xref: /dragonfly/sys/dev/netif/emx/if_emx.c (revision 783d47c4)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 /*
68  * NOTE:
69  *
70  * MSI-X MUST NOT be enabled on 82574:
71  *   <<82574 specification update>> errata #15
72  */
73 
74 #include "opt_ifpoll.h"
75 #include "opt_rss.h"
76 #include "opt_emx.h"
77 
78 #include <sys/param.h>
79 #include <sys/bus.h>
80 #include <sys/endian.h>
81 #include <sys/interrupt.h>
82 #include <sys/kernel.h>
83 #include <sys/ktr.h>
84 #include <sys/malloc.h>
85 #include <sys/mbuf.h>
86 #include <sys/proc.h>
87 #include <sys/rman.h>
88 #include <sys/serialize.h>
89 #include <sys/serialize2.h>
90 #include <sys/socket.h>
91 #include <sys/sockio.h>
92 #include <sys/sysctl.h>
93 #include <sys/systm.h>
94 
95 #include <net/bpf.h>
96 #include <net/ethernet.h>
97 #include <net/if.h>
98 #include <net/if_arp.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/ifq_var.h>
102 #include <net/toeplitz.h>
103 #include <net/toeplitz2.h>
104 #include <net/vlan/if_vlan_var.h>
105 #include <net/vlan/if_vlan_ether.h>
106 #include <net/if_poll.h>
107 
108 #include <netinet/in_systm.h>
109 #include <netinet/in.h>
110 #include <netinet/ip.h>
111 #include <netinet/tcp.h>
112 #include <netinet/udp.h>
113 
114 #include <bus/pci/pcivar.h>
115 #include <bus/pci/pcireg.h>
116 
117 #include <dev/netif/ig_hal/e1000_api.h>
118 #include <dev/netif/ig_hal/e1000_82571.h>
119 #include <dev/netif/emx/if_emx.h>
120 
121 #ifdef EMX_RSS_DEBUG
122 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...) \
123 do { \
124 	if (sc->rss_debug >= lvl) \
125 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
126 } while (0)
127 #else	/* !EMX_RSS_DEBUG */
128 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
129 #endif	/* EMX_RSS_DEBUG */
130 
131 #define EMX_NAME	"Intel(R) PRO/1000 "
132 
133 #define EMX_DEVICE(id)	\
134 	{ EMX_VENDOR_ID, E1000_DEV_ID_##id, EMX_NAME #id }
135 #define EMX_DEVICE_NULL	{ 0, 0, NULL }
136 
137 static const struct emx_device {
138 	uint16_t	vid;
139 	uint16_t	did;
140 	const char	*desc;
141 } emx_devices[] = {
142 	EMX_DEVICE(82571EB_COPPER),
143 	EMX_DEVICE(82571EB_FIBER),
144 	EMX_DEVICE(82571EB_SERDES),
145 	EMX_DEVICE(82571EB_SERDES_DUAL),
146 	EMX_DEVICE(82571EB_SERDES_QUAD),
147 	EMX_DEVICE(82571EB_QUAD_COPPER),
148 	EMX_DEVICE(82571EB_QUAD_COPPER_BP),
149 	EMX_DEVICE(82571EB_QUAD_COPPER_LP),
150 	EMX_DEVICE(82571EB_QUAD_FIBER),
151 	EMX_DEVICE(82571PT_QUAD_COPPER),
152 
153 	EMX_DEVICE(82572EI_COPPER),
154 	EMX_DEVICE(82572EI_FIBER),
155 	EMX_DEVICE(82572EI_SERDES),
156 	EMX_DEVICE(82572EI),
157 
158 	EMX_DEVICE(82573E),
159 	EMX_DEVICE(82573E_IAMT),
160 	EMX_DEVICE(82573L),
161 
162 	EMX_DEVICE(80003ES2LAN_COPPER_SPT),
163 	EMX_DEVICE(80003ES2LAN_SERDES_SPT),
164 	EMX_DEVICE(80003ES2LAN_COPPER_DPT),
165 	EMX_DEVICE(80003ES2LAN_SERDES_DPT),
166 
167 	EMX_DEVICE(82574L),
168 	EMX_DEVICE(82574LA),
169 
170 	/* required last entry */
171 	EMX_DEVICE_NULL
172 };
173 
174 static int	emx_probe(device_t);
175 static int	emx_attach(device_t);
176 static int	emx_detach(device_t);
177 static int	emx_shutdown(device_t);
178 static int	emx_suspend(device_t);
179 static int	emx_resume(device_t);
180 
181 static void	emx_init(void *);
182 static void	emx_stop(struct emx_softc *);
183 static int	emx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
184 static void	emx_start(struct ifnet *);
185 #ifdef IFPOLL_ENABLE
186 static void	emx_qpoll(struct ifnet *, struct ifpoll_info *);
187 #endif
188 static void	emx_watchdog(struct ifnet *);
189 static void	emx_media_status(struct ifnet *, struct ifmediareq *);
190 static int	emx_media_change(struct ifnet *);
191 static void	emx_timer(void *);
192 static void	emx_serialize(struct ifnet *, enum ifnet_serialize);
193 static void	emx_deserialize(struct ifnet *, enum ifnet_serialize);
194 static int	emx_tryserialize(struct ifnet *, enum ifnet_serialize);
195 #ifdef INVARIANTS
196 static void	emx_serialize_assert(struct ifnet *, enum ifnet_serialize,
197 		    boolean_t);
198 #endif
199 
200 static void	emx_intr(void *);
201 static void	emx_rxeof(struct emx_softc *, int, int);
202 static void	emx_txeof(struct emx_softc *);
203 static void	emx_tx_collect(struct emx_softc *);
204 static void	emx_tx_purge(struct emx_softc *);
205 static void	emx_enable_intr(struct emx_softc *);
206 static void	emx_disable_intr(struct emx_softc *);
207 
208 static int	emx_dma_alloc(struct emx_softc *);
209 static void	emx_dma_free(struct emx_softc *);
210 static void	emx_init_tx_ring(struct emx_softc *);
211 static int	emx_init_rx_ring(struct emx_softc *, struct emx_rxdata *);
212 static void	emx_free_rx_ring(struct emx_softc *, struct emx_rxdata *);
213 static int	emx_create_tx_ring(struct emx_softc *);
214 static int	emx_create_rx_ring(struct emx_softc *, struct emx_rxdata *);
215 static void	emx_destroy_tx_ring(struct emx_softc *, int);
216 static void	emx_destroy_rx_ring(struct emx_softc *,
217 		    struct emx_rxdata *, int);
218 static int	emx_newbuf(struct emx_softc *, struct emx_rxdata *, int, int);
219 static int	emx_encap(struct emx_softc *, struct mbuf **);
220 static int	emx_txcsum_pullup(struct emx_softc *, struct mbuf **);
221 static int	emx_txcsum(struct emx_softc *, struct mbuf *,
222 		    uint32_t *, uint32_t *);
223 
224 static int 	emx_is_valid_eaddr(const uint8_t *);
225 static int	emx_reset(struct emx_softc *);
226 static void	emx_setup_ifp(struct emx_softc *);
227 static void	emx_init_tx_unit(struct emx_softc *);
228 static void	emx_init_rx_unit(struct emx_softc *);
229 static void	emx_update_stats(struct emx_softc *);
230 static void	emx_set_promisc(struct emx_softc *);
231 static void	emx_disable_promisc(struct emx_softc *);
232 static void	emx_set_multi(struct emx_softc *);
233 static void	emx_update_link_status(struct emx_softc *);
234 static void	emx_smartspeed(struct emx_softc *);
235 static void	emx_set_itr(struct emx_softc *, uint32_t);
236 static void	emx_disable_aspm(struct emx_softc *);
237 
238 static void	emx_print_debug_info(struct emx_softc *);
239 static void	emx_print_nvm_info(struct emx_softc *);
240 static void	emx_print_hw_stats(struct emx_softc *);
241 
242 static int	emx_sysctl_stats(SYSCTL_HANDLER_ARGS);
243 static int	emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
244 static int	emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
245 static int	emx_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
246 static void	emx_add_sysctl(struct emx_softc *);
247 
248 static void	emx_serialize_skipmain(struct emx_softc *);
249 static void	emx_deserialize_skipmain(struct emx_softc *);
250 
251 /* Management and WOL Support */
252 static void	emx_get_mgmt(struct emx_softc *);
253 static void	emx_rel_mgmt(struct emx_softc *);
254 static void	emx_get_hw_control(struct emx_softc *);
255 static void	emx_rel_hw_control(struct emx_softc *);
256 static void	emx_enable_wol(device_t);
257 
258 static device_method_t emx_methods[] = {
259 	/* Device interface */
260 	DEVMETHOD(device_probe,		emx_probe),
261 	DEVMETHOD(device_attach,	emx_attach),
262 	DEVMETHOD(device_detach,	emx_detach),
263 	DEVMETHOD(device_shutdown,	emx_shutdown),
264 	DEVMETHOD(device_suspend,	emx_suspend),
265 	DEVMETHOD(device_resume,	emx_resume),
266 	{ 0, 0 }
267 };
268 
269 static driver_t emx_driver = {
270 	"emx",
271 	emx_methods,
272 	sizeof(struct emx_softc),
273 };
274 
275 static devclass_t emx_devclass;
276 
277 DECLARE_DUMMY_MODULE(if_emx);
278 MODULE_DEPEND(emx, ig_hal, 1, 1, 1);
279 DRIVER_MODULE(if_emx, pci, emx_driver, emx_devclass, NULL, NULL);
280 
281 /*
282  * Tunables
283  */
284 static int	emx_int_throttle_ceil = EMX_DEFAULT_ITR;
285 static int	emx_rxd = EMX_DEFAULT_RXD;
286 static int	emx_txd = EMX_DEFAULT_TXD;
287 static int	emx_smart_pwr_down = 0;
288 static int	emx_rxr = 0;
289 
290 /* Controls whether promiscuous also shows bad packets */
291 static int	emx_debug_sbp = 0;
292 
293 static int	emx_82573_workaround = 1;
294 static int	emx_msi_enable = 1;
295 
296 TUNABLE_INT("hw.emx.int_throttle_ceil", &emx_int_throttle_ceil);
297 TUNABLE_INT("hw.emx.rxd", &emx_rxd);
298 TUNABLE_INT("hw.emx.rxr", &emx_rxr);
299 TUNABLE_INT("hw.emx.txd", &emx_txd);
300 TUNABLE_INT("hw.emx.smart_pwr_down", &emx_smart_pwr_down);
301 TUNABLE_INT("hw.emx.sbp", &emx_debug_sbp);
302 TUNABLE_INT("hw.emx.82573_workaround", &emx_82573_workaround);
303 TUNABLE_INT("hw.emx.msi.enable", &emx_msi_enable);
304 
305 /* Global used in WOL setup with multiport cards */
306 static int	emx_global_quad_port_a = 0;
307 
308 /* Set this to one to display debug statistics */
309 static int	emx_display_debug_stats = 0;
310 
311 #if !defined(KTR_IF_EMX)
312 #define KTR_IF_EMX	KTR_ALL
313 #endif
314 KTR_INFO_MASTER(if_emx);
315 KTR_INFO(KTR_IF_EMX, if_emx, intr_beg, 0, "intr begin");
316 KTR_INFO(KTR_IF_EMX, if_emx, intr_end, 1, "intr end");
317 KTR_INFO(KTR_IF_EMX, if_emx, pkt_receive, 4, "rx packet");
318 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txqueue, 5, "tx packet");
319 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txclean, 6, "tx clean");
320 #define logif(name)	KTR_LOG(if_emx_ ## name)
321 
322 static __inline void
323 emx_setup_rxdesc(emx_rxdesc_t *rxd, const struct emx_rxbuf *rxbuf)
324 {
325 	rxd->rxd_bufaddr = htole64(rxbuf->paddr);
326 	/* DD bit must be cleared */
327 	rxd->rxd_staterr = 0;
328 }
329 
330 static __inline void
331 emx_rxcsum(uint32_t staterr, struct mbuf *mp)
332 {
333 	/* Ignore Checksum bit is set */
334 	if (staterr & E1000_RXD_STAT_IXSM)
335 		return;
336 
337 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
338 	    E1000_RXD_STAT_IPCS)
339 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
340 
341 	if ((staterr & (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
342 	    E1000_RXD_STAT_TCPCS) {
343 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
344 					   CSUM_PSEUDO_HDR |
345 					   CSUM_FRAG_NOT_CHECKED;
346 		mp->m_pkthdr.csum_data = htons(0xffff);
347 	}
348 }
349 
350 static __inline struct pktinfo *
351 emx_rssinfo(struct mbuf *m, struct pktinfo *pi,
352 	    uint32_t mrq, uint32_t hash, uint32_t staterr)
353 {
354 	switch (mrq & EMX_RXDMRQ_RSSTYPE_MASK) {
355 	case EMX_RXDMRQ_IPV4_TCP:
356 		pi->pi_netisr = NETISR_IP;
357 		pi->pi_flags = 0;
358 		pi->pi_l3proto = IPPROTO_TCP;
359 		break;
360 
361 	case EMX_RXDMRQ_IPV6_TCP:
362 		pi->pi_netisr = NETISR_IPV6;
363 		pi->pi_flags = 0;
364 		pi->pi_l3proto = IPPROTO_TCP;
365 		break;
366 
367 	case EMX_RXDMRQ_IPV4:
368 		if (staterr & E1000_RXD_STAT_IXSM)
369 			return NULL;
370 
371 		if ((staterr &
372 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
373 		    E1000_RXD_STAT_TCPCS) {
374 			pi->pi_netisr = NETISR_IP;
375 			pi->pi_flags = 0;
376 			pi->pi_l3proto = IPPROTO_UDP;
377 			break;
378 		}
379 		/* FALL THROUGH */
380 	default:
381 		return NULL;
382 	}
383 
384 	m->m_flags |= M_HASH;
385 	m->m_pkthdr.hash = toeplitz_hash(hash);
386 	return pi;
387 }
388 
389 static int
390 emx_probe(device_t dev)
391 {
392 	const struct emx_device *d;
393 	uint16_t vid, did;
394 
395 	vid = pci_get_vendor(dev);
396 	did = pci_get_device(dev);
397 
398 	for (d = emx_devices; d->desc != NULL; ++d) {
399 		if (vid == d->vid && did == d->did) {
400 			device_set_desc(dev, d->desc);
401 			device_set_async_attach(dev, TRUE);
402 			return 0;
403 		}
404 	}
405 	return ENXIO;
406 }
407 
408 static int
409 emx_attach(device_t dev)
410 {
411 	struct emx_softc *sc = device_get_softc(dev);
412 	struct ifnet *ifp = &sc->arpcom.ac_if;
413 	int error = 0, i, throttle;
414 	u_int intr_flags;
415 	uint16_t eeprom_data, device_id, apme_mask;
416 
417 	lwkt_serialize_init(&sc->main_serialize);
418 	lwkt_serialize_init(&sc->tx_serialize);
419 	for (i = 0; i < EMX_NRX_RING; ++i)
420 		lwkt_serialize_init(&sc->rx_data[i].rx_serialize);
421 
422 	i = 0;
423 	sc->serializes[i++] = &sc->main_serialize;
424 	sc->serializes[i++] = &sc->tx_serialize;
425 	sc->serializes[i++] = &sc->rx_data[0].rx_serialize;
426 	sc->serializes[i++] = &sc->rx_data[1].rx_serialize;
427 	KKASSERT(i == EMX_NSERIALIZE);
428 
429 	callout_init_mp(&sc->timer);
430 
431 	sc->dev = sc->osdep.dev = dev;
432 
433 	/*
434 	 * Determine hardware and mac type
435 	 */
436 	sc->hw.vendor_id = pci_get_vendor(dev);
437 	sc->hw.device_id = pci_get_device(dev);
438 	sc->hw.revision_id = pci_get_revid(dev);
439 	sc->hw.subsystem_vendor_id = pci_get_subvendor(dev);
440 	sc->hw.subsystem_device_id = pci_get_subdevice(dev);
441 
442 	if (e1000_set_mac_type(&sc->hw))
443 		return ENXIO;
444 
445 	/* Enable bus mastering */
446 	pci_enable_busmaster(dev);
447 
448 	/*
449 	 * Allocate IO memory
450 	 */
451 	sc->memory_rid = EMX_BAR_MEM;
452 	sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
453 					    &sc->memory_rid, RF_ACTIVE);
454 	if (sc->memory == NULL) {
455 		device_printf(dev, "Unable to allocate bus resource: memory\n");
456 		error = ENXIO;
457 		goto fail;
458 	}
459 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
460 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
461 
462 	/* XXX This is quite goofy, it is not actually used */
463 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
464 
465 	/*
466 	 * Allocate interrupt
467 	 */
468 	sc->intr_type = pci_alloc_1intr(dev, emx_msi_enable,
469 	    &sc->intr_rid, &intr_flags);
470 
471 	sc->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->intr_rid,
472 	    intr_flags);
473 	if (sc->intr_res == NULL) {
474 		device_printf(dev, "Unable to allocate bus resource: "
475 		    "interrupt\n");
476 		error = ENXIO;
477 		goto fail;
478 	}
479 
480 	/* Save PCI command register for Shared Code */
481 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
482 	sc->hw.back = &sc->osdep;
483 
484 	/* Do Shared Code initialization */
485 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
486 		device_printf(dev, "Setup of Shared code failed\n");
487 		error = ENXIO;
488 		goto fail;
489 	}
490 	e1000_get_bus_info(&sc->hw);
491 
492 	sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
493 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
494 	sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
495 
496 	/*
497 	 * Interrupt throttle rate
498 	 */
499 	throttle = device_getenv_int(dev, "int_throttle_ceil",
500 	    emx_int_throttle_ceil);
501 	if (throttle == 0) {
502 		sc->int_throttle_ceil = 0;
503 	} else {
504 		if (throttle < 0)
505 			throttle = EMX_DEFAULT_ITR;
506 
507 		/* Recalculate the tunable value to get the exact frequency. */
508 		throttle = 1000000000 / 256 / throttle;
509 
510 		/* Upper 16bits of ITR is reserved and should be zero */
511 		if (throttle & 0xffff0000)
512 			throttle = 1000000000 / 256 / EMX_DEFAULT_ITR;
513 
514 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
515 	}
516 
517 	e1000_init_script_state_82541(&sc->hw, TRUE);
518 	e1000_set_tbi_compatibility_82543(&sc->hw, TRUE);
519 
520 	/* Copper options */
521 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
522 		sc->hw.phy.mdix = EMX_AUTO_ALL_MODES;
523 		sc->hw.phy.disable_polarity_correction = FALSE;
524 		sc->hw.phy.ms_type = EMX_MASTER_SLAVE;
525 	}
526 
527 	/* Set the frame limits assuming standard ethernet sized frames. */
528 	sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
529 	sc->min_frame_size = ETHER_MIN_LEN;
530 
531 	/* This controls when hardware reports transmit completion status. */
532 	sc->hw.mac.report_tx_early = 1;
533 
534 	/* Calculate # of RX rings */
535 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr", emx_rxr);
536 	sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, EMX_NRX_RING);
537 
538 	/* Allocate RX/TX rings' busdma(9) stuffs */
539 	error = emx_dma_alloc(sc);
540 	if (error)
541 		goto fail;
542 
543 	/* Allocate multicast array memory. */
544 	sc->mta = kmalloc(ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX,
545 	    M_DEVBUF, M_WAITOK);
546 
547 	/* Indicate SOL/IDER usage */
548 	if (e1000_check_reset_block(&sc->hw)) {
549 		device_printf(dev,
550 		    "PHY reset is blocked due to SOL/IDER session.\n");
551 	}
552 
553 	/*
554 	 * Start from a known state, this is important in reading the
555 	 * nvm and mac from that.
556 	 */
557 	e1000_reset_hw(&sc->hw);
558 
559 	/* Make sure we have a good EEPROM before we read from it */
560 	if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
561 		/*
562 		 * Some PCI-E parts fail the first check due to
563 		 * the link being in sleep state, call it again,
564 		 * if it fails a second time its a real issue.
565 		 */
566 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
567 			device_printf(dev,
568 			    "The EEPROM Checksum Is Not Valid\n");
569 			error = EIO;
570 			goto fail;
571 		}
572 	}
573 
574 	/* Copy the permanent MAC address out of the EEPROM */
575 	if (e1000_read_mac_addr(&sc->hw) < 0) {
576 		device_printf(dev, "EEPROM read error while reading MAC"
577 		    " address\n");
578 		error = EIO;
579 		goto fail;
580 	}
581 	if (!emx_is_valid_eaddr(sc->hw.mac.addr)) {
582 		device_printf(dev, "Invalid MAC address\n");
583 		error = EIO;
584 		goto fail;
585 	}
586 
587 	/* Determine if we have to control management hardware */
588 	sc->has_manage = e1000_enable_mng_pass_thru(&sc->hw);
589 
590 	/*
591 	 * Setup Wake-on-Lan
592 	 */
593 	apme_mask = EMX_EEPROM_APME;
594 	eeprom_data = 0;
595 	switch (sc->hw.mac.type) {
596 	case e1000_82573:
597 		sc->has_amt = 1;
598 		/* FALL THROUGH */
599 
600 	case e1000_82571:
601 	case e1000_82572:
602 	case e1000_80003es2lan:
603 		if (sc->hw.bus.func == 1) {
604 			e1000_read_nvm(&sc->hw,
605 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
606 		} else {
607 			e1000_read_nvm(&sc->hw,
608 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
609 		}
610 		break;
611 
612 	default:
613 		e1000_read_nvm(&sc->hw,
614 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
615 		break;
616 	}
617 	if (eeprom_data & apme_mask)
618 		sc->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
619 
620 	/*
621          * We have the eeprom settings, now apply the special cases
622          * where the eeprom may be wrong or the board won't support
623          * wake on lan on a particular port
624 	 */
625 	device_id = pci_get_device(dev);
626         switch (device_id) {
627 	case E1000_DEV_ID_82571EB_FIBER:
628 		/*
629 		 * Wake events only supported on port A for dual fiber
630 		 * regardless of eeprom setting
631 		 */
632 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
633 		    E1000_STATUS_FUNC_1)
634 			sc->wol = 0;
635 		break;
636 
637 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
638 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
639 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
640                 /* if quad port sc, disable WoL on all but port A */
641 		if (emx_global_quad_port_a != 0)
642 			sc->wol = 0;
643 		/* Reset for multiple quad port adapters */
644 		if (++emx_global_quad_port_a == 4)
645 			emx_global_quad_port_a = 0;
646                 break;
647 	}
648 
649 	/* XXX disable wol */
650 	sc->wol = 0;
651 
652 	/* Setup OS specific network interface */
653 	emx_setup_ifp(sc);
654 
655 	/* Add sysctl tree, must after em_setup_ifp() */
656 	emx_add_sysctl(sc);
657 
658 	/* Reset the hardware */
659 	error = emx_reset(sc);
660 	if (error) {
661 		device_printf(dev, "Unable to reset the hardware\n");
662 		goto fail;
663 	}
664 
665 	/* Initialize statistics */
666 	emx_update_stats(sc);
667 
668 	sc->hw.mac.get_link_status = 1;
669 	emx_update_link_status(sc);
670 
671 	sc->spare_tx_desc = EMX_TX_SPARE;
672 
673 	/*
674 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
675 	 * and tx_int_nsegs:
676 	 * (spare_tx_desc + EMX_TX_RESERVED) <=
677 	 * oact_tx_desc <= EMX_TX_OACTIVE_MAX <= tx_int_nsegs
678 	 */
679 	sc->oact_tx_desc = sc->num_tx_desc / 8;
680 	if (sc->oact_tx_desc > EMX_TX_OACTIVE_MAX)
681 		sc->oact_tx_desc = EMX_TX_OACTIVE_MAX;
682 	if (sc->oact_tx_desc < sc->spare_tx_desc + EMX_TX_RESERVED)
683 		sc->oact_tx_desc = sc->spare_tx_desc + EMX_TX_RESERVED;
684 
685 	sc->tx_int_nsegs = sc->num_tx_desc / 16;
686 	if (sc->tx_int_nsegs < sc->oact_tx_desc)
687 		sc->tx_int_nsegs = sc->oact_tx_desc;
688 
689 	/* Non-AMT based hardware can now take control from firmware */
690 	if (sc->has_manage && !sc->has_amt)
691 		emx_get_hw_control(sc);
692 
693 	error = bus_setup_intr(dev, sc->intr_res, INTR_MPSAFE, emx_intr, sc,
694 			       &sc->intr_tag, &sc->main_serialize);
695 	if (error) {
696 		device_printf(dev, "Failed to register interrupt handler");
697 		ether_ifdetach(&sc->arpcom.ac_if);
698 		goto fail;
699 	}
700 
701 	ifp->if_cpuid = rman_get_cpuid(sc->intr_res);
702 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
703 	return (0);
704 fail:
705 	emx_detach(dev);
706 	return (error);
707 }
708 
709 static int
710 emx_detach(device_t dev)
711 {
712 	struct emx_softc *sc = device_get_softc(dev);
713 
714 	if (device_is_attached(dev)) {
715 		struct ifnet *ifp = &sc->arpcom.ac_if;
716 
717 		ifnet_serialize_all(ifp);
718 
719 		emx_stop(sc);
720 
721 		e1000_phy_hw_reset(&sc->hw);
722 
723 		emx_rel_mgmt(sc);
724 		emx_rel_hw_control(sc);
725 
726 		if (sc->wol) {
727 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
728 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
729 			emx_enable_wol(dev);
730 		}
731 
732 		bus_teardown_intr(dev, sc->intr_res, sc->intr_tag);
733 
734 		ifnet_deserialize_all(ifp);
735 
736 		ether_ifdetach(ifp);
737 	} else {
738 		emx_rel_hw_control(sc);
739 	}
740 	bus_generic_detach(dev);
741 
742 	if (sc->intr_res != NULL) {
743 		bus_release_resource(dev, SYS_RES_IRQ, sc->intr_rid,
744 				     sc->intr_res);
745 	}
746 
747 	if (sc->intr_type == PCI_INTR_TYPE_MSI)
748 		pci_release_msi(dev);
749 
750 	if (sc->memory != NULL) {
751 		bus_release_resource(dev, SYS_RES_MEMORY, sc->memory_rid,
752 				     sc->memory);
753 	}
754 
755 	emx_dma_free(sc);
756 
757 	/* Free sysctl tree */
758 	if (sc->sysctl_tree != NULL)
759 		sysctl_ctx_free(&sc->sysctl_ctx);
760 
761 	return (0);
762 }
763 
764 static int
765 emx_shutdown(device_t dev)
766 {
767 	return emx_suspend(dev);
768 }
769 
770 static int
771 emx_suspend(device_t dev)
772 {
773 	struct emx_softc *sc = device_get_softc(dev);
774 	struct ifnet *ifp = &sc->arpcom.ac_if;
775 
776 	ifnet_serialize_all(ifp);
777 
778 	emx_stop(sc);
779 
780 	emx_rel_mgmt(sc);
781 	emx_rel_hw_control(sc);
782 
783 	if (sc->wol) {
784 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
785 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
786 		emx_enable_wol(dev);
787 	}
788 
789 	ifnet_deserialize_all(ifp);
790 
791 	return bus_generic_suspend(dev);
792 }
793 
794 static int
795 emx_resume(device_t dev)
796 {
797 	struct emx_softc *sc = device_get_softc(dev);
798 	struct ifnet *ifp = &sc->arpcom.ac_if;
799 
800 	ifnet_serialize_all(ifp);
801 
802 	emx_init(sc);
803 	emx_get_mgmt(sc);
804 	if_devstart(ifp);
805 
806 	ifnet_deserialize_all(ifp);
807 
808 	return bus_generic_resume(dev);
809 }
810 
811 static void
812 emx_start(struct ifnet *ifp)
813 {
814 	struct emx_softc *sc = ifp->if_softc;
815 	struct mbuf *m_head;
816 
817 	ASSERT_SERIALIZED(&sc->tx_serialize);
818 
819 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
820 		return;
821 
822 	if (!sc->link_active) {
823 		ifq_purge(&ifp->if_snd);
824 		return;
825 	}
826 
827 	while (!ifq_is_empty(&ifp->if_snd)) {
828 		/* Now do we at least have a minimal? */
829 		if (EMX_IS_OACTIVE(sc)) {
830 			emx_tx_collect(sc);
831 			if (EMX_IS_OACTIVE(sc)) {
832 				ifp->if_flags |= IFF_OACTIVE;
833 				sc->no_tx_desc_avail1++;
834 				break;
835 			}
836 		}
837 
838 		logif(pkt_txqueue);
839 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
840 		if (m_head == NULL)
841 			break;
842 
843 		if (emx_encap(sc, &m_head)) {
844 			ifp->if_oerrors++;
845 			emx_tx_collect(sc);
846 			continue;
847 		}
848 
849 		/* Send a copy of the frame to the BPF listener */
850 		ETHER_BPF_MTAP(ifp, m_head);
851 
852 		/* Set timeout in case hardware has problems transmitting. */
853 		ifp->if_timer = EMX_TX_TIMEOUT;
854 	}
855 }
856 
857 static int
858 emx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
859 {
860 	struct emx_softc *sc = ifp->if_softc;
861 	struct ifreq *ifr = (struct ifreq *)data;
862 	uint16_t eeprom_data = 0;
863 	int max_frame_size, mask, reinit;
864 	int error = 0;
865 
866 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
867 
868 	switch (command) {
869 	case SIOCSIFMTU:
870 		switch (sc->hw.mac.type) {
871 		case e1000_82573:
872 			/*
873 			 * 82573 only supports jumbo frames
874 			 * if ASPM is disabled.
875 			 */
876 			e1000_read_nvm(&sc->hw, NVM_INIT_3GIO_3, 1,
877 				       &eeprom_data);
878 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
879 				max_frame_size = ETHER_MAX_LEN;
880 				break;
881 			}
882 			/* FALL THROUGH */
883 
884 		/* Limit Jumbo Frame size */
885 		case e1000_82571:
886 		case e1000_82572:
887 		case e1000_82574:
888 		case e1000_80003es2lan:
889 			max_frame_size = 9234;
890 			break;
891 
892 		default:
893 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
894 			break;
895 		}
896 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
897 		    ETHER_CRC_LEN) {
898 			error = EINVAL;
899 			break;
900 		}
901 
902 		ifp->if_mtu = ifr->ifr_mtu;
903 		sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
904 				     ETHER_CRC_LEN;
905 
906 		if (ifp->if_flags & IFF_RUNNING)
907 			emx_init(sc);
908 		break;
909 
910 	case SIOCSIFFLAGS:
911 		if (ifp->if_flags & IFF_UP) {
912 			if ((ifp->if_flags & IFF_RUNNING)) {
913 				if ((ifp->if_flags ^ sc->if_flags) &
914 				    (IFF_PROMISC | IFF_ALLMULTI)) {
915 					emx_disable_promisc(sc);
916 					emx_set_promisc(sc);
917 				}
918 			} else {
919 				emx_init(sc);
920 			}
921 		} else if (ifp->if_flags & IFF_RUNNING) {
922 			emx_stop(sc);
923 		}
924 		sc->if_flags = ifp->if_flags;
925 		break;
926 
927 	case SIOCADDMULTI:
928 	case SIOCDELMULTI:
929 		if (ifp->if_flags & IFF_RUNNING) {
930 			emx_disable_intr(sc);
931 			emx_set_multi(sc);
932 #ifdef IFPOLL_ENABLE
933 			if (!(ifp->if_flags & IFF_NPOLLING))
934 #endif
935 				emx_enable_intr(sc);
936 		}
937 		break;
938 
939 	case SIOCSIFMEDIA:
940 		/* Check SOL/IDER usage */
941 		if (e1000_check_reset_block(&sc->hw)) {
942 			device_printf(sc->dev, "Media change is"
943 			    " blocked due to SOL/IDER session.\n");
944 			break;
945 		}
946 		/* FALL THROUGH */
947 
948 	case SIOCGIFMEDIA:
949 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
950 		break;
951 
952 	case SIOCSIFCAP:
953 		reinit = 0;
954 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
955 		if (mask & IFCAP_HWCSUM) {
956 			ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
957 			reinit = 1;
958 		}
959 		if (mask & IFCAP_VLAN_HWTAGGING) {
960 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
961 			reinit = 1;
962 		}
963 		if (mask & IFCAP_RSS)
964 			ifp->if_capenable ^= IFCAP_RSS;
965 		if (reinit && (ifp->if_flags & IFF_RUNNING))
966 			emx_init(sc);
967 		break;
968 
969 	default:
970 		error = ether_ioctl(ifp, command, data);
971 		break;
972 	}
973 	return (error);
974 }
975 
976 static void
977 emx_watchdog(struct ifnet *ifp)
978 {
979 	struct emx_softc *sc = ifp->if_softc;
980 
981 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
982 
983 	/*
984 	 * The timer is set to 5 every time start queues a packet.
985 	 * Then txeof keeps resetting it as long as it cleans at
986 	 * least one descriptor.
987 	 * Finally, anytime all descriptors are clean the timer is
988 	 * set to 0.
989 	 */
990 
991 	if (E1000_READ_REG(&sc->hw, E1000_TDT(0)) ==
992 	    E1000_READ_REG(&sc->hw, E1000_TDH(0))) {
993 		/*
994 		 * If we reach here, all TX jobs are completed and
995 		 * the TX engine should have been idled for some time.
996 		 * We don't need to call if_devstart() here.
997 		 */
998 		ifp->if_flags &= ~IFF_OACTIVE;
999 		ifp->if_timer = 0;
1000 		return;
1001 	}
1002 
1003 	/*
1004 	 * If we are in this routine because of pause frames, then
1005 	 * don't reset the hardware.
1006 	 */
1007 	if (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_TXOFF) {
1008 		ifp->if_timer = EMX_TX_TIMEOUT;
1009 		return;
1010 	}
1011 
1012 	if (e1000_check_for_link(&sc->hw) == 0)
1013 		if_printf(ifp, "watchdog timeout -- resetting\n");
1014 
1015 	ifp->if_oerrors++;
1016 	sc->watchdog_events++;
1017 
1018 	emx_init(sc);
1019 
1020 	if (!ifq_is_empty(&ifp->if_snd))
1021 		if_devstart(ifp);
1022 }
1023 
1024 static void
1025 emx_init(void *xsc)
1026 {
1027 	struct emx_softc *sc = xsc;
1028 	struct ifnet *ifp = &sc->arpcom.ac_if;
1029 	device_t dev = sc->dev;
1030 	uint32_t pba;
1031 	int i;
1032 
1033 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1034 
1035 	emx_stop(sc);
1036 
1037 	/*
1038 	 * Packet Buffer Allocation (PBA)
1039 	 * Writing PBA sets the receive portion of the buffer
1040 	 * the remainder is used for the transmit buffer.
1041 	 */
1042 	switch (sc->hw.mac.type) {
1043 	/* Total Packet Buffer on these is 48K */
1044 	case e1000_82571:
1045 	case e1000_82572:
1046 	case e1000_80003es2lan:
1047 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1048 		break;
1049 
1050 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1051 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1052 		break;
1053 
1054 	case e1000_82574:
1055 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1056 		break;
1057 
1058 	default:
1059 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1060 		if (sc->max_frame_size > 8192)
1061 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1062 		else
1063 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1064 	}
1065 	E1000_WRITE_REG(&sc->hw, E1000_PBA, pba);
1066 
1067 	/* Get the latest mac address, User can use a LAA */
1068         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
1069 
1070 	/* Put the address into the Receive Address Array */
1071 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1072 
1073 	/*
1074 	 * With the 82571 sc, RAR[0] may be overwritten
1075 	 * when the other port is reset, we make a duplicate
1076 	 * in RAR[14] for that eventuality, this assures
1077 	 * the interface continues to function.
1078 	 */
1079 	if (sc->hw.mac.type == e1000_82571) {
1080 		e1000_set_laa_state_82571(&sc->hw, TRUE);
1081 		e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1082 		    E1000_RAR_ENTRIES - 1);
1083 	}
1084 
1085 	/* Initialize the hardware */
1086 	if (emx_reset(sc)) {
1087 		device_printf(dev, "Unable to reset the hardware\n");
1088 		/* XXX emx_stop()? */
1089 		return;
1090 	}
1091 	emx_update_link_status(sc);
1092 
1093 	/* Setup VLAN support, basic and offload if available */
1094 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1095 
1096 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1097 		uint32_t ctrl;
1098 
1099 		ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
1100 		ctrl |= E1000_CTRL_VME;
1101 		E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
1102 	}
1103 
1104 	/* Set hardware offload abilities */
1105 	if (ifp->if_capenable & IFCAP_TXCSUM)
1106 		ifp->if_hwassist = EMX_CSUM_FEATURES;
1107 	else
1108 		ifp->if_hwassist = 0;
1109 
1110 	/* Configure for OS presence */
1111 	emx_get_mgmt(sc);
1112 
1113 	/* Prepare transmit descriptors and buffers */
1114 	emx_init_tx_ring(sc);
1115 	emx_init_tx_unit(sc);
1116 
1117 	/* Setup Multicast table */
1118 	emx_set_multi(sc);
1119 
1120 	/* Prepare receive descriptors and buffers */
1121 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1122 		if (emx_init_rx_ring(sc, &sc->rx_data[i])) {
1123 			device_printf(dev,
1124 			    "Could not setup receive structures\n");
1125 			emx_stop(sc);
1126 			return;
1127 		}
1128 	}
1129 	emx_init_rx_unit(sc);
1130 
1131 	/* Don't lose promiscuous settings */
1132 	emx_set_promisc(sc);
1133 
1134 	ifp->if_flags |= IFF_RUNNING;
1135 	ifp->if_flags &= ~IFF_OACTIVE;
1136 
1137 	callout_reset(&sc->timer, hz, emx_timer, sc);
1138 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1139 
1140 	/* MSI/X configuration for 82574 */
1141 	if (sc->hw.mac.type == e1000_82574) {
1142 		int tmp;
1143 
1144 		tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1145 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1146 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1147 		/*
1148 		 * XXX MSIX
1149 		 * Set the IVAR - interrupt vector routing.
1150 		 * Each nibble represents a vector, high bit
1151 		 * is enable, other 3 bits are the MSIX table
1152 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1153 		 * Link (other) to 2, hence the magic number.
1154 		 */
1155 		E1000_WRITE_REG(&sc->hw, E1000_IVAR, 0x800A0908);
1156 	}
1157 
1158 #ifdef IFPOLL_ENABLE
1159 	/*
1160 	 * Only enable interrupts if we are not polling, make sure
1161 	 * they are off otherwise.
1162 	 */
1163 	if (ifp->if_flags & IFF_NPOLLING)
1164 		emx_disable_intr(sc);
1165 	else
1166 #endif /* IFPOLL_ENABLE */
1167 		emx_enable_intr(sc);
1168 
1169 	/* AMT based hardware can now take control from firmware */
1170 	if (sc->has_manage && sc->has_amt)
1171 		emx_get_hw_control(sc);
1172 
1173 	/* Don't reset the phy next time init gets called */
1174 	sc->hw.phy.reset_disable = TRUE;
1175 }
1176 
1177 static void
1178 emx_intr(void *xsc)
1179 {
1180 	struct emx_softc *sc = xsc;
1181 	struct ifnet *ifp = &sc->arpcom.ac_if;
1182 	uint32_t reg_icr;
1183 
1184 	logif(intr_beg);
1185 	ASSERT_SERIALIZED(&sc->main_serialize);
1186 
1187 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1188 
1189 	if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0) {
1190 		logif(intr_end);
1191 		return;
1192 	}
1193 
1194 	/*
1195 	 * XXX: some laptops trigger several spurious interrupts
1196 	 * on emx(4) when in the resume cycle. The ICR register
1197 	 * reports all-ones value in this case. Processing such
1198 	 * interrupts would lead to a freeze. I don't know why.
1199 	 */
1200 	if (reg_icr == 0xffffffff) {
1201 		logif(intr_end);
1202 		return;
1203 	}
1204 
1205 	if (ifp->if_flags & IFF_RUNNING) {
1206 		if (reg_icr &
1207 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
1208 			int i;
1209 
1210 			for (i = 0; i < sc->rx_ring_cnt; ++i) {
1211 				lwkt_serialize_enter(
1212 				&sc->rx_data[i].rx_serialize);
1213 				emx_rxeof(sc, i, -1);
1214 				lwkt_serialize_exit(
1215 				&sc->rx_data[i].rx_serialize);
1216 			}
1217 		}
1218 		if (reg_icr & E1000_ICR_TXDW) {
1219 			lwkt_serialize_enter(&sc->tx_serialize);
1220 			emx_txeof(sc);
1221 			if (!ifq_is_empty(&ifp->if_snd))
1222 				if_devstart(ifp);
1223 			lwkt_serialize_exit(&sc->tx_serialize);
1224 		}
1225 	}
1226 
1227 	/* Link status change */
1228 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1229 		emx_serialize_skipmain(sc);
1230 
1231 		callout_stop(&sc->timer);
1232 		sc->hw.mac.get_link_status = 1;
1233 		emx_update_link_status(sc);
1234 
1235 		/* Deal with TX cruft when link lost */
1236 		emx_tx_purge(sc);
1237 
1238 		callout_reset(&sc->timer, hz, emx_timer, sc);
1239 
1240 		emx_deserialize_skipmain(sc);
1241 	}
1242 
1243 	if (reg_icr & E1000_ICR_RXO)
1244 		sc->rx_overruns++;
1245 
1246 	logif(intr_end);
1247 }
1248 
1249 static void
1250 emx_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1251 {
1252 	struct emx_softc *sc = ifp->if_softc;
1253 
1254 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1255 
1256 	emx_update_link_status(sc);
1257 
1258 	ifmr->ifm_status = IFM_AVALID;
1259 	ifmr->ifm_active = IFM_ETHER;
1260 
1261 	if (!sc->link_active)
1262 		return;
1263 
1264 	ifmr->ifm_status |= IFM_ACTIVE;
1265 
1266 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1267 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1268 		ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
1269 	} else {
1270 		switch (sc->link_speed) {
1271 		case 10:
1272 			ifmr->ifm_active |= IFM_10_T;
1273 			break;
1274 		case 100:
1275 			ifmr->ifm_active |= IFM_100_TX;
1276 			break;
1277 
1278 		case 1000:
1279 			ifmr->ifm_active |= IFM_1000_T;
1280 			break;
1281 		}
1282 		if (sc->link_duplex == FULL_DUPLEX)
1283 			ifmr->ifm_active |= IFM_FDX;
1284 		else
1285 			ifmr->ifm_active |= IFM_HDX;
1286 	}
1287 }
1288 
1289 static int
1290 emx_media_change(struct ifnet *ifp)
1291 {
1292 	struct emx_softc *sc = ifp->if_softc;
1293 	struct ifmedia *ifm = &sc->media;
1294 
1295 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1296 
1297 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1298 		return (EINVAL);
1299 
1300 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1301 	case IFM_AUTO:
1302 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1303 		sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
1304 		break;
1305 
1306 	case IFM_1000_LX:
1307 	case IFM_1000_SX:
1308 	case IFM_1000_T:
1309 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1310 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1311 		break;
1312 
1313 	case IFM_100_TX:
1314 		sc->hw.mac.autoneg = FALSE;
1315 		sc->hw.phy.autoneg_advertised = 0;
1316 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1317 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1318 		else
1319 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1320 		break;
1321 
1322 	case IFM_10_T:
1323 		sc->hw.mac.autoneg = FALSE;
1324 		sc->hw.phy.autoneg_advertised = 0;
1325 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1326 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1327 		else
1328 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1329 		break;
1330 
1331 	default:
1332 		if_printf(ifp, "Unsupported media type\n");
1333 		break;
1334 	}
1335 
1336 	/*
1337 	 * As the speed/duplex settings my have changed we need to
1338 	 * reset the PHY.
1339 	 */
1340 	sc->hw.phy.reset_disable = FALSE;
1341 
1342 	emx_init(sc);
1343 
1344 	return (0);
1345 }
1346 
1347 static int
1348 emx_encap(struct emx_softc *sc, struct mbuf **m_headp)
1349 {
1350 	bus_dma_segment_t segs[EMX_MAX_SCATTER];
1351 	bus_dmamap_t map;
1352 	struct emx_txbuf *tx_buffer, *tx_buffer_mapped;
1353 	struct e1000_tx_desc *ctxd = NULL;
1354 	struct mbuf *m_head = *m_headp;
1355 	uint32_t txd_upper, txd_lower, cmd = 0;
1356 	int maxsegs, nsegs, i, j, first, last = 0, error;
1357 
1358 	if (m_head->m_len < EMX_TXCSUM_MINHL &&
1359 	    (m_head->m_flags & EMX_CSUM_FEATURES)) {
1360 		/*
1361 		 * Make sure that ethernet header and ip.ip_hl are in
1362 		 * contiguous memory, since if TXCSUM is enabled, later
1363 		 * TX context descriptor's setup need to access ip.ip_hl.
1364 		 */
1365 		error = emx_txcsum_pullup(sc, m_headp);
1366 		if (error) {
1367 			KKASSERT(*m_headp == NULL);
1368 			return error;
1369 		}
1370 		m_head = *m_headp;
1371 	}
1372 
1373 	txd_upper = txd_lower = 0;
1374 
1375 	/*
1376 	 * Capture the first descriptor index, this descriptor
1377 	 * will have the index of the EOP which is the only one
1378 	 * that now gets a DONE bit writeback.
1379 	 */
1380 	first = sc->next_avail_tx_desc;
1381 	tx_buffer = &sc->tx_buf[first];
1382 	tx_buffer_mapped = tx_buffer;
1383 	map = tx_buffer->map;
1384 
1385 	maxsegs = sc->num_tx_desc_avail - EMX_TX_RESERVED;
1386 	KASSERT(maxsegs >= sc->spare_tx_desc, ("not enough spare TX desc"));
1387 	if (maxsegs > EMX_MAX_SCATTER)
1388 		maxsegs = EMX_MAX_SCATTER;
1389 
1390 	error = bus_dmamap_load_mbuf_defrag(sc->txtag, map, m_headp,
1391 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1392 	if (error) {
1393 		if (error == ENOBUFS)
1394 			sc->mbuf_alloc_failed++;
1395 		else
1396 			sc->no_tx_dma_setup++;
1397 
1398 		m_freem(*m_headp);
1399 		*m_headp = NULL;
1400 		return error;
1401 	}
1402         bus_dmamap_sync(sc->txtag, map, BUS_DMASYNC_PREWRITE);
1403 
1404 	m_head = *m_headp;
1405 	sc->tx_nsegs += nsegs;
1406 
1407 	if (m_head->m_pkthdr.csum_flags & EMX_CSUM_FEATURES) {
1408 		/* TX csum offloading will consume one TX desc */
1409 		sc->tx_nsegs += emx_txcsum(sc, m_head, &txd_upper, &txd_lower);
1410 	}
1411 	i = sc->next_avail_tx_desc;
1412 
1413 	/* Set up our transmit descriptors */
1414 	for (j = 0; j < nsegs; j++) {
1415 		tx_buffer = &sc->tx_buf[i];
1416 		ctxd = &sc->tx_desc_base[i];
1417 
1418 		ctxd->buffer_addr = htole64(segs[j].ds_addr);
1419 		ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1420 					   txd_lower | segs[j].ds_len);
1421 		ctxd->upper.data = htole32(txd_upper);
1422 
1423 		last = i;
1424 		if (++i == sc->num_tx_desc)
1425 			i = 0;
1426 	}
1427 
1428 	sc->next_avail_tx_desc = i;
1429 
1430 	KKASSERT(sc->num_tx_desc_avail > nsegs);
1431 	sc->num_tx_desc_avail -= nsegs;
1432 
1433         /* Handle VLAN tag */
1434 	if (m_head->m_flags & M_VLANTAG) {
1435 		/* Set the vlan id. */
1436 		ctxd->upper.fields.special =
1437 		    htole16(m_head->m_pkthdr.ether_vlantag);
1438 
1439 		/* Tell hardware to add tag */
1440 		ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
1441 	}
1442 
1443 	tx_buffer->m_head = m_head;
1444 	tx_buffer_mapped->map = tx_buffer->map;
1445 	tx_buffer->map = map;
1446 
1447 	if (sc->tx_nsegs >= sc->tx_int_nsegs) {
1448 		sc->tx_nsegs = 0;
1449 
1450 		/*
1451 		 * Report Status (RS) is turned on
1452 		 * every tx_int_nsegs descriptors.
1453 		 */
1454 		cmd = E1000_TXD_CMD_RS;
1455 
1456 		/*
1457 		 * Keep track of the descriptor, which will
1458 		 * be written back by hardware.
1459 		 */
1460 		sc->tx_dd[sc->tx_dd_tail] = last;
1461 		EMX_INC_TXDD_IDX(sc->tx_dd_tail);
1462 		KKASSERT(sc->tx_dd_tail != sc->tx_dd_head);
1463 	}
1464 
1465 	/*
1466 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1467 	 */
1468 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1469 
1470 	/*
1471 	 * Advance the Transmit Descriptor Tail (TDT), this tells
1472 	 * the E1000 that this frame is available to transmit.
1473 	 */
1474 	E1000_WRITE_REG(&sc->hw, E1000_TDT(0), i);
1475 
1476 	return (0);
1477 }
1478 
1479 static void
1480 emx_set_promisc(struct emx_softc *sc)
1481 {
1482 	struct ifnet *ifp = &sc->arpcom.ac_if;
1483 	uint32_t reg_rctl;
1484 
1485 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1486 
1487 	if (ifp->if_flags & IFF_PROMISC) {
1488 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1489 		/* Turn this on if you want to see bad packets */
1490 		if (emx_debug_sbp)
1491 			reg_rctl |= E1000_RCTL_SBP;
1492 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1493 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1494 		reg_rctl |= E1000_RCTL_MPE;
1495 		reg_rctl &= ~E1000_RCTL_UPE;
1496 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1497 	}
1498 }
1499 
1500 static void
1501 emx_disable_promisc(struct emx_softc *sc)
1502 {
1503 	uint32_t reg_rctl;
1504 
1505 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1506 
1507 	reg_rctl &= ~E1000_RCTL_UPE;
1508 	reg_rctl &= ~E1000_RCTL_MPE;
1509 	reg_rctl &= ~E1000_RCTL_SBP;
1510 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1511 }
1512 
1513 static void
1514 emx_set_multi(struct emx_softc *sc)
1515 {
1516 	struct ifnet *ifp = &sc->arpcom.ac_if;
1517 	struct ifmultiaddr *ifma;
1518 	uint32_t reg_rctl = 0;
1519 	uint8_t *mta;
1520 	int mcnt = 0;
1521 
1522 	mta = sc->mta;
1523 	bzero(mta, ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX);
1524 
1525 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1526 		if (ifma->ifma_addr->sa_family != AF_LINK)
1527 			continue;
1528 
1529 		if (mcnt == EMX_MCAST_ADDR_MAX)
1530 			break;
1531 
1532 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1533 		      &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1534 		mcnt++;
1535 	}
1536 
1537 	if (mcnt >= EMX_MCAST_ADDR_MAX) {
1538 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1539 		reg_rctl |= E1000_RCTL_MPE;
1540 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1541 	} else {
1542 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1543 	}
1544 }
1545 
1546 /*
1547  * This routine checks for link status and updates statistics.
1548  */
1549 static void
1550 emx_timer(void *xsc)
1551 {
1552 	struct emx_softc *sc = xsc;
1553 	struct ifnet *ifp = &sc->arpcom.ac_if;
1554 
1555 	ifnet_serialize_all(ifp);
1556 
1557 	emx_update_link_status(sc);
1558 	emx_update_stats(sc);
1559 
1560 	/* Reset LAA into RAR[0] on 82571 */
1561 	if (e1000_get_laa_state_82571(&sc->hw) == TRUE)
1562 		e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1563 
1564 	if (emx_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1565 		emx_print_hw_stats(sc);
1566 
1567 	emx_smartspeed(sc);
1568 
1569 	callout_reset(&sc->timer, hz, emx_timer, sc);
1570 
1571 	ifnet_deserialize_all(ifp);
1572 }
1573 
1574 static void
1575 emx_update_link_status(struct emx_softc *sc)
1576 {
1577 	struct e1000_hw *hw = &sc->hw;
1578 	struct ifnet *ifp = &sc->arpcom.ac_if;
1579 	device_t dev = sc->dev;
1580 	uint32_t link_check = 0;
1581 
1582 	/* Get the cached link value or read phy for real */
1583 	switch (hw->phy.media_type) {
1584 	case e1000_media_type_copper:
1585 		if (hw->mac.get_link_status) {
1586 			/* Do the work to read phy */
1587 			e1000_check_for_link(hw);
1588 			link_check = !hw->mac.get_link_status;
1589 			if (link_check) /* ESB2 fix */
1590 				e1000_cfg_on_link_up(hw);
1591 		} else {
1592 			link_check = TRUE;
1593 		}
1594 		break;
1595 
1596 	case e1000_media_type_fiber:
1597 		e1000_check_for_link(hw);
1598 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1599 		break;
1600 
1601 	case e1000_media_type_internal_serdes:
1602 		e1000_check_for_link(hw);
1603 		link_check = sc->hw.mac.serdes_has_link;
1604 		break;
1605 
1606 	case e1000_media_type_unknown:
1607 	default:
1608 		break;
1609 	}
1610 
1611 	/* Now check for a transition */
1612 	if (link_check && sc->link_active == 0) {
1613 		e1000_get_speed_and_duplex(hw, &sc->link_speed,
1614 		    &sc->link_duplex);
1615 
1616 		/*
1617 		 * Check if we should enable/disable SPEED_MODE bit on
1618 		 * 82571EB/82572EI
1619 		 */
1620 		if (sc->link_speed != SPEED_1000 &&
1621 		    (hw->mac.type == e1000_82571 ||
1622 		     hw->mac.type == e1000_82572)) {
1623 			int tarc0;
1624 
1625 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1626 			tarc0 &= ~EMX_TARC_SPEED_MODE;
1627 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1628 		}
1629 		if (bootverbose) {
1630 			device_printf(dev, "Link is up %d Mbps %s\n",
1631 			    sc->link_speed,
1632 			    ((sc->link_duplex == FULL_DUPLEX) ?
1633 			    "Full Duplex" : "Half Duplex"));
1634 		}
1635 		sc->link_active = 1;
1636 		sc->smartspeed = 0;
1637 		ifp->if_baudrate = sc->link_speed * 1000000;
1638 		ifp->if_link_state = LINK_STATE_UP;
1639 		if_link_state_change(ifp);
1640 	} else if (!link_check && sc->link_active == 1) {
1641 		ifp->if_baudrate = sc->link_speed = 0;
1642 		sc->link_duplex = 0;
1643 		if (bootverbose)
1644 			device_printf(dev, "Link is Down\n");
1645 		sc->link_active = 0;
1646 #if 0
1647 		/* Link down, disable watchdog */
1648 		if->if_timer = 0;
1649 #endif
1650 		ifp->if_link_state = LINK_STATE_DOWN;
1651 		if_link_state_change(ifp);
1652 	}
1653 }
1654 
1655 static void
1656 emx_stop(struct emx_softc *sc)
1657 {
1658 	struct ifnet *ifp = &sc->arpcom.ac_if;
1659 	int i;
1660 
1661 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1662 
1663 	emx_disable_intr(sc);
1664 
1665 	callout_stop(&sc->timer);
1666 
1667 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1668 	ifp->if_timer = 0;
1669 
1670 	/*
1671 	 * Disable multiple receive queues.
1672 	 *
1673 	 * NOTE:
1674 	 * We should disable multiple receive queues before
1675 	 * resetting the hardware.
1676 	 */
1677 	E1000_WRITE_REG(&sc->hw, E1000_MRQC, 0);
1678 
1679 	e1000_reset_hw(&sc->hw);
1680 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1681 
1682 	for (i = 0; i < sc->num_tx_desc; i++) {
1683 		struct emx_txbuf *tx_buffer = &sc->tx_buf[i];
1684 
1685 		if (tx_buffer->m_head != NULL) {
1686 			bus_dmamap_unload(sc->txtag, tx_buffer->map);
1687 			m_freem(tx_buffer->m_head);
1688 			tx_buffer->m_head = NULL;
1689 		}
1690 	}
1691 
1692 	for (i = 0; i < sc->rx_ring_cnt; ++i)
1693 		emx_free_rx_ring(sc, &sc->rx_data[i]);
1694 
1695 	sc->csum_flags = 0;
1696 	sc->csum_ehlen = 0;
1697 	sc->csum_iphlen = 0;
1698 
1699 	sc->tx_dd_head = 0;
1700 	sc->tx_dd_tail = 0;
1701 	sc->tx_nsegs = 0;
1702 }
1703 
1704 static int
1705 emx_reset(struct emx_softc *sc)
1706 {
1707 	device_t dev = sc->dev;
1708 	uint16_t rx_buffer_size;
1709 
1710 	/* Set up smart power down as default off on newer adapters. */
1711 	if (!emx_smart_pwr_down &&
1712 	    (sc->hw.mac.type == e1000_82571 ||
1713 	     sc->hw.mac.type == e1000_82572)) {
1714 		uint16_t phy_tmp = 0;
1715 
1716 		/* Speed up time to link by disabling smart power down. */
1717 		e1000_read_phy_reg(&sc->hw,
1718 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
1719 		phy_tmp &= ~IGP02E1000_PM_SPD;
1720 		e1000_write_phy_reg(&sc->hw,
1721 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
1722 	}
1723 
1724 	/*
1725 	 * These parameters control the automatic generation (Tx) and
1726 	 * response (Rx) to Ethernet PAUSE frames.
1727 	 * - High water mark should allow for at least two frames to be
1728 	 *   received after sending an XOFF.
1729 	 * - Low water mark works best when it is very near the high water mark.
1730 	 *   This allows the receiver to restart by sending XON when it has
1731 	 *   drained a bit. Here we use an arbitary value of 1500 which will
1732 	 *   restart after one full frame is pulled from the buffer. There
1733 	 *   could be several smaller frames in the buffer and if so they will
1734 	 *   not trigger the XON until their total number reduces the buffer
1735 	 *   by 1500.
1736 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1737 	 */
1738 	rx_buffer_size = (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) << 10;
1739 
1740 	sc->hw.fc.high_water = rx_buffer_size -
1741 			       roundup2(sc->max_frame_size, 1024);
1742 	sc->hw.fc.low_water = sc->hw.fc.high_water - 1500;
1743 
1744 	if (sc->hw.mac.type == e1000_80003es2lan)
1745 		sc->hw.fc.pause_time = 0xFFFF;
1746 	else
1747 		sc->hw.fc.pause_time = EMX_FC_PAUSE_TIME;
1748 	sc->hw.fc.send_xon = TRUE;
1749 	sc->hw.fc.requested_mode = e1000_fc_full;
1750 
1751 	/* Issue a global reset */
1752 	e1000_reset_hw(&sc->hw);
1753 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1754 	emx_disable_aspm(sc);
1755 
1756 	if (e1000_init_hw(&sc->hw) < 0) {
1757 		device_printf(dev, "Hardware Initialization Failed\n");
1758 		return (EIO);
1759 	}
1760 
1761 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1762 	e1000_get_phy_info(&sc->hw);
1763 	e1000_check_for_link(&sc->hw);
1764 
1765 	return (0);
1766 }
1767 
1768 static void
1769 emx_setup_ifp(struct emx_softc *sc)
1770 {
1771 	struct ifnet *ifp = &sc->arpcom.ac_if;
1772 
1773 	if_initname(ifp, device_get_name(sc->dev),
1774 		    device_get_unit(sc->dev));
1775 	ifp->if_softc = sc;
1776 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1777 	ifp->if_init =  emx_init;
1778 	ifp->if_ioctl = emx_ioctl;
1779 	ifp->if_start = emx_start;
1780 #ifdef IFPOLL_ENABLE
1781 	ifp->if_qpoll = emx_qpoll;
1782 #endif
1783 	ifp->if_watchdog = emx_watchdog;
1784 	ifp->if_serialize = emx_serialize;
1785 	ifp->if_deserialize = emx_deserialize;
1786 	ifp->if_tryserialize = emx_tryserialize;
1787 #ifdef INVARIANTS
1788 	ifp->if_serialize_assert = emx_serialize_assert;
1789 #endif
1790 	ifq_set_maxlen(&ifp->if_snd, sc->num_tx_desc - 1);
1791 	ifq_set_ready(&ifp->if_snd);
1792 
1793 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1794 
1795 	ifp->if_capabilities = IFCAP_HWCSUM |
1796 			       IFCAP_VLAN_HWTAGGING |
1797 			       IFCAP_VLAN_MTU;
1798 	if (sc->rx_ring_cnt > 1)
1799 		ifp->if_capabilities |= IFCAP_RSS;
1800 	ifp->if_capenable = ifp->if_capabilities;
1801 	ifp->if_hwassist = EMX_CSUM_FEATURES;
1802 
1803 	/*
1804 	 * Tell the upper layer(s) we support long frames.
1805 	 */
1806 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1807 
1808 	/*
1809 	 * Specify the media types supported by this sc and register
1810 	 * callbacks to update media and link information
1811 	 */
1812 	ifmedia_init(&sc->media, IFM_IMASK,
1813 		     emx_media_change, emx_media_status);
1814 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1815 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1816 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1817 			    0, NULL);
1818 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
1819 	} else {
1820 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1821 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1822 			    0, NULL);
1823 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1824 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1825 			    0, NULL);
1826 		if (sc->hw.phy.type != e1000_phy_ife) {
1827 			ifmedia_add(&sc->media,
1828 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1829 			ifmedia_add(&sc->media,
1830 				IFM_ETHER | IFM_1000_T, 0, NULL);
1831 		}
1832 	}
1833 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1834 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1835 }
1836 
1837 /*
1838  * Workaround for SmartSpeed on 82541 and 82547 controllers
1839  */
1840 static void
1841 emx_smartspeed(struct emx_softc *sc)
1842 {
1843 	uint16_t phy_tmp;
1844 
1845 	if (sc->link_active || sc->hw.phy.type != e1000_phy_igp ||
1846 	    sc->hw.mac.autoneg == 0 ||
1847 	    (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
1848 		return;
1849 
1850 	if (sc->smartspeed == 0) {
1851 		/*
1852 		 * If Master/Slave config fault is asserted twice,
1853 		 * we assume back-to-back
1854 		 */
1855 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
1856 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
1857 			return;
1858 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
1859 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
1860 			e1000_read_phy_reg(&sc->hw,
1861 			    PHY_1000T_CTRL, &phy_tmp);
1862 			if (phy_tmp & CR_1000T_MS_ENABLE) {
1863 				phy_tmp &= ~CR_1000T_MS_ENABLE;
1864 				e1000_write_phy_reg(&sc->hw,
1865 				    PHY_1000T_CTRL, phy_tmp);
1866 				sc->smartspeed++;
1867 				if (sc->hw.mac.autoneg &&
1868 				    !e1000_phy_setup_autoneg(&sc->hw) &&
1869 				    !e1000_read_phy_reg(&sc->hw,
1870 				     PHY_CONTROL, &phy_tmp)) {
1871 					phy_tmp |= MII_CR_AUTO_NEG_EN |
1872 						   MII_CR_RESTART_AUTO_NEG;
1873 					e1000_write_phy_reg(&sc->hw,
1874 					    PHY_CONTROL, phy_tmp);
1875 				}
1876 			}
1877 		}
1878 		return;
1879 	} else if (sc->smartspeed == EMX_SMARTSPEED_DOWNSHIFT) {
1880 		/* If still no link, perhaps using 2/3 pair cable */
1881 		e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
1882 		phy_tmp |= CR_1000T_MS_ENABLE;
1883 		e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
1884 		if (sc->hw.mac.autoneg &&
1885 		    !e1000_phy_setup_autoneg(&sc->hw) &&
1886 		    !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
1887 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
1888 			e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
1889 		}
1890 	}
1891 
1892 	/* Restart process after EMX_SMARTSPEED_MAX iterations */
1893 	if (sc->smartspeed++ == EMX_SMARTSPEED_MAX)
1894 		sc->smartspeed = 0;
1895 }
1896 
1897 static int
1898 emx_create_tx_ring(struct emx_softc *sc)
1899 {
1900 	device_t dev = sc->dev;
1901 	struct emx_txbuf *tx_buffer;
1902 	int error, i, tsize, ntxd;
1903 
1904 	/*
1905 	 * Validate number of transmit descriptors.  It must not exceed
1906 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
1907 	 */
1908 	ntxd = device_getenv_int(dev, "txd", emx_txd);
1909 	if ((ntxd * sizeof(struct e1000_tx_desc)) % EMX_DBA_ALIGN != 0 ||
1910 	    ntxd > EMX_MAX_TXD || ntxd < EMX_MIN_TXD) {
1911 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
1912 		    EMX_DEFAULT_TXD, ntxd);
1913 		sc->num_tx_desc = EMX_DEFAULT_TXD;
1914 	} else {
1915 		sc->num_tx_desc = ntxd;
1916 	}
1917 
1918 	/*
1919 	 * Allocate Transmit Descriptor ring
1920 	 */
1921 	tsize = roundup2(sc->num_tx_desc * sizeof(struct e1000_tx_desc),
1922 			 EMX_DBA_ALIGN);
1923 	sc->tx_desc_base = bus_dmamem_coherent_any(sc->parent_dtag,
1924 				EMX_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
1925 				&sc->tx_desc_dtag, &sc->tx_desc_dmap,
1926 				&sc->tx_desc_paddr);
1927 	if (sc->tx_desc_base == NULL) {
1928 		device_printf(dev, "Unable to allocate tx_desc memory\n");
1929 		return ENOMEM;
1930 	}
1931 
1932 	sc->tx_buf = kmalloc(sizeof(struct emx_txbuf) * sc->num_tx_desc,
1933 			     M_DEVBUF, M_WAITOK | M_ZERO);
1934 
1935 	/*
1936 	 * Create DMA tags for tx buffers
1937 	 */
1938 	error = bus_dma_tag_create(sc->parent_dtag, /* parent */
1939 			1, 0,			/* alignment, bounds */
1940 			BUS_SPACE_MAXADDR,	/* lowaddr */
1941 			BUS_SPACE_MAXADDR,	/* highaddr */
1942 			NULL, NULL,		/* filter, filterarg */
1943 			EMX_TSO_SIZE,		/* maxsize */
1944 			EMX_MAX_SCATTER,	/* nsegments */
1945 			EMX_MAX_SEGSIZE,	/* maxsegsize */
1946 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
1947 			BUS_DMA_ONEBPAGE,	/* flags */
1948 			&sc->txtag);
1949 	if (error) {
1950 		device_printf(dev, "Unable to allocate TX DMA tag\n");
1951 		kfree(sc->tx_buf, M_DEVBUF);
1952 		sc->tx_buf = NULL;
1953 		return error;
1954 	}
1955 
1956 	/*
1957 	 * Create DMA maps for tx buffers
1958 	 */
1959 	for (i = 0; i < sc->num_tx_desc; i++) {
1960 		tx_buffer = &sc->tx_buf[i];
1961 
1962 		error = bus_dmamap_create(sc->txtag,
1963 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1964 					  &tx_buffer->map);
1965 		if (error) {
1966 			device_printf(dev, "Unable to create TX DMA map\n");
1967 			emx_destroy_tx_ring(sc, i);
1968 			return error;
1969 		}
1970 	}
1971 	return (0);
1972 }
1973 
1974 static void
1975 emx_init_tx_ring(struct emx_softc *sc)
1976 {
1977 	/* Clear the old ring contents */
1978 	bzero(sc->tx_desc_base,
1979 	      sizeof(struct e1000_tx_desc) * sc->num_tx_desc);
1980 
1981 	/* Reset state */
1982 	sc->next_avail_tx_desc = 0;
1983 	sc->next_tx_to_clean = 0;
1984 	sc->num_tx_desc_avail = sc->num_tx_desc;
1985 }
1986 
1987 static void
1988 emx_init_tx_unit(struct emx_softc *sc)
1989 {
1990 	uint32_t tctl, tarc, tipg = 0;
1991 	uint64_t bus_addr;
1992 
1993 	/* Setup the Base and Length of the Tx Descriptor Ring */
1994 	bus_addr = sc->tx_desc_paddr;
1995 	E1000_WRITE_REG(&sc->hw, E1000_TDLEN(0),
1996 	    sc->num_tx_desc * sizeof(struct e1000_tx_desc));
1997 	E1000_WRITE_REG(&sc->hw, E1000_TDBAH(0),
1998 	    (uint32_t)(bus_addr >> 32));
1999 	E1000_WRITE_REG(&sc->hw, E1000_TDBAL(0),
2000 	    (uint32_t)bus_addr);
2001 	/* Setup the HW Tx Head and Tail descriptor pointers */
2002 	E1000_WRITE_REG(&sc->hw, E1000_TDT(0), 0);
2003 	E1000_WRITE_REG(&sc->hw, E1000_TDH(0), 0);
2004 
2005 	/* Set the default values for the Tx Inter Packet Gap timer */
2006 	switch (sc->hw.mac.type) {
2007 	case e1000_80003es2lan:
2008 		tipg = DEFAULT_82543_TIPG_IPGR1;
2009 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2010 		    E1000_TIPG_IPGR2_SHIFT;
2011 		break;
2012 
2013 	default:
2014 		if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2015 		    sc->hw.phy.media_type == e1000_media_type_internal_serdes)
2016 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2017 		else
2018 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2019 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2020 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2021 		break;
2022 	}
2023 
2024 	E1000_WRITE_REG(&sc->hw, E1000_TIPG, tipg);
2025 
2026 	/* NOTE: 0 is not allowed for TIDV */
2027 	E1000_WRITE_REG(&sc->hw, E1000_TIDV, 1);
2028 	E1000_WRITE_REG(&sc->hw, E1000_TADV, 0);
2029 
2030 	if (sc->hw.mac.type == e1000_82571 ||
2031 	    sc->hw.mac.type == e1000_82572) {
2032 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2033 		tarc |= EMX_TARC_SPEED_MODE;
2034 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2035 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
2036 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2037 		tarc |= 1;
2038 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2039 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2040 		tarc |= 1;
2041 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2042 	}
2043 
2044 	/* Program the Transmit Control Register */
2045 	tctl = E1000_READ_REG(&sc->hw, E1000_TCTL);
2046 	tctl &= ~E1000_TCTL_CT;
2047 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2048 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2049 	tctl |= E1000_TCTL_MULR;
2050 
2051 	/* This write will effectively turn on the transmit unit. */
2052 	E1000_WRITE_REG(&sc->hw, E1000_TCTL, tctl);
2053 }
2054 
2055 static void
2056 emx_destroy_tx_ring(struct emx_softc *sc, int ndesc)
2057 {
2058 	struct emx_txbuf *tx_buffer;
2059 	int i;
2060 
2061 	/* Free Transmit Descriptor ring */
2062 	if (sc->tx_desc_base) {
2063 		bus_dmamap_unload(sc->tx_desc_dtag, sc->tx_desc_dmap);
2064 		bus_dmamem_free(sc->tx_desc_dtag, sc->tx_desc_base,
2065 				sc->tx_desc_dmap);
2066 		bus_dma_tag_destroy(sc->tx_desc_dtag);
2067 
2068 		sc->tx_desc_base = NULL;
2069 	}
2070 
2071 	if (sc->tx_buf == NULL)
2072 		return;
2073 
2074 	for (i = 0; i < ndesc; i++) {
2075 		tx_buffer = &sc->tx_buf[i];
2076 
2077 		KKASSERT(tx_buffer->m_head == NULL);
2078 		bus_dmamap_destroy(sc->txtag, tx_buffer->map);
2079 	}
2080 	bus_dma_tag_destroy(sc->txtag);
2081 
2082 	kfree(sc->tx_buf, M_DEVBUF);
2083 	sc->tx_buf = NULL;
2084 }
2085 
2086 /*
2087  * The offload context needs to be set when we transfer the first
2088  * packet of a particular protocol (TCP/UDP).  This routine has been
2089  * enhanced to deal with inserted VLAN headers.
2090  *
2091  * If the new packet's ether header length, ip header length and
2092  * csum offloading type are same as the previous packet, we should
2093  * avoid allocating a new csum context descriptor; mainly to take
2094  * advantage of the pipeline effect of the TX data read request.
2095  *
2096  * This function returns number of TX descrptors allocated for
2097  * csum context.
2098  */
2099 static int
2100 emx_txcsum(struct emx_softc *sc, struct mbuf *mp,
2101 	   uint32_t *txd_upper, uint32_t *txd_lower)
2102 {
2103 	struct e1000_context_desc *TXD;
2104 	struct emx_txbuf *tx_buffer;
2105 	struct ether_vlan_header *eh;
2106 	struct ip *ip;
2107 	int curr_txd, ehdrlen, csum_flags;
2108 	uint32_t cmd, hdr_len, ip_hlen;
2109 	uint16_t etype;
2110 
2111 	/*
2112 	 * Determine where frame payload starts.
2113 	 * Jump over vlan headers if already present,
2114 	 * helpful for QinQ too.
2115 	 */
2116 	KASSERT(mp->m_len >= ETHER_HDR_LEN,
2117 		("emx_txcsum_pullup is not called (eh)?"));
2118 	eh = mtod(mp, struct ether_vlan_header *);
2119 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
2120 		KASSERT(mp->m_len >= ETHER_HDR_LEN + EVL_ENCAPLEN,
2121 			("emx_txcsum_pullup is not called (evh)?"));
2122 		etype = ntohs(eh->evl_proto);
2123 		ehdrlen = ETHER_HDR_LEN + EVL_ENCAPLEN;
2124 	} else {
2125 		etype = ntohs(eh->evl_encap_proto);
2126 		ehdrlen = ETHER_HDR_LEN;
2127 	}
2128 
2129 	/*
2130 	 * We only support TCP/UDP for IPv4 for the moment.
2131 	 * TODO: Support SCTP too when it hits the tree.
2132 	 */
2133 	if (etype != ETHERTYPE_IP)
2134 		return 0;
2135 
2136 	KASSERT(mp->m_len >= ehdrlen + EMX_IPVHL_SIZE,
2137 		("emx_txcsum_pullup is not called (eh+ip_vhl)?"));
2138 
2139 	/* NOTE: We could only safely access ip.ip_vhl part */
2140 	ip = (struct ip *)(mp->m_data + ehdrlen);
2141 	ip_hlen = ip->ip_hl << 2;
2142 
2143 	csum_flags = mp->m_pkthdr.csum_flags & EMX_CSUM_FEATURES;
2144 
2145 	if (sc->csum_ehlen == ehdrlen && sc->csum_iphlen == ip_hlen &&
2146 	    sc->csum_flags == csum_flags) {
2147 		/*
2148 		 * Same csum offload context as the previous packets;
2149 		 * just return.
2150 		 */
2151 		*txd_upper = sc->csum_txd_upper;
2152 		*txd_lower = sc->csum_txd_lower;
2153 		return 0;
2154 	}
2155 
2156 	/*
2157 	 * Setup a new csum offload context.
2158 	 */
2159 
2160 	curr_txd = sc->next_avail_tx_desc;
2161 	tx_buffer = &sc->tx_buf[curr_txd];
2162 	TXD = (struct e1000_context_desc *)&sc->tx_desc_base[curr_txd];
2163 
2164 	cmd = 0;
2165 
2166 	/* Setup of IP header checksum. */
2167 	if (csum_flags & CSUM_IP) {
2168 		/*
2169 		 * Start offset for header checksum calculation.
2170 		 * End offset for header checksum calculation.
2171 		 * Offset of place to put the checksum.
2172 		 */
2173 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2174 		TXD->lower_setup.ip_fields.ipcse =
2175 		    htole16(ehdrlen + ip_hlen - 1);
2176 		TXD->lower_setup.ip_fields.ipcso =
2177 		    ehdrlen + offsetof(struct ip, ip_sum);
2178 		cmd |= E1000_TXD_CMD_IP;
2179 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2180 	}
2181 	hdr_len = ehdrlen + ip_hlen;
2182 
2183 	if (csum_flags & CSUM_TCP) {
2184 		/*
2185 		 * Start offset for payload checksum calculation.
2186 		 * End offset for payload checksum calculation.
2187 		 * Offset of place to put the checksum.
2188 		 */
2189 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2190 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2191 		TXD->upper_setup.tcp_fields.tucso =
2192 		    hdr_len + offsetof(struct tcphdr, th_sum);
2193 		cmd |= E1000_TXD_CMD_TCP;
2194 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2195 	} else if (csum_flags & CSUM_UDP) {
2196 		/*
2197 		 * Start offset for header checksum calculation.
2198 		 * End offset for header checksum calculation.
2199 		 * Offset of place to put the checksum.
2200 		 */
2201 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2202 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2203 		TXD->upper_setup.tcp_fields.tucso =
2204 		    hdr_len + offsetof(struct udphdr, uh_sum);
2205 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2206 	}
2207 
2208 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2209 		     E1000_TXD_DTYP_D;		/* Data descr */
2210 
2211 	/* Save the information for this csum offloading context */
2212 	sc->csum_ehlen = ehdrlen;
2213 	sc->csum_iphlen = ip_hlen;
2214 	sc->csum_flags = csum_flags;
2215 	sc->csum_txd_upper = *txd_upper;
2216 	sc->csum_txd_lower = *txd_lower;
2217 
2218 	TXD->tcp_seg_setup.data = htole32(0);
2219 	TXD->cmd_and_length =
2220 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2221 
2222 	if (++curr_txd == sc->num_tx_desc)
2223 		curr_txd = 0;
2224 
2225 	KKASSERT(sc->num_tx_desc_avail > 0);
2226 	sc->num_tx_desc_avail--;
2227 
2228 	sc->next_avail_tx_desc = curr_txd;
2229 	return 1;
2230 }
2231 
2232 static int
2233 emx_txcsum_pullup(struct emx_softc *sc, struct mbuf **m0)
2234 {
2235 	struct mbuf *m = *m0;
2236 	struct ether_header *eh;
2237 	int len;
2238 
2239 	sc->tx_csum_try_pullup++;
2240 
2241 	len = ETHER_HDR_LEN + EMX_IPVHL_SIZE;
2242 
2243 	if (__predict_false(!M_WRITABLE(m))) {
2244 		if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2245 			sc->tx_csum_drop1++;
2246 			m_freem(m);
2247 			*m0 = NULL;
2248 			return ENOBUFS;
2249 		}
2250 		eh = mtod(m, struct ether_header *);
2251 
2252 		if (eh->ether_type == htons(ETHERTYPE_VLAN))
2253 			len += EVL_ENCAPLEN;
2254 
2255 		if (m->m_len < len) {
2256 			sc->tx_csum_drop2++;
2257 			m_freem(m);
2258 			*m0 = NULL;
2259 			return ENOBUFS;
2260 		}
2261 		return 0;
2262 	}
2263 
2264 	if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2265 		sc->tx_csum_pullup1++;
2266 		m = m_pullup(m, ETHER_HDR_LEN);
2267 		if (m == NULL) {
2268 			sc->tx_csum_pullup1_failed++;
2269 			*m0 = NULL;
2270 			return ENOBUFS;
2271 		}
2272 		*m0 = m;
2273 	}
2274 	eh = mtod(m, struct ether_header *);
2275 
2276 	if (eh->ether_type == htons(ETHERTYPE_VLAN))
2277 		len += EVL_ENCAPLEN;
2278 
2279 	if (m->m_len < len) {
2280 		sc->tx_csum_pullup2++;
2281 		m = m_pullup(m, len);
2282 		if (m == NULL) {
2283 			sc->tx_csum_pullup2_failed++;
2284 			*m0 = NULL;
2285 			return ENOBUFS;
2286 		}
2287 		*m0 = m;
2288 	}
2289 	return 0;
2290 }
2291 
2292 static void
2293 emx_txeof(struct emx_softc *sc)
2294 {
2295 	struct ifnet *ifp = &sc->arpcom.ac_if;
2296 	struct emx_txbuf *tx_buffer;
2297 	int first, num_avail;
2298 
2299 	if (sc->tx_dd_head == sc->tx_dd_tail)
2300 		return;
2301 
2302 	if (sc->num_tx_desc_avail == sc->num_tx_desc)
2303 		return;
2304 
2305 	num_avail = sc->num_tx_desc_avail;
2306 	first = sc->next_tx_to_clean;
2307 
2308 	while (sc->tx_dd_head != sc->tx_dd_tail) {
2309 		int dd_idx = sc->tx_dd[sc->tx_dd_head];
2310 		struct e1000_tx_desc *tx_desc;
2311 
2312 		tx_desc = &sc->tx_desc_base[dd_idx];
2313 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2314 			EMX_INC_TXDD_IDX(sc->tx_dd_head);
2315 
2316 			if (++dd_idx == sc->num_tx_desc)
2317 				dd_idx = 0;
2318 
2319 			while (first != dd_idx) {
2320 				logif(pkt_txclean);
2321 
2322 				num_avail++;
2323 
2324 				tx_buffer = &sc->tx_buf[first];
2325 				if (tx_buffer->m_head) {
2326 					ifp->if_opackets++;
2327 					bus_dmamap_unload(sc->txtag,
2328 							  tx_buffer->map);
2329 					m_freem(tx_buffer->m_head);
2330 					tx_buffer->m_head = NULL;
2331 				}
2332 
2333 				if (++first == sc->num_tx_desc)
2334 					first = 0;
2335 			}
2336 		} else {
2337 			break;
2338 		}
2339 	}
2340 	sc->next_tx_to_clean = first;
2341 	sc->num_tx_desc_avail = num_avail;
2342 
2343 	if (sc->tx_dd_head == sc->tx_dd_tail) {
2344 		sc->tx_dd_head = 0;
2345 		sc->tx_dd_tail = 0;
2346 	}
2347 
2348 	if (!EMX_IS_OACTIVE(sc)) {
2349 		ifp->if_flags &= ~IFF_OACTIVE;
2350 
2351 		/* All clean, turn off the timer */
2352 		if (sc->num_tx_desc_avail == sc->num_tx_desc)
2353 			ifp->if_timer = 0;
2354 	}
2355 }
2356 
2357 static void
2358 emx_tx_collect(struct emx_softc *sc)
2359 {
2360 	struct ifnet *ifp = &sc->arpcom.ac_if;
2361 	struct emx_txbuf *tx_buffer;
2362 	int tdh, first, num_avail, dd_idx = -1;
2363 
2364 	if (sc->num_tx_desc_avail == sc->num_tx_desc)
2365 		return;
2366 
2367 	tdh = E1000_READ_REG(&sc->hw, E1000_TDH(0));
2368 	if (tdh == sc->next_tx_to_clean)
2369 		return;
2370 
2371 	if (sc->tx_dd_head != sc->tx_dd_tail)
2372 		dd_idx = sc->tx_dd[sc->tx_dd_head];
2373 
2374 	num_avail = sc->num_tx_desc_avail;
2375 	first = sc->next_tx_to_clean;
2376 
2377 	while (first != tdh) {
2378 		logif(pkt_txclean);
2379 
2380 		num_avail++;
2381 
2382 		tx_buffer = &sc->tx_buf[first];
2383 		if (tx_buffer->m_head) {
2384 			ifp->if_opackets++;
2385 			bus_dmamap_unload(sc->txtag,
2386 					  tx_buffer->map);
2387 			m_freem(tx_buffer->m_head);
2388 			tx_buffer->m_head = NULL;
2389 		}
2390 
2391 		if (first == dd_idx) {
2392 			EMX_INC_TXDD_IDX(sc->tx_dd_head);
2393 			if (sc->tx_dd_head == sc->tx_dd_tail) {
2394 				sc->tx_dd_head = 0;
2395 				sc->tx_dd_tail = 0;
2396 				dd_idx = -1;
2397 			} else {
2398 				dd_idx = sc->tx_dd[sc->tx_dd_head];
2399 			}
2400 		}
2401 
2402 		if (++first == sc->num_tx_desc)
2403 			first = 0;
2404 	}
2405 	sc->next_tx_to_clean = first;
2406 	sc->num_tx_desc_avail = num_avail;
2407 
2408 	if (!EMX_IS_OACTIVE(sc)) {
2409 		ifp->if_flags &= ~IFF_OACTIVE;
2410 
2411 		/* All clean, turn off the timer */
2412 		if (sc->num_tx_desc_avail == sc->num_tx_desc)
2413 			ifp->if_timer = 0;
2414 	}
2415 }
2416 
2417 /*
2418  * When Link is lost sometimes there is work still in the TX ring
2419  * which will result in a watchdog, rather than allow that do an
2420  * attempted cleanup and then reinit here.  Note that this has been
2421  * seens mostly with fiber adapters.
2422  */
2423 static void
2424 emx_tx_purge(struct emx_softc *sc)
2425 {
2426 	struct ifnet *ifp = &sc->arpcom.ac_if;
2427 
2428 	if (!sc->link_active && ifp->if_timer) {
2429 		emx_tx_collect(sc);
2430 		if (ifp->if_timer) {
2431 			if_printf(ifp, "Link lost, TX pending, reinit\n");
2432 			ifp->if_timer = 0;
2433 			emx_init(sc);
2434 		}
2435 	}
2436 }
2437 
2438 static int
2439 emx_newbuf(struct emx_softc *sc, struct emx_rxdata *rdata, int i, int init)
2440 {
2441 	struct mbuf *m;
2442 	bus_dma_segment_t seg;
2443 	bus_dmamap_t map;
2444 	struct emx_rxbuf *rx_buffer;
2445 	int error, nseg;
2446 
2447 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2448 	if (m == NULL) {
2449 		rdata->mbuf_cluster_failed++;
2450 		if (init) {
2451 			if_printf(&sc->arpcom.ac_if,
2452 				  "Unable to allocate RX mbuf\n");
2453 		}
2454 		return (ENOBUFS);
2455 	}
2456 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2457 
2458 	if (sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2459 		m_adj(m, ETHER_ALIGN);
2460 
2461 	error = bus_dmamap_load_mbuf_segment(rdata->rxtag,
2462 			rdata->rx_sparemap, m,
2463 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
2464 	if (error) {
2465 		m_freem(m);
2466 		if (init) {
2467 			if_printf(&sc->arpcom.ac_if,
2468 				  "Unable to load RX mbuf\n");
2469 		}
2470 		return (error);
2471 	}
2472 
2473 	rx_buffer = &rdata->rx_buf[i];
2474 	if (rx_buffer->m_head != NULL)
2475 		bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2476 
2477 	map = rx_buffer->map;
2478 	rx_buffer->map = rdata->rx_sparemap;
2479 	rdata->rx_sparemap = map;
2480 
2481 	rx_buffer->m_head = m;
2482 	rx_buffer->paddr = seg.ds_addr;
2483 
2484 	emx_setup_rxdesc(&rdata->rx_desc[i], rx_buffer);
2485 	return (0);
2486 }
2487 
2488 static int
2489 emx_create_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2490 {
2491 	device_t dev = sc->dev;
2492 	struct emx_rxbuf *rx_buffer;
2493 	int i, error, rsize, nrxd;
2494 
2495 	/*
2496 	 * Validate number of receive descriptors.  It must not exceed
2497 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2498 	 */
2499 	nrxd = device_getenv_int(dev, "rxd", emx_rxd);
2500 	if ((nrxd * sizeof(emx_rxdesc_t)) % EMX_DBA_ALIGN != 0 ||
2501 	    nrxd > EMX_MAX_RXD || nrxd < EMX_MIN_RXD) {
2502 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
2503 		    EMX_DEFAULT_RXD, nrxd);
2504 		rdata->num_rx_desc = EMX_DEFAULT_RXD;
2505 	} else {
2506 		rdata->num_rx_desc = nrxd;
2507 	}
2508 
2509 	/*
2510 	 * Allocate Receive Descriptor ring
2511 	 */
2512 	rsize = roundup2(rdata->num_rx_desc * sizeof(emx_rxdesc_t),
2513 			 EMX_DBA_ALIGN);
2514 	rdata->rx_desc = bus_dmamem_coherent_any(sc->parent_dtag,
2515 				EMX_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2516 				&rdata->rx_desc_dtag, &rdata->rx_desc_dmap,
2517 				&rdata->rx_desc_paddr);
2518 	if (rdata->rx_desc == NULL) {
2519 		device_printf(dev, "Unable to allocate rx_desc memory\n");
2520 		return ENOMEM;
2521 	}
2522 
2523 	rdata->rx_buf = kmalloc(sizeof(struct emx_rxbuf) * rdata->num_rx_desc,
2524 				M_DEVBUF, M_WAITOK | M_ZERO);
2525 
2526 	/*
2527 	 * Create DMA tag for rx buffers
2528 	 */
2529 	error = bus_dma_tag_create(sc->parent_dtag, /* parent */
2530 			1, 0,			/* alignment, bounds */
2531 			BUS_SPACE_MAXADDR,	/* lowaddr */
2532 			BUS_SPACE_MAXADDR,	/* highaddr */
2533 			NULL, NULL,		/* filter, filterarg */
2534 			MCLBYTES,		/* maxsize */
2535 			1,			/* nsegments */
2536 			MCLBYTES,		/* maxsegsize */
2537 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2538 			&rdata->rxtag);
2539 	if (error) {
2540 		device_printf(dev, "Unable to allocate RX DMA tag\n");
2541 		kfree(rdata->rx_buf, M_DEVBUF);
2542 		rdata->rx_buf = NULL;
2543 		return error;
2544 	}
2545 
2546 	/*
2547 	 * Create spare DMA map for rx buffers
2548 	 */
2549 	error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2550 				  &rdata->rx_sparemap);
2551 	if (error) {
2552 		device_printf(dev, "Unable to create spare RX DMA map\n");
2553 		bus_dma_tag_destroy(rdata->rxtag);
2554 		kfree(rdata->rx_buf, M_DEVBUF);
2555 		rdata->rx_buf = NULL;
2556 		return error;
2557 	}
2558 
2559 	/*
2560 	 * Create DMA maps for rx buffers
2561 	 */
2562 	for (i = 0; i < rdata->num_rx_desc; i++) {
2563 		rx_buffer = &rdata->rx_buf[i];
2564 
2565 		error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2566 					  &rx_buffer->map);
2567 		if (error) {
2568 			device_printf(dev, "Unable to create RX DMA map\n");
2569 			emx_destroy_rx_ring(sc, rdata, i);
2570 			return error;
2571 		}
2572 	}
2573 	return (0);
2574 }
2575 
2576 static void
2577 emx_free_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2578 {
2579 	int i;
2580 
2581 	for (i = 0; i < rdata->num_rx_desc; i++) {
2582 		struct emx_rxbuf *rx_buffer = &rdata->rx_buf[i];
2583 
2584 		if (rx_buffer->m_head != NULL) {
2585 			bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2586 			m_freem(rx_buffer->m_head);
2587 			rx_buffer->m_head = NULL;
2588 		}
2589 	}
2590 
2591 	if (rdata->fmp != NULL)
2592 		m_freem(rdata->fmp);
2593 	rdata->fmp = NULL;
2594 	rdata->lmp = NULL;
2595 }
2596 
2597 static int
2598 emx_init_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2599 {
2600 	int i, error;
2601 
2602 	/* Reset descriptor ring */
2603 	bzero(rdata->rx_desc, sizeof(emx_rxdesc_t) * rdata->num_rx_desc);
2604 
2605 	/* Allocate new ones. */
2606 	for (i = 0; i < rdata->num_rx_desc; i++) {
2607 		error = emx_newbuf(sc, rdata, i, 1);
2608 		if (error)
2609 			return (error);
2610 	}
2611 
2612 	/* Setup our descriptor pointers */
2613 	rdata->next_rx_desc_to_check = 0;
2614 
2615 	return (0);
2616 }
2617 
2618 static void
2619 emx_init_rx_unit(struct emx_softc *sc)
2620 {
2621 	struct ifnet *ifp = &sc->arpcom.ac_if;
2622 	uint64_t bus_addr;
2623 	uint32_t rctl, itr, rfctl;
2624 	int i;
2625 
2626 	/*
2627 	 * Make sure receives are disabled while setting
2628 	 * up the descriptor ring
2629 	 */
2630 	rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2631 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2632 
2633 	/*
2634 	 * Set the interrupt throttling rate. Value is calculated
2635 	 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
2636 	 */
2637 	if (sc->int_throttle_ceil)
2638 		itr = 1000000000 / 256 / sc->int_throttle_ceil;
2639 	else
2640 		itr = 0;
2641 	emx_set_itr(sc, itr);
2642 
2643 	/* Use extended RX descriptor */
2644 	rfctl = E1000_RFCTL_EXTEN;
2645 
2646 	/* Disable accelerated ackknowledge */
2647 	if (sc->hw.mac.type == e1000_82574)
2648 		rfctl |= E1000_RFCTL_ACK_DIS;
2649 
2650 	E1000_WRITE_REG(&sc->hw, E1000_RFCTL, rfctl);
2651 
2652 	/*
2653 	 * Receive Checksum Offload for TCP and UDP
2654 	 *
2655 	 * Checksum offloading is also enabled if multiple receive
2656 	 * queue is to be supported, since we need it to figure out
2657 	 * packet type.
2658 	 */
2659 	if ((ifp->if_capenable & IFCAP_RXCSUM) ||
2660 	    sc->rx_ring_cnt > 1) {
2661 		uint32_t rxcsum;
2662 
2663 		rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2664 
2665 		/*
2666 		 * NOTE:
2667 		 * PCSD must be enabled to enable multiple
2668 		 * receive queues.
2669 		 */
2670 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2671 			  E1000_RXCSUM_PCSD;
2672 		E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2673 	}
2674 
2675 	/*
2676 	 * Configure multiple receive queue (RSS)
2677 	 */
2678 	if (sc->rx_ring_cnt > 1) {
2679 		uint8_t key[EMX_NRSSRK * EMX_RSSRK_SIZE];
2680 		uint32_t reta;
2681 
2682 		KASSERT(sc->rx_ring_cnt == EMX_NRX_RING,
2683 		    ("invalid number of RX ring (%d)", sc->rx_ring_cnt));
2684 
2685 		/*
2686 		 * NOTE:
2687 		 * When we reach here, RSS has already been disabled
2688 		 * in emx_stop(), so we could safely configure RSS key
2689 		 * and redirect table.
2690 		 */
2691 
2692 		/*
2693 		 * Configure RSS key
2694 		 */
2695 		toeplitz_get_key(key, sizeof(key));
2696 		for (i = 0; i < EMX_NRSSRK; ++i) {
2697 			uint32_t rssrk;
2698 
2699 			rssrk = EMX_RSSRK_VAL(key, i);
2700 			EMX_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2701 
2702 			E1000_WRITE_REG(&sc->hw, E1000_RSSRK(i), rssrk);
2703 		}
2704 
2705 		/*
2706 		 * Configure RSS redirect table in following fashion:
2707 	 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2708 		 */
2709 		reta = 0;
2710 		for (i = 0; i < EMX_RETA_SIZE; ++i) {
2711 			uint32_t q;
2712 
2713 			q = (i % sc->rx_ring_cnt) << EMX_RETA_RINGIDX_SHIFT;
2714 			reta |= q << (8 * i);
2715 		}
2716 		EMX_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2717 
2718 		for (i = 0; i < EMX_NRETA; ++i)
2719 			E1000_WRITE_REG(&sc->hw, E1000_RETA(i), reta);
2720 
2721 		/*
2722 		 * Enable multiple receive queues.
2723 		 * Enable IPv4 RSS standard hash functions.
2724 		 * Disable RSS interrupt.
2725 		 */
2726 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2727 				E1000_MRQC_ENABLE_RSS_2Q |
2728 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
2729 				E1000_MRQC_RSS_FIELD_IPV4);
2730 	}
2731 
2732 	/*
2733 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
2734 	 * long latencies are observed, like Lenovo X60. This
2735 	 * change eliminates the problem, but since having positive
2736 	 * values in RDTR is a known source of problems on other
2737 	 * platforms another solution is being sought.
2738 	 */
2739 	if (emx_82573_workaround && sc->hw.mac.type == e1000_82573) {
2740 		E1000_WRITE_REG(&sc->hw, E1000_RADV, EMX_RADV_82573);
2741 		E1000_WRITE_REG(&sc->hw, E1000_RDTR, EMX_RDTR_82573);
2742 	}
2743 
2744 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
2745 		struct emx_rxdata *rdata = &sc->rx_data[i];
2746 
2747 		/*
2748 		 * Setup the Base and Length of the Rx Descriptor Ring
2749 		 */
2750 		bus_addr = rdata->rx_desc_paddr;
2751 		E1000_WRITE_REG(&sc->hw, E1000_RDLEN(i),
2752 		    rdata->num_rx_desc * sizeof(emx_rxdesc_t));
2753 		E1000_WRITE_REG(&sc->hw, E1000_RDBAH(i),
2754 		    (uint32_t)(bus_addr >> 32));
2755 		E1000_WRITE_REG(&sc->hw, E1000_RDBAL(i),
2756 		    (uint32_t)bus_addr);
2757 
2758 		/*
2759 		 * Setup the HW Rx Head and Tail Descriptor Pointers
2760 		 */
2761 		E1000_WRITE_REG(&sc->hw, E1000_RDH(i), 0);
2762 		E1000_WRITE_REG(&sc->hw, E1000_RDT(i),
2763 		    sc->rx_data[i].num_rx_desc - 1);
2764 	}
2765 
2766 	/* Setup the Receive Control Register */
2767 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2768 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2769 		E1000_RCTL_RDMTS_HALF | E1000_RCTL_SECRC |
2770 		(sc->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2771 
2772 	/* Make sure VLAN Filters are off */
2773 	rctl &= ~E1000_RCTL_VFE;
2774 
2775 	/* Don't store bad paket */
2776 	rctl &= ~E1000_RCTL_SBP;
2777 
2778 	/* MCLBYTES */
2779 	rctl |= E1000_RCTL_SZ_2048;
2780 
2781 	if (ifp->if_mtu > ETHERMTU)
2782 		rctl |= E1000_RCTL_LPE;
2783 	else
2784 		rctl &= ~E1000_RCTL_LPE;
2785 
2786 	/* Enable Receives */
2787 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
2788 }
2789 
2790 static void
2791 emx_destroy_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata, int ndesc)
2792 {
2793 	struct emx_rxbuf *rx_buffer;
2794 	int i;
2795 
2796 	/* Free Receive Descriptor ring */
2797 	if (rdata->rx_desc) {
2798 		bus_dmamap_unload(rdata->rx_desc_dtag, rdata->rx_desc_dmap);
2799 		bus_dmamem_free(rdata->rx_desc_dtag, rdata->rx_desc,
2800 				rdata->rx_desc_dmap);
2801 		bus_dma_tag_destroy(rdata->rx_desc_dtag);
2802 
2803 		rdata->rx_desc = NULL;
2804 	}
2805 
2806 	if (rdata->rx_buf == NULL)
2807 		return;
2808 
2809 	for (i = 0; i < ndesc; i++) {
2810 		rx_buffer = &rdata->rx_buf[i];
2811 
2812 		KKASSERT(rx_buffer->m_head == NULL);
2813 		bus_dmamap_destroy(rdata->rxtag, rx_buffer->map);
2814 	}
2815 	bus_dmamap_destroy(rdata->rxtag, rdata->rx_sparemap);
2816 	bus_dma_tag_destroy(rdata->rxtag);
2817 
2818 	kfree(rdata->rx_buf, M_DEVBUF);
2819 	rdata->rx_buf = NULL;
2820 }
2821 
2822 static void
2823 emx_rxeof(struct emx_softc *sc, int ring_idx, int count)
2824 {
2825 	struct emx_rxdata *rdata = &sc->rx_data[ring_idx];
2826 	struct ifnet *ifp = &sc->arpcom.ac_if;
2827 	uint32_t staterr;
2828 	emx_rxdesc_t *current_desc;
2829 	struct mbuf *mp;
2830 	int i;
2831 
2832 	i = rdata->next_rx_desc_to_check;
2833 	current_desc = &rdata->rx_desc[i];
2834 	staterr = le32toh(current_desc->rxd_staterr);
2835 
2836 	if (!(staterr & E1000_RXD_STAT_DD))
2837 		return;
2838 
2839 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2840 		struct pktinfo *pi = NULL, pi0;
2841 		struct emx_rxbuf *rx_buf = &rdata->rx_buf[i];
2842 		struct mbuf *m = NULL;
2843 		int eop, len;
2844 
2845 		logif(pkt_receive);
2846 
2847 		mp = rx_buf->m_head;
2848 
2849 		/*
2850 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
2851 		 * needs to access the last received byte in the mbuf.
2852 		 */
2853 		bus_dmamap_sync(rdata->rxtag, rx_buf->map,
2854 				BUS_DMASYNC_POSTREAD);
2855 
2856 		len = le16toh(current_desc->rxd_length);
2857 		if (staterr & E1000_RXD_STAT_EOP) {
2858 			count--;
2859 			eop = 1;
2860 		} else {
2861 			eop = 0;
2862 		}
2863 
2864 		if (!(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
2865 			uint16_t vlan = 0;
2866 			uint32_t mrq, rss_hash;
2867 
2868 			/*
2869 			 * Save several necessary information,
2870 			 * before emx_newbuf() destroy it.
2871 			 */
2872 			if ((staterr & E1000_RXD_STAT_VP) && eop)
2873 				vlan = le16toh(current_desc->rxd_vlan);
2874 
2875 			mrq = le32toh(current_desc->rxd_mrq);
2876 			rss_hash = le32toh(current_desc->rxd_rss);
2877 
2878 			EMX_RSS_DPRINTF(sc, 10,
2879 			    "ring%d, mrq 0x%08x, rss_hash 0x%08x\n",
2880 			    ring_idx, mrq, rss_hash);
2881 
2882 			if (emx_newbuf(sc, rdata, i, 0) != 0) {
2883 				ifp->if_iqdrops++;
2884 				goto discard;
2885 			}
2886 
2887 			/* Assign correct length to the current fragment */
2888 			mp->m_len = len;
2889 
2890 			if (rdata->fmp == NULL) {
2891 				mp->m_pkthdr.len = len;
2892 				rdata->fmp = mp; /* Store the first mbuf */
2893 				rdata->lmp = mp;
2894 			} else {
2895 				/*
2896 				 * Chain mbuf's together
2897 				 */
2898 				rdata->lmp->m_next = mp;
2899 				rdata->lmp = rdata->lmp->m_next;
2900 				rdata->fmp->m_pkthdr.len += len;
2901 			}
2902 
2903 			if (eop) {
2904 				rdata->fmp->m_pkthdr.rcvif = ifp;
2905 				ifp->if_ipackets++;
2906 
2907 				if (ifp->if_capenable & IFCAP_RXCSUM)
2908 					emx_rxcsum(staterr, rdata->fmp);
2909 
2910 				if (staterr & E1000_RXD_STAT_VP) {
2911 					rdata->fmp->m_pkthdr.ether_vlantag =
2912 					    vlan;
2913 					rdata->fmp->m_flags |= M_VLANTAG;
2914 				}
2915 				m = rdata->fmp;
2916 				rdata->fmp = NULL;
2917 				rdata->lmp = NULL;
2918 
2919 				if (ifp->if_capenable & IFCAP_RSS) {
2920 					pi = emx_rssinfo(m, &pi0, mrq,
2921 							 rss_hash, staterr);
2922 				}
2923 #ifdef EMX_RSS_DEBUG
2924 				rdata->rx_pkts++;
2925 #endif
2926 			}
2927 		} else {
2928 			ifp->if_ierrors++;
2929 discard:
2930 			emx_setup_rxdesc(current_desc, rx_buf);
2931 			if (rdata->fmp != NULL) {
2932 				m_freem(rdata->fmp);
2933 				rdata->fmp = NULL;
2934 				rdata->lmp = NULL;
2935 			}
2936 			m = NULL;
2937 		}
2938 
2939 		if (m != NULL)
2940 			ether_input_pkt(ifp, m, pi);
2941 
2942 		/* Advance our pointers to the next descriptor. */
2943 		if (++i == rdata->num_rx_desc)
2944 			i = 0;
2945 
2946 		current_desc = &rdata->rx_desc[i];
2947 		staterr = le32toh(current_desc->rxd_staterr);
2948 	}
2949 	rdata->next_rx_desc_to_check = i;
2950 
2951 	/* Advance the E1000's Receive Queue "Tail Pointer". */
2952 	if (--i < 0)
2953 		i = rdata->num_rx_desc - 1;
2954 	E1000_WRITE_REG(&sc->hw, E1000_RDT(ring_idx), i);
2955 }
2956 
2957 static void
2958 emx_enable_intr(struct emx_softc *sc)
2959 {
2960 	uint32_t ims_mask = IMS_ENABLE_MASK;
2961 
2962 	lwkt_serialize_handler_enable(&sc->main_serialize);
2963 
2964 #if 0
2965 	if (sc->hw.mac.type == e1000_82574) {
2966 		E1000_WRITE_REG(hw, EMX_EIAC, EM_MSIX_MASK);
2967 		ims_mask |= EM_MSIX_MASK;
2968 	}
2969 #endif
2970 	E1000_WRITE_REG(&sc->hw, E1000_IMS, ims_mask);
2971 }
2972 
2973 static void
2974 emx_disable_intr(struct emx_softc *sc)
2975 {
2976 	if (sc->hw.mac.type == e1000_82574)
2977 		E1000_WRITE_REG(&sc->hw, EMX_EIAC, 0);
2978 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
2979 
2980 	lwkt_serialize_handler_disable(&sc->main_serialize);
2981 }
2982 
2983 /*
2984  * Bit of a misnomer, what this really means is
2985  * to enable OS management of the system... aka
2986  * to disable special hardware management features
2987  */
2988 static void
2989 emx_get_mgmt(struct emx_softc *sc)
2990 {
2991 	/* A shared code workaround */
2992 	if (sc->has_manage) {
2993 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
2994 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2995 
2996 		/* disable hardware interception of ARP */
2997 		manc &= ~(E1000_MANC_ARP_EN);
2998 
2999                 /* enable receiving management packets to the host */
3000 		manc |= E1000_MANC_EN_MNG2HOST;
3001 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3002 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3003 		manc2h |= E1000_MNG2HOST_PORT_623;
3004 		manc2h |= E1000_MNG2HOST_PORT_664;
3005 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
3006 
3007 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3008 	}
3009 }
3010 
3011 /*
3012  * Give control back to hardware management
3013  * controller if there is one.
3014  */
3015 static void
3016 emx_rel_mgmt(struct emx_softc *sc)
3017 {
3018 	if (sc->has_manage) {
3019 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3020 
3021 		/* re-enable hardware interception of ARP */
3022 		manc |= E1000_MANC_ARP_EN;
3023 		manc &= ~E1000_MANC_EN_MNG2HOST;
3024 
3025 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3026 	}
3027 }
3028 
3029 /*
3030  * emx_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3031  * For ASF and Pass Through versions of f/w this means that
3032  * the driver is loaded.  For AMT version (only with 82573)
3033  * of the f/w this means that the network i/f is open.
3034  */
3035 static void
3036 emx_get_hw_control(struct emx_softc *sc)
3037 {
3038 	/* Let firmware know the driver has taken over */
3039 	if (sc->hw.mac.type == e1000_82573) {
3040 		uint32_t swsm;
3041 
3042 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3043 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3044 		    swsm | E1000_SWSM_DRV_LOAD);
3045 	} else {
3046 		uint32_t ctrl_ext;
3047 
3048 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3049 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3050 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3051 	}
3052 	sc->control_hw = 1;
3053 }
3054 
3055 /*
3056  * emx_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3057  * For ASF and Pass Through versions of f/w this means that the
3058  * driver is no longer loaded.  For AMT version (only with 82573)
3059  * of the f/w this means that the network i/f is closed.
3060  */
3061 static void
3062 emx_rel_hw_control(struct emx_softc *sc)
3063 {
3064 	if (!sc->control_hw)
3065 		return;
3066 	sc->control_hw = 0;
3067 
3068 	/* Let firmware taken over control of h/w */
3069 	if (sc->hw.mac.type == e1000_82573) {
3070 		uint32_t swsm;
3071 
3072 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3073 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3074 		    swsm & ~E1000_SWSM_DRV_LOAD);
3075 	} else {
3076 		uint32_t ctrl_ext;
3077 
3078 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3079 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3080 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3081 	}
3082 }
3083 
3084 static int
3085 emx_is_valid_eaddr(const uint8_t *addr)
3086 {
3087 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3088 
3089 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3090 		return (FALSE);
3091 
3092 	return (TRUE);
3093 }
3094 
3095 /*
3096  * Enable PCI Wake On Lan capability
3097  */
3098 void
3099 emx_enable_wol(device_t dev)
3100 {
3101 	uint16_t cap, status;
3102 	uint8_t id;
3103 
3104 	/* First find the capabilities pointer*/
3105 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3106 
3107 	/* Read the PM Capabilities */
3108 	id = pci_read_config(dev, cap, 1);
3109 	if (id != PCIY_PMG)     /* Something wrong */
3110 		return;
3111 
3112 	/*
3113 	 * OK, we have the power capabilities,
3114 	 * so now get the status register
3115 	 */
3116 	cap += PCIR_POWER_STATUS;
3117 	status = pci_read_config(dev, cap, 2);
3118 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3119 	pci_write_config(dev, cap, status, 2);
3120 }
3121 
3122 static void
3123 emx_update_stats(struct emx_softc *sc)
3124 {
3125 	struct ifnet *ifp = &sc->arpcom.ac_if;
3126 
3127 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
3128 	    (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3129 		sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
3130 		sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
3131 	}
3132 	sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
3133 	sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
3134 	sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
3135 	sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
3136 
3137 	sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
3138 	sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
3139 	sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
3140 	sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
3141 	sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
3142 	sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
3143 	sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
3144 	sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
3145 	sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
3146 	sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
3147 	sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
3148 	sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
3149 	sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
3150 	sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
3151 	sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
3152 	sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
3153 	sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
3154 	sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
3155 	sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
3156 	sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
3157 
3158 	/* For the 64-bit byte counters the low dword must be read first. */
3159 	/* Both registers clear on the read of the high dword */
3160 
3161 	sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCH);
3162 	sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCH);
3163 
3164 	sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
3165 	sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
3166 	sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
3167 	sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
3168 	sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
3169 
3170 	sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
3171 	sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
3172 
3173 	sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
3174 	sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
3175 	sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
3176 	sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
3177 	sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
3178 	sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
3179 	sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
3180 	sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
3181 	sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
3182 	sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
3183 
3184 	sc->stats.algnerrc += E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
3185 	sc->stats.rxerrc += E1000_READ_REG(&sc->hw, E1000_RXERRC);
3186 	sc->stats.tncrs += E1000_READ_REG(&sc->hw, E1000_TNCRS);
3187 	sc->stats.cexterr += E1000_READ_REG(&sc->hw, E1000_CEXTERR);
3188 	sc->stats.tsctc += E1000_READ_REG(&sc->hw, E1000_TSCTC);
3189 	sc->stats.tsctfc += E1000_READ_REG(&sc->hw, E1000_TSCTFC);
3190 
3191 	ifp->if_collisions = sc->stats.colc;
3192 
3193 	/* Rx Errors */
3194 	ifp->if_ierrors = sc->dropped_pkts + sc->stats.rxerrc +
3195 			  sc->stats.crcerrs + sc->stats.algnerrc +
3196 			  sc->stats.ruc + sc->stats.roc +
3197 			  sc->stats.mpc + sc->stats.cexterr;
3198 
3199 	/* Tx Errors */
3200 	ifp->if_oerrors = sc->stats.ecol + sc->stats.latecol +
3201 			  sc->watchdog_events;
3202 }
3203 
3204 static void
3205 emx_print_debug_info(struct emx_softc *sc)
3206 {
3207 	device_t dev = sc->dev;
3208 	uint8_t *hw_addr = sc->hw.hw_addr;
3209 
3210 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3211 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3212 	    E1000_READ_REG(&sc->hw, E1000_CTRL),
3213 	    E1000_READ_REG(&sc->hw, E1000_RCTL));
3214 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3215 	    ((E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff0000) >> 16),\
3216 	    (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) );
3217 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3218 	    sc->hw.fc.high_water, sc->hw.fc.low_water);
3219 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3220 	    E1000_READ_REG(&sc->hw, E1000_TIDV),
3221 	    E1000_READ_REG(&sc->hw, E1000_TADV));
3222 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3223 	    E1000_READ_REG(&sc->hw, E1000_RDTR),
3224 	    E1000_READ_REG(&sc->hw, E1000_RADV));
3225 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3226 	    E1000_READ_REG(&sc->hw, E1000_TDH(0)),
3227 	    E1000_READ_REG(&sc->hw, E1000_TDT(0)));
3228 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3229 	    E1000_READ_REG(&sc->hw, E1000_RDH(0)),
3230 	    E1000_READ_REG(&sc->hw, E1000_RDT(0)));
3231 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3232 	    sc->num_tx_desc_avail);
3233 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3234 	    sc->no_tx_desc_avail1);
3235 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3236 	    sc->no_tx_desc_avail2);
3237 	device_printf(dev, "Std mbuf failed = %ld\n",
3238 	    sc->mbuf_alloc_failed);
3239 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3240 	    sc->rx_data[0].mbuf_cluster_failed);
3241 	device_printf(dev, "Driver dropped packets = %ld\n",
3242 	    sc->dropped_pkts);
3243 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3244 	    sc->no_tx_dma_setup);
3245 
3246 	device_printf(dev, "TXCSUM try pullup = %lu\n",
3247 	    sc->tx_csum_try_pullup);
3248 	device_printf(dev, "TXCSUM m_pullup(eh) called = %lu\n",
3249 	    sc->tx_csum_pullup1);
3250 	device_printf(dev, "TXCSUM m_pullup(eh) failed = %lu\n",
3251 	    sc->tx_csum_pullup1_failed);
3252 	device_printf(dev, "TXCSUM m_pullup(eh+ip) called = %lu\n",
3253 	    sc->tx_csum_pullup2);
3254 	device_printf(dev, "TXCSUM m_pullup(eh+ip) failed = %lu\n",
3255 	    sc->tx_csum_pullup2_failed);
3256 	device_printf(dev, "TXCSUM non-writable(eh) droped = %lu\n",
3257 	    sc->tx_csum_drop1);
3258 	device_printf(dev, "TXCSUM non-writable(eh+ip) droped = %lu\n",
3259 	    sc->tx_csum_drop2);
3260 }
3261 
3262 static void
3263 emx_print_hw_stats(struct emx_softc *sc)
3264 {
3265 	device_t dev = sc->dev;
3266 
3267 	device_printf(dev, "Excessive collisions = %lld\n",
3268 	    (long long)sc->stats.ecol);
3269 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3270 	device_printf(dev, "Symbol errors = %lld\n",
3271 	    (long long)sc->stats.symerrs);
3272 #endif
3273 	device_printf(dev, "Sequence errors = %lld\n",
3274 	    (long long)sc->stats.sec);
3275 	device_printf(dev, "Defer count = %lld\n",
3276 	    (long long)sc->stats.dc);
3277 	device_printf(dev, "Missed Packets = %lld\n",
3278 	    (long long)sc->stats.mpc);
3279 	device_printf(dev, "Receive No Buffers = %lld\n",
3280 	    (long long)sc->stats.rnbc);
3281 	/* RLEC is inaccurate on some hardware, calculate our own. */
3282 	device_printf(dev, "Receive Length Errors = %lld\n",
3283 	    ((long long)sc->stats.roc + (long long)sc->stats.ruc));
3284 	device_printf(dev, "Receive errors = %lld\n",
3285 	    (long long)sc->stats.rxerrc);
3286 	device_printf(dev, "Crc errors = %lld\n",
3287 	    (long long)sc->stats.crcerrs);
3288 	device_printf(dev, "Alignment errors = %lld\n",
3289 	    (long long)sc->stats.algnerrc);
3290 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3291 	    (long long)sc->stats.cexterr);
3292 	device_printf(dev, "RX overruns = %ld\n", sc->rx_overruns);
3293 	device_printf(dev, "watchdog timeouts = %ld\n",
3294 	    sc->watchdog_events);
3295 	device_printf(dev, "XON Rcvd = %lld\n",
3296 	    (long long)sc->stats.xonrxc);
3297 	device_printf(dev, "XON Xmtd = %lld\n",
3298 	    (long long)sc->stats.xontxc);
3299 	device_printf(dev, "XOFF Rcvd = %lld\n",
3300 	    (long long)sc->stats.xoffrxc);
3301 	device_printf(dev, "XOFF Xmtd = %lld\n",
3302 	    (long long)sc->stats.xofftxc);
3303 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3304 	    (long long)sc->stats.gprc);
3305 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3306 	    (long long)sc->stats.gptc);
3307 }
3308 
3309 static void
3310 emx_print_nvm_info(struct emx_softc *sc)
3311 {
3312 	uint16_t eeprom_data;
3313 	int i, j, row = 0;
3314 
3315 	/* Its a bit crude, but it gets the job done */
3316 	kprintf("\nInterface EEPROM Dump:\n");
3317 	kprintf("Offset\n0x0000  ");
3318 	for (i = 0, j = 0; i < 32; i++, j++) {
3319 		if (j == 8) { /* Make the offset block */
3320 			j = 0; ++row;
3321 			kprintf("\n0x00%x0  ",row);
3322 		}
3323 		e1000_read_nvm(&sc->hw, i, 1, &eeprom_data);
3324 		kprintf("%04x ", eeprom_data);
3325 	}
3326 	kprintf("\n");
3327 }
3328 
3329 static int
3330 emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3331 {
3332 	struct emx_softc *sc;
3333 	struct ifnet *ifp;
3334 	int error, result;
3335 
3336 	result = -1;
3337 	error = sysctl_handle_int(oidp, &result, 0, req);
3338 	if (error || !req->newptr)
3339 		return (error);
3340 
3341 	sc = (struct emx_softc *)arg1;
3342 	ifp = &sc->arpcom.ac_if;
3343 
3344 	ifnet_serialize_all(ifp);
3345 
3346 	if (result == 1)
3347 		emx_print_debug_info(sc);
3348 
3349 	/*
3350 	 * This value will cause a hex dump of the
3351 	 * first 32 16-bit words of the EEPROM to
3352 	 * the screen.
3353 	 */
3354 	if (result == 2)
3355 		emx_print_nvm_info(sc);
3356 
3357 	ifnet_deserialize_all(ifp);
3358 
3359 	return (error);
3360 }
3361 
3362 static int
3363 emx_sysctl_stats(SYSCTL_HANDLER_ARGS)
3364 {
3365 	int error, result;
3366 
3367 	result = -1;
3368 	error = sysctl_handle_int(oidp, &result, 0, req);
3369 	if (error || !req->newptr)
3370 		return (error);
3371 
3372 	if (result == 1) {
3373 		struct emx_softc *sc = (struct emx_softc *)arg1;
3374 		struct ifnet *ifp = &sc->arpcom.ac_if;
3375 
3376 		ifnet_serialize_all(ifp);
3377 		emx_print_hw_stats(sc);
3378 		ifnet_deserialize_all(ifp);
3379 	}
3380 	return (error);
3381 }
3382 
3383 static void
3384 emx_add_sysctl(struct emx_softc *sc)
3385 {
3386 #ifdef EMX_RSS_DEBUG
3387 	char rx_pkt[32];
3388 	int i;
3389 #endif
3390 
3391 	sysctl_ctx_init(&sc->sysctl_ctx);
3392 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
3393 				SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
3394 				device_get_nameunit(sc->dev),
3395 				CTLFLAG_RD, 0, "");
3396 	if (sc->sysctl_tree == NULL) {
3397 		device_printf(sc->dev, "can't add sysctl node\n");
3398 		return;
3399 	}
3400 
3401 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3402 			OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3403 			emx_sysctl_debug_info, "I", "Debug Information");
3404 
3405 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3406 			OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3407 			emx_sysctl_stats, "I", "Statistics");
3408 
3409 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3410 		       OID_AUTO, "rxd", CTLFLAG_RD,
3411 		       &sc->rx_data[0].num_rx_desc, 0, NULL);
3412 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3413 		       OID_AUTO, "txd", CTLFLAG_RD, &sc->num_tx_desc, 0, NULL);
3414 
3415 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3416 			OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW,
3417 			sc, 0, emx_sysctl_int_throttle, "I",
3418 			"interrupt throttling rate");
3419 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3420 			OID_AUTO, "int_tx_nsegs", CTLTYPE_INT|CTLFLAG_RW,
3421 			sc, 0, emx_sysctl_int_tx_nsegs, "I",
3422 			"# segments per TX interrupt");
3423 
3424 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3425 		       OID_AUTO, "rx_ring_cnt", CTLFLAG_RD,
3426 		       &sc->rx_ring_cnt, 0, "RX ring count");
3427 
3428 #ifdef EMX_RSS_DEBUG
3429 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3430 		       OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug,
3431 		       0, "RSS debug level");
3432 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3433 		ksnprintf(rx_pkt, sizeof(rx_pkt), "rx%d_pkt", i);
3434 		SYSCTL_ADD_UINT(&sc->sysctl_ctx,
3435 				SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO,
3436 				rx_pkt, CTLFLAG_RW,
3437 				&sc->rx_data[i].rx_pkts, 0, "RXed packets");
3438 	}
3439 #endif
3440 }
3441 
3442 static int
3443 emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3444 {
3445 	struct emx_softc *sc = (void *)arg1;
3446 	struct ifnet *ifp = &sc->arpcom.ac_if;
3447 	int error, throttle;
3448 
3449 	throttle = sc->int_throttle_ceil;
3450 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3451 	if (error || req->newptr == NULL)
3452 		return error;
3453 	if (throttle < 0 || throttle > 1000000000 / 256)
3454 		return EINVAL;
3455 
3456 	if (throttle) {
3457 		/*
3458 		 * Set the interrupt throttling rate in 256ns increments,
3459 		 * recalculate sysctl value assignment to get exact frequency.
3460 		 */
3461 		throttle = 1000000000 / 256 / throttle;
3462 
3463 		/* Upper 16bits of ITR is reserved and should be zero */
3464 		if (throttle & 0xffff0000)
3465 			return EINVAL;
3466 	}
3467 
3468 	ifnet_serialize_all(ifp);
3469 
3470 	if (throttle)
3471 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
3472 	else
3473 		sc->int_throttle_ceil = 0;
3474 
3475 	if (ifp->if_flags & IFF_RUNNING)
3476 		emx_set_itr(sc, throttle);
3477 
3478 	ifnet_deserialize_all(ifp);
3479 
3480 	if (bootverbose) {
3481 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
3482 			  sc->int_throttle_ceil);
3483 	}
3484 	return 0;
3485 }
3486 
3487 static int
3488 emx_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
3489 {
3490 	struct emx_softc *sc = (void *)arg1;
3491 	struct ifnet *ifp = &sc->arpcom.ac_if;
3492 	int error, segs;
3493 
3494 	segs = sc->tx_int_nsegs;
3495 	error = sysctl_handle_int(oidp, &segs, 0, req);
3496 	if (error || req->newptr == NULL)
3497 		return error;
3498 	if (segs <= 0)
3499 		return EINVAL;
3500 
3501 	ifnet_serialize_all(ifp);
3502 
3503 	/*
3504 	 * Don't allow int_tx_nsegs to become:
3505 	 * o  Less the oact_tx_desc
3506 	 * o  Too large that no TX desc will cause TX interrupt to
3507 	 *    be generated (OACTIVE will never recover)
3508 	 * o  Too small that will cause tx_dd[] overflow
3509 	 */
3510 	if (segs < sc->oact_tx_desc ||
3511 	    segs >= sc->num_tx_desc - sc->oact_tx_desc ||
3512 	    segs < sc->num_tx_desc / EMX_TXDD_SAFE) {
3513 		error = EINVAL;
3514 	} else {
3515 		error = 0;
3516 		sc->tx_int_nsegs = segs;
3517 	}
3518 
3519 	ifnet_deserialize_all(ifp);
3520 
3521 	return error;
3522 }
3523 
3524 static int
3525 emx_dma_alloc(struct emx_softc *sc)
3526 {
3527 	int error, i;
3528 
3529 	/*
3530 	 * Create top level busdma tag
3531 	 */
3532 	error = bus_dma_tag_create(NULL, 1, 0,
3533 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3534 			NULL, NULL,
3535 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
3536 			0, &sc->parent_dtag);
3537 	if (error) {
3538 		device_printf(sc->dev, "could not create top level DMA tag\n");
3539 		return error;
3540 	}
3541 
3542 	/*
3543 	 * Allocate transmit descriptors ring and buffers
3544 	 */
3545 	error = emx_create_tx_ring(sc);
3546 	if (error) {
3547 		device_printf(sc->dev, "Could not setup transmit structures\n");
3548 		return error;
3549 	}
3550 
3551 	/*
3552 	 * Allocate receive descriptors ring and buffers
3553 	 */
3554 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3555 		error = emx_create_rx_ring(sc, &sc->rx_data[i]);
3556 		if (error) {
3557 			device_printf(sc->dev,
3558 			    "Could not setup receive structures\n");
3559 			return error;
3560 		}
3561 	}
3562 	return 0;
3563 }
3564 
3565 static void
3566 emx_dma_free(struct emx_softc *sc)
3567 {
3568 	int i;
3569 
3570 	emx_destroy_tx_ring(sc, sc->num_tx_desc);
3571 
3572 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3573 		emx_destroy_rx_ring(sc, &sc->rx_data[i],
3574 				    sc->rx_data[i].num_rx_desc);
3575 	}
3576 
3577 	/* Free top level busdma tag */
3578 	if (sc->parent_dtag != NULL)
3579 		bus_dma_tag_destroy(sc->parent_dtag);
3580 }
3581 
3582 static void
3583 emx_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3584 {
3585 	struct emx_softc *sc = ifp->if_softc;
3586 
3587 	switch (slz) {
3588 	case IFNET_SERIALIZE_ALL:
3589 		lwkt_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, 0);
3590 		break;
3591 
3592 	case IFNET_SERIALIZE_MAIN:
3593 		lwkt_serialize_enter(&sc->main_serialize);
3594 		break;
3595 
3596 	case IFNET_SERIALIZE_TX:
3597 		lwkt_serialize_enter(&sc->tx_serialize);
3598 		break;
3599 
3600 	case IFNET_SERIALIZE_RX(0):
3601 		lwkt_serialize_enter(&sc->rx_data[0].rx_serialize);
3602 		break;
3603 
3604 	case IFNET_SERIALIZE_RX(1):
3605 		lwkt_serialize_enter(&sc->rx_data[1].rx_serialize);
3606 		break;
3607 
3608 	default:
3609 		panic("%s unsupported serialize type", ifp->if_xname);
3610 	}
3611 }
3612 
3613 static void
3614 emx_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3615 {
3616 	struct emx_softc *sc = ifp->if_softc;
3617 
3618 	switch (slz) {
3619 	case IFNET_SERIALIZE_ALL:
3620 		lwkt_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, 0);
3621 		break;
3622 
3623 	case IFNET_SERIALIZE_MAIN:
3624 		lwkt_serialize_exit(&sc->main_serialize);
3625 		break;
3626 
3627 	case IFNET_SERIALIZE_TX:
3628 		lwkt_serialize_exit(&sc->tx_serialize);
3629 		break;
3630 
3631 	case IFNET_SERIALIZE_RX(0):
3632 		lwkt_serialize_exit(&sc->rx_data[0].rx_serialize);
3633 		break;
3634 
3635 	case IFNET_SERIALIZE_RX(1):
3636 		lwkt_serialize_exit(&sc->rx_data[1].rx_serialize);
3637 		break;
3638 
3639 	default:
3640 		panic("%s unsupported serialize type", ifp->if_xname);
3641 	}
3642 }
3643 
3644 static int
3645 emx_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3646 {
3647 	struct emx_softc *sc = ifp->if_softc;
3648 
3649 	switch (slz) {
3650 	case IFNET_SERIALIZE_ALL:
3651 		return lwkt_serialize_array_try(sc->serializes,
3652 						EMX_NSERIALIZE, 0);
3653 
3654 	case IFNET_SERIALIZE_MAIN:
3655 		return lwkt_serialize_try(&sc->main_serialize);
3656 
3657 	case IFNET_SERIALIZE_TX:
3658 		return lwkt_serialize_try(&sc->tx_serialize);
3659 
3660 	case IFNET_SERIALIZE_RX(0):
3661 		return lwkt_serialize_try(&sc->rx_data[0].rx_serialize);
3662 
3663 	case IFNET_SERIALIZE_RX(1):
3664 		return lwkt_serialize_try(&sc->rx_data[1].rx_serialize);
3665 
3666 	default:
3667 		panic("%s unsupported serialize type", ifp->if_xname);
3668 	}
3669 }
3670 
3671 static void
3672 emx_serialize_skipmain(struct emx_softc *sc)
3673 {
3674 	lwkt_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, 1);
3675 }
3676 
3677 static void
3678 emx_deserialize_skipmain(struct emx_softc *sc)
3679 {
3680 	lwkt_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, 1);
3681 }
3682 
3683 #ifdef INVARIANTS
3684 
3685 static void
3686 emx_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3687 		     boolean_t serialized)
3688 {
3689 	struct emx_softc *sc = ifp->if_softc;
3690 	int i;
3691 
3692 	switch (slz) {
3693 	case IFNET_SERIALIZE_ALL:
3694 		if (serialized) {
3695 			for (i = 0; i < EMX_NSERIALIZE; ++i)
3696 				ASSERT_SERIALIZED(sc->serializes[i]);
3697 		} else {
3698 			for (i = 0; i < EMX_NSERIALIZE; ++i)
3699 				ASSERT_NOT_SERIALIZED(sc->serializes[i]);
3700 		}
3701 		break;
3702 
3703 	case IFNET_SERIALIZE_MAIN:
3704 		if (serialized)
3705 			ASSERT_SERIALIZED(&sc->main_serialize);
3706 		else
3707 			ASSERT_NOT_SERIALIZED(&sc->main_serialize);
3708 		break;
3709 
3710 	case IFNET_SERIALIZE_TX:
3711 		if (serialized)
3712 			ASSERT_SERIALIZED(&sc->tx_serialize);
3713 		else
3714 			ASSERT_NOT_SERIALIZED(&sc->tx_serialize);
3715 		break;
3716 
3717 	case IFNET_SERIALIZE_RX(0):
3718 		if (serialized)
3719 			ASSERT_SERIALIZED(&sc->rx_data[0].rx_serialize);
3720 		else
3721 			ASSERT_NOT_SERIALIZED(&sc->rx_data[0].rx_serialize);
3722 		break;
3723 
3724 	case IFNET_SERIALIZE_RX(1):
3725 		if (serialized)
3726 			ASSERT_SERIALIZED(&sc->rx_data[1].rx_serialize);
3727 		else
3728 			ASSERT_NOT_SERIALIZED(&sc->rx_data[1].rx_serialize);
3729 		break;
3730 
3731 	default:
3732 		panic("%s unsupported serialize type", ifp->if_xname);
3733 	}
3734 }
3735 
3736 #endif	/* INVARIANTS */
3737 
3738 #ifdef IFPOLL_ENABLE
3739 
3740 static void
3741 emx_qpoll_status(struct ifnet *ifp, int pollhz __unused)
3742 {
3743 	struct emx_softc *sc = ifp->if_softc;
3744 	uint32_t reg_icr;
3745 
3746 	ASSERT_SERIALIZED(&sc->main_serialize);
3747 
3748 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3749 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3750 		emx_serialize_skipmain(sc);
3751 
3752 		callout_stop(&sc->timer);
3753 		sc->hw.mac.get_link_status = 1;
3754 		emx_update_link_status(sc);
3755 		callout_reset(&sc->timer, hz, emx_timer, sc);
3756 
3757 		emx_deserialize_skipmain(sc);
3758 	}
3759 }
3760 
3761 static void
3762 emx_qpoll_tx(struct ifnet *ifp, void *arg __unused, int cycle __unused)
3763 {
3764 	struct emx_softc *sc = ifp->if_softc;
3765 
3766 	ASSERT_SERIALIZED(&sc->tx_serialize);
3767 
3768 	emx_txeof(sc);
3769 	if (!ifq_is_empty(&ifp->if_snd))
3770 		if_devstart(ifp);
3771 }
3772 
3773 static void
3774 emx_qpoll_rx(struct ifnet *ifp, void *arg, int cycle)
3775 {
3776 	struct emx_softc *sc = ifp->if_softc;
3777 	struct emx_rxdata *rdata = arg;
3778 
3779 	ASSERT_SERIALIZED(&rdata->rx_serialize);
3780 
3781 	emx_rxeof(sc, rdata - sc->rx_data, cycle);
3782 }
3783 
3784 static void
3785 emx_qpoll(struct ifnet *ifp, struct ifpoll_info *info)
3786 {
3787 	struct emx_softc *sc = ifp->if_softc;
3788 
3789 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3790 
3791 	if (info) {
3792 		int i;
3793 
3794 		info->ifpi_status.status_func = emx_qpoll_status;
3795 		info->ifpi_status.serializer = &sc->main_serialize;
3796 
3797 		info->ifpi_tx[0].poll_func = emx_qpoll_tx;
3798 		info->ifpi_tx[0].arg = NULL;
3799 		info->ifpi_tx[0].serializer = &sc->tx_serialize;
3800 
3801 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
3802 			info->ifpi_rx[i].poll_func = emx_qpoll_rx;
3803 			info->ifpi_rx[i].arg = &sc->rx_data[i];
3804 			info->ifpi_rx[i].serializer =
3805 				&sc->rx_data[i].rx_serialize;
3806 		}
3807 
3808 		if (ifp->if_flags & IFF_RUNNING)
3809 			emx_disable_intr(sc);
3810 	} else if (ifp->if_flags & IFF_RUNNING) {
3811 		emx_enable_intr(sc);
3812 	}
3813 }
3814 
3815 #endif	/* IFPOLL_ENABLE */
3816 
3817 static void
3818 emx_set_itr(struct emx_softc *sc, uint32_t itr)
3819 {
3820 	E1000_WRITE_REG(&sc->hw, E1000_ITR, itr);
3821 	if (sc->hw.mac.type == e1000_82574) {
3822 		int i;
3823 
3824 		/*
3825 		 * When using MSIX interrupts we need to
3826 		 * throttle using the EITR register
3827 		 */
3828 		for (i = 0; i < 4; ++i)
3829 			E1000_WRITE_REG(&sc->hw, E1000_EITR_82574(i), itr);
3830 	}
3831 }
3832 
3833 /*
3834  * Disable the L0s, 82574L Errata #20
3835  */
3836 static void
3837 emx_disable_aspm(struct emx_softc *sc)
3838 {
3839 	uint16_t link_cap, link_ctrl;
3840 	uint8_t pcie_ptr, reg;
3841 	device_t dev = sc->dev;
3842 
3843 	switch (sc->hw.mac.type) {
3844 	case e1000_82573:
3845 	case e1000_82574:
3846 		break;
3847 
3848 	default:
3849 		return;
3850 	}
3851 
3852 	pcie_ptr = pci_get_pciecap_ptr(dev);
3853 	if (pcie_ptr == 0)
3854 		return;
3855 
3856 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
3857 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
3858 		return;
3859 
3860 	if (bootverbose)
3861 		if_printf(&sc->arpcom.ac_if, "disable L0s\n");
3862 
3863 	reg = pcie_ptr + PCIER_LINKCTRL;
3864 	link_ctrl = pci_read_config(dev, reg, 2);
3865 	link_ctrl &= ~PCIEM_LNKCTL_ASPM_L0S;
3866 	pci_write_config(dev, reg, link_ctrl, 2);
3867 }
3868