xref: /dragonfly/sys/dev/netif/em/if_em.c (revision 9d626b29)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2014, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  */
67 /*
68  * SERIALIZATION API RULES:
69  *
70  * - We must call lwkt_serialize_handler_enable() prior to enabling the
71  *   hardware interrupt and lwkt_serialize_handler_disable() after disabling
72  *   the hardware interrupt in order to avoid handler execution races from
73  *   scheduled interrupt threads.
74  */
75 
76 #include "opt_ifpoll.h"
77 
78 #include <sys/param.h>
79 #include <sys/bus.h>
80 #include <sys/endian.h>
81 #include <sys/interrupt.h>
82 #include <sys/kernel.h>
83 #include <sys/ktr.h>
84 #include <sys/malloc.h>
85 #include <sys/mbuf.h>
86 #include <sys/proc.h>
87 #include <sys/rman.h>
88 #include <sys/serialize.h>
89 #include <sys/socket.h>
90 #include <sys/sockio.h>
91 #include <sys/sysctl.h>
92 #include <sys/systm.h>
93 
94 #include <net/bpf.h>
95 #include <net/ethernet.h>
96 #include <net/if.h>
97 #include <net/if_arp.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_poll.h>
101 #include <net/ifq_var.h>
102 #include <net/vlan/if_vlan_var.h>
103 #include <net/vlan/if_vlan_ether.h>
104 
105 #include <netinet/ip.h>
106 #include <netinet/tcp.h>
107 #include <netinet/udp.h>
108 
109 #include <bus/pci/pcivar.h>
110 #include <bus/pci/pcireg.h>
111 
112 #include <dev/netif/ig_hal/e1000_api.h>
113 #include <dev/netif/ig_hal/e1000_82571.h>
114 #include <dev/netif/ig_hal/e1000_dragonfly.h>
115 #include <dev/netif/em/if_em.h>
116 
117 #define DEBUG_HW 0
118 
119 #define EM_NAME	"Intel(R) PRO/1000 Network Connection "
120 #define EM_VER	" 7.4.2"
121 
122 #define _EM_DEVICE(id, ret)	\
123 	{ EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
124 #define EM_EMX_DEVICE(id)	_EM_DEVICE(id, -100)
125 #define EM_DEVICE(id)		_EM_DEVICE(id, 0)
126 #define EM_DEVICE_NULL	{ 0, 0, 0, NULL }
127 
128 static const struct em_vendor_info em_vendor_info_array[] = {
129 	EM_DEVICE(82540EM),
130 	EM_DEVICE(82540EM_LOM),
131 	EM_DEVICE(82540EP),
132 	EM_DEVICE(82540EP_LOM),
133 	EM_DEVICE(82540EP_LP),
134 
135 	EM_DEVICE(82541EI),
136 	EM_DEVICE(82541ER),
137 	EM_DEVICE(82541ER_LOM),
138 	EM_DEVICE(82541EI_MOBILE),
139 	EM_DEVICE(82541GI),
140 	EM_DEVICE(82541GI_LF),
141 	EM_DEVICE(82541GI_MOBILE),
142 
143 	EM_DEVICE(82542),
144 
145 	EM_DEVICE(82543GC_FIBER),
146 	EM_DEVICE(82543GC_COPPER),
147 
148 	EM_DEVICE(82544EI_COPPER),
149 	EM_DEVICE(82544EI_FIBER),
150 	EM_DEVICE(82544GC_COPPER),
151 	EM_DEVICE(82544GC_LOM),
152 
153 	EM_DEVICE(82545EM_COPPER),
154 	EM_DEVICE(82545EM_FIBER),
155 	EM_DEVICE(82545GM_COPPER),
156 	EM_DEVICE(82545GM_FIBER),
157 	EM_DEVICE(82545GM_SERDES),
158 
159 	EM_DEVICE(82546EB_COPPER),
160 	EM_DEVICE(82546EB_FIBER),
161 	EM_DEVICE(82546EB_QUAD_COPPER),
162 	EM_DEVICE(82546GB_COPPER),
163 	EM_DEVICE(82546GB_FIBER),
164 	EM_DEVICE(82546GB_SERDES),
165 	EM_DEVICE(82546GB_PCIE),
166 	EM_DEVICE(82546GB_QUAD_COPPER),
167 	EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
168 
169 	EM_DEVICE(82547EI),
170 	EM_DEVICE(82547EI_MOBILE),
171 	EM_DEVICE(82547GI),
172 
173 	EM_EMX_DEVICE(82571EB_COPPER),
174 	EM_EMX_DEVICE(82571EB_FIBER),
175 	EM_EMX_DEVICE(82571EB_SERDES),
176 	EM_EMX_DEVICE(82571EB_SERDES_DUAL),
177 	EM_EMX_DEVICE(82571EB_SERDES_QUAD),
178 	EM_EMX_DEVICE(82571EB_QUAD_COPPER),
179 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
180 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
181 	EM_EMX_DEVICE(82571EB_QUAD_FIBER),
182 	EM_EMX_DEVICE(82571PT_QUAD_COPPER),
183 
184 	EM_EMX_DEVICE(82572EI_COPPER),
185 	EM_EMX_DEVICE(82572EI_FIBER),
186 	EM_EMX_DEVICE(82572EI_SERDES),
187 	EM_EMX_DEVICE(82572EI),
188 
189 	EM_EMX_DEVICE(82573E),
190 	EM_EMX_DEVICE(82573E_IAMT),
191 	EM_EMX_DEVICE(82573L),
192 
193 	EM_DEVICE(82583V),
194 
195 	EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
196 	EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
197 	EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
198 	EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
199 
200 	EM_DEVICE(ICH8_IGP_M_AMT),
201 	EM_DEVICE(ICH8_IGP_AMT),
202 	EM_DEVICE(ICH8_IGP_C),
203 	EM_DEVICE(ICH8_IFE),
204 	EM_DEVICE(ICH8_IFE_GT),
205 	EM_DEVICE(ICH8_IFE_G),
206 	EM_DEVICE(ICH8_IGP_M),
207 	EM_DEVICE(ICH8_82567V_3),
208 
209 	EM_DEVICE(ICH9_IGP_M_AMT),
210 	EM_DEVICE(ICH9_IGP_AMT),
211 	EM_DEVICE(ICH9_IGP_C),
212 	EM_DEVICE(ICH9_IGP_M),
213 	EM_DEVICE(ICH9_IGP_M_V),
214 	EM_DEVICE(ICH9_IFE),
215 	EM_DEVICE(ICH9_IFE_GT),
216 	EM_DEVICE(ICH9_IFE_G),
217 	EM_DEVICE(ICH9_BM),
218 
219 	EM_EMX_DEVICE(82574L),
220 	EM_EMX_DEVICE(82574LA),
221 
222 	EM_DEVICE(ICH10_R_BM_LM),
223 	EM_DEVICE(ICH10_R_BM_LF),
224 	EM_DEVICE(ICH10_R_BM_V),
225 	EM_DEVICE(ICH10_D_BM_LM),
226 	EM_DEVICE(ICH10_D_BM_LF),
227 	EM_DEVICE(ICH10_D_BM_V),
228 
229 	EM_DEVICE(PCH_M_HV_LM),
230 	EM_DEVICE(PCH_M_HV_LC),
231 	EM_DEVICE(PCH_D_HV_DM),
232 	EM_DEVICE(PCH_D_HV_DC),
233 
234 	EM_DEVICE(PCH2_LV_LM),
235 	EM_DEVICE(PCH2_LV_V),
236 
237 	EM_EMX_DEVICE(PCH_LPT_I217_LM),
238 	EM_EMX_DEVICE(PCH_LPT_I217_V),
239 	EM_EMX_DEVICE(PCH_LPTLP_I218_LM),
240 	EM_EMX_DEVICE(PCH_LPTLP_I218_V),
241 	EM_EMX_DEVICE(PCH_I218_LM2),
242 	EM_EMX_DEVICE(PCH_I218_V2),
243 	EM_EMX_DEVICE(PCH_I218_LM3),
244 	EM_EMX_DEVICE(PCH_I218_V3),
245 	EM_EMX_DEVICE(PCH_SPT_I219_LM),
246 	EM_EMX_DEVICE(PCH_SPT_I219_V),
247 	EM_EMX_DEVICE(PCH_SPT_I219_LM2),
248 	EM_EMX_DEVICE(PCH_SPT_I219_V2),
249 	EM_EMX_DEVICE(PCH_SPT_I219_LM3),
250 	EM_EMX_DEVICE(PCH_SPT_I219_LM4),
251 	EM_EMX_DEVICE(PCH_SPT_I219_V4),
252 	EM_EMX_DEVICE(PCH_SPT_I219_LM5),
253 	EM_EMX_DEVICE(PCH_SPT_I219_V5),
254 
255 	/* required last entry */
256 	EM_DEVICE_NULL
257 };
258 
259 static int	em_probe(device_t);
260 static int	em_attach(device_t);
261 static int	em_detach(device_t);
262 static int	em_shutdown(device_t);
263 static int	em_suspend(device_t);
264 static int	em_resume(device_t);
265 
266 static void	em_init(void *);
267 static void	em_stop(struct adapter *);
268 static int	em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
269 static void	em_start(struct ifnet *, struct ifaltq_subque *);
270 #ifdef IFPOLL_ENABLE
271 static void	em_npoll(struct ifnet *, struct ifpoll_info *);
272 static void	em_npoll_compat(struct ifnet *, void *, int);
273 #endif
274 static void	em_watchdog(struct ifnet *);
275 static void	em_media_status(struct ifnet *, struct ifmediareq *);
276 static int	em_media_change(struct ifnet *);
277 static void	em_timer(void *);
278 
279 static void	em_intr(void *);
280 static void	em_intr_mask(void *);
281 static void	em_intr_body(struct adapter *, boolean_t);
282 static void	em_rxeof(struct adapter *, int);
283 static void	em_txeof(struct adapter *);
284 static void	em_tx_collect(struct adapter *);
285 static void	em_tx_purge(struct adapter *);
286 static void	em_enable_intr(struct adapter *);
287 static void	em_disable_intr(struct adapter *);
288 
289 static int	em_dma_malloc(struct adapter *, bus_size_t,
290 		    struct em_dma_alloc *);
291 static void	em_dma_free(struct adapter *, struct em_dma_alloc *);
292 static void	em_init_tx_ring(struct adapter *);
293 static int	em_init_rx_ring(struct adapter *);
294 static int	em_create_tx_ring(struct adapter *);
295 static int	em_create_rx_ring(struct adapter *);
296 static void	em_destroy_tx_ring(struct adapter *, int);
297 static void	em_destroy_rx_ring(struct adapter *, int);
298 static int	em_newbuf(struct adapter *, int, int);
299 static int	em_encap(struct adapter *, struct mbuf **, int *, int *);
300 static void	em_rxcsum(struct adapter *, struct e1000_rx_desc *,
301 		    struct mbuf *);
302 static int	em_txcsum(struct adapter *, struct mbuf *,
303 		    uint32_t *, uint32_t *);
304 static int	em_tso_pullup(struct adapter *, struct mbuf **);
305 static int	em_tso_setup(struct adapter *, struct mbuf *,
306 		    uint32_t *, uint32_t *);
307 
308 static int	em_get_hw_info(struct adapter *);
309 static int 	em_is_valid_eaddr(const uint8_t *);
310 static int	em_alloc_pci_res(struct adapter *);
311 static void	em_free_pci_res(struct adapter *);
312 static int	em_reset(struct adapter *);
313 static void	em_setup_ifp(struct adapter *);
314 static void	em_init_tx_unit(struct adapter *);
315 static void	em_init_rx_unit(struct adapter *);
316 static void	em_update_stats(struct adapter *);
317 static void	em_set_promisc(struct adapter *);
318 static void	em_disable_promisc(struct adapter *);
319 static void	em_set_multi(struct adapter *);
320 static void	em_update_link_status(struct adapter *);
321 static void	em_smartspeed(struct adapter *);
322 static void	em_set_itr(struct adapter *, uint32_t);
323 static void	em_disable_aspm(struct adapter *);
324 
325 /* Hardware workarounds */
326 static int	em_82547_fifo_workaround(struct adapter *, int);
327 static void	em_82547_update_fifo_head(struct adapter *, int);
328 static int	em_82547_tx_fifo_reset(struct adapter *);
329 static void	em_82547_move_tail(void *);
330 static void	em_82547_move_tail_serialized(struct adapter *);
331 static uint32_t	em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
332 
333 static void	em_print_debug_info(struct adapter *);
334 static void	em_print_nvm_info(struct adapter *);
335 static void	em_print_hw_stats(struct adapter *);
336 
337 static int	em_sysctl_stats(SYSCTL_HANDLER_ARGS);
338 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
339 static int	em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
340 static int	em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
341 static void	em_add_sysctl(struct adapter *adapter);
342 
343 /* Management and WOL Support */
344 static void	em_get_mgmt(struct adapter *);
345 static void	em_rel_mgmt(struct adapter *);
346 static void	em_get_hw_control(struct adapter *);
347 static void	em_rel_hw_control(struct adapter *);
348 static void	em_enable_wol(device_t);
349 
350 static device_method_t em_methods[] = {
351 	/* Device interface */
352 	DEVMETHOD(device_probe,		em_probe),
353 	DEVMETHOD(device_attach,	em_attach),
354 	DEVMETHOD(device_detach,	em_detach),
355 	DEVMETHOD(device_shutdown,	em_shutdown),
356 	DEVMETHOD(device_suspend,	em_suspend),
357 	DEVMETHOD(device_resume,	em_resume),
358 	DEVMETHOD_END
359 };
360 
361 static driver_t em_driver = {
362 	"em",
363 	em_methods,
364 	sizeof(struct adapter),
365 };
366 
367 static devclass_t em_devclass;
368 
369 DECLARE_DUMMY_MODULE(if_em);
370 MODULE_DEPEND(em, ig_hal, 1, 1, 1);
371 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, NULL, NULL);
372 
373 /*
374  * Tunables
375  */
376 static int	em_int_throttle_ceil = EM_DEFAULT_ITR;
377 static int	em_rxd = EM_DEFAULT_RXD;
378 static int	em_txd = EM_DEFAULT_TXD;
379 static int	em_smart_pwr_down = 0;
380 
381 /* Controls whether promiscuous also shows bad packets */
382 static int	em_debug_sbp = FALSE;
383 
384 static int	em_82573_workaround = 1;
385 static int	em_msi_enable = 1;
386 
387 static char	em_flowctrl[IFM_ETH_FC_STRLEN] = IFM_ETH_FC_NONE;
388 
389 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
390 TUNABLE_INT("hw.em.rxd", &em_rxd);
391 TUNABLE_INT("hw.em.txd", &em_txd);
392 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
393 TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
394 TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
395 TUNABLE_INT("hw.em.msi.enable", &em_msi_enable);
396 TUNABLE_STR("hw.em.flow_ctrl", em_flowctrl, sizeof(em_flowctrl));
397 
398 /* Global used in WOL setup with multiport cards */
399 static int	em_global_quad_port_a = 0;
400 
401 /* Set this to one to display debug statistics */
402 static int	em_display_debug_stats = 0;
403 
404 #if !defined(KTR_IF_EM)
405 #define KTR_IF_EM	KTR_ALL
406 #endif
407 KTR_INFO_MASTER(if_em);
408 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin");
409 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end");
410 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet");
411 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet");
412 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean");
413 #define logif(name)	KTR_LOG(if_em_ ## name)
414 
415 static int
416 em_probe(device_t dev)
417 {
418 	const struct em_vendor_info *ent;
419 	uint16_t vid, did;
420 
421 	vid = pci_get_vendor(dev);
422 	did = pci_get_device(dev);
423 
424 	for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
425 		if (vid == ent->vendor_id && did == ent->device_id) {
426 			device_set_desc(dev, ent->desc);
427 			device_set_async_attach(dev, TRUE);
428 			return (ent->ret);
429 		}
430 	}
431 	return (ENXIO);
432 }
433 
434 static int
435 em_attach(device_t dev)
436 {
437 	struct adapter *adapter = device_get_softc(dev);
438 	struct ifnet *ifp = &adapter->arpcom.ac_if;
439 	int tsize, rsize;
440 	int error = 0;
441 	uint16_t eeprom_data, device_id, apme_mask;
442 	driver_intr_t *intr_func;
443 	char flowctrl[IFM_ETH_FC_STRLEN];
444 
445 	adapter->dev = adapter->osdep.dev = dev;
446 
447 	callout_init_mp(&adapter->timer);
448 	callout_init_mp(&adapter->tx_fifo_timer);
449 
450 	ifmedia_init(&adapter->media, IFM_IMASK | IFM_ETH_FCMASK,
451 	    em_media_change, em_media_status);
452 
453 	/* Determine hardware and mac info */
454 	error = em_get_hw_info(adapter);
455 	if (error) {
456 		device_printf(dev, "Identify hardware failed\n");
457 		goto fail;
458 	}
459 
460 	/* Setup PCI resources */
461 	error = em_alloc_pci_res(adapter);
462 	if (error) {
463 		device_printf(dev, "Allocation of PCI resources failed\n");
464 		goto fail;
465 	}
466 
467 	/*
468 	 * For ICH8 and family we need to map the flash memory,
469 	 * and this must happen after the MAC is identified.
470 	 *
471 	 * (SPT does not map the flash with a separate BAR)
472 	 */
473 	if (adapter->hw.mac.type == e1000_ich8lan ||
474 	    adapter->hw.mac.type == e1000_ich9lan ||
475 	    adapter->hw.mac.type == e1000_ich10lan ||
476 	    adapter->hw.mac.type == e1000_pchlan ||
477 	    adapter->hw.mac.type == e1000_pch2lan ||
478 	    adapter->hw.mac.type == e1000_pch_lpt) {
479 		adapter->flash_rid = EM_BAR_FLASH;
480 
481 		adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
482 					&adapter->flash_rid, RF_ACTIVE);
483 		if (adapter->flash == NULL) {
484 			device_printf(dev, "Mapping of Flash failed\n");
485 			error = ENXIO;
486 			goto fail;
487 		}
488 		adapter->osdep.flash_bus_space_tag =
489 		    rman_get_bustag(adapter->flash);
490 		adapter->osdep.flash_bus_space_handle =
491 		    rman_get_bushandle(adapter->flash);
492 
493 		/*
494 		 * This is used in the shared code
495 		 * XXX this goof is actually not used.
496 		 */
497 		adapter->hw.flash_address = (uint8_t *)adapter->flash;
498 	}
499 
500 	switch (adapter->hw.mac.type) {
501 	case e1000_82571:
502 	case e1000_82572:
503 	case e1000_pch_lpt:
504 	case e1000_pch_spt:
505 		/*
506 		 * Pullup extra 4bytes into the first data segment for
507 		 * TSO, see:
508 		 * 82571/82572 specification update errata #7
509 		 *
510 		 * Same applies to I217 (and maybe I218 and I219).
511 		 *
512 		 * NOTE:
513 		 * 4bytes instead of 2bytes, which are mentioned in the
514 		 * errata, are pulled; mainly to keep rest of the data
515 		 * properly aligned.
516 		 */
517 		adapter->flags |= EM_FLAG_TSO_PULLEX;
518 		/* FALL THROUGH */
519 
520 	default:
521 		if (pci_is_pcie(dev))
522 			adapter->flags |= EM_FLAG_TSO;
523 		break;
524 	}
525 
526 	/* Do Shared Code initialization */
527 	if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
528 		device_printf(dev, "Setup of Shared code failed\n");
529 		error = ENXIO;
530 		goto fail;
531 	}
532 
533 	e1000_get_bus_info(&adapter->hw);
534 
535 	/*
536 	 * Validate number of transmit and receive descriptors.  It
537 	 * must not exceed hardware maximum, and must be multiple
538 	 * of E1000_DBA_ALIGN.
539 	 */
540 	if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
541 	    (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
542 	    (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
543 	    em_txd < EM_MIN_TXD) {
544 		if (adapter->hw.mac.type < e1000_82544)
545 			adapter->num_tx_desc = EM_MAX_TXD_82543;
546 		else
547 			adapter->num_tx_desc = EM_DEFAULT_TXD;
548 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
549 		    adapter->num_tx_desc, em_txd);
550 	} else {
551 		adapter->num_tx_desc = em_txd;
552 	}
553 	if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
554 	    (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
555 	    (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
556 	    em_rxd < EM_MIN_RXD) {
557 		if (adapter->hw.mac.type < e1000_82544)
558 			adapter->num_rx_desc = EM_MAX_RXD_82543;
559 		else
560 			adapter->num_rx_desc = EM_DEFAULT_RXD;
561 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
562 		    adapter->num_rx_desc, em_rxd);
563 	} else {
564 		adapter->num_rx_desc = em_rxd;
565 	}
566 
567 	adapter->hw.mac.autoneg = DO_AUTO_NEG;
568 	adapter->hw.phy.autoneg_wait_to_complete = FALSE;
569 	adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
570 	adapter->rx_buffer_len = MCLBYTES;
571 
572 	/*
573 	 * Interrupt throttle rate
574 	 */
575 	if (em_int_throttle_ceil == 0) {
576 		adapter->int_throttle_ceil = 0;
577 	} else {
578 		int throttle = em_int_throttle_ceil;
579 
580 		if (throttle < 0)
581 			throttle = EM_DEFAULT_ITR;
582 
583 		/* Recalculate the tunable value to get the exact frequency. */
584 		throttle = 1000000000 / 256 / throttle;
585 
586 		/* Upper 16bits of ITR is reserved and should be zero */
587 		if (throttle & 0xffff0000)
588 			throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
589 
590 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
591 	}
592 
593 	e1000_init_script_state_82541(&adapter->hw, TRUE);
594 	e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
595 
596 	/* Copper options */
597 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
598 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
599 		adapter->hw.phy.disable_polarity_correction = FALSE;
600 		adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
601 	}
602 
603 	/* Set the frame limits assuming standard ethernet sized frames. */
604 	adapter->hw.mac.max_frame_size =
605 	    ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
606 	adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
607 
608 	/* This controls when hardware reports transmit completion status. */
609 	adapter->hw.mac.report_tx_early = 1;
610 
611 	/*
612 	 * Create top level busdma tag
613 	 */
614 	error = bus_dma_tag_create(NULL, 1, 0,
615 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
616 			NULL, NULL,
617 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
618 			0, &adapter->parent_dtag);
619 	if (error) {
620 		device_printf(dev, "could not create top level DMA tag\n");
621 		goto fail;
622 	}
623 
624 	/*
625 	 * Allocate Transmit Descriptor ring
626 	 */
627 	tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
628 			 EM_DBA_ALIGN);
629 	error = em_dma_malloc(adapter, tsize, &adapter->txdma);
630 	if (error) {
631 		device_printf(dev, "Unable to allocate tx_desc memory\n");
632 		goto fail;
633 	}
634 	adapter->tx_desc_base = adapter->txdma.dma_vaddr;
635 
636 	/*
637 	 * Allocate Receive Descriptor ring
638 	 */
639 	rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
640 			 EM_DBA_ALIGN);
641 	error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
642 	if (error) {
643 		device_printf(dev, "Unable to allocate rx_desc memory\n");
644 		goto fail;
645 	}
646 	adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
647 
648 	/* Allocate multicast array memory. */
649 	adapter->mta = kmalloc(ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
650 	    M_DEVBUF, M_WAITOK);
651 
652 	/* Indicate SOL/IDER usage */
653 	if (e1000_check_reset_block(&adapter->hw)) {
654 		device_printf(dev,
655 		    "PHY reset is blocked due to SOL/IDER session.\n");
656 	}
657 
658 	/* Disable EEE */
659 	adapter->hw.dev_spec.ich8lan.eee_disable = 1;
660 
661 	/*
662 	 * Start from a known state, this is important in reading the
663 	 * nvm and mac from that.
664 	 */
665 	e1000_reset_hw(&adapter->hw);
666 
667 	/* Make sure we have a good EEPROM before we read from it */
668 	if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
669 		/*
670 		 * Some PCI-E parts fail the first check due to
671 		 * the link being in sleep state, call it again,
672 		 * if it fails a second time its a real issue.
673 		 */
674 		if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
675 			device_printf(dev,
676 			    "The EEPROM Checksum Is Not Valid\n");
677 			error = EIO;
678 			goto fail;
679 		}
680 	}
681 
682 	/* Copy the permanent MAC address out of the EEPROM */
683 	if (e1000_read_mac_addr(&adapter->hw) < 0) {
684 		device_printf(dev, "EEPROM read error while reading MAC"
685 		    " address\n");
686 		error = EIO;
687 		goto fail;
688 	}
689 	if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
690 		device_printf(dev, "Invalid MAC address\n");
691 		error = EIO;
692 		goto fail;
693 	}
694 
695 	/* Disable ULP support */
696 	e1000_disable_ulp_lpt_lp(&adapter->hw, TRUE);
697 
698 	/* Allocate transmit descriptors and buffers */
699 	error = em_create_tx_ring(adapter);
700 	if (error) {
701 		device_printf(dev, "Could not setup transmit structures\n");
702 		goto fail;
703 	}
704 
705 	/* Allocate receive descriptors and buffers */
706 	error = em_create_rx_ring(adapter);
707 	if (error) {
708 		device_printf(dev, "Could not setup receive structures\n");
709 		goto fail;
710 	}
711 
712 	/* Manually turn off all interrupts */
713 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
714 
715 	/* Determine if we have to control management hardware */
716 	if (e1000_enable_mng_pass_thru(&adapter->hw))
717 		adapter->flags |= EM_FLAG_HAS_MGMT;
718 
719 	/*
720 	 * Setup Wake-on-Lan
721 	 */
722 	apme_mask = EM_EEPROM_APME;
723 	eeprom_data = 0;
724 	switch (adapter->hw.mac.type) {
725 	case e1000_82542:
726 	case e1000_82543:
727 		break;
728 
729 	case e1000_82573:
730 	case e1000_82583:
731 		adapter->flags |= EM_FLAG_HAS_AMT;
732 		/* FALL THROUGH */
733 
734 	case e1000_82546:
735 	case e1000_82546_rev_3:
736 	case e1000_82571:
737 	case e1000_82572:
738 	case e1000_80003es2lan:
739 		if (adapter->hw.bus.func == 1) {
740 			e1000_read_nvm(&adapter->hw,
741 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
742 		} else {
743 			e1000_read_nvm(&adapter->hw,
744 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
745 		}
746 		break;
747 
748 	case e1000_ich8lan:
749 	case e1000_ich9lan:
750 	case e1000_ich10lan:
751 	case e1000_pchlan:
752 	case e1000_pch2lan:
753 		apme_mask = E1000_WUC_APME;
754 		adapter->flags |= EM_FLAG_HAS_AMT;
755 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
756 		break;
757 
758 	default:
759 		e1000_read_nvm(&adapter->hw,
760 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
761 		break;
762 	}
763 	if (eeprom_data & apme_mask)
764 		adapter->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
765 
766 	/*
767          * We have the eeprom settings, now apply the special cases
768          * where the eeprom may be wrong or the board won't support
769          * wake on lan on a particular port
770 	 */
771 	device_id = pci_get_device(dev);
772         switch (device_id) {
773 	case E1000_DEV_ID_82546GB_PCIE:
774 		adapter->wol = 0;
775 		break;
776 
777 	case E1000_DEV_ID_82546EB_FIBER:
778 	case E1000_DEV_ID_82546GB_FIBER:
779 	case E1000_DEV_ID_82571EB_FIBER:
780 		/*
781 		 * Wake events only supported on port A for dual fiber
782 		 * regardless of eeprom setting
783 		 */
784 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
785 		    E1000_STATUS_FUNC_1)
786 			adapter->wol = 0;
787 		break;
788 
789 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
790 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
791 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
792 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
793                 /* if quad port adapter, disable WoL on all but port A */
794 		if (em_global_quad_port_a != 0)
795 			adapter->wol = 0;
796 		/* Reset for multiple quad port adapters */
797 		if (++em_global_quad_port_a == 4)
798 			em_global_quad_port_a = 0;
799                 break;
800 	}
801 
802 	/* XXX disable wol */
803 	adapter->wol = 0;
804 
805 	/* Setup flow control. */
806 	device_getenv_string(dev, "flow_ctrl", flowctrl, sizeof(flowctrl),
807 	    em_flowctrl);
808 	adapter->ifm_flowctrl = ifmedia_str2ethfc(flowctrl);
809 	if (adapter->hw.mac.type == e1000_pchlan) {
810 		/* Only PAUSE reception is supported on PCH */
811 		adapter->ifm_flowctrl &= ~IFM_ETH_TXPAUSE;
812 	}
813 
814 	/* Setup OS specific network interface */
815 	em_setup_ifp(adapter);
816 
817 	/* Add sysctl tree, must after em_setup_ifp() */
818 	em_add_sysctl(adapter);
819 
820 #ifdef IFPOLL_ENABLE
821 	/* Polling setup */
822 	ifpoll_compat_setup(&adapter->npoll,
823 	    device_get_sysctl_ctx(dev), device_get_sysctl_tree(dev),
824 	    device_get_unit(dev), ifp->if_serializer);
825 #endif
826 
827 	/* Reset the hardware */
828 	error = em_reset(adapter);
829 	if (error) {
830 		/*
831 		 * Some 82573 parts fail the first reset, call it again,
832 		 * if it fails a second time its a real issue.
833 		 */
834 		error = em_reset(adapter);
835 		if (error) {
836 			device_printf(dev, "Unable to reset the hardware\n");
837 			ether_ifdetach(ifp);
838 			goto fail;
839 		}
840 	}
841 
842 	/* Initialize statistics */
843 	em_update_stats(adapter);
844 
845 	adapter->hw.mac.get_link_status = 1;
846 	em_update_link_status(adapter);
847 
848 	/* Do we need workaround for 82544 PCI-X adapter? */
849 	if (adapter->hw.bus.type == e1000_bus_type_pcix &&
850 	    adapter->hw.mac.type == e1000_82544)
851 		adapter->pcix_82544 = TRUE;
852 	else
853 		adapter->pcix_82544 = FALSE;
854 
855 	if (adapter->pcix_82544) {
856 		/*
857 		 * 82544 on PCI-X may split one TX segment
858 		 * into two TX descs, so we double its number
859 		 * of spare TX desc here.
860 		 */
861 		adapter->spare_tx_desc = 2 * EM_TX_SPARE;
862 	} else {
863 		adapter->spare_tx_desc = EM_TX_SPARE;
864 	}
865 	if (adapter->flags & EM_FLAG_TSO)
866 		adapter->spare_tx_desc = EM_TX_SPARE_TSO;
867 	adapter->tx_wreg_nsegs = EM_DEFAULT_TXWREG;
868 
869 	/*
870 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
871 	 * and tx_int_nsegs:
872 	 * (spare_tx_desc + EM_TX_RESERVED) <=
873 	 * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
874 	 */
875 	adapter->oact_tx_desc = adapter->num_tx_desc / 8;
876 	if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
877 		adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
878 	if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
879 		adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
880 
881 	adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
882 	if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
883 		adapter->tx_int_nsegs = adapter->oact_tx_desc;
884 
885 	/* Non-AMT based hardware can now take control from firmware */
886 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
887 	    EM_FLAG_HAS_MGMT && adapter->hw.mac.type >= e1000_82571)
888 		em_get_hw_control(adapter);
889 
890 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
891 
892 	/*
893 	 * Missing Interrupt Following ICR read:
894 	 *
895 	 * 82571/82572 specification update errata #76
896 	 * 82573 specification update errata #31
897 	 * 82574 specification update errata #12
898 	 * 82583 specification update errata #4
899 	 */
900 	intr_func = em_intr;
901 	if ((adapter->flags & EM_FLAG_SHARED_INTR) &&
902 	    (adapter->hw.mac.type == e1000_82571 ||
903 	     adapter->hw.mac.type == e1000_82572 ||
904 	     adapter->hw.mac.type == e1000_82573 ||
905 	     adapter->hw.mac.type == e1000_82574 ||
906 	     adapter->hw.mac.type == e1000_82583))
907 		intr_func = em_intr_mask;
908 
909 	error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
910 			       intr_func, adapter, &adapter->intr_tag,
911 			       ifp->if_serializer);
912 	if (error) {
913 		device_printf(dev, "Failed to register interrupt handler");
914 		ether_ifdetach(ifp);
915 		goto fail;
916 	}
917 	return (0);
918 fail:
919 	em_detach(dev);
920 	return (error);
921 }
922 
923 static int
924 em_detach(device_t dev)
925 {
926 	struct adapter *adapter = device_get_softc(dev);
927 
928 	if (device_is_attached(dev)) {
929 		struct ifnet *ifp = &adapter->arpcom.ac_if;
930 
931 		lwkt_serialize_enter(ifp->if_serializer);
932 
933 		em_stop(adapter);
934 
935 		e1000_phy_hw_reset(&adapter->hw);
936 
937 		em_rel_mgmt(adapter);
938 		em_rel_hw_control(adapter);
939 
940 		if (adapter->wol) {
941 			E1000_WRITE_REG(&adapter->hw, E1000_WUC,
942 					E1000_WUC_PME_EN);
943 			E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
944 			em_enable_wol(dev);
945 		}
946 
947 		bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
948 
949 		lwkt_serialize_exit(ifp->if_serializer);
950 
951 		ether_ifdetach(ifp);
952 	} else if (adapter->memory != NULL) {
953 		em_rel_hw_control(adapter);
954 	}
955 
956 	ifmedia_removeall(&adapter->media);
957 	bus_generic_detach(dev);
958 
959 	em_free_pci_res(adapter);
960 
961 	em_destroy_tx_ring(adapter, adapter->num_tx_desc);
962 	em_destroy_rx_ring(adapter, adapter->num_rx_desc);
963 
964 	/* Free Transmit Descriptor ring */
965 	if (adapter->tx_desc_base)
966 		em_dma_free(adapter, &adapter->txdma);
967 
968 	/* Free Receive Descriptor ring */
969 	if (adapter->rx_desc_base)
970 		em_dma_free(adapter, &adapter->rxdma);
971 
972 	/* Free top level busdma tag */
973 	if (adapter->parent_dtag != NULL)
974 		bus_dma_tag_destroy(adapter->parent_dtag);
975 
976 	if (adapter->mta != NULL)
977 		kfree(adapter->mta, M_DEVBUF);
978 
979 	return (0);
980 }
981 
982 static int
983 em_shutdown(device_t dev)
984 {
985 	return em_suspend(dev);
986 }
987 
988 static int
989 em_suspend(device_t dev)
990 {
991 	struct adapter *adapter = device_get_softc(dev);
992 	struct ifnet *ifp = &adapter->arpcom.ac_if;
993 
994 	lwkt_serialize_enter(ifp->if_serializer);
995 
996 	em_stop(adapter);
997 
998 	em_rel_mgmt(adapter);
999 	em_rel_hw_control(adapter);
1000 
1001 	if (adapter->wol) {
1002 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
1003 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
1004 		em_enable_wol(dev);
1005 	}
1006 
1007 	lwkt_serialize_exit(ifp->if_serializer);
1008 
1009 	return bus_generic_suspend(dev);
1010 }
1011 
1012 static int
1013 em_resume(device_t dev)
1014 {
1015 	struct adapter *adapter = device_get_softc(dev);
1016 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1017 
1018 	lwkt_serialize_enter(ifp->if_serializer);
1019 
1020 	if (adapter->hw.mac.type == e1000_pch2lan)
1021 		e1000_resume_workarounds_pchlan(&adapter->hw);
1022 
1023 	em_init(adapter);
1024 	em_get_mgmt(adapter);
1025 	if_devstart(ifp);
1026 
1027 	lwkt_serialize_exit(ifp->if_serializer);
1028 
1029 	return bus_generic_resume(dev);
1030 }
1031 
1032 static void
1033 em_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1034 {
1035 	struct adapter *adapter = ifp->if_softc;
1036 	struct mbuf *m_head;
1037 	int idx = -1, nsegs = 0;
1038 
1039 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1040 	ASSERT_SERIALIZED(ifp->if_serializer);
1041 
1042 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1043 		return;
1044 
1045 	if (!adapter->link_active) {
1046 		ifq_purge(&ifp->if_snd);
1047 		return;
1048 	}
1049 
1050 	while (!ifq_is_empty(&ifp->if_snd)) {
1051 		/* Now do we at least have a minimal? */
1052 		if (EM_IS_OACTIVE(adapter)) {
1053 			em_tx_collect(adapter);
1054 			if (EM_IS_OACTIVE(adapter)) {
1055 				ifq_set_oactive(&ifp->if_snd);
1056 				adapter->no_tx_desc_avail1++;
1057 				break;
1058 			}
1059 		}
1060 
1061 		logif(pkt_txqueue);
1062 		m_head = ifq_dequeue(&ifp->if_snd);
1063 		if (m_head == NULL)
1064 			break;
1065 
1066 		if (em_encap(adapter, &m_head, &nsegs, &idx)) {
1067 			IFNET_STAT_INC(ifp, oerrors, 1);
1068 			em_tx_collect(adapter);
1069 			continue;
1070 		}
1071 
1072 		/*
1073 		 * TX interrupt are aggressively aggregated, so increasing
1074 		 * opackets at TX interrupt time will make the opackets
1075 		 * statistics vastly inaccurate; we do the opackets increment
1076 		 * now.
1077 		 */
1078 		IFNET_STAT_INC(ifp, opackets, 1);
1079 
1080 		if (nsegs >= adapter->tx_wreg_nsegs && idx >= 0) {
1081 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1082 			nsegs = 0;
1083 			idx = -1;
1084 		}
1085 
1086 		/* Send a copy of the frame to the BPF listener */
1087 		ETHER_BPF_MTAP(ifp, m_head);
1088 
1089 		/* Set timeout in case hardware has problems transmitting. */
1090 		ifp->if_timer = EM_TX_TIMEOUT;
1091 	}
1092 	if (idx >= 0)
1093 		E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1094 }
1095 
1096 static int
1097 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1098 {
1099 	struct adapter *adapter = ifp->if_softc;
1100 	struct ifreq *ifr = (struct ifreq *)data;
1101 	uint16_t eeprom_data = 0;
1102 	int max_frame_size, mask, reinit;
1103 	int error = 0;
1104 
1105 	ASSERT_SERIALIZED(ifp->if_serializer);
1106 
1107 	switch (command) {
1108 	case SIOCSIFMTU:
1109 		switch (adapter->hw.mac.type) {
1110 		case e1000_82573:
1111 			/*
1112 			 * 82573 only supports jumbo frames
1113 			 * if ASPM is disabled.
1114 			 */
1115 			e1000_read_nvm(&adapter->hw,
1116 			    NVM_INIT_3GIO_3, 1, &eeprom_data);
1117 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1118 				max_frame_size = ETHER_MAX_LEN;
1119 				break;
1120 			}
1121 			/* FALL THROUGH */
1122 
1123 		/* Limit Jumbo Frame size */
1124 		case e1000_82571:
1125 		case e1000_82572:
1126 		case e1000_ich9lan:
1127 		case e1000_ich10lan:
1128 		case e1000_pch2lan:
1129 		case e1000_pch_lpt:
1130 		case e1000_pch_spt:
1131 		case e1000_82574:
1132 		case e1000_82583:
1133 		case e1000_80003es2lan:
1134 			max_frame_size = 9234;
1135 			break;
1136 
1137 		case e1000_pchlan:
1138 			max_frame_size = 4096;
1139 			break;
1140 
1141 		/* Adapters that do not support jumbo frames */
1142 		case e1000_82542:
1143 		case e1000_ich8lan:
1144 			max_frame_size = ETHER_MAX_LEN;
1145 			break;
1146 
1147 		default:
1148 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1149 			break;
1150 		}
1151 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1152 		    ETHER_CRC_LEN) {
1153 			error = EINVAL;
1154 			break;
1155 		}
1156 
1157 		ifp->if_mtu = ifr->ifr_mtu;
1158 		adapter->hw.mac.max_frame_size =
1159 		    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1160 
1161 		if (ifp->if_flags & IFF_RUNNING)
1162 			em_init(adapter);
1163 		break;
1164 
1165 	case SIOCSIFFLAGS:
1166 		if (ifp->if_flags & IFF_UP) {
1167 			if ((ifp->if_flags & IFF_RUNNING)) {
1168 				if ((ifp->if_flags ^ adapter->if_flags) &
1169 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1170 					em_disable_promisc(adapter);
1171 					em_set_promisc(adapter);
1172 				}
1173 			} else {
1174 				em_init(adapter);
1175 			}
1176 		} else if (ifp->if_flags & IFF_RUNNING) {
1177 			em_stop(adapter);
1178 		}
1179 		adapter->if_flags = ifp->if_flags;
1180 		break;
1181 
1182 	case SIOCADDMULTI:
1183 	case SIOCDELMULTI:
1184 		if (ifp->if_flags & IFF_RUNNING) {
1185 			em_disable_intr(adapter);
1186 			em_set_multi(adapter);
1187 			if (adapter->hw.mac.type == e1000_82542 &&
1188 			    adapter->hw.revision_id == E1000_REVISION_2)
1189 				em_init_rx_unit(adapter);
1190 #ifdef IFPOLL_ENABLE
1191 			if (!(ifp->if_flags & IFF_NPOLLING))
1192 #endif
1193 				em_enable_intr(adapter);
1194 		}
1195 		break;
1196 
1197 	case SIOCSIFMEDIA:
1198 		/* Check SOL/IDER usage */
1199 		if (e1000_check_reset_block(&adapter->hw)) {
1200 			device_printf(adapter->dev, "Media change is"
1201 			    " blocked due to SOL/IDER session.\n");
1202 			break;
1203 		}
1204 		/* FALL THROUGH */
1205 
1206 	case SIOCGIFMEDIA:
1207 		error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1208 		break;
1209 
1210 	case SIOCSIFCAP:
1211 		reinit = 0;
1212 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1213 		if (mask & IFCAP_RXCSUM) {
1214 			ifp->if_capenable ^= IFCAP_RXCSUM;
1215 			reinit = 1;
1216 		}
1217 		if (mask & IFCAP_TXCSUM) {
1218 			ifp->if_capenable ^= IFCAP_TXCSUM;
1219 			if (ifp->if_capenable & IFCAP_TXCSUM)
1220 				ifp->if_hwassist |= EM_CSUM_FEATURES;
1221 			else
1222 				ifp->if_hwassist &= ~EM_CSUM_FEATURES;
1223 		}
1224 		if (mask & IFCAP_TSO) {
1225 			ifp->if_capenable ^= IFCAP_TSO;
1226 			if (ifp->if_capenable & IFCAP_TSO)
1227 				ifp->if_hwassist |= CSUM_TSO;
1228 			else
1229 				ifp->if_hwassist &= ~CSUM_TSO;
1230 		}
1231 		if (mask & IFCAP_VLAN_HWTAGGING) {
1232 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1233 			reinit = 1;
1234 		}
1235 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1236 			em_init(adapter);
1237 		break;
1238 
1239 	default:
1240 		error = ether_ioctl(ifp, command, data);
1241 		break;
1242 	}
1243 	return (error);
1244 }
1245 
1246 static void
1247 em_watchdog(struct ifnet *ifp)
1248 {
1249 	struct adapter *adapter = ifp->if_softc;
1250 
1251 	ASSERT_SERIALIZED(ifp->if_serializer);
1252 
1253 	/*
1254 	 * The timer is set to 5 every time start queues a packet.
1255 	 * Then txeof keeps resetting it as long as it cleans at
1256 	 * least one descriptor.
1257 	 * Finally, anytime all descriptors are clean the timer is
1258 	 * set to 0.
1259 	 */
1260 
1261 	if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1262 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1263 		/*
1264 		 * If we reach here, all TX jobs are completed and
1265 		 * the TX engine should have been idled for some time.
1266 		 * We don't need to call if_devstart() here.
1267 		 */
1268 		ifq_clr_oactive(&ifp->if_snd);
1269 		ifp->if_timer = 0;
1270 		return;
1271 	}
1272 
1273 	/*
1274 	 * If we are in this routine because of pause frames, then
1275 	 * don't reset the hardware.
1276 	 */
1277 	if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1278 	    E1000_STATUS_TXOFF) {
1279 		ifp->if_timer = EM_TX_TIMEOUT;
1280 		return;
1281 	}
1282 
1283 	if (e1000_check_for_link(&adapter->hw) == 0)
1284 		if_printf(ifp, "watchdog timeout -- resetting\n");
1285 
1286 	IFNET_STAT_INC(ifp, oerrors, 1);
1287 	adapter->watchdog_events++;
1288 
1289 	em_init(adapter);
1290 
1291 	if (!ifq_is_empty(&ifp->if_snd))
1292 		if_devstart(ifp);
1293 }
1294 
1295 static void
1296 em_init(void *xsc)
1297 {
1298 	struct adapter *adapter = xsc;
1299 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1300 	device_t dev = adapter->dev;
1301 
1302 	ASSERT_SERIALIZED(ifp->if_serializer);
1303 
1304 	em_stop(adapter);
1305 
1306 	/* Get the latest mac address, User can use a LAA */
1307         bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1308 
1309 	/* Put the address into the Receive Address Array */
1310 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1311 
1312 	/*
1313 	 * With the 82571 adapter, RAR[0] may be overwritten
1314 	 * when the other port is reset, we make a duplicate
1315 	 * in RAR[14] for that eventuality, this assures
1316 	 * the interface continues to function.
1317 	 */
1318 	if (adapter->hw.mac.type == e1000_82571) {
1319 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1320 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1321 		    E1000_RAR_ENTRIES - 1);
1322 	}
1323 
1324 	/* Reset the hardware */
1325 	if (em_reset(adapter)) {
1326 		device_printf(dev, "Unable to reset the hardware\n");
1327 		/* XXX em_stop()? */
1328 		return;
1329 	}
1330 	em_update_link_status(adapter);
1331 
1332 	/* Setup VLAN support, basic and offload if available */
1333 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1334 
1335 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1336 		uint32_t ctrl;
1337 
1338 		ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1339 		ctrl |= E1000_CTRL_VME;
1340 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1341 	}
1342 
1343 	/* Configure for OS presence */
1344 	em_get_mgmt(adapter);
1345 
1346 	/* Prepare transmit descriptors and buffers */
1347 	em_init_tx_ring(adapter);
1348 	em_init_tx_unit(adapter);
1349 
1350 	/* Setup Multicast table */
1351 	em_set_multi(adapter);
1352 
1353 	/* Prepare receive descriptors and buffers */
1354 	if (em_init_rx_ring(adapter)) {
1355 		device_printf(dev, "Could not setup receive structures\n");
1356 		em_stop(adapter);
1357 		return;
1358 	}
1359 	em_init_rx_unit(adapter);
1360 
1361 	/* Don't lose promiscuous settings */
1362 	em_set_promisc(adapter);
1363 
1364 	ifp->if_flags |= IFF_RUNNING;
1365 	ifq_clr_oactive(&ifp->if_snd);
1366 
1367 	callout_reset(&adapter->timer, hz, em_timer, adapter);
1368 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1369 
1370 	/* MSI/X configuration for 82574 */
1371 	if (adapter->hw.mac.type == e1000_82574) {
1372 		int tmp;
1373 
1374 		tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1375 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1376 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1377 		/*
1378 		 * XXX MSIX
1379 		 * Set the IVAR - interrupt vector routing.
1380 		 * Each nibble represents a vector, high bit
1381 		 * is enable, other 3 bits are the MSIX table
1382 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1383 		 * Link (other) to 2, hence the magic number.
1384 		 */
1385 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1386 	}
1387 
1388 #ifdef IFPOLL_ENABLE
1389 	/*
1390 	 * Only enable interrupts if we are not polling, make sure
1391 	 * they are off otherwise.
1392 	 */
1393 	if (ifp->if_flags & IFF_NPOLLING)
1394 		em_disable_intr(adapter);
1395 	else
1396 #endif /* IFPOLL_ENABLE */
1397 		em_enable_intr(adapter);
1398 
1399 	/* AMT based hardware can now take control from firmware */
1400 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
1401 	    (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT) &&
1402 	    adapter->hw.mac.type >= e1000_82571)
1403 		em_get_hw_control(adapter);
1404 }
1405 
1406 #ifdef IFPOLL_ENABLE
1407 
1408 static void
1409 em_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
1410 {
1411 	struct adapter *adapter = ifp->if_softc;
1412 
1413 	ASSERT_SERIALIZED(ifp->if_serializer);
1414 
1415 	if (adapter->npoll.ifpc_stcount-- == 0) {
1416 		uint32_t reg_icr;
1417 
1418 		adapter->npoll.ifpc_stcount = adapter->npoll.ifpc_stfrac;
1419 
1420 		reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1421 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1422 			callout_stop(&adapter->timer);
1423 			adapter->hw.mac.get_link_status = 1;
1424 			em_update_link_status(adapter);
1425 			callout_reset(&adapter->timer, hz, em_timer, adapter);
1426 		}
1427 	}
1428 
1429 	em_rxeof(adapter, count);
1430 	em_txeof(adapter);
1431 
1432 	if (!ifq_is_empty(&ifp->if_snd))
1433 		if_devstart(ifp);
1434 }
1435 
1436 static void
1437 em_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1438 {
1439 	struct adapter *adapter = ifp->if_softc;
1440 
1441 	ASSERT_SERIALIZED(ifp->if_serializer);
1442 
1443 	if (info != NULL) {
1444 		int cpuid = adapter->npoll.ifpc_cpuid;
1445 
1446                 info->ifpi_rx[cpuid].poll_func = em_npoll_compat;
1447 		info->ifpi_rx[cpuid].arg = NULL;
1448 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
1449 
1450 		if (ifp->if_flags & IFF_RUNNING)
1451 			em_disable_intr(adapter);
1452 		ifq_set_cpuid(&ifp->if_snd, cpuid);
1453 	} else {
1454 		if (ifp->if_flags & IFF_RUNNING)
1455 			em_enable_intr(adapter);
1456 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
1457 	}
1458 }
1459 
1460 #endif /* IFPOLL_ENABLE */
1461 
1462 static void
1463 em_intr(void *xsc)
1464 {
1465 	em_intr_body(xsc, TRUE);
1466 }
1467 
1468 static void
1469 em_intr_body(struct adapter *adapter, boolean_t chk_asserted)
1470 {
1471 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1472 	uint32_t reg_icr;
1473 
1474 	logif(intr_beg);
1475 	ASSERT_SERIALIZED(ifp->if_serializer);
1476 
1477 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1478 
1479 	if (chk_asserted &&
1480 	    ((adapter->hw.mac.type >= e1000_82571 &&
1481 	      (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1482 	     reg_icr == 0)) {
1483 		logif(intr_end);
1484 		return;
1485 	}
1486 
1487 	/*
1488 	 * XXX: some laptops trigger several spurious interrupts
1489 	 * on em(4) when in the resume cycle. The ICR register
1490 	 * reports all-ones value in this case. Processing such
1491 	 * interrupts would lead to a freeze. I don't know why.
1492 	 */
1493 	if (reg_icr == 0xffffffff) {
1494 		logif(intr_end);
1495 		return;
1496 	}
1497 
1498 	if (ifp->if_flags & IFF_RUNNING) {
1499 		if (reg_icr &
1500 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1501 			em_rxeof(adapter, -1);
1502 		if (reg_icr & E1000_ICR_TXDW) {
1503 			em_txeof(adapter);
1504 			if (!ifq_is_empty(&ifp->if_snd))
1505 				if_devstart(ifp);
1506 		}
1507 	}
1508 
1509 	/* Link status change */
1510 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1511 		callout_stop(&adapter->timer);
1512 		adapter->hw.mac.get_link_status = 1;
1513 		em_update_link_status(adapter);
1514 
1515 		/* Deal with TX cruft when link lost */
1516 		em_tx_purge(adapter);
1517 
1518 		callout_reset(&adapter->timer, hz, em_timer, adapter);
1519 	}
1520 
1521 	if (reg_icr & E1000_ICR_RXO)
1522 		adapter->rx_overruns++;
1523 
1524 	logif(intr_end);
1525 }
1526 
1527 static void
1528 em_intr_mask(void *xsc)
1529 {
1530 	struct adapter *adapter = xsc;
1531 
1532 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
1533 	/*
1534 	 * NOTE:
1535 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1536 	 * so don't check it.
1537 	 */
1538 	em_intr_body(adapter, FALSE);
1539 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, IMS_ENABLE_MASK);
1540 }
1541 
1542 static void
1543 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1544 {
1545 	struct adapter *adapter = ifp->if_softc;
1546 
1547 	ASSERT_SERIALIZED(ifp->if_serializer);
1548 
1549 	em_update_link_status(adapter);
1550 
1551 	ifmr->ifm_status = IFM_AVALID;
1552 	ifmr->ifm_active = IFM_ETHER;
1553 
1554 	if (!adapter->link_active) {
1555 		if (adapter->hw.mac.autoneg)
1556 			ifmr->ifm_active |= IFM_NONE;
1557 		else
1558 			ifmr->ifm_active = adapter->media.ifm_media;
1559 		return;
1560 	}
1561 
1562 	ifmr->ifm_status |= IFM_ACTIVE;
1563 	if (adapter->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
1564 		ifmr->ifm_active |= adapter->ifm_flowctrl;
1565 
1566 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1567 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1568 		u_char fiber_type = IFM_1000_SX;
1569 
1570 		if (adapter->hw.mac.type == e1000_82545)
1571 			fiber_type = IFM_1000_LX;
1572 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1573 	} else {
1574 		switch (adapter->link_speed) {
1575 		case 10:
1576 			ifmr->ifm_active |= IFM_10_T;
1577 			break;
1578 		case 100:
1579 			ifmr->ifm_active |= IFM_100_TX;
1580 			break;
1581 
1582 		case 1000:
1583 			ifmr->ifm_active |= IFM_1000_T;
1584 			break;
1585 		}
1586 		if (adapter->link_duplex == FULL_DUPLEX)
1587 			ifmr->ifm_active |= IFM_FDX;
1588 		else
1589 			ifmr->ifm_active |= IFM_HDX;
1590 	}
1591 	if (ifmr->ifm_active & IFM_FDX) {
1592 		ifmr->ifm_active |=
1593 		    e1000_fc2ifmedia(adapter->hw.fc.current_mode);
1594 	}
1595 }
1596 
1597 static int
1598 em_media_change(struct ifnet *ifp)
1599 {
1600 	struct adapter *adapter = ifp->if_softc;
1601 	struct ifmedia *ifm = &adapter->media;
1602 
1603 	ASSERT_SERIALIZED(ifp->if_serializer);
1604 
1605 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1606 		return (EINVAL);
1607 
1608 	if (adapter->hw.mac.type == e1000_pchlan &&
1609 	    (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE)) {
1610 		if (bootverbose)
1611 			if_printf(ifp, "TX PAUSE is not supported on PCH\n");
1612 		return EINVAL;
1613 	}
1614 
1615 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1616 	case IFM_AUTO:
1617 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1618 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1619 		break;
1620 
1621 	case IFM_1000_LX:
1622 	case IFM_1000_SX:
1623 	case IFM_1000_T:
1624 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1625 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1626 		break;
1627 
1628 	case IFM_100_TX:
1629 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1630 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1631 		} else {
1632 			if (IFM_OPTIONS(ifm->ifm_media) &
1633 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1634 				if (bootverbose) {
1635 					if_printf(ifp, "Flow control is not "
1636 					    "allowed for half-duplex\n");
1637 				}
1638 				return EINVAL;
1639 			}
1640 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1641 		}
1642 		adapter->hw.mac.autoneg = FALSE;
1643 		adapter->hw.phy.autoneg_advertised = 0;
1644 		break;
1645 
1646 	case IFM_10_T:
1647 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1648 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1649 		} else {
1650 			if (IFM_OPTIONS(ifm->ifm_media) &
1651 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1652 				if (bootverbose) {
1653 					if_printf(ifp, "Flow control is not "
1654 					    "allowed for half-duplex\n");
1655 				}
1656 				return EINVAL;
1657 			}
1658 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1659 		}
1660 		adapter->hw.mac.autoneg = FALSE;
1661 		adapter->hw.phy.autoneg_advertised = 0;
1662 		break;
1663 
1664 	default:
1665 		if (bootverbose) {
1666 			if_printf(ifp, "Unsupported media type %d\n",
1667 			    IFM_SUBTYPE(ifm->ifm_media));
1668 		}
1669 		return EINVAL;
1670 	}
1671 	adapter->ifm_flowctrl = ifm->ifm_media & IFM_ETH_FCMASK;
1672 
1673 	if (ifp->if_flags & IFF_RUNNING)
1674 		em_init(adapter);
1675 
1676 	return (0);
1677 }
1678 
1679 static int
1680 em_encap(struct adapter *adapter, struct mbuf **m_headp,
1681     int *segs_used, int *idx)
1682 {
1683 	bus_dma_segment_t segs[EM_MAX_SCATTER];
1684 	bus_dmamap_t map;
1685 	struct em_buffer *tx_buffer, *tx_buffer_mapped;
1686 	struct e1000_tx_desc *ctxd = NULL;
1687 	struct mbuf *m_head = *m_headp;
1688 	uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1689 	int maxsegs, nsegs, i, j, first, last = 0, error;
1690 
1691 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1692 		error = em_tso_pullup(adapter, m_headp);
1693 		if (error)
1694 			return error;
1695 		m_head = *m_headp;
1696 	}
1697 
1698 	txd_upper = txd_lower = 0;
1699 	txd_used = 0;
1700 
1701 	/*
1702 	 * Capture the first descriptor index, this descriptor
1703 	 * will have the index of the EOP which is the only one
1704 	 * that now gets a DONE bit writeback.
1705 	 */
1706 	first = adapter->next_avail_tx_desc;
1707 	tx_buffer = &adapter->tx_buffer_area[first];
1708 	tx_buffer_mapped = tx_buffer;
1709 	map = tx_buffer->map;
1710 
1711 	maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1712 	KASSERT(maxsegs >= adapter->spare_tx_desc,
1713 		("not enough spare TX desc"));
1714 	if (adapter->pcix_82544) {
1715 		/* Half it; see the comment in em_attach() */
1716 		maxsegs >>= 1;
1717 	}
1718 	if (maxsegs > EM_MAX_SCATTER)
1719 		maxsegs = EM_MAX_SCATTER;
1720 
1721 	error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1722 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1723 	if (error) {
1724 		if (error == ENOBUFS)
1725 			adapter->mbuf_alloc_failed++;
1726 		else
1727 			adapter->no_tx_dma_setup++;
1728 
1729 		m_freem(*m_headp);
1730 		*m_headp = NULL;
1731 		return error;
1732 	}
1733         bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1734 
1735 	m_head = *m_headp;
1736 	adapter->tx_nsegs += nsegs;
1737 	*segs_used += nsegs;
1738 
1739 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1740 		/* TSO will consume one TX desc */
1741 		i = em_tso_setup(adapter, m_head, &txd_upper, &txd_lower);
1742 		adapter->tx_nsegs += i;
1743 		*segs_used += i;
1744 	} else if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1745 		/* TX csum offloading will consume one TX desc */
1746 		i = em_txcsum(adapter, m_head, &txd_upper, &txd_lower);
1747 		adapter->tx_nsegs += i;
1748 		*segs_used += i;
1749 	}
1750 
1751         /* Handle VLAN tag */
1752 	if (m_head->m_flags & M_VLANTAG) {
1753 		/* Set the vlan id. */
1754 		txd_upper |= (htole16(m_head->m_pkthdr.ether_vlantag) << 16);
1755 		/* Tell hardware to add tag */
1756 		txd_lower |= htole32(E1000_TXD_CMD_VLE);
1757 	}
1758 
1759 	i = adapter->next_avail_tx_desc;
1760 
1761 	/* Set up our transmit descriptors */
1762 	for (j = 0; j < nsegs; j++) {
1763 		/* If adapter is 82544 and on PCIX bus */
1764 		if(adapter->pcix_82544) {
1765 			DESC_ARRAY desc_array;
1766 			uint32_t array_elements, counter;
1767 
1768 			/*
1769 			 * Check the Address and Length combination and
1770 			 * split the data accordingly
1771 			 */
1772 			array_elements = em_82544_fill_desc(segs[j].ds_addr,
1773 						segs[j].ds_len, &desc_array);
1774 			for (counter = 0; counter < array_elements; counter++) {
1775 				KKASSERT(txd_used < adapter->num_tx_desc_avail);
1776 
1777 				tx_buffer = &adapter->tx_buffer_area[i];
1778 				ctxd = &adapter->tx_desc_base[i];
1779 
1780 				ctxd->buffer_addr = htole64(
1781 				    desc_array.descriptor[counter].address);
1782 				ctxd->lower.data = htole32(
1783 				    E1000_TXD_CMD_IFCS | txd_lower |
1784 				    desc_array.descriptor[counter].length);
1785 				ctxd->upper.data = htole32(txd_upper);
1786 
1787 				last = i;
1788 				if (++i == adapter->num_tx_desc)
1789 					i = 0;
1790 
1791 				txd_used++;
1792                         }
1793 		} else {
1794 			tx_buffer = &adapter->tx_buffer_area[i];
1795 			ctxd = &adapter->tx_desc_base[i];
1796 
1797 			ctxd->buffer_addr = htole64(segs[j].ds_addr);
1798 			ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1799 						   txd_lower | segs[j].ds_len);
1800 			ctxd->upper.data = htole32(txd_upper);
1801 
1802 			last = i;
1803 			if (++i == adapter->num_tx_desc)
1804 				i = 0;
1805 		}
1806 	}
1807 
1808 	adapter->next_avail_tx_desc = i;
1809 	if (adapter->pcix_82544) {
1810 		KKASSERT(adapter->num_tx_desc_avail > txd_used);
1811 		adapter->num_tx_desc_avail -= txd_used;
1812 	} else {
1813 		KKASSERT(adapter->num_tx_desc_avail > nsegs);
1814 		adapter->num_tx_desc_avail -= nsegs;
1815 	}
1816 
1817 	tx_buffer->m_head = m_head;
1818 	tx_buffer_mapped->map = tx_buffer->map;
1819 	tx_buffer->map = map;
1820 
1821 	if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1822 		adapter->tx_nsegs = 0;
1823 
1824 		/*
1825 		 * Report Status (RS) is turned on
1826 		 * every tx_int_nsegs descriptors.
1827 		 */
1828 		cmd = E1000_TXD_CMD_RS;
1829 
1830 		/*
1831 		 * Keep track of the descriptor, which will
1832 		 * be written back by hardware.
1833 		 */
1834 		adapter->tx_dd[adapter->tx_dd_tail] = last;
1835 		EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1836 		KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1837 	}
1838 
1839 	/*
1840 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1841 	 */
1842 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1843 
1844 	if (adapter->hw.mac.type == e1000_82547) {
1845 		/*
1846 		 * Advance the Transmit Descriptor Tail (TDT), this tells the
1847 		 * E1000 that this frame is available to transmit.
1848 		 */
1849 		if (adapter->link_duplex == HALF_DUPLEX) {
1850 			em_82547_move_tail_serialized(adapter);
1851 		} else {
1852 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1853 			em_82547_update_fifo_head(adapter,
1854 			    m_head->m_pkthdr.len);
1855 		}
1856 	} else {
1857 		/*
1858 		 * Defer TDT updating, until enough descriptors are setup
1859 		 */
1860 		*idx = i;
1861 	}
1862 	return (0);
1863 }
1864 
1865 /*
1866  * 82547 workaround to avoid controller hang in half-duplex environment.
1867  * The workaround is to avoid queuing a large packet that would span
1868  * the internal Tx FIFO ring boundary.  We need to reset the FIFO pointers
1869  * in this case.  We do that only when FIFO is quiescent.
1870  */
1871 static void
1872 em_82547_move_tail_serialized(struct adapter *adapter)
1873 {
1874 	struct e1000_tx_desc *tx_desc;
1875 	uint16_t hw_tdt, sw_tdt, length = 0;
1876 	bool eop = 0;
1877 
1878 	ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
1879 
1880 	hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
1881 	sw_tdt = adapter->next_avail_tx_desc;
1882 
1883 	while (hw_tdt != sw_tdt) {
1884 		tx_desc = &adapter->tx_desc_base[hw_tdt];
1885 		length += tx_desc->lower.flags.length;
1886 		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1887 		if (++hw_tdt == adapter->num_tx_desc)
1888 			hw_tdt = 0;
1889 
1890 		if (eop) {
1891 			if (em_82547_fifo_workaround(adapter, length)) {
1892 				adapter->tx_fifo_wrk_cnt++;
1893 				callout_reset(&adapter->tx_fifo_timer, 1,
1894 					em_82547_move_tail, adapter);
1895 				break;
1896 			}
1897 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
1898 			em_82547_update_fifo_head(adapter, length);
1899 			length = 0;
1900 		}
1901 	}
1902 }
1903 
1904 static void
1905 em_82547_move_tail(void *xsc)
1906 {
1907 	struct adapter *adapter = xsc;
1908 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1909 
1910 	lwkt_serialize_enter(ifp->if_serializer);
1911 	em_82547_move_tail_serialized(adapter);
1912 	lwkt_serialize_exit(ifp->if_serializer);
1913 }
1914 
1915 static int
1916 em_82547_fifo_workaround(struct adapter *adapter, int len)
1917 {
1918 	int fifo_space, fifo_pkt_len;
1919 
1920 	fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1921 
1922 	if (adapter->link_duplex == HALF_DUPLEX) {
1923 		fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1924 
1925 		if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1926 			if (em_82547_tx_fifo_reset(adapter))
1927 				return (0);
1928 			else
1929 				return (1);
1930 		}
1931 	}
1932 	return (0);
1933 }
1934 
1935 static void
1936 em_82547_update_fifo_head(struct adapter *adapter, int len)
1937 {
1938 	int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1939 
1940 	/* tx_fifo_head is always 16 byte aligned */
1941 	adapter->tx_fifo_head += fifo_pkt_len;
1942 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1943 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
1944 }
1945 
1946 static int
1947 em_82547_tx_fifo_reset(struct adapter *adapter)
1948 {
1949 	uint32_t tctl;
1950 
1951 	if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1952 	     E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
1953 	    (E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
1954 	     E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
1955 	    (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
1956 	     E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
1957 	    (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
1958 		/* Disable TX unit */
1959 		tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
1960 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
1961 		    tctl & ~E1000_TCTL_EN);
1962 
1963 		/* Reset FIFO pointers */
1964 		E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
1965 		    adapter->tx_head_addr);
1966 		E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
1967 		    adapter->tx_head_addr);
1968 		E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
1969 		    adapter->tx_head_addr);
1970 		E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
1971 		    adapter->tx_head_addr);
1972 
1973 		/* Re-enable TX unit */
1974 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
1975 		E1000_WRITE_FLUSH(&adapter->hw);
1976 
1977 		adapter->tx_fifo_head = 0;
1978 		adapter->tx_fifo_reset_cnt++;
1979 
1980 		return (TRUE);
1981 	} else {
1982 		return (FALSE);
1983 	}
1984 }
1985 
1986 static void
1987 em_set_promisc(struct adapter *adapter)
1988 {
1989 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1990 	uint32_t reg_rctl;
1991 
1992 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1993 
1994 	if (ifp->if_flags & IFF_PROMISC) {
1995 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1996 		/* Turn this on if you want to see bad packets */
1997 		if (em_debug_sbp)
1998 			reg_rctl |= E1000_RCTL_SBP;
1999 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2000 	} else if (ifp->if_flags & IFF_ALLMULTI) {
2001 		reg_rctl |= E1000_RCTL_MPE;
2002 		reg_rctl &= ~E1000_RCTL_UPE;
2003 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2004 	}
2005 }
2006 
2007 static void
2008 em_disable_promisc(struct adapter *adapter)
2009 {
2010 	uint32_t reg_rctl;
2011 
2012 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2013 
2014 	reg_rctl &= ~E1000_RCTL_UPE;
2015 	reg_rctl &= ~E1000_RCTL_MPE;
2016 	reg_rctl &= ~E1000_RCTL_SBP;
2017 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2018 }
2019 
2020 static void
2021 em_set_multi(struct adapter *adapter)
2022 {
2023 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2024 	struct ifmultiaddr *ifma;
2025 	uint32_t reg_rctl = 0;
2026 	uint8_t *mta;
2027 	int mcnt = 0;
2028 
2029 	mta = adapter->mta;
2030 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
2031 
2032 	if (adapter->hw.mac.type == e1000_82542 &&
2033 	    adapter->hw.revision_id == E1000_REVISION_2) {
2034 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2035 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2036 			e1000_pci_clear_mwi(&adapter->hw);
2037 		reg_rctl |= E1000_RCTL_RST;
2038 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2039 		msec_delay(5);
2040 	}
2041 
2042 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2043 		if (ifma->ifma_addr->sa_family != AF_LINK)
2044 			continue;
2045 
2046 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
2047 			break;
2048 
2049 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2050 		    &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
2051 		mcnt++;
2052 	}
2053 
2054 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
2055 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2056 		reg_rctl |= E1000_RCTL_MPE;
2057 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2058 	} else {
2059 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
2060 	}
2061 
2062 	if (adapter->hw.mac.type == e1000_82542 &&
2063 	    adapter->hw.revision_id == E1000_REVISION_2) {
2064 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2065 		reg_rctl &= ~E1000_RCTL_RST;
2066 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2067 		msec_delay(5);
2068 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2069 			e1000_pci_set_mwi(&adapter->hw);
2070 	}
2071 }
2072 
2073 /*
2074  * This routine checks for link status and updates statistics.
2075  */
2076 static void
2077 em_timer(void *xsc)
2078 {
2079 	struct adapter *adapter = xsc;
2080 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2081 
2082 	lwkt_serialize_enter(ifp->if_serializer);
2083 
2084 	em_update_link_status(adapter);
2085 	em_update_stats(adapter);
2086 
2087 	/* Reset LAA into RAR[0] on 82571 */
2088 	if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
2089 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2090 
2091 	if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
2092 		em_print_hw_stats(adapter);
2093 
2094 	em_smartspeed(adapter);
2095 
2096 	callout_reset(&adapter->timer, hz, em_timer, adapter);
2097 
2098 	lwkt_serialize_exit(ifp->if_serializer);
2099 }
2100 
2101 static void
2102 em_update_link_status(struct adapter *adapter)
2103 {
2104 	struct e1000_hw *hw = &adapter->hw;
2105 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2106 	device_t dev = adapter->dev;
2107 	uint32_t link_check = 0;
2108 
2109 	/* Get the cached link value or read phy for real */
2110 	switch (hw->phy.media_type) {
2111 	case e1000_media_type_copper:
2112 		if (hw->mac.get_link_status) {
2113 			/* Do the work to read phy */
2114 			e1000_check_for_link(hw);
2115 			link_check = !hw->mac.get_link_status;
2116 			if (link_check) /* ESB2 fix */
2117 				e1000_cfg_on_link_up(hw);
2118 		} else {
2119 			link_check = TRUE;
2120 		}
2121 		break;
2122 
2123 	case e1000_media_type_fiber:
2124 		e1000_check_for_link(hw);
2125 		link_check =
2126 			E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
2127 		break;
2128 
2129 	case e1000_media_type_internal_serdes:
2130 		e1000_check_for_link(hw);
2131 		link_check = adapter->hw.mac.serdes_has_link;
2132 		break;
2133 
2134 	case e1000_media_type_unknown:
2135 	default:
2136 		break;
2137 	}
2138 
2139 	/* Now check for a transition */
2140 	if (link_check && adapter->link_active == 0) {
2141 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
2142 		    &adapter->link_duplex);
2143 
2144 		/*
2145 		 * Check if we should enable/disable SPEED_MODE bit on
2146 		 * 82571/82572
2147 		 */
2148 		if (adapter->link_speed != SPEED_1000 &&
2149 		    (hw->mac.type == e1000_82571 ||
2150 		     hw->mac.type == e1000_82572)) {
2151 			int tarc0;
2152 
2153 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2154 			tarc0 &= ~SPEED_MODE_BIT;
2155 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2156 		}
2157 		if (bootverbose) {
2158 			char flowctrl[IFM_ETH_FC_STRLEN];
2159 
2160 			e1000_fc2str(hw->fc.current_mode, flowctrl,
2161 			    sizeof(flowctrl));
2162 			device_printf(dev, "Link is up %d Mbps %s, "
2163 			    "Flow control: %s\n",
2164 			    adapter->link_speed,
2165 			    (adapter->link_duplex == FULL_DUPLEX) ?
2166 			    "Full Duplex" : "Half Duplex",
2167 			    flowctrl);
2168 		}
2169 		if (adapter->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
2170 			e1000_force_flowctrl(hw, adapter->ifm_flowctrl);
2171 		adapter->link_active = 1;
2172 		adapter->smartspeed = 0;
2173 		ifp->if_baudrate = adapter->link_speed * 1000000;
2174 		ifp->if_link_state = LINK_STATE_UP;
2175 		if_link_state_change(ifp);
2176 	} else if (!link_check && adapter->link_active == 1) {
2177 		ifp->if_baudrate = adapter->link_speed = 0;
2178 		adapter->link_duplex = 0;
2179 		if (bootverbose)
2180 			device_printf(dev, "Link is Down\n");
2181 		adapter->link_active = 0;
2182 #if 0
2183 		/* Link down, disable watchdog */
2184 		if->if_timer = 0;
2185 #endif
2186 		ifp->if_link_state = LINK_STATE_DOWN;
2187 		if_link_state_change(ifp);
2188 	}
2189 }
2190 
2191 static void
2192 em_stop(struct adapter *adapter)
2193 {
2194 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2195 	int i;
2196 
2197 	ASSERT_SERIALIZED(ifp->if_serializer);
2198 
2199 	em_disable_intr(adapter);
2200 
2201 	callout_stop(&adapter->timer);
2202 	callout_stop(&adapter->tx_fifo_timer);
2203 
2204 	ifp->if_flags &= ~IFF_RUNNING;
2205 	ifq_clr_oactive(&ifp->if_snd);
2206 	ifp->if_timer = 0;
2207 
2208 	e1000_reset_hw(&adapter->hw);
2209 	if (adapter->hw.mac.type >= e1000_82544)
2210 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2211 
2212 	for (i = 0; i < adapter->num_tx_desc; i++) {
2213 		struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2214 
2215 		if (tx_buffer->m_head != NULL) {
2216 			bus_dmamap_unload(adapter->txtag, tx_buffer->map);
2217 			m_freem(tx_buffer->m_head);
2218 			tx_buffer->m_head = NULL;
2219 		}
2220 	}
2221 
2222 	for (i = 0; i < adapter->num_rx_desc; i++) {
2223 		struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2224 
2225 		if (rx_buffer->m_head != NULL) {
2226 			bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2227 			m_freem(rx_buffer->m_head);
2228 			rx_buffer->m_head = NULL;
2229 		}
2230 	}
2231 
2232 	if (adapter->fmp != NULL)
2233 		m_freem(adapter->fmp);
2234 	adapter->fmp = NULL;
2235 	adapter->lmp = NULL;
2236 
2237 	adapter->csum_flags = 0;
2238 	adapter->csum_lhlen = 0;
2239 	adapter->csum_iphlen = 0;
2240 	adapter->csum_thlen = 0;
2241 	adapter->csum_mss = 0;
2242 	adapter->csum_pktlen = 0;
2243 
2244 	adapter->tx_dd_head = 0;
2245 	adapter->tx_dd_tail = 0;
2246 	adapter->tx_nsegs = 0;
2247 }
2248 
2249 static int
2250 em_get_hw_info(struct adapter *adapter)
2251 {
2252 	device_t dev = adapter->dev;
2253 
2254 	/* Save off the information about this board */
2255 	adapter->hw.vendor_id = pci_get_vendor(dev);
2256 	adapter->hw.device_id = pci_get_device(dev);
2257 	adapter->hw.revision_id = pci_get_revid(dev);
2258 	adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2259 	adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2260 
2261 	/* Do Shared Code Init and Setup */
2262 	if (e1000_set_mac_type(&adapter->hw))
2263 		return ENXIO;
2264 	return 0;
2265 }
2266 
2267 static int
2268 em_alloc_pci_res(struct adapter *adapter)
2269 {
2270 	device_t dev = adapter->dev;
2271 	u_int intr_flags;
2272 	int val, rid, msi_enable, cap;
2273 
2274 	/* Enable bus mastering */
2275 	pci_enable_busmaster(dev);
2276 
2277 	adapter->memory_rid = EM_BAR_MEM;
2278 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2279 				&adapter->memory_rid, RF_ACTIVE);
2280 	if (adapter->memory == NULL) {
2281 		device_printf(dev, "Unable to allocate bus resource: memory\n");
2282 		return (ENXIO);
2283 	}
2284 	adapter->osdep.mem_bus_space_tag =
2285 	    rman_get_bustag(adapter->memory);
2286 	adapter->osdep.mem_bus_space_handle =
2287 	    rman_get_bushandle(adapter->memory);
2288 
2289 	/* XXX This is quite goofy, it is not actually used */
2290 	adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2291 
2292 	/* Only older adapters use IO mapping */
2293 	if (adapter->hw.mac.type > e1000_82543 &&
2294 	    adapter->hw.mac.type < e1000_82571) {
2295 		/* Figure our where our IO BAR is ? */
2296 		for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2297 			val = pci_read_config(dev, rid, 4);
2298 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2299 				adapter->io_rid = rid;
2300 				break;
2301 			}
2302 			rid += 4;
2303 			/* check for 64bit BAR */
2304 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2305 				rid += 4;
2306 		}
2307 		if (rid >= PCIR_CARDBUSCIS) {
2308 			device_printf(dev, "Unable to locate IO BAR\n");
2309 			return (ENXIO);
2310 		}
2311 		adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2312 					&adapter->io_rid, RF_ACTIVE);
2313 		if (adapter->ioport == NULL) {
2314 			device_printf(dev, "Unable to allocate bus resource: "
2315 			    "ioport\n");
2316 			return (ENXIO);
2317 		}
2318 		adapter->hw.io_base = 0;
2319 		adapter->osdep.io_bus_space_tag =
2320 		    rman_get_bustag(adapter->ioport);
2321 		adapter->osdep.io_bus_space_handle =
2322 		    rman_get_bushandle(adapter->ioport);
2323 	}
2324 
2325 	/*
2326 	 * Don't enable MSI-X on 82574, see:
2327 	 * 82574 specification update errata #15
2328 	 *
2329 	 * Don't enable MSI on PCI/PCI-X chips, see:
2330 	 * 82540 specification update errata #6
2331 	 * 82545 specification update errata #4
2332 	 *
2333 	 * Don't enable MSI on 82571/82572, see:
2334 	 * 82571/82572 specification update errata #63
2335 	 *
2336 	 * Some versions of I219 only have PCI AF.
2337 	 */
2338 	msi_enable = em_msi_enable;
2339 	if (msi_enable &&
2340 	    (!(pci_is_pcie(dev) ||
2341 	       pci_find_extcap(dev, PCIY_PCIAF, &cap) == 0) ||
2342 	     adapter->hw.mac.type == e1000_82571 ||
2343 	     adapter->hw.mac.type == e1000_82572))
2344 		msi_enable = 0;
2345 again:
2346 	adapter->intr_type = pci_alloc_1intr(dev, msi_enable,
2347 	    &adapter->intr_rid, &intr_flags);
2348 
2349 	if (adapter->intr_type == PCI_INTR_TYPE_LEGACY) {
2350 		int unshared;
2351 
2352 		unshared = device_getenv_int(dev, "irq.unshared", 0);
2353 		if (!unshared) {
2354 			adapter->flags |= EM_FLAG_SHARED_INTR;
2355 			if (bootverbose)
2356 				device_printf(dev, "IRQ shared\n");
2357 		} else {
2358 			intr_flags &= ~RF_SHAREABLE;
2359 			if (bootverbose)
2360 				device_printf(dev, "IRQ unshared\n");
2361 		}
2362 	}
2363 
2364 	adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2365 	    &adapter->intr_rid, intr_flags);
2366 	if (adapter->intr_res == NULL) {
2367 		device_printf(dev, "Unable to allocate bus resource: %s\n",
2368 		    adapter->intr_type == PCI_INTR_TYPE_MSI ?
2369 		    "MSI" : "legacy intr");
2370 		if (!msi_enable) {
2371 			/* Retry with MSI. */
2372 			msi_enable = 1;
2373 			adapter->flags &= ~EM_FLAG_SHARED_INTR;
2374 			goto again;
2375 		}
2376 		return (ENXIO);
2377 	}
2378 
2379 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2380 	adapter->hw.back = &adapter->osdep;
2381 	return (0);
2382 }
2383 
2384 static void
2385 em_free_pci_res(struct adapter *adapter)
2386 {
2387 	device_t dev = adapter->dev;
2388 
2389 	if (adapter->intr_res != NULL) {
2390 		bus_release_resource(dev, SYS_RES_IRQ,
2391 		    adapter->intr_rid, adapter->intr_res);
2392 	}
2393 
2394 	if (adapter->intr_type == PCI_INTR_TYPE_MSI)
2395 		pci_release_msi(dev);
2396 
2397 	if (adapter->memory != NULL) {
2398 		bus_release_resource(dev, SYS_RES_MEMORY,
2399 		    adapter->memory_rid, adapter->memory);
2400 	}
2401 
2402 	if (adapter->flash != NULL) {
2403 		bus_release_resource(dev, SYS_RES_MEMORY,
2404 		    adapter->flash_rid, adapter->flash);
2405 	}
2406 
2407 	if (adapter->ioport != NULL) {
2408 		bus_release_resource(dev, SYS_RES_IOPORT,
2409 		    adapter->io_rid, adapter->ioport);
2410 	}
2411 }
2412 
2413 static int
2414 em_reset(struct adapter *adapter)
2415 {
2416 	device_t dev = adapter->dev;
2417 	uint16_t rx_buffer_size;
2418 	uint32_t pba;
2419 
2420 	/* When hardware is reset, fifo_head is also reset */
2421 	adapter->tx_fifo_head = 0;
2422 
2423 	/* Set up smart power down as default off on newer adapters. */
2424 	if (!em_smart_pwr_down &&
2425 	    (adapter->hw.mac.type == e1000_82571 ||
2426 	     adapter->hw.mac.type == e1000_82572)) {
2427 		uint16_t phy_tmp = 0;
2428 
2429 		/* Speed up time to link by disabling smart power down. */
2430 		e1000_read_phy_reg(&adapter->hw,
2431 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2432 		phy_tmp &= ~IGP02E1000_PM_SPD;
2433 		e1000_write_phy_reg(&adapter->hw,
2434 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2435 	}
2436 
2437 	/*
2438 	 * Packet Buffer Allocation (PBA)
2439 	 * Writing PBA sets the receive portion of the buffer
2440 	 * the remainder is used for the transmit buffer.
2441 	 *
2442 	 * Devices before the 82547 had a Packet Buffer of 64K.
2443 	 *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
2444 	 * After the 82547 the buffer was reduced to 40K.
2445 	 *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
2446 	 *   Note: default does not leave enough room for Jumbo Frame >10k.
2447 	 */
2448 	switch (adapter->hw.mac.type) {
2449 	case e1000_82547:
2450 	case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
2451 		if (adapter->hw.mac.max_frame_size > 8192)
2452 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
2453 		else
2454 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
2455 		adapter->tx_fifo_head = 0;
2456 		adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
2457 		adapter->tx_fifo_size =
2458 		    (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
2459 		break;
2460 
2461 	/* Total Packet Buffer on these is 48K */
2462 	case e1000_82571:
2463 	case e1000_82572:
2464 	case e1000_80003es2lan:
2465 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2466 		break;
2467 
2468 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2469 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2470 		break;
2471 
2472 	case e1000_82574:
2473 	case e1000_82583:
2474 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2475 		break;
2476 
2477 	case e1000_ich8lan:
2478 		pba = E1000_PBA_8K;
2479 		break;
2480 
2481 	case e1000_ich9lan:
2482 	case e1000_ich10lan:
2483 #define E1000_PBA_10K	0x000A
2484 		pba = E1000_PBA_10K;
2485 		break;
2486 
2487 	case e1000_pchlan:
2488 	case e1000_pch2lan:
2489 	case e1000_pch_lpt:
2490 	case e1000_pch_spt:
2491 		pba = E1000_PBA_26K;
2492 		break;
2493 
2494 	default:
2495 		/* Devices before 82547 had a Packet Buffer of 64K.   */
2496 		if (adapter->hw.mac.max_frame_size > 8192)
2497 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2498 		else
2499 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2500 	}
2501 	E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2502 
2503 	/*
2504 	 * These parameters control the automatic generation (Tx) and
2505 	 * response (Rx) to Ethernet PAUSE frames.
2506 	 * - High water mark should allow for at least two frames to be
2507 	 *   received after sending an XOFF.
2508 	 * - Low water mark works best when it is very near the high water mark.
2509 	 *   This allows the receiver to restart by sending XON when it has
2510 	 *   drained a bit. Here we use an arbitary value of 1500 which will
2511 	 *   restart after one full frame is pulled from the buffer. There
2512 	 *   could be several smaller frames in the buffer and if so they will
2513 	 *   not trigger the XON until their total number reduces the buffer
2514 	 *   by 1500.
2515 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2516 	 */
2517 	rx_buffer_size =
2518 		(E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2519 
2520 	adapter->hw.fc.high_water = rx_buffer_size -
2521 	    roundup2(adapter->hw.mac.max_frame_size, 1024);
2522 	adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2523 
2524 	if (adapter->hw.mac.type == e1000_80003es2lan)
2525 		adapter->hw.fc.pause_time = 0xFFFF;
2526 	else
2527 		adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2528 
2529 	adapter->hw.fc.send_xon = TRUE;
2530 
2531 	adapter->hw.fc.requested_mode = e1000_ifmedia2fc(adapter->ifm_flowctrl);
2532 
2533 	/*
2534 	 * Device specific overrides/settings
2535 	 */
2536 	switch (adapter->hw.mac.type) {
2537 	case e1000_pchlan:
2538 		KASSERT(adapter->hw.fc.requested_mode == e1000_fc_rx_pause ||
2539 		    adapter->hw.fc.requested_mode == e1000_fc_none,
2540 		    ("unsupported flow control on PCH %d",
2541 		     adapter->hw.fc.requested_mode));
2542 		adapter->hw.fc.pause_time = 0xFFFF; /* override */
2543 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2544 			adapter->hw.fc.high_water = 0x3500;
2545 			adapter->hw.fc.low_water = 0x1500;
2546 		} else {
2547 			adapter->hw.fc.high_water = 0x5000;
2548 			adapter->hw.fc.low_water = 0x3000;
2549 		}
2550 		adapter->hw.fc.refresh_time = 0x1000;
2551 		break;
2552 
2553 	case e1000_pch2lan:
2554 	case e1000_pch_lpt:
2555 	case e1000_pch_spt:
2556 		adapter->hw.fc.high_water = 0x5C20;
2557 		adapter->hw.fc.low_water = 0x5048;
2558 		adapter->hw.fc.pause_time = 0x0650;
2559 		adapter->hw.fc.refresh_time = 0x0400;
2560 		/* Jumbos need adjusted PBA */
2561 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU)
2562 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 12);
2563 		else
2564 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 26);
2565 		break;
2566 
2567 	case e1000_ich9lan:
2568 	case e1000_ich10lan:
2569 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2570 			adapter->hw.fc.high_water = 0x2800;
2571 			adapter->hw.fc.low_water =
2572 			    adapter->hw.fc.high_water - 8;
2573 			break;
2574 		}
2575 		/* FALL THROUGH */
2576 	default:
2577 		if (adapter->hw.mac.type == e1000_80003es2lan)
2578 			adapter->hw.fc.pause_time = 0xFFFF;
2579 		break;
2580 	}
2581 
2582 	/* Issue a global reset */
2583 	e1000_reset_hw(&adapter->hw);
2584 	if (adapter->hw.mac.type >= e1000_82544)
2585 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2586 	em_disable_aspm(adapter);
2587 
2588 	if (e1000_init_hw(&adapter->hw) < 0) {
2589 		device_printf(dev, "Hardware Initialization Failed\n");
2590 		return (EIO);
2591 	}
2592 
2593 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
2594 	e1000_get_phy_info(&adapter->hw);
2595 	e1000_check_for_link(&adapter->hw);
2596 
2597 	return (0);
2598 }
2599 
2600 static void
2601 em_setup_ifp(struct adapter *adapter)
2602 {
2603 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2604 
2605 	if_initname(ifp, device_get_name(adapter->dev),
2606 		    device_get_unit(adapter->dev));
2607 	ifp->if_softc = adapter;
2608 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2609 	ifp->if_init =  em_init;
2610 	ifp->if_ioctl = em_ioctl;
2611 	ifp->if_start = em_start;
2612 #ifdef IFPOLL_ENABLE
2613 	ifp->if_npoll = em_npoll;
2614 #endif
2615 	ifp->if_watchdog = em_watchdog;
2616 	ifp->if_nmbclusters = adapter->num_rx_desc;
2617 	ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2618 	ifq_set_ready(&ifp->if_snd);
2619 
2620 	ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2621 
2622 	ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2623 	if (adapter->hw.mac.type >= e1000_82543)
2624 		ifp->if_capabilities |= IFCAP_HWCSUM;
2625 	if (adapter->flags & EM_FLAG_TSO)
2626 		ifp->if_capabilities |= IFCAP_TSO;
2627 	ifp->if_capenable = ifp->if_capabilities;
2628 
2629 	if (ifp->if_capenable & IFCAP_TXCSUM)
2630 		ifp->if_hwassist |= EM_CSUM_FEATURES;
2631 	if (ifp->if_capenable & IFCAP_TSO)
2632 		ifp->if_hwassist |= CSUM_TSO;
2633 
2634 	/*
2635 	 * Tell the upper layer(s) we support long frames.
2636 	 */
2637 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2638 
2639 	/*
2640 	 * Specify the media types supported by this adapter and register
2641 	 * callbacks to update media and link information
2642 	 */
2643 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2644 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2645 		u_char fiber_type = IFM_1000_SX; /* default type */
2646 
2647 		if (adapter->hw.mac.type == e1000_82545)
2648 			fiber_type = IFM_1000_LX;
2649 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
2650 			    0, NULL);
2651 	} else {
2652 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2653 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2654 			    0, NULL);
2655 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2656 			    0, NULL);
2657 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2658 			    0, NULL);
2659 		if (adapter->hw.phy.type != e1000_phy_ife) {
2660 			ifmedia_add(&adapter->media,
2661 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2662 		}
2663 	}
2664 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2665 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO |
2666 	    adapter->ifm_flowctrl);
2667 }
2668 
2669 
2670 /*
2671  * Workaround for SmartSpeed on 82541 and 82547 controllers
2672  */
2673 static void
2674 em_smartspeed(struct adapter *adapter)
2675 {
2676 	uint16_t phy_tmp;
2677 
2678 	if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2679 	    adapter->hw.mac.autoneg == 0 ||
2680 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2681 		return;
2682 
2683 	if (adapter->smartspeed == 0) {
2684 		/*
2685 		 * If Master/Slave config fault is asserted twice,
2686 		 * we assume back-to-back
2687 		 */
2688 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2689 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2690 			return;
2691 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2692 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2693 			e1000_read_phy_reg(&adapter->hw,
2694 			    PHY_1000T_CTRL, &phy_tmp);
2695 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2696 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2697 				e1000_write_phy_reg(&adapter->hw,
2698 				    PHY_1000T_CTRL, phy_tmp);
2699 				adapter->smartspeed++;
2700 				if (adapter->hw.mac.autoneg &&
2701 				    !e1000_phy_setup_autoneg(&adapter->hw) &&
2702 				    !e1000_read_phy_reg(&adapter->hw,
2703 				     PHY_CONTROL, &phy_tmp)) {
2704 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2705 						   MII_CR_RESTART_AUTO_NEG;
2706 					e1000_write_phy_reg(&adapter->hw,
2707 					    PHY_CONTROL, phy_tmp);
2708 				}
2709 			}
2710 		}
2711 		return;
2712 	} else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2713 		/* If still no link, perhaps using 2/3 pair cable */
2714 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2715 		phy_tmp |= CR_1000T_MS_ENABLE;
2716 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2717 		if (adapter->hw.mac.autoneg &&
2718 		    !e1000_phy_setup_autoneg(&adapter->hw) &&
2719 		    !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2720 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2721 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2722 		}
2723 	}
2724 
2725 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2726 	if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2727 		adapter->smartspeed = 0;
2728 }
2729 
2730 static int
2731 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2732 	      struct em_dma_alloc *dma)
2733 {
2734 	dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2735 				EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2736 				&dma->dma_tag, &dma->dma_map,
2737 				&dma->dma_paddr);
2738 	if (dma->dma_vaddr == NULL)
2739 		return ENOMEM;
2740 	else
2741 		return 0;
2742 }
2743 
2744 static void
2745 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2746 {
2747 	if (dma->dma_tag == NULL)
2748 		return;
2749 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2750 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2751 	bus_dma_tag_destroy(dma->dma_tag);
2752 }
2753 
2754 static int
2755 em_create_tx_ring(struct adapter *adapter)
2756 {
2757 	device_t dev = adapter->dev;
2758 	struct em_buffer *tx_buffer;
2759 	int error, i;
2760 
2761 	adapter->tx_buffer_area =
2762 		kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2763 			M_DEVBUF, M_WAITOK | M_ZERO);
2764 
2765 	/*
2766 	 * Create DMA tags for tx buffers
2767 	 */
2768 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2769 			1, 0,			/* alignment, bounds */
2770 			BUS_SPACE_MAXADDR,	/* lowaddr */
2771 			BUS_SPACE_MAXADDR,	/* highaddr */
2772 			NULL, NULL,		/* filter, filterarg */
2773 			EM_TSO_SIZE,		/* maxsize */
2774 			EM_MAX_SCATTER,		/* nsegments */
2775 			PAGE_SIZE,		/* maxsegsize */
2776 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2777 			BUS_DMA_ONEBPAGE,	/* flags */
2778 			&adapter->txtag);
2779 	if (error) {
2780 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2781 		kfree(adapter->tx_buffer_area, M_DEVBUF);
2782 		adapter->tx_buffer_area = NULL;
2783 		return error;
2784 	}
2785 
2786 	/*
2787 	 * Create DMA maps for tx buffers
2788 	 */
2789 	for (i = 0; i < adapter->num_tx_desc; i++) {
2790 		tx_buffer = &adapter->tx_buffer_area[i];
2791 
2792 		error = bus_dmamap_create(adapter->txtag,
2793 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2794 					  &tx_buffer->map);
2795 		if (error) {
2796 			device_printf(dev, "Unable to create TX DMA map\n");
2797 			em_destroy_tx_ring(adapter, i);
2798 			return error;
2799 		}
2800 	}
2801 	return (0);
2802 }
2803 
2804 static void
2805 em_init_tx_ring(struct adapter *adapter)
2806 {
2807 	/* Clear the old ring contents */
2808 	bzero(adapter->tx_desc_base,
2809 	    (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2810 
2811 	/* Reset state */
2812 	adapter->next_avail_tx_desc = 0;
2813 	adapter->next_tx_to_clean = 0;
2814 	adapter->num_tx_desc_avail = adapter->num_tx_desc;
2815 }
2816 
2817 static void
2818 em_init_tx_unit(struct adapter *adapter)
2819 {
2820 	uint32_t tctl, tarc, tipg = 0;
2821 	uint64_t bus_addr;
2822 
2823 	/* Setup the Base and Length of the Tx Descriptor Ring */
2824 	bus_addr = adapter->txdma.dma_paddr;
2825 	E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2826 	    adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2827 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2828 	    (uint32_t)(bus_addr >> 32));
2829 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2830 	    (uint32_t)bus_addr);
2831 	/* Setup the HW Tx Head and Tail descriptor pointers */
2832 	E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2833 	E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2834 
2835 	/* Set the default values for the Tx Inter Packet Gap timer */
2836 	switch (adapter->hw.mac.type) {
2837 	case e1000_82542:
2838 		tipg = DEFAULT_82542_TIPG_IPGT;
2839 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2840 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2841 		break;
2842 
2843 	case e1000_80003es2lan:
2844 		tipg = DEFAULT_82543_TIPG_IPGR1;
2845 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2846 		    E1000_TIPG_IPGR2_SHIFT;
2847 		break;
2848 
2849 	default:
2850 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2851 		    adapter->hw.phy.media_type ==
2852 		    e1000_media_type_internal_serdes)
2853 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2854 		else
2855 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2856 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2857 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2858 		break;
2859 	}
2860 
2861 	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2862 
2863 	/* NOTE: 0 is not allowed for TIDV */
2864 	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
2865 	if(adapter->hw.mac.type >= e1000_82540)
2866 		E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
2867 
2868 	if (adapter->hw.mac.type == e1000_82571 ||
2869 	    adapter->hw.mac.type == e1000_82572) {
2870 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2871 		tarc |= SPEED_MODE_BIT;
2872 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2873 	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
2874 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2875 		tarc |= 1;
2876 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2877 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2878 		tarc |= 1;
2879 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2880 	}
2881 
2882 	/* Program the Transmit Control Register */
2883 	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2884 	tctl &= ~E1000_TCTL_CT;
2885 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2886 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2887 
2888 	if (adapter->hw.mac.type >= e1000_82571)
2889 		tctl |= E1000_TCTL_MULR;
2890 
2891 	/* This write will effectively turn on the transmit unit. */
2892 	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2893 
2894 	if (adapter->hw.mac.type == e1000_82571 ||
2895 	    adapter->hw.mac.type == e1000_82572 ||
2896 	    adapter->hw.mac.type == e1000_80003es2lan) {
2897 		/* Bit 28 of TARC1 must be cleared when MULR is enabled */
2898 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2899 		tarc &= ~(1 << 28);
2900 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2901 	}
2902 }
2903 
2904 static void
2905 em_destroy_tx_ring(struct adapter *adapter, int ndesc)
2906 {
2907 	struct em_buffer *tx_buffer;
2908 	int i;
2909 
2910 	if (adapter->tx_buffer_area == NULL)
2911 		return;
2912 
2913 	for (i = 0; i < ndesc; i++) {
2914 		tx_buffer = &adapter->tx_buffer_area[i];
2915 
2916 		KKASSERT(tx_buffer->m_head == NULL);
2917 		bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2918 	}
2919 	bus_dma_tag_destroy(adapter->txtag);
2920 
2921 	kfree(adapter->tx_buffer_area, M_DEVBUF);
2922 	adapter->tx_buffer_area = NULL;
2923 }
2924 
2925 /*
2926  * The offload context needs to be set when we transfer the first
2927  * packet of a particular protocol (TCP/UDP).  This routine has been
2928  * enhanced to deal with inserted VLAN headers.
2929  *
2930  * If the new packet's ether header length, ip header length and
2931  * csum offloading type are same as the previous packet, we should
2932  * avoid allocating a new csum context descriptor; mainly to take
2933  * advantage of the pipeline effect of the TX data read request.
2934  *
2935  * This function returns number of TX descrptors allocated for
2936  * csum context.
2937  */
2938 static int
2939 em_txcsum(struct adapter *adapter, struct mbuf *mp,
2940 	  uint32_t *txd_upper, uint32_t *txd_lower)
2941 {
2942 	struct e1000_context_desc *TXD;
2943 	int curr_txd, ehdrlen, csum_flags;
2944 	uint32_t cmd, hdr_len, ip_hlen;
2945 
2946 	csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
2947 	ip_hlen = mp->m_pkthdr.csum_iphlen;
2948 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2949 
2950 	if (adapter->csum_lhlen == ehdrlen &&
2951 	    adapter->csum_iphlen == ip_hlen &&
2952 	    adapter->csum_flags == csum_flags) {
2953 		/*
2954 		 * Same csum offload context as the previous packets;
2955 		 * just return.
2956 		 */
2957 		*txd_upper = adapter->csum_txd_upper;
2958 		*txd_lower = adapter->csum_txd_lower;
2959 		return 0;
2960 	}
2961 
2962 	/*
2963 	 * Setup a new csum offload context.
2964 	 */
2965 
2966 	curr_txd = adapter->next_avail_tx_desc;
2967 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
2968 
2969 	cmd = 0;
2970 
2971 	/* Setup of IP header checksum. */
2972 	if (csum_flags & CSUM_IP) {
2973 		/*
2974 		 * Start offset for header checksum calculation.
2975 		 * End offset for header checksum calculation.
2976 		 * Offset of place to put the checksum.
2977 		 */
2978 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2979 		TXD->lower_setup.ip_fields.ipcse =
2980 		    htole16(ehdrlen + ip_hlen - 1);
2981 		TXD->lower_setup.ip_fields.ipcso =
2982 		    ehdrlen + offsetof(struct ip, ip_sum);
2983 		cmd |= E1000_TXD_CMD_IP;
2984 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2985 	}
2986 	hdr_len = ehdrlen + ip_hlen;
2987 
2988 	if (csum_flags & CSUM_TCP) {
2989 		/*
2990 		 * Start offset for payload checksum calculation.
2991 		 * End offset for payload checksum calculation.
2992 		 * Offset of place to put the checksum.
2993 		 */
2994 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2995 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2996 		TXD->upper_setup.tcp_fields.tucso =
2997 		    hdr_len + offsetof(struct tcphdr, th_sum);
2998 		cmd |= E1000_TXD_CMD_TCP;
2999 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3000 	} else if (csum_flags & CSUM_UDP) {
3001 		/*
3002 		 * Start offset for header checksum calculation.
3003 		 * End offset for header checksum calculation.
3004 		 * Offset of place to put the checksum.
3005 		 */
3006 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
3007 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
3008 		TXD->upper_setup.tcp_fields.tucso =
3009 		    hdr_len + offsetof(struct udphdr, uh_sum);
3010 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3011 	}
3012 
3013 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
3014 		     E1000_TXD_DTYP_D;		/* Data descr */
3015 
3016 	/* Save the information for this csum offloading context */
3017 	adapter->csum_lhlen = ehdrlen;
3018 	adapter->csum_iphlen = ip_hlen;
3019 	adapter->csum_flags = csum_flags;
3020 	adapter->csum_txd_upper = *txd_upper;
3021 	adapter->csum_txd_lower = *txd_lower;
3022 
3023 	TXD->tcp_seg_setup.data = htole32(0);
3024 	TXD->cmd_and_length =
3025 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
3026 
3027 	if (++curr_txd == adapter->num_tx_desc)
3028 		curr_txd = 0;
3029 
3030 	KKASSERT(adapter->num_tx_desc_avail > 0);
3031 	adapter->num_tx_desc_avail--;
3032 
3033 	adapter->next_avail_tx_desc = curr_txd;
3034 	return 1;
3035 }
3036 
3037 static void
3038 em_txeof(struct adapter *adapter)
3039 {
3040 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3041 	struct em_buffer *tx_buffer;
3042 	int first, num_avail;
3043 
3044 	if (adapter->tx_dd_head == adapter->tx_dd_tail)
3045 		return;
3046 
3047 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3048 		return;
3049 
3050 	num_avail = adapter->num_tx_desc_avail;
3051 	first = adapter->next_tx_to_clean;
3052 
3053 	while (adapter->tx_dd_head != adapter->tx_dd_tail) {
3054 		struct e1000_tx_desc *tx_desc;
3055 		int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3056 
3057 		tx_desc = &adapter->tx_desc_base[dd_idx];
3058 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
3059 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
3060 
3061 			if (++dd_idx == adapter->num_tx_desc)
3062 				dd_idx = 0;
3063 
3064 			while (first != dd_idx) {
3065 				logif(pkt_txclean);
3066 
3067 				num_avail++;
3068 
3069 				tx_buffer = &adapter->tx_buffer_area[first];
3070 				if (tx_buffer->m_head) {
3071 					bus_dmamap_unload(adapter->txtag,
3072 							  tx_buffer->map);
3073 					m_freem(tx_buffer->m_head);
3074 					tx_buffer->m_head = NULL;
3075 				}
3076 
3077 				if (++first == adapter->num_tx_desc)
3078 					first = 0;
3079 			}
3080 		} else {
3081 			break;
3082 		}
3083 	}
3084 	adapter->next_tx_to_clean = first;
3085 	adapter->num_tx_desc_avail = num_avail;
3086 
3087 	if (adapter->tx_dd_head == adapter->tx_dd_tail) {
3088 		adapter->tx_dd_head = 0;
3089 		adapter->tx_dd_tail = 0;
3090 	}
3091 
3092 	if (!EM_IS_OACTIVE(adapter)) {
3093 		ifq_clr_oactive(&ifp->if_snd);
3094 
3095 		/* All clean, turn off the timer */
3096 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3097 			ifp->if_timer = 0;
3098 	}
3099 }
3100 
3101 static void
3102 em_tx_collect(struct adapter *adapter)
3103 {
3104 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3105 	struct em_buffer *tx_buffer;
3106 	int tdh, first, num_avail, dd_idx = -1;
3107 
3108 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3109 		return;
3110 
3111 	tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
3112 	if (tdh == adapter->next_tx_to_clean)
3113 		return;
3114 
3115 	if (adapter->tx_dd_head != adapter->tx_dd_tail)
3116 		dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3117 
3118 	num_avail = adapter->num_tx_desc_avail;
3119 	first = adapter->next_tx_to_clean;
3120 
3121 	while (first != tdh) {
3122 		logif(pkt_txclean);
3123 
3124 		num_avail++;
3125 
3126 		tx_buffer = &adapter->tx_buffer_area[first];
3127 		if (tx_buffer->m_head) {
3128 			bus_dmamap_unload(adapter->txtag,
3129 					  tx_buffer->map);
3130 			m_freem(tx_buffer->m_head);
3131 			tx_buffer->m_head = NULL;
3132 		}
3133 
3134 		if (first == dd_idx) {
3135 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
3136 			if (adapter->tx_dd_head == adapter->tx_dd_tail) {
3137 				adapter->tx_dd_head = 0;
3138 				adapter->tx_dd_tail = 0;
3139 				dd_idx = -1;
3140 			} else {
3141 				dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3142 			}
3143 		}
3144 
3145 		if (++first == adapter->num_tx_desc)
3146 			first = 0;
3147 	}
3148 	adapter->next_tx_to_clean = first;
3149 	adapter->num_tx_desc_avail = num_avail;
3150 
3151 	if (!EM_IS_OACTIVE(adapter)) {
3152 		ifq_clr_oactive(&ifp->if_snd);
3153 
3154 		/* All clean, turn off the timer */
3155 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3156 			ifp->if_timer = 0;
3157 	}
3158 }
3159 
3160 /*
3161  * When Link is lost sometimes there is work still in the TX ring
3162  * which will result in a watchdog, rather than allow that do an
3163  * attempted cleanup and then reinit here.  Note that this has been
3164  * seens mostly with fiber adapters.
3165  */
3166 static void
3167 em_tx_purge(struct adapter *adapter)
3168 {
3169 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3170 
3171 	if (!adapter->link_active && ifp->if_timer) {
3172 		em_tx_collect(adapter);
3173 		if (ifp->if_timer) {
3174 			if_printf(ifp, "Link lost, TX pending, reinit\n");
3175 			ifp->if_timer = 0;
3176 			em_init(adapter);
3177 		}
3178 	}
3179 }
3180 
3181 static int
3182 em_newbuf(struct adapter *adapter, int i, int init)
3183 {
3184 	struct mbuf *m;
3185 	bus_dma_segment_t seg;
3186 	bus_dmamap_t map;
3187 	struct em_buffer *rx_buffer;
3188 	int error, nseg;
3189 
3190 	m = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
3191 	if (m == NULL) {
3192 		adapter->mbuf_cluster_failed++;
3193 		if (init) {
3194 			if_printf(&adapter->arpcom.ac_if,
3195 				  "Unable to allocate RX mbuf\n");
3196 		}
3197 		return (ENOBUFS);
3198 	}
3199 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3200 
3201 	if (adapter->hw.mac.max_frame_size <= MCLBYTES - ETHER_ALIGN)
3202 		m_adj(m, ETHER_ALIGN);
3203 
3204 	error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
3205 			adapter->rx_sparemap, m,
3206 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
3207 	if (error) {
3208 		m_freem(m);
3209 		if (init) {
3210 			if_printf(&adapter->arpcom.ac_if,
3211 				  "Unable to load RX mbuf\n");
3212 		}
3213 		return (error);
3214 	}
3215 
3216 	rx_buffer = &adapter->rx_buffer_area[i];
3217 	if (rx_buffer->m_head != NULL)
3218 		bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
3219 
3220 	map = rx_buffer->map;
3221 	rx_buffer->map = adapter->rx_sparemap;
3222 	adapter->rx_sparemap = map;
3223 
3224 	rx_buffer->m_head = m;
3225 
3226 	adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
3227 	return (0);
3228 }
3229 
3230 static int
3231 em_create_rx_ring(struct adapter *adapter)
3232 {
3233 	device_t dev = adapter->dev;
3234 	struct em_buffer *rx_buffer;
3235 	int i, error;
3236 
3237 	adapter->rx_buffer_area =
3238 		kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
3239 			M_DEVBUF, M_WAITOK | M_ZERO);
3240 
3241 	/*
3242 	 * Create DMA tag for rx buffers
3243 	 */
3244 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
3245 			1, 0,			/* alignment, bounds */
3246 			BUS_SPACE_MAXADDR,	/* lowaddr */
3247 			BUS_SPACE_MAXADDR,	/* highaddr */
3248 			NULL, NULL,		/* filter, filterarg */
3249 			MCLBYTES,		/* maxsize */
3250 			1,			/* nsegments */
3251 			MCLBYTES,		/* maxsegsize */
3252 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
3253 			&adapter->rxtag);
3254 	if (error) {
3255 		device_printf(dev, "Unable to allocate RX DMA tag\n");
3256 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3257 		adapter->rx_buffer_area = NULL;
3258 		return error;
3259 	}
3260 
3261 	/*
3262 	 * Create spare DMA map for rx buffers
3263 	 */
3264 	error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3265 				  &adapter->rx_sparemap);
3266 	if (error) {
3267 		device_printf(dev, "Unable to create spare RX DMA map\n");
3268 		bus_dma_tag_destroy(adapter->rxtag);
3269 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3270 		adapter->rx_buffer_area = NULL;
3271 		return error;
3272 	}
3273 
3274 	/*
3275 	 * Create DMA maps for rx buffers
3276 	 */
3277 	for (i = 0; i < adapter->num_rx_desc; i++) {
3278 		rx_buffer = &adapter->rx_buffer_area[i];
3279 
3280 		error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3281 					  &rx_buffer->map);
3282 		if (error) {
3283 			device_printf(dev, "Unable to create RX DMA map\n");
3284 			em_destroy_rx_ring(adapter, i);
3285 			return error;
3286 		}
3287 	}
3288 	return (0);
3289 }
3290 
3291 static int
3292 em_init_rx_ring(struct adapter *adapter)
3293 {
3294 	int i, error;
3295 
3296 	/* Reset descriptor ring */
3297 	bzero(adapter->rx_desc_base,
3298 	    (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3299 
3300 	/* Allocate new ones. */
3301 	for (i = 0; i < adapter->num_rx_desc; i++) {
3302 		error = em_newbuf(adapter, i, 1);
3303 		if (error)
3304 			return (error);
3305 	}
3306 
3307 	/* Setup our descriptor pointers */
3308 	adapter->next_rx_desc_to_check = 0;
3309 
3310 	return (0);
3311 }
3312 
3313 static void
3314 em_init_rx_unit(struct adapter *adapter)
3315 {
3316 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3317 	uint64_t bus_addr;
3318 	uint32_t rctl;
3319 
3320 	/*
3321 	 * Make sure receives are disabled while setting
3322 	 * up the descriptor ring
3323 	 */
3324 	rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3325 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3326 
3327 	if (adapter->hw.mac.type >= e1000_82540) {
3328 		uint32_t itr;
3329 
3330 		/*
3331 		 * Set the interrupt throttling rate. Value is calculated
3332 		 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3333 		 */
3334 		if (adapter->int_throttle_ceil)
3335 			itr = 1000000000 / 256 / adapter->int_throttle_ceil;
3336 		else
3337 			itr = 0;
3338 		em_set_itr(adapter, itr);
3339 	}
3340 
3341 	/* Disable accelerated ackknowledge */
3342 	if (adapter->hw.mac.type == e1000_82574) {
3343 		E1000_WRITE_REG(&adapter->hw,
3344 		    E1000_RFCTL, E1000_RFCTL_ACK_DIS);
3345 	}
3346 
3347 	/* Receive Checksum Offload for TCP and UDP */
3348 	if (ifp->if_capenable & IFCAP_RXCSUM) {
3349 		uint32_t rxcsum;
3350 
3351 		rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3352 		rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3353 		E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3354 	}
3355 
3356 	/*
3357 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3358 	 * long latencies are observed, like Lenovo X60. This
3359 	 * change eliminates the problem, but since having positive
3360 	 * values in RDTR is a known source of problems on other
3361 	 * platforms another solution is being sought.
3362 	 */
3363 	if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3364 		E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3365 		E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3366 	}
3367 
3368 	/*
3369 	 * Setup the Base and Length of the Rx Descriptor Ring
3370 	 */
3371 	bus_addr = adapter->rxdma.dma_paddr;
3372 	E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3373 	    adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3374 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3375 	    (uint32_t)(bus_addr >> 32));
3376 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3377 	    (uint32_t)bus_addr);
3378 
3379 	/*
3380 	 * Setup the HW Rx Head and Tail Descriptor Pointers
3381 	 */
3382 	E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3383 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3384 
3385 	/* Set PTHRESH for improved jumbo performance */
3386 	if (((adapter->hw.mac.type == e1000_ich9lan) ||
3387 	    (adapter->hw.mac.type == e1000_pch2lan) ||
3388 	    (adapter->hw.mac.type == e1000_ich10lan)) &&
3389 	    (ifp->if_mtu > ETHERMTU)) {
3390 		uint32_t rxdctl;
3391 
3392 		rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3393 		E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0), rxdctl | 3);
3394 	}
3395 
3396 	if (adapter->hw.mac.type >= e1000_pch2lan) {
3397 		if (ifp->if_mtu > ETHERMTU)
3398 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, TRUE);
3399 		else
3400 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, FALSE);
3401 	}
3402 
3403 	/* Setup the Receive Control Register */
3404 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3405 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3406 		E1000_RCTL_RDMTS_HALF |
3407 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3408 
3409 	/* Make sure VLAN Filters are off */
3410 	rctl &= ~E1000_RCTL_VFE;
3411 
3412 	if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3413 		rctl |= E1000_RCTL_SBP;
3414 	else
3415 		rctl &= ~E1000_RCTL_SBP;
3416 
3417 	switch (adapter->rx_buffer_len) {
3418 	default:
3419 	case 2048:
3420 		rctl |= E1000_RCTL_SZ_2048;
3421 		break;
3422 
3423 	case 4096:
3424 		rctl |= E1000_RCTL_SZ_4096 |
3425 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3426 		break;
3427 
3428 	case 8192:
3429 		rctl |= E1000_RCTL_SZ_8192 |
3430 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3431 		break;
3432 
3433 	case 16384:
3434 		rctl |= E1000_RCTL_SZ_16384 |
3435 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3436 		break;
3437 	}
3438 
3439 	if (ifp->if_mtu > ETHERMTU)
3440 		rctl |= E1000_RCTL_LPE;
3441 	else
3442 		rctl &= ~E1000_RCTL_LPE;
3443 
3444 	/* Enable Receives */
3445 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3446 }
3447 
3448 static void
3449 em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3450 {
3451 	struct em_buffer *rx_buffer;
3452 	int i;
3453 
3454 	if (adapter->rx_buffer_area == NULL)
3455 		return;
3456 
3457 	for (i = 0; i < ndesc; i++) {
3458 		rx_buffer = &adapter->rx_buffer_area[i];
3459 
3460 		KKASSERT(rx_buffer->m_head == NULL);
3461 		bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3462 	}
3463 	bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3464 	bus_dma_tag_destroy(adapter->rxtag);
3465 
3466 	kfree(adapter->rx_buffer_area, M_DEVBUF);
3467 	adapter->rx_buffer_area = NULL;
3468 }
3469 
3470 static void
3471 em_rxeof(struct adapter *adapter, int count)
3472 {
3473 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3474 	uint8_t status, accept_frame = 0, eop = 0;
3475 	uint16_t len, desc_len, prev_len_adj;
3476 	struct e1000_rx_desc *current_desc;
3477 	struct mbuf *mp;
3478 	int i;
3479 
3480 	i = adapter->next_rx_desc_to_check;
3481 	current_desc = &adapter->rx_desc_base[i];
3482 
3483 	if (!(current_desc->status & E1000_RXD_STAT_DD))
3484 		return;
3485 
3486 	while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3487 		struct mbuf *m = NULL;
3488 
3489 		logif(pkt_receive);
3490 
3491 		mp = adapter->rx_buffer_area[i].m_head;
3492 
3493 		/*
3494 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3495 		 * needs to access the last received byte in the mbuf.
3496 		 */
3497 		bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3498 				BUS_DMASYNC_POSTREAD);
3499 
3500 		accept_frame = 1;
3501 		prev_len_adj = 0;
3502 		desc_len = le16toh(current_desc->length);
3503 		status = current_desc->status;
3504 		if (status & E1000_RXD_STAT_EOP) {
3505 			count--;
3506 			eop = 1;
3507 			if (desc_len < ETHER_CRC_LEN) {
3508 				len = 0;
3509 				prev_len_adj = ETHER_CRC_LEN - desc_len;
3510 			} else {
3511 				len = desc_len - ETHER_CRC_LEN;
3512 			}
3513 		} else {
3514 			eop = 0;
3515 			len = desc_len;
3516 		}
3517 
3518 		if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3519 			uint8_t	last_byte;
3520 			uint32_t pkt_len = desc_len;
3521 
3522 			if (adapter->fmp != NULL)
3523 				pkt_len += adapter->fmp->m_pkthdr.len;
3524 
3525 			last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3526 			if (TBI_ACCEPT(&adapter->hw, status,
3527 			    current_desc->errors, pkt_len, last_byte,
3528 			    adapter->min_frame_size,
3529 			    adapter->hw.mac.max_frame_size)) {
3530 				e1000_tbi_adjust_stats_82543(&adapter->hw,
3531 				    &adapter->stats, pkt_len,
3532 				    adapter->hw.mac.addr,
3533 				    adapter->hw.mac.max_frame_size);
3534 				if (len > 0)
3535 					len--;
3536 			} else {
3537 				accept_frame = 0;
3538 			}
3539 		}
3540 
3541 		if (accept_frame) {
3542 			if (em_newbuf(adapter, i, 0) != 0) {
3543 				IFNET_STAT_INC(ifp, iqdrops, 1);
3544 				goto discard;
3545 			}
3546 
3547 			/* Assign correct length to the current fragment */
3548 			mp->m_len = len;
3549 
3550 			if (adapter->fmp == NULL) {
3551 				mp->m_pkthdr.len = len;
3552 				adapter->fmp = mp; /* Store the first mbuf */
3553 				adapter->lmp = mp;
3554 			} else {
3555 				/*
3556 				 * Chain mbuf's together
3557 				 */
3558 
3559 				/*
3560 				 * Adjust length of previous mbuf in chain if
3561 				 * we received less than 4 bytes in the last
3562 				 * descriptor.
3563 				 */
3564 				if (prev_len_adj > 0) {
3565 					adapter->lmp->m_len -= prev_len_adj;
3566 					adapter->fmp->m_pkthdr.len -=
3567 					    prev_len_adj;
3568 				}
3569 				adapter->lmp->m_next = mp;
3570 				adapter->lmp = adapter->lmp->m_next;
3571 				adapter->fmp->m_pkthdr.len += len;
3572 			}
3573 
3574 			if (eop) {
3575 				adapter->fmp->m_pkthdr.rcvif = ifp;
3576 				IFNET_STAT_INC(ifp, ipackets, 1);
3577 
3578 				if (ifp->if_capenable & IFCAP_RXCSUM) {
3579 					em_rxcsum(adapter, current_desc,
3580 						  adapter->fmp);
3581 				}
3582 
3583 				if (status & E1000_RXD_STAT_VP) {
3584 					adapter->fmp->m_pkthdr.ether_vlantag =
3585 					    (le16toh(current_desc->special) &
3586 					    E1000_RXD_SPC_VLAN_MASK);
3587 					adapter->fmp->m_flags |= M_VLANTAG;
3588 				}
3589 				m = adapter->fmp;
3590 				adapter->fmp = NULL;
3591 				adapter->lmp = NULL;
3592 			}
3593 		} else {
3594 			IFNET_STAT_INC(ifp, ierrors, 1);
3595 discard:
3596 #ifdef foo
3597 			/* Reuse loaded DMA map and just update mbuf chain */
3598 			mp = adapter->rx_buffer_area[i].m_head;
3599 			mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3600 			mp->m_data = mp->m_ext.ext_buf;
3601 			mp->m_next = NULL;
3602 			if (adapter->hw.mac.max_frame_size <=
3603 			    (MCLBYTES - ETHER_ALIGN))
3604 				m_adj(mp, ETHER_ALIGN);
3605 #endif
3606 			if (adapter->fmp != NULL) {
3607 				m_freem(adapter->fmp);
3608 				adapter->fmp = NULL;
3609 				adapter->lmp = NULL;
3610 			}
3611 			m = NULL;
3612 		}
3613 
3614 		/* Zero out the receive descriptors status. */
3615 		current_desc->status = 0;
3616 
3617 		if (m != NULL)
3618 			ifp->if_input(ifp, m, NULL, -1);
3619 
3620 		/* Advance our pointers to the next descriptor. */
3621 		if (++i == adapter->num_rx_desc)
3622 			i = 0;
3623 		current_desc = &adapter->rx_desc_base[i];
3624 	}
3625 	adapter->next_rx_desc_to_check = i;
3626 
3627 	/* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3628 	if (--i < 0)
3629 		i = adapter->num_rx_desc - 1;
3630 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3631 }
3632 
3633 static void
3634 em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3635 	  struct mbuf *mp)
3636 {
3637 	/* 82543 or newer only */
3638 	if (adapter->hw.mac.type < e1000_82543 ||
3639 	    /* Ignore Checksum bit is set */
3640 	    (rx_desc->status & E1000_RXD_STAT_IXSM))
3641 		return;
3642 
3643 	if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3644 	    !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3645 		/* IP Checksum Good */
3646 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3647 	}
3648 
3649 	if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3650 	    !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3651 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3652 					   CSUM_PSEUDO_HDR |
3653 					   CSUM_FRAG_NOT_CHECKED;
3654 		mp->m_pkthdr.csum_data = htons(0xffff);
3655 	}
3656 }
3657 
3658 static void
3659 em_enable_intr(struct adapter *adapter)
3660 {
3661 	uint32_t ims_mask = IMS_ENABLE_MASK;
3662 
3663 	lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3664 
3665 #if 0
3666 	/* XXX MSIX */
3667 	if (adapter->hw.mac.type == e1000_82574) {
3668 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, EM_MSIX_MASK);
3669 		ims_mask |= EM_MSIX_MASK;
3670         }
3671 #endif
3672 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, ims_mask);
3673 }
3674 
3675 static void
3676 em_disable_intr(struct adapter *adapter)
3677 {
3678 	uint32_t clear = 0xffffffff;
3679 
3680 	/*
3681 	 * The first version of 82542 had an errata where when link was forced
3682 	 * it would stay up even up even if the cable was disconnected.
3683 	 * Sequence errors were used to detect the disconnect and then the
3684 	 * driver would unforce the link.  This code in the in the ISR.  For
3685 	 * this to work correctly the Sequence error interrupt had to be
3686 	 * enabled all the time.
3687 	 */
3688 	if (adapter->hw.mac.type == e1000_82542 &&
3689 	    adapter->hw.revision_id == E1000_REVISION_2)
3690 		clear &= ~E1000_ICR_RXSEQ;
3691 	else if (adapter->hw.mac.type == e1000_82574)
3692 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, 0);
3693 
3694 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3695 
3696 	adapter->npoll.ifpc_stcount = 0;
3697 
3698 	lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3699 }
3700 
3701 /*
3702  * Bit of a misnomer, what this really means is
3703  * to enable OS management of the system... aka
3704  * to disable special hardware management features
3705  */
3706 static void
3707 em_get_mgmt(struct adapter *adapter)
3708 {
3709 	/* A shared code workaround */
3710 #define E1000_82542_MANC2H E1000_MANC2H
3711 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3712 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3713 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3714 
3715 		/* disable hardware interception of ARP */
3716 		manc &= ~(E1000_MANC_ARP_EN);
3717 
3718                 /* enable receiving management packets to the host */
3719                 if (adapter->hw.mac.type >= e1000_82571) {
3720 			manc |= E1000_MANC_EN_MNG2HOST;
3721 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3722 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3723 			manc2h |= E1000_MNG2HOST_PORT_623;
3724 			manc2h |= E1000_MNG2HOST_PORT_664;
3725 			E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3726 		}
3727 
3728 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3729 	}
3730 }
3731 
3732 /*
3733  * Give control back to hardware management
3734  * controller if there is one.
3735  */
3736 static void
3737 em_rel_mgmt(struct adapter *adapter)
3738 {
3739 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3740 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3741 
3742 		/* re-enable hardware interception of ARP */
3743 		manc |= E1000_MANC_ARP_EN;
3744 
3745 		if (adapter->hw.mac.type >= e1000_82571)
3746 			manc &= ~E1000_MANC_EN_MNG2HOST;
3747 
3748 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3749 	}
3750 }
3751 
3752 /*
3753  * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3754  * For ASF and Pass Through versions of f/w this means that
3755  * the driver is loaded.  For AMT version (only with 82573)
3756  * of the f/w this means that the network i/f is open.
3757  */
3758 static void
3759 em_get_hw_control(struct adapter *adapter)
3760 {
3761 	/* Let firmware know the driver has taken over */
3762 	if (adapter->hw.mac.type == e1000_82573) {
3763 		uint32_t swsm;
3764 
3765 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3766 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3767 		    swsm | E1000_SWSM_DRV_LOAD);
3768 	} else {
3769 		uint32_t ctrl_ext;
3770 
3771 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3772 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3773 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3774 	}
3775 	adapter->flags |= EM_FLAG_HW_CTRL;
3776 }
3777 
3778 /*
3779  * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3780  * For ASF and Pass Through versions of f/w this means that the
3781  * driver is no longer loaded.  For AMT version (only with 82573)
3782  * of the f/w this means that the network i/f is closed.
3783  */
3784 static void
3785 em_rel_hw_control(struct adapter *adapter)
3786 {
3787 	if ((adapter->flags & EM_FLAG_HW_CTRL) == 0)
3788 		return;
3789 	adapter->flags &= ~EM_FLAG_HW_CTRL;
3790 
3791 	/* Let firmware taken over control of h/w */
3792 	if (adapter->hw.mac.type == e1000_82573) {
3793 		uint32_t swsm;
3794 
3795 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3796 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3797 		    swsm & ~E1000_SWSM_DRV_LOAD);
3798 	} else {
3799 		uint32_t ctrl_ext;
3800 
3801 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3802 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3803 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3804 	}
3805 }
3806 
3807 static int
3808 em_is_valid_eaddr(const uint8_t *addr)
3809 {
3810 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3811 
3812 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3813 		return (FALSE);
3814 
3815 	return (TRUE);
3816 }
3817 
3818 /*
3819  * Enable PCI Wake On Lan capability
3820  */
3821 static void
3822 em_enable_wol(device_t dev)
3823 {
3824 	uint16_t cap, status;
3825 	uint8_t id;
3826 
3827 	/* First find the capabilities pointer*/
3828 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3829 
3830 	/* Read the PM Capabilities */
3831 	id = pci_read_config(dev, cap, 1);
3832 	if (id != PCIY_PMG)     /* Something wrong */
3833 		return;
3834 
3835 	/*
3836 	 * OK, we have the power capabilities,
3837 	 * so now get the status register
3838 	 */
3839 	cap += PCIR_POWER_STATUS;
3840 	status = pci_read_config(dev, cap, 2);
3841 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3842 	pci_write_config(dev, cap, status, 2);
3843 }
3844 
3845 
3846 /*
3847  * 82544 Coexistence issue workaround.
3848  *    There are 2 issues.
3849  *       1. Transmit Hang issue.
3850  *    To detect this issue, following equation can be used...
3851  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3852  *	  If SUM[3:0] is in between 1 to 4, we will have this issue.
3853  *
3854  *       2. DAC issue.
3855  *    To detect this issue, following equation can be used...
3856  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3857  *	  If SUM[3:0] is in between 9 to c, we will have this issue.
3858  *
3859  *    WORKAROUND:
3860  *	  Make sure we do not have ending address
3861  *	  as 1,2,3,4(Hang) or 9,a,b,c (DAC)
3862  */
3863 static uint32_t
3864 em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3865 {
3866 	uint32_t safe_terminator;
3867 
3868 	/*
3869 	 * Since issue is sensitive to length and address.
3870 	 * Let us first check the address...
3871 	 */
3872 	if (length <= 4) {
3873 		desc_array->descriptor[0].address = address;
3874 		desc_array->descriptor[0].length = length;
3875 		desc_array->elements = 1;
3876 		return (desc_array->elements);
3877 	}
3878 
3879 	safe_terminator =
3880 	(uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3881 
3882 	/* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3883 	if (safe_terminator == 0 ||
3884 	    (safe_terminator > 4 && safe_terminator < 9) ||
3885 	    (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3886 		desc_array->descriptor[0].address = address;
3887 		desc_array->descriptor[0].length = length;
3888 		desc_array->elements = 1;
3889 		return (desc_array->elements);
3890 	}
3891 
3892 	desc_array->descriptor[0].address = address;
3893 	desc_array->descriptor[0].length = length - 4;
3894 	desc_array->descriptor[1].address = address + (length - 4);
3895 	desc_array->descriptor[1].length = 4;
3896 	desc_array->elements = 2;
3897 	return (desc_array->elements);
3898 }
3899 
3900 static void
3901 em_update_stats(struct adapter *adapter)
3902 {
3903 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3904 
3905 	if (adapter->hw.phy.media_type == e1000_media_type_copper ||
3906 	    (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3907 		adapter->stats.symerrs +=
3908 			E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3909 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3910 	}
3911 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3912 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3913 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3914 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3915 
3916 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3917 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3918 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3919 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3920 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3921 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3922 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3923 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3924 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3925 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3926 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3927 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3928 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3929 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3930 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3931 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3932 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3933 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3934 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3935 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3936 
3937 	/* For the 64-bit byte counters the low dword must be read first. */
3938 	/* Both registers clear on the read of the high dword */
3939 
3940 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
3941 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
3942 
3943 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3944 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3945 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3946 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3947 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3948 
3949 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3950 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3951 
3952 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3953 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3954 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3955 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3956 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3957 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3958 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3959 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3960 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3961 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3962 
3963 	if (adapter->hw.mac.type >= e1000_82543) {
3964 		adapter->stats.algnerrc +=
3965 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3966 		adapter->stats.rxerrc +=
3967 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3968 		adapter->stats.tncrs +=
3969 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3970 		adapter->stats.cexterr +=
3971 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3972 		adapter->stats.tsctc +=
3973 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3974 		adapter->stats.tsctfc +=
3975 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3976 	}
3977 
3978 	IFNET_STAT_SET(ifp, collisions, adapter->stats.colc);
3979 
3980 	/* Rx Errors */
3981 	IFNET_STAT_SET(ifp, ierrors,
3982 	    adapter->dropped_pkts + adapter->stats.rxerrc +
3983 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
3984 	    adapter->stats.ruc + adapter->stats.roc +
3985 	    adapter->stats.mpc + adapter->stats.cexterr);
3986 
3987 	/* Tx Errors */
3988 	IFNET_STAT_SET(ifp, oerrors,
3989 	    adapter->stats.ecol + adapter->stats.latecol +
3990 	    adapter->watchdog_events);
3991 }
3992 
3993 static void
3994 em_print_debug_info(struct adapter *adapter)
3995 {
3996 	device_t dev = adapter->dev;
3997 	uint8_t *hw_addr = adapter->hw.hw_addr;
3998 
3999 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
4000 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
4001 	    E1000_READ_REG(&adapter->hw, E1000_CTRL),
4002 	    E1000_READ_REG(&adapter->hw, E1000_RCTL));
4003 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
4004 	    ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
4005 	    (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
4006 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
4007 	    adapter->hw.fc.high_water,
4008 	    adapter->hw.fc.low_water);
4009 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
4010 	    E1000_READ_REG(&adapter->hw, E1000_TIDV),
4011 	    E1000_READ_REG(&adapter->hw, E1000_TADV));
4012 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
4013 	    E1000_READ_REG(&adapter->hw, E1000_RDTR),
4014 	    E1000_READ_REG(&adapter->hw, E1000_RADV));
4015 	device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
4016 	    (long long)adapter->tx_fifo_wrk_cnt,
4017 	    (long long)adapter->tx_fifo_reset_cnt);
4018 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
4019 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
4020 	    E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
4021 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
4022 	    E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
4023 	    E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
4024 	device_printf(dev, "Num Tx descriptors avail = %d\n",
4025 	    adapter->num_tx_desc_avail);
4026 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
4027 	    adapter->no_tx_desc_avail1);
4028 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
4029 	    adapter->no_tx_desc_avail2);
4030 	device_printf(dev, "Std mbuf failed = %ld\n",
4031 	    adapter->mbuf_alloc_failed);
4032 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
4033 	    adapter->mbuf_cluster_failed);
4034 	device_printf(dev, "Driver dropped packets = %ld\n",
4035 	    adapter->dropped_pkts);
4036 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
4037 	    adapter->no_tx_dma_setup);
4038 }
4039 
4040 static void
4041 em_print_hw_stats(struct adapter *adapter)
4042 {
4043 	device_t dev = adapter->dev;
4044 
4045 	device_printf(dev, "Excessive collisions = %lld\n",
4046 	    (long long)adapter->stats.ecol);
4047 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
4048 	device_printf(dev, "Symbol errors = %lld\n",
4049 	    (long long)adapter->stats.symerrs);
4050 #endif
4051 	device_printf(dev, "Sequence errors = %lld\n",
4052 	    (long long)adapter->stats.sec);
4053 	device_printf(dev, "Defer count = %lld\n",
4054 	    (long long)adapter->stats.dc);
4055 	device_printf(dev, "Missed Packets = %lld\n",
4056 	    (long long)adapter->stats.mpc);
4057 	device_printf(dev, "Receive No Buffers = %lld\n",
4058 	    (long long)adapter->stats.rnbc);
4059 	/* RLEC is inaccurate on some hardware, calculate our own. */
4060 	device_printf(dev, "Receive Length Errors = %lld\n",
4061 	    ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
4062 	device_printf(dev, "Receive errors = %lld\n",
4063 	    (long long)adapter->stats.rxerrc);
4064 	device_printf(dev, "Crc errors = %lld\n",
4065 	    (long long)adapter->stats.crcerrs);
4066 	device_printf(dev, "Alignment errors = %lld\n",
4067 	    (long long)adapter->stats.algnerrc);
4068 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
4069 	    (long long)adapter->stats.cexterr);
4070 	device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
4071 	device_printf(dev, "watchdog timeouts = %ld\n",
4072 	    adapter->watchdog_events);
4073 	device_printf(dev, "XON Rcvd = %lld\n",
4074 	    (long long)adapter->stats.xonrxc);
4075 	device_printf(dev, "XON Xmtd = %lld\n",
4076 	    (long long)adapter->stats.xontxc);
4077 	device_printf(dev, "XOFF Rcvd = %lld\n",
4078 	    (long long)adapter->stats.xoffrxc);
4079 	device_printf(dev, "XOFF Xmtd = %lld\n",
4080 	    (long long)adapter->stats.xofftxc);
4081 	device_printf(dev, "Good Packets Rcvd = %lld\n",
4082 	    (long long)adapter->stats.gprc);
4083 	device_printf(dev, "Good Packets Xmtd = %lld\n",
4084 	    (long long)adapter->stats.gptc);
4085 }
4086 
4087 static void
4088 em_print_nvm_info(struct adapter *adapter)
4089 {
4090 	uint16_t eeprom_data;
4091 	int i, j, row = 0;
4092 
4093 	/* Its a bit crude, but it gets the job done */
4094 	kprintf("\nInterface EEPROM Dump:\n");
4095 	kprintf("Offset\n0x0000  ");
4096 	for (i = 0, j = 0; i < 32; i++, j++) {
4097 		if (j == 8) { /* Make the offset block */
4098 			j = 0; ++row;
4099 			kprintf("\n0x00%x0  ",row);
4100 		}
4101 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
4102 		kprintf("%04x ", eeprom_data);
4103 	}
4104 	kprintf("\n");
4105 }
4106 
4107 static int
4108 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4109 {
4110 	struct adapter *adapter;
4111 	struct ifnet *ifp;
4112 	int error, result;
4113 
4114 	result = -1;
4115 	error = sysctl_handle_int(oidp, &result, 0, req);
4116 	if (error || !req->newptr)
4117 		return (error);
4118 
4119 	adapter = (struct adapter *)arg1;
4120 	ifp = &adapter->arpcom.ac_if;
4121 
4122 	lwkt_serialize_enter(ifp->if_serializer);
4123 
4124 	if (result == 1)
4125 		em_print_debug_info(adapter);
4126 
4127 	/*
4128 	 * This value will cause a hex dump of the
4129 	 * first 32 16-bit words of the EEPROM to
4130 	 * the screen.
4131 	 */
4132 	if (result == 2)
4133 		em_print_nvm_info(adapter);
4134 
4135 	lwkt_serialize_exit(ifp->if_serializer);
4136 
4137 	return (error);
4138 }
4139 
4140 static int
4141 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
4142 {
4143 	int error, result;
4144 
4145 	result = -1;
4146 	error = sysctl_handle_int(oidp, &result, 0, req);
4147 	if (error || !req->newptr)
4148 		return (error);
4149 
4150 	if (result == 1) {
4151 		struct adapter *adapter = (struct adapter *)arg1;
4152 		struct ifnet *ifp = &adapter->arpcom.ac_if;
4153 
4154 		lwkt_serialize_enter(ifp->if_serializer);
4155 		em_print_hw_stats(adapter);
4156 		lwkt_serialize_exit(ifp->if_serializer);
4157 	}
4158 	return (error);
4159 }
4160 
4161 static void
4162 em_add_sysctl(struct adapter *adapter)
4163 {
4164 	struct sysctl_ctx_list *ctx;
4165 	struct sysctl_oid *tree;
4166 
4167 	ctx = device_get_sysctl_ctx(adapter->dev);
4168 	tree = device_get_sysctl_tree(adapter->dev);
4169 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4170 	    OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4171 	    em_sysctl_debug_info, "I", "Debug Information");
4172 
4173 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4174 	    OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4175 	    em_sysctl_stats, "I", "Statistics");
4176 
4177 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4178 	    OID_AUTO, "rxd", CTLFLAG_RD,
4179 	    &adapter->num_rx_desc, 0, NULL);
4180 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4181 	    OID_AUTO, "txd", CTLFLAG_RD,
4182 	    &adapter->num_tx_desc, 0, NULL);
4183 
4184 	if (adapter->hw.mac.type >= e1000_82540) {
4185 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4186 		    OID_AUTO, "int_throttle_ceil",
4187 		    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4188 		    em_sysctl_int_throttle, "I",
4189 		    "interrupt throttling rate");
4190 	}
4191 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4192 	    OID_AUTO, "int_tx_nsegs",
4193 	    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4194 	    em_sysctl_int_tx_nsegs, "I",
4195 	    "# segments per TX interrupt");
4196 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4197 	    OID_AUTO, "wreg_tx_nsegs", CTLFLAG_RW,
4198 	    &adapter->tx_wreg_nsegs, 0,
4199 	    "# segments before write to hardware register");
4200 }
4201 
4202 static int
4203 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
4204 {
4205 	struct adapter *adapter = (void *)arg1;
4206 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4207 	int error, throttle;
4208 
4209 	throttle = adapter->int_throttle_ceil;
4210 	error = sysctl_handle_int(oidp, &throttle, 0, req);
4211 	if (error || req->newptr == NULL)
4212 		return error;
4213 	if (throttle < 0 || throttle > 1000000000 / 256)
4214 		return EINVAL;
4215 
4216 	if (throttle) {
4217 		/*
4218 		 * Set the interrupt throttling rate in 256ns increments,
4219 		 * recalculate sysctl value assignment to get exact frequency.
4220 		 */
4221 		throttle = 1000000000 / 256 / throttle;
4222 
4223 		/* Upper 16bits of ITR is reserved and should be zero */
4224 		if (throttle & 0xffff0000)
4225 			return EINVAL;
4226 	}
4227 
4228 	lwkt_serialize_enter(ifp->if_serializer);
4229 
4230 	if (throttle)
4231 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
4232 	else
4233 		adapter->int_throttle_ceil = 0;
4234 
4235 	if (ifp->if_flags & IFF_RUNNING)
4236 		em_set_itr(adapter, throttle);
4237 
4238 	lwkt_serialize_exit(ifp->if_serializer);
4239 
4240 	if (bootverbose) {
4241 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
4242 			  adapter->int_throttle_ceil);
4243 	}
4244 	return 0;
4245 }
4246 
4247 static int
4248 em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
4249 {
4250 	struct adapter *adapter = (void *)arg1;
4251 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4252 	int error, segs;
4253 
4254 	segs = adapter->tx_int_nsegs;
4255 	error = sysctl_handle_int(oidp, &segs, 0, req);
4256 	if (error || req->newptr == NULL)
4257 		return error;
4258 	if (segs <= 0)
4259 		return EINVAL;
4260 
4261 	lwkt_serialize_enter(ifp->if_serializer);
4262 
4263 	/*
4264 	 * Don't allow int_tx_nsegs to become:
4265 	 * o  Less the oact_tx_desc
4266 	 * o  Too large that no TX desc will cause TX interrupt to
4267 	 *    be generated (OACTIVE will never recover)
4268 	 * o  Too small that will cause tx_dd[] overflow
4269 	 */
4270 	if (segs < adapter->oact_tx_desc ||
4271 	    segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
4272 	    segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
4273 		error = EINVAL;
4274 	} else {
4275 		error = 0;
4276 		adapter->tx_int_nsegs = segs;
4277 	}
4278 
4279 	lwkt_serialize_exit(ifp->if_serializer);
4280 
4281 	return error;
4282 }
4283 
4284 static void
4285 em_set_itr(struct adapter *adapter, uint32_t itr)
4286 {
4287 	E1000_WRITE_REG(&adapter->hw, E1000_ITR, itr);
4288 	if (adapter->hw.mac.type == e1000_82574) {
4289 		int i;
4290 
4291 		/*
4292 		 * When using MSIX interrupts we need to
4293 		 * throttle using the EITR register
4294 		 */
4295 		for (i = 0; i < 4; ++i) {
4296 			E1000_WRITE_REG(&adapter->hw,
4297 			    E1000_EITR_82574(i), itr);
4298 		}
4299 	}
4300 }
4301 
4302 static void
4303 em_disable_aspm(struct adapter *adapter)
4304 {
4305 	uint16_t link_cap, link_ctrl, disable;
4306 	uint8_t pcie_ptr, reg;
4307 	device_t dev = adapter->dev;
4308 
4309 	switch (adapter->hw.mac.type) {
4310 	case e1000_82571:
4311 	case e1000_82572:
4312 	case e1000_82573:
4313 		/*
4314 		 * 82573 specification update
4315 		 * errata #8 disable L0s
4316 		 * errata #41 disable L1
4317 		 *
4318 		 * 82571/82572 specification update
4319 		 # errata #13 disable L1
4320 		 * errata #68 disable L0s
4321 		 */
4322 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4323 		break;
4324 
4325 	case e1000_82574:
4326 	case e1000_82583:
4327 		/*
4328 		 * 82574 specification update errata #20
4329 		 * 82583 specification update errata #9
4330 		 *
4331 		 * There is no need to disable L1
4332 		 */
4333 		disable = PCIEM_LNKCTL_ASPM_L0S;
4334 		break;
4335 
4336 	default:
4337 		return;
4338 	}
4339 
4340 	pcie_ptr = pci_get_pciecap_ptr(dev);
4341 	if (pcie_ptr == 0)
4342 		return;
4343 
4344 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4345 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4346 		return;
4347 
4348 	if (bootverbose) {
4349 		if_printf(&adapter->arpcom.ac_if,
4350 		    "disable ASPM %#02x\n", disable);
4351 	}
4352 
4353 	reg = pcie_ptr + PCIER_LINKCTRL;
4354 	link_ctrl = pci_read_config(dev, reg, 2);
4355 	link_ctrl &= ~disable;
4356 	pci_write_config(dev, reg, link_ctrl, 2);
4357 }
4358 
4359 static int
4360 em_tso_pullup(struct adapter *adapter, struct mbuf **mp)
4361 {
4362 	int iphlen, hoff, thoff, ex = 0;
4363 	struct mbuf *m;
4364 	struct ip *ip;
4365 
4366 	m = *mp;
4367 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4368 
4369 	iphlen = m->m_pkthdr.csum_iphlen;
4370 	thoff = m->m_pkthdr.csum_thlen;
4371 	hoff = m->m_pkthdr.csum_lhlen;
4372 
4373 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4374 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4375 	KASSERT(hoff > 0, ("invalid ether hlen"));
4376 
4377 	if (adapter->flags & EM_FLAG_TSO_PULLEX)
4378 		ex = 4;
4379 
4380 	if (m->m_len < hoff + iphlen + thoff + ex) {
4381 		m = m_pullup(m, hoff + iphlen + thoff + ex);
4382 		if (m == NULL) {
4383 			*mp = NULL;
4384 			return ENOBUFS;
4385 		}
4386 		*mp = m;
4387 	}
4388 	ip = mtodoff(m, struct ip *, hoff);
4389 	ip->ip_len = 0;
4390 
4391 	return 0;
4392 }
4393 
4394 static int
4395 em_tso_setup(struct adapter *adapter, struct mbuf *mp,
4396     uint32_t *txd_upper, uint32_t *txd_lower)
4397 {
4398 	struct e1000_context_desc *TXD;
4399 	int hoff, iphlen, thoff, hlen;
4400 	int mss, pktlen, curr_txd;
4401 
4402 	iphlen = mp->m_pkthdr.csum_iphlen;
4403 	thoff = mp->m_pkthdr.csum_thlen;
4404 	hoff = mp->m_pkthdr.csum_lhlen;
4405 	mss = mp->m_pkthdr.tso_segsz;
4406 	pktlen = mp->m_pkthdr.len;
4407 
4408 	if (adapter->csum_flags == CSUM_TSO &&
4409 	    adapter->csum_iphlen == iphlen &&
4410 	    adapter->csum_lhlen == hoff &&
4411 	    adapter->csum_thlen == thoff &&
4412 	    adapter->csum_mss == mss &&
4413 	    adapter->csum_pktlen == pktlen) {
4414 		*txd_upper = adapter->csum_txd_upper;
4415 		*txd_lower = adapter->csum_txd_lower;
4416 		return 0;
4417 	}
4418 	hlen = hoff + iphlen + thoff;
4419 
4420 	/*
4421 	 * Setup a new TSO context.
4422 	 */
4423 
4424 	curr_txd = adapter->next_avail_tx_desc;
4425 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
4426 
4427 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
4428 		     E1000_TXD_DTYP_D |		/* Data descr type */
4429 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
4430 
4431 	/* IP and/or TCP header checksum calculation and insertion. */
4432 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4433 
4434 	/*
4435 	 * Start offset for header checksum calculation.
4436 	 * End offset for header checksum calculation.
4437 	 * Offset of place put the checksum.
4438 	 */
4439 	TXD->lower_setup.ip_fields.ipcss = hoff;
4440 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4441 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4442 
4443 	/*
4444 	 * Start offset for payload checksum calculation.
4445 	 * End offset for payload checksum calculation.
4446 	 * Offset of place to put the checksum.
4447 	 */
4448 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4449 	TXD->upper_setup.tcp_fields.tucse = 0;
4450 	TXD->upper_setup.tcp_fields.tucso =
4451 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
4452 
4453 	/*
4454 	 * Payload size per packet w/o any headers.
4455 	 * Length of all headers up to payload.
4456 	 */
4457 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
4458 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
4459 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4460 				E1000_TXD_CMD_DEXT |	/* Extended descr */
4461 				E1000_TXD_CMD_TSE |	/* TSE context */
4462 				E1000_TXD_CMD_IP |	/* Do IP csum */
4463 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
4464 				(pktlen - hlen));	/* Total len */
4465 
4466 	/* Save the information for this TSO context */
4467 	adapter->csum_flags = CSUM_TSO;
4468 	adapter->csum_lhlen = hoff;
4469 	adapter->csum_iphlen = iphlen;
4470 	adapter->csum_thlen = thoff;
4471 	adapter->csum_mss = mss;
4472 	adapter->csum_pktlen = pktlen;
4473 	adapter->csum_txd_upper = *txd_upper;
4474 	adapter->csum_txd_lower = *txd_lower;
4475 
4476 	if (++curr_txd == adapter->num_tx_desc)
4477 		curr_txd = 0;
4478 
4479 	KKASSERT(adapter->num_tx_desc_avail > 0);
4480 	adapter->num_tx_desc_avail--;
4481 
4482 	adapter->next_avail_tx_desc = curr_txd;
4483 	return 1;
4484 }
4485