xref: /dragonfly/sys/dev/netif/emx/if_emx.c (revision 25a2db75)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 #include "opt_ifpoll.h"
68 #include "opt_emx.h"
69 
70 #include <sys/param.h>
71 #include <sys/bus.h>
72 #include <sys/endian.h>
73 #include <sys/interrupt.h>
74 #include <sys/kernel.h>
75 #include <sys/ktr.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/proc.h>
79 #include <sys/rman.h>
80 #include <sys/serialize.h>
81 #include <sys/serialize2.h>
82 #include <sys/socket.h>
83 #include <sys/sockio.h>
84 #include <sys/sysctl.h>
85 #include <sys/systm.h>
86 
87 #include <net/bpf.h>
88 #include <net/ethernet.h>
89 #include <net/if.h>
90 #include <net/if_arp.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/ifq_var.h>
94 #include <net/toeplitz.h>
95 #include <net/toeplitz2.h>
96 #include <net/vlan/if_vlan_var.h>
97 #include <net/vlan/if_vlan_ether.h>
98 #include <net/if_poll.h>
99 
100 #include <netinet/in_systm.h>
101 #include <netinet/in.h>
102 #include <netinet/ip.h>
103 #include <netinet/tcp.h>
104 #include <netinet/udp.h>
105 
106 #include <bus/pci/pcivar.h>
107 #include <bus/pci/pcireg.h>
108 
109 #include <dev/netif/ig_hal/e1000_api.h>
110 #include <dev/netif/ig_hal/e1000_82571.h>
111 #include <dev/netif/emx/if_emx.h>
112 
113 #define DEBUG_HW 0
114 
115 #ifdef EMX_RSS_DEBUG
116 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...) \
117 do { \
118 	if (sc->rss_debug >= lvl) \
119 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
120 } while (0)
121 #else	/* !EMX_RSS_DEBUG */
122 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
123 #endif	/* EMX_RSS_DEBUG */
124 
125 #define EMX_NAME	"Intel(R) PRO/1000 "
126 
127 #define EMX_DEVICE(id)	\
128 	{ EMX_VENDOR_ID, E1000_DEV_ID_##id, EMX_NAME #id }
129 #define EMX_DEVICE_NULL	{ 0, 0, NULL }
130 
131 static const struct emx_device {
132 	uint16_t	vid;
133 	uint16_t	did;
134 	const char	*desc;
135 } emx_devices[] = {
136 	EMX_DEVICE(82571EB_COPPER),
137 	EMX_DEVICE(82571EB_FIBER),
138 	EMX_DEVICE(82571EB_SERDES),
139 	EMX_DEVICE(82571EB_SERDES_DUAL),
140 	EMX_DEVICE(82571EB_SERDES_QUAD),
141 	EMX_DEVICE(82571EB_QUAD_COPPER),
142 	EMX_DEVICE(82571EB_QUAD_COPPER_BP),
143 	EMX_DEVICE(82571EB_QUAD_COPPER_LP),
144 	EMX_DEVICE(82571EB_QUAD_FIBER),
145 	EMX_DEVICE(82571PT_QUAD_COPPER),
146 
147 	EMX_DEVICE(82572EI_COPPER),
148 	EMX_DEVICE(82572EI_FIBER),
149 	EMX_DEVICE(82572EI_SERDES),
150 	EMX_DEVICE(82572EI),
151 
152 	EMX_DEVICE(82573E),
153 	EMX_DEVICE(82573E_IAMT),
154 	EMX_DEVICE(82573L),
155 
156 	EMX_DEVICE(80003ES2LAN_COPPER_SPT),
157 	EMX_DEVICE(80003ES2LAN_SERDES_SPT),
158 	EMX_DEVICE(80003ES2LAN_COPPER_DPT),
159 	EMX_DEVICE(80003ES2LAN_SERDES_DPT),
160 
161 	EMX_DEVICE(82574L),
162 	EMX_DEVICE(82574LA),
163 
164 	/* required last entry */
165 	EMX_DEVICE_NULL
166 };
167 
168 static int	emx_probe(device_t);
169 static int	emx_attach(device_t);
170 static int	emx_detach(device_t);
171 static int	emx_shutdown(device_t);
172 static int	emx_suspend(device_t);
173 static int	emx_resume(device_t);
174 
175 static void	emx_init(void *);
176 static void	emx_stop(struct emx_softc *);
177 static int	emx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
178 static void	emx_start(struct ifnet *, struct ifaltq_subque *);
179 #ifdef IFPOLL_ENABLE
180 static void	emx_npoll(struct ifnet *, struct ifpoll_info *);
181 static void	emx_npoll_status(struct ifnet *);
182 static void	emx_npoll_tx(struct ifnet *, void *, int);
183 static void	emx_npoll_rx(struct ifnet *, void *, int);
184 #endif
185 static void	emx_watchdog(struct ifaltq_subque *);
186 static void	emx_media_status(struct ifnet *, struct ifmediareq *);
187 static int	emx_media_change(struct ifnet *);
188 static void	emx_timer(void *);
189 static void	emx_serialize(struct ifnet *, enum ifnet_serialize);
190 static void	emx_deserialize(struct ifnet *, enum ifnet_serialize);
191 static int	emx_tryserialize(struct ifnet *, enum ifnet_serialize);
192 #ifdef INVARIANTS
193 static void	emx_serialize_assert(struct ifnet *, enum ifnet_serialize,
194 		    boolean_t);
195 #endif
196 
197 static void	emx_intr(void *);
198 static void	emx_intr_mask(void *);
199 static void	emx_intr_body(struct emx_softc *, boolean_t);
200 static void	emx_rxeof(struct emx_rxdata *, int);
201 static void	emx_txeof(struct emx_txdata *);
202 static void	emx_tx_collect(struct emx_txdata *);
203 static void	emx_tx_purge(struct emx_softc *);
204 static void	emx_enable_intr(struct emx_softc *);
205 static void	emx_disable_intr(struct emx_softc *);
206 
207 static int	emx_dma_alloc(struct emx_softc *);
208 static void	emx_dma_free(struct emx_softc *);
209 static void	emx_init_tx_ring(struct emx_txdata *);
210 static int	emx_init_rx_ring(struct emx_rxdata *);
211 static void	emx_free_tx_ring(struct emx_txdata *);
212 static void	emx_free_rx_ring(struct emx_rxdata *);
213 static int	emx_create_tx_ring(struct emx_txdata *);
214 static int	emx_create_rx_ring(struct emx_rxdata *);
215 static void	emx_destroy_tx_ring(struct emx_txdata *, int);
216 static void	emx_destroy_rx_ring(struct emx_rxdata *, int);
217 static int	emx_newbuf(struct emx_rxdata *, int, int);
218 static int	emx_encap(struct emx_txdata *, struct mbuf **, int *, int *);
219 static int	emx_txcsum(struct emx_txdata *, struct mbuf *,
220 		    uint32_t *, uint32_t *);
221 static int	emx_tso_pullup(struct emx_txdata *, struct mbuf **);
222 static int	emx_tso_setup(struct emx_txdata *, struct mbuf *,
223 		    uint32_t *, uint32_t *);
224 static int	emx_get_txring_inuse(const struct emx_softc *, boolean_t);
225 
226 static int 	emx_is_valid_eaddr(const uint8_t *);
227 static int	emx_reset(struct emx_softc *);
228 static void	emx_setup_ifp(struct emx_softc *);
229 static void	emx_init_tx_unit(struct emx_softc *);
230 static void	emx_init_rx_unit(struct emx_softc *);
231 static void	emx_update_stats(struct emx_softc *);
232 static void	emx_set_promisc(struct emx_softc *);
233 static void	emx_disable_promisc(struct emx_softc *);
234 static void	emx_set_multi(struct emx_softc *);
235 static void	emx_update_link_status(struct emx_softc *);
236 static void	emx_smartspeed(struct emx_softc *);
237 static void	emx_set_itr(struct emx_softc *, uint32_t);
238 static void	emx_disable_aspm(struct emx_softc *);
239 
240 static void	emx_print_debug_info(struct emx_softc *);
241 static void	emx_print_nvm_info(struct emx_softc *);
242 static void	emx_print_hw_stats(struct emx_softc *);
243 
244 static int	emx_sysctl_stats(SYSCTL_HANDLER_ARGS);
245 static int	emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
246 static int	emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
247 static int	emx_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
248 static int	emx_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
249 #ifdef IFPOLL_ENABLE
250 static int	emx_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
251 static int	emx_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
252 #endif
253 static void	emx_add_sysctl(struct emx_softc *);
254 
255 static void	emx_serialize_skipmain(struct emx_softc *);
256 static void	emx_deserialize_skipmain(struct emx_softc *);
257 
258 /* Management and WOL Support */
259 static void	emx_get_mgmt(struct emx_softc *);
260 static void	emx_rel_mgmt(struct emx_softc *);
261 static void	emx_get_hw_control(struct emx_softc *);
262 static void	emx_rel_hw_control(struct emx_softc *);
263 static void	emx_enable_wol(device_t);
264 
265 static device_method_t emx_methods[] = {
266 	/* Device interface */
267 	DEVMETHOD(device_probe,		emx_probe),
268 	DEVMETHOD(device_attach,	emx_attach),
269 	DEVMETHOD(device_detach,	emx_detach),
270 	DEVMETHOD(device_shutdown,	emx_shutdown),
271 	DEVMETHOD(device_suspend,	emx_suspend),
272 	DEVMETHOD(device_resume,	emx_resume),
273 	DEVMETHOD_END
274 };
275 
276 static driver_t emx_driver = {
277 	"emx",
278 	emx_methods,
279 	sizeof(struct emx_softc),
280 };
281 
282 static devclass_t emx_devclass;
283 
284 DECLARE_DUMMY_MODULE(if_emx);
285 MODULE_DEPEND(emx, ig_hal, 1, 1, 1);
286 DRIVER_MODULE(if_emx, pci, emx_driver, emx_devclass, NULL, NULL);
287 
288 /*
289  * Tunables
290  */
291 static int	emx_int_throttle_ceil = EMX_DEFAULT_ITR;
292 static int	emx_rxd = EMX_DEFAULT_RXD;
293 static int	emx_txd = EMX_DEFAULT_TXD;
294 static int	emx_smart_pwr_down = 0;
295 static int	emx_rxr = 0;
296 static int	emx_txr = 1;
297 
298 /* Controls whether promiscuous also shows bad packets */
299 static int	emx_debug_sbp = 0;
300 
301 static int	emx_82573_workaround = 1;
302 static int	emx_msi_enable = 1;
303 
304 TUNABLE_INT("hw.emx.int_throttle_ceil", &emx_int_throttle_ceil);
305 TUNABLE_INT("hw.emx.rxd", &emx_rxd);
306 TUNABLE_INT("hw.emx.rxr", &emx_rxr);
307 TUNABLE_INT("hw.emx.txd", &emx_txd);
308 TUNABLE_INT("hw.emx.txr", &emx_txr);
309 TUNABLE_INT("hw.emx.smart_pwr_down", &emx_smart_pwr_down);
310 TUNABLE_INT("hw.emx.sbp", &emx_debug_sbp);
311 TUNABLE_INT("hw.emx.82573_workaround", &emx_82573_workaround);
312 TUNABLE_INT("hw.emx.msi.enable", &emx_msi_enable);
313 
314 /* Global used in WOL setup with multiport cards */
315 static int	emx_global_quad_port_a = 0;
316 
317 /* Set this to one to display debug statistics */
318 static int	emx_display_debug_stats = 0;
319 
320 #if !defined(KTR_IF_EMX)
321 #define KTR_IF_EMX	KTR_ALL
322 #endif
323 KTR_INFO_MASTER(if_emx);
324 KTR_INFO(KTR_IF_EMX, if_emx, intr_beg, 0, "intr begin");
325 KTR_INFO(KTR_IF_EMX, if_emx, intr_end, 1, "intr end");
326 KTR_INFO(KTR_IF_EMX, if_emx, pkt_receive, 4, "rx packet");
327 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txqueue, 5, "tx packet");
328 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txclean, 6, "tx clean");
329 #define logif(name)	KTR_LOG(if_emx_ ## name)
330 
331 static __inline void
332 emx_setup_rxdesc(emx_rxdesc_t *rxd, const struct emx_rxbuf *rxbuf)
333 {
334 	rxd->rxd_bufaddr = htole64(rxbuf->paddr);
335 	/* DD bit must be cleared */
336 	rxd->rxd_staterr = 0;
337 }
338 
339 static __inline void
340 emx_rxcsum(uint32_t staterr, struct mbuf *mp)
341 {
342 	/* Ignore Checksum bit is set */
343 	if (staterr & E1000_RXD_STAT_IXSM)
344 		return;
345 
346 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
347 	    E1000_RXD_STAT_IPCS)
348 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
349 
350 	if ((staterr & (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
351 	    E1000_RXD_STAT_TCPCS) {
352 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
353 					   CSUM_PSEUDO_HDR |
354 					   CSUM_FRAG_NOT_CHECKED;
355 		mp->m_pkthdr.csum_data = htons(0xffff);
356 	}
357 }
358 
359 static __inline struct pktinfo *
360 emx_rssinfo(struct mbuf *m, struct pktinfo *pi,
361 	    uint32_t mrq, uint32_t hash, uint32_t staterr)
362 {
363 	switch (mrq & EMX_RXDMRQ_RSSTYPE_MASK) {
364 	case EMX_RXDMRQ_IPV4_TCP:
365 		pi->pi_netisr = NETISR_IP;
366 		pi->pi_flags = 0;
367 		pi->pi_l3proto = IPPROTO_TCP;
368 		break;
369 
370 	case EMX_RXDMRQ_IPV6_TCP:
371 		pi->pi_netisr = NETISR_IPV6;
372 		pi->pi_flags = 0;
373 		pi->pi_l3proto = IPPROTO_TCP;
374 		break;
375 
376 	case EMX_RXDMRQ_IPV4:
377 		if (staterr & E1000_RXD_STAT_IXSM)
378 			return NULL;
379 
380 		if ((staterr &
381 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
382 		    E1000_RXD_STAT_TCPCS) {
383 			pi->pi_netisr = NETISR_IP;
384 			pi->pi_flags = 0;
385 			pi->pi_l3proto = IPPROTO_UDP;
386 			break;
387 		}
388 		/* FALL THROUGH */
389 	default:
390 		return NULL;
391 	}
392 
393 	m->m_flags |= M_HASH;
394 	m->m_pkthdr.hash = toeplitz_hash(hash);
395 	return pi;
396 }
397 
398 static int
399 emx_probe(device_t dev)
400 {
401 	const struct emx_device *d;
402 	uint16_t vid, did;
403 
404 	vid = pci_get_vendor(dev);
405 	did = pci_get_device(dev);
406 
407 	for (d = emx_devices; d->desc != NULL; ++d) {
408 		if (vid == d->vid && did == d->did) {
409 			device_set_desc(dev, d->desc);
410 			device_set_async_attach(dev, TRUE);
411 			return 0;
412 		}
413 	}
414 	return ENXIO;
415 }
416 
417 static int
418 emx_attach(device_t dev)
419 {
420 	struct emx_softc *sc = device_get_softc(dev);
421 	int error = 0, i, throttle, msi_enable, tx_ring_max;
422 	u_int intr_flags;
423 	uint16_t eeprom_data, device_id, apme_mask;
424 	driver_intr_t *intr_func;
425 #ifdef IFPOLL_ENABLE
426 	int offset, offset_def;
427 #endif
428 
429 	/*
430 	 * Setup RX rings
431 	 */
432 	for (i = 0; i < EMX_NRX_RING; ++i) {
433 		sc->rx_data[i].sc = sc;
434 		sc->rx_data[i].idx = i;
435 	}
436 
437 	/*
438 	 * Setup TX ring
439 	 */
440 	for (i = 0; i < EMX_NTX_RING; ++i) {
441 		sc->tx_data[i].sc = sc;
442 		sc->tx_data[i].idx = i;
443 	}
444 
445 	/*
446 	 * Initialize serializers
447 	 */
448 	lwkt_serialize_init(&sc->main_serialize);
449 	for (i = 0; i < EMX_NTX_RING; ++i)
450 		lwkt_serialize_init(&sc->tx_data[i].tx_serialize);
451 	for (i = 0; i < EMX_NRX_RING; ++i)
452 		lwkt_serialize_init(&sc->rx_data[i].rx_serialize);
453 
454 	/*
455 	 * Initialize serializer array
456 	 */
457 	i = 0;
458 
459 	KKASSERT(i < EMX_NSERIALIZE);
460 	sc->serializes[i++] = &sc->main_serialize;
461 
462 	KKASSERT(i < EMX_NSERIALIZE);
463 	sc->serializes[i++] = &sc->tx_data[0].tx_serialize;
464 	KKASSERT(i < EMX_NSERIALIZE);
465 	sc->serializes[i++] = &sc->tx_data[1].tx_serialize;
466 
467 	KKASSERT(i < EMX_NSERIALIZE);
468 	sc->serializes[i++] = &sc->rx_data[0].rx_serialize;
469 	KKASSERT(i < EMX_NSERIALIZE);
470 	sc->serializes[i++] = &sc->rx_data[1].rx_serialize;
471 
472 	KKASSERT(i == EMX_NSERIALIZE);
473 
474 	callout_init_mp(&sc->timer);
475 
476 	sc->dev = sc->osdep.dev = dev;
477 
478 	/*
479 	 * Determine hardware and mac type
480 	 */
481 	sc->hw.vendor_id = pci_get_vendor(dev);
482 	sc->hw.device_id = pci_get_device(dev);
483 	sc->hw.revision_id = pci_get_revid(dev);
484 	sc->hw.subsystem_vendor_id = pci_get_subvendor(dev);
485 	sc->hw.subsystem_device_id = pci_get_subdevice(dev);
486 
487 	if (e1000_set_mac_type(&sc->hw))
488 		return ENXIO;
489 
490 	/* Enable bus mastering */
491 	pci_enable_busmaster(dev);
492 
493 	/*
494 	 * Allocate IO memory
495 	 */
496 	sc->memory_rid = EMX_BAR_MEM;
497 	sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
498 					    &sc->memory_rid, RF_ACTIVE);
499 	if (sc->memory == NULL) {
500 		device_printf(dev, "Unable to allocate bus resource: memory\n");
501 		error = ENXIO;
502 		goto fail;
503 	}
504 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
505 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
506 
507 	/* XXX This is quite goofy, it is not actually used */
508 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
509 
510 	/*
511 	 * Don't enable MSI-X on 82574, see:
512 	 * 82574 specification update errata #15
513 	 *
514 	 * Don't enable MSI on 82571/82572, see:
515 	 * 82571/82572 specification update errata #63
516 	 */
517 	msi_enable = emx_msi_enable;
518 	if (msi_enable &&
519 	    (sc->hw.mac.type == e1000_82571 ||
520 	     sc->hw.mac.type == e1000_82572))
521 		msi_enable = 0;
522 
523 	/*
524 	 * Allocate interrupt
525 	 */
526 	sc->intr_type = pci_alloc_1intr(dev, msi_enable,
527 	    &sc->intr_rid, &intr_flags);
528 
529 	if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
530 		int unshared;
531 
532 		unshared = device_getenv_int(dev, "irq.unshared", 0);
533 		if (!unshared) {
534 			sc->flags |= EMX_FLAG_SHARED_INTR;
535 			if (bootverbose)
536 				device_printf(dev, "IRQ shared\n");
537 		} else {
538 			intr_flags &= ~RF_SHAREABLE;
539 			if (bootverbose)
540 				device_printf(dev, "IRQ unshared\n");
541 		}
542 	}
543 
544 	sc->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->intr_rid,
545 	    intr_flags);
546 	if (sc->intr_res == NULL) {
547 		device_printf(dev, "Unable to allocate bus resource: "
548 		    "interrupt\n");
549 		error = ENXIO;
550 		goto fail;
551 	}
552 
553 	/* Save PCI command register for Shared Code */
554 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
555 	sc->hw.back = &sc->osdep;
556 
557 	/* Do Shared Code initialization */
558 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
559 		device_printf(dev, "Setup of Shared code failed\n");
560 		error = ENXIO;
561 		goto fail;
562 	}
563 	e1000_get_bus_info(&sc->hw);
564 
565 	sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
566 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
567 	sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
568 
569 	/*
570 	 * Interrupt throttle rate
571 	 */
572 	throttle = device_getenv_int(dev, "int_throttle_ceil",
573 	    emx_int_throttle_ceil);
574 	if (throttle == 0) {
575 		sc->int_throttle_ceil = 0;
576 	} else {
577 		if (throttle < 0)
578 			throttle = EMX_DEFAULT_ITR;
579 
580 		/* Recalculate the tunable value to get the exact frequency. */
581 		throttle = 1000000000 / 256 / throttle;
582 
583 		/* Upper 16bits of ITR is reserved and should be zero */
584 		if (throttle & 0xffff0000)
585 			throttle = 1000000000 / 256 / EMX_DEFAULT_ITR;
586 
587 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
588 	}
589 
590 	e1000_init_script_state_82541(&sc->hw, TRUE);
591 	e1000_set_tbi_compatibility_82543(&sc->hw, TRUE);
592 
593 	/* Copper options */
594 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
595 		sc->hw.phy.mdix = EMX_AUTO_ALL_MODES;
596 		sc->hw.phy.disable_polarity_correction = FALSE;
597 		sc->hw.phy.ms_type = EMX_MASTER_SLAVE;
598 	}
599 
600 	/* Set the frame limits assuming standard ethernet sized frames. */
601 	sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
602 	sc->min_frame_size = ETHER_MIN_LEN;
603 
604 	/* This controls when hardware reports transmit completion status. */
605 	sc->hw.mac.report_tx_early = 1;
606 
607 	/* Calculate # of RX rings */
608 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr", emx_rxr);
609 	sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, EMX_NRX_RING);
610 
611 	/*
612 	 * Calculate # of TX rings
613 	 *
614 	 * NOTE:
615 	 * Don't enable multiple TX queues on 82574; it always gives
616 	 * watchdog timeout on TX queue0, when multiple TCP streams are
617 	 * received.  It was originally suspected that the hardware TX
618 	 * checksum offloading caused this watchdog timeout, since only
619 	 * TCP ACKs are sent during TCP receiving tests.  However, even
620 	 * if the hardware TX checksum offloading is disable, TX queue0
621 	 * still will give watchdog.
622 	 */
623 	tx_ring_max = 1;
624 	if (sc->hw.mac.type == e1000_82571 ||
625 	    sc->hw.mac.type == e1000_82572 ||
626 	    sc->hw.mac.type == e1000_80003es2lan)
627 		tx_ring_max = EMX_NTX_RING;
628 	sc->tx_ring_cnt = device_getenv_int(dev, "txr", emx_txr);
629 	sc->tx_ring_cnt = if_ring_count2(sc->tx_ring_cnt, tx_ring_max);
630 
631 	/* Allocate RX/TX rings' busdma(9) stuffs */
632 	error = emx_dma_alloc(sc);
633 	if (error)
634 		goto fail;
635 
636 	/* Allocate multicast array memory. */
637 	sc->mta = kmalloc(ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX,
638 	    M_DEVBUF, M_WAITOK);
639 
640 	/* Indicate SOL/IDER usage */
641 	if (e1000_check_reset_block(&sc->hw)) {
642 		device_printf(dev,
643 		    "PHY reset is blocked due to SOL/IDER session.\n");
644 	}
645 
646 	/*
647 	 * Start from a known state, this is important in reading the
648 	 * nvm and mac from that.
649 	 */
650 	e1000_reset_hw(&sc->hw);
651 
652 	/* Make sure we have a good EEPROM before we read from it */
653 	if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
654 		/*
655 		 * Some PCI-E parts fail the first check due to
656 		 * the link being in sleep state, call it again,
657 		 * if it fails a second time its a real issue.
658 		 */
659 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
660 			device_printf(dev,
661 			    "The EEPROM Checksum Is Not Valid\n");
662 			error = EIO;
663 			goto fail;
664 		}
665 	}
666 
667 	/* Copy the permanent MAC address out of the EEPROM */
668 	if (e1000_read_mac_addr(&sc->hw) < 0) {
669 		device_printf(dev, "EEPROM read error while reading MAC"
670 		    " address\n");
671 		error = EIO;
672 		goto fail;
673 	}
674 	if (!emx_is_valid_eaddr(sc->hw.mac.addr)) {
675 		device_printf(dev, "Invalid MAC address\n");
676 		error = EIO;
677 		goto fail;
678 	}
679 
680 	/* Determine if we have to control management hardware */
681 	if (e1000_enable_mng_pass_thru(&sc->hw))
682 		sc->flags |= EMX_FLAG_HAS_MGMT;
683 
684 	/*
685 	 * Setup Wake-on-Lan
686 	 */
687 	apme_mask = EMX_EEPROM_APME;
688 	eeprom_data = 0;
689 	switch (sc->hw.mac.type) {
690 	case e1000_82573:
691 		sc->flags |= EMX_FLAG_HAS_AMT;
692 		/* FALL THROUGH */
693 
694 	case e1000_82571:
695 	case e1000_82572:
696 	case e1000_80003es2lan:
697 		if (sc->hw.bus.func == 1) {
698 			e1000_read_nvm(&sc->hw,
699 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
700 		} else {
701 			e1000_read_nvm(&sc->hw,
702 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
703 		}
704 		break;
705 
706 	default:
707 		e1000_read_nvm(&sc->hw,
708 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
709 		break;
710 	}
711 	if (eeprom_data & apme_mask)
712 		sc->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
713 
714 	/*
715          * We have the eeprom settings, now apply the special cases
716          * where the eeprom may be wrong or the board won't support
717          * wake on lan on a particular port
718 	 */
719 	device_id = pci_get_device(dev);
720         switch (device_id) {
721 	case E1000_DEV_ID_82571EB_FIBER:
722 		/*
723 		 * Wake events only supported on port A for dual fiber
724 		 * regardless of eeprom setting
725 		 */
726 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
727 		    E1000_STATUS_FUNC_1)
728 			sc->wol = 0;
729 		break;
730 
731 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
732 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
733 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
734                 /* if quad port sc, disable WoL on all but port A */
735 		if (emx_global_quad_port_a != 0)
736 			sc->wol = 0;
737 		/* Reset for multiple quad port adapters */
738 		if (++emx_global_quad_port_a == 4)
739 			emx_global_quad_port_a = 0;
740                 break;
741 	}
742 
743 	/* XXX disable wol */
744 	sc->wol = 0;
745 
746 #ifdef IFPOLL_ENABLE
747 	/*
748 	 * NPOLLING RX CPU offset
749 	 */
750 	if (sc->rx_ring_cnt == ncpus2) {
751 		offset = 0;
752 	} else {
753 		offset_def = (sc->rx_ring_cnt * device_get_unit(dev)) % ncpus2;
754 		offset = device_getenv_int(dev, "npoll.rxoff", offset_def);
755 		if (offset >= ncpus2 ||
756 		    offset % sc->rx_ring_cnt != 0) {
757 			device_printf(dev, "invalid npoll.rxoff %d, use %d\n",
758 			    offset, offset_def);
759 			offset = offset_def;
760 		}
761 	}
762 	sc->rx_npoll_off = offset;
763 
764 	/*
765 	 * NPOLLING TX CPU offset
766 	 */
767 	if (sc->tx_ring_cnt == ncpus2) {
768 		offset = 0;
769 	} else {
770 		offset_def = (sc->tx_ring_cnt * device_get_unit(dev)) % ncpus2;
771 		offset = device_getenv_int(dev, "npoll.txoff", offset_def);
772 		if (offset >= ncpus2 ||
773 		    offset % sc->tx_ring_cnt != 0) {
774 			device_printf(dev, "invalid npoll.txoff %d, use %d\n",
775 			    offset, offset_def);
776 			offset = offset_def;
777 		}
778 	}
779 	sc->tx_npoll_off = offset;
780 #endif
781 	sc->tx_ring_inuse = emx_get_txring_inuse(sc, FALSE);
782 
783 	/* Setup OS specific network interface */
784 	emx_setup_ifp(sc);
785 
786 	/* Add sysctl tree, must after em_setup_ifp() */
787 	emx_add_sysctl(sc);
788 
789 	/* Reset the hardware */
790 	error = emx_reset(sc);
791 	if (error) {
792 		device_printf(dev, "Unable to reset the hardware\n");
793 		goto fail;
794 	}
795 
796 	/* Initialize statistics */
797 	emx_update_stats(sc);
798 
799 	sc->hw.mac.get_link_status = 1;
800 	emx_update_link_status(sc);
801 
802 	/* Non-AMT based hardware can now take control from firmware */
803 	if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
804 	    EMX_FLAG_HAS_MGMT)
805 		emx_get_hw_control(sc);
806 
807 	/*
808 	 * Missing Interrupt Following ICR read:
809 	 *
810 	 * 82571/82572 specification update errata #76
811 	 * 82573 specification update errata #31
812 	 * 82574 specification update errata #12
813 	 */
814 	intr_func = emx_intr;
815 	if ((sc->flags & EMX_FLAG_SHARED_INTR) &&
816 	    (sc->hw.mac.type == e1000_82571 ||
817 	     sc->hw.mac.type == e1000_82572 ||
818 	     sc->hw.mac.type == e1000_82573 ||
819 	     sc->hw.mac.type == e1000_82574))
820 		intr_func = emx_intr_mask;
821 
822 	error = bus_setup_intr(dev, sc->intr_res, INTR_MPSAFE, intr_func, sc,
823 			       &sc->intr_tag, &sc->main_serialize);
824 	if (error) {
825 		device_printf(dev, "Failed to register interrupt handler");
826 		ether_ifdetach(&sc->arpcom.ac_if);
827 		goto fail;
828 	}
829 	return (0);
830 fail:
831 	emx_detach(dev);
832 	return (error);
833 }
834 
835 static int
836 emx_detach(device_t dev)
837 {
838 	struct emx_softc *sc = device_get_softc(dev);
839 
840 	if (device_is_attached(dev)) {
841 		struct ifnet *ifp = &sc->arpcom.ac_if;
842 
843 		ifnet_serialize_all(ifp);
844 
845 		emx_stop(sc);
846 
847 		e1000_phy_hw_reset(&sc->hw);
848 
849 		emx_rel_mgmt(sc);
850 		emx_rel_hw_control(sc);
851 
852 		if (sc->wol) {
853 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
854 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
855 			emx_enable_wol(dev);
856 		}
857 
858 		bus_teardown_intr(dev, sc->intr_res, sc->intr_tag);
859 
860 		ifnet_deserialize_all(ifp);
861 
862 		ether_ifdetach(ifp);
863 	} else if (sc->memory != NULL) {
864 		emx_rel_hw_control(sc);
865 	}
866 	bus_generic_detach(dev);
867 
868 	if (sc->intr_res != NULL) {
869 		bus_release_resource(dev, SYS_RES_IRQ, sc->intr_rid,
870 				     sc->intr_res);
871 	}
872 
873 	if (sc->intr_type == PCI_INTR_TYPE_MSI)
874 		pci_release_msi(dev);
875 
876 	if (sc->memory != NULL) {
877 		bus_release_resource(dev, SYS_RES_MEMORY, sc->memory_rid,
878 				     sc->memory);
879 	}
880 
881 	emx_dma_free(sc);
882 
883 	/* Free sysctl tree */
884 	if (sc->sysctl_tree != NULL)
885 		sysctl_ctx_free(&sc->sysctl_ctx);
886 
887 	if (sc->mta != NULL)
888 		kfree(sc->mta, M_DEVBUF);
889 
890 	return (0);
891 }
892 
893 static int
894 emx_shutdown(device_t dev)
895 {
896 	return emx_suspend(dev);
897 }
898 
899 static int
900 emx_suspend(device_t dev)
901 {
902 	struct emx_softc *sc = device_get_softc(dev);
903 	struct ifnet *ifp = &sc->arpcom.ac_if;
904 
905 	ifnet_serialize_all(ifp);
906 
907 	emx_stop(sc);
908 
909 	emx_rel_mgmt(sc);
910 	emx_rel_hw_control(sc);
911 
912 	if (sc->wol) {
913 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
914 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
915 		emx_enable_wol(dev);
916 	}
917 
918 	ifnet_deserialize_all(ifp);
919 
920 	return bus_generic_suspend(dev);
921 }
922 
923 static int
924 emx_resume(device_t dev)
925 {
926 	struct emx_softc *sc = device_get_softc(dev);
927 	struct ifnet *ifp = &sc->arpcom.ac_if;
928 	int i;
929 
930 	ifnet_serialize_all(ifp);
931 
932 	emx_init(sc);
933 	emx_get_mgmt(sc);
934 	for (i = 0; i < sc->tx_ring_inuse; ++i)
935 		ifsq_devstart_sched(sc->tx_data[i].ifsq);
936 
937 	ifnet_deserialize_all(ifp);
938 
939 	return bus_generic_resume(dev);
940 }
941 
942 static void
943 emx_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
944 {
945 	struct emx_softc *sc = ifp->if_softc;
946 	struct emx_txdata *tdata = ifsq_get_priv(ifsq);
947 	struct mbuf *m_head;
948 	int idx = -1, nsegs = 0;
949 
950 	KKASSERT(tdata->ifsq == ifsq);
951 	ASSERT_SERIALIZED(&tdata->tx_serialize);
952 
953 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq))
954 		return;
955 
956 	if (!sc->link_active || (tdata->tx_flags & EMX_TXFLAG_ENABLED) == 0) {
957 		ifsq_purge(ifsq);
958 		return;
959 	}
960 
961 	while (!ifsq_is_empty(ifsq)) {
962 		/* Now do we at least have a minimal? */
963 		if (EMX_IS_OACTIVE(tdata)) {
964 			emx_tx_collect(tdata);
965 			if (EMX_IS_OACTIVE(tdata)) {
966 				ifsq_set_oactive(ifsq);
967 				break;
968 			}
969 		}
970 
971 		logif(pkt_txqueue);
972 		m_head = ifsq_dequeue(ifsq, NULL);
973 		if (m_head == NULL)
974 			break;
975 
976 		if (emx_encap(tdata, &m_head, &nsegs, &idx)) {
977 			IFNET_STAT_INC(ifp, oerrors, 1);
978 			emx_tx_collect(tdata);
979 			continue;
980 		}
981 
982 		if (nsegs >= tdata->tx_wreg_nsegs) {
983 			E1000_WRITE_REG(&sc->hw, E1000_TDT(tdata->idx), idx);
984 			nsegs = 0;
985 			idx = -1;
986 		}
987 
988 		/* Send a copy of the frame to the BPF listener */
989 		ETHER_BPF_MTAP(ifp, m_head);
990 
991 		/* Set timeout in case hardware has problems transmitting. */
992 		tdata->tx_watchdog.wd_timer = EMX_TX_TIMEOUT;
993 	}
994 	if (idx >= 0)
995 		E1000_WRITE_REG(&sc->hw, E1000_TDT(tdata->idx), idx);
996 }
997 
998 static int
999 emx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1000 {
1001 	struct emx_softc *sc = ifp->if_softc;
1002 	struct ifreq *ifr = (struct ifreq *)data;
1003 	uint16_t eeprom_data = 0;
1004 	int max_frame_size, mask, reinit;
1005 	int error = 0;
1006 
1007 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1008 
1009 	switch (command) {
1010 	case SIOCSIFMTU:
1011 		switch (sc->hw.mac.type) {
1012 		case e1000_82573:
1013 			/*
1014 			 * 82573 only supports jumbo frames
1015 			 * if ASPM is disabled.
1016 			 */
1017 			e1000_read_nvm(&sc->hw, NVM_INIT_3GIO_3, 1,
1018 				       &eeprom_data);
1019 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1020 				max_frame_size = ETHER_MAX_LEN;
1021 				break;
1022 			}
1023 			/* FALL THROUGH */
1024 
1025 		/* Limit Jumbo Frame size */
1026 		case e1000_82571:
1027 		case e1000_82572:
1028 		case e1000_82574:
1029 		case e1000_80003es2lan:
1030 			max_frame_size = 9234;
1031 			break;
1032 
1033 		default:
1034 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1035 			break;
1036 		}
1037 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1038 		    ETHER_CRC_LEN) {
1039 			error = EINVAL;
1040 			break;
1041 		}
1042 
1043 		ifp->if_mtu = ifr->ifr_mtu;
1044 		sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
1045 				     ETHER_CRC_LEN;
1046 
1047 		if (ifp->if_flags & IFF_RUNNING)
1048 			emx_init(sc);
1049 		break;
1050 
1051 	case SIOCSIFFLAGS:
1052 		if (ifp->if_flags & IFF_UP) {
1053 			if ((ifp->if_flags & IFF_RUNNING)) {
1054 				if ((ifp->if_flags ^ sc->if_flags) &
1055 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1056 					emx_disable_promisc(sc);
1057 					emx_set_promisc(sc);
1058 				}
1059 			} else {
1060 				emx_init(sc);
1061 			}
1062 		} else if (ifp->if_flags & IFF_RUNNING) {
1063 			emx_stop(sc);
1064 		}
1065 		sc->if_flags = ifp->if_flags;
1066 		break;
1067 
1068 	case SIOCADDMULTI:
1069 	case SIOCDELMULTI:
1070 		if (ifp->if_flags & IFF_RUNNING) {
1071 			emx_disable_intr(sc);
1072 			emx_set_multi(sc);
1073 #ifdef IFPOLL_ENABLE
1074 			if (!(ifp->if_flags & IFF_NPOLLING))
1075 #endif
1076 				emx_enable_intr(sc);
1077 		}
1078 		break;
1079 
1080 	case SIOCSIFMEDIA:
1081 		/* Check SOL/IDER usage */
1082 		if (e1000_check_reset_block(&sc->hw)) {
1083 			device_printf(sc->dev, "Media change is"
1084 			    " blocked due to SOL/IDER session.\n");
1085 			break;
1086 		}
1087 		/* FALL THROUGH */
1088 
1089 	case SIOCGIFMEDIA:
1090 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
1091 		break;
1092 
1093 	case SIOCSIFCAP:
1094 		reinit = 0;
1095 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1096 		if (mask & IFCAP_RXCSUM) {
1097 			ifp->if_capenable ^= IFCAP_RXCSUM;
1098 			reinit = 1;
1099 		}
1100 		if (mask & IFCAP_VLAN_HWTAGGING) {
1101 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1102 			reinit = 1;
1103 		}
1104 		if (mask & IFCAP_TXCSUM) {
1105 			ifp->if_capenable ^= IFCAP_TXCSUM;
1106 			if (ifp->if_capenable & IFCAP_TXCSUM)
1107 				ifp->if_hwassist |= EMX_CSUM_FEATURES;
1108 			else
1109 				ifp->if_hwassist &= ~EMX_CSUM_FEATURES;
1110 		}
1111 		if (mask & IFCAP_TSO) {
1112 			ifp->if_capenable ^= IFCAP_TSO;
1113 			if (ifp->if_capenable & IFCAP_TSO)
1114 				ifp->if_hwassist |= CSUM_TSO;
1115 			else
1116 				ifp->if_hwassist &= ~CSUM_TSO;
1117 		}
1118 		if (mask & IFCAP_RSS)
1119 			ifp->if_capenable ^= IFCAP_RSS;
1120 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1121 			emx_init(sc);
1122 		break;
1123 
1124 	default:
1125 		error = ether_ioctl(ifp, command, data);
1126 		break;
1127 	}
1128 	return (error);
1129 }
1130 
1131 static void
1132 emx_watchdog(struct ifaltq_subque *ifsq)
1133 {
1134 	struct emx_txdata *tdata = ifsq_get_priv(ifsq);
1135 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
1136 	struct emx_softc *sc = ifp->if_softc;
1137 	int i;
1138 
1139 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1140 
1141 	/*
1142 	 * The timer is set to 5 every time start queues a packet.
1143 	 * Then txeof keeps resetting it as long as it cleans at
1144 	 * least one descriptor.
1145 	 * Finally, anytime all descriptors are clean the timer is
1146 	 * set to 0.
1147 	 */
1148 
1149 	if (E1000_READ_REG(&sc->hw, E1000_TDT(tdata->idx)) ==
1150 	    E1000_READ_REG(&sc->hw, E1000_TDH(tdata->idx))) {
1151 		/*
1152 		 * If we reach here, all TX jobs are completed and
1153 		 * the TX engine should have been idled for some time.
1154 		 * We don't need to call ifsq_devstart_sched() here.
1155 		 */
1156 		ifsq_clr_oactive(ifsq);
1157 		tdata->tx_watchdog.wd_timer = 0;
1158 		return;
1159 	}
1160 
1161 	/*
1162 	 * If we are in this routine because of pause frames, then
1163 	 * don't reset the hardware.
1164 	 */
1165 	if (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_TXOFF) {
1166 		tdata->tx_watchdog.wd_timer = EMX_TX_TIMEOUT;
1167 		return;
1168 	}
1169 
1170 	if_printf(ifp, "TX %d watchdog timeout -- resetting\n", tdata->idx);
1171 
1172 	IFNET_STAT_INC(ifp, oerrors, 1);
1173 
1174 	emx_init(sc);
1175 	for (i = 0; i < sc->tx_ring_inuse; ++i)
1176 		ifsq_devstart_sched(sc->tx_data[i].ifsq);
1177 }
1178 
1179 static void
1180 emx_init(void *xsc)
1181 {
1182 	struct emx_softc *sc = xsc;
1183 	struct ifnet *ifp = &sc->arpcom.ac_if;
1184 	device_t dev = sc->dev;
1185 	boolean_t polling;
1186 	int i;
1187 
1188 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1189 
1190 	emx_stop(sc);
1191 
1192 	/* Get the latest mac address, User can use a LAA */
1193         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
1194 
1195 	/* Put the address into the Receive Address Array */
1196 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1197 
1198 	/*
1199 	 * With the 82571 sc, RAR[0] may be overwritten
1200 	 * when the other port is reset, we make a duplicate
1201 	 * in RAR[14] for that eventuality, this assures
1202 	 * the interface continues to function.
1203 	 */
1204 	if (sc->hw.mac.type == e1000_82571) {
1205 		e1000_set_laa_state_82571(&sc->hw, TRUE);
1206 		e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1207 		    E1000_RAR_ENTRIES - 1);
1208 	}
1209 
1210 	/* Initialize the hardware */
1211 	if (emx_reset(sc)) {
1212 		device_printf(dev, "Unable to reset the hardware\n");
1213 		/* XXX emx_stop()? */
1214 		return;
1215 	}
1216 	emx_update_link_status(sc);
1217 
1218 	/* Setup VLAN support, basic and offload if available */
1219 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1220 
1221 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1222 		uint32_t ctrl;
1223 
1224 		ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
1225 		ctrl |= E1000_CTRL_VME;
1226 		E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
1227 	}
1228 
1229 	/* Configure for OS presence */
1230 	emx_get_mgmt(sc);
1231 
1232 	polling = FALSE;
1233 #ifdef IFPOLL_ENABLE
1234 	if (ifp->if_flags & IFF_NPOLLING)
1235 		polling = TRUE;
1236 #endif
1237 	sc->tx_ring_inuse = emx_get_txring_inuse(sc, polling);
1238 	ifq_set_subq_mask(&ifp->if_snd, sc->tx_ring_inuse - 1);
1239 
1240 	/* Prepare transmit descriptors and buffers */
1241 	for (i = 0; i < sc->tx_ring_inuse; ++i)
1242 		emx_init_tx_ring(&sc->tx_data[i]);
1243 	emx_init_tx_unit(sc);
1244 
1245 	/* Setup Multicast table */
1246 	emx_set_multi(sc);
1247 
1248 	/* Prepare receive descriptors and buffers */
1249 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1250 		if (emx_init_rx_ring(&sc->rx_data[i])) {
1251 			device_printf(dev,
1252 			    "Could not setup receive structures\n");
1253 			emx_stop(sc);
1254 			return;
1255 		}
1256 	}
1257 	emx_init_rx_unit(sc);
1258 
1259 	/* Don't lose promiscuous settings */
1260 	emx_set_promisc(sc);
1261 
1262 	ifp->if_flags |= IFF_RUNNING;
1263 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
1264 		ifsq_clr_oactive(sc->tx_data[i].ifsq);
1265 		ifsq_watchdog_start(&sc->tx_data[i].tx_watchdog);
1266 	}
1267 
1268 	callout_reset(&sc->timer, hz, emx_timer, sc);
1269 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1270 
1271 	/* MSI/X configuration for 82574 */
1272 	if (sc->hw.mac.type == e1000_82574) {
1273 		int tmp;
1274 
1275 		tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1276 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1277 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1278 		/*
1279 		 * XXX MSIX
1280 		 * Set the IVAR - interrupt vector routing.
1281 		 * Each nibble represents a vector, high bit
1282 		 * is enable, other 3 bits are the MSIX table
1283 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1284 		 * Link (other) to 2, hence the magic number.
1285 		 */
1286 		E1000_WRITE_REG(&sc->hw, E1000_IVAR, 0x800A0908);
1287 	}
1288 
1289 	/*
1290 	 * Only enable interrupts if we are not polling, make sure
1291 	 * they are off otherwise.
1292 	 */
1293 	if (polling)
1294 		emx_disable_intr(sc);
1295 	else
1296 		emx_enable_intr(sc);
1297 
1298 	/* AMT based hardware can now take control from firmware */
1299 	if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
1300 	    (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT))
1301 		emx_get_hw_control(sc);
1302 }
1303 
1304 static void
1305 emx_intr(void *xsc)
1306 {
1307 	emx_intr_body(xsc, TRUE);
1308 }
1309 
1310 static void
1311 emx_intr_body(struct emx_softc *sc, boolean_t chk_asserted)
1312 {
1313 	struct ifnet *ifp = &sc->arpcom.ac_if;
1314 	uint32_t reg_icr;
1315 
1316 	logif(intr_beg);
1317 	ASSERT_SERIALIZED(&sc->main_serialize);
1318 
1319 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1320 
1321 	if (chk_asserted && (reg_icr & E1000_ICR_INT_ASSERTED) == 0) {
1322 		logif(intr_end);
1323 		return;
1324 	}
1325 
1326 	/*
1327 	 * XXX: some laptops trigger several spurious interrupts
1328 	 * on emx(4) when in the resume cycle. The ICR register
1329 	 * reports all-ones value in this case. Processing such
1330 	 * interrupts would lead to a freeze. I don't know why.
1331 	 */
1332 	if (reg_icr == 0xffffffff) {
1333 		logif(intr_end);
1334 		return;
1335 	}
1336 
1337 	if (ifp->if_flags & IFF_RUNNING) {
1338 		if (reg_icr &
1339 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
1340 			int i;
1341 
1342 			for (i = 0; i < sc->rx_ring_cnt; ++i) {
1343 				lwkt_serialize_enter(
1344 				&sc->rx_data[i].rx_serialize);
1345 				emx_rxeof(&sc->rx_data[i], -1);
1346 				lwkt_serialize_exit(
1347 				&sc->rx_data[i].rx_serialize);
1348 			}
1349 		}
1350 		if (reg_icr & E1000_ICR_TXDW) {
1351 			struct emx_txdata *tdata = &sc->tx_data[0];
1352 
1353 			lwkt_serialize_enter(&tdata->tx_serialize);
1354 			emx_txeof(tdata);
1355 			if (!ifsq_is_empty(tdata->ifsq))
1356 				ifsq_devstart(tdata->ifsq);
1357 			lwkt_serialize_exit(&tdata->tx_serialize);
1358 		}
1359 	}
1360 
1361 	/* Link status change */
1362 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1363 		emx_serialize_skipmain(sc);
1364 
1365 		callout_stop(&sc->timer);
1366 		sc->hw.mac.get_link_status = 1;
1367 		emx_update_link_status(sc);
1368 
1369 		/* Deal with TX cruft when link lost */
1370 		emx_tx_purge(sc);
1371 
1372 		callout_reset(&sc->timer, hz, emx_timer, sc);
1373 
1374 		emx_deserialize_skipmain(sc);
1375 	}
1376 
1377 	if (reg_icr & E1000_ICR_RXO)
1378 		sc->rx_overruns++;
1379 
1380 	logif(intr_end);
1381 }
1382 
1383 static void
1384 emx_intr_mask(void *xsc)
1385 {
1386 	struct emx_softc *sc = xsc;
1387 
1388 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
1389 	/*
1390 	 * NOTE:
1391 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1392 	 * so don't check it.
1393 	 */
1394 	emx_intr_body(sc, FALSE);
1395 	E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
1396 }
1397 
1398 static void
1399 emx_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1400 {
1401 	struct emx_softc *sc = ifp->if_softc;
1402 
1403 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1404 
1405 	emx_update_link_status(sc);
1406 
1407 	ifmr->ifm_status = IFM_AVALID;
1408 	ifmr->ifm_active = IFM_ETHER;
1409 
1410 	if (!sc->link_active)
1411 		return;
1412 
1413 	ifmr->ifm_status |= IFM_ACTIVE;
1414 
1415 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1416 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1417 		ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
1418 	} else {
1419 		switch (sc->link_speed) {
1420 		case 10:
1421 			ifmr->ifm_active |= IFM_10_T;
1422 			break;
1423 		case 100:
1424 			ifmr->ifm_active |= IFM_100_TX;
1425 			break;
1426 
1427 		case 1000:
1428 			ifmr->ifm_active |= IFM_1000_T;
1429 			break;
1430 		}
1431 		if (sc->link_duplex == FULL_DUPLEX)
1432 			ifmr->ifm_active |= IFM_FDX;
1433 		else
1434 			ifmr->ifm_active |= IFM_HDX;
1435 	}
1436 }
1437 
1438 static int
1439 emx_media_change(struct ifnet *ifp)
1440 {
1441 	struct emx_softc *sc = ifp->if_softc;
1442 	struct ifmedia *ifm = &sc->media;
1443 
1444 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1445 
1446 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1447 		return (EINVAL);
1448 
1449 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1450 	case IFM_AUTO:
1451 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1452 		sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
1453 		break;
1454 
1455 	case IFM_1000_LX:
1456 	case IFM_1000_SX:
1457 	case IFM_1000_T:
1458 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1459 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1460 		break;
1461 
1462 	case IFM_100_TX:
1463 		sc->hw.mac.autoneg = FALSE;
1464 		sc->hw.phy.autoneg_advertised = 0;
1465 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1466 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1467 		else
1468 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1469 		break;
1470 
1471 	case IFM_10_T:
1472 		sc->hw.mac.autoneg = FALSE;
1473 		sc->hw.phy.autoneg_advertised = 0;
1474 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1475 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1476 		else
1477 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1478 		break;
1479 
1480 	default:
1481 		if_printf(ifp, "Unsupported media type\n");
1482 		break;
1483 	}
1484 
1485 	emx_init(sc);
1486 
1487 	return (0);
1488 }
1489 
1490 static int
1491 emx_encap(struct emx_txdata *tdata, struct mbuf **m_headp,
1492     int *segs_used, int *idx)
1493 {
1494 	bus_dma_segment_t segs[EMX_MAX_SCATTER];
1495 	bus_dmamap_t map;
1496 	struct emx_txbuf *tx_buffer, *tx_buffer_mapped;
1497 	struct e1000_tx_desc *ctxd = NULL;
1498 	struct mbuf *m_head = *m_headp;
1499 	uint32_t txd_upper, txd_lower, cmd = 0;
1500 	int maxsegs, nsegs, i, j, first, last = 0, error;
1501 
1502 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1503 		error = emx_tso_pullup(tdata, m_headp);
1504 		if (error)
1505 			return error;
1506 		m_head = *m_headp;
1507 	}
1508 
1509 	txd_upper = txd_lower = 0;
1510 
1511 	/*
1512 	 * Capture the first descriptor index, this descriptor
1513 	 * will have the index of the EOP which is the only one
1514 	 * that now gets a DONE bit writeback.
1515 	 */
1516 	first = tdata->next_avail_tx_desc;
1517 	tx_buffer = &tdata->tx_buf[first];
1518 	tx_buffer_mapped = tx_buffer;
1519 	map = tx_buffer->map;
1520 
1521 	maxsegs = tdata->num_tx_desc_avail - EMX_TX_RESERVED;
1522 	KASSERT(maxsegs >= tdata->spare_tx_desc, ("not enough spare TX desc"));
1523 	if (maxsegs > EMX_MAX_SCATTER)
1524 		maxsegs = EMX_MAX_SCATTER;
1525 
1526 	error = bus_dmamap_load_mbuf_defrag(tdata->txtag, map, m_headp,
1527 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1528 	if (error) {
1529 		m_freem(*m_headp);
1530 		*m_headp = NULL;
1531 		return error;
1532 	}
1533         bus_dmamap_sync(tdata->txtag, map, BUS_DMASYNC_PREWRITE);
1534 
1535 	m_head = *m_headp;
1536 	tdata->tx_nsegs += nsegs;
1537 	*segs_used += nsegs;
1538 
1539 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1540 		/* TSO will consume one TX desc */
1541 		i = emx_tso_setup(tdata, m_head, &txd_upper, &txd_lower);
1542 		tdata->tx_nsegs += i;
1543 		*segs_used += i;
1544 	} else if (m_head->m_pkthdr.csum_flags & EMX_CSUM_FEATURES) {
1545 		/* TX csum offloading will consume one TX desc */
1546 		i = emx_txcsum(tdata, m_head, &txd_upper, &txd_lower);
1547 		tdata->tx_nsegs += i;
1548 		*segs_used += i;
1549 	}
1550 	i = tdata->next_avail_tx_desc;
1551 
1552 	/* Set up our transmit descriptors */
1553 	for (j = 0; j < nsegs; j++) {
1554 		tx_buffer = &tdata->tx_buf[i];
1555 		ctxd = &tdata->tx_desc_base[i];
1556 
1557 		ctxd->buffer_addr = htole64(segs[j].ds_addr);
1558 		ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1559 					   txd_lower | segs[j].ds_len);
1560 		ctxd->upper.data = htole32(txd_upper);
1561 
1562 		last = i;
1563 		if (++i == tdata->num_tx_desc)
1564 			i = 0;
1565 	}
1566 
1567 	tdata->next_avail_tx_desc = i;
1568 
1569 	KKASSERT(tdata->num_tx_desc_avail > nsegs);
1570 	tdata->num_tx_desc_avail -= nsegs;
1571 
1572         /* Handle VLAN tag */
1573 	if (m_head->m_flags & M_VLANTAG) {
1574 		/* Set the vlan id. */
1575 		ctxd->upper.fields.special =
1576 		    htole16(m_head->m_pkthdr.ether_vlantag);
1577 
1578 		/* Tell hardware to add tag */
1579 		ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
1580 	}
1581 
1582 	tx_buffer->m_head = m_head;
1583 	tx_buffer_mapped->map = tx_buffer->map;
1584 	tx_buffer->map = map;
1585 
1586 	if (tdata->tx_nsegs >= tdata->tx_intr_nsegs) {
1587 		tdata->tx_nsegs = 0;
1588 
1589 		/*
1590 		 * Report Status (RS) is turned on
1591 		 * every tx_intr_nsegs descriptors.
1592 		 */
1593 		cmd = E1000_TXD_CMD_RS;
1594 
1595 		/*
1596 		 * Keep track of the descriptor, which will
1597 		 * be written back by hardware.
1598 		 */
1599 		tdata->tx_dd[tdata->tx_dd_tail] = last;
1600 		EMX_INC_TXDD_IDX(tdata->tx_dd_tail);
1601 		KKASSERT(tdata->tx_dd_tail != tdata->tx_dd_head);
1602 	}
1603 
1604 	/*
1605 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1606 	 */
1607 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1608 
1609 	/*
1610 	 * Defer TDT updating, until enough descriptors are setup
1611 	 */
1612 	*idx = i;
1613 
1614 #ifdef EMX_TSS_DEBUG
1615 	tdata->tx_pkts++;
1616 #endif
1617 
1618 	return (0);
1619 }
1620 
1621 static void
1622 emx_set_promisc(struct emx_softc *sc)
1623 {
1624 	struct ifnet *ifp = &sc->arpcom.ac_if;
1625 	uint32_t reg_rctl;
1626 
1627 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1628 
1629 	if (ifp->if_flags & IFF_PROMISC) {
1630 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1631 		/* Turn this on if you want to see bad packets */
1632 		if (emx_debug_sbp)
1633 			reg_rctl |= E1000_RCTL_SBP;
1634 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1635 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1636 		reg_rctl |= E1000_RCTL_MPE;
1637 		reg_rctl &= ~E1000_RCTL_UPE;
1638 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1639 	}
1640 }
1641 
1642 static void
1643 emx_disable_promisc(struct emx_softc *sc)
1644 {
1645 	uint32_t reg_rctl;
1646 
1647 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1648 
1649 	reg_rctl &= ~E1000_RCTL_UPE;
1650 	reg_rctl &= ~E1000_RCTL_MPE;
1651 	reg_rctl &= ~E1000_RCTL_SBP;
1652 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1653 }
1654 
1655 static void
1656 emx_set_multi(struct emx_softc *sc)
1657 {
1658 	struct ifnet *ifp = &sc->arpcom.ac_if;
1659 	struct ifmultiaddr *ifma;
1660 	uint32_t reg_rctl = 0;
1661 	uint8_t *mta;
1662 	int mcnt = 0;
1663 
1664 	mta = sc->mta;
1665 	bzero(mta, ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX);
1666 
1667 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1668 		if (ifma->ifma_addr->sa_family != AF_LINK)
1669 			continue;
1670 
1671 		if (mcnt == EMX_MCAST_ADDR_MAX)
1672 			break;
1673 
1674 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1675 		      &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1676 		mcnt++;
1677 	}
1678 
1679 	if (mcnt >= EMX_MCAST_ADDR_MAX) {
1680 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1681 		reg_rctl |= E1000_RCTL_MPE;
1682 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1683 	} else {
1684 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1685 	}
1686 }
1687 
1688 /*
1689  * This routine checks for link status and updates statistics.
1690  */
1691 static void
1692 emx_timer(void *xsc)
1693 {
1694 	struct emx_softc *sc = xsc;
1695 	struct ifnet *ifp = &sc->arpcom.ac_if;
1696 
1697 	lwkt_serialize_enter(&sc->main_serialize);
1698 
1699 	emx_update_link_status(sc);
1700 	emx_update_stats(sc);
1701 
1702 	/* Reset LAA into RAR[0] on 82571 */
1703 	if (e1000_get_laa_state_82571(&sc->hw) == TRUE)
1704 		e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1705 
1706 	if (emx_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1707 		emx_print_hw_stats(sc);
1708 
1709 	emx_smartspeed(sc);
1710 
1711 	callout_reset(&sc->timer, hz, emx_timer, sc);
1712 
1713 	lwkt_serialize_exit(&sc->main_serialize);
1714 }
1715 
1716 static void
1717 emx_update_link_status(struct emx_softc *sc)
1718 {
1719 	struct e1000_hw *hw = &sc->hw;
1720 	struct ifnet *ifp = &sc->arpcom.ac_if;
1721 	device_t dev = sc->dev;
1722 	uint32_t link_check = 0;
1723 
1724 	/* Get the cached link value or read phy for real */
1725 	switch (hw->phy.media_type) {
1726 	case e1000_media_type_copper:
1727 		if (hw->mac.get_link_status) {
1728 			/* Do the work to read phy */
1729 			e1000_check_for_link(hw);
1730 			link_check = !hw->mac.get_link_status;
1731 			if (link_check) /* ESB2 fix */
1732 				e1000_cfg_on_link_up(hw);
1733 		} else {
1734 			link_check = TRUE;
1735 		}
1736 		break;
1737 
1738 	case e1000_media_type_fiber:
1739 		e1000_check_for_link(hw);
1740 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1741 		break;
1742 
1743 	case e1000_media_type_internal_serdes:
1744 		e1000_check_for_link(hw);
1745 		link_check = sc->hw.mac.serdes_has_link;
1746 		break;
1747 
1748 	case e1000_media_type_unknown:
1749 	default:
1750 		break;
1751 	}
1752 
1753 	/* Now check for a transition */
1754 	if (link_check && sc->link_active == 0) {
1755 		e1000_get_speed_and_duplex(hw, &sc->link_speed,
1756 		    &sc->link_duplex);
1757 
1758 		/*
1759 		 * Check if we should enable/disable SPEED_MODE bit on
1760 		 * 82571EB/82572EI
1761 		 */
1762 		if (sc->link_speed != SPEED_1000 &&
1763 		    (hw->mac.type == e1000_82571 ||
1764 		     hw->mac.type == e1000_82572)) {
1765 			int tarc0;
1766 
1767 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1768 			tarc0 &= ~EMX_TARC_SPEED_MODE;
1769 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1770 		}
1771 		if (bootverbose) {
1772 			device_printf(dev, "Link is up %d Mbps %s\n",
1773 			    sc->link_speed,
1774 			    ((sc->link_duplex == FULL_DUPLEX) ?
1775 			    "Full Duplex" : "Half Duplex"));
1776 		}
1777 		sc->link_active = 1;
1778 		sc->smartspeed = 0;
1779 		ifp->if_baudrate = sc->link_speed * 1000000;
1780 		ifp->if_link_state = LINK_STATE_UP;
1781 		if_link_state_change(ifp);
1782 	} else if (!link_check && sc->link_active == 1) {
1783 		ifp->if_baudrate = sc->link_speed = 0;
1784 		sc->link_duplex = 0;
1785 		if (bootverbose)
1786 			device_printf(dev, "Link is Down\n");
1787 		sc->link_active = 0;
1788 		ifp->if_link_state = LINK_STATE_DOWN;
1789 		if_link_state_change(ifp);
1790 	}
1791 }
1792 
1793 static void
1794 emx_stop(struct emx_softc *sc)
1795 {
1796 	struct ifnet *ifp = &sc->arpcom.ac_if;
1797 	int i;
1798 
1799 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1800 
1801 	emx_disable_intr(sc);
1802 
1803 	callout_stop(&sc->timer);
1804 
1805 	ifp->if_flags &= ~IFF_RUNNING;
1806 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1807 		struct emx_txdata *tdata = &sc->tx_data[i];
1808 
1809 		ifsq_clr_oactive(tdata->ifsq);
1810 		ifsq_watchdog_stop(&tdata->tx_watchdog);
1811 		tdata->tx_flags &= ~EMX_TXFLAG_ENABLED;
1812 	}
1813 
1814 	/*
1815 	 * Disable multiple receive queues.
1816 	 *
1817 	 * NOTE:
1818 	 * We should disable multiple receive queues before
1819 	 * resetting the hardware.
1820 	 */
1821 	E1000_WRITE_REG(&sc->hw, E1000_MRQC, 0);
1822 
1823 	e1000_reset_hw(&sc->hw);
1824 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1825 
1826 	for (i = 0; i < sc->tx_ring_cnt; ++i)
1827 		emx_free_tx_ring(&sc->tx_data[i]);
1828 	for (i = 0; i < sc->rx_ring_cnt; ++i)
1829 		emx_free_rx_ring(&sc->rx_data[i]);
1830 }
1831 
1832 static int
1833 emx_reset(struct emx_softc *sc)
1834 {
1835 	device_t dev = sc->dev;
1836 	uint16_t rx_buffer_size;
1837 	uint32_t pba;
1838 
1839 	/* Set up smart power down as default off on newer adapters. */
1840 	if (!emx_smart_pwr_down &&
1841 	    (sc->hw.mac.type == e1000_82571 ||
1842 	     sc->hw.mac.type == e1000_82572)) {
1843 		uint16_t phy_tmp = 0;
1844 
1845 		/* Speed up time to link by disabling smart power down. */
1846 		e1000_read_phy_reg(&sc->hw,
1847 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
1848 		phy_tmp &= ~IGP02E1000_PM_SPD;
1849 		e1000_write_phy_reg(&sc->hw,
1850 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
1851 	}
1852 
1853 	/*
1854 	 * Packet Buffer Allocation (PBA)
1855 	 * Writing PBA sets the receive portion of the buffer
1856 	 * the remainder is used for the transmit buffer.
1857 	 */
1858 	switch (sc->hw.mac.type) {
1859 	/* Total Packet Buffer on these is 48K */
1860 	case e1000_82571:
1861 	case e1000_82572:
1862 	case e1000_80003es2lan:
1863 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1864 		break;
1865 
1866 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1867 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1868 		break;
1869 
1870 	case e1000_82574:
1871 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1872 		break;
1873 
1874 	default:
1875 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1876 		if (sc->max_frame_size > 8192)
1877 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1878 		else
1879 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1880 	}
1881 	E1000_WRITE_REG(&sc->hw, E1000_PBA, pba);
1882 
1883 	/*
1884 	 * These parameters control the automatic generation (Tx) and
1885 	 * response (Rx) to Ethernet PAUSE frames.
1886 	 * - High water mark should allow for at least two frames to be
1887 	 *   received after sending an XOFF.
1888 	 * - Low water mark works best when it is very near the high water mark.
1889 	 *   This allows the receiver to restart by sending XON when it has
1890 	 *   drained a bit. Here we use an arbitary value of 1500 which will
1891 	 *   restart after one full frame is pulled from the buffer. There
1892 	 *   could be several smaller frames in the buffer and if so they will
1893 	 *   not trigger the XON until their total number reduces the buffer
1894 	 *   by 1500.
1895 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1896 	 */
1897 	rx_buffer_size = (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) << 10;
1898 
1899 	sc->hw.fc.high_water = rx_buffer_size -
1900 			       roundup2(sc->max_frame_size, 1024);
1901 	sc->hw.fc.low_water = sc->hw.fc.high_water - 1500;
1902 
1903 	if (sc->hw.mac.type == e1000_80003es2lan)
1904 		sc->hw.fc.pause_time = 0xFFFF;
1905 	else
1906 		sc->hw.fc.pause_time = EMX_FC_PAUSE_TIME;
1907 	sc->hw.fc.send_xon = TRUE;
1908 	sc->hw.fc.requested_mode = e1000_fc_full;
1909 
1910 	/* Issue a global reset */
1911 	e1000_reset_hw(&sc->hw);
1912 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1913 	emx_disable_aspm(sc);
1914 
1915 	if (e1000_init_hw(&sc->hw) < 0) {
1916 		device_printf(dev, "Hardware Initialization Failed\n");
1917 		return (EIO);
1918 	}
1919 
1920 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1921 	e1000_get_phy_info(&sc->hw);
1922 	e1000_check_for_link(&sc->hw);
1923 
1924 	return (0);
1925 }
1926 
1927 static void
1928 emx_setup_ifp(struct emx_softc *sc)
1929 {
1930 	struct ifnet *ifp = &sc->arpcom.ac_if;
1931 	int i;
1932 
1933 	if_initname(ifp, device_get_name(sc->dev),
1934 		    device_get_unit(sc->dev));
1935 	ifp->if_softc = sc;
1936 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1937 	ifp->if_init =  emx_init;
1938 	ifp->if_ioctl = emx_ioctl;
1939 	ifp->if_start = emx_start;
1940 #ifdef IFPOLL_ENABLE
1941 	ifp->if_npoll = emx_npoll;
1942 #endif
1943 	ifp->if_serialize = emx_serialize;
1944 	ifp->if_deserialize = emx_deserialize;
1945 	ifp->if_tryserialize = emx_tryserialize;
1946 #ifdef INVARIANTS
1947 	ifp->if_serialize_assert = emx_serialize_assert;
1948 #endif
1949 
1950 	ifq_set_maxlen(&ifp->if_snd, sc->tx_data[0].num_tx_desc - 1);
1951 	ifq_set_ready(&ifp->if_snd);
1952 	ifq_set_subq_cnt(&ifp->if_snd, sc->tx_ring_cnt);
1953 
1954 	ifp->if_mapsubq = ifq_mapsubq_mask;
1955 	ifq_set_subq_mask(&ifp->if_snd, 0);
1956 
1957 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1958 
1959 	ifp->if_capabilities = IFCAP_HWCSUM |
1960 			       IFCAP_VLAN_HWTAGGING |
1961 			       IFCAP_VLAN_MTU |
1962 			       IFCAP_TSO;
1963 	if (sc->rx_ring_cnt > 1)
1964 		ifp->if_capabilities |= IFCAP_RSS;
1965 	ifp->if_capenable = ifp->if_capabilities;
1966 	ifp->if_hwassist = EMX_CSUM_FEATURES | CSUM_TSO;
1967 
1968 	/*
1969 	 * Tell the upper layer(s) we support long frames.
1970 	 */
1971 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1972 
1973 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1974 		struct ifaltq_subque *ifsq = ifq_get_subq(&ifp->if_snd, i);
1975 		struct emx_txdata *tdata = &sc->tx_data[i];
1976 
1977 		ifsq_set_cpuid(ifsq, rman_get_cpuid(sc->intr_res));
1978 		ifsq_set_priv(ifsq, tdata);
1979 		ifsq_set_hw_serialize(ifsq, &tdata->tx_serialize);
1980 		tdata->ifsq = ifsq;
1981 
1982 		ifsq_watchdog_init(&tdata->tx_watchdog, ifsq, emx_watchdog);
1983 	}
1984 
1985 	/*
1986 	 * Specify the media types supported by this sc and register
1987 	 * callbacks to update media and link information
1988 	 */
1989 	ifmedia_init(&sc->media, IFM_IMASK,
1990 		     emx_media_change, emx_media_status);
1991 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1992 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1993 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1994 			    0, NULL);
1995 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
1996 	} else {
1997 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1998 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1999 			    0, NULL);
2000 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2001 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2002 			    0, NULL);
2003 		if (sc->hw.phy.type != e1000_phy_ife) {
2004 			ifmedia_add(&sc->media,
2005 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2006 			ifmedia_add(&sc->media,
2007 				IFM_ETHER | IFM_1000_T, 0, NULL);
2008 		}
2009 	}
2010 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2011 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
2012 }
2013 
2014 /*
2015  * Workaround for SmartSpeed on 82541 and 82547 controllers
2016  */
2017 static void
2018 emx_smartspeed(struct emx_softc *sc)
2019 {
2020 	uint16_t phy_tmp;
2021 
2022 	if (sc->link_active || sc->hw.phy.type != e1000_phy_igp ||
2023 	    sc->hw.mac.autoneg == 0 ||
2024 	    (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2025 		return;
2026 
2027 	if (sc->smartspeed == 0) {
2028 		/*
2029 		 * If Master/Slave config fault is asserted twice,
2030 		 * we assume back-to-back
2031 		 */
2032 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2033 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2034 			return;
2035 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2036 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2037 			e1000_read_phy_reg(&sc->hw,
2038 			    PHY_1000T_CTRL, &phy_tmp);
2039 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2040 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2041 				e1000_write_phy_reg(&sc->hw,
2042 				    PHY_1000T_CTRL, phy_tmp);
2043 				sc->smartspeed++;
2044 				if (sc->hw.mac.autoneg &&
2045 				    !e1000_phy_setup_autoneg(&sc->hw) &&
2046 				    !e1000_read_phy_reg(&sc->hw,
2047 				     PHY_CONTROL, &phy_tmp)) {
2048 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2049 						   MII_CR_RESTART_AUTO_NEG;
2050 					e1000_write_phy_reg(&sc->hw,
2051 					    PHY_CONTROL, phy_tmp);
2052 				}
2053 			}
2054 		}
2055 		return;
2056 	} else if (sc->smartspeed == EMX_SMARTSPEED_DOWNSHIFT) {
2057 		/* If still no link, perhaps using 2/3 pair cable */
2058 		e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
2059 		phy_tmp |= CR_1000T_MS_ENABLE;
2060 		e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
2061 		if (sc->hw.mac.autoneg &&
2062 		    !e1000_phy_setup_autoneg(&sc->hw) &&
2063 		    !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
2064 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2065 			e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
2066 		}
2067 	}
2068 
2069 	/* Restart process after EMX_SMARTSPEED_MAX iterations */
2070 	if (sc->smartspeed++ == EMX_SMARTSPEED_MAX)
2071 		sc->smartspeed = 0;
2072 }
2073 
2074 static int
2075 emx_create_tx_ring(struct emx_txdata *tdata)
2076 {
2077 	device_t dev = tdata->sc->dev;
2078 	struct emx_txbuf *tx_buffer;
2079 	int error, i, tsize, ntxd;
2080 
2081 	/*
2082 	 * Validate number of transmit descriptors.  It must not exceed
2083 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2084 	 */
2085 	ntxd = device_getenv_int(dev, "txd", emx_txd);
2086 	if ((ntxd * sizeof(struct e1000_tx_desc)) % EMX_DBA_ALIGN != 0 ||
2087 	    ntxd > EMX_MAX_TXD || ntxd < EMX_MIN_TXD) {
2088 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
2089 		    EMX_DEFAULT_TXD, ntxd);
2090 		tdata->num_tx_desc = EMX_DEFAULT_TXD;
2091 	} else {
2092 		tdata->num_tx_desc = ntxd;
2093 	}
2094 
2095 	/*
2096 	 * Allocate Transmit Descriptor ring
2097 	 */
2098 	tsize = roundup2(tdata->num_tx_desc * sizeof(struct e1000_tx_desc),
2099 			 EMX_DBA_ALIGN);
2100 	tdata->tx_desc_base = bus_dmamem_coherent_any(tdata->sc->parent_dtag,
2101 				EMX_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
2102 				&tdata->tx_desc_dtag, &tdata->tx_desc_dmap,
2103 				&tdata->tx_desc_paddr);
2104 	if (tdata->tx_desc_base == NULL) {
2105 		device_printf(dev, "Unable to allocate tx_desc memory\n");
2106 		return ENOMEM;
2107 	}
2108 
2109 	tsize = __VM_CACHELINE_ALIGN(
2110 	    sizeof(struct emx_txbuf) * tdata->num_tx_desc);
2111 	tdata->tx_buf = kmalloc_cachealign(tsize, M_DEVBUF, M_WAITOK | M_ZERO);
2112 
2113 	/*
2114 	 * Create DMA tags for tx buffers
2115 	 */
2116 	error = bus_dma_tag_create(tdata->sc->parent_dtag, /* parent */
2117 			1, 0,			/* alignment, bounds */
2118 			BUS_SPACE_MAXADDR,	/* lowaddr */
2119 			BUS_SPACE_MAXADDR,	/* highaddr */
2120 			NULL, NULL,		/* filter, filterarg */
2121 			EMX_TSO_SIZE,		/* maxsize */
2122 			EMX_MAX_SCATTER,	/* nsegments */
2123 			EMX_MAX_SEGSIZE,	/* maxsegsize */
2124 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2125 			BUS_DMA_ONEBPAGE,	/* flags */
2126 			&tdata->txtag);
2127 	if (error) {
2128 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2129 		kfree(tdata->tx_buf, M_DEVBUF);
2130 		tdata->tx_buf = NULL;
2131 		return error;
2132 	}
2133 
2134 	/*
2135 	 * Create DMA maps for tx buffers
2136 	 */
2137 	for (i = 0; i < tdata->num_tx_desc; i++) {
2138 		tx_buffer = &tdata->tx_buf[i];
2139 
2140 		error = bus_dmamap_create(tdata->txtag,
2141 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2142 					  &tx_buffer->map);
2143 		if (error) {
2144 			device_printf(dev, "Unable to create TX DMA map\n");
2145 			emx_destroy_tx_ring(tdata, i);
2146 			return error;
2147 		}
2148 	}
2149 
2150 	/*
2151 	 * Setup TX parameters
2152 	 */
2153 	tdata->spare_tx_desc = EMX_TX_SPARE;
2154 	tdata->tx_wreg_nsegs = EMX_DEFAULT_TXWREG;
2155 
2156 	/*
2157 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
2158 	 * and tx_intr_nsegs:
2159 	 * (spare_tx_desc + EMX_TX_RESERVED) <=
2160 	 * oact_tx_desc <= EMX_TX_OACTIVE_MAX <= tx_intr_nsegs
2161 	 */
2162 	tdata->oact_tx_desc = tdata->num_tx_desc / 8;
2163 	if (tdata->oact_tx_desc > EMX_TX_OACTIVE_MAX)
2164 		tdata->oact_tx_desc = EMX_TX_OACTIVE_MAX;
2165 	if (tdata->oact_tx_desc < tdata->spare_tx_desc + EMX_TX_RESERVED)
2166 		tdata->oact_tx_desc = tdata->spare_tx_desc + EMX_TX_RESERVED;
2167 
2168 	tdata->tx_intr_nsegs = tdata->num_tx_desc / 16;
2169 	if (tdata->tx_intr_nsegs < tdata->oact_tx_desc)
2170 		tdata->tx_intr_nsegs = tdata->oact_tx_desc;
2171 
2172 	/*
2173 	 * Pullup extra 4bytes into the first data segment, see:
2174 	 * 82571/82572 specification update errata #7
2175 	 *
2176 	 * NOTE:
2177 	 * 4bytes instead of 2bytes, which are mentioned in the errata,
2178 	 * are pulled; mainly to keep rest of the data properly aligned.
2179 	 */
2180 	if (tdata->sc->hw.mac.type == e1000_82571 ||
2181 	    tdata->sc->hw.mac.type == e1000_82572)
2182 		tdata->tx_flags |= EMX_TXFLAG_TSO_PULLEX;
2183 
2184 	return (0);
2185 }
2186 
2187 static void
2188 emx_init_tx_ring(struct emx_txdata *tdata)
2189 {
2190 	/* Clear the old ring contents */
2191 	bzero(tdata->tx_desc_base,
2192 	      sizeof(struct e1000_tx_desc) * tdata->num_tx_desc);
2193 
2194 	/* Reset state */
2195 	tdata->next_avail_tx_desc = 0;
2196 	tdata->next_tx_to_clean = 0;
2197 	tdata->num_tx_desc_avail = tdata->num_tx_desc;
2198 
2199 	tdata->tx_flags |= EMX_TXFLAG_ENABLED;
2200 	if (tdata->sc->tx_ring_inuse > 1) {
2201 		tdata->tx_flags |= EMX_TXFLAG_FORCECTX;
2202 		if (bootverbose) {
2203 			if_printf(&tdata->sc->arpcom.ac_if,
2204 			    "TX %d force ctx setup\n", tdata->idx);
2205 		}
2206 	}
2207 }
2208 
2209 static void
2210 emx_init_tx_unit(struct emx_softc *sc)
2211 {
2212 	uint32_t tctl, tarc, tipg = 0;
2213 	int i;
2214 
2215 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
2216 		struct emx_txdata *tdata = &sc->tx_data[i];
2217 		uint64_t bus_addr;
2218 
2219 		/* Setup the Base and Length of the Tx Descriptor Ring */
2220 		bus_addr = tdata->tx_desc_paddr;
2221 		E1000_WRITE_REG(&sc->hw, E1000_TDLEN(i),
2222 		    tdata->num_tx_desc * sizeof(struct e1000_tx_desc));
2223 		E1000_WRITE_REG(&sc->hw, E1000_TDBAH(i),
2224 		    (uint32_t)(bus_addr >> 32));
2225 		E1000_WRITE_REG(&sc->hw, E1000_TDBAL(i),
2226 		    (uint32_t)bus_addr);
2227 		/* Setup the HW Tx Head and Tail descriptor pointers */
2228 		E1000_WRITE_REG(&sc->hw, E1000_TDT(i), 0);
2229 		E1000_WRITE_REG(&sc->hw, E1000_TDH(i), 0);
2230 	}
2231 
2232 	/* Set the default values for the Tx Inter Packet Gap timer */
2233 	switch (sc->hw.mac.type) {
2234 	case e1000_80003es2lan:
2235 		tipg = DEFAULT_82543_TIPG_IPGR1;
2236 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2237 		    E1000_TIPG_IPGR2_SHIFT;
2238 		break;
2239 
2240 	default:
2241 		if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2242 		    sc->hw.phy.media_type == e1000_media_type_internal_serdes)
2243 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2244 		else
2245 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2246 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2247 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2248 		break;
2249 	}
2250 
2251 	E1000_WRITE_REG(&sc->hw, E1000_TIPG, tipg);
2252 
2253 	/* NOTE: 0 is not allowed for TIDV */
2254 	E1000_WRITE_REG(&sc->hw, E1000_TIDV, 1);
2255 	E1000_WRITE_REG(&sc->hw, E1000_TADV, 0);
2256 
2257 	if (sc->hw.mac.type == e1000_82571 ||
2258 	    sc->hw.mac.type == e1000_82572) {
2259 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2260 		tarc |= EMX_TARC_SPEED_MODE;
2261 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2262 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
2263 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2264 		tarc |= 1;
2265 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2266 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2267 		tarc |= 1;
2268 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2269 	}
2270 
2271 	/* Program the Transmit Control Register */
2272 	tctl = E1000_READ_REG(&sc->hw, E1000_TCTL);
2273 	tctl &= ~E1000_TCTL_CT;
2274 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2275 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2276 	tctl |= E1000_TCTL_MULR;
2277 
2278 	/* This write will effectively turn on the transmit unit. */
2279 	E1000_WRITE_REG(&sc->hw, E1000_TCTL, tctl);
2280 
2281 	if (sc->hw.mac.type == e1000_82571 ||
2282 	    sc->hw.mac.type == e1000_82572 ||
2283 	    sc->hw.mac.type == e1000_80003es2lan) {
2284 		/* Bit 28 of TARC1 must be cleared when MULR is enabled */
2285 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2286 		tarc &= ~(1 << 28);
2287 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2288 	}
2289 
2290 	if (sc->tx_ring_inuse > 1) {
2291 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2292 		tarc &= ~EMX_TARC_COUNT_MASK;
2293 		tarc |= 1;
2294 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2295 
2296 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2297 		tarc &= ~EMX_TARC_COUNT_MASK;
2298 		tarc |= 1;
2299 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2300 	}
2301 }
2302 
2303 static void
2304 emx_destroy_tx_ring(struct emx_txdata *tdata, int ndesc)
2305 {
2306 	struct emx_txbuf *tx_buffer;
2307 	int i;
2308 
2309 	/* Free Transmit Descriptor ring */
2310 	if (tdata->tx_desc_base) {
2311 		bus_dmamap_unload(tdata->tx_desc_dtag, tdata->tx_desc_dmap);
2312 		bus_dmamem_free(tdata->tx_desc_dtag, tdata->tx_desc_base,
2313 				tdata->tx_desc_dmap);
2314 		bus_dma_tag_destroy(tdata->tx_desc_dtag);
2315 
2316 		tdata->tx_desc_base = NULL;
2317 	}
2318 
2319 	if (tdata->tx_buf == NULL)
2320 		return;
2321 
2322 	for (i = 0; i < ndesc; i++) {
2323 		tx_buffer = &tdata->tx_buf[i];
2324 
2325 		KKASSERT(tx_buffer->m_head == NULL);
2326 		bus_dmamap_destroy(tdata->txtag, tx_buffer->map);
2327 	}
2328 	bus_dma_tag_destroy(tdata->txtag);
2329 
2330 	kfree(tdata->tx_buf, M_DEVBUF);
2331 	tdata->tx_buf = NULL;
2332 }
2333 
2334 /*
2335  * The offload context needs to be set when we transfer the first
2336  * packet of a particular protocol (TCP/UDP).  This routine has been
2337  * enhanced to deal with inserted VLAN headers.
2338  *
2339  * If the new packet's ether header length, ip header length and
2340  * csum offloading type are same as the previous packet, we should
2341  * avoid allocating a new csum context descriptor; mainly to take
2342  * advantage of the pipeline effect of the TX data read request.
2343  *
2344  * This function returns number of TX descrptors allocated for
2345  * csum context.
2346  */
2347 static int
2348 emx_txcsum(struct emx_txdata *tdata, struct mbuf *mp,
2349 	   uint32_t *txd_upper, uint32_t *txd_lower)
2350 {
2351 	struct e1000_context_desc *TXD;
2352 	int curr_txd, ehdrlen, csum_flags;
2353 	uint32_t cmd, hdr_len, ip_hlen;
2354 
2355 	csum_flags = mp->m_pkthdr.csum_flags & EMX_CSUM_FEATURES;
2356 	ip_hlen = mp->m_pkthdr.csum_iphlen;
2357 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2358 
2359 	if ((tdata->tx_flags & EMX_TXFLAG_FORCECTX) == 0 &&
2360 	    tdata->csum_lhlen == ehdrlen && tdata->csum_iphlen == ip_hlen &&
2361 	    tdata->csum_flags == csum_flags) {
2362 		/*
2363 		 * Same csum offload context as the previous packets;
2364 		 * just return.
2365 		 */
2366 		*txd_upper = tdata->csum_txd_upper;
2367 		*txd_lower = tdata->csum_txd_lower;
2368 		return 0;
2369 	}
2370 
2371 	/*
2372 	 * Setup a new csum offload context.
2373 	 */
2374 
2375 	curr_txd = tdata->next_avail_tx_desc;
2376 	TXD = (struct e1000_context_desc *)&tdata->tx_desc_base[curr_txd];
2377 
2378 	cmd = 0;
2379 
2380 	/* Setup of IP header checksum. */
2381 	if (csum_flags & CSUM_IP) {
2382 		/*
2383 		 * Start offset for header checksum calculation.
2384 		 * End offset for header checksum calculation.
2385 		 * Offset of place to put the checksum.
2386 		 */
2387 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2388 		TXD->lower_setup.ip_fields.ipcse =
2389 		    htole16(ehdrlen + ip_hlen - 1);
2390 		TXD->lower_setup.ip_fields.ipcso =
2391 		    ehdrlen + offsetof(struct ip, ip_sum);
2392 		cmd |= E1000_TXD_CMD_IP;
2393 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2394 	}
2395 	hdr_len = ehdrlen + ip_hlen;
2396 
2397 	if (csum_flags & CSUM_TCP) {
2398 		/*
2399 		 * Start offset for payload checksum calculation.
2400 		 * End offset for payload checksum calculation.
2401 		 * Offset of place to put the checksum.
2402 		 */
2403 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2404 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2405 		TXD->upper_setup.tcp_fields.tucso =
2406 		    hdr_len + offsetof(struct tcphdr, th_sum);
2407 		cmd |= E1000_TXD_CMD_TCP;
2408 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2409 	} else if (csum_flags & CSUM_UDP) {
2410 		/*
2411 		 * Start offset for header checksum calculation.
2412 		 * End offset for header checksum calculation.
2413 		 * Offset of place to put the checksum.
2414 		 */
2415 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2416 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2417 		TXD->upper_setup.tcp_fields.tucso =
2418 		    hdr_len + offsetof(struct udphdr, uh_sum);
2419 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2420 	}
2421 
2422 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2423 		     E1000_TXD_DTYP_D;		/* Data descr */
2424 
2425 	/* Save the information for this csum offloading context */
2426 	tdata->csum_lhlen = ehdrlen;
2427 	tdata->csum_iphlen = ip_hlen;
2428 	tdata->csum_flags = csum_flags;
2429 	tdata->csum_txd_upper = *txd_upper;
2430 	tdata->csum_txd_lower = *txd_lower;
2431 
2432 	TXD->tcp_seg_setup.data = htole32(0);
2433 	TXD->cmd_and_length =
2434 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2435 
2436 	if (++curr_txd == tdata->num_tx_desc)
2437 		curr_txd = 0;
2438 
2439 	KKASSERT(tdata->num_tx_desc_avail > 0);
2440 	tdata->num_tx_desc_avail--;
2441 
2442 	tdata->next_avail_tx_desc = curr_txd;
2443 	return 1;
2444 }
2445 
2446 static void
2447 emx_txeof(struct emx_txdata *tdata)
2448 {
2449 	struct ifnet *ifp = &tdata->sc->arpcom.ac_if;
2450 	struct emx_txbuf *tx_buffer;
2451 	int first, num_avail;
2452 
2453 	if (tdata->tx_dd_head == tdata->tx_dd_tail)
2454 		return;
2455 
2456 	if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2457 		return;
2458 
2459 	num_avail = tdata->num_tx_desc_avail;
2460 	first = tdata->next_tx_to_clean;
2461 
2462 	while (tdata->tx_dd_head != tdata->tx_dd_tail) {
2463 		int dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2464 		struct e1000_tx_desc *tx_desc;
2465 
2466 		tx_desc = &tdata->tx_desc_base[dd_idx];
2467 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2468 			EMX_INC_TXDD_IDX(tdata->tx_dd_head);
2469 
2470 			if (++dd_idx == tdata->num_tx_desc)
2471 				dd_idx = 0;
2472 
2473 			while (first != dd_idx) {
2474 				logif(pkt_txclean);
2475 
2476 				num_avail++;
2477 
2478 				tx_buffer = &tdata->tx_buf[first];
2479 				if (tx_buffer->m_head) {
2480 					IFNET_STAT_INC(ifp, opackets, 1);
2481 					bus_dmamap_unload(tdata->txtag,
2482 							  tx_buffer->map);
2483 					m_freem(tx_buffer->m_head);
2484 					tx_buffer->m_head = NULL;
2485 				}
2486 
2487 				if (++first == tdata->num_tx_desc)
2488 					first = 0;
2489 			}
2490 		} else {
2491 			break;
2492 		}
2493 	}
2494 	tdata->next_tx_to_clean = first;
2495 	tdata->num_tx_desc_avail = num_avail;
2496 
2497 	if (tdata->tx_dd_head == tdata->tx_dd_tail) {
2498 		tdata->tx_dd_head = 0;
2499 		tdata->tx_dd_tail = 0;
2500 	}
2501 
2502 	if (!EMX_IS_OACTIVE(tdata)) {
2503 		ifsq_clr_oactive(tdata->ifsq);
2504 
2505 		/* All clean, turn off the timer */
2506 		if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2507 			tdata->tx_watchdog.wd_timer = 0;
2508 	}
2509 }
2510 
2511 static void
2512 emx_tx_collect(struct emx_txdata *tdata)
2513 {
2514 	struct ifnet *ifp = &tdata->sc->arpcom.ac_if;
2515 	struct emx_txbuf *tx_buffer;
2516 	int tdh, first, num_avail, dd_idx = -1;
2517 
2518 	if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2519 		return;
2520 
2521 	tdh = E1000_READ_REG(&tdata->sc->hw, E1000_TDH(tdata->idx));
2522 	if (tdh == tdata->next_tx_to_clean)
2523 		return;
2524 
2525 	if (tdata->tx_dd_head != tdata->tx_dd_tail)
2526 		dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2527 
2528 	num_avail = tdata->num_tx_desc_avail;
2529 	first = tdata->next_tx_to_clean;
2530 
2531 	while (first != tdh) {
2532 		logif(pkt_txclean);
2533 
2534 		num_avail++;
2535 
2536 		tx_buffer = &tdata->tx_buf[first];
2537 		if (tx_buffer->m_head) {
2538 			IFNET_STAT_INC(ifp, opackets, 1);
2539 			bus_dmamap_unload(tdata->txtag,
2540 					  tx_buffer->map);
2541 			m_freem(tx_buffer->m_head);
2542 			tx_buffer->m_head = NULL;
2543 		}
2544 
2545 		if (first == dd_idx) {
2546 			EMX_INC_TXDD_IDX(tdata->tx_dd_head);
2547 			if (tdata->tx_dd_head == tdata->tx_dd_tail) {
2548 				tdata->tx_dd_head = 0;
2549 				tdata->tx_dd_tail = 0;
2550 				dd_idx = -1;
2551 			} else {
2552 				dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2553 			}
2554 		}
2555 
2556 		if (++first == tdata->num_tx_desc)
2557 			first = 0;
2558 	}
2559 	tdata->next_tx_to_clean = first;
2560 	tdata->num_tx_desc_avail = num_avail;
2561 
2562 	if (!EMX_IS_OACTIVE(tdata)) {
2563 		ifsq_clr_oactive(tdata->ifsq);
2564 
2565 		/* All clean, turn off the timer */
2566 		if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2567 			tdata->tx_watchdog.wd_timer = 0;
2568 	}
2569 }
2570 
2571 /*
2572  * When Link is lost sometimes there is work still in the TX ring
2573  * which will result in a watchdog, rather than allow that do an
2574  * attempted cleanup and then reinit here.  Note that this has been
2575  * seens mostly with fiber adapters.
2576  */
2577 static void
2578 emx_tx_purge(struct emx_softc *sc)
2579 {
2580 	int i;
2581 
2582 	if (sc->link_active)
2583 		return;
2584 
2585 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
2586 		struct emx_txdata *tdata = &sc->tx_data[i];
2587 
2588 		if (tdata->tx_watchdog.wd_timer) {
2589 			emx_tx_collect(tdata);
2590 			if (tdata->tx_watchdog.wd_timer) {
2591 				if_printf(&sc->arpcom.ac_if,
2592 				    "Link lost, TX pending, reinit\n");
2593 				emx_init(sc);
2594 				return;
2595 			}
2596 		}
2597 	}
2598 }
2599 
2600 static int
2601 emx_newbuf(struct emx_rxdata *rdata, int i, int init)
2602 {
2603 	struct mbuf *m;
2604 	bus_dma_segment_t seg;
2605 	bus_dmamap_t map;
2606 	struct emx_rxbuf *rx_buffer;
2607 	int error, nseg;
2608 
2609 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2610 	if (m == NULL) {
2611 		if (init) {
2612 			if_printf(&rdata->sc->arpcom.ac_if,
2613 				  "Unable to allocate RX mbuf\n");
2614 		}
2615 		return (ENOBUFS);
2616 	}
2617 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2618 
2619 	if (rdata->sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2620 		m_adj(m, ETHER_ALIGN);
2621 
2622 	error = bus_dmamap_load_mbuf_segment(rdata->rxtag,
2623 			rdata->rx_sparemap, m,
2624 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
2625 	if (error) {
2626 		m_freem(m);
2627 		if (init) {
2628 			if_printf(&rdata->sc->arpcom.ac_if,
2629 				  "Unable to load RX mbuf\n");
2630 		}
2631 		return (error);
2632 	}
2633 
2634 	rx_buffer = &rdata->rx_buf[i];
2635 	if (rx_buffer->m_head != NULL)
2636 		bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2637 
2638 	map = rx_buffer->map;
2639 	rx_buffer->map = rdata->rx_sparemap;
2640 	rdata->rx_sparemap = map;
2641 
2642 	rx_buffer->m_head = m;
2643 	rx_buffer->paddr = seg.ds_addr;
2644 
2645 	emx_setup_rxdesc(&rdata->rx_desc[i], rx_buffer);
2646 	return (0);
2647 }
2648 
2649 static int
2650 emx_create_rx_ring(struct emx_rxdata *rdata)
2651 {
2652 	device_t dev = rdata->sc->dev;
2653 	struct emx_rxbuf *rx_buffer;
2654 	int i, error, rsize, nrxd;
2655 
2656 	/*
2657 	 * Validate number of receive descriptors.  It must not exceed
2658 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2659 	 */
2660 	nrxd = device_getenv_int(dev, "rxd", emx_rxd);
2661 	if ((nrxd * sizeof(emx_rxdesc_t)) % EMX_DBA_ALIGN != 0 ||
2662 	    nrxd > EMX_MAX_RXD || nrxd < EMX_MIN_RXD) {
2663 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
2664 		    EMX_DEFAULT_RXD, nrxd);
2665 		rdata->num_rx_desc = EMX_DEFAULT_RXD;
2666 	} else {
2667 		rdata->num_rx_desc = nrxd;
2668 	}
2669 
2670 	/*
2671 	 * Allocate Receive Descriptor ring
2672 	 */
2673 	rsize = roundup2(rdata->num_rx_desc * sizeof(emx_rxdesc_t),
2674 			 EMX_DBA_ALIGN);
2675 	rdata->rx_desc = bus_dmamem_coherent_any(rdata->sc->parent_dtag,
2676 				EMX_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2677 				&rdata->rx_desc_dtag, &rdata->rx_desc_dmap,
2678 				&rdata->rx_desc_paddr);
2679 	if (rdata->rx_desc == NULL) {
2680 		device_printf(dev, "Unable to allocate rx_desc memory\n");
2681 		return ENOMEM;
2682 	}
2683 
2684 	rsize = __VM_CACHELINE_ALIGN(
2685 	    sizeof(struct emx_rxbuf) * rdata->num_rx_desc);
2686 	rdata->rx_buf = kmalloc_cachealign(rsize, M_DEVBUF, M_WAITOK | M_ZERO);
2687 
2688 	/*
2689 	 * Create DMA tag for rx buffers
2690 	 */
2691 	error = bus_dma_tag_create(rdata->sc->parent_dtag, /* parent */
2692 			1, 0,			/* alignment, bounds */
2693 			BUS_SPACE_MAXADDR,	/* lowaddr */
2694 			BUS_SPACE_MAXADDR,	/* highaddr */
2695 			NULL, NULL,		/* filter, filterarg */
2696 			MCLBYTES,		/* maxsize */
2697 			1,			/* nsegments */
2698 			MCLBYTES,		/* maxsegsize */
2699 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2700 			&rdata->rxtag);
2701 	if (error) {
2702 		device_printf(dev, "Unable to allocate RX DMA tag\n");
2703 		kfree(rdata->rx_buf, M_DEVBUF);
2704 		rdata->rx_buf = NULL;
2705 		return error;
2706 	}
2707 
2708 	/*
2709 	 * Create spare DMA map for rx buffers
2710 	 */
2711 	error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2712 				  &rdata->rx_sparemap);
2713 	if (error) {
2714 		device_printf(dev, "Unable to create spare RX DMA map\n");
2715 		bus_dma_tag_destroy(rdata->rxtag);
2716 		kfree(rdata->rx_buf, M_DEVBUF);
2717 		rdata->rx_buf = NULL;
2718 		return error;
2719 	}
2720 
2721 	/*
2722 	 * Create DMA maps for rx buffers
2723 	 */
2724 	for (i = 0; i < rdata->num_rx_desc; i++) {
2725 		rx_buffer = &rdata->rx_buf[i];
2726 
2727 		error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2728 					  &rx_buffer->map);
2729 		if (error) {
2730 			device_printf(dev, "Unable to create RX DMA map\n");
2731 			emx_destroy_rx_ring(rdata, i);
2732 			return error;
2733 		}
2734 	}
2735 	return (0);
2736 }
2737 
2738 static void
2739 emx_free_rx_ring(struct emx_rxdata *rdata)
2740 {
2741 	int i;
2742 
2743 	for (i = 0; i < rdata->num_rx_desc; i++) {
2744 		struct emx_rxbuf *rx_buffer = &rdata->rx_buf[i];
2745 
2746 		if (rx_buffer->m_head != NULL) {
2747 			bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2748 			m_freem(rx_buffer->m_head);
2749 			rx_buffer->m_head = NULL;
2750 		}
2751 	}
2752 
2753 	if (rdata->fmp != NULL)
2754 		m_freem(rdata->fmp);
2755 	rdata->fmp = NULL;
2756 	rdata->lmp = NULL;
2757 }
2758 
2759 static void
2760 emx_free_tx_ring(struct emx_txdata *tdata)
2761 {
2762 	int i;
2763 
2764 	for (i = 0; i < tdata->num_tx_desc; i++) {
2765 		struct emx_txbuf *tx_buffer = &tdata->tx_buf[i];
2766 
2767 		if (tx_buffer->m_head != NULL) {
2768 			bus_dmamap_unload(tdata->txtag, tx_buffer->map);
2769 			m_freem(tx_buffer->m_head);
2770 			tx_buffer->m_head = NULL;
2771 		}
2772 	}
2773 
2774 	tdata->tx_flags &= ~EMX_TXFLAG_FORCECTX;
2775 
2776 	tdata->csum_flags = 0;
2777 	tdata->csum_lhlen = 0;
2778 	tdata->csum_iphlen = 0;
2779 	tdata->csum_thlen = 0;
2780 	tdata->csum_mss = 0;
2781 	tdata->csum_pktlen = 0;
2782 
2783 	tdata->tx_dd_head = 0;
2784 	tdata->tx_dd_tail = 0;
2785 	tdata->tx_nsegs = 0;
2786 }
2787 
2788 static int
2789 emx_init_rx_ring(struct emx_rxdata *rdata)
2790 {
2791 	int i, error;
2792 
2793 	/* Reset descriptor ring */
2794 	bzero(rdata->rx_desc, sizeof(emx_rxdesc_t) * rdata->num_rx_desc);
2795 
2796 	/* Allocate new ones. */
2797 	for (i = 0; i < rdata->num_rx_desc; i++) {
2798 		error = emx_newbuf(rdata, i, 1);
2799 		if (error)
2800 			return (error);
2801 	}
2802 
2803 	/* Setup our descriptor pointers */
2804 	rdata->next_rx_desc_to_check = 0;
2805 
2806 	return (0);
2807 }
2808 
2809 static void
2810 emx_init_rx_unit(struct emx_softc *sc)
2811 {
2812 	struct ifnet *ifp = &sc->arpcom.ac_if;
2813 	uint64_t bus_addr;
2814 	uint32_t rctl, itr, rfctl;
2815 	int i;
2816 
2817 	/*
2818 	 * Make sure receives are disabled while setting
2819 	 * up the descriptor ring
2820 	 */
2821 	rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2822 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2823 
2824 	/*
2825 	 * Set the interrupt throttling rate. Value is calculated
2826 	 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
2827 	 */
2828 	if (sc->int_throttle_ceil)
2829 		itr = 1000000000 / 256 / sc->int_throttle_ceil;
2830 	else
2831 		itr = 0;
2832 	emx_set_itr(sc, itr);
2833 
2834 	/* Use extended RX descriptor */
2835 	rfctl = E1000_RFCTL_EXTEN;
2836 
2837 	/* Disable accelerated ackknowledge */
2838 	if (sc->hw.mac.type == e1000_82574)
2839 		rfctl |= E1000_RFCTL_ACK_DIS;
2840 
2841 	E1000_WRITE_REG(&sc->hw, E1000_RFCTL, rfctl);
2842 
2843 	/*
2844 	 * Receive Checksum Offload for TCP and UDP
2845 	 *
2846 	 * Checksum offloading is also enabled if multiple receive
2847 	 * queue is to be supported, since we need it to figure out
2848 	 * packet type.
2849 	 */
2850 	if ((ifp->if_capenable & IFCAP_RXCSUM) ||
2851 	    sc->rx_ring_cnt > 1) {
2852 		uint32_t rxcsum;
2853 
2854 		rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2855 
2856 		/*
2857 		 * NOTE:
2858 		 * PCSD must be enabled to enable multiple
2859 		 * receive queues.
2860 		 */
2861 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2862 			  E1000_RXCSUM_PCSD;
2863 		E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2864 	}
2865 
2866 	/*
2867 	 * Configure multiple receive queue (RSS)
2868 	 */
2869 	if (sc->rx_ring_cnt > 1) {
2870 		uint8_t key[EMX_NRSSRK * EMX_RSSRK_SIZE];
2871 		uint32_t reta;
2872 
2873 		KASSERT(sc->rx_ring_cnt == EMX_NRX_RING,
2874 		    ("invalid number of RX ring (%d)", sc->rx_ring_cnt));
2875 
2876 		/*
2877 		 * NOTE:
2878 		 * When we reach here, RSS has already been disabled
2879 		 * in emx_stop(), so we could safely configure RSS key
2880 		 * and redirect table.
2881 		 */
2882 
2883 		/*
2884 		 * Configure RSS key
2885 		 */
2886 		toeplitz_get_key(key, sizeof(key));
2887 		for (i = 0; i < EMX_NRSSRK; ++i) {
2888 			uint32_t rssrk;
2889 
2890 			rssrk = EMX_RSSRK_VAL(key, i);
2891 			EMX_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2892 
2893 			E1000_WRITE_REG(&sc->hw, E1000_RSSRK(i), rssrk);
2894 		}
2895 
2896 		/*
2897 		 * Configure RSS redirect table in following fashion:
2898 	 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2899 		 */
2900 		reta = 0;
2901 		for (i = 0; i < EMX_RETA_SIZE; ++i) {
2902 			uint32_t q;
2903 
2904 			q = (i % sc->rx_ring_cnt) << EMX_RETA_RINGIDX_SHIFT;
2905 			reta |= q << (8 * i);
2906 		}
2907 		EMX_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2908 
2909 		for (i = 0; i < EMX_NRETA; ++i)
2910 			E1000_WRITE_REG(&sc->hw, E1000_RETA(i), reta);
2911 
2912 		/*
2913 		 * Enable multiple receive queues.
2914 		 * Enable IPv4 RSS standard hash functions.
2915 		 * Disable RSS interrupt.
2916 		 */
2917 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2918 				E1000_MRQC_ENABLE_RSS_2Q |
2919 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
2920 				E1000_MRQC_RSS_FIELD_IPV4);
2921 	}
2922 
2923 	/*
2924 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
2925 	 * long latencies are observed, like Lenovo X60. This
2926 	 * change eliminates the problem, but since having positive
2927 	 * values in RDTR is a known source of problems on other
2928 	 * platforms another solution is being sought.
2929 	 */
2930 	if (emx_82573_workaround && sc->hw.mac.type == e1000_82573) {
2931 		E1000_WRITE_REG(&sc->hw, E1000_RADV, EMX_RADV_82573);
2932 		E1000_WRITE_REG(&sc->hw, E1000_RDTR, EMX_RDTR_82573);
2933 	}
2934 
2935 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
2936 		struct emx_rxdata *rdata = &sc->rx_data[i];
2937 
2938 		/*
2939 		 * Setup the Base and Length of the Rx Descriptor Ring
2940 		 */
2941 		bus_addr = rdata->rx_desc_paddr;
2942 		E1000_WRITE_REG(&sc->hw, E1000_RDLEN(i),
2943 		    rdata->num_rx_desc * sizeof(emx_rxdesc_t));
2944 		E1000_WRITE_REG(&sc->hw, E1000_RDBAH(i),
2945 		    (uint32_t)(bus_addr >> 32));
2946 		E1000_WRITE_REG(&sc->hw, E1000_RDBAL(i),
2947 		    (uint32_t)bus_addr);
2948 
2949 		/*
2950 		 * Setup the HW Rx Head and Tail Descriptor Pointers
2951 		 */
2952 		E1000_WRITE_REG(&sc->hw, E1000_RDH(i), 0);
2953 		E1000_WRITE_REG(&sc->hw, E1000_RDT(i),
2954 		    sc->rx_data[i].num_rx_desc - 1);
2955 	}
2956 
2957 	/* Setup the Receive Control Register */
2958 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2959 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2960 		E1000_RCTL_RDMTS_HALF | E1000_RCTL_SECRC |
2961 		(sc->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2962 
2963 	/* Make sure VLAN Filters are off */
2964 	rctl &= ~E1000_RCTL_VFE;
2965 
2966 	/* Don't store bad paket */
2967 	rctl &= ~E1000_RCTL_SBP;
2968 
2969 	/* MCLBYTES */
2970 	rctl |= E1000_RCTL_SZ_2048;
2971 
2972 	if (ifp->if_mtu > ETHERMTU)
2973 		rctl |= E1000_RCTL_LPE;
2974 	else
2975 		rctl &= ~E1000_RCTL_LPE;
2976 
2977 	/* Enable Receives */
2978 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
2979 }
2980 
2981 static void
2982 emx_destroy_rx_ring(struct emx_rxdata *rdata, int ndesc)
2983 {
2984 	struct emx_rxbuf *rx_buffer;
2985 	int i;
2986 
2987 	/* Free Receive Descriptor ring */
2988 	if (rdata->rx_desc) {
2989 		bus_dmamap_unload(rdata->rx_desc_dtag, rdata->rx_desc_dmap);
2990 		bus_dmamem_free(rdata->rx_desc_dtag, rdata->rx_desc,
2991 				rdata->rx_desc_dmap);
2992 		bus_dma_tag_destroy(rdata->rx_desc_dtag);
2993 
2994 		rdata->rx_desc = NULL;
2995 	}
2996 
2997 	if (rdata->rx_buf == NULL)
2998 		return;
2999 
3000 	for (i = 0; i < ndesc; i++) {
3001 		rx_buffer = &rdata->rx_buf[i];
3002 
3003 		KKASSERT(rx_buffer->m_head == NULL);
3004 		bus_dmamap_destroy(rdata->rxtag, rx_buffer->map);
3005 	}
3006 	bus_dmamap_destroy(rdata->rxtag, rdata->rx_sparemap);
3007 	bus_dma_tag_destroy(rdata->rxtag);
3008 
3009 	kfree(rdata->rx_buf, M_DEVBUF);
3010 	rdata->rx_buf = NULL;
3011 }
3012 
3013 static void
3014 emx_rxeof(struct emx_rxdata *rdata, int count)
3015 {
3016 	struct ifnet *ifp = &rdata->sc->arpcom.ac_if;
3017 	uint32_t staterr;
3018 	emx_rxdesc_t *current_desc;
3019 	struct mbuf *mp;
3020 	int i;
3021 
3022 	i = rdata->next_rx_desc_to_check;
3023 	current_desc = &rdata->rx_desc[i];
3024 	staterr = le32toh(current_desc->rxd_staterr);
3025 
3026 	if (!(staterr & E1000_RXD_STAT_DD))
3027 		return;
3028 
3029 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
3030 		struct pktinfo *pi = NULL, pi0;
3031 		struct emx_rxbuf *rx_buf = &rdata->rx_buf[i];
3032 		struct mbuf *m = NULL;
3033 		int eop, len;
3034 
3035 		logif(pkt_receive);
3036 
3037 		mp = rx_buf->m_head;
3038 
3039 		/*
3040 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3041 		 * needs to access the last received byte in the mbuf.
3042 		 */
3043 		bus_dmamap_sync(rdata->rxtag, rx_buf->map,
3044 				BUS_DMASYNC_POSTREAD);
3045 
3046 		len = le16toh(current_desc->rxd_length);
3047 		if (staterr & E1000_RXD_STAT_EOP) {
3048 			count--;
3049 			eop = 1;
3050 		} else {
3051 			eop = 0;
3052 		}
3053 
3054 		if (!(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3055 			uint16_t vlan = 0;
3056 			uint32_t mrq, rss_hash;
3057 
3058 			/*
3059 			 * Save several necessary information,
3060 			 * before emx_newbuf() destroy it.
3061 			 */
3062 			if ((staterr & E1000_RXD_STAT_VP) && eop)
3063 				vlan = le16toh(current_desc->rxd_vlan);
3064 
3065 			mrq = le32toh(current_desc->rxd_mrq);
3066 			rss_hash = le32toh(current_desc->rxd_rss);
3067 
3068 			EMX_RSS_DPRINTF(rdata->sc, 10,
3069 			    "ring%d, mrq 0x%08x, rss_hash 0x%08x\n",
3070 			    rdata->idx, mrq, rss_hash);
3071 
3072 			if (emx_newbuf(rdata, i, 0) != 0) {
3073 				IFNET_STAT_INC(ifp, iqdrops, 1);
3074 				goto discard;
3075 			}
3076 
3077 			/* Assign correct length to the current fragment */
3078 			mp->m_len = len;
3079 
3080 			if (rdata->fmp == NULL) {
3081 				mp->m_pkthdr.len = len;
3082 				rdata->fmp = mp; /* Store the first mbuf */
3083 				rdata->lmp = mp;
3084 			} else {
3085 				/*
3086 				 * Chain mbuf's together
3087 				 */
3088 				rdata->lmp->m_next = mp;
3089 				rdata->lmp = rdata->lmp->m_next;
3090 				rdata->fmp->m_pkthdr.len += len;
3091 			}
3092 
3093 			if (eop) {
3094 				rdata->fmp->m_pkthdr.rcvif = ifp;
3095 				IFNET_STAT_INC(ifp, ipackets, 1);
3096 
3097 				if (ifp->if_capenable & IFCAP_RXCSUM)
3098 					emx_rxcsum(staterr, rdata->fmp);
3099 
3100 				if (staterr & E1000_RXD_STAT_VP) {
3101 					rdata->fmp->m_pkthdr.ether_vlantag =
3102 					    vlan;
3103 					rdata->fmp->m_flags |= M_VLANTAG;
3104 				}
3105 				m = rdata->fmp;
3106 				rdata->fmp = NULL;
3107 				rdata->lmp = NULL;
3108 
3109 				if (ifp->if_capenable & IFCAP_RSS) {
3110 					pi = emx_rssinfo(m, &pi0, mrq,
3111 							 rss_hash, staterr);
3112 				}
3113 #ifdef EMX_RSS_DEBUG
3114 				rdata->rx_pkts++;
3115 #endif
3116 			}
3117 		} else {
3118 			IFNET_STAT_INC(ifp, ierrors, 1);
3119 discard:
3120 			emx_setup_rxdesc(current_desc, rx_buf);
3121 			if (rdata->fmp != NULL) {
3122 				m_freem(rdata->fmp);
3123 				rdata->fmp = NULL;
3124 				rdata->lmp = NULL;
3125 			}
3126 			m = NULL;
3127 		}
3128 
3129 		if (m != NULL)
3130 			ether_input_pkt(ifp, m, pi);
3131 
3132 		/* Advance our pointers to the next descriptor. */
3133 		if (++i == rdata->num_rx_desc)
3134 			i = 0;
3135 
3136 		current_desc = &rdata->rx_desc[i];
3137 		staterr = le32toh(current_desc->rxd_staterr);
3138 	}
3139 	rdata->next_rx_desc_to_check = i;
3140 
3141 	/* Advance the E1000's Receive Queue "Tail Pointer". */
3142 	if (--i < 0)
3143 		i = rdata->num_rx_desc - 1;
3144 	E1000_WRITE_REG(&rdata->sc->hw, E1000_RDT(rdata->idx), i);
3145 }
3146 
3147 static void
3148 emx_enable_intr(struct emx_softc *sc)
3149 {
3150 	uint32_t ims_mask = IMS_ENABLE_MASK;
3151 
3152 	lwkt_serialize_handler_enable(&sc->main_serialize);
3153 
3154 #if 0
3155 	if (sc->hw.mac.type == e1000_82574) {
3156 		E1000_WRITE_REG(hw, EMX_EIAC, EM_MSIX_MASK);
3157 		ims_mask |= EM_MSIX_MASK;
3158 	}
3159 #endif
3160 	E1000_WRITE_REG(&sc->hw, E1000_IMS, ims_mask);
3161 }
3162 
3163 static void
3164 emx_disable_intr(struct emx_softc *sc)
3165 {
3166 	if (sc->hw.mac.type == e1000_82574)
3167 		E1000_WRITE_REG(&sc->hw, EMX_EIAC, 0);
3168 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
3169 
3170 	lwkt_serialize_handler_disable(&sc->main_serialize);
3171 }
3172 
3173 /*
3174  * Bit of a misnomer, what this really means is
3175  * to enable OS management of the system... aka
3176  * to disable special hardware management features
3177  */
3178 static void
3179 emx_get_mgmt(struct emx_softc *sc)
3180 {
3181 	/* A shared code workaround */
3182 	if (sc->flags & EMX_FLAG_HAS_MGMT) {
3183 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
3184 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3185 
3186 		/* disable hardware interception of ARP */
3187 		manc &= ~(E1000_MANC_ARP_EN);
3188 
3189                 /* enable receiving management packets to the host */
3190 		manc |= E1000_MANC_EN_MNG2HOST;
3191 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3192 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3193 		manc2h |= E1000_MNG2HOST_PORT_623;
3194 		manc2h |= E1000_MNG2HOST_PORT_664;
3195 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
3196 
3197 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3198 	}
3199 }
3200 
3201 /*
3202  * Give control back to hardware management
3203  * controller if there is one.
3204  */
3205 static void
3206 emx_rel_mgmt(struct emx_softc *sc)
3207 {
3208 	if (sc->flags & EMX_FLAG_HAS_MGMT) {
3209 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3210 
3211 		/* re-enable hardware interception of ARP */
3212 		manc |= E1000_MANC_ARP_EN;
3213 		manc &= ~E1000_MANC_EN_MNG2HOST;
3214 
3215 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3216 	}
3217 }
3218 
3219 /*
3220  * emx_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3221  * For ASF and Pass Through versions of f/w this means that
3222  * the driver is loaded.  For AMT version (only with 82573)
3223  * of the f/w this means that the network i/f is open.
3224  */
3225 static void
3226 emx_get_hw_control(struct emx_softc *sc)
3227 {
3228 	/* Let firmware know the driver has taken over */
3229 	if (sc->hw.mac.type == e1000_82573) {
3230 		uint32_t swsm;
3231 
3232 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3233 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3234 		    swsm | E1000_SWSM_DRV_LOAD);
3235 	} else {
3236 		uint32_t ctrl_ext;
3237 
3238 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3239 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3240 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3241 	}
3242 	sc->flags |= EMX_FLAG_HW_CTRL;
3243 }
3244 
3245 /*
3246  * emx_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3247  * For ASF and Pass Through versions of f/w this means that the
3248  * driver is no longer loaded.  For AMT version (only with 82573)
3249  * of the f/w this means that the network i/f is closed.
3250  */
3251 static void
3252 emx_rel_hw_control(struct emx_softc *sc)
3253 {
3254 	if ((sc->flags & EMX_FLAG_HW_CTRL) == 0)
3255 		return;
3256 	sc->flags &= ~EMX_FLAG_HW_CTRL;
3257 
3258 	/* Let firmware taken over control of h/w */
3259 	if (sc->hw.mac.type == e1000_82573) {
3260 		uint32_t swsm;
3261 
3262 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3263 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3264 		    swsm & ~E1000_SWSM_DRV_LOAD);
3265 	} else {
3266 		uint32_t ctrl_ext;
3267 
3268 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3269 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3270 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3271 	}
3272 }
3273 
3274 static int
3275 emx_is_valid_eaddr(const uint8_t *addr)
3276 {
3277 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3278 
3279 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3280 		return (FALSE);
3281 
3282 	return (TRUE);
3283 }
3284 
3285 /*
3286  * Enable PCI Wake On Lan capability
3287  */
3288 void
3289 emx_enable_wol(device_t dev)
3290 {
3291 	uint16_t cap, status;
3292 	uint8_t id;
3293 
3294 	/* First find the capabilities pointer*/
3295 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3296 
3297 	/* Read the PM Capabilities */
3298 	id = pci_read_config(dev, cap, 1);
3299 	if (id != PCIY_PMG)     /* Something wrong */
3300 		return;
3301 
3302 	/*
3303 	 * OK, we have the power capabilities,
3304 	 * so now get the status register
3305 	 */
3306 	cap += PCIR_POWER_STATUS;
3307 	status = pci_read_config(dev, cap, 2);
3308 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3309 	pci_write_config(dev, cap, status, 2);
3310 }
3311 
3312 static void
3313 emx_update_stats(struct emx_softc *sc)
3314 {
3315 	struct ifnet *ifp = &sc->arpcom.ac_if;
3316 
3317 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
3318 	    (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3319 		sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
3320 		sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
3321 	}
3322 	sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
3323 	sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
3324 	sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
3325 	sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
3326 
3327 	sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
3328 	sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
3329 	sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
3330 	sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
3331 	sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
3332 	sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
3333 	sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
3334 	sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
3335 	sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
3336 	sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
3337 	sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
3338 	sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
3339 	sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
3340 	sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
3341 	sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
3342 	sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
3343 	sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
3344 	sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
3345 	sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
3346 	sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
3347 
3348 	/* For the 64-bit byte counters the low dword must be read first. */
3349 	/* Both registers clear on the read of the high dword */
3350 
3351 	sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCH);
3352 	sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCH);
3353 
3354 	sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
3355 	sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
3356 	sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
3357 	sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
3358 	sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
3359 
3360 	sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
3361 	sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
3362 
3363 	sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
3364 	sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
3365 	sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
3366 	sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
3367 	sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
3368 	sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
3369 	sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
3370 	sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
3371 	sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
3372 	sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
3373 
3374 	sc->stats.algnerrc += E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
3375 	sc->stats.rxerrc += E1000_READ_REG(&sc->hw, E1000_RXERRC);
3376 	sc->stats.tncrs += E1000_READ_REG(&sc->hw, E1000_TNCRS);
3377 	sc->stats.cexterr += E1000_READ_REG(&sc->hw, E1000_CEXTERR);
3378 	sc->stats.tsctc += E1000_READ_REG(&sc->hw, E1000_TSCTC);
3379 	sc->stats.tsctfc += E1000_READ_REG(&sc->hw, E1000_TSCTFC);
3380 
3381 	IFNET_STAT_SET(ifp, collisions, sc->stats.colc);
3382 
3383 	/* Rx Errors */
3384 	IFNET_STAT_SET(ifp, ierrors,
3385 	    sc->stats.rxerrc + sc->stats.crcerrs + sc->stats.algnerrc +
3386 	    sc->stats.ruc + sc->stats.roc + sc->stats.mpc + sc->stats.cexterr);
3387 
3388 	/* Tx Errors */
3389 	IFNET_STAT_SET(ifp, oerrors, sc->stats.ecol + sc->stats.latecol);
3390 }
3391 
3392 static void
3393 emx_print_debug_info(struct emx_softc *sc)
3394 {
3395 	device_t dev = sc->dev;
3396 	uint8_t *hw_addr = sc->hw.hw_addr;
3397 	int i;
3398 
3399 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3400 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3401 	    E1000_READ_REG(&sc->hw, E1000_CTRL),
3402 	    E1000_READ_REG(&sc->hw, E1000_RCTL));
3403 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3404 	    ((E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff0000) >> 16),\
3405 	    (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) );
3406 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3407 	    sc->hw.fc.high_water, sc->hw.fc.low_water);
3408 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3409 	    E1000_READ_REG(&sc->hw, E1000_TIDV),
3410 	    E1000_READ_REG(&sc->hw, E1000_TADV));
3411 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3412 	    E1000_READ_REG(&sc->hw, E1000_RDTR),
3413 	    E1000_READ_REG(&sc->hw, E1000_RADV));
3414 
3415 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3416 		device_printf(dev, "hw %d tdh = %d, hw tdt = %d\n", i,
3417 		    E1000_READ_REG(&sc->hw, E1000_TDH(i)),
3418 		    E1000_READ_REG(&sc->hw, E1000_TDT(i)));
3419 	}
3420 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3421 		device_printf(dev, "hw %d rdh = %d, hw rdt = %d\n", i,
3422 		    E1000_READ_REG(&sc->hw, E1000_RDH(i)),
3423 		    E1000_READ_REG(&sc->hw, E1000_RDT(i)));
3424 	}
3425 
3426 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3427 		device_printf(dev, "TX %d Tx descriptors avail = %d\n", i,
3428 		    sc->tx_data[i].num_tx_desc_avail);
3429 		device_printf(dev, "TX %d TSO segments = %lu\n", i,
3430 		    sc->tx_data[i].tso_segments);
3431 		device_printf(dev, "TX %d TSO ctx reused = %lu\n", i,
3432 		    sc->tx_data[i].tso_ctx_reused);
3433 	}
3434 }
3435 
3436 static void
3437 emx_print_hw_stats(struct emx_softc *sc)
3438 {
3439 	device_t dev = sc->dev;
3440 
3441 	device_printf(dev, "Excessive collisions = %lld\n",
3442 	    (long long)sc->stats.ecol);
3443 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3444 	device_printf(dev, "Symbol errors = %lld\n",
3445 	    (long long)sc->stats.symerrs);
3446 #endif
3447 	device_printf(dev, "Sequence errors = %lld\n",
3448 	    (long long)sc->stats.sec);
3449 	device_printf(dev, "Defer count = %lld\n",
3450 	    (long long)sc->stats.dc);
3451 	device_printf(dev, "Missed Packets = %lld\n",
3452 	    (long long)sc->stats.mpc);
3453 	device_printf(dev, "Receive No Buffers = %lld\n",
3454 	    (long long)sc->stats.rnbc);
3455 	/* RLEC is inaccurate on some hardware, calculate our own. */
3456 	device_printf(dev, "Receive Length Errors = %lld\n",
3457 	    ((long long)sc->stats.roc + (long long)sc->stats.ruc));
3458 	device_printf(dev, "Receive errors = %lld\n",
3459 	    (long long)sc->stats.rxerrc);
3460 	device_printf(dev, "Crc errors = %lld\n",
3461 	    (long long)sc->stats.crcerrs);
3462 	device_printf(dev, "Alignment errors = %lld\n",
3463 	    (long long)sc->stats.algnerrc);
3464 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3465 	    (long long)sc->stats.cexterr);
3466 	device_printf(dev, "RX overruns = %ld\n", sc->rx_overruns);
3467 	device_printf(dev, "XON Rcvd = %lld\n",
3468 	    (long long)sc->stats.xonrxc);
3469 	device_printf(dev, "XON Xmtd = %lld\n",
3470 	    (long long)sc->stats.xontxc);
3471 	device_printf(dev, "XOFF Rcvd = %lld\n",
3472 	    (long long)sc->stats.xoffrxc);
3473 	device_printf(dev, "XOFF Xmtd = %lld\n",
3474 	    (long long)sc->stats.xofftxc);
3475 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3476 	    (long long)sc->stats.gprc);
3477 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3478 	    (long long)sc->stats.gptc);
3479 }
3480 
3481 static void
3482 emx_print_nvm_info(struct emx_softc *sc)
3483 {
3484 	uint16_t eeprom_data;
3485 	int i, j, row = 0;
3486 
3487 	/* Its a bit crude, but it gets the job done */
3488 	kprintf("\nInterface EEPROM Dump:\n");
3489 	kprintf("Offset\n0x0000  ");
3490 	for (i = 0, j = 0; i < 32; i++, j++) {
3491 		if (j == 8) { /* Make the offset block */
3492 			j = 0; ++row;
3493 			kprintf("\n0x00%x0  ",row);
3494 		}
3495 		e1000_read_nvm(&sc->hw, i, 1, &eeprom_data);
3496 		kprintf("%04x ", eeprom_data);
3497 	}
3498 	kprintf("\n");
3499 }
3500 
3501 static int
3502 emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3503 {
3504 	struct emx_softc *sc;
3505 	struct ifnet *ifp;
3506 	int error, result;
3507 
3508 	result = -1;
3509 	error = sysctl_handle_int(oidp, &result, 0, req);
3510 	if (error || !req->newptr)
3511 		return (error);
3512 
3513 	sc = (struct emx_softc *)arg1;
3514 	ifp = &sc->arpcom.ac_if;
3515 
3516 	ifnet_serialize_all(ifp);
3517 
3518 	if (result == 1)
3519 		emx_print_debug_info(sc);
3520 
3521 	/*
3522 	 * This value will cause a hex dump of the
3523 	 * first 32 16-bit words of the EEPROM to
3524 	 * the screen.
3525 	 */
3526 	if (result == 2)
3527 		emx_print_nvm_info(sc);
3528 
3529 	ifnet_deserialize_all(ifp);
3530 
3531 	return (error);
3532 }
3533 
3534 static int
3535 emx_sysctl_stats(SYSCTL_HANDLER_ARGS)
3536 {
3537 	int error, result;
3538 
3539 	result = -1;
3540 	error = sysctl_handle_int(oidp, &result, 0, req);
3541 	if (error || !req->newptr)
3542 		return (error);
3543 
3544 	if (result == 1) {
3545 		struct emx_softc *sc = (struct emx_softc *)arg1;
3546 		struct ifnet *ifp = &sc->arpcom.ac_if;
3547 
3548 		ifnet_serialize_all(ifp);
3549 		emx_print_hw_stats(sc);
3550 		ifnet_deserialize_all(ifp);
3551 	}
3552 	return (error);
3553 }
3554 
3555 static void
3556 emx_add_sysctl(struct emx_softc *sc)
3557 {
3558 #if defined(EMX_RSS_DEBUG) || defined(EMX_TSS_DEBUG)
3559 	char pkt_desc[32];
3560 	int i;
3561 #endif
3562 
3563 	sysctl_ctx_init(&sc->sysctl_ctx);
3564 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
3565 				SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
3566 				device_get_nameunit(sc->dev),
3567 				CTLFLAG_RD, 0, "");
3568 	if (sc->sysctl_tree == NULL) {
3569 		device_printf(sc->dev, "can't add sysctl node\n");
3570 		return;
3571 	}
3572 
3573 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3574 			OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3575 			emx_sysctl_debug_info, "I", "Debug Information");
3576 
3577 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3578 			OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3579 			emx_sysctl_stats, "I", "Statistics");
3580 
3581 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3582 	    OID_AUTO, "rxd", CTLFLAG_RD, &sc->rx_data[0].num_rx_desc, 0,
3583 	    "# of RX descs");
3584 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3585 	    OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_data[0].num_tx_desc, 0,
3586 	    "# of TX descs");
3587 
3588 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3589 	    OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3590 	    emx_sysctl_int_throttle, "I", "interrupt throttling rate");
3591 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3592 	    OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3593 	    emx_sysctl_tx_intr_nsegs, "I", "# segments per TX interrupt");
3594 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3595 	    OID_AUTO, "tx_wreg_nsegs", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3596 	    emx_sysctl_tx_wreg_nsegs, "I",
3597 	    "# segments sent before write to hardware register");
3598 
3599 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3600 	    OID_AUTO, "rx_ring_cnt", CTLFLAG_RD, &sc->rx_ring_cnt, 0,
3601 	    "# of RX rings");
3602 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3603 	    OID_AUTO, "tx_ring_cnt", CTLFLAG_RD, &sc->tx_ring_cnt, 0,
3604 	    "# of TX rings");
3605 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3606 	    OID_AUTO, "tx_ring_inuse", CTLFLAG_RD, &sc->tx_ring_inuse, 0,
3607 	    "# of TX rings used");
3608 
3609 #ifdef IFPOLL_ENABLE
3610 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3611 			OID_AUTO, "npoll_rxoff", CTLTYPE_INT|CTLFLAG_RW,
3612 			sc, 0, emx_sysctl_npoll_rxoff, "I",
3613 			"NPOLLING RX cpu offset");
3614 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3615 			OID_AUTO, "npoll_txoff", CTLTYPE_INT|CTLFLAG_RW,
3616 			sc, 0, emx_sysctl_npoll_txoff, "I",
3617 			"NPOLLING TX cpu offset");
3618 #endif
3619 
3620 #ifdef EMX_RSS_DEBUG
3621 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3622 		       OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug,
3623 		       0, "RSS debug level");
3624 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3625 		ksnprintf(pkt_desc, sizeof(pkt_desc), "rx%d_pkt", i);
3626 		SYSCTL_ADD_ULONG(&sc->sysctl_ctx,
3627 		    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO,
3628 		    pkt_desc, CTLFLAG_RW, &sc->rx_data[i].rx_pkts,
3629 		    "RXed packets");
3630 	}
3631 #endif
3632 #ifdef EMX_TSS_DEBUG
3633 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3634 		ksnprintf(pkt_desc, sizeof(pkt_desc), "tx%d_pkt", i);
3635 		SYSCTL_ADD_ULONG(&sc->sysctl_ctx,
3636 		    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO,
3637 		    pkt_desc, CTLFLAG_RW, &sc->tx_data[i].tx_pkts,
3638 		    "TXed packets");
3639 	}
3640 #endif
3641 }
3642 
3643 static int
3644 emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3645 {
3646 	struct emx_softc *sc = (void *)arg1;
3647 	struct ifnet *ifp = &sc->arpcom.ac_if;
3648 	int error, throttle;
3649 
3650 	throttle = sc->int_throttle_ceil;
3651 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3652 	if (error || req->newptr == NULL)
3653 		return error;
3654 	if (throttle < 0 || throttle > 1000000000 / 256)
3655 		return EINVAL;
3656 
3657 	if (throttle) {
3658 		/*
3659 		 * Set the interrupt throttling rate in 256ns increments,
3660 		 * recalculate sysctl value assignment to get exact frequency.
3661 		 */
3662 		throttle = 1000000000 / 256 / throttle;
3663 
3664 		/* Upper 16bits of ITR is reserved and should be zero */
3665 		if (throttle & 0xffff0000)
3666 			return EINVAL;
3667 	}
3668 
3669 	ifnet_serialize_all(ifp);
3670 
3671 	if (throttle)
3672 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
3673 	else
3674 		sc->int_throttle_ceil = 0;
3675 
3676 	if (ifp->if_flags & IFF_RUNNING)
3677 		emx_set_itr(sc, throttle);
3678 
3679 	ifnet_deserialize_all(ifp);
3680 
3681 	if (bootverbose) {
3682 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
3683 			  sc->int_throttle_ceil);
3684 	}
3685 	return 0;
3686 }
3687 
3688 static int
3689 emx_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
3690 {
3691 	struct emx_softc *sc = (void *)arg1;
3692 	struct ifnet *ifp = &sc->arpcom.ac_if;
3693 	struct emx_txdata *tdata = &sc->tx_data[0];
3694 	int error, segs;
3695 
3696 	segs = tdata->tx_intr_nsegs;
3697 	error = sysctl_handle_int(oidp, &segs, 0, req);
3698 	if (error || req->newptr == NULL)
3699 		return error;
3700 	if (segs <= 0)
3701 		return EINVAL;
3702 
3703 	ifnet_serialize_all(ifp);
3704 
3705 	/*
3706 	 * Don't allow tx_intr_nsegs to become:
3707 	 * o  Less the oact_tx_desc
3708 	 * o  Too large that no TX desc will cause TX interrupt to
3709 	 *    be generated (OACTIVE will never recover)
3710 	 * o  Too small that will cause tx_dd[] overflow
3711 	 */
3712 	if (segs < tdata->oact_tx_desc ||
3713 	    segs >= tdata->num_tx_desc - tdata->oact_tx_desc ||
3714 	    segs < tdata->num_tx_desc / EMX_TXDD_SAFE) {
3715 		error = EINVAL;
3716 	} else {
3717 		int i;
3718 
3719 		error = 0;
3720 		for (i = 0; i < sc->tx_ring_cnt; ++i)
3721 			sc->tx_data[i].tx_intr_nsegs = segs;
3722 	}
3723 
3724 	ifnet_deserialize_all(ifp);
3725 
3726 	return error;
3727 }
3728 
3729 static int
3730 emx_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3731 {
3732 	struct emx_softc *sc = (void *)arg1;
3733 	struct ifnet *ifp = &sc->arpcom.ac_if;
3734 	int error, nsegs, i;
3735 
3736 	nsegs = sc->tx_data[0].tx_wreg_nsegs;
3737 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3738 	if (error || req->newptr == NULL)
3739 		return error;
3740 
3741 	ifnet_serialize_all(ifp);
3742 	for (i = 0; i < sc->tx_ring_cnt; ++i)
3743 		sc->tx_data[i].tx_wreg_nsegs =nsegs;
3744 	ifnet_deserialize_all(ifp);
3745 
3746 	return 0;
3747 }
3748 
3749 #ifdef IFPOLL_ENABLE
3750 
3751 static int
3752 emx_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
3753 {
3754 	struct emx_softc *sc = (void *)arg1;
3755 	struct ifnet *ifp = &sc->arpcom.ac_if;
3756 	int error, off;
3757 
3758 	off = sc->rx_npoll_off;
3759 	error = sysctl_handle_int(oidp, &off, 0, req);
3760 	if (error || req->newptr == NULL)
3761 		return error;
3762 	if (off < 0)
3763 		return EINVAL;
3764 
3765 	ifnet_serialize_all(ifp);
3766 	if (off >= ncpus2 || off % sc->rx_ring_cnt != 0) {
3767 		error = EINVAL;
3768 	} else {
3769 		error = 0;
3770 		sc->rx_npoll_off = off;
3771 	}
3772 	ifnet_deserialize_all(ifp);
3773 
3774 	return error;
3775 }
3776 
3777 static int
3778 emx_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
3779 {
3780 	struct emx_softc *sc = (void *)arg1;
3781 	struct ifnet *ifp = &sc->arpcom.ac_if;
3782 	int error, off;
3783 
3784 	off = sc->tx_npoll_off;
3785 	error = sysctl_handle_int(oidp, &off, 0, req);
3786 	if (error || req->newptr == NULL)
3787 		return error;
3788 	if (off < 0)
3789 		return EINVAL;
3790 
3791 	ifnet_serialize_all(ifp);
3792 	if (off >= ncpus2 || off % sc->tx_ring_cnt != 0) {
3793 		error = EINVAL;
3794 	} else {
3795 		error = 0;
3796 		sc->tx_npoll_off = off;
3797 	}
3798 	ifnet_deserialize_all(ifp);
3799 
3800 	return error;
3801 }
3802 
3803 #endif	/* IFPOLL_ENABLE */
3804 
3805 static int
3806 emx_dma_alloc(struct emx_softc *sc)
3807 {
3808 	int error, i;
3809 
3810 	/*
3811 	 * Create top level busdma tag
3812 	 */
3813 	error = bus_dma_tag_create(NULL, 1, 0,
3814 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3815 			NULL, NULL,
3816 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
3817 			0, &sc->parent_dtag);
3818 	if (error) {
3819 		device_printf(sc->dev, "could not create top level DMA tag\n");
3820 		return error;
3821 	}
3822 
3823 	/*
3824 	 * Allocate transmit descriptors ring and buffers
3825 	 */
3826 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3827 		error = emx_create_tx_ring(&sc->tx_data[i]);
3828 		if (error) {
3829 			device_printf(sc->dev,
3830 			    "Could not setup transmit structures\n");
3831 			return error;
3832 		}
3833 	}
3834 
3835 	/*
3836 	 * Allocate receive descriptors ring and buffers
3837 	 */
3838 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3839 		error = emx_create_rx_ring(&sc->rx_data[i]);
3840 		if (error) {
3841 			device_printf(sc->dev,
3842 			    "Could not setup receive structures\n");
3843 			return error;
3844 		}
3845 	}
3846 	return 0;
3847 }
3848 
3849 static void
3850 emx_dma_free(struct emx_softc *sc)
3851 {
3852 	int i;
3853 
3854 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3855 		emx_destroy_tx_ring(&sc->tx_data[i],
3856 		    sc->tx_data[i].num_tx_desc);
3857 	}
3858 
3859 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3860 		emx_destroy_rx_ring(&sc->rx_data[i],
3861 		    sc->rx_data[i].num_rx_desc);
3862 	}
3863 
3864 	/* Free top level busdma tag */
3865 	if (sc->parent_dtag != NULL)
3866 		bus_dma_tag_destroy(sc->parent_dtag);
3867 }
3868 
3869 static void
3870 emx_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3871 {
3872 	struct emx_softc *sc = ifp->if_softc;
3873 
3874 	ifnet_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, slz);
3875 }
3876 
3877 static void
3878 emx_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3879 {
3880 	struct emx_softc *sc = ifp->if_softc;
3881 
3882 	ifnet_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, slz);
3883 }
3884 
3885 static int
3886 emx_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3887 {
3888 	struct emx_softc *sc = ifp->if_softc;
3889 
3890 	return ifnet_serialize_array_try(sc->serializes, EMX_NSERIALIZE, slz);
3891 }
3892 
3893 static void
3894 emx_serialize_skipmain(struct emx_softc *sc)
3895 {
3896 	lwkt_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, 1);
3897 }
3898 
3899 static void
3900 emx_deserialize_skipmain(struct emx_softc *sc)
3901 {
3902 	lwkt_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, 1);
3903 }
3904 
3905 #ifdef INVARIANTS
3906 
3907 static void
3908 emx_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3909     boolean_t serialized)
3910 {
3911 	struct emx_softc *sc = ifp->if_softc;
3912 
3913 	ifnet_serialize_array_assert(sc->serializes, EMX_NSERIALIZE,
3914 	    slz, serialized);
3915 }
3916 
3917 #endif	/* INVARIANTS */
3918 
3919 #ifdef IFPOLL_ENABLE
3920 
3921 static void
3922 emx_npoll_status(struct ifnet *ifp)
3923 {
3924 	struct emx_softc *sc = ifp->if_softc;
3925 	uint32_t reg_icr;
3926 
3927 	ASSERT_SERIALIZED(&sc->main_serialize);
3928 
3929 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3930 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3931 		callout_stop(&sc->timer);
3932 		sc->hw.mac.get_link_status = 1;
3933 		emx_update_link_status(sc);
3934 		callout_reset(&sc->timer, hz, emx_timer, sc);
3935 	}
3936 }
3937 
3938 static void
3939 emx_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
3940 {
3941 	struct emx_txdata *tdata = arg;
3942 
3943 	ASSERT_SERIALIZED(&tdata->tx_serialize);
3944 
3945 	emx_txeof(tdata);
3946 	if (!ifsq_is_empty(tdata->ifsq))
3947 		ifsq_devstart(tdata->ifsq);
3948 }
3949 
3950 static void
3951 emx_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
3952 {
3953 	struct emx_rxdata *rdata = arg;
3954 
3955 	ASSERT_SERIALIZED(&rdata->rx_serialize);
3956 
3957 	emx_rxeof(rdata, cycle);
3958 }
3959 
3960 static void
3961 emx_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3962 {
3963 	struct emx_softc *sc = ifp->if_softc;
3964 	int i, txr_cnt;
3965 
3966 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3967 
3968 	if (info) {
3969 		int off;
3970 
3971 		info->ifpi_status.status_func = emx_npoll_status;
3972 		info->ifpi_status.serializer = &sc->main_serialize;
3973 
3974 		txr_cnt = emx_get_txring_inuse(sc, TRUE);
3975 		off = sc->tx_npoll_off;
3976 		for (i = 0; i < txr_cnt; ++i) {
3977 			struct emx_txdata *tdata = &sc->tx_data[i];
3978 			int idx = i + off;
3979 
3980 			KKASSERT(idx < ncpus2);
3981 			info->ifpi_tx[idx].poll_func = emx_npoll_tx;
3982 			info->ifpi_tx[idx].arg = tdata;
3983 			info->ifpi_tx[idx].serializer = &tdata->tx_serialize;
3984 			ifsq_set_cpuid(tdata->ifsq, idx);
3985 		}
3986 
3987 		off = sc->rx_npoll_off;
3988 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
3989 			struct emx_rxdata *rdata = &sc->rx_data[i];
3990 			int idx = i + off;
3991 
3992 			KKASSERT(idx < ncpus2);
3993 			info->ifpi_rx[idx].poll_func = emx_npoll_rx;
3994 			info->ifpi_rx[idx].arg = rdata;
3995 			info->ifpi_rx[idx].serializer = &rdata->rx_serialize;
3996 		}
3997 
3998 		if (ifp->if_flags & IFF_RUNNING) {
3999 			if (txr_cnt == sc->tx_ring_inuse)
4000 				emx_disable_intr(sc);
4001 			else
4002 				emx_init(sc);
4003 		}
4004 	} else {
4005 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
4006 			struct emx_txdata *tdata = &sc->tx_data[i];
4007 
4008 			ifsq_set_cpuid(tdata->ifsq,
4009 			    rman_get_cpuid(sc->intr_res));
4010 		}
4011 
4012 		if (ifp->if_flags & IFF_RUNNING) {
4013 			txr_cnt = emx_get_txring_inuse(sc, FALSE);
4014 			if (txr_cnt == sc->tx_ring_inuse)
4015 				emx_enable_intr(sc);
4016 			else
4017 				emx_init(sc);
4018 		}
4019 	}
4020 }
4021 
4022 #endif	/* IFPOLL_ENABLE */
4023 
4024 static void
4025 emx_set_itr(struct emx_softc *sc, uint32_t itr)
4026 {
4027 	E1000_WRITE_REG(&sc->hw, E1000_ITR, itr);
4028 	if (sc->hw.mac.type == e1000_82574) {
4029 		int i;
4030 
4031 		/*
4032 		 * When using MSIX interrupts we need to
4033 		 * throttle using the EITR register
4034 		 */
4035 		for (i = 0; i < 4; ++i)
4036 			E1000_WRITE_REG(&sc->hw, E1000_EITR_82574(i), itr);
4037 	}
4038 }
4039 
4040 /*
4041  * Disable the L0s, 82574L Errata #20
4042  */
4043 static void
4044 emx_disable_aspm(struct emx_softc *sc)
4045 {
4046 	uint16_t link_cap, link_ctrl, disable;
4047 	uint8_t pcie_ptr, reg;
4048 	device_t dev = sc->dev;
4049 
4050 	switch (sc->hw.mac.type) {
4051 	case e1000_82571:
4052 	case e1000_82572:
4053 	case e1000_82573:
4054 		/*
4055 		 * 82573 specification update
4056 		 * errata #8 disable L0s
4057 		 * errata #41 disable L1
4058 		 *
4059 		 * 82571/82572 specification update
4060 		 # errata #13 disable L1
4061 		 * errata #68 disable L0s
4062 		 */
4063 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4064 		break;
4065 
4066 	case e1000_82574:
4067 		/*
4068 		 * 82574 specification update errata #20
4069 		 *
4070 		 * There is no need to disable L1
4071 		 */
4072 		disable = PCIEM_LNKCTL_ASPM_L0S;
4073 		break;
4074 
4075 	default:
4076 		return;
4077 	}
4078 
4079 	pcie_ptr = pci_get_pciecap_ptr(dev);
4080 	if (pcie_ptr == 0)
4081 		return;
4082 
4083 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4084 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4085 		return;
4086 
4087 	if (bootverbose)
4088 		if_printf(&sc->arpcom.ac_if, "disable ASPM %#02x\n", disable);
4089 
4090 	reg = pcie_ptr + PCIER_LINKCTRL;
4091 	link_ctrl = pci_read_config(dev, reg, 2);
4092 	link_ctrl &= ~disable;
4093 	pci_write_config(dev, reg, link_ctrl, 2);
4094 }
4095 
4096 static int
4097 emx_tso_pullup(struct emx_txdata *tdata, struct mbuf **mp)
4098 {
4099 	int iphlen, hoff, thoff, ex = 0;
4100 	struct mbuf *m;
4101 	struct ip *ip;
4102 
4103 	m = *mp;
4104 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4105 
4106 	iphlen = m->m_pkthdr.csum_iphlen;
4107 	thoff = m->m_pkthdr.csum_thlen;
4108 	hoff = m->m_pkthdr.csum_lhlen;
4109 
4110 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4111 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4112 	KASSERT(hoff > 0, ("invalid ether hlen"));
4113 
4114 	if (tdata->tx_flags & EMX_TXFLAG_TSO_PULLEX)
4115 		ex = 4;
4116 
4117 	if (m->m_len < hoff + iphlen + thoff + ex) {
4118 		m = m_pullup(m, hoff + iphlen + thoff + ex);
4119 		if (m == NULL) {
4120 			*mp = NULL;
4121 			return ENOBUFS;
4122 		}
4123 		*mp = m;
4124 	}
4125 	ip = mtodoff(m, struct ip *, hoff);
4126 	ip->ip_len = 0;
4127 
4128 	return 0;
4129 }
4130 
4131 static int
4132 emx_tso_setup(struct emx_txdata *tdata, struct mbuf *mp,
4133     uint32_t *txd_upper, uint32_t *txd_lower)
4134 {
4135 	struct e1000_context_desc *TXD;
4136 	int hoff, iphlen, thoff, hlen;
4137 	int mss, pktlen, curr_txd;
4138 
4139 #ifdef EMX_TSO_DEBUG
4140 	tdata->tso_segments++;
4141 #endif
4142 
4143 	iphlen = mp->m_pkthdr.csum_iphlen;
4144 	thoff = mp->m_pkthdr.csum_thlen;
4145 	hoff = mp->m_pkthdr.csum_lhlen;
4146 	mss = mp->m_pkthdr.tso_segsz;
4147 	pktlen = mp->m_pkthdr.len;
4148 
4149 	if ((tdata->tx_flags & EMX_TXFLAG_FORCECTX) == 0 &&
4150 	    tdata->csum_flags == CSUM_TSO &&
4151 	    tdata->csum_iphlen == iphlen &&
4152 	    tdata->csum_lhlen == hoff &&
4153 	    tdata->csum_thlen == thoff &&
4154 	    tdata->csum_mss == mss &&
4155 	    tdata->csum_pktlen == pktlen) {
4156 		*txd_upper = tdata->csum_txd_upper;
4157 		*txd_lower = tdata->csum_txd_lower;
4158 #ifdef EMX_TSO_DEBUG
4159 		tdata->tso_ctx_reused++;
4160 #endif
4161 		return 0;
4162 	}
4163 	hlen = hoff + iphlen + thoff;
4164 
4165 	/*
4166 	 * Setup a new TSO context.
4167 	 */
4168 
4169 	curr_txd = tdata->next_avail_tx_desc;
4170 	TXD = (struct e1000_context_desc *)&tdata->tx_desc_base[curr_txd];
4171 
4172 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
4173 		     E1000_TXD_DTYP_D |		/* Data descr type */
4174 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
4175 
4176 	/* IP and/or TCP header checksum calculation and insertion. */
4177 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4178 
4179 	/*
4180 	 * Start offset for header checksum calculation.
4181 	 * End offset for header checksum calculation.
4182 	 * Offset of place put the checksum.
4183 	 */
4184 	TXD->lower_setup.ip_fields.ipcss = hoff;
4185 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4186 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4187 
4188 	/*
4189 	 * Start offset for payload checksum calculation.
4190 	 * End offset for payload checksum calculation.
4191 	 * Offset of place to put the checksum.
4192 	 */
4193 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4194 	TXD->upper_setup.tcp_fields.tucse = 0;
4195 	TXD->upper_setup.tcp_fields.tucso =
4196 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
4197 
4198 	/*
4199 	 * Payload size per packet w/o any headers.
4200 	 * Length of all headers up to payload.
4201 	 */
4202 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
4203 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
4204 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4205 				E1000_TXD_CMD_DEXT |	/* Extended descr */
4206 				E1000_TXD_CMD_TSE |	/* TSE context */
4207 				E1000_TXD_CMD_IP |	/* Do IP csum */
4208 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
4209 				(pktlen - hlen));	/* Total len */
4210 
4211 	/* Save the information for this TSO context */
4212 	tdata->csum_flags = CSUM_TSO;
4213 	tdata->csum_lhlen = hoff;
4214 	tdata->csum_iphlen = iphlen;
4215 	tdata->csum_thlen = thoff;
4216 	tdata->csum_mss = mss;
4217 	tdata->csum_pktlen = pktlen;
4218 	tdata->csum_txd_upper = *txd_upper;
4219 	tdata->csum_txd_lower = *txd_lower;
4220 
4221 	if (++curr_txd == tdata->num_tx_desc)
4222 		curr_txd = 0;
4223 
4224 	KKASSERT(tdata->num_tx_desc_avail > 0);
4225 	tdata->num_tx_desc_avail--;
4226 
4227 	tdata->next_avail_tx_desc = curr_txd;
4228 	return 1;
4229 }
4230 
4231 static int
4232 emx_get_txring_inuse(const struct emx_softc *sc, boolean_t polling)
4233 {
4234 	if (polling)
4235 		return sc->tx_ring_cnt;
4236 	else
4237 		return 1;
4238 }
4239