xref: /dragonfly/sys/dev/netif/emx/if_emx.c (revision fcf53d9b)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 #include "opt_ifpoll.h"
68 #include "opt_rss.h"
69 #include "opt_emx.h"
70 
71 #include <sys/param.h>
72 #include <sys/bus.h>
73 #include <sys/endian.h>
74 #include <sys/interrupt.h>
75 #include <sys/kernel.h>
76 #include <sys/ktr.h>
77 #include <sys/malloc.h>
78 #include <sys/mbuf.h>
79 #include <sys/proc.h>
80 #include <sys/rman.h>
81 #include <sys/serialize.h>
82 #include <sys/serialize2.h>
83 #include <sys/socket.h>
84 #include <sys/sockio.h>
85 #include <sys/sysctl.h>
86 #include <sys/systm.h>
87 
88 #include <net/bpf.h>
89 #include <net/ethernet.h>
90 #include <net/if.h>
91 #include <net/if_arp.h>
92 #include <net/if_dl.h>
93 #include <net/if_media.h>
94 #include <net/ifq_var.h>
95 #include <net/toeplitz.h>
96 #include <net/toeplitz2.h>
97 #include <net/vlan/if_vlan_var.h>
98 #include <net/vlan/if_vlan_ether.h>
99 #include <net/if_poll.h>
100 
101 #include <netinet/in_systm.h>
102 #include <netinet/in.h>
103 #include <netinet/ip.h>
104 #include <netinet/tcp.h>
105 #include <netinet/udp.h>
106 
107 #include <bus/pci/pcivar.h>
108 #include <bus/pci/pcireg.h>
109 
110 #include <dev/netif/ig_hal/e1000_api.h>
111 #include <dev/netif/ig_hal/e1000_82571.h>
112 #include <dev/netif/emx/if_emx.h>
113 
114 #ifdef EMX_RSS_DEBUG
115 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...) \
116 do { \
117 	if (sc->rss_debug >= lvl) \
118 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
119 } while (0)
120 #else	/* !EMX_RSS_DEBUG */
121 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
122 #endif	/* EMX_RSS_DEBUG */
123 
124 #define EMX_NAME	"Intel(R) PRO/1000 "
125 
126 #define EMX_DEVICE(id)	\
127 	{ EMX_VENDOR_ID, E1000_DEV_ID_##id, EMX_NAME #id }
128 #define EMX_DEVICE_NULL	{ 0, 0, NULL }
129 
130 static const struct emx_device {
131 	uint16_t	vid;
132 	uint16_t	did;
133 	const char	*desc;
134 } emx_devices[] = {
135 	EMX_DEVICE(82571EB_COPPER),
136 	EMX_DEVICE(82571EB_FIBER),
137 	EMX_DEVICE(82571EB_SERDES),
138 	EMX_DEVICE(82571EB_SERDES_DUAL),
139 	EMX_DEVICE(82571EB_SERDES_QUAD),
140 	EMX_DEVICE(82571EB_QUAD_COPPER),
141 	EMX_DEVICE(82571EB_QUAD_COPPER_BP),
142 	EMX_DEVICE(82571EB_QUAD_COPPER_LP),
143 	EMX_DEVICE(82571EB_QUAD_FIBER),
144 	EMX_DEVICE(82571PT_QUAD_COPPER),
145 
146 	EMX_DEVICE(82572EI_COPPER),
147 	EMX_DEVICE(82572EI_FIBER),
148 	EMX_DEVICE(82572EI_SERDES),
149 	EMX_DEVICE(82572EI),
150 
151 	EMX_DEVICE(82573E),
152 	EMX_DEVICE(82573E_IAMT),
153 	EMX_DEVICE(82573L),
154 
155 	EMX_DEVICE(80003ES2LAN_COPPER_SPT),
156 	EMX_DEVICE(80003ES2LAN_SERDES_SPT),
157 	EMX_DEVICE(80003ES2LAN_COPPER_DPT),
158 	EMX_DEVICE(80003ES2LAN_SERDES_DPT),
159 
160 	EMX_DEVICE(82574L),
161 
162 	/* required last entry */
163 	EMX_DEVICE_NULL
164 };
165 
166 static int	emx_probe(device_t);
167 static int	emx_attach(device_t);
168 static int	emx_detach(device_t);
169 static int	emx_shutdown(device_t);
170 static int	emx_suspend(device_t);
171 static int	emx_resume(device_t);
172 
173 static void	emx_init(void *);
174 static void	emx_stop(struct emx_softc *);
175 static int	emx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
176 static void	emx_start(struct ifnet *);
177 #ifdef IFPOLL_ENABLE
178 static void	emx_qpoll(struct ifnet *, struct ifpoll_info *);
179 #endif
180 static void	emx_watchdog(struct ifnet *);
181 static void	emx_media_status(struct ifnet *, struct ifmediareq *);
182 static int	emx_media_change(struct ifnet *);
183 static void	emx_timer(void *);
184 static void	emx_serialize(struct ifnet *, enum ifnet_serialize);
185 static void	emx_deserialize(struct ifnet *, enum ifnet_serialize);
186 static int	emx_tryserialize(struct ifnet *, enum ifnet_serialize);
187 #ifdef INVARIANTS
188 static void	emx_serialize_assert(struct ifnet *, enum ifnet_serialize,
189 		    boolean_t);
190 #endif
191 
192 static void	emx_intr(void *);
193 static void	emx_rxeof(struct emx_softc *, int, int);
194 static void	emx_txeof(struct emx_softc *);
195 static void	emx_tx_collect(struct emx_softc *);
196 static void	emx_tx_purge(struct emx_softc *);
197 static void	emx_enable_intr(struct emx_softc *);
198 static void	emx_disable_intr(struct emx_softc *);
199 
200 static int	emx_dma_alloc(struct emx_softc *);
201 static void	emx_dma_free(struct emx_softc *);
202 static void	emx_init_tx_ring(struct emx_softc *);
203 static int	emx_init_rx_ring(struct emx_softc *, struct emx_rxdata *);
204 static void	emx_free_rx_ring(struct emx_softc *, struct emx_rxdata *);
205 static int	emx_create_tx_ring(struct emx_softc *);
206 static int	emx_create_rx_ring(struct emx_softc *, struct emx_rxdata *);
207 static void	emx_destroy_tx_ring(struct emx_softc *, int);
208 static void	emx_destroy_rx_ring(struct emx_softc *,
209 		    struct emx_rxdata *, int);
210 static int	emx_newbuf(struct emx_softc *, struct emx_rxdata *, int, int);
211 static int	emx_encap(struct emx_softc *, struct mbuf **);
212 static int	emx_txcsum_pullup(struct emx_softc *, struct mbuf **);
213 static int	emx_txcsum(struct emx_softc *, struct mbuf *,
214 		    uint32_t *, uint32_t *);
215 
216 static int 	emx_is_valid_eaddr(const uint8_t *);
217 static int	emx_hw_init(struct emx_softc *);
218 static void	emx_setup_ifp(struct emx_softc *);
219 static void	emx_init_tx_unit(struct emx_softc *);
220 static void	emx_init_rx_unit(struct emx_softc *);
221 static void	emx_update_stats(struct emx_softc *);
222 static void	emx_set_promisc(struct emx_softc *);
223 static void	emx_disable_promisc(struct emx_softc *);
224 static void	emx_set_multi(struct emx_softc *);
225 static void	emx_update_link_status(struct emx_softc *);
226 static void	emx_smartspeed(struct emx_softc *);
227 
228 static void	emx_print_debug_info(struct emx_softc *);
229 static void	emx_print_nvm_info(struct emx_softc *);
230 static void	emx_print_hw_stats(struct emx_softc *);
231 
232 static int	emx_sysctl_stats(SYSCTL_HANDLER_ARGS);
233 static int	emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
234 static int	emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
235 static int	emx_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
236 static void	emx_add_sysctl(struct emx_softc *);
237 
238 static void	emx_serialize_skipmain(struct emx_softc *);
239 static void	emx_deserialize_skipmain(struct emx_softc *);
240 
241 /* Management and WOL Support */
242 static void	emx_get_mgmt(struct emx_softc *);
243 static void	emx_rel_mgmt(struct emx_softc *);
244 static void	emx_get_hw_control(struct emx_softc *);
245 static void	emx_rel_hw_control(struct emx_softc *);
246 static void	emx_enable_wol(device_t);
247 
248 static device_method_t emx_methods[] = {
249 	/* Device interface */
250 	DEVMETHOD(device_probe,		emx_probe),
251 	DEVMETHOD(device_attach,	emx_attach),
252 	DEVMETHOD(device_detach,	emx_detach),
253 	DEVMETHOD(device_shutdown,	emx_shutdown),
254 	DEVMETHOD(device_suspend,	emx_suspend),
255 	DEVMETHOD(device_resume,	emx_resume),
256 	{ 0, 0 }
257 };
258 
259 static driver_t emx_driver = {
260 	"emx",
261 	emx_methods,
262 	sizeof(struct emx_softc),
263 };
264 
265 static devclass_t emx_devclass;
266 
267 DECLARE_DUMMY_MODULE(if_emx);
268 MODULE_DEPEND(emx, ig_hal, 1, 1, 1);
269 DRIVER_MODULE(if_emx, pci, emx_driver, emx_devclass, 0, 0);
270 
271 /*
272  * Tunables
273  */
274 static int	emx_int_throttle_ceil = EMX_DEFAULT_ITR;
275 static int	emx_rxd = EMX_DEFAULT_RXD;
276 static int	emx_txd = EMX_DEFAULT_TXD;
277 static int	emx_smart_pwr_down = FALSE;
278 
279 /* Controls whether promiscuous also shows bad packets */
280 static int	emx_debug_sbp = FALSE;
281 
282 static int	emx_82573_workaround = TRUE;
283 
284 TUNABLE_INT("hw.emx.int_throttle_ceil", &emx_int_throttle_ceil);
285 TUNABLE_INT("hw.emx.rxd", &emx_rxd);
286 TUNABLE_INT("hw.emx.txd", &emx_txd);
287 TUNABLE_INT("hw.emx.smart_pwr_down", &emx_smart_pwr_down);
288 TUNABLE_INT("hw.emx.sbp", &emx_debug_sbp);
289 TUNABLE_INT("hw.emx.82573_workaround", &emx_82573_workaround);
290 
291 /* Global used in WOL setup with multiport cards */
292 static int	emx_global_quad_port_a = 0;
293 
294 /* Set this to one to display debug statistics */
295 static int	emx_display_debug_stats = 0;
296 
297 #if !defined(KTR_IF_EMX)
298 #define KTR_IF_EMX	KTR_ALL
299 #endif
300 KTR_INFO_MASTER(if_emx);
301 KTR_INFO(KTR_IF_EMX, if_emx, intr_beg, 0, "intr begin", 0);
302 KTR_INFO(KTR_IF_EMX, if_emx, intr_end, 1, "intr end", 0);
303 KTR_INFO(KTR_IF_EMX, if_emx, pkt_receive, 4, "rx packet", 0);
304 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txqueue, 5, "tx packet", 0);
305 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txclean, 6, "tx clean", 0);
306 #define logif(name)	KTR_LOG(if_emx_ ## name)
307 
308 static __inline void
309 emx_setup_rxdesc(emx_rxdesc_t *rxd, const struct emx_rxbuf *rxbuf)
310 {
311 	rxd->rxd_bufaddr = htole64(rxbuf->paddr);
312 	/* DD bit must be cleared */
313 	rxd->rxd_staterr = 0;
314 }
315 
316 static __inline void
317 emx_rxcsum(uint32_t staterr, struct mbuf *mp)
318 {
319 	/* Ignore Checksum bit is set */
320 	if (staterr & E1000_RXD_STAT_IXSM)
321 		return;
322 
323 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
324 	    E1000_RXD_STAT_IPCS)
325 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
326 
327 	if ((staterr & (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
328 	    E1000_RXD_STAT_TCPCS) {
329 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
330 					   CSUM_PSEUDO_HDR |
331 					   CSUM_FRAG_NOT_CHECKED;
332 		mp->m_pkthdr.csum_data = htons(0xffff);
333 	}
334 }
335 
336 static __inline struct pktinfo *
337 emx_rssinfo(struct mbuf *m, struct pktinfo *pi,
338 	    uint32_t mrq, uint32_t hash, uint32_t staterr)
339 {
340 	switch (mrq & EMX_RXDMRQ_RSSTYPE_MASK) {
341 	case EMX_RXDMRQ_IPV4_TCP:
342 		pi->pi_netisr = NETISR_IP;
343 		pi->pi_flags = 0;
344 		pi->pi_l3proto = IPPROTO_TCP;
345 		break;
346 
347 	case EMX_RXDMRQ_IPV6_TCP:
348 		pi->pi_netisr = NETISR_IPV6;
349 		pi->pi_flags = 0;
350 		pi->pi_l3proto = IPPROTO_TCP;
351 		break;
352 
353 	case EMX_RXDMRQ_IPV4:
354 		if (staterr & E1000_RXD_STAT_IXSM)
355 			return NULL;
356 
357 		if ((staterr &
358 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
359 		    E1000_RXD_STAT_TCPCS) {
360 			pi->pi_netisr = NETISR_IP;
361 			pi->pi_flags = 0;
362 			pi->pi_l3proto = IPPROTO_UDP;
363 			break;
364 		}
365 		/* FALL THROUGH */
366 	default:
367 		return NULL;
368 	}
369 
370 	m->m_flags |= M_HASH;
371 	m->m_pkthdr.hash = toeplitz_hash(hash);
372 	return pi;
373 }
374 
375 static int
376 emx_probe(device_t dev)
377 {
378 	const struct emx_device *d;
379 	uint16_t vid, did;
380 
381 	vid = pci_get_vendor(dev);
382 	did = pci_get_device(dev);
383 
384 	for (d = emx_devices; d->desc != NULL; ++d) {
385 		if (vid == d->vid && did == d->did) {
386 			device_set_desc(dev, d->desc);
387 			device_set_async_attach(dev, TRUE);
388 			return 0;
389 		}
390 	}
391 	return ENXIO;
392 }
393 
394 static int
395 emx_attach(device_t dev)
396 {
397 	struct emx_softc *sc = device_get_softc(dev);
398 	struct ifnet *ifp = &sc->arpcom.ac_if;
399 	int error = 0, i;
400 	uint16_t eeprom_data, device_id;
401 
402 	lwkt_serialize_init(&sc->main_serialize);
403 	lwkt_serialize_init(&sc->tx_serialize);
404 	for (i = 0; i < EMX_NRX_RING; ++i)
405 		lwkt_serialize_init(&sc->rx_data[i].rx_serialize);
406 
407 	i = 0;
408 	sc->serializes[i++] = &sc->main_serialize;
409 	sc->serializes[i++] = &sc->tx_serialize;
410 	sc->serializes[i++] = &sc->rx_data[0].rx_serialize;
411 	sc->serializes[i++] = &sc->rx_data[1].rx_serialize;
412 	KKASSERT(i == EMX_NSERIALIZE);
413 
414 	callout_init(&sc->timer);
415 
416 	sc->dev = sc->osdep.dev = dev;
417 
418 	/*
419 	 * Determine hardware and mac type
420 	 */
421 	sc->hw.vendor_id = pci_get_vendor(dev);
422 	sc->hw.device_id = pci_get_device(dev);
423 	sc->hw.revision_id = pci_get_revid(dev);
424 	sc->hw.subsystem_vendor_id = pci_get_subvendor(dev);
425 	sc->hw.subsystem_device_id = pci_get_subdevice(dev);
426 
427 	if (e1000_set_mac_type(&sc->hw))
428 		return ENXIO;
429 
430 	/* Enable bus mastering */
431 	pci_enable_busmaster(dev);
432 
433 	/*
434 	 * Allocate IO memory
435 	 */
436 	sc->memory_rid = EMX_BAR_MEM;
437 	sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
438 					    &sc->memory_rid, RF_ACTIVE);
439 	if (sc->memory == NULL) {
440 		device_printf(dev, "Unable to allocate bus resource: memory\n");
441 		error = ENXIO;
442 		goto fail;
443 	}
444 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
445 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
446 
447 	/* XXX This is quite goofy, it is not actually used */
448 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
449 
450 	/*
451 	 * Allocate interrupt
452 	 */
453 	sc->intr_rid = 0;
454 	sc->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->intr_rid,
455 					      RF_SHAREABLE | RF_ACTIVE);
456 	if (sc->intr_res == NULL) {
457 		device_printf(dev, "Unable to allocate bus resource: "
458 		    "interrupt\n");
459 		error = ENXIO;
460 		goto fail;
461 	}
462 
463 	/* Save PCI command register for Shared Code */
464 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
465 	sc->hw.back = &sc->osdep;
466 
467 	/* Do Shared Code initialization */
468 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
469 		device_printf(dev, "Setup of Shared code failed\n");
470 		error = ENXIO;
471 		goto fail;
472 	}
473 	e1000_get_bus_info(&sc->hw);
474 
475 	sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
476 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
477 	sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
478 
479 	/*
480 	 * Interrupt throttle rate
481 	 */
482 	if (emx_int_throttle_ceil == 0) {
483 		sc->int_throttle_ceil = 0;
484 	} else {
485 		int throttle = emx_int_throttle_ceil;
486 
487 		if (throttle < 0)
488 			throttle = EMX_DEFAULT_ITR;
489 
490 		/* Recalculate the tunable value to get the exact frequency. */
491 		throttle = 1000000000 / 256 / throttle;
492 
493 		/* Upper 16bits of ITR is reserved and should be zero */
494 		if (throttle & 0xffff0000)
495 			throttle = 1000000000 / 256 / EMX_DEFAULT_ITR;
496 
497 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
498 	}
499 
500 	e1000_init_script_state_82541(&sc->hw, TRUE);
501 	e1000_set_tbi_compatibility_82543(&sc->hw, TRUE);
502 
503 	/* Copper options */
504 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
505 		sc->hw.phy.mdix = EMX_AUTO_ALL_MODES;
506 		sc->hw.phy.disable_polarity_correction = FALSE;
507 		sc->hw.phy.ms_type = EMX_MASTER_SLAVE;
508 	}
509 
510 	/* Set the frame limits assuming standard ethernet sized frames. */
511 	sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
512 	sc->min_frame_size = ETHER_MIN_LEN;
513 
514 	/* This controls when hardware reports transmit completion status. */
515 	sc->hw.mac.report_tx_early = 1;
516 
517 	/* Calculate # of RX rings */
518 	if (ncpus > 1)
519 		sc->rx_ring_cnt = EMX_NRX_RING;
520 	else
521 		sc->rx_ring_cnt = 1;
522 	sc->rx_ring_inuse = sc->rx_ring_cnt;
523 
524 	/* Allocate RX/TX rings' busdma(9) stuffs */
525 	error = emx_dma_alloc(sc);
526 	if (error)
527 		goto fail;
528 
529 	/* Make sure we have a good EEPROM before we read from it */
530 	if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
531 		/*
532 		 * Some PCI-E parts fail the first check due to
533 		 * the link being in sleep state, call it again,
534 		 * if it fails a second time its a real issue.
535 		 */
536 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
537 			device_printf(dev,
538 			    "The EEPROM Checksum Is Not Valid\n");
539 			error = EIO;
540 			goto fail;
541 		}
542 	}
543 
544 	/* Initialize the hardware */
545 	error = emx_hw_init(sc);
546 	if (error) {
547 		device_printf(dev, "Unable to initialize the hardware\n");
548 		goto fail;
549 	}
550 
551 	/* Copy the permanent MAC address out of the EEPROM */
552 	if (e1000_read_mac_addr(&sc->hw) < 0) {
553 		device_printf(dev, "EEPROM read error while reading MAC"
554 		    " address\n");
555 		error = EIO;
556 		goto fail;
557 	}
558 	if (!emx_is_valid_eaddr(sc->hw.mac.addr)) {
559 		device_printf(dev, "Invalid MAC address\n");
560 		error = EIO;
561 		goto fail;
562 	}
563 
564 	/* Manually turn off all interrupts */
565 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
566 
567 	/* Setup OS specific network interface */
568 	emx_setup_ifp(sc);
569 
570 	/* Add sysctl tree, must after emx_setup_ifp() */
571 	emx_add_sysctl(sc);
572 
573 	/* Initialize statistics */
574 	emx_update_stats(sc);
575 
576 	sc->hw.mac.get_link_status = 1;
577 	emx_update_link_status(sc);
578 
579 	/* Indicate SOL/IDER usage */
580 	if (e1000_check_reset_block(&sc->hw)) {
581 		device_printf(dev,
582 		    "PHY reset is blocked due to SOL/IDER session.\n");
583 	}
584 
585 	/* Determine if we have to control management hardware */
586 	sc->has_manage = e1000_enable_mng_pass_thru(&sc->hw);
587 
588 	/*
589 	 * Setup Wake-on-Lan
590 	 */
591 	switch (sc->hw.mac.type) {
592 	case e1000_82571:
593 	case e1000_80003es2lan:
594 		if (sc->hw.bus.func == 1) {
595 			e1000_read_nvm(&sc->hw,
596 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
597 		} else {
598 			e1000_read_nvm(&sc->hw,
599 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
600 		}
601 		eeprom_data &= EMX_EEPROM_APME;
602 		break;
603 
604 	default:
605 		/* APME bit in EEPROM is mapped to WUC.APME */
606 		eeprom_data =
607 		    E1000_READ_REG(&sc->hw, E1000_WUC) & E1000_WUC_APME;
608 		break;
609 	}
610 	if (eeprom_data)
611 		sc->wol = E1000_WUFC_MAG;
612 	/*
613          * We have the eeprom settings, now apply the special cases
614          * where the eeprom may be wrong or the board won't support
615          * wake on lan on a particular port
616 	 */
617 	device_id = pci_get_device(dev);
618         switch (device_id) {
619 	case E1000_DEV_ID_82571EB_FIBER:
620 		/*
621 		 * Wake events only supported on port A for dual fiber
622 		 * regardless of eeprom setting
623 		 */
624 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
625 		    E1000_STATUS_FUNC_1)
626 			sc->wol = 0;
627 		break;
628 
629 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
630 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
631 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
632                 /* if quad port sc, disable WoL on all but port A */
633 		if (emx_global_quad_port_a != 0)
634 			sc->wol = 0;
635 		/* Reset for multiple quad port adapters */
636 		if (++emx_global_quad_port_a == 4)
637 			emx_global_quad_port_a = 0;
638                 break;
639 	}
640 
641 	/* XXX disable wol */
642 	sc->wol = 0;
643 
644 	sc->spare_tx_desc = EMX_TX_SPARE;
645 
646 	/*
647 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
648 	 * and tx_int_nsegs:
649 	 * (spare_tx_desc + EMX_TX_RESERVED) <=
650 	 * oact_tx_desc <= EMX_TX_OACTIVE_MAX <= tx_int_nsegs
651 	 */
652 	sc->oact_tx_desc = sc->num_tx_desc / 8;
653 	if (sc->oact_tx_desc > EMX_TX_OACTIVE_MAX)
654 		sc->oact_tx_desc = EMX_TX_OACTIVE_MAX;
655 	if (sc->oact_tx_desc < sc->spare_tx_desc + EMX_TX_RESERVED)
656 		sc->oact_tx_desc = sc->spare_tx_desc + EMX_TX_RESERVED;
657 
658 	sc->tx_int_nsegs = sc->num_tx_desc / 16;
659 	if (sc->tx_int_nsegs < sc->oact_tx_desc)
660 		sc->tx_int_nsegs = sc->oact_tx_desc;
661 
662 	error = bus_setup_intr(dev, sc->intr_res, INTR_MPSAFE, emx_intr, sc,
663 			       &sc->intr_tag, &sc->main_serialize);
664 	if (error) {
665 		device_printf(dev, "Failed to register interrupt handler");
666 		ether_ifdetach(&sc->arpcom.ac_if);
667 		goto fail;
668 	}
669 
670 	ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->intr_res));
671 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
672 	return (0);
673 fail:
674 	emx_detach(dev);
675 	return (error);
676 }
677 
678 static int
679 emx_detach(device_t dev)
680 {
681 	struct emx_softc *sc = device_get_softc(dev);
682 
683 	if (device_is_attached(dev)) {
684 		struct ifnet *ifp = &sc->arpcom.ac_if;
685 
686 		ifnet_serialize_all(ifp);
687 
688 		emx_stop(sc);
689 
690 		e1000_phy_hw_reset(&sc->hw);
691 
692 		emx_rel_mgmt(sc);
693 
694 		if (sc->hw.mac.type == e1000_82573 &&
695 		    e1000_check_mng_mode(&sc->hw))
696 			emx_rel_hw_control(sc);
697 
698 		if (sc->wol) {
699 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
700 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
701 			emx_enable_wol(dev);
702 		}
703 
704 		bus_teardown_intr(dev, sc->intr_res, sc->intr_tag);
705 
706 		ifnet_deserialize_all(ifp);
707 
708 		ether_ifdetach(ifp);
709 	}
710 	bus_generic_detach(dev);
711 
712 	if (sc->intr_res != NULL) {
713 		bus_release_resource(dev, SYS_RES_IRQ, sc->intr_rid,
714 				     sc->intr_res);
715 	}
716 
717 	if (sc->memory != NULL) {
718 		bus_release_resource(dev, SYS_RES_MEMORY, sc->memory_rid,
719 				     sc->memory);
720 	}
721 
722 	emx_dma_free(sc);
723 
724 	/* Free sysctl tree */
725 	if (sc->sysctl_tree != NULL)
726 		sysctl_ctx_free(&sc->sysctl_ctx);
727 
728 	return (0);
729 }
730 
731 static int
732 emx_shutdown(device_t dev)
733 {
734 	return emx_suspend(dev);
735 }
736 
737 static int
738 emx_suspend(device_t dev)
739 {
740 	struct emx_softc *sc = device_get_softc(dev);
741 	struct ifnet *ifp = &sc->arpcom.ac_if;
742 
743 	ifnet_serialize_all(ifp);
744 
745 	emx_stop(sc);
746 
747 	emx_rel_mgmt(sc);
748 
749         if (sc->hw.mac.type == e1000_82573 &&
750             e1000_check_mng_mode(&sc->hw))
751                 emx_rel_hw_control(sc);
752 
753         if (sc->wol) {
754 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
755 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
756 		emx_enable_wol(dev);
757         }
758 
759 	ifnet_deserialize_all(ifp);
760 
761 	return bus_generic_suspend(dev);
762 }
763 
764 static int
765 emx_resume(device_t dev)
766 {
767 	struct emx_softc *sc = device_get_softc(dev);
768 	struct ifnet *ifp = &sc->arpcom.ac_if;
769 
770 	ifnet_serialize_all(ifp);
771 
772 	emx_init(sc);
773 	emx_get_mgmt(sc);
774 	if_devstart(ifp);
775 
776 	ifnet_deserialize_all(ifp);
777 
778 	return bus_generic_resume(dev);
779 }
780 
781 static void
782 emx_start(struct ifnet *ifp)
783 {
784 	struct emx_softc *sc = ifp->if_softc;
785 	struct mbuf *m_head;
786 
787 	ASSERT_SERIALIZED(&sc->tx_serialize);
788 
789 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
790 		return;
791 
792 	if (!sc->link_active) {
793 		ifq_purge(&ifp->if_snd);
794 		return;
795 	}
796 
797 	while (!ifq_is_empty(&ifp->if_snd)) {
798 		/* Now do we at least have a minimal? */
799 		if (EMX_IS_OACTIVE(sc)) {
800 			emx_tx_collect(sc);
801 			if (EMX_IS_OACTIVE(sc)) {
802 				ifp->if_flags |= IFF_OACTIVE;
803 				sc->no_tx_desc_avail1++;
804 				break;
805 			}
806 		}
807 
808 		logif(pkt_txqueue);
809 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
810 		if (m_head == NULL)
811 			break;
812 
813 		if (emx_encap(sc, &m_head)) {
814 			ifp->if_oerrors++;
815 			emx_tx_collect(sc);
816 			continue;
817 		}
818 
819 		/* Send a copy of the frame to the BPF listener */
820 		ETHER_BPF_MTAP(ifp, m_head);
821 
822 		/* Set timeout in case hardware has problems transmitting. */
823 		ifp->if_timer = EMX_TX_TIMEOUT;
824 	}
825 }
826 
827 static int
828 emx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
829 {
830 	struct emx_softc *sc = ifp->if_softc;
831 	struct ifreq *ifr = (struct ifreq *)data;
832 	uint16_t eeprom_data = 0;
833 	int max_frame_size, mask, reinit;
834 	int error = 0;
835 
836 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
837 
838 	switch (command) {
839 	case SIOCSIFMTU:
840 		switch (sc->hw.mac.type) {
841 		case e1000_82573:
842 			/*
843 			 * 82573 only supports jumbo frames
844 			 * if ASPM is disabled.
845 			 */
846 			e1000_read_nvm(&sc->hw, NVM_INIT_3GIO_3, 1,
847 				       &eeprom_data);
848 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
849 				max_frame_size = ETHER_MAX_LEN;
850 				break;
851 			}
852 			/* FALL THROUGH */
853 
854 		/* Limit Jumbo Frame size */
855 		case e1000_82571:
856 		case e1000_82572:
857 		case e1000_82574:
858 		case e1000_80003es2lan:
859 			max_frame_size = 9234;
860 			break;
861 
862 		default:
863 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
864 			break;
865 		}
866 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
867 		    ETHER_CRC_LEN) {
868 			error = EINVAL;
869 			break;
870 		}
871 
872 		ifp->if_mtu = ifr->ifr_mtu;
873 		sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
874 				     ETHER_CRC_LEN;
875 
876 		if (ifp->if_flags & IFF_RUNNING)
877 			emx_init(sc);
878 		break;
879 
880 	case SIOCSIFFLAGS:
881 		if (ifp->if_flags & IFF_UP) {
882 			if ((ifp->if_flags & IFF_RUNNING)) {
883 				if ((ifp->if_flags ^ sc->if_flags) &
884 				    (IFF_PROMISC | IFF_ALLMULTI)) {
885 					emx_disable_promisc(sc);
886 					emx_set_promisc(sc);
887 				}
888 			} else {
889 				emx_init(sc);
890 			}
891 		} else if (ifp->if_flags & IFF_RUNNING) {
892 			emx_stop(sc);
893 		}
894 		sc->if_flags = ifp->if_flags;
895 		break;
896 
897 	case SIOCADDMULTI:
898 	case SIOCDELMULTI:
899 		if (ifp->if_flags & IFF_RUNNING) {
900 			emx_disable_intr(sc);
901 			emx_set_multi(sc);
902 #ifdef IFPOLL_ENABLE
903 			if (!(ifp->if_flags & IFF_NPOLLING))
904 #endif
905 				emx_enable_intr(sc);
906 		}
907 		break;
908 
909 	case SIOCSIFMEDIA:
910 		/* Check SOL/IDER usage */
911 		if (e1000_check_reset_block(&sc->hw)) {
912 			device_printf(sc->dev, "Media change is"
913 			    " blocked due to SOL/IDER session.\n");
914 			break;
915 		}
916 		/* FALL THROUGH */
917 
918 	case SIOCGIFMEDIA:
919 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
920 		break;
921 
922 	case SIOCSIFCAP:
923 		reinit = 0;
924 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
925 		if (mask & IFCAP_HWCSUM) {
926 			ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
927 			reinit = 1;
928 		}
929 		if (mask & IFCAP_VLAN_HWTAGGING) {
930 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
931 			reinit = 1;
932 		}
933 		if (mask & IFCAP_RSS) {
934 			ifp->if_capenable ^= IFCAP_RSS;
935 			reinit = 1;
936 		}
937 		if (reinit && (ifp->if_flags & IFF_RUNNING))
938 			emx_init(sc);
939 		break;
940 
941 	default:
942 		error = ether_ioctl(ifp, command, data);
943 		break;
944 	}
945 	return (error);
946 }
947 
948 static void
949 emx_watchdog(struct ifnet *ifp)
950 {
951 	struct emx_softc *sc = ifp->if_softc;
952 
953 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
954 
955 	/*
956 	 * The timer is set to 5 every time start queues a packet.
957 	 * Then txeof keeps resetting it as long as it cleans at
958 	 * least one descriptor.
959 	 * Finally, anytime all descriptors are clean the timer is
960 	 * set to 0.
961 	 */
962 
963 	if (E1000_READ_REG(&sc->hw, E1000_TDT(0)) ==
964 	    E1000_READ_REG(&sc->hw, E1000_TDH(0))) {
965 		/*
966 		 * If we reach here, all TX jobs are completed and
967 		 * the TX engine should have been idled for some time.
968 		 * We don't need to call if_devstart() here.
969 		 */
970 		ifp->if_flags &= ~IFF_OACTIVE;
971 		ifp->if_timer = 0;
972 		return;
973 	}
974 
975 	/*
976 	 * If we are in this routine because of pause frames, then
977 	 * don't reset the hardware.
978 	 */
979 	if (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_TXOFF) {
980 		ifp->if_timer = EMX_TX_TIMEOUT;
981 		return;
982 	}
983 
984 	if (e1000_check_for_link(&sc->hw) == 0)
985 		if_printf(ifp, "watchdog timeout -- resetting\n");
986 
987 	ifp->if_oerrors++;
988 	sc->watchdog_events++;
989 
990 	emx_init(sc);
991 
992 	if (!ifq_is_empty(&ifp->if_snd))
993 		if_devstart(ifp);
994 }
995 
996 static void
997 emx_init(void *xsc)
998 {
999 	struct emx_softc *sc = xsc;
1000 	struct ifnet *ifp = &sc->arpcom.ac_if;
1001 	device_t dev = sc->dev;
1002 	uint32_t pba;
1003 	int i;
1004 
1005 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1006 
1007 	emx_stop(sc);
1008 
1009 	/*
1010 	 * Packet Buffer Allocation (PBA)
1011 	 * Writing PBA sets the receive portion of the buffer
1012 	 * the remainder is used for the transmit buffer.
1013 	 */
1014 	switch (sc->hw.mac.type) {
1015 	/* Total Packet Buffer on these is 48K */
1016 	case e1000_82571:
1017 	case e1000_82572:
1018 	case e1000_80003es2lan:
1019 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1020 		break;
1021 
1022 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1023 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1024 		break;
1025 
1026 	case e1000_82574:
1027 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1028 		break;
1029 
1030 	default:
1031 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1032 		if (sc->max_frame_size > 8192)
1033 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1034 		else
1035 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1036 	}
1037 	E1000_WRITE_REG(&sc->hw, E1000_PBA, pba);
1038 
1039 	/* Get the latest mac address, User can use a LAA */
1040         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
1041 
1042 	/* Put the address into the Receive Address Array */
1043 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1044 
1045 	/*
1046 	 * With the 82571 sc, RAR[0] may be overwritten
1047 	 * when the other port is reset, we make a duplicate
1048 	 * in RAR[14] for that eventuality, this assures
1049 	 * the interface continues to function.
1050 	 */
1051 	if (sc->hw.mac.type == e1000_82571) {
1052 		e1000_set_laa_state_82571(&sc->hw, TRUE);
1053 		e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1054 		    E1000_RAR_ENTRIES - 1);
1055 	}
1056 
1057 	/* Initialize the hardware */
1058 	if (emx_hw_init(sc)) {
1059 		device_printf(dev, "Unable to initialize the hardware\n");
1060 		/* XXX emx_stop()? */
1061 		return;
1062 	}
1063 	emx_update_link_status(sc);
1064 
1065 	/* Setup VLAN support, basic and offload if available */
1066 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1067 
1068 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1069 		uint32_t ctrl;
1070 
1071 		ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
1072 		ctrl |= E1000_CTRL_VME;
1073 		E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
1074 	}
1075 
1076 	/* Set hardware offload abilities */
1077 	if (ifp->if_capenable & IFCAP_TXCSUM)
1078 		ifp->if_hwassist = EMX_CSUM_FEATURES;
1079 	else
1080 		ifp->if_hwassist = 0;
1081 
1082 	/* Configure for OS presence */
1083 	emx_get_mgmt(sc);
1084 
1085 	/* Prepare transmit descriptors and buffers */
1086 	emx_init_tx_ring(sc);
1087 	emx_init_tx_unit(sc);
1088 
1089 	/* Setup Multicast table */
1090 	emx_set_multi(sc);
1091 
1092 	/*
1093 	 * Adjust # of RX ring to be used based on IFCAP_RSS
1094 	 */
1095 	if (ifp->if_capenable & IFCAP_RSS)
1096 		sc->rx_ring_inuse = sc->rx_ring_cnt;
1097 	else
1098 		sc->rx_ring_inuse = 1;
1099 
1100 	/* Prepare receive descriptors and buffers */
1101 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
1102 		if (emx_init_rx_ring(sc, &sc->rx_data[i])) {
1103 			device_printf(dev,
1104 			    "Could not setup receive structures\n");
1105 			emx_stop(sc);
1106 			return;
1107 		}
1108 	}
1109 	emx_init_rx_unit(sc);
1110 
1111 	/* Don't lose promiscuous settings */
1112 	emx_set_promisc(sc);
1113 
1114 	ifp->if_flags |= IFF_RUNNING;
1115 	ifp->if_flags &= ~IFF_OACTIVE;
1116 
1117 	callout_reset(&sc->timer, hz, emx_timer, sc);
1118 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1119 
1120 	/* MSI/X configuration for 82574 */
1121 	if (sc->hw.mac.type == e1000_82574) {
1122 		int tmp;
1123 
1124 		tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1125 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1126 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1127 		/*
1128 		 * Set the IVAR - interrupt vector routing.
1129 		 * Each nibble represents a vector, high bit
1130 		 * is enable, other 3 bits are the MSIX table
1131 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1132 		 * Link (other) to 2, hence the magic number.
1133 		 */
1134 		E1000_WRITE_REG(&sc->hw, E1000_IVAR, 0x800A0908);
1135 	}
1136 
1137 #ifdef IFPOLL_ENABLE
1138 	/*
1139 	 * Only enable interrupts if we are not polling, make sure
1140 	 * they are off otherwise.
1141 	 */
1142 	if (ifp->if_flags & IFF_NPOLLING)
1143 		emx_disable_intr(sc);
1144 	else
1145 #endif /* IFPOLL_ENABLE */
1146 		emx_enable_intr(sc);
1147 
1148 	/* Don't reset the phy next time init gets called */
1149 	sc->hw.phy.reset_disable = TRUE;
1150 }
1151 
1152 static void
1153 emx_intr(void *xsc)
1154 {
1155 	struct emx_softc *sc = xsc;
1156 	struct ifnet *ifp = &sc->arpcom.ac_if;
1157 	uint32_t reg_icr;
1158 
1159 	logif(intr_beg);
1160 	ASSERT_SERIALIZED(&sc->main_serialize);
1161 
1162 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1163 
1164 	if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0) {
1165 		logif(intr_end);
1166 		return;
1167 	}
1168 
1169 	/*
1170 	 * XXX: some laptops trigger several spurious interrupts
1171 	 * on emx(4) when in the resume cycle. The ICR register
1172 	 * reports all-ones value in this case. Processing such
1173 	 * interrupts would lead to a freeze. I don't know why.
1174 	 */
1175 	if (reg_icr == 0xffffffff) {
1176 		logif(intr_end);
1177 		return;
1178 	}
1179 
1180 	if (ifp->if_flags & IFF_RUNNING) {
1181 		if (reg_icr &
1182 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
1183 			int i;
1184 
1185 			for (i = 0; i < sc->rx_ring_inuse; ++i) {
1186 				lwkt_serialize_enter(
1187 				&sc->rx_data[i].rx_serialize);
1188 				emx_rxeof(sc, i, -1);
1189 				lwkt_serialize_exit(
1190 				&sc->rx_data[i].rx_serialize);
1191 			}
1192 		}
1193 		if (reg_icr & E1000_ICR_TXDW) {
1194 			lwkt_serialize_enter(&sc->tx_serialize);
1195 			emx_txeof(sc);
1196 			if (!ifq_is_empty(&ifp->if_snd))
1197 				if_devstart(ifp);
1198 			lwkt_serialize_exit(&sc->tx_serialize);
1199 		}
1200 	}
1201 
1202 	/* Link status change */
1203 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1204 		emx_serialize_skipmain(sc);
1205 
1206 		callout_stop(&sc->timer);
1207 		sc->hw.mac.get_link_status = 1;
1208 		emx_update_link_status(sc);
1209 
1210 		/* Deal with TX cruft when link lost */
1211 		emx_tx_purge(sc);
1212 
1213 		callout_reset(&sc->timer, hz, emx_timer, sc);
1214 
1215 		emx_deserialize_skipmain(sc);
1216 	}
1217 
1218 	if (reg_icr & E1000_ICR_RXO)
1219 		sc->rx_overruns++;
1220 
1221 	logif(intr_end);
1222 }
1223 
1224 static void
1225 emx_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1226 {
1227 	struct emx_softc *sc = ifp->if_softc;
1228 
1229 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1230 
1231 	emx_update_link_status(sc);
1232 
1233 	ifmr->ifm_status = IFM_AVALID;
1234 	ifmr->ifm_active = IFM_ETHER;
1235 
1236 	if (!sc->link_active)
1237 		return;
1238 
1239 	ifmr->ifm_status |= IFM_ACTIVE;
1240 
1241 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1242 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1243 		ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
1244 	} else {
1245 		switch (sc->link_speed) {
1246 		case 10:
1247 			ifmr->ifm_active |= IFM_10_T;
1248 			break;
1249 		case 100:
1250 			ifmr->ifm_active |= IFM_100_TX;
1251 			break;
1252 
1253 		case 1000:
1254 			ifmr->ifm_active |= IFM_1000_T;
1255 			break;
1256 		}
1257 		if (sc->link_duplex == FULL_DUPLEX)
1258 			ifmr->ifm_active |= IFM_FDX;
1259 		else
1260 			ifmr->ifm_active |= IFM_HDX;
1261 	}
1262 }
1263 
1264 static int
1265 emx_media_change(struct ifnet *ifp)
1266 {
1267 	struct emx_softc *sc = ifp->if_softc;
1268 	struct ifmedia *ifm = &sc->media;
1269 
1270 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1271 
1272 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1273 		return (EINVAL);
1274 
1275 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1276 	case IFM_AUTO:
1277 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1278 		sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
1279 		break;
1280 
1281 	case IFM_1000_LX:
1282 	case IFM_1000_SX:
1283 	case IFM_1000_T:
1284 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1285 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1286 		break;
1287 
1288 	case IFM_100_TX:
1289 		sc->hw.mac.autoneg = FALSE;
1290 		sc->hw.phy.autoneg_advertised = 0;
1291 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1292 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1293 		else
1294 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1295 		break;
1296 
1297 	case IFM_10_T:
1298 		sc->hw.mac.autoneg = FALSE;
1299 		sc->hw.phy.autoneg_advertised = 0;
1300 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1301 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1302 		else
1303 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1304 		break;
1305 
1306 	default:
1307 		if_printf(ifp, "Unsupported media type\n");
1308 		break;
1309 	}
1310 
1311 	/*
1312 	 * As the speed/duplex settings my have changed we need to
1313 	 * reset the PHY.
1314 	 */
1315 	sc->hw.phy.reset_disable = FALSE;
1316 
1317 	emx_init(sc);
1318 
1319 	return (0);
1320 }
1321 
1322 static int
1323 emx_encap(struct emx_softc *sc, struct mbuf **m_headp)
1324 {
1325 	bus_dma_segment_t segs[EMX_MAX_SCATTER];
1326 	bus_dmamap_t map;
1327 	struct emx_txbuf *tx_buffer, *tx_buffer_mapped;
1328 	struct e1000_tx_desc *ctxd = NULL;
1329 	struct mbuf *m_head = *m_headp;
1330 	uint32_t txd_upper, txd_lower, cmd = 0;
1331 	int maxsegs, nsegs, i, j, first, last = 0, error;
1332 
1333 	if (m_head->m_len < EMX_TXCSUM_MINHL &&
1334 	    (m_head->m_flags & EMX_CSUM_FEATURES)) {
1335 		/*
1336 		 * Make sure that ethernet header and ip.ip_hl are in
1337 		 * contiguous memory, since if TXCSUM is enabled, later
1338 		 * TX context descriptor's setup need to access ip.ip_hl.
1339 		 */
1340 		error = emx_txcsum_pullup(sc, m_headp);
1341 		if (error) {
1342 			KKASSERT(*m_headp == NULL);
1343 			return error;
1344 		}
1345 		m_head = *m_headp;
1346 	}
1347 
1348 	txd_upper = txd_lower = 0;
1349 
1350 	/*
1351 	 * Capture the first descriptor index, this descriptor
1352 	 * will have the index of the EOP which is the only one
1353 	 * that now gets a DONE bit writeback.
1354 	 */
1355 	first = sc->next_avail_tx_desc;
1356 	tx_buffer = &sc->tx_buf[first];
1357 	tx_buffer_mapped = tx_buffer;
1358 	map = tx_buffer->map;
1359 
1360 	maxsegs = sc->num_tx_desc_avail - EMX_TX_RESERVED;
1361 	KASSERT(maxsegs >= sc->spare_tx_desc, ("not enough spare TX desc\n"));
1362 	if (maxsegs > EMX_MAX_SCATTER)
1363 		maxsegs = EMX_MAX_SCATTER;
1364 
1365 	error = bus_dmamap_load_mbuf_defrag(sc->txtag, map, m_headp,
1366 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1367 	if (error) {
1368 		if (error == ENOBUFS)
1369 			sc->mbuf_alloc_failed++;
1370 		else
1371 			sc->no_tx_dma_setup++;
1372 
1373 		m_freem(*m_headp);
1374 		*m_headp = NULL;
1375 		return error;
1376 	}
1377         bus_dmamap_sync(sc->txtag, map, BUS_DMASYNC_PREWRITE);
1378 
1379 	m_head = *m_headp;
1380 	sc->tx_nsegs += nsegs;
1381 
1382 	if (m_head->m_pkthdr.csum_flags & EMX_CSUM_FEATURES) {
1383 		/* TX csum offloading will consume one TX desc */
1384 		sc->tx_nsegs += emx_txcsum(sc, m_head, &txd_upper, &txd_lower);
1385 	}
1386 	i = sc->next_avail_tx_desc;
1387 
1388 	/* Set up our transmit descriptors */
1389 	for (j = 0; j < nsegs; j++) {
1390 		tx_buffer = &sc->tx_buf[i];
1391 		ctxd = &sc->tx_desc_base[i];
1392 
1393 		ctxd->buffer_addr = htole64(segs[j].ds_addr);
1394 		ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1395 					   txd_lower | segs[j].ds_len);
1396 		ctxd->upper.data = htole32(txd_upper);
1397 
1398 		last = i;
1399 		if (++i == sc->num_tx_desc)
1400 			i = 0;
1401 	}
1402 
1403 	sc->next_avail_tx_desc = i;
1404 
1405 	KKASSERT(sc->num_tx_desc_avail > nsegs);
1406 	sc->num_tx_desc_avail -= nsegs;
1407 
1408         /* Handle VLAN tag */
1409 	if (m_head->m_flags & M_VLANTAG) {
1410 		/* Set the vlan id. */
1411 		ctxd->upper.fields.special =
1412 		    htole16(m_head->m_pkthdr.ether_vlantag);
1413 
1414 		/* Tell hardware to add tag */
1415 		ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
1416 	}
1417 
1418 	tx_buffer->m_head = m_head;
1419 	tx_buffer_mapped->map = tx_buffer->map;
1420 	tx_buffer->map = map;
1421 
1422 	if (sc->tx_nsegs >= sc->tx_int_nsegs) {
1423 		sc->tx_nsegs = 0;
1424 
1425 		/*
1426 		 * Report Status (RS) is turned on
1427 		 * every tx_int_nsegs descriptors.
1428 		 */
1429 		cmd = E1000_TXD_CMD_RS;
1430 
1431 		/*
1432 		 * Keep track of the descriptor, which will
1433 		 * be written back by hardware.
1434 		 */
1435 		sc->tx_dd[sc->tx_dd_tail] = last;
1436 		EMX_INC_TXDD_IDX(sc->tx_dd_tail);
1437 		KKASSERT(sc->tx_dd_tail != sc->tx_dd_head);
1438 	}
1439 
1440 	/*
1441 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1442 	 */
1443 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1444 
1445 	/*
1446 	 * Advance the Transmit Descriptor Tail (TDT), this tells
1447 	 * the E1000 that this frame is available to transmit.
1448 	 */
1449 	E1000_WRITE_REG(&sc->hw, E1000_TDT(0), i);
1450 
1451 	return (0);
1452 }
1453 
1454 static void
1455 emx_set_promisc(struct emx_softc *sc)
1456 {
1457 	struct ifnet *ifp = &sc->arpcom.ac_if;
1458 	uint32_t reg_rctl;
1459 
1460 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1461 
1462 	if (ifp->if_flags & IFF_PROMISC) {
1463 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1464 		/* Turn this on if you want to see bad packets */
1465 		if (emx_debug_sbp)
1466 			reg_rctl |= E1000_RCTL_SBP;
1467 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1468 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1469 		reg_rctl |= E1000_RCTL_MPE;
1470 		reg_rctl &= ~E1000_RCTL_UPE;
1471 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1472 	}
1473 }
1474 
1475 static void
1476 emx_disable_promisc(struct emx_softc *sc)
1477 {
1478 	uint32_t reg_rctl;
1479 
1480 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1481 
1482 	reg_rctl &= ~E1000_RCTL_UPE;
1483 	reg_rctl &= ~E1000_RCTL_MPE;
1484 	reg_rctl &= ~E1000_RCTL_SBP;
1485 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1486 }
1487 
1488 static void
1489 emx_set_multi(struct emx_softc *sc)
1490 {
1491 	struct ifnet *ifp = &sc->arpcom.ac_if;
1492 	struct ifmultiaddr *ifma;
1493 	uint32_t reg_rctl = 0;
1494 	uint8_t  mta[512]; /* Largest MTS is 4096 bits */
1495 	int mcnt = 0;
1496 
1497 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1498 		if (ifma->ifma_addr->sa_family != AF_LINK)
1499 			continue;
1500 
1501 		if (mcnt == EMX_MCAST_ADDR_MAX)
1502 			break;
1503 
1504 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1505 		      &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1506 		mcnt++;
1507 	}
1508 
1509 	if (mcnt >= EMX_MCAST_ADDR_MAX) {
1510 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1511 		reg_rctl |= E1000_RCTL_MPE;
1512 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1513 	} else {
1514 		e1000_update_mc_addr_list(&sc->hw, mta,
1515 		    mcnt, 1, sc->hw.mac.rar_entry_count);
1516 	}
1517 }
1518 
1519 /*
1520  * This routine checks for link status and updates statistics.
1521  */
1522 static void
1523 emx_timer(void *xsc)
1524 {
1525 	struct emx_softc *sc = xsc;
1526 	struct ifnet *ifp = &sc->arpcom.ac_if;
1527 
1528 	ifnet_serialize_all(ifp);
1529 
1530 	emx_update_link_status(sc);
1531 	emx_update_stats(sc);
1532 
1533 	/* Reset LAA into RAR[0] on 82571 */
1534 	if (e1000_get_laa_state_82571(&sc->hw) == TRUE)
1535 		e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1536 
1537 	if (emx_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1538 		emx_print_hw_stats(sc);
1539 
1540 	emx_smartspeed(sc);
1541 
1542 	callout_reset(&sc->timer, hz, emx_timer, sc);
1543 
1544 	ifnet_deserialize_all(ifp);
1545 }
1546 
1547 static void
1548 emx_update_link_status(struct emx_softc *sc)
1549 {
1550 	struct e1000_hw *hw = &sc->hw;
1551 	struct ifnet *ifp = &sc->arpcom.ac_if;
1552 	device_t dev = sc->dev;
1553 	uint32_t link_check = 0;
1554 
1555 	/* Get the cached link value or read phy for real */
1556 	switch (hw->phy.media_type) {
1557 	case e1000_media_type_copper:
1558 		if (hw->mac.get_link_status) {
1559 			/* Do the work to read phy */
1560 			e1000_check_for_link(hw);
1561 			link_check = !hw->mac.get_link_status;
1562 			if (link_check) /* ESB2 fix */
1563 				e1000_cfg_on_link_up(hw);
1564 		} else {
1565 			link_check = TRUE;
1566 		}
1567 		break;
1568 
1569 	case e1000_media_type_fiber:
1570 		e1000_check_for_link(hw);
1571 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1572 		break;
1573 
1574 	case e1000_media_type_internal_serdes:
1575 		e1000_check_for_link(hw);
1576 		link_check = sc->hw.mac.serdes_has_link;
1577 		break;
1578 
1579 	case e1000_media_type_unknown:
1580 	default:
1581 		break;
1582 	}
1583 
1584 	/* Now check for a transition */
1585 	if (link_check && sc->link_active == 0) {
1586 		e1000_get_speed_and_duplex(hw, &sc->link_speed,
1587 		    &sc->link_duplex);
1588 
1589 		/*
1590 		 * Check if we should enable/disable SPEED_MODE bit on
1591 		 * 82571EB/82572EI
1592 		 */
1593 		if (hw->mac.type == e1000_82571 ||
1594 		    hw->mac.type == e1000_82572) {
1595 			int tarc0;
1596 
1597 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1598 			if (sc->link_speed != SPEED_1000)
1599 				tarc0 &= ~EMX_TARC_SPEED_MODE;
1600 			else
1601 				tarc0 |= EMX_TARC_SPEED_MODE;
1602 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1603 		}
1604 		if (bootverbose) {
1605 			device_printf(dev, "Link is up %d Mbps %s\n",
1606 			    sc->link_speed,
1607 			    ((sc->link_duplex == FULL_DUPLEX) ?
1608 			    "Full Duplex" : "Half Duplex"));
1609 		}
1610 		sc->link_active = 1;
1611 		sc->smartspeed = 0;
1612 		ifp->if_baudrate = sc->link_speed * 1000000;
1613 		ifp->if_link_state = LINK_STATE_UP;
1614 		if_link_state_change(ifp);
1615 	} else if (!link_check && sc->link_active == 1) {
1616 		ifp->if_baudrate = sc->link_speed = 0;
1617 		sc->link_duplex = 0;
1618 		if (bootverbose)
1619 			device_printf(dev, "Link is Down\n");
1620 		sc->link_active = 0;
1621 #if 0
1622 		/* Link down, disable watchdog */
1623 		if->if_timer = 0;
1624 #endif
1625 		ifp->if_link_state = LINK_STATE_DOWN;
1626 		if_link_state_change(ifp);
1627 	}
1628 }
1629 
1630 static void
1631 emx_stop(struct emx_softc *sc)
1632 {
1633 	struct ifnet *ifp = &sc->arpcom.ac_if;
1634 	int i;
1635 
1636 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1637 
1638 	emx_disable_intr(sc);
1639 
1640 	callout_stop(&sc->timer);
1641 
1642 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1643 	ifp->if_timer = 0;
1644 
1645 	/*
1646 	 * Disable multiple receive queues.
1647 	 *
1648 	 * NOTE:
1649 	 * We should disable multiple receive queues before
1650 	 * resetting the hardware.
1651 	 */
1652 	E1000_WRITE_REG(&sc->hw, E1000_MRQC, 0);
1653 
1654 	e1000_reset_hw(&sc->hw);
1655 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1656 
1657 	for (i = 0; i < sc->num_tx_desc; i++) {
1658 		struct emx_txbuf *tx_buffer = &sc->tx_buf[i];
1659 
1660 		if (tx_buffer->m_head != NULL) {
1661 			bus_dmamap_unload(sc->txtag, tx_buffer->map);
1662 			m_freem(tx_buffer->m_head);
1663 			tx_buffer->m_head = NULL;
1664 		}
1665 	}
1666 
1667 	for (i = 0; i < sc->rx_ring_inuse; ++i)
1668 		emx_free_rx_ring(sc, &sc->rx_data[i]);
1669 
1670 	sc->csum_flags = 0;
1671 	sc->csum_ehlen = 0;
1672 	sc->csum_iphlen = 0;
1673 
1674 	sc->tx_dd_head = 0;
1675 	sc->tx_dd_tail = 0;
1676 	sc->tx_nsegs = 0;
1677 }
1678 
1679 static int
1680 emx_hw_init(struct emx_softc *sc)
1681 {
1682 	device_t dev = sc->dev;
1683 	uint16_t rx_buffer_size;
1684 
1685 	/* Issue a global reset */
1686 	e1000_reset_hw(&sc->hw);
1687 
1688 	/* Get control from any management/hw control */
1689 	if (sc->hw.mac.type == e1000_82573 &&
1690 	    e1000_check_mng_mode(&sc->hw))
1691 		emx_get_hw_control(sc);
1692 
1693 	/* Set up smart power down as default off on newer adapters. */
1694 	if (!emx_smart_pwr_down &&
1695 	    (sc->hw.mac.type == e1000_82571 ||
1696 	     sc->hw.mac.type == e1000_82572)) {
1697 		uint16_t phy_tmp = 0;
1698 
1699 		/* Speed up time to link by disabling smart power down. */
1700 		e1000_read_phy_reg(&sc->hw,
1701 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
1702 		phy_tmp &= ~IGP02E1000_PM_SPD;
1703 		e1000_write_phy_reg(&sc->hw,
1704 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
1705 	}
1706 
1707 	/*
1708 	 * These parameters control the automatic generation (Tx) and
1709 	 * response (Rx) to Ethernet PAUSE frames.
1710 	 * - High water mark should allow for at least two frames to be
1711 	 *   received after sending an XOFF.
1712 	 * - Low water mark works best when it is very near the high water mark.
1713 	 *   This allows the receiver to restart by sending XON when it has
1714 	 *   drained a bit. Here we use an arbitary value of 1500 which will
1715 	 *   restart after one full frame is pulled from the buffer. There
1716 	 *   could be several smaller frames in the buffer and if so they will
1717 	 *   not trigger the XON until their total number reduces the buffer
1718 	 *   by 1500.
1719 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1720 	 */
1721 	rx_buffer_size = (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) << 10;
1722 
1723 	sc->hw.fc.high_water = rx_buffer_size -
1724 			       roundup2(sc->max_frame_size, 1024);
1725 	sc->hw.fc.low_water = sc->hw.fc.high_water - 1500;
1726 
1727 	if (sc->hw.mac.type == e1000_80003es2lan)
1728 		sc->hw.fc.pause_time = 0xFFFF;
1729 	else
1730 		sc->hw.fc.pause_time = EMX_FC_PAUSE_TIME;
1731 	sc->hw.fc.send_xon = TRUE;
1732 	sc->hw.fc.requested_mode = e1000_fc_full;
1733 
1734 	if (e1000_init_hw(&sc->hw) < 0) {
1735 		device_printf(dev, "Hardware Initialization Failed\n");
1736 		return (EIO);
1737 	}
1738 
1739 	e1000_check_for_link(&sc->hw);
1740 
1741 	return (0);
1742 }
1743 
1744 static void
1745 emx_setup_ifp(struct emx_softc *sc)
1746 {
1747 	struct ifnet *ifp = &sc->arpcom.ac_if;
1748 
1749 	if_initname(ifp, device_get_name(sc->dev),
1750 		    device_get_unit(sc->dev));
1751 	ifp->if_softc = sc;
1752 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1753 	ifp->if_init =  emx_init;
1754 	ifp->if_ioctl = emx_ioctl;
1755 	ifp->if_start = emx_start;
1756 #ifdef IFPOLL_ENABLE
1757 	ifp->if_qpoll = emx_qpoll;
1758 #endif
1759 	ifp->if_watchdog = emx_watchdog;
1760 	ifp->if_serialize = emx_serialize;
1761 	ifp->if_deserialize = emx_deserialize;
1762 	ifp->if_tryserialize = emx_tryserialize;
1763 #ifdef INVARIANTS
1764 	ifp->if_serialize_assert = emx_serialize_assert;
1765 #endif
1766 	ifq_set_maxlen(&ifp->if_snd, sc->num_tx_desc - 1);
1767 	ifq_set_ready(&ifp->if_snd);
1768 
1769 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1770 
1771 	ifp->if_capabilities = IFCAP_HWCSUM |
1772 			       IFCAP_VLAN_HWTAGGING |
1773 			       IFCAP_VLAN_MTU;
1774 	if (sc->rx_ring_cnt > 1)
1775 		ifp->if_capabilities |= IFCAP_RSS;
1776 	ifp->if_capenable = ifp->if_capabilities;
1777 	ifp->if_hwassist = EMX_CSUM_FEATURES;
1778 
1779 	/*
1780 	 * Tell the upper layer(s) we support long frames.
1781 	 */
1782 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1783 
1784 	/*
1785 	 * Specify the media types supported by this sc and register
1786 	 * callbacks to update media and link information
1787 	 */
1788 	ifmedia_init(&sc->media, IFM_IMASK,
1789 		     emx_media_change, emx_media_status);
1790 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1791 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1792 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1793 			    0, NULL);
1794 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
1795 	} else {
1796 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1797 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1798 			    0, NULL);
1799 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1800 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1801 			    0, NULL);
1802 		if (sc->hw.phy.type != e1000_phy_ife) {
1803 			ifmedia_add(&sc->media,
1804 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1805 			ifmedia_add(&sc->media,
1806 				IFM_ETHER | IFM_1000_T, 0, NULL);
1807 		}
1808 	}
1809 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1810 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1811 }
1812 
1813 /*
1814  * Workaround for SmartSpeed on 82541 and 82547 controllers
1815  */
1816 static void
1817 emx_smartspeed(struct emx_softc *sc)
1818 {
1819 	uint16_t phy_tmp;
1820 
1821 	if (sc->link_active || sc->hw.phy.type != e1000_phy_igp ||
1822 	    sc->hw.mac.autoneg == 0 ||
1823 	    (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
1824 		return;
1825 
1826 	if (sc->smartspeed == 0) {
1827 		/*
1828 		 * If Master/Slave config fault is asserted twice,
1829 		 * we assume back-to-back
1830 		 */
1831 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
1832 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
1833 			return;
1834 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
1835 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
1836 			e1000_read_phy_reg(&sc->hw,
1837 			    PHY_1000T_CTRL, &phy_tmp);
1838 			if (phy_tmp & CR_1000T_MS_ENABLE) {
1839 				phy_tmp &= ~CR_1000T_MS_ENABLE;
1840 				e1000_write_phy_reg(&sc->hw,
1841 				    PHY_1000T_CTRL, phy_tmp);
1842 				sc->smartspeed++;
1843 				if (sc->hw.mac.autoneg &&
1844 				    !e1000_phy_setup_autoneg(&sc->hw) &&
1845 				    !e1000_read_phy_reg(&sc->hw,
1846 				     PHY_CONTROL, &phy_tmp)) {
1847 					phy_tmp |= MII_CR_AUTO_NEG_EN |
1848 						   MII_CR_RESTART_AUTO_NEG;
1849 					e1000_write_phy_reg(&sc->hw,
1850 					    PHY_CONTROL, phy_tmp);
1851 				}
1852 			}
1853 		}
1854 		return;
1855 	} else if (sc->smartspeed == EMX_SMARTSPEED_DOWNSHIFT) {
1856 		/* If still no link, perhaps using 2/3 pair cable */
1857 		e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
1858 		phy_tmp |= CR_1000T_MS_ENABLE;
1859 		e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
1860 		if (sc->hw.mac.autoneg &&
1861 		    !e1000_phy_setup_autoneg(&sc->hw) &&
1862 		    !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
1863 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
1864 			e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
1865 		}
1866 	}
1867 
1868 	/* Restart process after EMX_SMARTSPEED_MAX iterations */
1869 	if (sc->smartspeed++ == EMX_SMARTSPEED_MAX)
1870 		sc->smartspeed = 0;
1871 }
1872 
1873 static int
1874 emx_create_tx_ring(struct emx_softc *sc)
1875 {
1876 	device_t dev = sc->dev;
1877 	struct emx_txbuf *tx_buffer;
1878 	int error, i, tsize;
1879 
1880 	/*
1881 	 * Validate number of transmit descriptors.  It must not exceed
1882 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
1883 	 */
1884 	if ((emx_txd * sizeof(struct e1000_tx_desc)) % EMX_DBA_ALIGN != 0 ||
1885 	    emx_txd > EMX_MAX_TXD || emx_txd < EMX_MIN_TXD) {
1886 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
1887 		    EMX_DEFAULT_TXD, emx_txd);
1888 		sc->num_tx_desc = EMX_DEFAULT_TXD;
1889 	} else {
1890 		sc->num_tx_desc = emx_txd;
1891 	}
1892 
1893 	/*
1894 	 * Allocate Transmit Descriptor ring
1895 	 */
1896 	tsize = roundup2(sc->num_tx_desc * sizeof(struct e1000_tx_desc),
1897 			 EMX_DBA_ALIGN);
1898 	sc->tx_desc_base = bus_dmamem_coherent_any(sc->parent_dtag,
1899 				EMX_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
1900 				&sc->tx_desc_dtag, &sc->tx_desc_dmap,
1901 				&sc->tx_desc_paddr);
1902 	if (sc->tx_desc_base == NULL) {
1903 		device_printf(dev, "Unable to allocate tx_desc memory\n");
1904 		return ENOMEM;
1905 	}
1906 
1907 	sc->tx_buf = kmalloc(sizeof(struct emx_txbuf) * sc->num_tx_desc,
1908 			     M_DEVBUF, M_WAITOK | M_ZERO);
1909 
1910 	/*
1911 	 * Create DMA tags for tx buffers
1912 	 */
1913 	error = bus_dma_tag_create(sc->parent_dtag, /* parent */
1914 			1, 0,			/* alignment, bounds */
1915 			BUS_SPACE_MAXADDR,	/* lowaddr */
1916 			BUS_SPACE_MAXADDR,	/* highaddr */
1917 			NULL, NULL,		/* filter, filterarg */
1918 			EMX_TSO_SIZE,		/* maxsize */
1919 			EMX_MAX_SCATTER,	/* nsegments */
1920 			EMX_MAX_SEGSIZE,	/* maxsegsize */
1921 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
1922 			BUS_DMA_ONEBPAGE,	/* flags */
1923 			&sc->txtag);
1924 	if (error) {
1925 		device_printf(dev, "Unable to allocate TX DMA tag\n");
1926 		kfree(sc->tx_buf, M_DEVBUF);
1927 		sc->tx_buf = NULL;
1928 		return error;
1929 	}
1930 
1931 	/*
1932 	 * Create DMA maps for tx buffers
1933 	 */
1934 	for (i = 0; i < sc->num_tx_desc; i++) {
1935 		tx_buffer = &sc->tx_buf[i];
1936 
1937 		error = bus_dmamap_create(sc->txtag,
1938 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1939 					  &tx_buffer->map);
1940 		if (error) {
1941 			device_printf(dev, "Unable to create TX DMA map\n");
1942 			emx_destroy_tx_ring(sc, i);
1943 			return error;
1944 		}
1945 	}
1946 	return (0);
1947 }
1948 
1949 static void
1950 emx_init_tx_ring(struct emx_softc *sc)
1951 {
1952 	/* Clear the old ring contents */
1953 	bzero(sc->tx_desc_base,
1954 	      sizeof(struct e1000_tx_desc) * sc->num_tx_desc);
1955 
1956 	/* Reset state */
1957 	sc->next_avail_tx_desc = 0;
1958 	sc->next_tx_to_clean = 0;
1959 	sc->num_tx_desc_avail = sc->num_tx_desc;
1960 }
1961 
1962 static void
1963 emx_init_tx_unit(struct emx_softc *sc)
1964 {
1965 	uint32_t tctl, tarc, tipg = 0;
1966 	uint64_t bus_addr;
1967 
1968 	/* Setup the Base and Length of the Tx Descriptor Ring */
1969 	bus_addr = sc->tx_desc_paddr;
1970 	E1000_WRITE_REG(&sc->hw, E1000_TDLEN(0),
1971 	    sc->num_tx_desc * sizeof(struct e1000_tx_desc));
1972 	E1000_WRITE_REG(&sc->hw, E1000_TDBAH(0),
1973 	    (uint32_t)(bus_addr >> 32));
1974 	E1000_WRITE_REG(&sc->hw, E1000_TDBAL(0),
1975 	    (uint32_t)bus_addr);
1976 	/* Setup the HW Tx Head and Tail descriptor pointers */
1977 	E1000_WRITE_REG(&sc->hw, E1000_TDT(0), 0);
1978 	E1000_WRITE_REG(&sc->hw, E1000_TDH(0), 0);
1979 
1980 	/* Set the default values for the Tx Inter Packet Gap timer */
1981 	switch (sc->hw.mac.type) {
1982 	case e1000_80003es2lan:
1983 		tipg = DEFAULT_82543_TIPG_IPGR1;
1984 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
1985 		    E1000_TIPG_IPGR2_SHIFT;
1986 		break;
1987 
1988 	default:
1989 		if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1990 		    sc->hw.phy.media_type == e1000_media_type_internal_serdes)
1991 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1992 		else
1993 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1994 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
1995 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
1996 		break;
1997 	}
1998 
1999 	E1000_WRITE_REG(&sc->hw, E1000_TIPG, tipg);
2000 
2001 	/* NOTE: 0 is not allowed for TIDV */
2002 	E1000_WRITE_REG(&sc->hw, E1000_TIDV, 1);
2003 	E1000_WRITE_REG(&sc->hw, E1000_TADV, 0);
2004 
2005 	if (sc->hw.mac.type == e1000_82571 ||
2006 	    sc->hw.mac.type == e1000_82572) {
2007 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2008 		tarc |= EMX_TARC_SPEED_MODE;
2009 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2010 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
2011 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2012 		tarc |= 1;
2013 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2014 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2015 		tarc |= 1;
2016 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2017 	}
2018 
2019 	/* Program the Transmit Control Register */
2020 	tctl = E1000_READ_REG(&sc->hw, E1000_TCTL);
2021 	tctl &= ~E1000_TCTL_CT;
2022 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2023 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2024 	tctl |= E1000_TCTL_MULR;
2025 
2026 	/* This write will effectively turn on the transmit unit. */
2027 	E1000_WRITE_REG(&sc->hw, E1000_TCTL, tctl);
2028 }
2029 
2030 static void
2031 emx_destroy_tx_ring(struct emx_softc *sc, int ndesc)
2032 {
2033 	struct emx_txbuf *tx_buffer;
2034 	int i;
2035 
2036 	/* Free Transmit Descriptor ring */
2037 	if (sc->tx_desc_base) {
2038 		bus_dmamap_unload(sc->tx_desc_dtag, sc->tx_desc_dmap);
2039 		bus_dmamem_free(sc->tx_desc_dtag, sc->tx_desc_base,
2040 				sc->tx_desc_dmap);
2041 		bus_dma_tag_destroy(sc->tx_desc_dtag);
2042 
2043 		sc->tx_desc_base = NULL;
2044 	}
2045 
2046 	if (sc->tx_buf == NULL)
2047 		return;
2048 
2049 	for (i = 0; i < ndesc; i++) {
2050 		tx_buffer = &sc->tx_buf[i];
2051 
2052 		KKASSERT(tx_buffer->m_head == NULL);
2053 		bus_dmamap_destroy(sc->txtag, tx_buffer->map);
2054 	}
2055 	bus_dma_tag_destroy(sc->txtag);
2056 
2057 	kfree(sc->tx_buf, M_DEVBUF);
2058 	sc->tx_buf = NULL;
2059 }
2060 
2061 /*
2062  * The offload context needs to be set when we transfer the first
2063  * packet of a particular protocol (TCP/UDP).  This routine has been
2064  * enhanced to deal with inserted VLAN headers.
2065  *
2066  * If the new packet's ether header length, ip header length and
2067  * csum offloading type are same as the previous packet, we should
2068  * avoid allocating a new csum context descriptor; mainly to take
2069  * advantage of the pipeline effect of the TX data read request.
2070  *
2071  * This function returns number of TX descrptors allocated for
2072  * csum context.
2073  */
2074 static int
2075 emx_txcsum(struct emx_softc *sc, struct mbuf *mp,
2076 	   uint32_t *txd_upper, uint32_t *txd_lower)
2077 {
2078 	struct e1000_context_desc *TXD;
2079 	struct emx_txbuf *tx_buffer;
2080 	struct ether_vlan_header *eh;
2081 	struct ip *ip;
2082 	int curr_txd, ehdrlen, csum_flags;
2083 	uint32_t cmd, hdr_len, ip_hlen;
2084 	uint16_t etype;
2085 
2086 	/*
2087 	 * Determine where frame payload starts.
2088 	 * Jump over vlan headers if already present,
2089 	 * helpful for QinQ too.
2090 	 */
2091 	KASSERT(mp->m_len >= ETHER_HDR_LEN,
2092 		("emx_txcsum_pullup is not called (eh)?\n"));
2093 	eh = mtod(mp, struct ether_vlan_header *);
2094 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
2095 		KASSERT(mp->m_len >= ETHER_HDR_LEN + EVL_ENCAPLEN,
2096 			("emx_txcsum_pullup is not called (evh)?\n"));
2097 		etype = ntohs(eh->evl_proto);
2098 		ehdrlen = ETHER_HDR_LEN + EVL_ENCAPLEN;
2099 	} else {
2100 		etype = ntohs(eh->evl_encap_proto);
2101 		ehdrlen = ETHER_HDR_LEN;
2102 	}
2103 
2104 	/*
2105 	 * We only support TCP/UDP for IPv4 for the moment.
2106 	 * TODO: Support SCTP too when it hits the tree.
2107 	 */
2108 	if (etype != ETHERTYPE_IP)
2109 		return 0;
2110 
2111 	KASSERT(mp->m_len >= ehdrlen + EMX_IPVHL_SIZE,
2112 		("emx_txcsum_pullup is not called (eh+ip_vhl)?\n"));
2113 
2114 	/* NOTE: We could only safely access ip.ip_vhl part */
2115 	ip = (struct ip *)(mp->m_data + ehdrlen);
2116 	ip_hlen = ip->ip_hl << 2;
2117 
2118 	csum_flags = mp->m_pkthdr.csum_flags & EMX_CSUM_FEATURES;
2119 
2120 	if (sc->csum_ehlen == ehdrlen && sc->csum_iphlen == ip_hlen &&
2121 	    sc->csum_flags == csum_flags) {
2122 		/*
2123 		 * Same csum offload context as the previous packets;
2124 		 * just return.
2125 		 */
2126 		*txd_upper = sc->csum_txd_upper;
2127 		*txd_lower = sc->csum_txd_lower;
2128 		return 0;
2129 	}
2130 
2131 	/*
2132 	 * Setup a new csum offload context.
2133 	 */
2134 
2135 	curr_txd = sc->next_avail_tx_desc;
2136 	tx_buffer = &sc->tx_buf[curr_txd];
2137 	TXD = (struct e1000_context_desc *)&sc->tx_desc_base[curr_txd];
2138 
2139 	cmd = 0;
2140 
2141 	/* Setup of IP header checksum. */
2142 	if (csum_flags & CSUM_IP) {
2143 		/*
2144 		 * Start offset for header checksum calculation.
2145 		 * End offset for header checksum calculation.
2146 		 * Offset of place to put the checksum.
2147 		 */
2148 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2149 		TXD->lower_setup.ip_fields.ipcse =
2150 		    htole16(ehdrlen + ip_hlen - 1);
2151 		TXD->lower_setup.ip_fields.ipcso =
2152 		    ehdrlen + offsetof(struct ip, ip_sum);
2153 		cmd |= E1000_TXD_CMD_IP;
2154 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2155 	}
2156 	hdr_len = ehdrlen + ip_hlen;
2157 
2158 	if (csum_flags & CSUM_TCP) {
2159 		/*
2160 		 * Start offset for payload checksum calculation.
2161 		 * End offset for payload checksum calculation.
2162 		 * Offset of place to put the checksum.
2163 		 */
2164 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2165 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2166 		TXD->upper_setup.tcp_fields.tucso =
2167 		    hdr_len + offsetof(struct tcphdr, th_sum);
2168 		cmd |= E1000_TXD_CMD_TCP;
2169 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2170 	} else if (csum_flags & CSUM_UDP) {
2171 		/*
2172 		 * Start offset for header checksum calculation.
2173 		 * End offset for header checksum calculation.
2174 		 * Offset of place to put the checksum.
2175 		 */
2176 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2177 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2178 		TXD->upper_setup.tcp_fields.tucso =
2179 		    hdr_len + offsetof(struct udphdr, uh_sum);
2180 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2181 	}
2182 
2183 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2184 		     E1000_TXD_DTYP_D;		/* Data descr */
2185 
2186 	/* Save the information for this csum offloading context */
2187 	sc->csum_ehlen = ehdrlen;
2188 	sc->csum_iphlen = ip_hlen;
2189 	sc->csum_flags = csum_flags;
2190 	sc->csum_txd_upper = *txd_upper;
2191 	sc->csum_txd_lower = *txd_lower;
2192 
2193 	TXD->tcp_seg_setup.data = htole32(0);
2194 	TXD->cmd_and_length =
2195 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2196 
2197 	if (++curr_txd == sc->num_tx_desc)
2198 		curr_txd = 0;
2199 
2200 	KKASSERT(sc->num_tx_desc_avail > 0);
2201 	sc->num_tx_desc_avail--;
2202 
2203 	sc->next_avail_tx_desc = curr_txd;
2204 	return 1;
2205 }
2206 
2207 static int
2208 emx_txcsum_pullup(struct emx_softc *sc, struct mbuf **m0)
2209 {
2210 	struct mbuf *m = *m0;
2211 	struct ether_header *eh;
2212 	int len;
2213 
2214 	sc->tx_csum_try_pullup++;
2215 
2216 	len = ETHER_HDR_LEN + EMX_IPVHL_SIZE;
2217 
2218 	if (__predict_false(!M_WRITABLE(m))) {
2219 		if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2220 			sc->tx_csum_drop1++;
2221 			m_freem(m);
2222 			*m0 = NULL;
2223 			return ENOBUFS;
2224 		}
2225 		eh = mtod(m, struct ether_header *);
2226 
2227 		if (eh->ether_type == htons(ETHERTYPE_VLAN))
2228 			len += EVL_ENCAPLEN;
2229 
2230 		if (m->m_len < len) {
2231 			sc->tx_csum_drop2++;
2232 			m_freem(m);
2233 			*m0 = NULL;
2234 			return ENOBUFS;
2235 		}
2236 		return 0;
2237 	}
2238 
2239 	if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2240 		sc->tx_csum_pullup1++;
2241 		m = m_pullup(m, ETHER_HDR_LEN);
2242 		if (m == NULL) {
2243 			sc->tx_csum_pullup1_failed++;
2244 			*m0 = NULL;
2245 			return ENOBUFS;
2246 		}
2247 		*m0 = m;
2248 	}
2249 	eh = mtod(m, struct ether_header *);
2250 
2251 	if (eh->ether_type == htons(ETHERTYPE_VLAN))
2252 		len += EVL_ENCAPLEN;
2253 
2254 	if (m->m_len < len) {
2255 		sc->tx_csum_pullup2++;
2256 		m = m_pullup(m, len);
2257 		if (m == NULL) {
2258 			sc->tx_csum_pullup2_failed++;
2259 			*m0 = NULL;
2260 			return ENOBUFS;
2261 		}
2262 		*m0 = m;
2263 	}
2264 	return 0;
2265 }
2266 
2267 static void
2268 emx_txeof(struct emx_softc *sc)
2269 {
2270 	struct ifnet *ifp = &sc->arpcom.ac_if;
2271 	struct emx_txbuf *tx_buffer;
2272 	int first, num_avail;
2273 
2274 	if (sc->tx_dd_head == sc->tx_dd_tail)
2275 		return;
2276 
2277 	if (sc->num_tx_desc_avail == sc->num_tx_desc)
2278 		return;
2279 
2280 	num_avail = sc->num_tx_desc_avail;
2281 	first = sc->next_tx_to_clean;
2282 
2283 	while (sc->tx_dd_head != sc->tx_dd_tail) {
2284 		int dd_idx = sc->tx_dd[sc->tx_dd_head];
2285 		struct e1000_tx_desc *tx_desc;
2286 
2287 		tx_desc = &sc->tx_desc_base[dd_idx];
2288 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2289 			EMX_INC_TXDD_IDX(sc->tx_dd_head);
2290 
2291 			if (++dd_idx == sc->num_tx_desc)
2292 				dd_idx = 0;
2293 
2294 			while (first != dd_idx) {
2295 				logif(pkt_txclean);
2296 
2297 				num_avail++;
2298 
2299 				tx_buffer = &sc->tx_buf[first];
2300 				if (tx_buffer->m_head) {
2301 					ifp->if_opackets++;
2302 					bus_dmamap_unload(sc->txtag,
2303 							  tx_buffer->map);
2304 					m_freem(tx_buffer->m_head);
2305 					tx_buffer->m_head = NULL;
2306 				}
2307 
2308 				if (++first == sc->num_tx_desc)
2309 					first = 0;
2310 			}
2311 		} else {
2312 			break;
2313 		}
2314 	}
2315 	sc->next_tx_to_clean = first;
2316 	sc->num_tx_desc_avail = num_avail;
2317 
2318 	if (sc->tx_dd_head == sc->tx_dd_tail) {
2319 		sc->tx_dd_head = 0;
2320 		sc->tx_dd_tail = 0;
2321 	}
2322 
2323 	if (!EMX_IS_OACTIVE(sc)) {
2324 		ifp->if_flags &= ~IFF_OACTIVE;
2325 
2326 		/* All clean, turn off the timer */
2327 		if (sc->num_tx_desc_avail == sc->num_tx_desc)
2328 			ifp->if_timer = 0;
2329 	}
2330 }
2331 
2332 static void
2333 emx_tx_collect(struct emx_softc *sc)
2334 {
2335 	struct ifnet *ifp = &sc->arpcom.ac_if;
2336 	struct emx_txbuf *tx_buffer;
2337 	int tdh, first, num_avail, dd_idx = -1;
2338 
2339 	if (sc->num_tx_desc_avail == sc->num_tx_desc)
2340 		return;
2341 
2342 	tdh = E1000_READ_REG(&sc->hw, E1000_TDH(0));
2343 	if (tdh == sc->next_tx_to_clean)
2344 		return;
2345 
2346 	if (sc->tx_dd_head != sc->tx_dd_tail)
2347 		dd_idx = sc->tx_dd[sc->tx_dd_head];
2348 
2349 	num_avail = sc->num_tx_desc_avail;
2350 	first = sc->next_tx_to_clean;
2351 
2352 	while (first != tdh) {
2353 		logif(pkt_txclean);
2354 
2355 		num_avail++;
2356 
2357 		tx_buffer = &sc->tx_buf[first];
2358 		if (tx_buffer->m_head) {
2359 			ifp->if_opackets++;
2360 			bus_dmamap_unload(sc->txtag,
2361 					  tx_buffer->map);
2362 			m_freem(tx_buffer->m_head);
2363 			tx_buffer->m_head = NULL;
2364 		}
2365 
2366 		if (first == dd_idx) {
2367 			EMX_INC_TXDD_IDX(sc->tx_dd_head);
2368 			if (sc->tx_dd_head == sc->tx_dd_tail) {
2369 				sc->tx_dd_head = 0;
2370 				sc->tx_dd_tail = 0;
2371 				dd_idx = -1;
2372 			} else {
2373 				dd_idx = sc->tx_dd[sc->tx_dd_head];
2374 			}
2375 		}
2376 
2377 		if (++first == sc->num_tx_desc)
2378 			first = 0;
2379 	}
2380 	sc->next_tx_to_clean = first;
2381 	sc->num_tx_desc_avail = num_avail;
2382 
2383 	if (!EMX_IS_OACTIVE(sc)) {
2384 		ifp->if_flags &= ~IFF_OACTIVE;
2385 
2386 		/* All clean, turn off the timer */
2387 		if (sc->num_tx_desc_avail == sc->num_tx_desc)
2388 			ifp->if_timer = 0;
2389 	}
2390 }
2391 
2392 /*
2393  * When Link is lost sometimes there is work still in the TX ring
2394  * which will result in a watchdog, rather than allow that do an
2395  * attempted cleanup and then reinit here.  Note that this has been
2396  * seens mostly with fiber adapters.
2397  */
2398 static void
2399 emx_tx_purge(struct emx_softc *sc)
2400 {
2401 	struct ifnet *ifp = &sc->arpcom.ac_if;
2402 
2403 	if (!sc->link_active && ifp->if_timer) {
2404 		emx_tx_collect(sc);
2405 		if (ifp->if_timer) {
2406 			if_printf(ifp, "Link lost, TX pending, reinit\n");
2407 			ifp->if_timer = 0;
2408 			emx_init(sc);
2409 		}
2410 	}
2411 }
2412 
2413 static int
2414 emx_newbuf(struct emx_softc *sc, struct emx_rxdata *rdata, int i, int init)
2415 {
2416 	struct mbuf *m;
2417 	bus_dma_segment_t seg;
2418 	bus_dmamap_t map;
2419 	struct emx_rxbuf *rx_buffer;
2420 	int error, nseg;
2421 
2422 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2423 	if (m == NULL) {
2424 		rdata->mbuf_cluster_failed++;
2425 		if (init) {
2426 			if_printf(&sc->arpcom.ac_if,
2427 				  "Unable to allocate RX mbuf\n");
2428 		}
2429 		return (ENOBUFS);
2430 	}
2431 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2432 
2433 	if (sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2434 		m_adj(m, ETHER_ALIGN);
2435 
2436 	error = bus_dmamap_load_mbuf_segment(rdata->rxtag,
2437 			rdata->rx_sparemap, m,
2438 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
2439 	if (error) {
2440 		m_freem(m);
2441 		if (init) {
2442 			if_printf(&sc->arpcom.ac_if,
2443 				  "Unable to load RX mbuf\n");
2444 		}
2445 		return (error);
2446 	}
2447 
2448 	rx_buffer = &rdata->rx_buf[i];
2449 	if (rx_buffer->m_head != NULL)
2450 		bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2451 
2452 	map = rx_buffer->map;
2453 	rx_buffer->map = rdata->rx_sparemap;
2454 	rdata->rx_sparemap = map;
2455 
2456 	rx_buffer->m_head = m;
2457 	rx_buffer->paddr = seg.ds_addr;
2458 
2459 	emx_setup_rxdesc(&rdata->rx_desc[i], rx_buffer);
2460 	return (0);
2461 }
2462 
2463 static int
2464 emx_create_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2465 {
2466 	device_t dev = sc->dev;
2467 	struct emx_rxbuf *rx_buffer;
2468 	int i, error, rsize;
2469 
2470 	/*
2471 	 * Validate number of receive descriptors.  It must not exceed
2472 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2473 	 */
2474 	if ((emx_rxd * sizeof(emx_rxdesc_t)) % EMX_DBA_ALIGN != 0 ||
2475 	    emx_rxd > EMX_MAX_RXD || emx_rxd < EMX_MIN_RXD) {
2476 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
2477 		    EMX_DEFAULT_RXD, emx_rxd);
2478 		rdata->num_rx_desc = EMX_DEFAULT_RXD;
2479 	} else {
2480 		rdata->num_rx_desc = emx_rxd;
2481 	}
2482 
2483 	/*
2484 	 * Allocate Receive Descriptor ring
2485 	 */
2486 	rsize = roundup2(rdata->num_rx_desc * sizeof(emx_rxdesc_t),
2487 			 EMX_DBA_ALIGN);
2488 	rdata->rx_desc = bus_dmamem_coherent_any(sc->parent_dtag,
2489 				EMX_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2490 				&rdata->rx_desc_dtag, &rdata->rx_desc_dmap,
2491 				&rdata->rx_desc_paddr);
2492 	if (rdata->rx_desc == NULL) {
2493 		device_printf(dev, "Unable to allocate rx_desc memory\n");
2494 		return ENOMEM;
2495 	}
2496 
2497 	rdata->rx_buf = kmalloc(sizeof(struct emx_rxbuf) * rdata->num_rx_desc,
2498 				M_DEVBUF, M_WAITOK | M_ZERO);
2499 
2500 	/*
2501 	 * Create DMA tag for rx buffers
2502 	 */
2503 	error = bus_dma_tag_create(sc->parent_dtag, /* parent */
2504 			1, 0,			/* alignment, bounds */
2505 			BUS_SPACE_MAXADDR,	/* lowaddr */
2506 			BUS_SPACE_MAXADDR,	/* highaddr */
2507 			NULL, NULL,		/* filter, filterarg */
2508 			MCLBYTES,		/* maxsize */
2509 			1,			/* nsegments */
2510 			MCLBYTES,		/* maxsegsize */
2511 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2512 			&rdata->rxtag);
2513 	if (error) {
2514 		device_printf(dev, "Unable to allocate RX DMA tag\n");
2515 		kfree(rdata->rx_buf, M_DEVBUF);
2516 		rdata->rx_buf = NULL;
2517 		return error;
2518 	}
2519 
2520 	/*
2521 	 * Create spare DMA map for rx buffers
2522 	 */
2523 	error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2524 				  &rdata->rx_sparemap);
2525 	if (error) {
2526 		device_printf(dev, "Unable to create spare RX DMA map\n");
2527 		bus_dma_tag_destroy(rdata->rxtag);
2528 		kfree(rdata->rx_buf, M_DEVBUF);
2529 		rdata->rx_buf = NULL;
2530 		return error;
2531 	}
2532 
2533 	/*
2534 	 * Create DMA maps for rx buffers
2535 	 */
2536 	for (i = 0; i < rdata->num_rx_desc; i++) {
2537 		rx_buffer = &rdata->rx_buf[i];
2538 
2539 		error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2540 					  &rx_buffer->map);
2541 		if (error) {
2542 			device_printf(dev, "Unable to create RX DMA map\n");
2543 			emx_destroy_rx_ring(sc, rdata, i);
2544 			return error;
2545 		}
2546 	}
2547 	return (0);
2548 }
2549 
2550 static void
2551 emx_free_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2552 {
2553 	int i;
2554 
2555 	for (i = 0; i < rdata->num_rx_desc; i++) {
2556 		struct emx_rxbuf *rx_buffer = &rdata->rx_buf[i];
2557 
2558 		if (rx_buffer->m_head != NULL) {
2559 			bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2560 			m_freem(rx_buffer->m_head);
2561 			rx_buffer->m_head = NULL;
2562 		}
2563 	}
2564 
2565 	if (rdata->fmp != NULL)
2566 		m_freem(rdata->fmp);
2567 	rdata->fmp = NULL;
2568 	rdata->lmp = NULL;
2569 }
2570 
2571 static int
2572 emx_init_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2573 {
2574 	int i, error;
2575 
2576 	/* Reset descriptor ring */
2577 	bzero(rdata->rx_desc, sizeof(emx_rxdesc_t) * rdata->num_rx_desc);
2578 
2579 	/* Allocate new ones. */
2580 	for (i = 0; i < rdata->num_rx_desc; i++) {
2581 		error = emx_newbuf(sc, rdata, i, 1);
2582 		if (error)
2583 			return (error);
2584 	}
2585 
2586 	/* Setup our descriptor pointers */
2587 	rdata->next_rx_desc_to_check = 0;
2588 
2589 	return (0);
2590 }
2591 
2592 static void
2593 emx_init_rx_unit(struct emx_softc *sc)
2594 {
2595 	struct ifnet *ifp = &sc->arpcom.ac_if;
2596 	uint64_t bus_addr;
2597 	uint32_t rctl, rxcsum, rfctl;
2598 	int i;
2599 
2600 	/*
2601 	 * Make sure receives are disabled while setting
2602 	 * up the descriptor ring
2603 	 */
2604 	rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2605 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2606 
2607 	/*
2608 	 * Set the interrupt throttling rate. Value is calculated
2609 	 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
2610 	 */
2611 	if (sc->int_throttle_ceil) {
2612 		E1000_WRITE_REG(&sc->hw, E1000_ITR,
2613 			1000000000 / 256 / sc->int_throttle_ceil);
2614 	} else {
2615 		E1000_WRITE_REG(&sc->hw, E1000_ITR, 0);
2616 	}
2617 
2618 	/* Use extended RX descriptor */
2619 	rfctl = E1000_RFCTL_EXTEN;
2620 
2621 	/* Disable accelerated ackknowledge */
2622 	if (sc->hw.mac.type == e1000_82574)
2623 		rfctl |= E1000_RFCTL_ACK_DIS;
2624 
2625 	E1000_WRITE_REG(&sc->hw, E1000_RFCTL, rfctl);
2626 
2627 	/* Setup the Base and Length of the Rx Descriptor Ring */
2628 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
2629 		struct emx_rxdata *rdata = &sc->rx_data[i];
2630 
2631 		bus_addr = rdata->rx_desc_paddr;
2632 		E1000_WRITE_REG(&sc->hw, E1000_RDLEN(i),
2633 		    rdata->num_rx_desc * sizeof(emx_rxdesc_t));
2634 		E1000_WRITE_REG(&sc->hw, E1000_RDBAH(i),
2635 		    (uint32_t)(bus_addr >> 32));
2636 		E1000_WRITE_REG(&sc->hw, E1000_RDBAL(i),
2637 		    (uint32_t)bus_addr);
2638 	}
2639 
2640 	/* Setup the Receive Control Register */
2641 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2642 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2643 		E1000_RCTL_RDMTS_HALF | E1000_RCTL_SECRC |
2644 		(sc->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2645 
2646 	/* Make sure VLAN Filters are off */
2647 	rctl &= ~E1000_RCTL_VFE;
2648 
2649 	/* Don't store bad paket */
2650 	rctl &= ~E1000_RCTL_SBP;
2651 
2652 	/* MCLBYTES */
2653 	rctl |= E1000_RCTL_SZ_2048;
2654 
2655 	if (ifp->if_mtu > ETHERMTU)
2656 		rctl |= E1000_RCTL_LPE;
2657 	else
2658 		rctl &= ~E1000_RCTL_LPE;
2659 
2660 	/*
2661 	 * Receive Checksum Offload for TCP and UDP
2662 	 *
2663 	 * Checksum offloading is also enabled if multiple receive
2664 	 * queue is to be supported, since we need it to figure out
2665 	 * packet type.
2666 	 */
2667 	if (ifp->if_capenable & (IFCAP_RSS | IFCAP_RXCSUM)) {
2668 		rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2669 
2670 		/*
2671 		 * NOTE:
2672 		 * PCSD must be enabled to enable multiple
2673 		 * receive queues.
2674 		 */
2675 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2676 			  E1000_RXCSUM_PCSD;
2677 		E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2678 	}
2679 
2680 	/*
2681 	 * Configure multiple receive queue (RSS)
2682 	 */
2683 	if (ifp->if_capenable & IFCAP_RSS) {
2684 		uint8_t key[EMX_NRSSRK * EMX_RSSRK_SIZE];
2685 		uint32_t reta;
2686 
2687 		KASSERT(sc->rx_ring_inuse == EMX_NRX_RING,
2688 			("invalid number of RX ring (%d)",
2689 			 sc->rx_ring_inuse));
2690 
2691 		/*
2692 		 * NOTE:
2693 		 * When we reach here, RSS has already been disabled
2694 		 * in emx_stop(), so we could safely configure RSS key
2695 		 * and redirect table.
2696 		 */
2697 
2698 		/*
2699 		 * Configure RSS key
2700 		 */
2701 		toeplitz_get_key(key, sizeof(key));
2702 		for (i = 0; i < EMX_NRSSRK; ++i) {
2703 			uint32_t rssrk;
2704 
2705 			rssrk = EMX_RSSRK_VAL(key, i);
2706 			EMX_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2707 
2708 			E1000_WRITE_REG(&sc->hw, E1000_RSSRK(i), rssrk);
2709 		}
2710 
2711 		/*
2712 		 * Configure RSS redirect table in following fashion:
2713 	 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2714 		 */
2715 		reta = 0;
2716 		for (i = 0; i < EMX_RETA_SIZE; ++i) {
2717 			uint32_t q;
2718 
2719 			q = (i % sc->rx_ring_inuse) << EMX_RETA_RINGIDX_SHIFT;
2720 			reta |= q << (8 * i);
2721 		}
2722 		EMX_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2723 
2724 		for (i = 0; i < EMX_NRETA; ++i)
2725 			E1000_WRITE_REG(&sc->hw, E1000_RETA(i), reta);
2726 
2727 		/*
2728 		 * Enable multiple receive queues.
2729 		 * Enable IPv4 RSS standard hash functions.
2730 		 * Disable RSS interrupt.
2731 		 */
2732 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2733 				E1000_MRQC_ENABLE_RSS_2Q |
2734 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
2735 				E1000_MRQC_RSS_FIELD_IPV4);
2736 	}
2737 
2738 	/*
2739 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
2740 	 * long latencies are observed, like Lenovo X60. This
2741 	 * change eliminates the problem, but since having positive
2742 	 * values in RDTR is a known source of problems on other
2743 	 * platforms another solution is being sought.
2744 	 */
2745 	if (emx_82573_workaround && sc->hw.mac.type == e1000_82573) {
2746 		E1000_WRITE_REG(&sc->hw, E1000_RADV, EMX_RADV_82573);
2747 		E1000_WRITE_REG(&sc->hw, E1000_RDTR, EMX_RDTR_82573);
2748 	}
2749 
2750 	/*
2751 	 * Setup the HW Rx Head and Tail Descriptor Pointers
2752 	 */
2753 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
2754 		E1000_WRITE_REG(&sc->hw, E1000_RDH(i), 0);
2755 		E1000_WRITE_REG(&sc->hw, E1000_RDT(i),
2756 		    sc->rx_data[i].num_rx_desc - 1);
2757 	}
2758 
2759 	/* Enable Receives */
2760 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
2761 }
2762 
2763 static void
2764 emx_destroy_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata, int ndesc)
2765 {
2766 	struct emx_rxbuf *rx_buffer;
2767 	int i;
2768 
2769 	/* Free Receive Descriptor ring */
2770 	if (rdata->rx_desc) {
2771 		bus_dmamap_unload(rdata->rx_desc_dtag, rdata->rx_desc_dmap);
2772 		bus_dmamem_free(rdata->rx_desc_dtag, rdata->rx_desc,
2773 				rdata->rx_desc_dmap);
2774 		bus_dma_tag_destroy(rdata->rx_desc_dtag);
2775 
2776 		rdata->rx_desc = NULL;
2777 	}
2778 
2779 	if (rdata->rx_buf == NULL)
2780 		return;
2781 
2782 	for (i = 0; i < ndesc; i++) {
2783 		rx_buffer = &rdata->rx_buf[i];
2784 
2785 		KKASSERT(rx_buffer->m_head == NULL);
2786 		bus_dmamap_destroy(rdata->rxtag, rx_buffer->map);
2787 	}
2788 	bus_dmamap_destroy(rdata->rxtag, rdata->rx_sparemap);
2789 	bus_dma_tag_destroy(rdata->rxtag);
2790 
2791 	kfree(rdata->rx_buf, M_DEVBUF);
2792 	rdata->rx_buf = NULL;
2793 }
2794 
2795 static void
2796 emx_rxeof(struct emx_softc *sc, int ring_idx, int count)
2797 {
2798 	struct emx_rxdata *rdata = &sc->rx_data[ring_idx];
2799 	struct ifnet *ifp = &sc->arpcom.ac_if;
2800 	uint32_t staterr;
2801 	emx_rxdesc_t *current_desc;
2802 	struct mbuf *mp;
2803 	int i;
2804 	struct mbuf_chain chain[MAXCPU];
2805 
2806 	i = rdata->next_rx_desc_to_check;
2807 	current_desc = &rdata->rx_desc[i];
2808 	staterr = le32toh(current_desc->rxd_staterr);
2809 
2810 	if (!(staterr & E1000_RXD_STAT_DD))
2811 		return;
2812 
2813 	ether_input_chain_init(chain);
2814 
2815 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2816 		struct pktinfo *pi = NULL, pi0;
2817 		struct emx_rxbuf *rx_buf = &rdata->rx_buf[i];
2818 		struct mbuf *m = NULL;
2819 		int eop, len;
2820 
2821 		logif(pkt_receive);
2822 
2823 		mp = rx_buf->m_head;
2824 
2825 		/*
2826 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
2827 		 * needs to access the last received byte in the mbuf.
2828 		 */
2829 		bus_dmamap_sync(rdata->rxtag, rx_buf->map,
2830 				BUS_DMASYNC_POSTREAD);
2831 
2832 		len = le16toh(current_desc->rxd_length);
2833 		if (staterr & E1000_RXD_STAT_EOP) {
2834 			count--;
2835 			eop = 1;
2836 		} else {
2837 			eop = 0;
2838 		}
2839 
2840 		if (!(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
2841 			uint16_t vlan = 0;
2842 			uint32_t mrq, rss_hash;
2843 
2844 			/*
2845 			 * Save several necessary information,
2846 			 * before emx_newbuf() destroy it.
2847 			 */
2848 			if ((staterr & E1000_RXD_STAT_VP) && eop)
2849 				vlan = le16toh(current_desc->rxd_vlan);
2850 
2851 			mrq = le32toh(current_desc->rxd_mrq);
2852 			rss_hash = le32toh(current_desc->rxd_rss);
2853 
2854 			EMX_RSS_DPRINTF(sc, 10,
2855 			    "ring%d, mrq 0x%08x, rss_hash 0x%08x\n",
2856 			    ring_idx, mrq, rss_hash);
2857 
2858 			if (emx_newbuf(sc, rdata, i, 0) != 0) {
2859 				ifp->if_iqdrops++;
2860 				goto discard;
2861 			}
2862 
2863 			/* Assign correct length to the current fragment */
2864 			mp->m_len = len;
2865 
2866 			if (rdata->fmp == NULL) {
2867 				mp->m_pkthdr.len = len;
2868 				rdata->fmp = mp; /* Store the first mbuf */
2869 				rdata->lmp = mp;
2870 			} else {
2871 				/*
2872 				 * Chain mbuf's together
2873 				 */
2874 				rdata->lmp->m_next = mp;
2875 				rdata->lmp = rdata->lmp->m_next;
2876 				rdata->fmp->m_pkthdr.len += len;
2877 			}
2878 
2879 			if (eop) {
2880 				rdata->fmp->m_pkthdr.rcvif = ifp;
2881 				ifp->if_ipackets++;
2882 
2883 				if (ifp->if_capenable & IFCAP_RXCSUM)
2884 					emx_rxcsum(staterr, rdata->fmp);
2885 
2886 				if (staterr & E1000_RXD_STAT_VP) {
2887 					rdata->fmp->m_pkthdr.ether_vlantag =
2888 					    vlan;
2889 					rdata->fmp->m_flags |= M_VLANTAG;
2890 				}
2891 				m = rdata->fmp;
2892 				rdata->fmp = NULL;
2893 				rdata->lmp = NULL;
2894 
2895 				if (ifp->if_capenable & IFCAP_RSS) {
2896 					pi = emx_rssinfo(m, &pi0, mrq,
2897 							 rss_hash, staterr);
2898 				}
2899 #ifdef EMX_RSS_DEBUG
2900 				rdata->rx_pkts++;
2901 #endif
2902 			}
2903 		} else {
2904 			ifp->if_ierrors++;
2905 discard:
2906 			emx_setup_rxdesc(current_desc, rx_buf);
2907 			if (rdata->fmp != NULL) {
2908 				m_freem(rdata->fmp);
2909 				rdata->fmp = NULL;
2910 				rdata->lmp = NULL;
2911 			}
2912 			m = NULL;
2913 		}
2914 
2915 		if (m != NULL)
2916 			ether_input_chain(ifp, m, pi, chain);
2917 
2918 		/* Advance our pointers to the next descriptor. */
2919 		if (++i == rdata->num_rx_desc)
2920 			i = 0;
2921 
2922 		current_desc = &rdata->rx_desc[i];
2923 		staterr = le32toh(current_desc->rxd_staterr);
2924 	}
2925 	rdata->next_rx_desc_to_check = i;
2926 
2927 	ether_input_dispatch(chain);
2928 
2929 	/* Advance the E1000's Receive Queue "Tail Pointer". */
2930 	if (--i < 0)
2931 		i = rdata->num_rx_desc - 1;
2932 	E1000_WRITE_REG(&sc->hw, E1000_RDT(ring_idx), i);
2933 }
2934 
2935 static void
2936 emx_enable_intr(struct emx_softc *sc)
2937 {
2938 	lwkt_serialize_handler_enable(&sc->main_serialize);
2939 	E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
2940 }
2941 
2942 static void
2943 emx_disable_intr(struct emx_softc *sc)
2944 {
2945 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
2946 	lwkt_serialize_handler_disable(&sc->main_serialize);
2947 }
2948 
2949 /*
2950  * Bit of a misnomer, what this really means is
2951  * to enable OS management of the system... aka
2952  * to disable special hardware management features
2953  */
2954 static void
2955 emx_get_mgmt(struct emx_softc *sc)
2956 {
2957 	/* A shared code workaround */
2958 	if (sc->has_manage) {
2959 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
2960 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2961 
2962 		/* disable hardware interception of ARP */
2963 		manc &= ~(E1000_MANC_ARP_EN);
2964 
2965                 /* enable receiving management packets to the host */
2966 		manc |= E1000_MANC_EN_MNG2HOST;
2967 #define E1000_MNG2HOST_PORT_623 (1 << 5)
2968 #define E1000_MNG2HOST_PORT_664 (1 << 6)
2969 		manc2h |= E1000_MNG2HOST_PORT_623;
2970 		manc2h |= E1000_MNG2HOST_PORT_664;
2971 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
2972 
2973 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2974 	}
2975 }
2976 
2977 /*
2978  * Give control back to hardware management
2979  * controller if there is one.
2980  */
2981 static void
2982 emx_rel_mgmt(struct emx_softc *sc)
2983 {
2984 	if (sc->has_manage) {
2985 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2986 
2987 		/* re-enable hardware interception of ARP */
2988 		manc |= E1000_MANC_ARP_EN;
2989 		manc &= ~E1000_MANC_EN_MNG2HOST;
2990 
2991 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2992 	}
2993 }
2994 
2995 /*
2996  * emx_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
2997  * For ASF and Pass Through versions of f/w this means that
2998  * the driver is loaded.  For AMT version (only with 82573)
2999  * of the f/w this means that the network i/f is open.
3000  */
3001 static void
3002 emx_get_hw_control(struct emx_softc *sc)
3003 {
3004 	uint32_t ctrl_ext, swsm;
3005 
3006 	/* Let firmware know the driver has taken over */
3007 	switch (sc->hw.mac.type) {
3008 	case e1000_82573:
3009 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3010 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3011 		    swsm | E1000_SWSM_DRV_LOAD);
3012 		break;
3013 
3014 	case e1000_82571:
3015 	case e1000_82572:
3016 	case e1000_80003es2lan:
3017 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3018 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3019 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3020 		break;
3021 
3022 	default:
3023 		break;
3024 	}
3025 }
3026 
3027 /*
3028  * emx_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3029  * For ASF and Pass Through versions of f/w this means that the
3030  * driver is no longer loaded.  For AMT version (only with 82573)
3031  * of the f/w this means that the network i/f is closed.
3032  */
3033 static void
3034 emx_rel_hw_control(struct emx_softc *sc)
3035 {
3036 	uint32_t ctrl_ext, swsm;
3037 
3038 	/* Let firmware taken over control of h/w */
3039 	switch (sc->hw.mac.type) {
3040 	case e1000_82573:
3041 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3042 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3043 		    swsm & ~E1000_SWSM_DRV_LOAD);
3044 		break;
3045 
3046 	case e1000_82571:
3047 	case e1000_82572:
3048 	case e1000_80003es2lan:
3049 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3050 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3051 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3052 		break;
3053 
3054 	default:
3055 		break;
3056 	}
3057 }
3058 
3059 static int
3060 emx_is_valid_eaddr(const uint8_t *addr)
3061 {
3062 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3063 
3064 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3065 		return (FALSE);
3066 
3067 	return (TRUE);
3068 }
3069 
3070 /*
3071  * Enable PCI Wake On Lan capability
3072  */
3073 void
3074 emx_enable_wol(device_t dev)
3075 {
3076 	uint16_t cap, status;
3077 	uint8_t id;
3078 
3079 	/* First find the capabilities pointer*/
3080 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3081 
3082 	/* Read the PM Capabilities */
3083 	id = pci_read_config(dev, cap, 1);
3084 	if (id != PCIY_PMG)     /* Something wrong */
3085 		return;
3086 
3087 	/*
3088 	 * OK, we have the power capabilities,
3089 	 * so now get the status register
3090 	 */
3091 	cap += PCIR_POWER_STATUS;
3092 	status = pci_read_config(dev, cap, 2);
3093 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3094 	pci_write_config(dev, cap, status, 2);
3095 }
3096 
3097 static void
3098 emx_update_stats(struct emx_softc *sc)
3099 {
3100 	struct ifnet *ifp = &sc->arpcom.ac_if;
3101 
3102 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
3103 	    (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3104 		sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
3105 		sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
3106 	}
3107 	sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
3108 	sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
3109 	sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
3110 	sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
3111 
3112 	sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
3113 	sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
3114 	sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
3115 	sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
3116 	sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
3117 	sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
3118 	sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
3119 	sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
3120 	sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
3121 	sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
3122 	sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
3123 	sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
3124 	sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
3125 	sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
3126 	sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
3127 	sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
3128 	sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
3129 	sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
3130 	sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
3131 	sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
3132 
3133 	/* For the 64-bit byte counters the low dword must be read first. */
3134 	/* Both registers clear on the read of the high dword */
3135 
3136 	sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCH);
3137 	sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCH);
3138 
3139 	sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
3140 	sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
3141 	sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
3142 	sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
3143 	sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
3144 
3145 	sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
3146 	sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
3147 
3148 	sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
3149 	sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
3150 	sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
3151 	sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
3152 	sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
3153 	sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
3154 	sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
3155 	sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
3156 	sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
3157 	sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
3158 
3159 	sc->stats.algnerrc += E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
3160 	sc->stats.rxerrc += E1000_READ_REG(&sc->hw, E1000_RXERRC);
3161 	sc->stats.tncrs += E1000_READ_REG(&sc->hw, E1000_TNCRS);
3162 	sc->stats.cexterr += E1000_READ_REG(&sc->hw, E1000_CEXTERR);
3163 	sc->stats.tsctc += E1000_READ_REG(&sc->hw, E1000_TSCTC);
3164 	sc->stats.tsctfc += E1000_READ_REG(&sc->hw, E1000_TSCTFC);
3165 
3166 	ifp->if_collisions = sc->stats.colc;
3167 
3168 	/* Rx Errors */
3169 	ifp->if_ierrors = sc->dropped_pkts + sc->stats.rxerrc +
3170 			  sc->stats.crcerrs + sc->stats.algnerrc +
3171 			  sc->stats.ruc + sc->stats.roc +
3172 			  sc->stats.mpc + sc->stats.cexterr;
3173 
3174 	/* Tx Errors */
3175 	ifp->if_oerrors = sc->stats.ecol + sc->stats.latecol +
3176 			  sc->watchdog_events;
3177 }
3178 
3179 static void
3180 emx_print_debug_info(struct emx_softc *sc)
3181 {
3182 	device_t dev = sc->dev;
3183 	uint8_t *hw_addr = sc->hw.hw_addr;
3184 
3185 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3186 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3187 	    E1000_READ_REG(&sc->hw, E1000_CTRL),
3188 	    E1000_READ_REG(&sc->hw, E1000_RCTL));
3189 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3190 	    ((E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff0000) >> 16),\
3191 	    (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) );
3192 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3193 	    sc->hw.fc.high_water, sc->hw.fc.low_water);
3194 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3195 	    E1000_READ_REG(&sc->hw, E1000_TIDV),
3196 	    E1000_READ_REG(&sc->hw, E1000_TADV));
3197 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3198 	    E1000_READ_REG(&sc->hw, E1000_RDTR),
3199 	    E1000_READ_REG(&sc->hw, E1000_RADV));
3200 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3201 	    E1000_READ_REG(&sc->hw, E1000_TDH(0)),
3202 	    E1000_READ_REG(&sc->hw, E1000_TDT(0)));
3203 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3204 	    E1000_READ_REG(&sc->hw, E1000_RDH(0)),
3205 	    E1000_READ_REG(&sc->hw, E1000_RDT(0)));
3206 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3207 	    sc->num_tx_desc_avail);
3208 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3209 	    sc->no_tx_desc_avail1);
3210 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3211 	    sc->no_tx_desc_avail2);
3212 	device_printf(dev, "Std mbuf failed = %ld\n",
3213 	    sc->mbuf_alloc_failed);
3214 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3215 	    sc->rx_data[0].mbuf_cluster_failed);
3216 	device_printf(dev, "Driver dropped packets = %ld\n",
3217 	    sc->dropped_pkts);
3218 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3219 	    sc->no_tx_dma_setup);
3220 
3221 	device_printf(dev, "TXCSUM try pullup = %lu\n",
3222 	    sc->tx_csum_try_pullup);
3223 	device_printf(dev, "TXCSUM m_pullup(eh) called = %lu\n",
3224 	    sc->tx_csum_pullup1);
3225 	device_printf(dev, "TXCSUM m_pullup(eh) failed = %lu\n",
3226 	    sc->tx_csum_pullup1_failed);
3227 	device_printf(dev, "TXCSUM m_pullup(eh+ip) called = %lu\n",
3228 	    sc->tx_csum_pullup2);
3229 	device_printf(dev, "TXCSUM m_pullup(eh+ip) failed = %lu\n",
3230 	    sc->tx_csum_pullup2_failed);
3231 	device_printf(dev, "TXCSUM non-writable(eh) droped = %lu\n",
3232 	    sc->tx_csum_drop1);
3233 	device_printf(dev, "TXCSUM non-writable(eh+ip) droped = %lu\n",
3234 	    sc->tx_csum_drop2);
3235 }
3236 
3237 static void
3238 emx_print_hw_stats(struct emx_softc *sc)
3239 {
3240 	device_t dev = sc->dev;
3241 
3242 	device_printf(dev, "Excessive collisions = %lld\n",
3243 	    (long long)sc->stats.ecol);
3244 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3245 	device_printf(dev, "Symbol errors = %lld\n",
3246 	    (long long)sc->stats.symerrs);
3247 #endif
3248 	device_printf(dev, "Sequence errors = %lld\n",
3249 	    (long long)sc->stats.sec);
3250 	device_printf(dev, "Defer count = %lld\n",
3251 	    (long long)sc->stats.dc);
3252 	device_printf(dev, "Missed Packets = %lld\n",
3253 	    (long long)sc->stats.mpc);
3254 	device_printf(dev, "Receive No Buffers = %lld\n",
3255 	    (long long)sc->stats.rnbc);
3256 	/* RLEC is inaccurate on some hardware, calculate our own. */
3257 	device_printf(dev, "Receive Length Errors = %lld\n",
3258 	    ((long long)sc->stats.roc + (long long)sc->stats.ruc));
3259 	device_printf(dev, "Receive errors = %lld\n",
3260 	    (long long)sc->stats.rxerrc);
3261 	device_printf(dev, "Crc errors = %lld\n",
3262 	    (long long)sc->stats.crcerrs);
3263 	device_printf(dev, "Alignment errors = %lld\n",
3264 	    (long long)sc->stats.algnerrc);
3265 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3266 	    (long long)sc->stats.cexterr);
3267 	device_printf(dev, "RX overruns = %ld\n", sc->rx_overruns);
3268 	device_printf(dev, "watchdog timeouts = %ld\n",
3269 	    sc->watchdog_events);
3270 	device_printf(dev, "XON Rcvd = %lld\n",
3271 	    (long long)sc->stats.xonrxc);
3272 	device_printf(dev, "XON Xmtd = %lld\n",
3273 	    (long long)sc->stats.xontxc);
3274 	device_printf(dev, "XOFF Rcvd = %lld\n",
3275 	    (long long)sc->stats.xoffrxc);
3276 	device_printf(dev, "XOFF Xmtd = %lld\n",
3277 	    (long long)sc->stats.xofftxc);
3278 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3279 	    (long long)sc->stats.gprc);
3280 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3281 	    (long long)sc->stats.gptc);
3282 }
3283 
3284 static void
3285 emx_print_nvm_info(struct emx_softc *sc)
3286 {
3287 	uint16_t eeprom_data;
3288 	int i, j, row = 0;
3289 
3290 	/* Its a bit crude, but it gets the job done */
3291 	kprintf("\nInterface EEPROM Dump:\n");
3292 	kprintf("Offset\n0x0000  ");
3293 	for (i = 0, j = 0; i < 32; i++, j++) {
3294 		if (j == 8) { /* Make the offset block */
3295 			j = 0; ++row;
3296 			kprintf("\n0x00%x0  ",row);
3297 		}
3298 		e1000_read_nvm(&sc->hw, i, 1, &eeprom_data);
3299 		kprintf("%04x ", eeprom_data);
3300 	}
3301 	kprintf("\n");
3302 }
3303 
3304 static int
3305 emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3306 {
3307 	struct emx_softc *sc;
3308 	struct ifnet *ifp;
3309 	int error, result;
3310 
3311 	result = -1;
3312 	error = sysctl_handle_int(oidp, &result, 0, req);
3313 	if (error || !req->newptr)
3314 		return (error);
3315 
3316 	sc = (struct emx_softc *)arg1;
3317 	ifp = &sc->arpcom.ac_if;
3318 
3319 	ifnet_serialize_all(ifp);
3320 
3321 	if (result == 1)
3322 		emx_print_debug_info(sc);
3323 
3324 	/*
3325 	 * This value will cause a hex dump of the
3326 	 * first 32 16-bit words of the EEPROM to
3327 	 * the screen.
3328 	 */
3329 	if (result == 2)
3330 		emx_print_nvm_info(sc);
3331 
3332 	ifnet_deserialize_all(ifp);
3333 
3334 	return (error);
3335 }
3336 
3337 static int
3338 emx_sysctl_stats(SYSCTL_HANDLER_ARGS)
3339 {
3340 	int error, result;
3341 
3342 	result = -1;
3343 	error = sysctl_handle_int(oidp, &result, 0, req);
3344 	if (error || !req->newptr)
3345 		return (error);
3346 
3347 	if (result == 1) {
3348 		struct emx_softc *sc = (struct emx_softc *)arg1;
3349 		struct ifnet *ifp = &sc->arpcom.ac_if;
3350 
3351 		ifnet_serialize_all(ifp);
3352 		emx_print_hw_stats(sc);
3353 		ifnet_deserialize_all(ifp);
3354 	}
3355 	return (error);
3356 }
3357 
3358 static void
3359 emx_add_sysctl(struct emx_softc *sc)
3360 {
3361 #ifdef EMX_RSS_DEBUG
3362 	char rx_pkt[32];
3363 	int i;
3364 #endif
3365 
3366 	sysctl_ctx_init(&sc->sysctl_ctx);
3367 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
3368 				SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
3369 				device_get_nameunit(sc->dev),
3370 				CTLFLAG_RD, 0, "");
3371 	if (sc->sysctl_tree == NULL) {
3372 		device_printf(sc->dev, "can't add sysctl node\n");
3373 		return;
3374 	}
3375 
3376 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3377 			OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3378 			emx_sysctl_debug_info, "I", "Debug Information");
3379 
3380 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3381 			OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3382 			emx_sysctl_stats, "I", "Statistics");
3383 
3384 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3385 		       OID_AUTO, "rxd", CTLFLAG_RD,
3386 		       &sc->rx_data[0].num_rx_desc, 0, NULL);
3387 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3388 		       OID_AUTO, "txd", CTLFLAG_RD, &sc->num_tx_desc, 0, NULL);
3389 
3390 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3391 			OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW,
3392 			sc, 0, emx_sysctl_int_throttle, "I",
3393 			"interrupt throttling rate");
3394 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3395 			OID_AUTO, "int_tx_nsegs", CTLTYPE_INT|CTLFLAG_RW,
3396 			sc, 0, emx_sysctl_int_tx_nsegs, "I",
3397 			"# segments per TX interrupt");
3398 
3399 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3400 		       OID_AUTO, "rx_ring_inuse", CTLFLAG_RD,
3401 		       &sc->rx_ring_inuse, 0, "RX ring in use");
3402 
3403 #ifdef EMX_RSS_DEBUG
3404 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3405 		       OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug,
3406 		       0, "RSS debug level");
3407 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3408 		ksnprintf(rx_pkt, sizeof(rx_pkt), "rx%d_pkt", i);
3409 		SYSCTL_ADD_UINT(&sc->sysctl_ctx,
3410 				SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO,
3411 				rx_pkt, CTLFLAG_RW,
3412 				&sc->rx_data[i].rx_pkts, 0, "RXed packets");
3413 	}
3414 #endif
3415 }
3416 
3417 static int
3418 emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3419 {
3420 	struct emx_softc *sc = (void *)arg1;
3421 	struct ifnet *ifp = &sc->arpcom.ac_if;
3422 	int error, throttle;
3423 
3424 	throttle = sc->int_throttle_ceil;
3425 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3426 	if (error || req->newptr == NULL)
3427 		return error;
3428 	if (throttle < 0 || throttle > 1000000000 / 256)
3429 		return EINVAL;
3430 
3431 	if (throttle) {
3432 		/*
3433 		 * Set the interrupt throttling rate in 256ns increments,
3434 		 * recalculate sysctl value assignment to get exact frequency.
3435 		 */
3436 		throttle = 1000000000 / 256 / throttle;
3437 
3438 		/* Upper 16bits of ITR is reserved and should be zero */
3439 		if (throttle & 0xffff0000)
3440 			return EINVAL;
3441 	}
3442 
3443 	ifnet_serialize_all(ifp);
3444 
3445 	if (throttle)
3446 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
3447 	else
3448 		sc->int_throttle_ceil = 0;
3449 
3450 	if (ifp->if_flags & IFF_RUNNING)
3451 		E1000_WRITE_REG(&sc->hw, E1000_ITR, throttle);
3452 
3453 	ifnet_deserialize_all(ifp);
3454 
3455 	if (bootverbose) {
3456 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
3457 			  sc->int_throttle_ceil);
3458 	}
3459 	return 0;
3460 }
3461 
3462 static int
3463 emx_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
3464 {
3465 	struct emx_softc *sc = (void *)arg1;
3466 	struct ifnet *ifp = &sc->arpcom.ac_if;
3467 	int error, segs;
3468 
3469 	segs = sc->tx_int_nsegs;
3470 	error = sysctl_handle_int(oidp, &segs, 0, req);
3471 	if (error || req->newptr == NULL)
3472 		return error;
3473 	if (segs <= 0)
3474 		return EINVAL;
3475 
3476 	ifnet_serialize_all(ifp);
3477 
3478 	/*
3479 	 * Don't allow int_tx_nsegs to become:
3480 	 * o  Less the oact_tx_desc
3481 	 * o  Too large that no TX desc will cause TX interrupt to
3482 	 *    be generated (OACTIVE will never recover)
3483 	 * o  Too small that will cause tx_dd[] overflow
3484 	 */
3485 	if (segs < sc->oact_tx_desc ||
3486 	    segs >= sc->num_tx_desc - sc->oact_tx_desc ||
3487 	    segs < sc->num_tx_desc / EMX_TXDD_SAFE) {
3488 		error = EINVAL;
3489 	} else {
3490 		error = 0;
3491 		sc->tx_int_nsegs = segs;
3492 	}
3493 
3494 	ifnet_deserialize_all(ifp);
3495 
3496 	return error;
3497 }
3498 
3499 static int
3500 emx_dma_alloc(struct emx_softc *sc)
3501 {
3502 	int error, i;
3503 
3504 	/*
3505 	 * Create top level busdma tag
3506 	 */
3507 	error = bus_dma_tag_create(NULL, 1, 0,
3508 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3509 			NULL, NULL,
3510 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
3511 			0, &sc->parent_dtag);
3512 	if (error) {
3513 		device_printf(sc->dev, "could not create top level DMA tag\n");
3514 		return error;
3515 	}
3516 
3517 	/*
3518 	 * Allocate transmit descriptors ring and buffers
3519 	 */
3520 	error = emx_create_tx_ring(sc);
3521 	if (error) {
3522 		device_printf(sc->dev, "Could not setup transmit structures\n");
3523 		return error;
3524 	}
3525 
3526 	/*
3527 	 * Allocate receive descriptors ring and buffers
3528 	 */
3529 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3530 		error = emx_create_rx_ring(sc, &sc->rx_data[i]);
3531 		if (error) {
3532 			device_printf(sc->dev,
3533 			    "Could not setup receive structures\n");
3534 			return error;
3535 		}
3536 	}
3537 	return 0;
3538 }
3539 
3540 static void
3541 emx_dma_free(struct emx_softc *sc)
3542 {
3543 	int i;
3544 
3545 	emx_destroy_tx_ring(sc, sc->num_tx_desc);
3546 
3547 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3548 		emx_destroy_rx_ring(sc, &sc->rx_data[i],
3549 				    sc->rx_data[i].num_rx_desc);
3550 	}
3551 
3552 	/* Free top level busdma tag */
3553 	if (sc->parent_dtag != NULL)
3554 		bus_dma_tag_destroy(sc->parent_dtag);
3555 }
3556 
3557 static void
3558 emx_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3559 {
3560 	struct emx_softc *sc = ifp->if_softc;
3561 
3562 	switch (slz) {
3563 	case IFNET_SERIALIZE_ALL:
3564 		lwkt_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, 0);
3565 		break;
3566 
3567 	case IFNET_SERIALIZE_MAIN:
3568 		lwkt_serialize_enter(&sc->main_serialize);
3569 		break;
3570 
3571 	case IFNET_SERIALIZE_TX:
3572 		lwkt_serialize_enter(&sc->tx_serialize);
3573 		break;
3574 
3575 	case IFNET_SERIALIZE_RX(0):
3576 		lwkt_serialize_enter(&sc->rx_data[0].rx_serialize);
3577 		break;
3578 
3579 	case IFNET_SERIALIZE_RX(1):
3580 		lwkt_serialize_enter(&sc->rx_data[1].rx_serialize);
3581 		break;
3582 
3583 	default:
3584 		panic("%s unsupported serialize type\n", ifp->if_xname);
3585 	}
3586 }
3587 
3588 static void
3589 emx_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3590 {
3591 	struct emx_softc *sc = ifp->if_softc;
3592 
3593 	switch (slz) {
3594 	case IFNET_SERIALIZE_ALL:
3595 		lwkt_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, 0);
3596 		break;
3597 
3598 	case IFNET_SERIALIZE_MAIN:
3599 		lwkt_serialize_exit(&sc->main_serialize);
3600 		break;
3601 
3602 	case IFNET_SERIALIZE_TX:
3603 		lwkt_serialize_exit(&sc->tx_serialize);
3604 		break;
3605 
3606 	case IFNET_SERIALIZE_RX(0):
3607 		lwkt_serialize_exit(&sc->rx_data[0].rx_serialize);
3608 		break;
3609 
3610 	case IFNET_SERIALIZE_RX(1):
3611 		lwkt_serialize_exit(&sc->rx_data[1].rx_serialize);
3612 		break;
3613 
3614 	default:
3615 		panic("%s unsupported serialize type\n", ifp->if_xname);
3616 	}
3617 }
3618 
3619 static int
3620 emx_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3621 {
3622 	struct emx_softc *sc = ifp->if_softc;
3623 
3624 	switch (slz) {
3625 	case IFNET_SERIALIZE_ALL:
3626 		return lwkt_serialize_array_try(sc->serializes,
3627 						EMX_NSERIALIZE, 0);
3628 
3629 	case IFNET_SERIALIZE_MAIN:
3630 		return lwkt_serialize_try(&sc->main_serialize);
3631 
3632 	case IFNET_SERIALIZE_TX:
3633 		return lwkt_serialize_try(&sc->tx_serialize);
3634 
3635 	case IFNET_SERIALIZE_RX(0):
3636 		return lwkt_serialize_try(&sc->rx_data[0].rx_serialize);
3637 
3638 	case IFNET_SERIALIZE_RX(1):
3639 		return lwkt_serialize_try(&sc->rx_data[1].rx_serialize);
3640 
3641 	default:
3642 		panic("%s unsupported serialize type\n", ifp->if_xname);
3643 	}
3644 }
3645 
3646 static void
3647 emx_serialize_skipmain(struct emx_softc *sc)
3648 {
3649 	lwkt_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, 1);
3650 }
3651 
3652 static void
3653 emx_deserialize_skipmain(struct emx_softc *sc)
3654 {
3655 	lwkt_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, 1);
3656 }
3657 
3658 #ifdef INVARIANTS
3659 
3660 static void
3661 emx_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3662 		     boolean_t serialized)
3663 {
3664 	struct emx_softc *sc = ifp->if_softc;
3665 	int i;
3666 
3667 	switch (slz) {
3668 	case IFNET_SERIALIZE_ALL:
3669 		if (serialized) {
3670 			for (i = 0; i < EMX_NSERIALIZE; ++i)
3671 				ASSERT_SERIALIZED(sc->serializes[i]);
3672 		} else {
3673 			for (i = 0; i < EMX_NSERIALIZE; ++i)
3674 				ASSERT_NOT_SERIALIZED(sc->serializes[i]);
3675 		}
3676 		break;
3677 
3678 	case IFNET_SERIALIZE_MAIN:
3679 		if (serialized)
3680 			ASSERT_SERIALIZED(&sc->main_serialize);
3681 		else
3682 			ASSERT_NOT_SERIALIZED(&sc->main_serialize);
3683 		break;
3684 
3685 	case IFNET_SERIALIZE_TX:
3686 		if (serialized)
3687 			ASSERT_SERIALIZED(&sc->tx_serialize);
3688 		else
3689 			ASSERT_NOT_SERIALIZED(&sc->tx_serialize);
3690 		break;
3691 
3692 	case IFNET_SERIALIZE_RX(0):
3693 		if (serialized)
3694 			ASSERT_SERIALIZED(&sc->rx_data[0].rx_serialize);
3695 		else
3696 			ASSERT_NOT_SERIALIZED(&sc->rx_data[0].rx_serialize);
3697 		break;
3698 
3699 	case IFNET_SERIALIZE_RX(1):
3700 		if (serialized)
3701 			ASSERT_SERIALIZED(&sc->rx_data[1].rx_serialize);
3702 		else
3703 			ASSERT_NOT_SERIALIZED(&sc->rx_data[1].rx_serialize);
3704 		break;
3705 
3706 	default:
3707 		panic("%s unsupported serialize type\n", ifp->if_xname);
3708 	}
3709 }
3710 
3711 #endif	/* INVARIANTS */
3712 
3713 #ifdef IFPOLL_ENABLE
3714 
3715 static void
3716 emx_qpoll_status(struct ifnet *ifp, int pollhz __unused)
3717 {
3718 	struct emx_softc *sc = ifp->if_softc;
3719 	uint32_t reg_icr;
3720 
3721 	ASSERT_SERIALIZED(&sc->main_serialize);
3722 
3723 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3724 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3725 		emx_serialize_skipmain(sc);
3726 
3727 		callout_stop(&sc->timer);
3728 		sc->hw.mac.get_link_status = 1;
3729 		emx_update_link_status(sc);
3730 		callout_reset(&sc->timer, hz, emx_timer, sc);
3731 
3732 		emx_deserialize_skipmain(sc);
3733 	}
3734 }
3735 
3736 static void
3737 emx_qpoll_tx(struct ifnet *ifp, void *arg __unused, int cycle __unused)
3738 {
3739 	struct emx_softc *sc = ifp->if_softc;
3740 
3741 	ASSERT_SERIALIZED(&sc->tx_serialize);
3742 
3743 	emx_txeof(sc);
3744 	if (!ifq_is_empty(&ifp->if_snd))
3745 		if_devstart(ifp);
3746 }
3747 
3748 static void
3749 emx_qpoll_rx(struct ifnet *ifp, void *arg, int cycle)
3750 {
3751 	struct emx_softc *sc = ifp->if_softc;
3752 	struct emx_rxdata *rdata = arg;
3753 
3754 	ASSERT_SERIALIZED(&rdata->rx_serialize);
3755 
3756 	emx_rxeof(sc, rdata - sc->rx_data, cycle);
3757 }
3758 
3759 static void
3760 emx_qpoll(struct ifnet *ifp, struct ifpoll_info *info)
3761 {
3762 	struct emx_softc *sc = ifp->if_softc;
3763 
3764 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3765 
3766 	if (info) {
3767 		int i;
3768 
3769 		info->ifpi_status.status_func = emx_qpoll_status;
3770 		info->ifpi_status.serializer = &sc->main_serialize;
3771 
3772 		info->ifpi_tx[0].poll_func = emx_qpoll_tx;
3773 		info->ifpi_tx[0].arg = NULL;
3774 		info->ifpi_tx[0].serializer = &sc->tx_serialize;
3775 
3776 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
3777 			info->ifpi_rx[i].poll_func = emx_qpoll_rx;
3778 			info->ifpi_rx[i].arg = &sc->rx_data[i];
3779 			info->ifpi_rx[i].serializer =
3780 				&sc->rx_data[i].rx_serialize;
3781 		}
3782 
3783 		if (ifp->if_flags & IFF_RUNNING)
3784 			emx_disable_intr(sc);
3785 	} else if (ifp->if_flags & IFF_RUNNING) {
3786 		emx_enable_intr(sc);
3787 	}
3788 }
3789 
3790 #endif	/* IFPOLL_ENABLE */
3791