xref: /dragonfly/sys/dev/netif/emx/if_emx.c (revision fbc9049b)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 #include "opt_ifpoll.h"
68 #include "opt_emx.h"
69 
70 #include <sys/param.h>
71 #include <sys/bus.h>
72 #include <sys/endian.h>
73 #include <sys/interrupt.h>
74 #include <sys/kernel.h>
75 #include <sys/ktr.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/proc.h>
79 #include <sys/rman.h>
80 #include <sys/serialize.h>
81 #include <sys/serialize2.h>
82 #include <sys/socket.h>
83 #include <sys/sockio.h>
84 #include <sys/sysctl.h>
85 #include <sys/systm.h>
86 
87 #include <net/bpf.h>
88 #include <net/ethernet.h>
89 #include <net/if.h>
90 #include <net/if_arp.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/ifq_var.h>
94 #include <net/toeplitz.h>
95 #include <net/toeplitz2.h>
96 #include <net/vlan/if_vlan_var.h>
97 #include <net/vlan/if_vlan_ether.h>
98 #include <net/if_poll.h>
99 
100 #include <netinet/in_systm.h>
101 #include <netinet/in.h>
102 #include <netinet/ip.h>
103 #include <netinet/tcp.h>
104 #include <netinet/udp.h>
105 
106 #include <bus/pci/pcivar.h>
107 #include <bus/pci/pcireg.h>
108 
109 #include <dev/netif/ig_hal/e1000_api.h>
110 #include <dev/netif/ig_hal/e1000_82571.h>
111 #include <dev/netif/ig_hal/e1000_dragonfly.h>
112 #include <dev/netif/emx/if_emx.h>
113 
114 #define DEBUG_HW 0
115 
116 #ifdef EMX_RSS_DEBUG
117 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...) \
118 do { \
119 	if (sc->rss_debug >= lvl) \
120 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
121 } while (0)
122 #else	/* !EMX_RSS_DEBUG */
123 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
124 #endif	/* EMX_RSS_DEBUG */
125 
126 #define EMX_NAME	"Intel(R) PRO/1000 "
127 
128 #define EMX_DEVICE(id)	\
129 	{ EMX_VENDOR_ID, E1000_DEV_ID_##id, EMX_NAME #id }
130 #define EMX_DEVICE_NULL	{ 0, 0, NULL }
131 
132 static const struct emx_device {
133 	uint16_t	vid;
134 	uint16_t	did;
135 	const char	*desc;
136 } emx_devices[] = {
137 	EMX_DEVICE(82571EB_COPPER),
138 	EMX_DEVICE(82571EB_FIBER),
139 	EMX_DEVICE(82571EB_SERDES),
140 	EMX_DEVICE(82571EB_SERDES_DUAL),
141 	EMX_DEVICE(82571EB_SERDES_QUAD),
142 	EMX_DEVICE(82571EB_QUAD_COPPER),
143 	EMX_DEVICE(82571EB_QUAD_COPPER_BP),
144 	EMX_DEVICE(82571EB_QUAD_COPPER_LP),
145 	EMX_DEVICE(82571EB_QUAD_FIBER),
146 	EMX_DEVICE(82571PT_QUAD_COPPER),
147 
148 	EMX_DEVICE(82572EI_COPPER),
149 	EMX_DEVICE(82572EI_FIBER),
150 	EMX_DEVICE(82572EI_SERDES),
151 	EMX_DEVICE(82572EI),
152 
153 	EMX_DEVICE(82573E),
154 	EMX_DEVICE(82573E_IAMT),
155 	EMX_DEVICE(82573L),
156 
157 	EMX_DEVICE(80003ES2LAN_COPPER_SPT),
158 	EMX_DEVICE(80003ES2LAN_SERDES_SPT),
159 	EMX_DEVICE(80003ES2LAN_COPPER_DPT),
160 	EMX_DEVICE(80003ES2LAN_SERDES_DPT),
161 
162 	EMX_DEVICE(82574L),
163 	EMX_DEVICE(82574LA),
164 
165 	EMX_DEVICE(PCH_LPT_I217_LM),
166 	EMX_DEVICE(PCH_LPT_I217_V),
167 	EMX_DEVICE(PCH_LPTLP_I218_LM),
168 	EMX_DEVICE(PCH_LPTLP_I218_V),
169 	EMX_DEVICE(PCH_I218_LM2),
170 	EMX_DEVICE(PCH_I218_V2),
171 	EMX_DEVICE(PCH_I218_LM3),
172 	EMX_DEVICE(PCH_I218_V3),
173 
174 	/* required last entry */
175 	EMX_DEVICE_NULL
176 };
177 
178 static int	emx_probe(device_t);
179 static int	emx_attach(device_t);
180 static int	emx_detach(device_t);
181 static int	emx_shutdown(device_t);
182 static int	emx_suspend(device_t);
183 static int	emx_resume(device_t);
184 
185 static void	emx_init(void *);
186 static void	emx_stop(struct emx_softc *);
187 static int	emx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
188 static void	emx_start(struct ifnet *, struct ifaltq_subque *);
189 #ifdef IFPOLL_ENABLE
190 static void	emx_npoll(struct ifnet *, struct ifpoll_info *);
191 static void	emx_npoll_status(struct ifnet *);
192 static void	emx_npoll_tx(struct ifnet *, void *, int);
193 static void	emx_npoll_rx(struct ifnet *, void *, int);
194 #endif
195 static void	emx_watchdog(struct ifaltq_subque *);
196 static void	emx_media_status(struct ifnet *, struct ifmediareq *);
197 static int	emx_media_change(struct ifnet *);
198 static void	emx_timer(void *);
199 static void	emx_serialize(struct ifnet *, enum ifnet_serialize);
200 static void	emx_deserialize(struct ifnet *, enum ifnet_serialize);
201 static int	emx_tryserialize(struct ifnet *, enum ifnet_serialize);
202 #ifdef INVARIANTS
203 static void	emx_serialize_assert(struct ifnet *, enum ifnet_serialize,
204 		    boolean_t);
205 #endif
206 
207 static void	emx_intr(void *);
208 static void	emx_intr_mask(void *);
209 static void	emx_intr_body(struct emx_softc *, boolean_t);
210 static void	emx_rxeof(struct emx_rxdata *, int);
211 static void	emx_txeof(struct emx_txdata *);
212 static void	emx_tx_collect(struct emx_txdata *);
213 static void	emx_tx_purge(struct emx_softc *);
214 static void	emx_enable_intr(struct emx_softc *);
215 static void	emx_disable_intr(struct emx_softc *);
216 
217 static int	emx_dma_alloc(struct emx_softc *);
218 static void	emx_dma_free(struct emx_softc *);
219 static void	emx_init_tx_ring(struct emx_txdata *);
220 static int	emx_init_rx_ring(struct emx_rxdata *);
221 static void	emx_free_tx_ring(struct emx_txdata *);
222 static void	emx_free_rx_ring(struct emx_rxdata *);
223 static int	emx_create_tx_ring(struct emx_txdata *);
224 static int	emx_create_rx_ring(struct emx_rxdata *);
225 static void	emx_destroy_tx_ring(struct emx_txdata *, int);
226 static void	emx_destroy_rx_ring(struct emx_rxdata *, int);
227 static int	emx_newbuf(struct emx_rxdata *, int, int);
228 static int	emx_encap(struct emx_txdata *, struct mbuf **, int *, int *);
229 static int	emx_txcsum(struct emx_txdata *, struct mbuf *,
230 		    uint32_t *, uint32_t *);
231 static int	emx_tso_pullup(struct emx_txdata *, struct mbuf **);
232 static int	emx_tso_setup(struct emx_txdata *, struct mbuf *,
233 		    uint32_t *, uint32_t *);
234 static int	emx_get_txring_inuse(const struct emx_softc *, boolean_t);
235 
236 static int 	emx_is_valid_eaddr(const uint8_t *);
237 static int	emx_reset(struct emx_softc *);
238 static void	emx_setup_ifp(struct emx_softc *);
239 static void	emx_init_tx_unit(struct emx_softc *);
240 static void	emx_init_rx_unit(struct emx_softc *);
241 static void	emx_update_stats(struct emx_softc *);
242 static void	emx_set_promisc(struct emx_softc *);
243 static void	emx_disable_promisc(struct emx_softc *);
244 static void	emx_set_multi(struct emx_softc *);
245 static void	emx_update_link_status(struct emx_softc *);
246 static void	emx_smartspeed(struct emx_softc *);
247 static void	emx_set_itr(struct emx_softc *, uint32_t);
248 static void	emx_disable_aspm(struct emx_softc *);
249 
250 static void	emx_print_debug_info(struct emx_softc *);
251 static void	emx_print_nvm_info(struct emx_softc *);
252 static void	emx_print_hw_stats(struct emx_softc *);
253 
254 static int	emx_sysctl_stats(SYSCTL_HANDLER_ARGS);
255 static int	emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
256 static int	emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
257 static int	emx_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
258 static int	emx_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
259 #ifdef IFPOLL_ENABLE
260 static int	emx_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
261 static int	emx_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
262 #endif
263 static void	emx_add_sysctl(struct emx_softc *);
264 
265 static void	emx_serialize_skipmain(struct emx_softc *);
266 static void	emx_deserialize_skipmain(struct emx_softc *);
267 
268 /* Management and WOL Support */
269 static void	emx_get_mgmt(struct emx_softc *);
270 static void	emx_rel_mgmt(struct emx_softc *);
271 static void	emx_get_hw_control(struct emx_softc *);
272 static void	emx_rel_hw_control(struct emx_softc *);
273 static void	emx_enable_wol(device_t);
274 
275 static device_method_t emx_methods[] = {
276 	/* Device interface */
277 	DEVMETHOD(device_probe,		emx_probe),
278 	DEVMETHOD(device_attach,	emx_attach),
279 	DEVMETHOD(device_detach,	emx_detach),
280 	DEVMETHOD(device_shutdown,	emx_shutdown),
281 	DEVMETHOD(device_suspend,	emx_suspend),
282 	DEVMETHOD(device_resume,	emx_resume),
283 	DEVMETHOD_END
284 };
285 
286 static driver_t emx_driver = {
287 	"emx",
288 	emx_methods,
289 	sizeof(struct emx_softc),
290 };
291 
292 static devclass_t emx_devclass;
293 
294 DECLARE_DUMMY_MODULE(if_emx);
295 MODULE_DEPEND(emx, ig_hal, 1, 1, 1);
296 DRIVER_MODULE(if_emx, pci, emx_driver, emx_devclass, NULL, NULL);
297 
298 /*
299  * Tunables
300  */
301 static int	emx_int_throttle_ceil = EMX_DEFAULT_ITR;
302 static int	emx_rxd = EMX_DEFAULT_RXD;
303 static int	emx_txd = EMX_DEFAULT_TXD;
304 static int	emx_smart_pwr_down = 0;
305 static int	emx_rxr = 0;
306 static int	emx_txr = 1;
307 
308 /* Controls whether promiscuous also shows bad packets */
309 static int	emx_debug_sbp = 0;
310 
311 static int	emx_82573_workaround = 1;
312 static int	emx_msi_enable = 1;
313 
314 static char	emx_flowctrl[IFM_ETH_FC_STRLEN] = IFM_ETH_FC_RXPAUSE;
315 
316 TUNABLE_INT("hw.emx.int_throttle_ceil", &emx_int_throttle_ceil);
317 TUNABLE_INT("hw.emx.rxd", &emx_rxd);
318 TUNABLE_INT("hw.emx.rxr", &emx_rxr);
319 TUNABLE_INT("hw.emx.txd", &emx_txd);
320 TUNABLE_INT("hw.emx.txr", &emx_txr);
321 TUNABLE_INT("hw.emx.smart_pwr_down", &emx_smart_pwr_down);
322 TUNABLE_INT("hw.emx.sbp", &emx_debug_sbp);
323 TUNABLE_INT("hw.emx.82573_workaround", &emx_82573_workaround);
324 TUNABLE_INT("hw.emx.msi.enable", &emx_msi_enable);
325 TUNABLE_STR("hw.emx.flow_ctrl", emx_flowctrl, sizeof(emx_flowctrl));
326 
327 /* Global used in WOL setup with multiport cards */
328 static int	emx_global_quad_port_a = 0;
329 
330 /* Set this to one to display debug statistics */
331 static int	emx_display_debug_stats = 0;
332 
333 #if !defined(KTR_IF_EMX)
334 #define KTR_IF_EMX	KTR_ALL
335 #endif
336 KTR_INFO_MASTER(if_emx);
337 KTR_INFO(KTR_IF_EMX, if_emx, intr_beg, 0, "intr begin");
338 KTR_INFO(KTR_IF_EMX, if_emx, intr_end, 1, "intr end");
339 KTR_INFO(KTR_IF_EMX, if_emx, pkt_receive, 4, "rx packet");
340 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txqueue, 5, "tx packet");
341 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txclean, 6, "tx clean");
342 #define logif(name)	KTR_LOG(if_emx_ ## name)
343 
344 static __inline void
345 emx_setup_rxdesc(emx_rxdesc_t *rxd, const struct emx_rxbuf *rxbuf)
346 {
347 	rxd->rxd_bufaddr = htole64(rxbuf->paddr);
348 	/* DD bit must be cleared */
349 	rxd->rxd_staterr = 0;
350 }
351 
352 static __inline void
353 emx_rxcsum(uint32_t staterr, struct mbuf *mp)
354 {
355 	/* Ignore Checksum bit is set */
356 	if (staterr & E1000_RXD_STAT_IXSM)
357 		return;
358 
359 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
360 	    E1000_RXD_STAT_IPCS)
361 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
362 
363 	if ((staterr & (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
364 	    E1000_RXD_STAT_TCPCS) {
365 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
366 					   CSUM_PSEUDO_HDR |
367 					   CSUM_FRAG_NOT_CHECKED;
368 		mp->m_pkthdr.csum_data = htons(0xffff);
369 	}
370 }
371 
372 static __inline struct pktinfo *
373 emx_rssinfo(struct mbuf *m, struct pktinfo *pi,
374 	    uint32_t mrq, uint32_t hash, uint32_t staterr)
375 {
376 	switch (mrq & EMX_RXDMRQ_RSSTYPE_MASK) {
377 	case EMX_RXDMRQ_IPV4_TCP:
378 		pi->pi_netisr = NETISR_IP;
379 		pi->pi_flags = 0;
380 		pi->pi_l3proto = IPPROTO_TCP;
381 		break;
382 
383 	case EMX_RXDMRQ_IPV6_TCP:
384 		pi->pi_netisr = NETISR_IPV6;
385 		pi->pi_flags = 0;
386 		pi->pi_l3proto = IPPROTO_TCP;
387 		break;
388 
389 	case EMX_RXDMRQ_IPV4:
390 		if (staterr & E1000_RXD_STAT_IXSM)
391 			return NULL;
392 
393 		if ((staterr &
394 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
395 		    E1000_RXD_STAT_TCPCS) {
396 			pi->pi_netisr = NETISR_IP;
397 			pi->pi_flags = 0;
398 			pi->pi_l3proto = IPPROTO_UDP;
399 			break;
400 		}
401 		/* FALL THROUGH */
402 	default:
403 		return NULL;
404 	}
405 
406 	m->m_flags |= M_HASH;
407 	m->m_pkthdr.hash = toeplitz_hash(hash);
408 	return pi;
409 }
410 
411 static int
412 emx_probe(device_t dev)
413 {
414 	const struct emx_device *d;
415 	uint16_t vid, did;
416 
417 	vid = pci_get_vendor(dev);
418 	did = pci_get_device(dev);
419 
420 	for (d = emx_devices; d->desc != NULL; ++d) {
421 		if (vid == d->vid && did == d->did) {
422 			device_set_desc(dev, d->desc);
423 			device_set_async_attach(dev, TRUE);
424 			return 0;
425 		}
426 	}
427 	return ENXIO;
428 }
429 
430 static int
431 emx_attach(device_t dev)
432 {
433 	struct emx_softc *sc = device_get_softc(dev);
434 	int error = 0, i, throttle, msi_enable, tx_ring_max;
435 	u_int intr_flags;
436 	uint16_t eeprom_data, device_id, apme_mask;
437 	driver_intr_t *intr_func;
438 	char flowctrl[IFM_ETH_FC_STRLEN];
439 #ifdef IFPOLL_ENABLE
440 	int offset, offset_def;
441 #endif
442 
443 	/*
444 	 * Setup RX rings
445 	 */
446 	for (i = 0; i < EMX_NRX_RING; ++i) {
447 		sc->rx_data[i].sc = sc;
448 		sc->rx_data[i].idx = i;
449 	}
450 
451 	/*
452 	 * Setup TX ring
453 	 */
454 	for (i = 0; i < EMX_NTX_RING; ++i) {
455 		sc->tx_data[i].sc = sc;
456 		sc->tx_data[i].idx = i;
457 	}
458 
459 	/*
460 	 * Initialize serializers
461 	 */
462 	lwkt_serialize_init(&sc->main_serialize);
463 	for (i = 0; i < EMX_NTX_RING; ++i)
464 		lwkt_serialize_init(&sc->tx_data[i].tx_serialize);
465 	for (i = 0; i < EMX_NRX_RING; ++i)
466 		lwkt_serialize_init(&sc->rx_data[i].rx_serialize);
467 
468 	/*
469 	 * Initialize serializer array
470 	 */
471 	i = 0;
472 
473 	KKASSERT(i < EMX_NSERIALIZE);
474 	sc->serializes[i++] = &sc->main_serialize;
475 
476 	KKASSERT(i < EMX_NSERIALIZE);
477 	sc->serializes[i++] = &sc->tx_data[0].tx_serialize;
478 	KKASSERT(i < EMX_NSERIALIZE);
479 	sc->serializes[i++] = &sc->tx_data[1].tx_serialize;
480 
481 	KKASSERT(i < EMX_NSERIALIZE);
482 	sc->serializes[i++] = &sc->rx_data[0].rx_serialize;
483 	KKASSERT(i < EMX_NSERIALIZE);
484 	sc->serializes[i++] = &sc->rx_data[1].rx_serialize;
485 
486 	KKASSERT(i == EMX_NSERIALIZE);
487 
488 	ifmedia_init(&sc->media, IFM_IMASK | IFM_ETH_FCMASK,
489 	    emx_media_change, emx_media_status);
490 	callout_init_mp(&sc->timer);
491 
492 	sc->dev = sc->osdep.dev = dev;
493 
494 	/*
495 	 * Determine hardware and mac type
496 	 */
497 	sc->hw.vendor_id = pci_get_vendor(dev);
498 	sc->hw.device_id = pci_get_device(dev);
499 	sc->hw.revision_id = pci_get_revid(dev);
500 	sc->hw.subsystem_vendor_id = pci_get_subvendor(dev);
501 	sc->hw.subsystem_device_id = pci_get_subdevice(dev);
502 
503 	if (e1000_set_mac_type(&sc->hw))
504 		return ENXIO;
505 
506 	/* Enable bus mastering */
507 	pci_enable_busmaster(dev);
508 
509 	/*
510 	 * Allocate IO memory
511 	 */
512 	sc->memory_rid = EMX_BAR_MEM;
513 	sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
514 					    &sc->memory_rid, RF_ACTIVE);
515 	if (sc->memory == NULL) {
516 		device_printf(dev, "Unable to allocate bus resource: memory\n");
517 		error = ENXIO;
518 		goto fail;
519 	}
520 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
521 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
522 
523 	/* XXX This is quite goofy, it is not actually used */
524 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
525 
526 	/*
527 	 * Don't enable MSI-X on 82574, see:
528 	 * 82574 specification update errata #15
529 	 *
530 	 * Don't enable MSI on 82571/82572, see:
531 	 * 82571/82572 specification update errata #63
532 	 */
533 	msi_enable = emx_msi_enable;
534 	if (msi_enable &&
535 	    (sc->hw.mac.type == e1000_82571 ||
536 	     sc->hw.mac.type == e1000_82572))
537 		msi_enable = 0;
538 
539 	/*
540 	 * Allocate interrupt
541 	 */
542 	sc->intr_type = pci_alloc_1intr(dev, msi_enable,
543 	    &sc->intr_rid, &intr_flags);
544 
545 	if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
546 		int unshared;
547 
548 		unshared = device_getenv_int(dev, "irq.unshared", 0);
549 		if (!unshared) {
550 			sc->flags |= EMX_FLAG_SHARED_INTR;
551 			if (bootverbose)
552 				device_printf(dev, "IRQ shared\n");
553 		} else {
554 			intr_flags &= ~RF_SHAREABLE;
555 			if (bootverbose)
556 				device_printf(dev, "IRQ unshared\n");
557 		}
558 	}
559 
560 	sc->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->intr_rid,
561 	    intr_flags);
562 	if (sc->intr_res == NULL) {
563 		device_printf(dev, "Unable to allocate bus resource: "
564 		    "interrupt\n");
565 		error = ENXIO;
566 		goto fail;
567 	}
568 
569 	/* Save PCI command register for Shared Code */
570 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
571 	sc->hw.back = &sc->osdep;
572 
573 	/*
574 	 * For I217/I218, we need to map the flash memory and this
575 	 * must happen after the MAC is identified.
576 	 */
577 	if (sc->hw.mac.type == e1000_pch_lpt) {
578 		sc->flash_rid = EMX_BAR_FLASH;
579 
580 		sc->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
581 		    &sc->flash_rid, RF_ACTIVE);
582 		if (sc->flash == NULL) {
583 			device_printf(dev, "Mapping of Flash failed\n");
584 			error = ENXIO;
585 			goto fail;
586 		}
587 		sc->osdep.flash_bus_space_tag = rman_get_bustag(sc->flash);
588 		sc->osdep.flash_bus_space_handle =
589 		    rman_get_bushandle(sc->flash);
590 
591 		/*
592 		 * This is used in the shared code
593 		 * XXX this goof is actually not used.
594 		 */
595 		sc->hw.flash_address = (uint8_t *)sc->flash;
596 	}
597 
598 	/* Do Shared Code initialization */
599 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
600 		device_printf(dev, "Setup of Shared code failed\n");
601 		error = ENXIO;
602 		goto fail;
603 	}
604 	e1000_get_bus_info(&sc->hw);
605 
606 	sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
607 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
608 	sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
609 
610 	/*
611 	 * Interrupt throttle rate
612 	 */
613 	throttle = device_getenv_int(dev, "int_throttle_ceil",
614 	    emx_int_throttle_ceil);
615 	if (throttle == 0) {
616 		sc->int_throttle_ceil = 0;
617 	} else {
618 		if (throttle < 0)
619 			throttle = EMX_DEFAULT_ITR;
620 
621 		/* Recalculate the tunable value to get the exact frequency. */
622 		throttle = 1000000000 / 256 / throttle;
623 
624 		/* Upper 16bits of ITR is reserved and should be zero */
625 		if (throttle & 0xffff0000)
626 			throttle = 1000000000 / 256 / EMX_DEFAULT_ITR;
627 
628 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
629 	}
630 
631 	e1000_init_script_state_82541(&sc->hw, TRUE);
632 	e1000_set_tbi_compatibility_82543(&sc->hw, TRUE);
633 
634 	/* Copper options */
635 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
636 		sc->hw.phy.mdix = EMX_AUTO_ALL_MODES;
637 		sc->hw.phy.disable_polarity_correction = FALSE;
638 		sc->hw.phy.ms_type = EMX_MASTER_SLAVE;
639 	}
640 
641 	/* Set the frame limits assuming standard ethernet sized frames. */
642 	sc->hw.mac.max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
643 
644 	/* This controls when hardware reports transmit completion status. */
645 	sc->hw.mac.report_tx_early = 1;
646 
647 	/* Calculate # of RX rings */
648 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr", emx_rxr);
649 	sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, EMX_NRX_RING);
650 
651 	/*
652 	 * Calculate # of TX rings
653 	 *
654 	 * XXX
655 	 * I217/I218 claims to have 2 TX queues
656 	 *
657 	 * NOTE:
658 	 * Don't enable multiple TX queues on 82574; it always gives
659 	 * watchdog timeout on TX queue0, when multiple TCP streams are
660 	 * received.  It was originally suspected that the hardware TX
661 	 * checksum offloading caused this watchdog timeout, since only
662 	 * TCP ACKs are sent during TCP receiving tests.  However, even
663 	 * if the hardware TX checksum offloading is disable, TX queue0
664 	 * still will give watchdog.
665 	 */
666 	tx_ring_max = 1;
667 	if (sc->hw.mac.type == e1000_82571 ||
668 	    sc->hw.mac.type == e1000_82572 ||
669 	    sc->hw.mac.type == e1000_80003es2lan ||
670 	    sc->hw.mac.type == e1000_pch_lpt ||
671 	    sc->hw.mac.type == e1000_82574)
672 		tx_ring_max = EMX_NTX_RING;
673 	sc->tx_ring_cnt = device_getenv_int(dev, "txr", emx_txr);
674 	sc->tx_ring_cnt = if_ring_count2(sc->tx_ring_cnt, tx_ring_max);
675 
676 	/* Allocate RX/TX rings' busdma(9) stuffs */
677 	error = emx_dma_alloc(sc);
678 	if (error)
679 		goto fail;
680 
681 	/* Allocate multicast array memory. */
682 	sc->mta = kmalloc(ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX,
683 	    M_DEVBUF, M_WAITOK);
684 
685 	/* Indicate SOL/IDER usage */
686 	if (e1000_check_reset_block(&sc->hw)) {
687 		device_printf(dev,
688 		    "PHY reset is blocked due to SOL/IDER session.\n");
689 	}
690 
691 	/* Disable EEE on I217/I218 */
692 	sc->hw.dev_spec.ich8lan.eee_disable = 1;
693 
694 	/*
695 	 * Start from a known state, this is important in reading the
696 	 * nvm and mac from that.
697 	 */
698 	e1000_reset_hw(&sc->hw);
699 
700 	/* Make sure we have a good EEPROM before we read from it */
701 	if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
702 		/*
703 		 * Some PCI-E parts fail the first check due to
704 		 * the link being in sleep state, call it again,
705 		 * if it fails a second time its a real issue.
706 		 */
707 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
708 			device_printf(dev,
709 			    "The EEPROM Checksum Is Not Valid\n");
710 			error = EIO;
711 			goto fail;
712 		}
713 	}
714 
715 	/* Copy the permanent MAC address out of the EEPROM */
716 	if (e1000_read_mac_addr(&sc->hw) < 0) {
717 		device_printf(dev, "EEPROM read error while reading MAC"
718 		    " address\n");
719 		error = EIO;
720 		goto fail;
721 	}
722 	if (!emx_is_valid_eaddr(sc->hw.mac.addr)) {
723 		device_printf(dev, "Invalid MAC address\n");
724 		error = EIO;
725 		goto fail;
726 	}
727 
728 	/* Disable ULP support */
729 	e1000_disable_ulp_lpt_lp(&sc->hw, TRUE);
730 
731 	/* Determine if we have to control management hardware */
732 	if (e1000_enable_mng_pass_thru(&sc->hw))
733 		sc->flags |= EMX_FLAG_HAS_MGMT;
734 
735 	/*
736 	 * Setup Wake-on-Lan
737 	 */
738 	apme_mask = EMX_EEPROM_APME;
739 	eeprom_data = 0;
740 	switch (sc->hw.mac.type) {
741 	case e1000_82573:
742 		sc->flags |= EMX_FLAG_HAS_AMT;
743 		/* FALL THROUGH */
744 
745 	case e1000_82571:
746 	case e1000_82572:
747 	case e1000_80003es2lan:
748 		if (sc->hw.bus.func == 1) {
749 			e1000_read_nvm(&sc->hw,
750 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
751 		} else {
752 			e1000_read_nvm(&sc->hw,
753 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
754 		}
755 		break;
756 
757 	default:
758 		e1000_read_nvm(&sc->hw,
759 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
760 		break;
761 	}
762 	if (eeprom_data & apme_mask)
763 		sc->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
764 
765 	/*
766          * We have the eeprom settings, now apply the special cases
767          * where the eeprom may be wrong or the board won't support
768          * wake on lan on a particular port
769 	 */
770 	device_id = pci_get_device(dev);
771         switch (device_id) {
772 	case E1000_DEV_ID_82571EB_FIBER:
773 		/*
774 		 * Wake events only supported on port A for dual fiber
775 		 * regardless of eeprom setting
776 		 */
777 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
778 		    E1000_STATUS_FUNC_1)
779 			sc->wol = 0;
780 		break;
781 
782 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
783 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
784 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
785                 /* if quad port sc, disable WoL on all but port A */
786 		if (emx_global_quad_port_a != 0)
787 			sc->wol = 0;
788 		/* Reset for multiple quad port adapters */
789 		if (++emx_global_quad_port_a == 4)
790 			emx_global_quad_port_a = 0;
791                 break;
792 	}
793 
794 	/* XXX disable wol */
795 	sc->wol = 0;
796 
797 #ifdef IFPOLL_ENABLE
798 	/*
799 	 * NPOLLING RX CPU offset
800 	 */
801 	if (sc->rx_ring_cnt == ncpus2) {
802 		offset = 0;
803 	} else {
804 		offset_def = (sc->rx_ring_cnt * device_get_unit(dev)) % ncpus2;
805 		offset = device_getenv_int(dev, "npoll.rxoff", offset_def);
806 		if (offset >= ncpus2 ||
807 		    offset % sc->rx_ring_cnt != 0) {
808 			device_printf(dev, "invalid npoll.rxoff %d, use %d\n",
809 			    offset, offset_def);
810 			offset = offset_def;
811 		}
812 	}
813 	sc->rx_npoll_off = offset;
814 
815 	/*
816 	 * NPOLLING TX CPU offset
817 	 */
818 	if (sc->tx_ring_cnt == ncpus2) {
819 		offset = 0;
820 	} else {
821 		offset_def = (sc->tx_ring_cnt * device_get_unit(dev)) % ncpus2;
822 		offset = device_getenv_int(dev, "npoll.txoff", offset_def);
823 		if (offset >= ncpus2 ||
824 		    offset % sc->tx_ring_cnt != 0) {
825 			device_printf(dev, "invalid npoll.txoff %d, use %d\n",
826 			    offset, offset_def);
827 			offset = offset_def;
828 		}
829 	}
830 	sc->tx_npoll_off = offset;
831 #endif
832 	sc->tx_ring_inuse = emx_get_txring_inuse(sc, FALSE);
833 
834 	/* Setup flow control. */
835 	device_getenv_string(dev, "flow_ctrl", flowctrl, sizeof(flowctrl),
836 	    emx_flowctrl);
837 	sc->ifm_flowctrl = ifmedia_str2ethfc(flowctrl);
838 
839 	/* Setup OS specific network interface */
840 	emx_setup_ifp(sc);
841 
842 	/* Add sysctl tree, must after em_setup_ifp() */
843 	emx_add_sysctl(sc);
844 
845 	/* Reset the hardware */
846 	error = emx_reset(sc);
847 	if (error) {
848 		/*
849 		 * Some 82573 parts fail the first reset, call it again,
850 		 * if it fails a second time its a real issue.
851 		 */
852 		error = emx_reset(sc);
853 		if (error) {
854 			device_printf(dev, "Unable to reset the hardware\n");
855 			ether_ifdetach(&sc->arpcom.ac_if);
856 			goto fail;
857 		}
858 	}
859 
860 	/* Initialize statistics */
861 	emx_update_stats(sc);
862 
863 	sc->hw.mac.get_link_status = 1;
864 	emx_update_link_status(sc);
865 
866 	/* Non-AMT based hardware can now take control from firmware */
867 	if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
868 	    EMX_FLAG_HAS_MGMT)
869 		emx_get_hw_control(sc);
870 
871 	/*
872 	 * Missing Interrupt Following ICR read:
873 	 *
874 	 * 82571/82572 specification update errata #76
875 	 * 82573 specification update errata #31
876 	 * 82574 specification update errata #12
877 	 */
878 	intr_func = emx_intr;
879 	if ((sc->flags & EMX_FLAG_SHARED_INTR) &&
880 	    (sc->hw.mac.type == e1000_82571 ||
881 	     sc->hw.mac.type == e1000_82572 ||
882 	     sc->hw.mac.type == e1000_82573 ||
883 	     sc->hw.mac.type == e1000_82574))
884 		intr_func = emx_intr_mask;
885 
886 	error = bus_setup_intr(dev, sc->intr_res, INTR_MPSAFE, intr_func, sc,
887 			       &sc->intr_tag, &sc->main_serialize);
888 	if (error) {
889 		device_printf(dev, "Failed to register interrupt handler");
890 		ether_ifdetach(&sc->arpcom.ac_if);
891 		goto fail;
892 	}
893 	return (0);
894 fail:
895 	emx_detach(dev);
896 	return (error);
897 }
898 
899 static int
900 emx_detach(device_t dev)
901 {
902 	struct emx_softc *sc = device_get_softc(dev);
903 
904 	if (device_is_attached(dev)) {
905 		struct ifnet *ifp = &sc->arpcom.ac_if;
906 
907 		ifnet_serialize_all(ifp);
908 
909 		emx_stop(sc);
910 
911 		e1000_phy_hw_reset(&sc->hw);
912 
913 		emx_rel_mgmt(sc);
914 		emx_rel_hw_control(sc);
915 
916 		if (sc->wol) {
917 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
918 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
919 			emx_enable_wol(dev);
920 		}
921 
922 		bus_teardown_intr(dev, sc->intr_res, sc->intr_tag);
923 
924 		ifnet_deserialize_all(ifp);
925 
926 		ether_ifdetach(ifp);
927 	} else if (sc->memory != NULL) {
928 		emx_rel_hw_control(sc);
929 	}
930 
931 	ifmedia_removeall(&sc->media);
932 	bus_generic_detach(dev);
933 
934 	if (sc->intr_res != NULL) {
935 		bus_release_resource(dev, SYS_RES_IRQ, sc->intr_rid,
936 				     sc->intr_res);
937 	}
938 
939 	if (sc->intr_type == PCI_INTR_TYPE_MSI)
940 		pci_release_msi(dev);
941 
942 	if (sc->memory != NULL) {
943 		bus_release_resource(dev, SYS_RES_MEMORY, sc->memory_rid,
944 				     sc->memory);
945 	}
946 
947 	if (sc->flash != NULL) {
948 		bus_release_resource(dev, SYS_RES_MEMORY, sc->flash_rid,
949 		    sc->flash);
950 	}
951 
952 	emx_dma_free(sc);
953 
954 	if (sc->mta != NULL)
955 		kfree(sc->mta, M_DEVBUF);
956 
957 	return (0);
958 }
959 
960 static int
961 emx_shutdown(device_t dev)
962 {
963 	return emx_suspend(dev);
964 }
965 
966 static int
967 emx_suspend(device_t dev)
968 {
969 	struct emx_softc *sc = device_get_softc(dev);
970 	struct ifnet *ifp = &sc->arpcom.ac_if;
971 
972 	ifnet_serialize_all(ifp);
973 
974 	emx_stop(sc);
975 
976 	emx_rel_mgmt(sc);
977 	emx_rel_hw_control(sc);
978 
979 	if (sc->wol) {
980 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
981 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
982 		emx_enable_wol(dev);
983 	}
984 
985 	ifnet_deserialize_all(ifp);
986 
987 	return bus_generic_suspend(dev);
988 }
989 
990 static int
991 emx_resume(device_t dev)
992 {
993 	struct emx_softc *sc = device_get_softc(dev);
994 	struct ifnet *ifp = &sc->arpcom.ac_if;
995 	int i;
996 
997 	ifnet_serialize_all(ifp);
998 
999 	emx_init(sc);
1000 	emx_get_mgmt(sc);
1001 	for (i = 0; i < sc->tx_ring_inuse; ++i)
1002 		ifsq_devstart_sched(sc->tx_data[i].ifsq);
1003 
1004 	ifnet_deserialize_all(ifp);
1005 
1006 	return bus_generic_resume(dev);
1007 }
1008 
1009 static void
1010 emx_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1011 {
1012 	struct emx_softc *sc = ifp->if_softc;
1013 	struct emx_txdata *tdata = ifsq_get_priv(ifsq);
1014 	struct mbuf *m_head;
1015 	int idx = -1, nsegs = 0;
1016 
1017 	KKASSERT(tdata->ifsq == ifsq);
1018 	ASSERT_SERIALIZED(&tdata->tx_serialize);
1019 
1020 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq))
1021 		return;
1022 
1023 	if (!sc->link_active || (tdata->tx_flags & EMX_TXFLAG_ENABLED) == 0) {
1024 		ifsq_purge(ifsq);
1025 		return;
1026 	}
1027 
1028 	while (!ifsq_is_empty(ifsq)) {
1029 		/* Now do we at least have a minimal? */
1030 		if (EMX_IS_OACTIVE(tdata)) {
1031 			emx_tx_collect(tdata);
1032 			if (EMX_IS_OACTIVE(tdata)) {
1033 				ifsq_set_oactive(ifsq);
1034 				break;
1035 			}
1036 		}
1037 
1038 		logif(pkt_txqueue);
1039 		m_head = ifsq_dequeue(ifsq);
1040 		if (m_head == NULL)
1041 			break;
1042 
1043 		if (emx_encap(tdata, &m_head, &nsegs, &idx)) {
1044 			IFNET_STAT_INC(ifp, oerrors, 1);
1045 			emx_tx_collect(tdata);
1046 			continue;
1047 		}
1048 
1049 		/*
1050 		 * TX interrupt are aggressively aggregated, so increasing
1051 		 * opackets at TX interrupt time will make the opackets
1052 		 * statistics vastly inaccurate; we do the opackets increment
1053 		 * now.
1054 		 */
1055 		IFNET_STAT_INC(ifp, opackets, 1);
1056 
1057 		if (nsegs >= tdata->tx_wreg_nsegs) {
1058 			E1000_WRITE_REG(&sc->hw, E1000_TDT(tdata->idx), idx);
1059 			nsegs = 0;
1060 			idx = -1;
1061 		}
1062 
1063 		/* Send a copy of the frame to the BPF listener */
1064 		ETHER_BPF_MTAP(ifp, m_head);
1065 
1066 		/* Set timeout in case hardware has problems transmitting. */
1067 		tdata->tx_watchdog.wd_timer = EMX_TX_TIMEOUT;
1068 	}
1069 	if (idx >= 0)
1070 		E1000_WRITE_REG(&sc->hw, E1000_TDT(tdata->idx), idx);
1071 }
1072 
1073 static int
1074 emx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1075 {
1076 	struct emx_softc *sc = ifp->if_softc;
1077 	struct ifreq *ifr = (struct ifreq *)data;
1078 	uint16_t eeprom_data = 0;
1079 	int max_frame_size, mask, reinit;
1080 	int error = 0;
1081 
1082 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1083 
1084 	switch (command) {
1085 	case SIOCSIFMTU:
1086 		switch (sc->hw.mac.type) {
1087 		case e1000_82573:
1088 			/*
1089 			 * 82573 only supports jumbo frames
1090 			 * if ASPM is disabled.
1091 			 */
1092 			e1000_read_nvm(&sc->hw, NVM_INIT_3GIO_3, 1,
1093 				       &eeprom_data);
1094 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1095 				max_frame_size = ETHER_MAX_LEN;
1096 				break;
1097 			}
1098 			/* FALL THROUGH */
1099 
1100 		/* Limit Jumbo Frame size */
1101 		case e1000_82571:
1102 		case e1000_82572:
1103 		case e1000_82574:
1104 		case e1000_pch_lpt:
1105 		case e1000_80003es2lan:
1106 			max_frame_size = 9234;
1107 			break;
1108 
1109 		default:
1110 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1111 			break;
1112 		}
1113 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1114 		    ETHER_CRC_LEN) {
1115 			error = EINVAL;
1116 			break;
1117 		}
1118 
1119 		ifp->if_mtu = ifr->ifr_mtu;
1120 		sc->hw.mac.max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
1121 		    ETHER_CRC_LEN;
1122 
1123 		if (ifp->if_flags & IFF_RUNNING)
1124 			emx_init(sc);
1125 		break;
1126 
1127 	case SIOCSIFFLAGS:
1128 		if (ifp->if_flags & IFF_UP) {
1129 			if ((ifp->if_flags & IFF_RUNNING)) {
1130 				if ((ifp->if_flags ^ sc->if_flags) &
1131 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1132 					emx_disable_promisc(sc);
1133 					emx_set_promisc(sc);
1134 				}
1135 			} else {
1136 				emx_init(sc);
1137 			}
1138 		} else if (ifp->if_flags & IFF_RUNNING) {
1139 			emx_stop(sc);
1140 		}
1141 		sc->if_flags = ifp->if_flags;
1142 		break;
1143 
1144 	case SIOCADDMULTI:
1145 	case SIOCDELMULTI:
1146 		if (ifp->if_flags & IFF_RUNNING) {
1147 			emx_disable_intr(sc);
1148 			emx_set_multi(sc);
1149 #ifdef IFPOLL_ENABLE
1150 			if (!(ifp->if_flags & IFF_NPOLLING))
1151 #endif
1152 				emx_enable_intr(sc);
1153 		}
1154 		break;
1155 
1156 	case SIOCSIFMEDIA:
1157 		/* Check SOL/IDER usage */
1158 		if (e1000_check_reset_block(&sc->hw)) {
1159 			device_printf(sc->dev, "Media change is"
1160 			    " blocked due to SOL/IDER session.\n");
1161 			break;
1162 		}
1163 		/* FALL THROUGH */
1164 
1165 	case SIOCGIFMEDIA:
1166 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
1167 		break;
1168 
1169 	case SIOCSIFCAP:
1170 		reinit = 0;
1171 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1172 		if (mask & IFCAP_RXCSUM) {
1173 			ifp->if_capenable ^= IFCAP_RXCSUM;
1174 			reinit = 1;
1175 		}
1176 		if (mask & IFCAP_VLAN_HWTAGGING) {
1177 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1178 			reinit = 1;
1179 		}
1180 		if (mask & IFCAP_TXCSUM) {
1181 			ifp->if_capenable ^= IFCAP_TXCSUM;
1182 			if (ifp->if_capenable & IFCAP_TXCSUM)
1183 				ifp->if_hwassist |= EMX_CSUM_FEATURES;
1184 			else
1185 				ifp->if_hwassist &= ~EMX_CSUM_FEATURES;
1186 		}
1187 		if (mask & IFCAP_TSO) {
1188 			ifp->if_capenable ^= IFCAP_TSO;
1189 			if (ifp->if_capenable & IFCAP_TSO)
1190 				ifp->if_hwassist |= CSUM_TSO;
1191 			else
1192 				ifp->if_hwassist &= ~CSUM_TSO;
1193 		}
1194 		if (mask & IFCAP_RSS)
1195 			ifp->if_capenable ^= IFCAP_RSS;
1196 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1197 			emx_init(sc);
1198 		break;
1199 
1200 	default:
1201 		error = ether_ioctl(ifp, command, data);
1202 		break;
1203 	}
1204 	return (error);
1205 }
1206 
1207 static void
1208 emx_watchdog(struct ifaltq_subque *ifsq)
1209 {
1210 	struct emx_txdata *tdata = ifsq_get_priv(ifsq);
1211 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
1212 	struct emx_softc *sc = ifp->if_softc;
1213 	int i;
1214 
1215 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1216 
1217 	/*
1218 	 * The timer is set to 5 every time start queues a packet.
1219 	 * Then txeof keeps resetting it as long as it cleans at
1220 	 * least one descriptor.
1221 	 * Finally, anytime all descriptors are clean the timer is
1222 	 * set to 0.
1223 	 */
1224 
1225 	if (E1000_READ_REG(&sc->hw, E1000_TDT(tdata->idx)) ==
1226 	    E1000_READ_REG(&sc->hw, E1000_TDH(tdata->idx))) {
1227 		/*
1228 		 * If we reach here, all TX jobs are completed and
1229 		 * the TX engine should have been idled for some time.
1230 		 * We don't need to call ifsq_devstart_sched() here.
1231 		 */
1232 		ifsq_clr_oactive(ifsq);
1233 		tdata->tx_watchdog.wd_timer = 0;
1234 		return;
1235 	}
1236 
1237 	/*
1238 	 * If we are in this routine because of pause frames, then
1239 	 * don't reset the hardware.
1240 	 */
1241 	if (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_TXOFF) {
1242 		tdata->tx_watchdog.wd_timer = EMX_TX_TIMEOUT;
1243 		return;
1244 	}
1245 
1246 	if_printf(ifp, "TX %d watchdog timeout -- resetting\n", tdata->idx);
1247 
1248 	IFNET_STAT_INC(ifp, oerrors, 1);
1249 
1250 	emx_init(sc);
1251 	for (i = 0; i < sc->tx_ring_inuse; ++i)
1252 		ifsq_devstart_sched(sc->tx_data[i].ifsq);
1253 }
1254 
1255 static void
1256 emx_init(void *xsc)
1257 {
1258 	struct emx_softc *sc = xsc;
1259 	struct ifnet *ifp = &sc->arpcom.ac_if;
1260 	device_t dev = sc->dev;
1261 	boolean_t polling;
1262 	int i;
1263 
1264 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1265 
1266 	emx_stop(sc);
1267 
1268 	/* Get the latest mac address, User can use a LAA */
1269         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
1270 
1271 	/* Put the address into the Receive Address Array */
1272 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1273 
1274 	/*
1275 	 * With the 82571 sc, RAR[0] may be overwritten
1276 	 * when the other port is reset, we make a duplicate
1277 	 * in RAR[14] for that eventuality, this assures
1278 	 * the interface continues to function.
1279 	 */
1280 	if (sc->hw.mac.type == e1000_82571) {
1281 		e1000_set_laa_state_82571(&sc->hw, TRUE);
1282 		e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1283 		    E1000_RAR_ENTRIES - 1);
1284 	}
1285 
1286 	/* Initialize the hardware */
1287 	if (emx_reset(sc)) {
1288 		device_printf(dev, "Unable to reset the hardware\n");
1289 		/* XXX emx_stop()? */
1290 		return;
1291 	}
1292 	emx_update_link_status(sc);
1293 
1294 	/* Setup VLAN support, basic and offload if available */
1295 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1296 
1297 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1298 		uint32_t ctrl;
1299 
1300 		ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
1301 		ctrl |= E1000_CTRL_VME;
1302 		E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
1303 	}
1304 
1305 	/* Configure for OS presence */
1306 	emx_get_mgmt(sc);
1307 
1308 	polling = FALSE;
1309 #ifdef IFPOLL_ENABLE
1310 	if (ifp->if_flags & IFF_NPOLLING)
1311 		polling = TRUE;
1312 #endif
1313 	sc->tx_ring_inuse = emx_get_txring_inuse(sc, polling);
1314 	ifq_set_subq_mask(&ifp->if_snd, sc->tx_ring_inuse - 1);
1315 
1316 	/* Prepare transmit descriptors and buffers */
1317 	for (i = 0; i < sc->tx_ring_inuse; ++i)
1318 		emx_init_tx_ring(&sc->tx_data[i]);
1319 	emx_init_tx_unit(sc);
1320 
1321 	/* Setup Multicast table */
1322 	emx_set_multi(sc);
1323 
1324 	/* Prepare receive descriptors and buffers */
1325 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1326 		if (emx_init_rx_ring(&sc->rx_data[i])) {
1327 			device_printf(dev,
1328 			    "Could not setup receive structures\n");
1329 			emx_stop(sc);
1330 			return;
1331 		}
1332 	}
1333 	emx_init_rx_unit(sc);
1334 
1335 	/* Don't lose promiscuous settings */
1336 	emx_set_promisc(sc);
1337 
1338 	ifp->if_flags |= IFF_RUNNING;
1339 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
1340 		ifsq_clr_oactive(sc->tx_data[i].ifsq);
1341 		ifsq_watchdog_start(&sc->tx_data[i].tx_watchdog);
1342 	}
1343 
1344 	callout_reset(&sc->timer, hz, emx_timer, sc);
1345 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1346 
1347 	/* MSI/X configuration for 82574 */
1348 	if (sc->hw.mac.type == e1000_82574) {
1349 		int tmp;
1350 
1351 		tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1352 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1353 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1354 		/*
1355 		 * XXX MSIX
1356 		 * Set the IVAR - interrupt vector routing.
1357 		 * Each nibble represents a vector, high bit
1358 		 * is enable, other 3 bits are the MSIX table
1359 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1360 		 * Link (other) to 2, hence the magic number.
1361 		 */
1362 		E1000_WRITE_REG(&sc->hw, E1000_IVAR, 0x800A0908);
1363 	}
1364 
1365 	/*
1366 	 * Only enable interrupts if we are not polling, make sure
1367 	 * they are off otherwise.
1368 	 */
1369 	if (polling)
1370 		emx_disable_intr(sc);
1371 	else
1372 		emx_enable_intr(sc);
1373 
1374 	/* AMT based hardware can now take control from firmware */
1375 	if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
1376 	    (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT))
1377 		emx_get_hw_control(sc);
1378 }
1379 
1380 static void
1381 emx_intr(void *xsc)
1382 {
1383 	emx_intr_body(xsc, TRUE);
1384 }
1385 
1386 static void
1387 emx_intr_body(struct emx_softc *sc, boolean_t chk_asserted)
1388 {
1389 	struct ifnet *ifp = &sc->arpcom.ac_if;
1390 	uint32_t reg_icr;
1391 
1392 	logif(intr_beg);
1393 	ASSERT_SERIALIZED(&sc->main_serialize);
1394 
1395 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1396 
1397 	if (chk_asserted && (reg_icr & E1000_ICR_INT_ASSERTED) == 0) {
1398 		logif(intr_end);
1399 		return;
1400 	}
1401 
1402 	/*
1403 	 * XXX: some laptops trigger several spurious interrupts
1404 	 * on emx(4) when in the resume cycle. The ICR register
1405 	 * reports all-ones value in this case. Processing such
1406 	 * interrupts would lead to a freeze. I don't know why.
1407 	 */
1408 	if (reg_icr == 0xffffffff) {
1409 		logif(intr_end);
1410 		return;
1411 	}
1412 
1413 	if (ifp->if_flags & IFF_RUNNING) {
1414 		if (reg_icr &
1415 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
1416 			int i;
1417 
1418 			for (i = 0; i < sc->rx_ring_cnt; ++i) {
1419 				lwkt_serialize_enter(
1420 				&sc->rx_data[i].rx_serialize);
1421 				emx_rxeof(&sc->rx_data[i], -1);
1422 				lwkt_serialize_exit(
1423 				&sc->rx_data[i].rx_serialize);
1424 			}
1425 		}
1426 		if (reg_icr & E1000_ICR_TXDW) {
1427 			struct emx_txdata *tdata = &sc->tx_data[0];
1428 
1429 			lwkt_serialize_enter(&tdata->tx_serialize);
1430 			emx_txeof(tdata);
1431 			if (!ifsq_is_empty(tdata->ifsq))
1432 				ifsq_devstart(tdata->ifsq);
1433 			lwkt_serialize_exit(&tdata->tx_serialize);
1434 		}
1435 	}
1436 
1437 	/* Link status change */
1438 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1439 		emx_serialize_skipmain(sc);
1440 
1441 		callout_stop(&sc->timer);
1442 		sc->hw.mac.get_link_status = 1;
1443 		emx_update_link_status(sc);
1444 
1445 		/* Deal with TX cruft when link lost */
1446 		emx_tx_purge(sc);
1447 
1448 		callout_reset(&sc->timer, hz, emx_timer, sc);
1449 
1450 		emx_deserialize_skipmain(sc);
1451 	}
1452 
1453 	if (reg_icr & E1000_ICR_RXO)
1454 		sc->rx_overruns++;
1455 
1456 	logif(intr_end);
1457 }
1458 
1459 static void
1460 emx_intr_mask(void *xsc)
1461 {
1462 	struct emx_softc *sc = xsc;
1463 
1464 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
1465 	/*
1466 	 * NOTE:
1467 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1468 	 * so don't check it.
1469 	 */
1470 	emx_intr_body(sc, FALSE);
1471 	E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
1472 }
1473 
1474 static void
1475 emx_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1476 {
1477 	struct emx_softc *sc = ifp->if_softc;
1478 
1479 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1480 
1481 	emx_update_link_status(sc);
1482 
1483 	ifmr->ifm_status = IFM_AVALID;
1484 	ifmr->ifm_active = IFM_ETHER;
1485 
1486 	if (!sc->link_active) {
1487 		if (sc->hw.mac.autoneg)
1488 			ifmr->ifm_active |= IFM_NONE;
1489 		else
1490 			ifmr->ifm_active |= sc->media.ifm_media;
1491 		return;
1492 	}
1493 
1494 	ifmr->ifm_status |= IFM_ACTIVE;
1495 	if (sc->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
1496 		ifmr->ifm_active |= sc->ifm_flowctrl;
1497 
1498 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1499 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1500 		ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
1501 	} else {
1502 		switch (sc->link_speed) {
1503 		case 10:
1504 			ifmr->ifm_active |= IFM_10_T;
1505 			break;
1506 		case 100:
1507 			ifmr->ifm_active |= IFM_100_TX;
1508 			break;
1509 
1510 		case 1000:
1511 			ifmr->ifm_active |= IFM_1000_T;
1512 			break;
1513 		}
1514 		if (sc->link_duplex == FULL_DUPLEX)
1515 			ifmr->ifm_active |= IFM_FDX;
1516 		else
1517 			ifmr->ifm_active |= IFM_HDX;
1518 	}
1519 	if (ifmr->ifm_active & IFM_FDX)
1520 		ifmr->ifm_active |= e1000_fc2ifmedia(sc->hw.fc.current_mode);
1521 }
1522 
1523 static int
1524 emx_media_change(struct ifnet *ifp)
1525 {
1526 	struct emx_softc *sc = ifp->if_softc;
1527 	struct ifmedia *ifm = &sc->media;
1528 
1529 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1530 
1531 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1532 		return (EINVAL);
1533 
1534 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1535 	case IFM_AUTO:
1536 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1537 		sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
1538 		break;
1539 
1540 	case IFM_1000_SX:
1541 	case IFM_1000_T:
1542 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1543 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1544 		break;
1545 
1546 	case IFM_100_TX:
1547 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1548 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1549 		} else {
1550 			if (IFM_OPTIONS(ifm->ifm_media) &
1551 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1552 				if (bootverbose) {
1553 					if_printf(ifp, "Flow control is not "
1554 					    "allowed for half-duplex\n");
1555 				}
1556 				return EINVAL;
1557 			}
1558 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1559 		}
1560 		sc->hw.mac.autoneg = FALSE;
1561 		sc->hw.phy.autoneg_advertised = 0;
1562 		break;
1563 
1564 	case IFM_10_T:
1565 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1566 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1567 		} else {
1568 			if (IFM_OPTIONS(ifm->ifm_media) &
1569 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1570 				if (bootverbose) {
1571 					if_printf(ifp, "Flow control is not "
1572 					    "allowed for half-duplex\n");
1573 				}
1574 				return EINVAL;
1575 			}
1576 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1577 		}
1578 		sc->hw.mac.autoneg = FALSE;
1579 		sc->hw.phy.autoneg_advertised = 0;
1580 		break;
1581 
1582 	default:
1583 		if (bootverbose) {
1584 			if_printf(ifp, "Unsupported media type %d\n",
1585 			    IFM_SUBTYPE(ifm->ifm_media));
1586 		}
1587 		return EINVAL;
1588 	}
1589 	sc->ifm_flowctrl = ifm->ifm_media & IFM_ETH_FCMASK;
1590 
1591 	if (ifp->if_flags & IFF_RUNNING)
1592 		emx_init(sc);
1593 
1594 	return (0);
1595 }
1596 
1597 static int
1598 emx_encap(struct emx_txdata *tdata, struct mbuf **m_headp,
1599     int *segs_used, int *idx)
1600 {
1601 	bus_dma_segment_t segs[EMX_MAX_SCATTER];
1602 	bus_dmamap_t map;
1603 	struct emx_txbuf *tx_buffer, *tx_buffer_mapped;
1604 	struct e1000_tx_desc *ctxd = NULL;
1605 	struct mbuf *m_head = *m_headp;
1606 	uint32_t txd_upper, txd_lower, cmd = 0;
1607 	int maxsegs, nsegs, i, j, first, last = 0, error;
1608 
1609 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1610 		error = emx_tso_pullup(tdata, m_headp);
1611 		if (error)
1612 			return error;
1613 		m_head = *m_headp;
1614 	}
1615 
1616 	txd_upper = txd_lower = 0;
1617 
1618 	/*
1619 	 * Capture the first descriptor index, this descriptor
1620 	 * will have the index of the EOP which is the only one
1621 	 * that now gets a DONE bit writeback.
1622 	 */
1623 	first = tdata->next_avail_tx_desc;
1624 	tx_buffer = &tdata->tx_buf[first];
1625 	tx_buffer_mapped = tx_buffer;
1626 	map = tx_buffer->map;
1627 
1628 	maxsegs = tdata->num_tx_desc_avail - EMX_TX_RESERVED;
1629 	KASSERT(maxsegs >= tdata->spare_tx_desc, ("not enough spare TX desc"));
1630 	if (maxsegs > EMX_MAX_SCATTER)
1631 		maxsegs = EMX_MAX_SCATTER;
1632 
1633 	error = bus_dmamap_load_mbuf_defrag(tdata->txtag, map, m_headp,
1634 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1635 	if (error) {
1636 		m_freem(*m_headp);
1637 		*m_headp = NULL;
1638 		return error;
1639 	}
1640         bus_dmamap_sync(tdata->txtag, map, BUS_DMASYNC_PREWRITE);
1641 
1642 	m_head = *m_headp;
1643 	tdata->tx_nsegs += nsegs;
1644 	*segs_used += nsegs;
1645 
1646 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1647 		/* TSO will consume one TX desc */
1648 		i = emx_tso_setup(tdata, m_head, &txd_upper, &txd_lower);
1649 		tdata->tx_nsegs += i;
1650 		*segs_used += i;
1651 	} else if (m_head->m_pkthdr.csum_flags & EMX_CSUM_FEATURES) {
1652 		/* TX csum offloading will consume one TX desc */
1653 		i = emx_txcsum(tdata, m_head, &txd_upper, &txd_lower);
1654 		tdata->tx_nsegs += i;
1655 		*segs_used += i;
1656 	}
1657 
1658         /* Handle VLAN tag */
1659 	if (m_head->m_flags & M_VLANTAG) {
1660 		/* Set the vlan id. */
1661 		txd_upper |= (htole16(m_head->m_pkthdr.ether_vlantag) << 16);
1662 		/* Tell hardware to add tag */
1663 		txd_lower |= htole32(E1000_TXD_CMD_VLE);
1664 	}
1665 
1666 	i = tdata->next_avail_tx_desc;
1667 
1668 	/* Set up our transmit descriptors */
1669 	for (j = 0; j < nsegs; j++) {
1670 		tx_buffer = &tdata->tx_buf[i];
1671 		ctxd = &tdata->tx_desc_base[i];
1672 
1673 		ctxd->buffer_addr = htole64(segs[j].ds_addr);
1674 		ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1675 					   txd_lower | segs[j].ds_len);
1676 		ctxd->upper.data = htole32(txd_upper);
1677 
1678 		last = i;
1679 		if (++i == tdata->num_tx_desc)
1680 			i = 0;
1681 	}
1682 
1683 	tdata->next_avail_tx_desc = i;
1684 
1685 	KKASSERT(tdata->num_tx_desc_avail > nsegs);
1686 	tdata->num_tx_desc_avail -= nsegs;
1687 
1688 	tx_buffer->m_head = m_head;
1689 	tx_buffer_mapped->map = tx_buffer->map;
1690 	tx_buffer->map = map;
1691 
1692 	if (tdata->tx_nsegs >= tdata->tx_intr_nsegs) {
1693 		tdata->tx_nsegs = 0;
1694 
1695 		/*
1696 		 * Report Status (RS) is turned on
1697 		 * every tx_intr_nsegs descriptors.
1698 		 */
1699 		cmd = E1000_TXD_CMD_RS;
1700 
1701 		/*
1702 		 * Keep track of the descriptor, which will
1703 		 * be written back by hardware.
1704 		 */
1705 		tdata->tx_dd[tdata->tx_dd_tail] = last;
1706 		EMX_INC_TXDD_IDX(tdata->tx_dd_tail);
1707 		KKASSERT(tdata->tx_dd_tail != tdata->tx_dd_head);
1708 	}
1709 
1710 	/*
1711 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1712 	 */
1713 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1714 
1715 	/*
1716 	 * Defer TDT updating, until enough descriptors are setup
1717 	 */
1718 	*idx = i;
1719 
1720 #ifdef EMX_TSS_DEBUG
1721 	tdata->tx_pkts++;
1722 #endif
1723 
1724 	return (0);
1725 }
1726 
1727 static void
1728 emx_set_promisc(struct emx_softc *sc)
1729 {
1730 	struct ifnet *ifp = &sc->arpcom.ac_if;
1731 	uint32_t reg_rctl;
1732 
1733 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1734 
1735 	if (ifp->if_flags & IFF_PROMISC) {
1736 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1737 		/* Turn this on if you want to see bad packets */
1738 		if (emx_debug_sbp)
1739 			reg_rctl |= E1000_RCTL_SBP;
1740 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1741 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1742 		reg_rctl |= E1000_RCTL_MPE;
1743 		reg_rctl &= ~E1000_RCTL_UPE;
1744 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1745 	}
1746 }
1747 
1748 static void
1749 emx_disable_promisc(struct emx_softc *sc)
1750 {
1751 	uint32_t reg_rctl;
1752 
1753 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1754 
1755 	reg_rctl &= ~E1000_RCTL_UPE;
1756 	reg_rctl &= ~E1000_RCTL_MPE;
1757 	reg_rctl &= ~E1000_RCTL_SBP;
1758 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1759 }
1760 
1761 static void
1762 emx_set_multi(struct emx_softc *sc)
1763 {
1764 	struct ifnet *ifp = &sc->arpcom.ac_if;
1765 	struct ifmultiaddr *ifma;
1766 	uint32_t reg_rctl = 0;
1767 	uint8_t *mta;
1768 	int mcnt = 0;
1769 
1770 	mta = sc->mta;
1771 	bzero(mta, ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX);
1772 
1773 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1774 		if (ifma->ifma_addr->sa_family != AF_LINK)
1775 			continue;
1776 
1777 		if (mcnt == EMX_MCAST_ADDR_MAX)
1778 			break;
1779 
1780 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1781 		      &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1782 		mcnt++;
1783 	}
1784 
1785 	if (mcnt >= EMX_MCAST_ADDR_MAX) {
1786 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1787 		reg_rctl |= E1000_RCTL_MPE;
1788 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1789 	} else {
1790 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1791 	}
1792 }
1793 
1794 /*
1795  * This routine checks for link status and updates statistics.
1796  */
1797 static void
1798 emx_timer(void *xsc)
1799 {
1800 	struct emx_softc *sc = xsc;
1801 	struct ifnet *ifp = &sc->arpcom.ac_if;
1802 
1803 	lwkt_serialize_enter(&sc->main_serialize);
1804 
1805 	emx_update_link_status(sc);
1806 	emx_update_stats(sc);
1807 
1808 	/* Reset LAA into RAR[0] on 82571 */
1809 	if (e1000_get_laa_state_82571(&sc->hw) == TRUE)
1810 		e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1811 
1812 	if (emx_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1813 		emx_print_hw_stats(sc);
1814 
1815 	emx_smartspeed(sc);
1816 
1817 	callout_reset(&sc->timer, hz, emx_timer, sc);
1818 
1819 	lwkt_serialize_exit(&sc->main_serialize);
1820 }
1821 
1822 static void
1823 emx_update_link_status(struct emx_softc *sc)
1824 {
1825 	struct e1000_hw *hw = &sc->hw;
1826 	struct ifnet *ifp = &sc->arpcom.ac_if;
1827 	device_t dev = sc->dev;
1828 	uint32_t link_check = 0;
1829 
1830 	/* Get the cached link value or read phy for real */
1831 	switch (hw->phy.media_type) {
1832 	case e1000_media_type_copper:
1833 		if (hw->mac.get_link_status) {
1834 			/* Do the work to read phy */
1835 			e1000_check_for_link(hw);
1836 			link_check = !hw->mac.get_link_status;
1837 			if (link_check) /* ESB2 fix */
1838 				e1000_cfg_on_link_up(hw);
1839 		} else {
1840 			link_check = TRUE;
1841 		}
1842 		break;
1843 
1844 	case e1000_media_type_fiber:
1845 		e1000_check_for_link(hw);
1846 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1847 		break;
1848 
1849 	case e1000_media_type_internal_serdes:
1850 		e1000_check_for_link(hw);
1851 		link_check = sc->hw.mac.serdes_has_link;
1852 		break;
1853 
1854 	case e1000_media_type_unknown:
1855 	default:
1856 		break;
1857 	}
1858 
1859 	/* Now check for a transition */
1860 	if (link_check && sc->link_active == 0) {
1861 		e1000_get_speed_and_duplex(hw, &sc->link_speed,
1862 		    &sc->link_duplex);
1863 
1864 		/*
1865 		 * Check if we should enable/disable SPEED_MODE bit on
1866 		 * 82571EB/82572EI
1867 		 */
1868 		if (sc->link_speed != SPEED_1000 &&
1869 		    (hw->mac.type == e1000_82571 ||
1870 		     hw->mac.type == e1000_82572)) {
1871 			int tarc0;
1872 
1873 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1874 			tarc0 &= ~EMX_TARC_SPEED_MODE;
1875 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1876 		}
1877 		if (bootverbose) {
1878 			char flowctrl[IFM_ETH_FC_STRLEN];
1879 
1880 			e1000_fc2str(hw->fc.current_mode, flowctrl,
1881 			    sizeof(flowctrl));
1882 			device_printf(dev, "Link is up %d Mbps %s, "
1883 			    "Flow control: %s\n",
1884 			    sc->link_speed,
1885 			    (sc->link_duplex == FULL_DUPLEX) ?
1886 			    "Full Duplex" : "Half Duplex",
1887 			    flowctrl);
1888 		}
1889 		if (sc->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
1890 			e1000_force_flowctrl(hw, sc->ifm_flowctrl);
1891 		sc->link_active = 1;
1892 		sc->smartspeed = 0;
1893 		ifp->if_baudrate = sc->link_speed * 1000000;
1894 		ifp->if_link_state = LINK_STATE_UP;
1895 		if_link_state_change(ifp);
1896 	} else if (!link_check && sc->link_active == 1) {
1897 		ifp->if_baudrate = sc->link_speed = 0;
1898 		sc->link_duplex = 0;
1899 		if (bootverbose)
1900 			device_printf(dev, "Link is Down\n");
1901 		sc->link_active = 0;
1902 		ifp->if_link_state = LINK_STATE_DOWN;
1903 		if_link_state_change(ifp);
1904 	}
1905 }
1906 
1907 static void
1908 emx_stop(struct emx_softc *sc)
1909 {
1910 	struct ifnet *ifp = &sc->arpcom.ac_if;
1911 	int i;
1912 
1913 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1914 
1915 	emx_disable_intr(sc);
1916 
1917 	callout_stop(&sc->timer);
1918 
1919 	ifp->if_flags &= ~IFF_RUNNING;
1920 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1921 		struct emx_txdata *tdata = &sc->tx_data[i];
1922 
1923 		ifsq_clr_oactive(tdata->ifsq);
1924 		ifsq_watchdog_stop(&tdata->tx_watchdog);
1925 		tdata->tx_flags &= ~EMX_TXFLAG_ENABLED;
1926 	}
1927 
1928 	/*
1929 	 * Disable multiple receive queues.
1930 	 *
1931 	 * NOTE:
1932 	 * We should disable multiple receive queues before
1933 	 * resetting the hardware.
1934 	 */
1935 	E1000_WRITE_REG(&sc->hw, E1000_MRQC, 0);
1936 
1937 	e1000_reset_hw(&sc->hw);
1938 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1939 
1940 	for (i = 0; i < sc->tx_ring_cnt; ++i)
1941 		emx_free_tx_ring(&sc->tx_data[i]);
1942 	for (i = 0; i < sc->rx_ring_cnt; ++i)
1943 		emx_free_rx_ring(&sc->rx_data[i]);
1944 }
1945 
1946 static int
1947 emx_reset(struct emx_softc *sc)
1948 {
1949 	device_t dev = sc->dev;
1950 	uint16_t rx_buffer_size;
1951 	uint32_t pba;
1952 
1953 	/* Set up smart power down as default off on newer adapters. */
1954 	if (!emx_smart_pwr_down &&
1955 	    (sc->hw.mac.type == e1000_82571 ||
1956 	     sc->hw.mac.type == e1000_82572)) {
1957 		uint16_t phy_tmp = 0;
1958 
1959 		/* Speed up time to link by disabling smart power down. */
1960 		e1000_read_phy_reg(&sc->hw,
1961 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
1962 		phy_tmp &= ~IGP02E1000_PM_SPD;
1963 		e1000_write_phy_reg(&sc->hw,
1964 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
1965 	}
1966 
1967 	/*
1968 	 * Packet Buffer Allocation (PBA)
1969 	 * Writing PBA sets the receive portion of the buffer
1970 	 * the remainder is used for the transmit buffer.
1971 	 */
1972 	switch (sc->hw.mac.type) {
1973 	/* Total Packet Buffer on these is 48K */
1974 	case e1000_82571:
1975 	case e1000_82572:
1976 	case e1000_80003es2lan:
1977 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1978 		break;
1979 
1980 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1981 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1982 		break;
1983 
1984 	case e1000_82574:
1985 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1986 		break;
1987 
1988 	case e1000_pch_lpt:
1989  		pba = E1000_PBA_26K;
1990  		break;
1991 
1992 	default:
1993 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1994 		if (sc->hw.mac.max_frame_size > 8192)
1995 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1996 		else
1997 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1998 	}
1999 	E1000_WRITE_REG(&sc->hw, E1000_PBA, pba);
2000 
2001 	/*
2002 	 * These parameters control the automatic generation (Tx) and
2003 	 * response (Rx) to Ethernet PAUSE frames.
2004 	 * - High water mark should allow for at least two frames to be
2005 	 *   received after sending an XOFF.
2006 	 * - Low water mark works best when it is very near the high water mark.
2007 	 *   This allows the receiver to restart by sending XON when it has
2008 	 *   drained a bit. Here we use an arbitary value of 1500 which will
2009 	 *   restart after one full frame is pulled from the buffer. There
2010 	 *   could be several smaller frames in the buffer and if so they will
2011 	 *   not trigger the XON until their total number reduces the buffer
2012 	 *   by 1500.
2013 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2014 	 */
2015 	rx_buffer_size = (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) << 10;
2016 
2017 	sc->hw.fc.high_water = rx_buffer_size -
2018 	    roundup2(sc->hw.mac.max_frame_size, 1024);
2019 	sc->hw.fc.low_water = sc->hw.fc.high_water - 1500;
2020 
2021 	sc->hw.fc.pause_time = EMX_FC_PAUSE_TIME;
2022 	sc->hw.fc.send_xon = TRUE;
2023 	sc->hw.fc.requested_mode = e1000_ifmedia2fc(sc->ifm_flowctrl);
2024 
2025 	/*
2026 	 * Device specific overrides/settings
2027 	 */
2028 	if (sc->hw.mac.type == e1000_pch_lpt) {
2029 		sc->hw.fc.high_water = 0x5C20;
2030 		sc->hw.fc.low_water = 0x5048;
2031 		sc->hw.fc.pause_time = 0x0650;
2032 		sc->hw.fc.refresh_time = 0x0400;
2033 		/* Jumbos need adjusted PBA */
2034 		if (sc->arpcom.ac_if.if_mtu > ETHERMTU)
2035 			E1000_WRITE_REG(&sc->hw, E1000_PBA, 12);
2036 		else
2037 			E1000_WRITE_REG(&sc->hw, E1000_PBA, 26);
2038 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
2039 		sc->hw.fc.pause_time = 0xFFFF;
2040 	}
2041 
2042 	/* Issue a global reset */
2043 	e1000_reset_hw(&sc->hw);
2044 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
2045 	emx_disable_aspm(sc);
2046 
2047 	if (e1000_init_hw(&sc->hw) < 0) {
2048 		device_printf(dev, "Hardware Initialization Failed\n");
2049 		return (EIO);
2050 	}
2051 
2052 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
2053 	e1000_get_phy_info(&sc->hw);
2054 	e1000_check_for_link(&sc->hw);
2055 
2056 	return (0);
2057 }
2058 
2059 static void
2060 emx_setup_ifp(struct emx_softc *sc)
2061 {
2062 	struct ifnet *ifp = &sc->arpcom.ac_if;
2063 	int i;
2064 
2065 	if_initname(ifp, device_get_name(sc->dev),
2066 		    device_get_unit(sc->dev));
2067 	ifp->if_softc = sc;
2068 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2069 	ifp->if_init =  emx_init;
2070 	ifp->if_ioctl = emx_ioctl;
2071 	ifp->if_start = emx_start;
2072 #ifdef IFPOLL_ENABLE
2073 	ifp->if_npoll = emx_npoll;
2074 #endif
2075 	ifp->if_serialize = emx_serialize;
2076 	ifp->if_deserialize = emx_deserialize;
2077 	ifp->if_tryserialize = emx_tryserialize;
2078 #ifdef INVARIANTS
2079 	ifp->if_serialize_assert = emx_serialize_assert;
2080 #endif
2081 
2082 	ifp->if_nmbclusters = sc->rx_ring_cnt * sc->rx_data[0].num_rx_desc;
2083 
2084 	ifq_set_maxlen(&ifp->if_snd, sc->tx_data[0].num_tx_desc - 1);
2085 	ifq_set_ready(&ifp->if_snd);
2086 	ifq_set_subq_cnt(&ifp->if_snd, sc->tx_ring_cnt);
2087 
2088 	ifp->if_mapsubq = ifq_mapsubq_mask;
2089 	ifq_set_subq_mask(&ifp->if_snd, 0);
2090 
2091 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
2092 
2093 	ifp->if_capabilities = IFCAP_HWCSUM |
2094 			       IFCAP_VLAN_HWTAGGING |
2095 			       IFCAP_VLAN_MTU |
2096 			       IFCAP_TSO;
2097 	if (sc->rx_ring_cnt > 1)
2098 		ifp->if_capabilities |= IFCAP_RSS;
2099 	ifp->if_capenable = ifp->if_capabilities;
2100 	ifp->if_hwassist = EMX_CSUM_FEATURES | CSUM_TSO;
2101 
2102 	/*
2103 	 * Tell the upper layer(s) we support long frames.
2104 	 */
2105 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2106 
2107 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
2108 		struct ifaltq_subque *ifsq = ifq_get_subq(&ifp->if_snd, i);
2109 		struct emx_txdata *tdata = &sc->tx_data[i];
2110 
2111 		ifsq_set_cpuid(ifsq, rman_get_cpuid(sc->intr_res));
2112 		ifsq_set_priv(ifsq, tdata);
2113 		ifsq_set_hw_serialize(ifsq, &tdata->tx_serialize);
2114 		tdata->ifsq = ifsq;
2115 
2116 		ifsq_watchdog_init(&tdata->tx_watchdog, ifsq, emx_watchdog);
2117 	}
2118 
2119 	/*
2120 	 * Specify the media types supported by this sc and register
2121 	 * callbacks to update media and link information
2122 	 */
2123 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2124 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
2125 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
2126 			    0, NULL);
2127 	} else {
2128 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
2129 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2130 			    0, NULL);
2131 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2132 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2133 			    0, NULL);
2134 		if (sc->hw.phy.type != e1000_phy_ife) {
2135 			ifmedia_add(&sc->media,
2136 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2137 		}
2138 	}
2139 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2140 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO | sc->ifm_flowctrl);
2141 }
2142 
2143 /*
2144  * Workaround for SmartSpeed on 82541 and 82547 controllers
2145  */
2146 static void
2147 emx_smartspeed(struct emx_softc *sc)
2148 {
2149 	uint16_t phy_tmp;
2150 
2151 	if (sc->link_active || sc->hw.phy.type != e1000_phy_igp ||
2152 	    sc->hw.mac.autoneg == 0 ||
2153 	    (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2154 		return;
2155 
2156 	if (sc->smartspeed == 0) {
2157 		/*
2158 		 * If Master/Slave config fault is asserted twice,
2159 		 * we assume back-to-back
2160 		 */
2161 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2162 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2163 			return;
2164 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2165 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2166 			e1000_read_phy_reg(&sc->hw,
2167 			    PHY_1000T_CTRL, &phy_tmp);
2168 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2169 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2170 				e1000_write_phy_reg(&sc->hw,
2171 				    PHY_1000T_CTRL, phy_tmp);
2172 				sc->smartspeed++;
2173 				if (sc->hw.mac.autoneg &&
2174 				    !e1000_phy_setup_autoneg(&sc->hw) &&
2175 				    !e1000_read_phy_reg(&sc->hw,
2176 				     PHY_CONTROL, &phy_tmp)) {
2177 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2178 						   MII_CR_RESTART_AUTO_NEG;
2179 					e1000_write_phy_reg(&sc->hw,
2180 					    PHY_CONTROL, phy_tmp);
2181 				}
2182 			}
2183 		}
2184 		return;
2185 	} else if (sc->smartspeed == EMX_SMARTSPEED_DOWNSHIFT) {
2186 		/* If still no link, perhaps using 2/3 pair cable */
2187 		e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
2188 		phy_tmp |= CR_1000T_MS_ENABLE;
2189 		e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
2190 		if (sc->hw.mac.autoneg &&
2191 		    !e1000_phy_setup_autoneg(&sc->hw) &&
2192 		    !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
2193 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2194 			e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
2195 		}
2196 	}
2197 
2198 	/* Restart process after EMX_SMARTSPEED_MAX iterations */
2199 	if (sc->smartspeed++ == EMX_SMARTSPEED_MAX)
2200 		sc->smartspeed = 0;
2201 }
2202 
2203 static int
2204 emx_create_tx_ring(struct emx_txdata *tdata)
2205 {
2206 	device_t dev = tdata->sc->dev;
2207 	struct emx_txbuf *tx_buffer;
2208 	int error, i, tsize, ntxd;
2209 
2210 	/*
2211 	 * Validate number of transmit descriptors.  It must not exceed
2212 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2213 	 */
2214 	ntxd = device_getenv_int(dev, "txd", emx_txd);
2215 	if ((ntxd * sizeof(struct e1000_tx_desc)) % EMX_DBA_ALIGN != 0 ||
2216 	    ntxd > EMX_MAX_TXD || ntxd < EMX_MIN_TXD) {
2217 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
2218 		    EMX_DEFAULT_TXD, ntxd);
2219 		tdata->num_tx_desc = EMX_DEFAULT_TXD;
2220 	} else {
2221 		tdata->num_tx_desc = ntxd;
2222 	}
2223 
2224 	/*
2225 	 * Allocate Transmit Descriptor ring
2226 	 */
2227 	tsize = roundup2(tdata->num_tx_desc * sizeof(struct e1000_tx_desc),
2228 			 EMX_DBA_ALIGN);
2229 	tdata->tx_desc_base = bus_dmamem_coherent_any(tdata->sc->parent_dtag,
2230 				EMX_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
2231 				&tdata->tx_desc_dtag, &tdata->tx_desc_dmap,
2232 				&tdata->tx_desc_paddr);
2233 	if (tdata->tx_desc_base == NULL) {
2234 		device_printf(dev, "Unable to allocate tx_desc memory\n");
2235 		return ENOMEM;
2236 	}
2237 
2238 	tsize = __VM_CACHELINE_ALIGN(
2239 	    sizeof(struct emx_txbuf) * tdata->num_tx_desc);
2240 	tdata->tx_buf = kmalloc_cachealign(tsize, M_DEVBUF, M_WAITOK | M_ZERO);
2241 
2242 	/*
2243 	 * Create DMA tags for tx buffers
2244 	 */
2245 	error = bus_dma_tag_create(tdata->sc->parent_dtag, /* parent */
2246 			1, 0,			/* alignment, bounds */
2247 			BUS_SPACE_MAXADDR,	/* lowaddr */
2248 			BUS_SPACE_MAXADDR,	/* highaddr */
2249 			NULL, NULL,		/* filter, filterarg */
2250 			EMX_TSO_SIZE,		/* maxsize */
2251 			EMX_MAX_SCATTER,	/* nsegments */
2252 			EMX_MAX_SEGSIZE,	/* maxsegsize */
2253 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2254 			BUS_DMA_ONEBPAGE,	/* flags */
2255 			&tdata->txtag);
2256 	if (error) {
2257 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2258 		kfree(tdata->tx_buf, M_DEVBUF);
2259 		tdata->tx_buf = NULL;
2260 		return error;
2261 	}
2262 
2263 	/*
2264 	 * Create DMA maps for tx buffers
2265 	 */
2266 	for (i = 0; i < tdata->num_tx_desc; i++) {
2267 		tx_buffer = &tdata->tx_buf[i];
2268 
2269 		error = bus_dmamap_create(tdata->txtag,
2270 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2271 					  &tx_buffer->map);
2272 		if (error) {
2273 			device_printf(dev, "Unable to create TX DMA map\n");
2274 			emx_destroy_tx_ring(tdata, i);
2275 			return error;
2276 		}
2277 	}
2278 
2279 	/*
2280 	 * Setup TX parameters
2281 	 */
2282 	tdata->spare_tx_desc = EMX_TX_SPARE;
2283 	tdata->tx_wreg_nsegs = EMX_DEFAULT_TXWREG;
2284 
2285 	/*
2286 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
2287 	 * and tx_intr_nsegs:
2288 	 * (spare_tx_desc + EMX_TX_RESERVED) <=
2289 	 * oact_tx_desc <= EMX_TX_OACTIVE_MAX <= tx_intr_nsegs
2290 	 */
2291 	tdata->oact_tx_desc = tdata->num_tx_desc / 8;
2292 	if (tdata->oact_tx_desc > EMX_TX_OACTIVE_MAX)
2293 		tdata->oact_tx_desc = EMX_TX_OACTIVE_MAX;
2294 	if (tdata->oact_tx_desc < tdata->spare_tx_desc + EMX_TX_RESERVED)
2295 		tdata->oact_tx_desc = tdata->spare_tx_desc + EMX_TX_RESERVED;
2296 
2297 	tdata->tx_intr_nsegs = tdata->num_tx_desc / 16;
2298 	if (tdata->tx_intr_nsegs < tdata->oact_tx_desc)
2299 		tdata->tx_intr_nsegs = tdata->oact_tx_desc;
2300 
2301 	/*
2302 	 * Pullup extra 4bytes into the first data segment for TSO, see:
2303 	 * 82571/82572 specification update errata #7
2304 	 *
2305 	 * Same applies to I217 (and maybe I218).
2306 	 *
2307 	 * NOTE:
2308 	 * 4bytes instead of 2bytes, which are mentioned in the errata,
2309 	 * are pulled; mainly to keep rest of the data properly aligned.
2310 	 */
2311 	if (tdata->sc->hw.mac.type == e1000_82571 ||
2312 	    tdata->sc->hw.mac.type == e1000_82572 ||
2313 	    tdata->sc->hw.mac.type == e1000_pch_lpt)
2314 		tdata->tx_flags |= EMX_TXFLAG_TSO_PULLEX;
2315 
2316 	return (0);
2317 }
2318 
2319 static void
2320 emx_init_tx_ring(struct emx_txdata *tdata)
2321 {
2322 	/* Clear the old ring contents */
2323 	bzero(tdata->tx_desc_base,
2324 	      sizeof(struct e1000_tx_desc) * tdata->num_tx_desc);
2325 
2326 	/* Reset state */
2327 	tdata->next_avail_tx_desc = 0;
2328 	tdata->next_tx_to_clean = 0;
2329 	tdata->num_tx_desc_avail = tdata->num_tx_desc;
2330 
2331 	tdata->tx_flags |= EMX_TXFLAG_ENABLED;
2332 	if (tdata->sc->tx_ring_inuse > 1) {
2333 		tdata->tx_flags |= EMX_TXFLAG_FORCECTX;
2334 		if (bootverbose) {
2335 			if_printf(&tdata->sc->arpcom.ac_if,
2336 			    "TX %d force ctx setup\n", tdata->idx);
2337 		}
2338 	}
2339 }
2340 
2341 static void
2342 emx_init_tx_unit(struct emx_softc *sc)
2343 {
2344 	uint32_t tctl, tarc, tipg = 0, txdctl;
2345 	int i;
2346 
2347 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
2348 		struct emx_txdata *tdata = &sc->tx_data[i];
2349 		uint64_t bus_addr;
2350 
2351 		/* Setup the Base and Length of the Tx Descriptor Ring */
2352 		bus_addr = tdata->tx_desc_paddr;
2353 		E1000_WRITE_REG(&sc->hw, E1000_TDLEN(i),
2354 		    tdata->num_tx_desc * sizeof(struct e1000_tx_desc));
2355 		E1000_WRITE_REG(&sc->hw, E1000_TDBAH(i),
2356 		    (uint32_t)(bus_addr >> 32));
2357 		E1000_WRITE_REG(&sc->hw, E1000_TDBAL(i),
2358 		    (uint32_t)bus_addr);
2359 		/* Setup the HW Tx Head and Tail descriptor pointers */
2360 		E1000_WRITE_REG(&sc->hw, E1000_TDT(i), 0);
2361 		E1000_WRITE_REG(&sc->hw, E1000_TDH(i), 0);
2362 	}
2363 
2364 	/* Set the default values for the Tx Inter Packet Gap timer */
2365 	switch (sc->hw.mac.type) {
2366 	case e1000_80003es2lan:
2367 		tipg = DEFAULT_82543_TIPG_IPGR1;
2368 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2369 		    E1000_TIPG_IPGR2_SHIFT;
2370 		break;
2371 
2372 	default:
2373 		if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2374 		    sc->hw.phy.media_type == e1000_media_type_internal_serdes)
2375 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2376 		else
2377 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2378 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2379 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2380 		break;
2381 	}
2382 
2383 	E1000_WRITE_REG(&sc->hw, E1000_TIPG, tipg);
2384 
2385 	/* NOTE: 0 is not allowed for TIDV */
2386 	E1000_WRITE_REG(&sc->hw, E1000_TIDV, 1);
2387 	E1000_WRITE_REG(&sc->hw, E1000_TADV, 0);
2388 
2389 	/*
2390 	 * Errata workaround (obtained from Linux).  This is necessary
2391 	 * to make multiple TX queues work on 82574.
2392 	 * XXX can't find it in any published errata though.
2393 	 */
2394 	txdctl = E1000_READ_REG(&sc->hw, E1000_TXDCTL(0));
2395 	E1000_WRITE_REG(&sc->hw, E1000_TXDCTL(1), txdctl);
2396 
2397 	if (sc->hw.mac.type == e1000_82571 ||
2398 	    sc->hw.mac.type == e1000_82572) {
2399 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2400 		tarc |= EMX_TARC_SPEED_MODE;
2401 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2402 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
2403 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2404 		tarc |= 1;
2405 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2406 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2407 		tarc |= 1;
2408 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2409 	}
2410 
2411 	/* Program the Transmit Control Register */
2412 	tctl = E1000_READ_REG(&sc->hw, E1000_TCTL);
2413 	tctl &= ~E1000_TCTL_CT;
2414 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2415 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2416 	tctl |= E1000_TCTL_MULR;
2417 
2418 	/* This write will effectively turn on the transmit unit. */
2419 	E1000_WRITE_REG(&sc->hw, E1000_TCTL, tctl);
2420 
2421 	if (sc->hw.mac.type == e1000_82571 ||
2422 	    sc->hw.mac.type == e1000_82572 ||
2423 	    sc->hw.mac.type == e1000_80003es2lan) {
2424 		/* Bit 28 of TARC1 must be cleared when MULR is enabled */
2425 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2426 		tarc &= ~(1 << 28);
2427 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2428 	}
2429 
2430 	if (sc->tx_ring_inuse > 1) {
2431 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2432 		tarc &= ~EMX_TARC_COUNT_MASK;
2433 		tarc |= 1;
2434 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2435 
2436 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2437 		tarc &= ~EMX_TARC_COUNT_MASK;
2438 		tarc |= 1;
2439 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2440 	}
2441 }
2442 
2443 static void
2444 emx_destroy_tx_ring(struct emx_txdata *tdata, int ndesc)
2445 {
2446 	struct emx_txbuf *tx_buffer;
2447 	int i;
2448 
2449 	/* Free Transmit Descriptor ring */
2450 	if (tdata->tx_desc_base) {
2451 		bus_dmamap_unload(tdata->tx_desc_dtag, tdata->tx_desc_dmap);
2452 		bus_dmamem_free(tdata->tx_desc_dtag, tdata->tx_desc_base,
2453 				tdata->tx_desc_dmap);
2454 		bus_dma_tag_destroy(tdata->tx_desc_dtag);
2455 
2456 		tdata->tx_desc_base = NULL;
2457 	}
2458 
2459 	if (tdata->tx_buf == NULL)
2460 		return;
2461 
2462 	for (i = 0; i < ndesc; i++) {
2463 		tx_buffer = &tdata->tx_buf[i];
2464 
2465 		KKASSERT(tx_buffer->m_head == NULL);
2466 		bus_dmamap_destroy(tdata->txtag, tx_buffer->map);
2467 	}
2468 	bus_dma_tag_destroy(tdata->txtag);
2469 
2470 	kfree(tdata->tx_buf, M_DEVBUF);
2471 	tdata->tx_buf = NULL;
2472 }
2473 
2474 /*
2475  * The offload context needs to be set when we transfer the first
2476  * packet of a particular protocol (TCP/UDP).  This routine has been
2477  * enhanced to deal with inserted VLAN headers.
2478  *
2479  * If the new packet's ether header length, ip header length and
2480  * csum offloading type are same as the previous packet, we should
2481  * avoid allocating a new csum context descriptor; mainly to take
2482  * advantage of the pipeline effect of the TX data read request.
2483  *
2484  * This function returns number of TX descrptors allocated for
2485  * csum context.
2486  */
2487 static int
2488 emx_txcsum(struct emx_txdata *tdata, struct mbuf *mp,
2489 	   uint32_t *txd_upper, uint32_t *txd_lower)
2490 {
2491 	struct e1000_context_desc *TXD;
2492 	int curr_txd, ehdrlen, csum_flags;
2493 	uint32_t cmd, hdr_len, ip_hlen;
2494 
2495 	csum_flags = mp->m_pkthdr.csum_flags & EMX_CSUM_FEATURES;
2496 	ip_hlen = mp->m_pkthdr.csum_iphlen;
2497 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2498 
2499 	if ((tdata->tx_flags & EMX_TXFLAG_FORCECTX) == 0 &&
2500 	    tdata->csum_lhlen == ehdrlen && tdata->csum_iphlen == ip_hlen &&
2501 	    tdata->csum_flags == csum_flags) {
2502 		/*
2503 		 * Same csum offload context as the previous packets;
2504 		 * just return.
2505 		 */
2506 		*txd_upper = tdata->csum_txd_upper;
2507 		*txd_lower = tdata->csum_txd_lower;
2508 		return 0;
2509 	}
2510 
2511 	/*
2512 	 * Setup a new csum offload context.
2513 	 */
2514 
2515 	curr_txd = tdata->next_avail_tx_desc;
2516 	TXD = (struct e1000_context_desc *)&tdata->tx_desc_base[curr_txd];
2517 
2518 	cmd = 0;
2519 
2520 	/* Setup of IP header checksum. */
2521 	if (csum_flags & CSUM_IP) {
2522 		/*
2523 		 * Start offset for header checksum calculation.
2524 		 * End offset for header checksum calculation.
2525 		 * Offset of place to put the checksum.
2526 		 */
2527 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2528 		TXD->lower_setup.ip_fields.ipcse =
2529 		    htole16(ehdrlen + ip_hlen - 1);
2530 		TXD->lower_setup.ip_fields.ipcso =
2531 		    ehdrlen + offsetof(struct ip, ip_sum);
2532 		cmd |= E1000_TXD_CMD_IP;
2533 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2534 	}
2535 	hdr_len = ehdrlen + ip_hlen;
2536 
2537 	if (csum_flags & CSUM_TCP) {
2538 		/*
2539 		 * Start offset for payload checksum calculation.
2540 		 * End offset for payload checksum calculation.
2541 		 * Offset of place to put the checksum.
2542 		 */
2543 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2544 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2545 		TXD->upper_setup.tcp_fields.tucso =
2546 		    hdr_len + offsetof(struct tcphdr, th_sum);
2547 		cmd |= E1000_TXD_CMD_TCP;
2548 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2549 	} else if (csum_flags & CSUM_UDP) {
2550 		/*
2551 		 * Start offset for header checksum calculation.
2552 		 * End offset for header checksum calculation.
2553 		 * Offset of place to put the checksum.
2554 		 */
2555 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2556 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2557 		TXD->upper_setup.tcp_fields.tucso =
2558 		    hdr_len + offsetof(struct udphdr, uh_sum);
2559 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2560 	}
2561 
2562 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2563 		     E1000_TXD_DTYP_D;		/* Data descr */
2564 
2565 	/* Save the information for this csum offloading context */
2566 	tdata->csum_lhlen = ehdrlen;
2567 	tdata->csum_iphlen = ip_hlen;
2568 	tdata->csum_flags = csum_flags;
2569 	tdata->csum_txd_upper = *txd_upper;
2570 	tdata->csum_txd_lower = *txd_lower;
2571 
2572 	TXD->tcp_seg_setup.data = htole32(0);
2573 	TXD->cmd_and_length =
2574 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2575 
2576 	if (++curr_txd == tdata->num_tx_desc)
2577 		curr_txd = 0;
2578 
2579 	KKASSERT(tdata->num_tx_desc_avail > 0);
2580 	tdata->num_tx_desc_avail--;
2581 
2582 	tdata->next_avail_tx_desc = curr_txd;
2583 	return 1;
2584 }
2585 
2586 static void
2587 emx_txeof(struct emx_txdata *tdata)
2588 {
2589 	struct emx_txbuf *tx_buffer;
2590 	int first, num_avail;
2591 
2592 	if (tdata->tx_dd_head == tdata->tx_dd_tail)
2593 		return;
2594 
2595 	if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2596 		return;
2597 
2598 	num_avail = tdata->num_tx_desc_avail;
2599 	first = tdata->next_tx_to_clean;
2600 
2601 	while (tdata->tx_dd_head != tdata->tx_dd_tail) {
2602 		int dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2603 		struct e1000_tx_desc *tx_desc;
2604 
2605 		tx_desc = &tdata->tx_desc_base[dd_idx];
2606 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2607 			EMX_INC_TXDD_IDX(tdata->tx_dd_head);
2608 
2609 			if (++dd_idx == tdata->num_tx_desc)
2610 				dd_idx = 0;
2611 
2612 			while (first != dd_idx) {
2613 				logif(pkt_txclean);
2614 
2615 				num_avail++;
2616 
2617 				tx_buffer = &tdata->tx_buf[first];
2618 				if (tx_buffer->m_head) {
2619 					bus_dmamap_unload(tdata->txtag,
2620 							  tx_buffer->map);
2621 					m_freem(tx_buffer->m_head);
2622 					tx_buffer->m_head = NULL;
2623 				}
2624 
2625 				if (++first == tdata->num_tx_desc)
2626 					first = 0;
2627 			}
2628 		} else {
2629 			break;
2630 		}
2631 	}
2632 	tdata->next_tx_to_clean = first;
2633 	tdata->num_tx_desc_avail = num_avail;
2634 
2635 	if (tdata->tx_dd_head == tdata->tx_dd_tail) {
2636 		tdata->tx_dd_head = 0;
2637 		tdata->tx_dd_tail = 0;
2638 	}
2639 
2640 	if (!EMX_IS_OACTIVE(tdata)) {
2641 		ifsq_clr_oactive(tdata->ifsq);
2642 
2643 		/* All clean, turn off the timer */
2644 		if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2645 			tdata->tx_watchdog.wd_timer = 0;
2646 	}
2647 }
2648 
2649 static void
2650 emx_tx_collect(struct emx_txdata *tdata)
2651 {
2652 	struct emx_txbuf *tx_buffer;
2653 	int tdh, first, num_avail, dd_idx = -1;
2654 
2655 	if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2656 		return;
2657 
2658 	tdh = E1000_READ_REG(&tdata->sc->hw, E1000_TDH(tdata->idx));
2659 	if (tdh == tdata->next_tx_to_clean)
2660 		return;
2661 
2662 	if (tdata->tx_dd_head != tdata->tx_dd_tail)
2663 		dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2664 
2665 	num_avail = tdata->num_tx_desc_avail;
2666 	first = tdata->next_tx_to_clean;
2667 
2668 	while (first != tdh) {
2669 		logif(pkt_txclean);
2670 
2671 		num_avail++;
2672 
2673 		tx_buffer = &tdata->tx_buf[first];
2674 		if (tx_buffer->m_head) {
2675 			bus_dmamap_unload(tdata->txtag,
2676 					  tx_buffer->map);
2677 			m_freem(tx_buffer->m_head);
2678 			tx_buffer->m_head = NULL;
2679 		}
2680 
2681 		if (first == dd_idx) {
2682 			EMX_INC_TXDD_IDX(tdata->tx_dd_head);
2683 			if (tdata->tx_dd_head == tdata->tx_dd_tail) {
2684 				tdata->tx_dd_head = 0;
2685 				tdata->tx_dd_tail = 0;
2686 				dd_idx = -1;
2687 			} else {
2688 				dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2689 			}
2690 		}
2691 
2692 		if (++first == tdata->num_tx_desc)
2693 			first = 0;
2694 	}
2695 	tdata->next_tx_to_clean = first;
2696 	tdata->num_tx_desc_avail = num_avail;
2697 
2698 	if (!EMX_IS_OACTIVE(tdata)) {
2699 		ifsq_clr_oactive(tdata->ifsq);
2700 
2701 		/* All clean, turn off the timer */
2702 		if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2703 			tdata->tx_watchdog.wd_timer = 0;
2704 	}
2705 }
2706 
2707 /*
2708  * When Link is lost sometimes there is work still in the TX ring
2709  * which will result in a watchdog, rather than allow that do an
2710  * attempted cleanup and then reinit here.  Note that this has been
2711  * seens mostly with fiber adapters.
2712  */
2713 static void
2714 emx_tx_purge(struct emx_softc *sc)
2715 {
2716 	int i;
2717 
2718 	if (sc->link_active)
2719 		return;
2720 
2721 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
2722 		struct emx_txdata *tdata = &sc->tx_data[i];
2723 
2724 		if (tdata->tx_watchdog.wd_timer) {
2725 			emx_tx_collect(tdata);
2726 			if (tdata->tx_watchdog.wd_timer) {
2727 				if_printf(&sc->arpcom.ac_if,
2728 				    "Link lost, TX pending, reinit\n");
2729 				emx_init(sc);
2730 				return;
2731 			}
2732 		}
2733 	}
2734 }
2735 
2736 static int
2737 emx_newbuf(struct emx_rxdata *rdata, int i, int init)
2738 {
2739 	struct mbuf *m;
2740 	bus_dma_segment_t seg;
2741 	bus_dmamap_t map;
2742 	struct emx_rxbuf *rx_buffer;
2743 	int error, nseg;
2744 
2745 	m = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
2746 	if (m == NULL) {
2747 		if (init) {
2748 			if_printf(&rdata->sc->arpcom.ac_if,
2749 				  "Unable to allocate RX mbuf\n");
2750 		}
2751 		return (ENOBUFS);
2752 	}
2753 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2754 
2755 	if (rdata->sc->hw.mac.max_frame_size <= MCLBYTES - ETHER_ALIGN)
2756 		m_adj(m, ETHER_ALIGN);
2757 
2758 	error = bus_dmamap_load_mbuf_segment(rdata->rxtag,
2759 			rdata->rx_sparemap, m,
2760 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
2761 	if (error) {
2762 		m_freem(m);
2763 		if (init) {
2764 			if_printf(&rdata->sc->arpcom.ac_if,
2765 				  "Unable to load RX mbuf\n");
2766 		}
2767 		return (error);
2768 	}
2769 
2770 	rx_buffer = &rdata->rx_buf[i];
2771 	if (rx_buffer->m_head != NULL)
2772 		bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2773 
2774 	map = rx_buffer->map;
2775 	rx_buffer->map = rdata->rx_sparemap;
2776 	rdata->rx_sparemap = map;
2777 
2778 	rx_buffer->m_head = m;
2779 	rx_buffer->paddr = seg.ds_addr;
2780 
2781 	emx_setup_rxdesc(&rdata->rx_desc[i], rx_buffer);
2782 	return (0);
2783 }
2784 
2785 static int
2786 emx_create_rx_ring(struct emx_rxdata *rdata)
2787 {
2788 	device_t dev = rdata->sc->dev;
2789 	struct emx_rxbuf *rx_buffer;
2790 	int i, error, rsize, nrxd;
2791 
2792 	/*
2793 	 * Validate number of receive descriptors.  It must not exceed
2794 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2795 	 */
2796 	nrxd = device_getenv_int(dev, "rxd", emx_rxd);
2797 	if ((nrxd * sizeof(emx_rxdesc_t)) % EMX_DBA_ALIGN != 0 ||
2798 	    nrxd > EMX_MAX_RXD || nrxd < EMX_MIN_RXD) {
2799 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
2800 		    EMX_DEFAULT_RXD, nrxd);
2801 		rdata->num_rx_desc = EMX_DEFAULT_RXD;
2802 	} else {
2803 		rdata->num_rx_desc = nrxd;
2804 	}
2805 
2806 	/*
2807 	 * Allocate Receive Descriptor ring
2808 	 */
2809 	rsize = roundup2(rdata->num_rx_desc * sizeof(emx_rxdesc_t),
2810 			 EMX_DBA_ALIGN);
2811 	rdata->rx_desc = bus_dmamem_coherent_any(rdata->sc->parent_dtag,
2812 				EMX_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2813 				&rdata->rx_desc_dtag, &rdata->rx_desc_dmap,
2814 				&rdata->rx_desc_paddr);
2815 	if (rdata->rx_desc == NULL) {
2816 		device_printf(dev, "Unable to allocate rx_desc memory\n");
2817 		return ENOMEM;
2818 	}
2819 
2820 	rsize = __VM_CACHELINE_ALIGN(
2821 	    sizeof(struct emx_rxbuf) * rdata->num_rx_desc);
2822 	rdata->rx_buf = kmalloc_cachealign(rsize, M_DEVBUF, M_WAITOK | M_ZERO);
2823 
2824 	/*
2825 	 * Create DMA tag for rx buffers
2826 	 */
2827 	error = bus_dma_tag_create(rdata->sc->parent_dtag, /* parent */
2828 			1, 0,			/* alignment, bounds */
2829 			BUS_SPACE_MAXADDR,	/* lowaddr */
2830 			BUS_SPACE_MAXADDR,	/* highaddr */
2831 			NULL, NULL,		/* filter, filterarg */
2832 			MCLBYTES,		/* maxsize */
2833 			1,			/* nsegments */
2834 			MCLBYTES,		/* maxsegsize */
2835 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2836 			&rdata->rxtag);
2837 	if (error) {
2838 		device_printf(dev, "Unable to allocate RX DMA tag\n");
2839 		kfree(rdata->rx_buf, M_DEVBUF);
2840 		rdata->rx_buf = NULL;
2841 		return error;
2842 	}
2843 
2844 	/*
2845 	 * Create spare DMA map for rx buffers
2846 	 */
2847 	error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2848 				  &rdata->rx_sparemap);
2849 	if (error) {
2850 		device_printf(dev, "Unable to create spare RX DMA map\n");
2851 		bus_dma_tag_destroy(rdata->rxtag);
2852 		kfree(rdata->rx_buf, M_DEVBUF);
2853 		rdata->rx_buf = NULL;
2854 		return error;
2855 	}
2856 
2857 	/*
2858 	 * Create DMA maps for rx buffers
2859 	 */
2860 	for (i = 0; i < rdata->num_rx_desc; i++) {
2861 		rx_buffer = &rdata->rx_buf[i];
2862 
2863 		error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2864 					  &rx_buffer->map);
2865 		if (error) {
2866 			device_printf(dev, "Unable to create RX DMA map\n");
2867 			emx_destroy_rx_ring(rdata, i);
2868 			return error;
2869 		}
2870 	}
2871 	return (0);
2872 }
2873 
2874 static void
2875 emx_free_rx_ring(struct emx_rxdata *rdata)
2876 {
2877 	int i;
2878 
2879 	for (i = 0; i < rdata->num_rx_desc; i++) {
2880 		struct emx_rxbuf *rx_buffer = &rdata->rx_buf[i];
2881 
2882 		if (rx_buffer->m_head != NULL) {
2883 			bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2884 			m_freem(rx_buffer->m_head);
2885 			rx_buffer->m_head = NULL;
2886 		}
2887 	}
2888 
2889 	if (rdata->fmp != NULL)
2890 		m_freem(rdata->fmp);
2891 	rdata->fmp = NULL;
2892 	rdata->lmp = NULL;
2893 }
2894 
2895 static void
2896 emx_free_tx_ring(struct emx_txdata *tdata)
2897 {
2898 	int i;
2899 
2900 	for (i = 0; i < tdata->num_tx_desc; i++) {
2901 		struct emx_txbuf *tx_buffer = &tdata->tx_buf[i];
2902 
2903 		if (tx_buffer->m_head != NULL) {
2904 			bus_dmamap_unload(tdata->txtag, tx_buffer->map);
2905 			m_freem(tx_buffer->m_head);
2906 			tx_buffer->m_head = NULL;
2907 		}
2908 	}
2909 
2910 	tdata->tx_flags &= ~EMX_TXFLAG_FORCECTX;
2911 
2912 	tdata->csum_flags = 0;
2913 	tdata->csum_lhlen = 0;
2914 	tdata->csum_iphlen = 0;
2915 	tdata->csum_thlen = 0;
2916 	tdata->csum_mss = 0;
2917 	tdata->csum_pktlen = 0;
2918 
2919 	tdata->tx_dd_head = 0;
2920 	tdata->tx_dd_tail = 0;
2921 	tdata->tx_nsegs = 0;
2922 }
2923 
2924 static int
2925 emx_init_rx_ring(struct emx_rxdata *rdata)
2926 {
2927 	int i, error;
2928 
2929 	/* Reset descriptor ring */
2930 	bzero(rdata->rx_desc, sizeof(emx_rxdesc_t) * rdata->num_rx_desc);
2931 
2932 	/* Allocate new ones. */
2933 	for (i = 0; i < rdata->num_rx_desc; i++) {
2934 		error = emx_newbuf(rdata, i, 1);
2935 		if (error)
2936 			return (error);
2937 	}
2938 
2939 	/* Setup our descriptor pointers */
2940 	rdata->next_rx_desc_to_check = 0;
2941 
2942 	return (0);
2943 }
2944 
2945 static void
2946 emx_init_rx_unit(struct emx_softc *sc)
2947 {
2948 	struct ifnet *ifp = &sc->arpcom.ac_if;
2949 	uint64_t bus_addr;
2950 	uint32_t rctl, itr, rfctl;
2951 	int i;
2952 
2953 	/*
2954 	 * Make sure receives are disabled while setting
2955 	 * up the descriptor ring
2956 	 */
2957 	rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2958 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2959 
2960 	/*
2961 	 * Set the interrupt throttling rate. Value is calculated
2962 	 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
2963 	 */
2964 	if (sc->int_throttle_ceil)
2965 		itr = 1000000000 / 256 / sc->int_throttle_ceil;
2966 	else
2967 		itr = 0;
2968 	emx_set_itr(sc, itr);
2969 
2970 	/* Use extended RX descriptor */
2971 	rfctl = E1000_RFCTL_EXTEN;
2972 
2973 	/* Disable accelerated ackknowledge */
2974 	if (sc->hw.mac.type == e1000_82574)
2975 		rfctl |= E1000_RFCTL_ACK_DIS;
2976 
2977 	E1000_WRITE_REG(&sc->hw, E1000_RFCTL, rfctl);
2978 
2979 	/*
2980 	 * Receive Checksum Offload for TCP and UDP
2981 	 *
2982 	 * Checksum offloading is also enabled if multiple receive
2983 	 * queue is to be supported, since we need it to figure out
2984 	 * packet type.
2985 	 */
2986 	if ((ifp->if_capenable & IFCAP_RXCSUM) ||
2987 	    sc->rx_ring_cnt > 1) {
2988 		uint32_t rxcsum;
2989 
2990 		rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2991 
2992 		/*
2993 		 * NOTE:
2994 		 * PCSD must be enabled to enable multiple
2995 		 * receive queues.
2996 		 */
2997 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2998 			  E1000_RXCSUM_PCSD;
2999 		E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
3000 	}
3001 
3002 	/*
3003 	 * Configure multiple receive queue (RSS)
3004 	 */
3005 	if (sc->rx_ring_cnt > 1) {
3006 		uint8_t key[EMX_NRSSRK * EMX_RSSRK_SIZE];
3007 		uint32_t reta;
3008 
3009 		KASSERT(sc->rx_ring_cnt == EMX_NRX_RING,
3010 		    ("invalid number of RX ring (%d)", sc->rx_ring_cnt));
3011 
3012 		/*
3013 		 * NOTE:
3014 		 * When we reach here, RSS has already been disabled
3015 		 * in emx_stop(), so we could safely configure RSS key
3016 		 * and redirect table.
3017 		 */
3018 
3019 		/*
3020 		 * Configure RSS key
3021 		 */
3022 		toeplitz_get_key(key, sizeof(key));
3023 		for (i = 0; i < EMX_NRSSRK; ++i) {
3024 			uint32_t rssrk;
3025 
3026 			rssrk = EMX_RSSRK_VAL(key, i);
3027 			EMX_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
3028 
3029 			E1000_WRITE_REG(&sc->hw, E1000_RSSRK(i), rssrk);
3030 		}
3031 
3032 		/*
3033 		 * Configure RSS redirect table in following fashion:
3034 	 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
3035 		 */
3036 		reta = 0;
3037 		for (i = 0; i < EMX_RETA_SIZE; ++i) {
3038 			uint32_t q;
3039 
3040 			q = (i % sc->rx_ring_cnt) << EMX_RETA_RINGIDX_SHIFT;
3041 			reta |= q << (8 * i);
3042 		}
3043 		EMX_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
3044 
3045 		for (i = 0; i < EMX_NRETA; ++i)
3046 			E1000_WRITE_REG(&sc->hw, E1000_RETA(i), reta);
3047 
3048 		/*
3049 		 * Enable multiple receive queues.
3050 		 * Enable IPv4 RSS standard hash functions.
3051 		 * Disable RSS interrupt.
3052 		 */
3053 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
3054 				E1000_MRQC_ENABLE_RSS_2Q |
3055 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
3056 				E1000_MRQC_RSS_FIELD_IPV4);
3057 	}
3058 
3059 	/*
3060 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3061 	 * long latencies are observed, like Lenovo X60. This
3062 	 * change eliminates the problem, but since having positive
3063 	 * values in RDTR is a known source of problems on other
3064 	 * platforms another solution is being sought.
3065 	 */
3066 	if (emx_82573_workaround && sc->hw.mac.type == e1000_82573) {
3067 		E1000_WRITE_REG(&sc->hw, E1000_RADV, EMX_RADV_82573);
3068 		E1000_WRITE_REG(&sc->hw, E1000_RDTR, EMX_RDTR_82573);
3069 	}
3070 
3071 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3072 		struct emx_rxdata *rdata = &sc->rx_data[i];
3073 
3074 		/*
3075 		 * Setup the Base and Length of the Rx Descriptor Ring
3076 		 */
3077 		bus_addr = rdata->rx_desc_paddr;
3078 		E1000_WRITE_REG(&sc->hw, E1000_RDLEN(i),
3079 		    rdata->num_rx_desc * sizeof(emx_rxdesc_t));
3080 		E1000_WRITE_REG(&sc->hw, E1000_RDBAH(i),
3081 		    (uint32_t)(bus_addr >> 32));
3082 		E1000_WRITE_REG(&sc->hw, E1000_RDBAL(i),
3083 		    (uint32_t)bus_addr);
3084 
3085 		/*
3086 		 * Setup the HW Rx Head and Tail Descriptor Pointers
3087 		 */
3088 		E1000_WRITE_REG(&sc->hw, E1000_RDH(i), 0);
3089 		E1000_WRITE_REG(&sc->hw, E1000_RDT(i),
3090 		    sc->rx_data[i].num_rx_desc - 1);
3091 	}
3092 
3093 	if (sc->hw.mac.type >= e1000_pch2lan) {
3094 		if (ifp->if_mtu > ETHERMTU)
3095 			e1000_lv_jumbo_workaround_ich8lan(&sc->hw, TRUE);
3096 		else
3097 			e1000_lv_jumbo_workaround_ich8lan(&sc->hw, FALSE);
3098 	}
3099 
3100 	/* Setup the Receive Control Register */
3101 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3102 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3103 		E1000_RCTL_RDMTS_HALF | E1000_RCTL_SECRC |
3104 		(sc->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3105 
3106 	/* Make sure VLAN Filters are off */
3107 	rctl &= ~E1000_RCTL_VFE;
3108 
3109 	/* Don't store bad paket */
3110 	rctl &= ~E1000_RCTL_SBP;
3111 
3112 	/* MCLBYTES */
3113 	rctl |= E1000_RCTL_SZ_2048;
3114 
3115 	if (ifp->if_mtu > ETHERMTU)
3116 		rctl |= E1000_RCTL_LPE;
3117 	else
3118 		rctl &= ~E1000_RCTL_LPE;
3119 
3120 	/* Enable Receives */
3121 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
3122 }
3123 
3124 static void
3125 emx_destroy_rx_ring(struct emx_rxdata *rdata, int ndesc)
3126 {
3127 	struct emx_rxbuf *rx_buffer;
3128 	int i;
3129 
3130 	/* Free Receive Descriptor ring */
3131 	if (rdata->rx_desc) {
3132 		bus_dmamap_unload(rdata->rx_desc_dtag, rdata->rx_desc_dmap);
3133 		bus_dmamem_free(rdata->rx_desc_dtag, rdata->rx_desc,
3134 				rdata->rx_desc_dmap);
3135 		bus_dma_tag_destroy(rdata->rx_desc_dtag);
3136 
3137 		rdata->rx_desc = NULL;
3138 	}
3139 
3140 	if (rdata->rx_buf == NULL)
3141 		return;
3142 
3143 	for (i = 0; i < ndesc; i++) {
3144 		rx_buffer = &rdata->rx_buf[i];
3145 
3146 		KKASSERT(rx_buffer->m_head == NULL);
3147 		bus_dmamap_destroy(rdata->rxtag, rx_buffer->map);
3148 	}
3149 	bus_dmamap_destroy(rdata->rxtag, rdata->rx_sparemap);
3150 	bus_dma_tag_destroy(rdata->rxtag);
3151 
3152 	kfree(rdata->rx_buf, M_DEVBUF);
3153 	rdata->rx_buf = NULL;
3154 }
3155 
3156 static void
3157 emx_rxeof(struct emx_rxdata *rdata, int count)
3158 {
3159 	struct ifnet *ifp = &rdata->sc->arpcom.ac_if;
3160 	uint32_t staterr;
3161 	emx_rxdesc_t *current_desc;
3162 	struct mbuf *mp;
3163 	int i, cpuid = mycpuid;
3164 
3165 	i = rdata->next_rx_desc_to_check;
3166 	current_desc = &rdata->rx_desc[i];
3167 	staterr = le32toh(current_desc->rxd_staterr);
3168 
3169 	if (!(staterr & E1000_RXD_STAT_DD))
3170 		return;
3171 
3172 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
3173 		struct pktinfo *pi = NULL, pi0;
3174 		struct emx_rxbuf *rx_buf = &rdata->rx_buf[i];
3175 		struct mbuf *m = NULL;
3176 		int eop, len;
3177 
3178 		logif(pkt_receive);
3179 
3180 		mp = rx_buf->m_head;
3181 
3182 		/*
3183 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3184 		 * needs to access the last received byte in the mbuf.
3185 		 */
3186 		bus_dmamap_sync(rdata->rxtag, rx_buf->map,
3187 				BUS_DMASYNC_POSTREAD);
3188 
3189 		len = le16toh(current_desc->rxd_length);
3190 		if (staterr & E1000_RXD_STAT_EOP) {
3191 			count--;
3192 			eop = 1;
3193 		} else {
3194 			eop = 0;
3195 		}
3196 
3197 		if (!(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3198 			uint16_t vlan = 0;
3199 			uint32_t mrq, rss_hash;
3200 
3201 			/*
3202 			 * Save several necessary information,
3203 			 * before emx_newbuf() destroy it.
3204 			 */
3205 			if ((staterr & E1000_RXD_STAT_VP) && eop)
3206 				vlan = le16toh(current_desc->rxd_vlan);
3207 
3208 			mrq = le32toh(current_desc->rxd_mrq);
3209 			rss_hash = le32toh(current_desc->rxd_rss);
3210 
3211 			EMX_RSS_DPRINTF(rdata->sc, 10,
3212 			    "ring%d, mrq 0x%08x, rss_hash 0x%08x\n",
3213 			    rdata->idx, mrq, rss_hash);
3214 
3215 			if (emx_newbuf(rdata, i, 0) != 0) {
3216 				IFNET_STAT_INC(ifp, iqdrops, 1);
3217 				goto discard;
3218 			}
3219 
3220 			/* Assign correct length to the current fragment */
3221 			mp->m_len = len;
3222 
3223 			if (rdata->fmp == NULL) {
3224 				mp->m_pkthdr.len = len;
3225 				rdata->fmp = mp; /* Store the first mbuf */
3226 				rdata->lmp = mp;
3227 			} else {
3228 				/*
3229 				 * Chain mbuf's together
3230 				 */
3231 				rdata->lmp->m_next = mp;
3232 				rdata->lmp = rdata->lmp->m_next;
3233 				rdata->fmp->m_pkthdr.len += len;
3234 			}
3235 
3236 			if (eop) {
3237 				rdata->fmp->m_pkthdr.rcvif = ifp;
3238 				IFNET_STAT_INC(ifp, ipackets, 1);
3239 
3240 				if (ifp->if_capenable & IFCAP_RXCSUM)
3241 					emx_rxcsum(staterr, rdata->fmp);
3242 
3243 				if (staterr & E1000_RXD_STAT_VP) {
3244 					rdata->fmp->m_pkthdr.ether_vlantag =
3245 					    vlan;
3246 					rdata->fmp->m_flags |= M_VLANTAG;
3247 				}
3248 				m = rdata->fmp;
3249 				rdata->fmp = NULL;
3250 				rdata->lmp = NULL;
3251 
3252 				if (ifp->if_capenable & IFCAP_RSS) {
3253 					pi = emx_rssinfo(m, &pi0, mrq,
3254 							 rss_hash, staterr);
3255 				}
3256 #ifdef EMX_RSS_DEBUG
3257 				rdata->rx_pkts++;
3258 #endif
3259 			}
3260 		} else {
3261 			IFNET_STAT_INC(ifp, ierrors, 1);
3262 discard:
3263 			emx_setup_rxdesc(current_desc, rx_buf);
3264 			if (rdata->fmp != NULL) {
3265 				m_freem(rdata->fmp);
3266 				rdata->fmp = NULL;
3267 				rdata->lmp = NULL;
3268 			}
3269 			m = NULL;
3270 		}
3271 
3272 		if (m != NULL)
3273 			ifp->if_input(ifp, m, pi, cpuid);
3274 
3275 		/* Advance our pointers to the next descriptor. */
3276 		if (++i == rdata->num_rx_desc)
3277 			i = 0;
3278 
3279 		current_desc = &rdata->rx_desc[i];
3280 		staterr = le32toh(current_desc->rxd_staterr);
3281 	}
3282 	rdata->next_rx_desc_to_check = i;
3283 
3284 	/* Advance the E1000's Receive Queue "Tail Pointer". */
3285 	if (--i < 0)
3286 		i = rdata->num_rx_desc - 1;
3287 	E1000_WRITE_REG(&rdata->sc->hw, E1000_RDT(rdata->idx), i);
3288 }
3289 
3290 static void
3291 emx_enable_intr(struct emx_softc *sc)
3292 {
3293 	uint32_t ims_mask = IMS_ENABLE_MASK;
3294 
3295 	lwkt_serialize_handler_enable(&sc->main_serialize);
3296 
3297 #if 0
3298 	if (sc->hw.mac.type == e1000_82574) {
3299 		E1000_WRITE_REG(hw, EMX_EIAC, EM_MSIX_MASK);
3300 		ims_mask |= EM_MSIX_MASK;
3301 	}
3302 #endif
3303 	E1000_WRITE_REG(&sc->hw, E1000_IMS, ims_mask);
3304 }
3305 
3306 static void
3307 emx_disable_intr(struct emx_softc *sc)
3308 {
3309 	if (sc->hw.mac.type == e1000_82574)
3310 		E1000_WRITE_REG(&sc->hw, EMX_EIAC, 0);
3311 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
3312 
3313 	lwkt_serialize_handler_disable(&sc->main_serialize);
3314 }
3315 
3316 /*
3317  * Bit of a misnomer, what this really means is
3318  * to enable OS management of the system... aka
3319  * to disable special hardware management features
3320  */
3321 static void
3322 emx_get_mgmt(struct emx_softc *sc)
3323 {
3324 	/* A shared code workaround */
3325 	if (sc->flags & EMX_FLAG_HAS_MGMT) {
3326 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
3327 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3328 
3329 		/* disable hardware interception of ARP */
3330 		manc &= ~(E1000_MANC_ARP_EN);
3331 
3332                 /* enable receiving management packets to the host */
3333 		manc |= E1000_MANC_EN_MNG2HOST;
3334 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3335 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3336 		manc2h |= E1000_MNG2HOST_PORT_623;
3337 		manc2h |= E1000_MNG2HOST_PORT_664;
3338 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
3339 
3340 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3341 	}
3342 }
3343 
3344 /*
3345  * Give control back to hardware management
3346  * controller if there is one.
3347  */
3348 static void
3349 emx_rel_mgmt(struct emx_softc *sc)
3350 {
3351 	if (sc->flags & EMX_FLAG_HAS_MGMT) {
3352 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3353 
3354 		/* re-enable hardware interception of ARP */
3355 		manc |= E1000_MANC_ARP_EN;
3356 		manc &= ~E1000_MANC_EN_MNG2HOST;
3357 
3358 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3359 	}
3360 }
3361 
3362 /*
3363  * emx_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3364  * For ASF and Pass Through versions of f/w this means that
3365  * the driver is loaded.  For AMT version (only with 82573)
3366  * of the f/w this means that the network i/f is open.
3367  */
3368 static void
3369 emx_get_hw_control(struct emx_softc *sc)
3370 {
3371 	/* Let firmware know the driver has taken over */
3372 	if (sc->hw.mac.type == e1000_82573) {
3373 		uint32_t swsm;
3374 
3375 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3376 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3377 		    swsm | E1000_SWSM_DRV_LOAD);
3378 	} else {
3379 		uint32_t ctrl_ext;
3380 
3381 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3382 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3383 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3384 	}
3385 	sc->flags |= EMX_FLAG_HW_CTRL;
3386 }
3387 
3388 /*
3389  * emx_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3390  * For ASF and Pass Through versions of f/w this means that the
3391  * driver is no longer loaded.  For AMT version (only with 82573)
3392  * of the f/w this means that the network i/f is closed.
3393  */
3394 static void
3395 emx_rel_hw_control(struct emx_softc *sc)
3396 {
3397 	if ((sc->flags & EMX_FLAG_HW_CTRL) == 0)
3398 		return;
3399 	sc->flags &= ~EMX_FLAG_HW_CTRL;
3400 
3401 	/* Let firmware taken over control of h/w */
3402 	if (sc->hw.mac.type == e1000_82573) {
3403 		uint32_t swsm;
3404 
3405 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3406 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3407 		    swsm & ~E1000_SWSM_DRV_LOAD);
3408 	} else {
3409 		uint32_t ctrl_ext;
3410 
3411 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3412 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3413 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3414 	}
3415 }
3416 
3417 static int
3418 emx_is_valid_eaddr(const uint8_t *addr)
3419 {
3420 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3421 
3422 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3423 		return (FALSE);
3424 
3425 	return (TRUE);
3426 }
3427 
3428 /*
3429  * Enable PCI Wake On Lan capability
3430  */
3431 void
3432 emx_enable_wol(device_t dev)
3433 {
3434 	uint16_t cap, status;
3435 	uint8_t id;
3436 
3437 	/* First find the capabilities pointer*/
3438 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3439 
3440 	/* Read the PM Capabilities */
3441 	id = pci_read_config(dev, cap, 1);
3442 	if (id != PCIY_PMG)     /* Something wrong */
3443 		return;
3444 
3445 	/*
3446 	 * OK, we have the power capabilities,
3447 	 * so now get the status register
3448 	 */
3449 	cap += PCIR_POWER_STATUS;
3450 	status = pci_read_config(dev, cap, 2);
3451 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3452 	pci_write_config(dev, cap, status, 2);
3453 }
3454 
3455 static void
3456 emx_update_stats(struct emx_softc *sc)
3457 {
3458 	struct ifnet *ifp = &sc->arpcom.ac_if;
3459 
3460 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
3461 	    (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3462 		sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
3463 		sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
3464 	}
3465 	sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
3466 	sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
3467 	sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
3468 	sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
3469 
3470 	sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
3471 	sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
3472 	sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
3473 	sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
3474 	sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
3475 	sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
3476 	sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
3477 	sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
3478 	sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
3479 	sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
3480 	sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
3481 	sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
3482 	sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
3483 	sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
3484 	sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
3485 	sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
3486 	sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
3487 	sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
3488 	sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
3489 	sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
3490 
3491 	/* For the 64-bit byte counters the low dword must be read first. */
3492 	/* Both registers clear on the read of the high dword */
3493 
3494 	sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCH);
3495 	sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCH);
3496 
3497 	sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
3498 	sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
3499 	sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
3500 	sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
3501 	sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
3502 
3503 	sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
3504 	sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
3505 
3506 	sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
3507 	sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
3508 	sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
3509 	sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
3510 	sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
3511 	sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
3512 	sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
3513 	sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
3514 	sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
3515 	sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
3516 
3517 	sc->stats.algnerrc += E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
3518 	sc->stats.rxerrc += E1000_READ_REG(&sc->hw, E1000_RXERRC);
3519 	sc->stats.tncrs += E1000_READ_REG(&sc->hw, E1000_TNCRS);
3520 	sc->stats.cexterr += E1000_READ_REG(&sc->hw, E1000_CEXTERR);
3521 	sc->stats.tsctc += E1000_READ_REG(&sc->hw, E1000_TSCTC);
3522 	sc->stats.tsctfc += E1000_READ_REG(&sc->hw, E1000_TSCTFC);
3523 
3524 	IFNET_STAT_SET(ifp, collisions, sc->stats.colc);
3525 
3526 	/* Rx Errors */
3527 	IFNET_STAT_SET(ifp, ierrors,
3528 	    sc->stats.rxerrc + sc->stats.crcerrs + sc->stats.algnerrc +
3529 	    sc->stats.ruc + sc->stats.roc + sc->stats.mpc + sc->stats.cexterr);
3530 
3531 	/* Tx Errors */
3532 	IFNET_STAT_SET(ifp, oerrors, sc->stats.ecol + sc->stats.latecol);
3533 }
3534 
3535 static void
3536 emx_print_debug_info(struct emx_softc *sc)
3537 {
3538 	device_t dev = sc->dev;
3539 	uint8_t *hw_addr = sc->hw.hw_addr;
3540 	int i;
3541 
3542 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3543 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3544 	    E1000_READ_REG(&sc->hw, E1000_CTRL),
3545 	    E1000_READ_REG(&sc->hw, E1000_RCTL));
3546 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3547 	    ((E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff0000) >> 16),\
3548 	    (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) );
3549 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3550 	    sc->hw.fc.high_water, sc->hw.fc.low_water);
3551 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3552 	    E1000_READ_REG(&sc->hw, E1000_TIDV),
3553 	    E1000_READ_REG(&sc->hw, E1000_TADV));
3554 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3555 	    E1000_READ_REG(&sc->hw, E1000_RDTR),
3556 	    E1000_READ_REG(&sc->hw, E1000_RADV));
3557 
3558 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3559 		device_printf(dev, "hw %d tdh = %d, hw tdt = %d\n", i,
3560 		    E1000_READ_REG(&sc->hw, E1000_TDH(i)),
3561 		    E1000_READ_REG(&sc->hw, E1000_TDT(i)));
3562 	}
3563 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3564 		device_printf(dev, "hw %d rdh = %d, hw rdt = %d\n", i,
3565 		    E1000_READ_REG(&sc->hw, E1000_RDH(i)),
3566 		    E1000_READ_REG(&sc->hw, E1000_RDT(i)));
3567 	}
3568 
3569 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3570 		device_printf(dev, "TX %d Tx descriptors avail = %d\n", i,
3571 		    sc->tx_data[i].num_tx_desc_avail);
3572 		device_printf(dev, "TX %d TSO segments = %lu\n", i,
3573 		    sc->tx_data[i].tso_segments);
3574 		device_printf(dev, "TX %d TSO ctx reused = %lu\n", i,
3575 		    sc->tx_data[i].tso_ctx_reused);
3576 	}
3577 }
3578 
3579 static void
3580 emx_print_hw_stats(struct emx_softc *sc)
3581 {
3582 	device_t dev = sc->dev;
3583 
3584 	device_printf(dev, "Excessive collisions = %lld\n",
3585 	    (long long)sc->stats.ecol);
3586 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3587 	device_printf(dev, "Symbol errors = %lld\n",
3588 	    (long long)sc->stats.symerrs);
3589 #endif
3590 	device_printf(dev, "Sequence errors = %lld\n",
3591 	    (long long)sc->stats.sec);
3592 	device_printf(dev, "Defer count = %lld\n",
3593 	    (long long)sc->stats.dc);
3594 	device_printf(dev, "Missed Packets = %lld\n",
3595 	    (long long)sc->stats.mpc);
3596 	device_printf(dev, "Receive No Buffers = %lld\n",
3597 	    (long long)sc->stats.rnbc);
3598 	/* RLEC is inaccurate on some hardware, calculate our own. */
3599 	device_printf(dev, "Receive Length Errors = %lld\n",
3600 	    ((long long)sc->stats.roc + (long long)sc->stats.ruc));
3601 	device_printf(dev, "Receive errors = %lld\n",
3602 	    (long long)sc->stats.rxerrc);
3603 	device_printf(dev, "Crc errors = %lld\n",
3604 	    (long long)sc->stats.crcerrs);
3605 	device_printf(dev, "Alignment errors = %lld\n",
3606 	    (long long)sc->stats.algnerrc);
3607 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3608 	    (long long)sc->stats.cexterr);
3609 	device_printf(dev, "RX overruns = %ld\n", sc->rx_overruns);
3610 	device_printf(dev, "XON Rcvd = %lld\n",
3611 	    (long long)sc->stats.xonrxc);
3612 	device_printf(dev, "XON Xmtd = %lld\n",
3613 	    (long long)sc->stats.xontxc);
3614 	device_printf(dev, "XOFF Rcvd = %lld\n",
3615 	    (long long)sc->stats.xoffrxc);
3616 	device_printf(dev, "XOFF Xmtd = %lld\n",
3617 	    (long long)sc->stats.xofftxc);
3618 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3619 	    (long long)sc->stats.gprc);
3620 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3621 	    (long long)sc->stats.gptc);
3622 }
3623 
3624 static void
3625 emx_print_nvm_info(struct emx_softc *sc)
3626 {
3627 	uint16_t eeprom_data;
3628 	int i, j, row = 0;
3629 
3630 	/* Its a bit crude, but it gets the job done */
3631 	kprintf("\nInterface EEPROM Dump:\n");
3632 	kprintf("Offset\n0x0000  ");
3633 	for (i = 0, j = 0; i < 32; i++, j++) {
3634 		if (j == 8) { /* Make the offset block */
3635 			j = 0; ++row;
3636 			kprintf("\n0x00%x0  ",row);
3637 		}
3638 		e1000_read_nvm(&sc->hw, i, 1, &eeprom_data);
3639 		kprintf("%04x ", eeprom_data);
3640 	}
3641 	kprintf("\n");
3642 }
3643 
3644 static int
3645 emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3646 {
3647 	struct emx_softc *sc;
3648 	struct ifnet *ifp;
3649 	int error, result;
3650 
3651 	result = -1;
3652 	error = sysctl_handle_int(oidp, &result, 0, req);
3653 	if (error || !req->newptr)
3654 		return (error);
3655 
3656 	sc = (struct emx_softc *)arg1;
3657 	ifp = &sc->arpcom.ac_if;
3658 
3659 	ifnet_serialize_all(ifp);
3660 
3661 	if (result == 1)
3662 		emx_print_debug_info(sc);
3663 
3664 	/*
3665 	 * This value will cause a hex dump of the
3666 	 * first 32 16-bit words of the EEPROM to
3667 	 * the screen.
3668 	 */
3669 	if (result == 2)
3670 		emx_print_nvm_info(sc);
3671 
3672 	ifnet_deserialize_all(ifp);
3673 
3674 	return (error);
3675 }
3676 
3677 static int
3678 emx_sysctl_stats(SYSCTL_HANDLER_ARGS)
3679 {
3680 	int error, result;
3681 
3682 	result = -1;
3683 	error = sysctl_handle_int(oidp, &result, 0, req);
3684 	if (error || !req->newptr)
3685 		return (error);
3686 
3687 	if (result == 1) {
3688 		struct emx_softc *sc = (struct emx_softc *)arg1;
3689 		struct ifnet *ifp = &sc->arpcom.ac_if;
3690 
3691 		ifnet_serialize_all(ifp);
3692 		emx_print_hw_stats(sc);
3693 		ifnet_deserialize_all(ifp);
3694 	}
3695 	return (error);
3696 }
3697 
3698 static void
3699 emx_add_sysctl(struct emx_softc *sc)
3700 {
3701 	struct sysctl_ctx_list *ctx;
3702 	struct sysctl_oid *tree;
3703 #if defined(EMX_RSS_DEBUG) || defined(EMX_TSS_DEBUG)
3704 	char pkt_desc[32];
3705 	int i;
3706 #endif
3707 
3708 	ctx = device_get_sysctl_ctx(sc->dev);
3709 	tree = device_get_sysctl_tree(sc->dev);
3710 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3711 			OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3712 			emx_sysctl_debug_info, "I", "Debug Information");
3713 
3714 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3715 			OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3716 			emx_sysctl_stats, "I", "Statistics");
3717 
3718 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3719 	    OID_AUTO, "rxd", CTLFLAG_RD, &sc->rx_data[0].num_rx_desc, 0,
3720 	    "# of RX descs");
3721 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3722 	    OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_data[0].num_tx_desc, 0,
3723 	    "# of TX descs");
3724 
3725 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3726 	    OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3727 	    emx_sysctl_int_throttle, "I", "interrupt throttling rate");
3728 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3729 	    OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3730 	    emx_sysctl_tx_intr_nsegs, "I", "# segments per TX interrupt");
3731 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3732 	    OID_AUTO, "tx_wreg_nsegs", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3733 	    emx_sysctl_tx_wreg_nsegs, "I",
3734 	    "# segments sent before write to hardware register");
3735 
3736 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3737 	    OID_AUTO, "rx_ring_cnt", CTLFLAG_RD, &sc->rx_ring_cnt, 0,
3738 	    "# of RX rings");
3739 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3740 	    OID_AUTO, "tx_ring_cnt", CTLFLAG_RD, &sc->tx_ring_cnt, 0,
3741 	    "# of TX rings");
3742 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3743 	    OID_AUTO, "tx_ring_inuse", CTLFLAG_RD, &sc->tx_ring_inuse, 0,
3744 	    "# of TX rings used");
3745 
3746 #ifdef IFPOLL_ENABLE
3747 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3748 			OID_AUTO, "npoll_rxoff", CTLTYPE_INT|CTLFLAG_RW,
3749 			sc, 0, emx_sysctl_npoll_rxoff, "I",
3750 			"NPOLLING RX cpu offset");
3751 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3752 			OID_AUTO, "npoll_txoff", CTLTYPE_INT|CTLFLAG_RW,
3753 			sc, 0, emx_sysctl_npoll_txoff, "I",
3754 			"NPOLLING TX cpu offset");
3755 #endif
3756 
3757 #ifdef EMX_RSS_DEBUG
3758 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3759 		       OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug,
3760 		       0, "RSS debug level");
3761 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3762 		ksnprintf(pkt_desc, sizeof(pkt_desc), "rx%d_pkt", i);
3763 		SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3764 		    pkt_desc, CTLFLAG_RW, &sc->rx_data[i].rx_pkts,
3765 		    "RXed packets");
3766 	}
3767 #endif
3768 #ifdef EMX_TSS_DEBUG
3769 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3770 		ksnprintf(pkt_desc, sizeof(pkt_desc), "tx%d_pkt", i);
3771 		SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3772 		    pkt_desc, CTLFLAG_RW, &sc->tx_data[i].tx_pkts,
3773 		    "TXed packets");
3774 	}
3775 #endif
3776 }
3777 
3778 static int
3779 emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3780 {
3781 	struct emx_softc *sc = (void *)arg1;
3782 	struct ifnet *ifp = &sc->arpcom.ac_if;
3783 	int error, throttle;
3784 
3785 	throttle = sc->int_throttle_ceil;
3786 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3787 	if (error || req->newptr == NULL)
3788 		return error;
3789 	if (throttle < 0 || throttle > 1000000000 / 256)
3790 		return EINVAL;
3791 
3792 	if (throttle) {
3793 		/*
3794 		 * Set the interrupt throttling rate in 256ns increments,
3795 		 * recalculate sysctl value assignment to get exact frequency.
3796 		 */
3797 		throttle = 1000000000 / 256 / throttle;
3798 
3799 		/* Upper 16bits of ITR is reserved and should be zero */
3800 		if (throttle & 0xffff0000)
3801 			return EINVAL;
3802 	}
3803 
3804 	ifnet_serialize_all(ifp);
3805 
3806 	if (throttle)
3807 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
3808 	else
3809 		sc->int_throttle_ceil = 0;
3810 
3811 	if (ifp->if_flags & IFF_RUNNING)
3812 		emx_set_itr(sc, throttle);
3813 
3814 	ifnet_deserialize_all(ifp);
3815 
3816 	if (bootverbose) {
3817 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
3818 			  sc->int_throttle_ceil);
3819 	}
3820 	return 0;
3821 }
3822 
3823 static int
3824 emx_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
3825 {
3826 	struct emx_softc *sc = (void *)arg1;
3827 	struct ifnet *ifp = &sc->arpcom.ac_if;
3828 	struct emx_txdata *tdata = &sc->tx_data[0];
3829 	int error, segs;
3830 
3831 	segs = tdata->tx_intr_nsegs;
3832 	error = sysctl_handle_int(oidp, &segs, 0, req);
3833 	if (error || req->newptr == NULL)
3834 		return error;
3835 	if (segs <= 0)
3836 		return EINVAL;
3837 
3838 	ifnet_serialize_all(ifp);
3839 
3840 	/*
3841 	 * Don't allow tx_intr_nsegs to become:
3842 	 * o  Less the oact_tx_desc
3843 	 * o  Too large that no TX desc will cause TX interrupt to
3844 	 *    be generated (OACTIVE will never recover)
3845 	 * o  Too small that will cause tx_dd[] overflow
3846 	 */
3847 	if (segs < tdata->oact_tx_desc ||
3848 	    segs >= tdata->num_tx_desc - tdata->oact_tx_desc ||
3849 	    segs < tdata->num_tx_desc / EMX_TXDD_SAFE) {
3850 		error = EINVAL;
3851 	} else {
3852 		int i;
3853 
3854 		error = 0;
3855 		for (i = 0; i < sc->tx_ring_cnt; ++i)
3856 			sc->tx_data[i].tx_intr_nsegs = segs;
3857 	}
3858 
3859 	ifnet_deserialize_all(ifp);
3860 
3861 	return error;
3862 }
3863 
3864 static int
3865 emx_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3866 {
3867 	struct emx_softc *sc = (void *)arg1;
3868 	struct ifnet *ifp = &sc->arpcom.ac_if;
3869 	int error, nsegs, i;
3870 
3871 	nsegs = sc->tx_data[0].tx_wreg_nsegs;
3872 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3873 	if (error || req->newptr == NULL)
3874 		return error;
3875 
3876 	ifnet_serialize_all(ifp);
3877 	for (i = 0; i < sc->tx_ring_cnt; ++i)
3878 		sc->tx_data[i].tx_wreg_nsegs =nsegs;
3879 	ifnet_deserialize_all(ifp);
3880 
3881 	return 0;
3882 }
3883 
3884 #ifdef IFPOLL_ENABLE
3885 
3886 static int
3887 emx_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
3888 {
3889 	struct emx_softc *sc = (void *)arg1;
3890 	struct ifnet *ifp = &sc->arpcom.ac_if;
3891 	int error, off;
3892 
3893 	off = sc->rx_npoll_off;
3894 	error = sysctl_handle_int(oidp, &off, 0, req);
3895 	if (error || req->newptr == NULL)
3896 		return error;
3897 	if (off < 0)
3898 		return EINVAL;
3899 
3900 	ifnet_serialize_all(ifp);
3901 	if (off >= ncpus2 || off % sc->rx_ring_cnt != 0) {
3902 		error = EINVAL;
3903 	} else {
3904 		error = 0;
3905 		sc->rx_npoll_off = off;
3906 	}
3907 	ifnet_deserialize_all(ifp);
3908 
3909 	return error;
3910 }
3911 
3912 static int
3913 emx_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
3914 {
3915 	struct emx_softc *sc = (void *)arg1;
3916 	struct ifnet *ifp = &sc->arpcom.ac_if;
3917 	int error, off;
3918 
3919 	off = sc->tx_npoll_off;
3920 	error = sysctl_handle_int(oidp, &off, 0, req);
3921 	if (error || req->newptr == NULL)
3922 		return error;
3923 	if (off < 0)
3924 		return EINVAL;
3925 
3926 	ifnet_serialize_all(ifp);
3927 	if (off >= ncpus2 || off % sc->tx_ring_cnt != 0) {
3928 		error = EINVAL;
3929 	} else {
3930 		error = 0;
3931 		sc->tx_npoll_off = off;
3932 	}
3933 	ifnet_deserialize_all(ifp);
3934 
3935 	return error;
3936 }
3937 
3938 #endif	/* IFPOLL_ENABLE */
3939 
3940 static int
3941 emx_dma_alloc(struct emx_softc *sc)
3942 {
3943 	int error, i;
3944 
3945 	/*
3946 	 * Create top level busdma tag
3947 	 */
3948 	error = bus_dma_tag_create(NULL, 1, 0,
3949 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3950 			NULL, NULL,
3951 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
3952 			0, &sc->parent_dtag);
3953 	if (error) {
3954 		device_printf(sc->dev, "could not create top level DMA tag\n");
3955 		return error;
3956 	}
3957 
3958 	/*
3959 	 * Allocate transmit descriptors ring and buffers
3960 	 */
3961 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3962 		error = emx_create_tx_ring(&sc->tx_data[i]);
3963 		if (error) {
3964 			device_printf(sc->dev,
3965 			    "Could not setup transmit structures\n");
3966 			return error;
3967 		}
3968 	}
3969 
3970 	/*
3971 	 * Allocate receive descriptors ring and buffers
3972 	 */
3973 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3974 		error = emx_create_rx_ring(&sc->rx_data[i]);
3975 		if (error) {
3976 			device_printf(sc->dev,
3977 			    "Could not setup receive structures\n");
3978 			return error;
3979 		}
3980 	}
3981 	return 0;
3982 }
3983 
3984 static void
3985 emx_dma_free(struct emx_softc *sc)
3986 {
3987 	int i;
3988 
3989 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3990 		emx_destroy_tx_ring(&sc->tx_data[i],
3991 		    sc->tx_data[i].num_tx_desc);
3992 	}
3993 
3994 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3995 		emx_destroy_rx_ring(&sc->rx_data[i],
3996 		    sc->rx_data[i].num_rx_desc);
3997 	}
3998 
3999 	/* Free top level busdma tag */
4000 	if (sc->parent_dtag != NULL)
4001 		bus_dma_tag_destroy(sc->parent_dtag);
4002 }
4003 
4004 static void
4005 emx_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
4006 {
4007 	struct emx_softc *sc = ifp->if_softc;
4008 
4009 	ifnet_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, slz);
4010 }
4011 
4012 static void
4013 emx_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
4014 {
4015 	struct emx_softc *sc = ifp->if_softc;
4016 
4017 	ifnet_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, slz);
4018 }
4019 
4020 static int
4021 emx_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
4022 {
4023 	struct emx_softc *sc = ifp->if_softc;
4024 
4025 	return ifnet_serialize_array_try(sc->serializes, EMX_NSERIALIZE, slz);
4026 }
4027 
4028 static void
4029 emx_serialize_skipmain(struct emx_softc *sc)
4030 {
4031 	lwkt_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, 1);
4032 }
4033 
4034 static void
4035 emx_deserialize_skipmain(struct emx_softc *sc)
4036 {
4037 	lwkt_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, 1);
4038 }
4039 
4040 #ifdef INVARIANTS
4041 
4042 static void
4043 emx_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
4044     boolean_t serialized)
4045 {
4046 	struct emx_softc *sc = ifp->if_softc;
4047 
4048 	ifnet_serialize_array_assert(sc->serializes, EMX_NSERIALIZE,
4049 	    slz, serialized);
4050 }
4051 
4052 #endif	/* INVARIANTS */
4053 
4054 #ifdef IFPOLL_ENABLE
4055 
4056 static void
4057 emx_npoll_status(struct ifnet *ifp)
4058 {
4059 	struct emx_softc *sc = ifp->if_softc;
4060 	uint32_t reg_icr;
4061 
4062 	ASSERT_SERIALIZED(&sc->main_serialize);
4063 
4064 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
4065 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4066 		callout_stop(&sc->timer);
4067 		sc->hw.mac.get_link_status = 1;
4068 		emx_update_link_status(sc);
4069 		callout_reset(&sc->timer, hz, emx_timer, sc);
4070 	}
4071 }
4072 
4073 static void
4074 emx_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
4075 {
4076 	struct emx_txdata *tdata = arg;
4077 
4078 	ASSERT_SERIALIZED(&tdata->tx_serialize);
4079 
4080 	emx_txeof(tdata);
4081 	if (!ifsq_is_empty(tdata->ifsq))
4082 		ifsq_devstart(tdata->ifsq);
4083 }
4084 
4085 static void
4086 emx_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
4087 {
4088 	struct emx_rxdata *rdata = arg;
4089 
4090 	ASSERT_SERIALIZED(&rdata->rx_serialize);
4091 
4092 	emx_rxeof(rdata, cycle);
4093 }
4094 
4095 static void
4096 emx_npoll(struct ifnet *ifp, struct ifpoll_info *info)
4097 {
4098 	struct emx_softc *sc = ifp->if_softc;
4099 	int i, txr_cnt;
4100 
4101 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
4102 
4103 	if (info) {
4104 		int off;
4105 
4106 		info->ifpi_status.status_func = emx_npoll_status;
4107 		info->ifpi_status.serializer = &sc->main_serialize;
4108 
4109 		txr_cnt = emx_get_txring_inuse(sc, TRUE);
4110 		off = sc->tx_npoll_off;
4111 		for (i = 0; i < txr_cnt; ++i) {
4112 			struct emx_txdata *tdata = &sc->tx_data[i];
4113 			int idx = i + off;
4114 
4115 			KKASSERT(idx < ncpus2);
4116 			info->ifpi_tx[idx].poll_func = emx_npoll_tx;
4117 			info->ifpi_tx[idx].arg = tdata;
4118 			info->ifpi_tx[idx].serializer = &tdata->tx_serialize;
4119 			ifsq_set_cpuid(tdata->ifsq, idx);
4120 		}
4121 
4122 		off = sc->rx_npoll_off;
4123 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
4124 			struct emx_rxdata *rdata = &sc->rx_data[i];
4125 			int idx = i + off;
4126 
4127 			KKASSERT(idx < ncpus2);
4128 			info->ifpi_rx[idx].poll_func = emx_npoll_rx;
4129 			info->ifpi_rx[idx].arg = rdata;
4130 			info->ifpi_rx[idx].serializer = &rdata->rx_serialize;
4131 		}
4132 
4133 		if (ifp->if_flags & IFF_RUNNING) {
4134 			if (txr_cnt == sc->tx_ring_inuse)
4135 				emx_disable_intr(sc);
4136 			else
4137 				emx_init(sc);
4138 		}
4139 	} else {
4140 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
4141 			struct emx_txdata *tdata = &sc->tx_data[i];
4142 
4143 			ifsq_set_cpuid(tdata->ifsq,
4144 			    rman_get_cpuid(sc->intr_res));
4145 		}
4146 
4147 		if (ifp->if_flags & IFF_RUNNING) {
4148 			txr_cnt = emx_get_txring_inuse(sc, FALSE);
4149 			if (txr_cnt == sc->tx_ring_inuse)
4150 				emx_enable_intr(sc);
4151 			else
4152 				emx_init(sc);
4153 		}
4154 	}
4155 }
4156 
4157 #endif	/* IFPOLL_ENABLE */
4158 
4159 static void
4160 emx_set_itr(struct emx_softc *sc, uint32_t itr)
4161 {
4162 	E1000_WRITE_REG(&sc->hw, E1000_ITR, itr);
4163 	if (sc->hw.mac.type == e1000_82574) {
4164 		int i;
4165 
4166 		/*
4167 		 * When using MSIX interrupts we need to
4168 		 * throttle using the EITR register
4169 		 */
4170 		for (i = 0; i < 4; ++i)
4171 			E1000_WRITE_REG(&sc->hw, E1000_EITR_82574(i), itr);
4172 	}
4173 }
4174 
4175 /*
4176  * Disable the L0s, 82574L Errata #20
4177  */
4178 static void
4179 emx_disable_aspm(struct emx_softc *sc)
4180 {
4181 	uint16_t link_cap, link_ctrl, disable;
4182 	uint8_t pcie_ptr, reg;
4183 	device_t dev = sc->dev;
4184 
4185 	switch (sc->hw.mac.type) {
4186 	case e1000_82571:
4187 	case e1000_82572:
4188 	case e1000_82573:
4189 		/*
4190 		 * 82573 specification update
4191 		 * errata #8 disable L0s
4192 		 * errata #41 disable L1
4193 		 *
4194 		 * 82571/82572 specification update
4195 		 # errata #13 disable L1
4196 		 * errata #68 disable L0s
4197 		 */
4198 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4199 		break;
4200 
4201 	case e1000_82574:
4202 		/*
4203 		 * 82574 specification update errata #20
4204 		 *
4205 		 * There is no need to disable L1
4206 		 */
4207 		disable = PCIEM_LNKCTL_ASPM_L0S;
4208 		break;
4209 
4210 	default:
4211 		return;
4212 	}
4213 
4214 	pcie_ptr = pci_get_pciecap_ptr(dev);
4215 	if (pcie_ptr == 0)
4216 		return;
4217 
4218 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4219 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4220 		return;
4221 
4222 	if (bootverbose)
4223 		if_printf(&sc->arpcom.ac_if, "disable ASPM %#02x\n", disable);
4224 
4225 	reg = pcie_ptr + PCIER_LINKCTRL;
4226 	link_ctrl = pci_read_config(dev, reg, 2);
4227 	link_ctrl &= ~disable;
4228 	pci_write_config(dev, reg, link_ctrl, 2);
4229 }
4230 
4231 static int
4232 emx_tso_pullup(struct emx_txdata *tdata, struct mbuf **mp)
4233 {
4234 	int iphlen, hoff, thoff, ex = 0;
4235 	struct mbuf *m;
4236 	struct ip *ip;
4237 
4238 	m = *mp;
4239 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4240 
4241 	iphlen = m->m_pkthdr.csum_iphlen;
4242 	thoff = m->m_pkthdr.csum_thlen;
4243 	hoff = m->m_pkthdr.csum_lhlen;
4244 
4245 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4246 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4247 	KASSERT(hoff > 0, ("invalid ether hlen"));
4248 
4249 	if (tdata->tx_flags & EMX_TXFLAG_TSO_PULLEX)
4250 		ex = 4;
4251 
4252 	if (m->m_len < hoff + iphlen + thoff + ex) {
4253 		m = m_pullup(m, hoff + iphlen + thoff + ex);
4254 		if (m == NULL) {
4255 			*mp = NULL;
4256 			return ENOBUFS;
4257 		}
4258 		*mp = m;
4259 	}
4260 	ip = mtodoff(m, struct ip *, hoff);
4261 	ip->ip_len = 0;
4262 
4263 	return 0;
4264 }
4265 
4266 static int
4267 emx_tso_setup(struct emx_txdata *tdata, struct mbuf *mp,
4268     uint32_t *txd_upper, uint32_t *txd_lower)
4269 {
4270 	struct e1000_context_desc *TXD;
4271 	int hoff, iphlen, thoff, hlen;
4272 	int mss, pktlen, curr_txd;
4273 
4274 #ifdef EMX_TSO_DEBUG
4275 	tdata->tso_segments++;
4276 #endif
4277 
4278 	iphlen = mp->m_pkthdr.csum_iphlen;
4279 	thoff = mp->m_pkthdr.csum_thlen;
4280 	hoff = mp->m_pkthdr.csum_lhlen;
4281 	mss = mp->m_pkthdr.tso_segsz;
4282 	pktlen = mp->m_pkthdr.len;
4283 
4284 	if ((tdata->tx_flags & EMX_TXFLAG_FORCECTX) == 0 &&
4285 	    tdata->csum_flags == CSUM_TSO &&
4286 	    tdata->csum_iphlen == iphlen &&
4287 	    tdata->csum_lhlen == hoff &&
4288 	    tdata->csum_thlen == thoff &&
4289 	    tdata->csum_mss == mss &&
4290 	    tdata->csum_pktlen == pktlen) {
4291 		*txd_upper = tdata->csum_txd_upper;
4292 		*txd_lower = tdata->csum_txd_lower;
4293 #ifdef EMX_TSO_DEBUG
4294 		tdata->tso_ctx_reused++;
4295 #endif
4296 		return 0;
4297 	}
4298 	hlen = hoff + iphlen + thoff;
4299 
4300 	/*
4301 	 * Setup a new TSO context.
4302 	 */
4303 
4304 	curr_txd = tdata->next_avail_tx_desc;
4305 	TXD = (struct e1000_context_desc *)&tdata->tx_desc_base[curr_txd];
4306 
4307 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
4308 		     E1000_TXD_DTYP_D |		/* Data descr type */
4309 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
4310 
4311 	/* IP and/or TCP header checksum calculation and insertion. */
4312 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4313 
4314 	/*
4315 	 * Start offset for header checksum calculation.
4316 	 * End offset for header checksum calculation.
4317 	 * Offset of place put the checksum.
4318 	 */
4319 	TXD->lower_setup.ip_fields.ipcss = hoff;
4320 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4321 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4322 
4323 	/*
4324 	 * Start offset for payload checksum calculation.
4325 	 * End offset for payload checksum calculation.
4326 	 * Offset of place to put the checksum.
4327 	 */
4328 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4329 	TXD->upper_setup.tcp_fields.tucse = 0;
4330 	TXD->upper_setup.tcp_fields.tucso =
4331 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
4332 
4333 	/*
4334 	 * Payload size per packet w/o any headers.
4335 	 * Length of all headers up to payload.
4336 	 */
4337 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
4338 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
4339 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4340 				E1000_TXD_CMD_DEXT |	/* Extended descr */
4341 				E1000_TXD_CMD_TSE |	/* TSE context */
4342 				E1000_TXD_CMD_IP |	/* Do IP csum */
4343 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
4344 				(pktlen - hlen));	/* Total len */
4345 
4346 	/* Save the information for this TSO context */
4347 	tdata->csum_flags = CSUM_TSO;
4348 	tdata->csum_lhlen = hoff;
4349 	tdata->csum_iphlen = iphlen;
4350 	tdata->csum_thlen = thoff;
4351 	tdata->csum_mss = mss;
4352 	tdata->csum_pktlen = pktlen;
4353 	tdata->csum_txd_upper = *txd_upper;
4354 	tdata->csum_txd_lower = *txd_lower;
4355 
4356 	if (++curr_txd == tdata->num_tx_desc)
4357 		curr_txd = 0;
4358 
4359 	KKASSERT(tdata->num_tx_desc_avail > 0);
4360 	tdata->num_tx_desc_avail--;
4361 
4362 	tdata->next_avail_tx_desc = curr_txd;
4363 	return 1;
4364 }
4365 
4366 static int
4367 emx_get_txring_inuse(const struct emx_softc *sc, boolean_t polling)
4368 {
4369 	if (polling)
4370 		return sc->tx_ring_cnt;
4371 	else
4372 		return 1;
4373 }
4374