throttling rate");
4165 	}
4166 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4167 	    OID_AUTO, "int_tx_nsegs",
4168 	    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4169 	    em_sysctl_int_tx_nsegs, "I",
4170 	    "# segments per TX interrupt");
4171 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4172 	    OID_AUTO, "wreg_tx_nsegs", CTLFLAG_RW,
4173 	    &adapter->tx_wreg_nsegs, 0,
4174 	    "# segments before write to hardware register");
4175 }
4176 
4177 static int
4178 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
4179 {
4180 	struct adapter *adapter = (void *)arg1;
4181 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4182 	int error, throttle;
4183 
4184 	throttle = adapter->int_throttle_ceil;
4185 	error = sysctl_handle_int(oidp, &throttle, 0, req);
4186 	if (error || req->newptr == NULL)
4187 		return error;
4188 	if (throttle < 0 || throttle > 1000000000 / 256)
4189 		return EINVAL;
4190 
4191 	if (throttle) {
4192 		/*
4193 		 * Set the interrupt throttling rate in 256ns increments,
4194 		 * recalculate sysctl value assignment to get exact frequency.
4195 		 */
4196 		throttle = 1000000000 / 256 / throttle;
4197 
4198 		/* Upper 16bits of ITR is reserved and should be zero */
4199 		if (throttle & 0xffff0000)
4200 			return EINVAL;
4201 	}
4202 
4203 	lwkt_serialize_enter(ifp->if_serializer);
4204 
4205 	if (throttle)
4206 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
4207 	else
4208 		adapter->int_throttle_ceil = 0;
4209 
4210 	if (ifp->if_flags & IFF_RUNNING)
4211 		em_set_itr(adapter, throttle);
4212 
4213 	lwkt_serialize_exit(ifp->if_serializer);
4214 
4215 	if (bootverbose) {
4216 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
4217 			  adapter->int_throttle_ceil);
4218 	}
4219 	return 0;
4220 }
4221 
4222 static int
4223 em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
4224 {
4225 	struct adapter *adapter = (void *)arg1;
4226 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4227 	int error, segs;
4228 
4229 	segs = adapter->tx_int_nsegs;
4230 	error = sysctl_handle_int(oidp, &segs, 0, req);
4231 	if (error || req->newptr == NULL)
4232 		return error;
4233 	if (segs <= 0)
4234 		return EINVAL;
4235 
4236 	lwkt_serialize_enter(ifp->if_serializer);
4237 
4238 	/*
4239 	 * Don't allow int_tx_nsegs to become:
4240 	 * o  Less the oact_tx_desc
4241 	 * o  Too large that no TX desc will cause TX interrupt to
4242 	 *    be generated (OACTIVE will never recover)
4243 	 * o  Too small that will cause tx_dd[] overflow
4244 	 */
4245 	if (segs < adapter->oact_tx_desc ||
4246 	    segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
4247 	    segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
4248 		error = EINVAL;
4249 	} else {
4250 		error = 0;
4251 		adapter->tx_int_nsegs = segs;
4252 	}
4253 
4254 	lwkt_serialize_exit(ifp->if_serializer);
4255 
4256 	return error;
4257 }
4258 
4259 static void
4260 em_set_itr(struct adapter *adapter, uint32_t itr)
4261 {
4262 	E1000_WRITE_REG(&adapter->hw, E1000_ITR, itr);
4263 	if (adapter->hw.mac.type == e1000_82574) {
4264 		int i;
4265 
4266 		/*
4267 		 * When using MSIX interrupts we need to
4268 		 * throttle using the EITR register
4269 		 */
4270 		for (i = 0; i < 4; ++i) {
4271 			E1000_WRITE_REG(&adapter->hw,
4272 			    E1000_EITR_82574(i), itr);
4273 		}
4274 	}
4275 }
4276 
4277 static void
4278 em_disable_aspm(struct adapter *adapter)
4279 {
4280 	uint16_t link_cap, link_ctrl, disable;
4281 	uint8_t pcie_ptr, reg;
4282 	device_t dev = adapter->dev;
4283 
4284 	switch (adapter->hw.mac.type) {
4285 	case e1000_82571:
4286 	case e1000_82572:
4287 	case e1000_82573:
4288 		/*
4289 		 * 82573 specification update
4290 		 * errata #8 disable L0s
4291 		 * errata #41 disable L1
4292 		 *
4293 		 * 82571/82572 specification update
4294 		 # errata #13 disable L1
4295 		 * errata #68 disable L0s
4296 		 */
4297 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4298 		break;
4299 
4300 	case e1000_82574:
4301 	case e1000_82583:
4302 		/*
4303 		 * 82574 specification update errata #20
4304 		 * 82583 specification update errata #9
4305 		 *
4306 		 * There is no need to disable L1
4307 		 */
4308 		disable = PCIEM_LNKCTL_ASPM_L0S;
4309 		break;
4310 
4311 	default:
4312 		return;
4313 	}
4314 
4315 	pcie_ptr = pci_get_pciecap_ptr(dev);
4316 	if (pcie_ptr == 0)
4317 		return;
4318 
4319 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4320 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4321 		return;
4322 
4323 	if (bootverbose) {
4324 		if_printf(&adapter->arpcom.ac_if,
4325 		    "disable ASPM %#02x\n", disable);
4326 	}
4327 
4328 	reg = pcie_ptr + PCIER_LINKCTRL;
4329 	link_ctrl = pci_read_config(dev, reg, 2);
4330 	link_ctrl &= ~disable;
4331 	pci_write_config(dev, reg, link_ctrl, 2);
4332 }
4333 
4334 static int
4335 em_tso_pullup(struct adapter *adapter, struct mbuf **mp)
4336 {
4337 	int iphlen, hoff, thoff, ex = 0;
4338 	struct mbuf *m;
4339 	struct ip *ip;
4340 
4341 	m = *mp;
4342 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4343 
4344 	iphlen = m->m_pkthdr.csum_iphlen;
4345 	thoff = m->m_pkthdr.csum_thlen;
4346 	hoff = m->m_pkthdr.csum_lhlen;
4347 
4348 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4349 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4350 	KASSERT(hoff > 0, ("invalid ether hlen"));
4351 
4352 	if (adapter->flags & EM_FLAG_TSO_PULLEX)
4353 		ex = 4;
4354 
4355 	if (m->m_len < hoff + iphlen + thoff + ex) {
4356 		m = m_pullup(m, hoff + iphlen + thoff + ex);
4357 		if (m == NULL) {
4358 			*mp = NULL;
4359 			return ENOBUFS;
4360 		}
4361 		*mp = m;
4362 	}
4363 	ip = mtodoff(m, struct ip *, hoff);
4364 	ip->ip_len = 0;
4365 
4366 	return 0;
4367 }
4368 
4369 static int
4370 em_tso_setup(struct adapter *adapter, struct mbuf *mp,
4371     uint32_t *txd_upper, uint32_t *txd_lower)
4372 {
4373 	struct e1000_context_desc *TXD;
4374 	int hoff, iphlen, thoff, hlen;
4375 	int mss, pktlen, curr_txd;
4376 
4377 	iphlen = mp->m_pkthdr.csum_iphlen;
4378 	thoff = mp->m_pkthdr.csum_thlen;
4379 	hoff = mp->m_pkthdr.csum_lhlen;
4380 	mss = mp->m_pkthdr.tso_segsz;
4381 	pktlen = mp->m_pkthdr.len;
4382 
4383 	if (adapter->csum_flags == CSUM_TSO &&
4384 	    adapter->csum_iphlen == iphlen &&
4385 	    adapter->csum_lhlen == hoff &&
4386 	    adapter->csum_thlen == thoff &&
4387 	    adapter->csum_mss == mss &&
4388 	    adapter->csum_pktlen == pktlen) {
4389 		*txd_upper = adapter->csum_txd_upper;
4390 		*txd_lower = adapter->csum_txd_lower;
4391 		return 0;
4392 	}
4393 	hlen = hoff + iphlen + thoff;
4394 
4395 	/*
4396 	 * Setup a new TSO context.
4397 	 */
4398 
4399 	curr_txd = adapter->next_avail_tx_desc;
4400 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
4401 
4402 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
4403 		     E1000_TXD_DTYP_D |		/* Data descr type */
4404 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
4405 
4406 	/* IP and/or TCP header checksum calculation and insertion. */
4407 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4408 
4409 	/*
4410 	 * Start offset for header checksum calculation.
4411 	 * End offset for header checksum calculation.
4412 	 * Offset of place put the checksum.
4413 	 */
4414 	TXD->lower_setup.ip_fields.ipcss = hoff;
4415 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4416 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4417 
4418 	/*
4419 	 * Start offset for payload checksum calculation.
4420 	 * End offset for payload checksum calculation.
4421 	 * Offset of place to put the checksum.
4422 	 */
4423 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4424 	TXD->upper_setup.tcp_fields.tucse = 0;
4425 	TXD->upper_setup.tcp_fields.tucso =
4426 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
4427 
4428 	/*
4429 	 * Payload size per packet w/o any headers.
4430 	 * Length of all headers up to payload.
4431 	 */
4432 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
4433 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
4434 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4435 				E1000_TXD_CMD_DEXT |	/* Extended descr */
4436 				E1000_TXD_CMD_TSE |	/* TSE context */
4437 				E1000_TXD_CMD_IP |	/* Do IP csum */
4438 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
4439 				(pktlen - hlen));	/* Total len */
4440 
4441 	/* Save the information for this TSO context */
4442 	adapter->csum_flags = CSUM_TSO;
4443 	adapter->csum_lhlen = hoff;
4444 	adapter->csum_iphlen = iphlen;
4445 	adapter->csum_thlen = thoff;
4446 	adapter->csum_mss = mss;
4447 	adapter->csum_pktlen = pktlen;
4448 	adapter->csum_txd_upper = *txd_upper;
4449 	adapter->csum_txd_lower = *txd_lower;
4450 
4451 	if (++curr_txd == adapter->num_tx_desc)
4452 		curr_txd = 0;
4453 
4454 	KKASSERT(adapter->num_tx_desc_avail > 0);
4455 	adapter->num_tx_desc_avail--;
4456 
4457 	adapter->next_avail_tx_desc = curr_txd;
4458 	return 1;
4459 }
4460