xref: /dragonfly/sys/dev/netif/fxp/if_fxp.c (revision 6fb88001)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD: src/sys/dev/fxp/if_fxp.c,v 1.110.2.30 2003/06/12 16:47:05 mux Exp $
29  * $DragonFly: src/sys/dev/netif/fxp/if_fxp.c,v 1.42 2005/12/31 14:07:59 sephe Exp $
30  */
31 
32 /*
33  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
34  */
35 
36 #include "opt_polling.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/mbuf.h>
41 #include <sys/malloc.h>
42 #include <sys/kernel.h>
43 #include <sys/socket.h>
44 #include <sys/sysctl.h>
45 #include <sys/thread2.h>
46 
47 #include <net/if.h>
48 #include <net/ifq_var.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 
52 #ifdef NS
53 #include <netns/ns.h>
54 #include <netns/ns_if.h>
55 #endif
56 
57 #include <net/bpf.h>
58 #include <sys/sockio.h>
59 #include <sys/bus.h>
60 #include <machine/bus.h>
61 #include <sys/rman.h>
62 #include <machine/resource.h>
63 
64 #include <net/ethernet.h>
65 #include <net/if_arp.h>
66 
67 #include <vm/vm.h>		/* for vtophys */
68 #include <vm/pmap.h>		/* for vtophys */
69 
70 #include <net/if_types.h>
71 #include <net/vlan/if_vlan_var.h>
72 
73 #include <bus/pci/pcivar.h>
74 #include <bus/pci/pcireg.h>		/* for PCIM_CMD_xxx */
75 
76 #include "../mii_layer/mii.h"
77 #include "../mii_layer/miivar.h"
78 
79 #include "if_fxpreg.h"
80 #include "if_fxpvar.h"
81 #include "rcvbundl.h"
82 
83 #include "miibus_if.h"
84 
85 /*
86  * NOTE!  On the Alpha, we have an alignment constraint.  The
87  * card DMAs the packet immediately following the RFA.  However,
88  * the first thing in the packet is a 14-byte Ethernet header.
89  * This means that the packet is misaligned.  To compensate,
90  * we actually offset the RFA 2 bytes into the cluster.  This
91  * alignes the packet after the Ethernet header at a 32-bit
92  * boundary.  HOWEVER!  This means that the RFA is misaligned!
93  */
94 #define	RFA_ALIGNMENT_FUDGE	2
95 
96 /*
97  * Set initial transmit threshold at 64 (512 bytes). This is
98  * increased by 64 (512 bytes) at a time, to maximum of 192
99  * (1536 bytes), if an underrun occurs.
100  */
101 static int tx_threshold = 64;
102 
103 /*
104  * The configuration byte map has several undefined fields which
105  * must be one or must be zero.  Set up a template for these bits
106  * only, (assuming a 82557 chip) leaving the actual configuration
107  * to fxp_init.
108  *
109  * See struct fxp_cb_config for the bit definitions.
110  */
111 static u_char fxp_cb_config_template[] = {
112 	0x0, 0x0,		/* cb_status */
113 	0x0, 0x0,		/* cb_command */
114 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
115 	0x0,	/*  0 */
116 	0x0,	/*  1 */
117 	0x0,	/*  2 */
118 	0x0,	/*  3 */
119 	0x0,	/*  4 */
120 	0x0,	/*  5 */
121 	0x32,	/*  6 */
122 	0x0,	/*  7 */
123 	0x0,	/*  8 */
124 	0x0,	/*  9 */
125 	0x6,	/* 10 */
126 	0x0,	/* 11 */
127 	0x0,	/* 12 */
128 	0x0,	/* 13 */
129 	0xf2,	/* 14 */
130 	0x48,	/* 15 */
131 	0x0,	/* 16 */
132 	0x40,	/* 17 */
133 	0xf0,	/* 18 */
134 	0x0,	/* 19 */
135 	0x3f,	/* 20 */
136 	0x5	/* 21 */
137 };
138 
139 struct fxp_ident {
140 	u_int16_t	devid;
141 	int16_t		revid;		/* -1 matches anything */
142 	char 		*name;
143 };
144 
145 /*
146  * Claim various Intel PCI device identifiers for this driver.  The
147  * sub-vendor and sub-device field are extensively used to identify
148  * particular variants, but we don't currently differentiate between
149  * them.
150  */
151 static struct fxp_ident fxp_ident_table[] = {
152      { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
153      { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
154      { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
155      { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
156      { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
157      { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
158      { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
159      { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
160      { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
161      { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
162      { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
163      { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
164      { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
165      { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
166      { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
167      { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
168      { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
169      { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
170      { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
171      { 0x1064,  -1, "Intel 82562ET/EZ/GT/GZ (ICH6/ICH6R) Pro/100 VE Ethernet" },
172      { 0x1068,	-1,	"Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
173      { 0x1069,	-1,	"Intel 82562EM/EX/GX Pro/100 Ethernet" },
174      { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
175      { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
176      { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
177      { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
178      { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
179      { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
180      { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
181      { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
182      { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
183      { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
184      { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
185      { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
186      { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
187      { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
188      { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
189      { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
190      { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
191      { 0,	-1,	NULL },
192 };
193 
194 static int		fxp_probe(device_t dev);
195 static int		fxp_attach(device_t dev);
196 static int		fxp_detach(device_t dev);
197 static int		fxp_shutdown(device_t dev);
198 static int		fxp_suspend(device_t dev);
199 static int		fxp_resume(device_t dev);
200 
201 static void		fxp_intr(void *xsc);
202 static void		fxp_intr_body(struct fxp_softc *sc,
203 				u_int8_t statack, int count);
204 
205 static void 		fxp_init(void *xsc);
206 static void 		fxp_tick(void *xsc);
207 static void		fxp_powerstate_d0(device_t dev);
208 static void 		fxp_start(struct ifnet *ifp);
209 static void		fxp_stop(struct fxp_softc *sc);
210 static void 		fxp_release(device_t dev);
211 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
212 			    caddr_t data, struct ucred *);
213 static void 		fxp_watchdog(struct ifnet *ifp);
214 static int		fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
215 static int		fxp_mc_addrs(struct fxp_softc *sc);
216 static void		fxp_mc_setup(struct fxp_softc *sc);
217 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
218 			    int autosize);
219 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
220 			    u_int16_t data);
221 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
222 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
223 			    int offset, int words);
224 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
225 			    int offset, int words);
226 static int		fxp_ifmedia_upd(struct ifnet *ifp);
227 static void		fxp_ifmedia_sts(struct ifnet *ifp,
228 			    struct ifmediareq *ifmr);
229 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
230 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
231 			    struct ifmediareq *ifmr);
232 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
233 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
234 			    int value);
235 static void		fxp_load_ucode(struct fxp_softc *sc);
236 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
237 			    int low, int high);
238 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
239 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
240 #ifdef DEVICE_POLLING
241 static poll_handler_t fxp_poll;
242 #endif
243 
244 static void		fxp_lwcopy(volatile u_int32_t *src,
245 			    volatile u_int32_t *dst);
246 static void 		fxp_scb_wait(struct fxp_softc *sc);
247 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
248 static void		fxp_dma_wait(volatile u_int16_t *status,
249 			    struct fxp_softc *sc);
250 
251 static device_method_t fxp_methods[] = {
252 	/* Device interface */
253 	DEVMETHOD(device_probe,		fxp_probe),
254 	DEVMETHOD(device_attach,	fxp_attach),
255 	DEVMETHOD(device_detach,	fxp_detach),
256 	DEVMETHOD(device_shutdown,	fxp_shutdown),
257 	DEVMETHOD(device_suspend,	fxp_suspend),
258 	DEVMETHOD(device_resume,	fxp_resume),
259 
260 	/* MII interface */
261 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
262 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
263 
264 	{ 0, 0 }
265 };
266 
267 static driver_t fxp_driver = {
268 	"fxp",
269 	fxp_methods,
270 	sizeof(struct fxp_softc),
271 };
272 
273 static devclass_t fxp_devclass;
274 
275 DECLARE_DUMMY_MODULE(if_fxp);
276 MODULE_DEPEND(if_fxp, miibus, 1, 1, 1);
277 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
278 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
279 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
280 
281 static int fxp_rnr;
282 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
283 
284 /*
285  * Copy a 16-bit aligned 32-bit quantity.
286  */
287 static void
288 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
289 {
290 #ifdef __i386__
291 	*dst = *src;
292 #else
293 	volatile u_int16_t *a = (volatile u_int16_t *)src;
294 	volatile u_int16_t *b = (volatile u_int16_t *)dst;
295 
296 	b[0] = a[0];
297 	b[1] = a[1];
298 #endif
299 }
300 
301 /*
302  * Wait for the previous command to be accepted (but not necessarily
303  * completed).
304  */
305 static void
306 fxp_scb_wait(struct fxp_softc *sc)
307 {
308 	int i = 10000;
309 
310 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
311 		DELAY(2);
312 	if (i == 0) {
313 		if_printf(&sc->arpcom.ac_if,
314 		    "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
315 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
316 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
317 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
318 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
319 	}
320 }
321 
322 static void
323 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
324 {
325 
326 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
327 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
328 		fxp_scb_wait(sc);
329 	}
330 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
331 }
332 
333 static void
334 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
335 {
336 	int i = 10000;
337 
338 	while (!(*status & FXP_CB_STATUS_C) && --i)
339 		DELAY(2);
340 	if (i == 0)
341 		if_printf(&sc->arpcom.ac_if, "DMA timeout\n");
342 }
343 
344 /*
345  * Return identification string if this is device is ours.
346  */
347 static int
348 fxp_probe(device_t dev)
349 {
350 	u_int16_t devid;
351 	u_int8_t revid;
352 	struct fxp_ident *ident;
353 
354 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
355 		devid = pci_get_device(dev);
356 		revid = pci_get_revid(dev);
357 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
358 			if (ident->devid == devid &&
359 			    (ident->revid == revid || ident->revid == -1)) {
360 				device_set_desc(dev, ident->name);
361 				return (0);
362 			}
363 		}
364 	}
365 	return (ENXIO);
366 }
367 
368 static void
369 fxp_powerstate_d0(device_t dev)
370 {
371 	u_int32_t iobase, membase, irq;
372 
373 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
374 		/* Save important PCI config data. */
375 		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
376 		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
377 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
378 
379 		/* Reset the power state. */
380 		device_printf(dev, "chip is in D%d power mode "
381 		    "-- setting to D0\n", pci_get_powerstate(dev));
382 
383 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
384 
385 		/* Restore PCI config data. */
386 		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
387 		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
388 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
389 	}
390 }
391 
392 static int
393 fxp_attach(device_t dev)
394 {
395 	int error = 0;
396 	struct fxp_softc *sc = device_get_softc(dev);
397 	struct ifnet *ifp;
398 	u_int32_t val;
399 	u_int16_t data;
400 	int i, rid, m1, m2, prefer_iomap;
401 
402 	callout_init(&sc->fxp_stat_timer);
403 	sysctl_ctx_init(&sc->sysctl_ctx);
404 
405 	/*
406 	 * Enable bus mastering. Enable memory space too, in case
407 	 * BIOS/Prom forgot about it.
408 	 */
409 	pci_enable_busmaster(dev);
410 	pci_enable_io(dev, SYS_RES_MEMORY);
411 	val = pci_read_config(dev, PCIR_COMMAND, 2);
412 
413 	fxp_powerstate_d0(dev);
414 
415 	/*
416 	 * Figure out which we should try first - memory mapping or i/o mapping?
417 	 * We default to memory mapping. Then we accept an override from the
418 	 * command line. Then we check to see which one is enabled.
419 	 */
420 	m1 = PCIM_CMD_MEMEN;
421 	m2 = PCIM_CMD_PORTEN;
422 	prefer_iomap = 0;
423 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
424 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
425 		m1 = PCIM_CMD_PORTEN;
426 		m2 = PCIM_CMD_MEMEN;
427 	}
428 
429 	if (val & m1) {
430 		sc->rtp =
431 		    (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
432 		sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
433 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
434 		    RF_ACTIVE);
435 	}
436 	if (sc->mem == NULL && (val & m2)) {
437 		sc->rtp =
438 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
439 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
440 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
441             	    RF_ACTIVE);
442 	}
443 
444 	if (!sc->mem) {
445 		device_printf(dev, "could not map device registers\n");
446 		error = ENXIO;
447 		goto fail;
448         }
449 	if (bootverbose) {
450 		device_printf(dev, "using %s space register mapping\n",
451 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
452 	}
453 
454 	sc->sc_st = rman_get_bustag(sc->mem);
455 	sc->sc_sh = rman_get_bushandle(sc->mem);
456 
457 	/*
458 	 * Allocate our interrupt.
459 	 */
460 	rid = 0;
461 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
462 	    RF_SHAREABLE | RF_ACTIVE);
463 	if (sc->irq == NULL) {
464 		device_printf(dev, "could not map interrupt\n");
465 		error = ENXIO;
466 		goto fail;
467 	}
468 
469 	/*
470 	 * Reset to a stable state.
471 	 */
472 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
473 	DELAY(10);
474 
475 	sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
476 	    M_DEVBUF, M_WAITOK | M_ZERO);
477 
478 	sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF,
479 	    M_WAITOK | M_ZERO);
480 
481 	sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_WAITOK);
482 
483 	/*
484 	 * Pre-allocate our receive buffers.
485 	 */
486 	for (i = 0; i < FXP_NRFABUFS; i++) {
487 		if (fxp_add_rfabuf(sc, NULL) != 0) {
488 			goto failmem;
489 		}
490 	}
491 
492 	/*
493 	 * Find out how large of an SEEPROM we have.
494 	 */
495 	fxp_autosize_eeprom(sc);
496 
497 	/*
498 	 * Determine whether we must use the 503 serial interface.
499 	 */
500 	fxp_read_eeprom(sc, &data, 6, 1);
501 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
502 	    (data & FXP_PHY_SERIAL_ONLY))
503 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
504 
505 	/*
506 	 * Create the sysctl tree
507 	 */
508 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
509 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
510 	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
511 	if (sc->sysctl_tree == NULL)
512 		goto fail;
513 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
514 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
515 	    &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I",
516 	    "FXP driver receive interrupt microcode bundling delay");
517 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
518 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
519 	    &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I",
520 	    "FXP driver receive interrupt microcode bundle size limit");
521 
522 	/*
523 	 * Pull in device tunables.
524 	 */
525 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
526 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
527 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
528 	    "int_delay", &sc->tunable_int_delay);
529 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
530 	    "bundle_max", &sc->tunable_bundle_max);
531 
532 	/*
533 	 * Find out the chip revision; lump all 82557 revs together.
534 	 */
535 	fxp_read_eeprom(sc, &data, 5, 1);
536 	if ((data >> 8) == 1)
537 		sc->revision = FXP_REV_82557;
538 	else
539 		sc->revision = pci_get_revid(dev);
540 
541 	/*
542 	 * Enable workarounds for certain chip revision deficiencies.
543 	 *
544 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
545 	 * some systems based a normal 82559 design, have a defect where
546 	 * the chip can cause a PCI protocol violation if it receives
547 	 * a CU_RESUME command when it is entering the IDLE state.  The
548 	 * workaround is to disable Dynamic Standby Mode, so the chip never
549 	 * deasserts CLKRUN#, and always remains in an active state.
550 	 *
551 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
552 	 */
553 	i = pci_get_device(dev);
554 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
555 	    sc->revision >= FXP_REV_82559_A0) {
556 		fxp_read_eeprom(sc, &data, 10, 1);
557 		if (data & 0x02) {			/* STB enable */
558 			u_int16_t cksum;
559 			int i;
560 
561 			device_printf(dev,
562 			    "Disabling dynamic standby mode in EEPROM\n");
563 			data &= ~0x02;
564 			fxp_write_eeprom(sc, &data, 10, 1);
565 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
566 			cksum = 0;
567 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
568 				fxp_read_eeprom(sc, &data, i, 1);
569 				cksum += data;
570 			}
571 			i = (1 << sc->eeprom_size) - 1;
572 			cksum = 0xBABA - cksum;
573 			fxp_read_eeprom(sc, &data, i, 1);
574 			fxp_write_eeprom(sc, &cksum, i, 1);
575 			device_printf(dev,
576 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
577 			    i, data, cksum);
578 #if 1
579 			/*
580 			 * If the user elects to continue, try the software
581 			 * workaround, as it is better than nothing.
582 			 */
583 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
584 #endif
585 		}
586 	}
587 
588 	/*
589 	 * If we are not a 82557 chip, we can enable extended features.
590 	 */
591 	if (sc->revision != FXP_REV_82557) {
592 		/*
593 		 * If MWI is enabled in the PCI configuration, and there
594 		 * is a valid cacheline size (8 or 16 dwords), then tell
595 		 * the board to turn on MWI.
596 		 */
597 		if (val & PCIM_CMD_MWRICEN &&
598 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
599 			sc->flags |= FXP_FLAG_MWI_ENABLE;
600 
601 		/* turn on the extended TxCB feature */
602 		sc->flags |= FXP_FLAG_EXT_TXCB;
603 
604 		/* enable reception of long frames for VLAN */
605 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
606 	}
607 
608 	/*
609 	 * Read MAC address.
610 	 */
611 	fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
612 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
613 		device_printf(dev, "10Mbps\n");
614 	if (bootverbose) {
615 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
616 		    pci_get_vendor(dev), pci_get_device(dev),
617 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
618 		    pci_get_revid(dev));
619 		fxp_read_eeprom(sc, &data, 10, 1);
620 		device_printf(dev, "Dynamic Standby mode is %s\n",
621 		    data & 0x02 ? "enabled" : "disabled");
622 	}
623 
624 	/*
625 	 * If this is only a 10Mbps device, then there is no MII, and
626 	 * the PHY will use a serial interface instead.
627 	 *
628 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
629 	 * doesn't have a programming interface of any sort.  The
630 	 * media is sensed automatically based on how the link partner
631 	 * is configured.  This is, in essence, manual configuration.
632 	 */
633 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
634 		ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
635 		    fxp_serial_ifmedia_sts);
636 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
637 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
638 	} else {
639 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
640 		    fxp_ifmedia_sts)) {
641 	                device_printf(dev, "MII without any PHY!\n");
642 			error = ENXIO;
643 			goto fail;
644 		}
645 	}
646 
647 	ifp = &sc->arpcom.ac_if;
648 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
649 	ifp->if_baudrate = 100000000;
650 	ifp->if_init = fxp_init;
651 	ifp->if_softc = sc;
652 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
653 	ifp->if_ioctl = fxp_ioctl;
654 	ifp->if_start = fxp_start;
655 #ifdef DEVICE_POLLING
656 	ifp->if_poll = fxp_poll;
657 #endif
658 	ifp->if_watchdog = fxp_watchdog;
659 
660 	/*
661 	 * Attach the interface.
662 	 */
663 	ether_ifattach(ifp, sc->arpcom.ac_enaddr, NULL);
664 
665 	/*
666 	 * Tell the upper layer(s) we support long frames.
667 	 */
668 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
669 
670 	/*
671 	 * Let the system queue as many packets as we have available
672 	 * TX descriptors.
673 	 */
674 	ifq_set_maxlen(&ifp->if_snd, FXP_NTXCB - 1);
675 	ifq_set_ready(&ifp->if_snd);
676 
677 	error = bus_setup_intr(dev, sc->irq, INTR_NETSAFE,
678 			       fxp_intr, sc, &sc->ih,
679 			       ifp->if_serializer);
680 	if (error) {
681 		ether_ifdetach(ifp);
682 		if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
683 			ifmedia_removeall(&sc->sc_media);
684 		device_printf(dev, "could not setup irq\n");
685 		goto fail;
686 	}
687 
688 	return (0);
689 
690 failmem:
691 	device_printf(dev, "Failed to malloc memory\n");
692 	error = ENOMEM;
693 fail:
694 	fxp_release(dev);
695 	return (error);
696 }
697 
698 /*
699  * release all resources
700  */
701 static void
702 fxp_release(device_t dev)
703 {
704 	struct fxp_softc *sc = device_get_softc(dev);
705 
706 	if (sc->miibus)
707 		device_delete_child(dev, sc->miibus);
708 	bus_generic_detach(dev);
709 
710 	if (sc->cbl_base)
711 		free(sc->cbl_base, M_DEVBUF);
712 	if (sc->fxp_stats)
713 		free(sc->fxp_stats, M_DEVBUF);
714 	if (sc->mcsp)
715 		free(sc->mcsp, M_DEVBUF);
716 	if (sc->rfa_headm)
717 		m_freem(sc->rfa_headm);
718 
719 	if (sc->irq)
720 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq);
721 	if (sc->mem)
722 		bus_release_resource(dev, sc->rtp, sc->rgd, sc->mem);
723 
724         sysctl_ctx_free(&sc->sysctl_ctx);
725 }
726 
727 /*
728  * Detach interface.
729  */
730 static int
731 fxp_detach(device_t dev)
732 {
733 	struct fxp_softc *sc = device_get_softc(dev);
734 
735 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
736 
737 	/*
738 	 * Stop DMA and drop transmit queue.
739 	 */
740 	fxp_stop(sc);
741 
742 	/*
743 	 * Disable interrupts.
744 	 *
745 	 * NOTE: This should be done after fxp_stop(), because software
746 	 * resetting in fxp_stop() may leave interrupts turned on.
747 	 */
748 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
749 
750 	/*
751 	 * Free all media structures.
752 	 */
753 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
754 		ifmedia_removeall(&sc->sc_media);
755 
756 	if (sc->ih)
757 		bus_teardown_intr(dev, sc->irq, sc->ih);
758 
759 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
760 
761 	/*
762 	 * Close down routes etc.
763 	 */
764 	ether_ifdetach(&sc->arpcom.ac_if);
765 
766 	/* Release our allocated resources. */
767 	fxp_release(dev);
768 
769 	return (0);
770 }
771 
772 /*
773  * Device shutdown routine. Called at system shutdown after sync. The
774  * main purpose of this routine is to shut off receiver DMA so that
775  * kernel memory doesn't get clobbered during warmboot.
776  */
777 static int
778 fxp_shutdown(device_t dev)
779 {
780 	/*
781 	 * Make sure that DMA is disabled prior to reboot. Not doing
782 	 * do could allow DMA to corrupt kernel memory during the
783 	 * reboot before the driver initializes.
784 	 */
785 	fxp_stop((struct fxp_softc *) device_get_softc(dev));
786 	return (0);
787 }
788 
789 /*
790  * Device suspend routine.  Stop the interface and save some PCI
791  * settings in case the BIOS doesn't restore them properly on
792  * resume.
793  */
794 static int
795 fxp_suspend(device_t dev)
796 {
797 	struct fxp_softc *sc = device_get_softc(dev);
798 	int i;
799 
800 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
801 
802 	fxp_stop(sc);
803 
804 	for (i = 0; i < 5; i++)
805 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
806 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
807 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
808 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
809 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
810 
811 	sc->suspended = 1;
812 
813 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
814 	return (0);
815 }
816 
817 /*
818  * Device resume routine.  Restore some PCI settings in case the BIOS
819  * doesn't, re-enable busmastering, and restart the interface if
820  * appropriate.
821  */
822 static int
823 fxp_resume(device_t dev)
824 {
825 	struct fxp_softc *sc = device_get_softc(dev);
826 	struct ifnet *ifp = &sc->arpcom.ac_if;
827 	int i;
828 
829 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
830 
831 	fxp_powerstate_d0(dev);
832 
833 	/* better way to do this? */
834 	for (i = 0; i < 5; i++)
835 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
836 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
837 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
838 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
839 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
840 
841 	/* reenable busmastering and memory space */
842 	pci_enable_busmaster(dev);
843 	pci_enable_io(dev, SYS_RES_MEMORY);
844 
845 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
846 	DELAY(10);
847 
848 	/* reinitialize interface if necessary */
849 	if (ifp->if_flags & IFF_UP)
850 		fxp_init(sc);
851 
852 	sc->suspended = 0;
853 
854 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
855 	return (0);
856 }
857 
858 static void
859 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
860 {
861 	u_int16_t reg;
862 	int x;
863 
864 	/*
865 	 * Shift in data.
866 	 */
867 	for (x = 1 << (length - 1); x; x >>= 1) {
868 		if (data & x)
869 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
870 		else
871 			reg = FXP_EEPROM_EECS;
872 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
873 		DELAY(1);
874 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
875 		DELAY(1);
876 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
877 		DELAY(1);
878 	}
879 }
880 
881 /*
882  * Read from the serial EEPROM. Basically, you manually shift in
883  * the read opcode (one bit at a time) and then shift in the address,
884  * and then you shift out the data (all of this one bit at a time).
885  * The word size is 16 bits, so you have to provide the address for
886  * every 16 bits of data.
887  */
888 static u_int16_t
889 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
890 {
891 	u_int16_t reg, data;
892 	int x;
893 
894 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
895 	/*
896 	 * Shift in read opcode.
897 	 */
898 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
899 	/*
900 	 * Shift in address.
901 	 */
902 	data = 0;
903 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
904 		if (offset & x)
905 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
906 		else
907 			reg = FXP_EEPROM_EECS;
908 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
909 		DELAY(1);
910 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
911 		DELAY(1);
912 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
913 		DELAY(1);
914 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
915 		data++;
916 		if (autosize && reg == 0) {
917 			sc->eeprom_size = data;
918 			break;
919 		}
920 	}
921 	/*
922 	 * Shift out data.
923 	 */
924 	data = 0;
925 	reg = FXP_EEPROM_EECS;
926 	for (x = 1 << 15; x; x >>= 1) {
927 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
928 		DELAY(1);
929 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
930 			data |= x;
931 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
932 		DELAY(1);
933 	}
934 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
935 	DELAY(1);
936 
937 	return (data);
938 }
939 
940 static void
941 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
942 {
943 	int i;
944 
945 	/*
946 	 * Erase/write enable.
947 	 */
948 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
949 	fxp_eeprom_shiftin(sc, 0x4, 3);
950 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
951 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
952 	DELAY(1);
953 	/*
954 	 * Shift in write opcode, address, data.
955 	 */
956 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
957 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
958 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
959 	fxp_eeprom_shiftin(sc, data, 16);
960 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
961 	DELAY(1);
962 	/*
963 	 * Wait for EEPROM to finish up.
964 	 */
965 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
966 	DELAY(1);
967 	for (i = 0; i < 1000; i++) {
968 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
969 			break;
970 		DELAY(50);
971 	}
972 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
973 	DELAY(1);
974 	/*
975 	 * Erase/write disable.
976 	 */
977 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
978 	fxp_eeprom_shiftin(sc, 0x4, 3);
979 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
980 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
981 	DELAY(1);
982 }
983 
984 /*
985  * From NetBSD:
986  *
987  * Figure out EEPROM size.
988  *
989  * 559's can have either 64-word or 256-word EEPROMs, the 558
990  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
991  * talks about the existance of 16 to 256 word EEPROMs.
992  *
993  * The only known sizes are 64 and 256, where the 256 version is used
994  * by CardBus cards to store CIS information.
995  *
996  * The address is shifted in msb-to-lsb, and after the last
997  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
998  * after which follows the actual data. We try to detect this zero, by
999  * probing the data-out bit in the EEPROM control register just after
1000  * having shifted in a bit. If the bit is zero, we assume we've
1001  * shifted enough address bits. The data-out should be tri-state,
1002  * before this, which should translate to a logical one.
1003  */
1004 static void
1005 fxp_autosize_eeprom(struct fxp_softc *sc)
1006 {
1007 
1008 	/* guess maximum size of 256 words */
1009 	sc->eeprom_size = 8;
1010 
1011 	/* autosize */
1012 	(void) fxp_eeprom_getword(sc, 0, 1);
1013 }
1014 
1015 static void
1016 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1017 {
1018 	int i;
1019 
1020 	for (i = 0; i < words; i++)
1021 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1022 }
1023 
1024 static void
1025 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1026 {
1027 	int i;
1028 
1029 	for (i = 0; i < words; i++)
1030 		fxp_eeprom_putword(sc, offset + i, data[i]);
1031 }
1032 
1033 /*
1034  * Start packet transmission on the interface.
1035  */
1036 static void
1037 fxp_start(struct ifnet *ifp)
1038 {
1039 	struct fxp_softc *sc = ifp->if_softc;
1040 	struct fxp_cb_tx *txp;
1041 
1042 	/*
1043 	 * See if we need to suspend xmit until the multicast filter
1044 	 * has been reprogrammed (which can only be done at the head
1045 	 * of the command chain).
1046 	 */
1047 	if (sc->need_mcsetup) {
1048 		return;
1049 	}
1050 
1051 	txp = NULL;
1052 
1053 	/*
1054 	 * We're finished if there is nothing more to add to the list or if
1055 	 * we're all filled up with buffers to transmit.
1056 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1057 	 *       a NOP command when needed.
1058 	 */
1059 	while (!ifq_is_empty(&ifp->if_snd) && sc->tx_queued < FXP_NTXCB - 1) {
1060 		struct mbuf *m, *mb_head;
1061 		int segment, ntries = 0;
1062 
1063 		/*
1064 		 * Grab a packet to transmit. The packet is dequeued,
1065 		 * once we are sure that we have enough free descriptors.
1066 		 */
1067 		mb_head = ifq_poll(&ifp->if_snd);
1068 		if (mb_head == NULL)
1069 			break;
1070 
1071 		/*
1072 		 * Get pointer to next available tx desc.
1073 		 */
1074 		txp = sc->cbl_last->next;
1075 
1076 		/*
1077 		 * Go through each of the mbufs in the chain and initialize
1078 		 * the transmit buffer descriptors with the physical address
1079 		 * and size of the mbuf.
1080 		 */
1081 tbdinit:
1082 		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1083 			if (m->m_len != 0) {
1084 				if (segment == FXP_NTXSEG)
1085 					break;
1086 				txp->tbd[segment].tb_addr =
1087 				    vtophys(mtod(m, vm_offset_t));
1088 				txp->tbd[segment].tb_size = m->m_len;
1089 				segment++;
1090 			}
1091 		}
1092 		if (m != NULL) {
1093 			struct mbuf *mn;
1094 
1095 			/*
1096 			 * We ran out of segments. We have to recopy this
1097 			 * mbuf chain first. Bail out if we can't get the
1098 			 * new buffers.
1099 			 */
1100 			if (ntries > 0)
1101 				break;
1102 			mn = m_dup(mb_head, MB_DONTWAIT);
1103 			if (mn == NULL)
1104 				break;
1105 			 /* We can transmit the packet, dequeue it. */
1106 			ifq_dequeue(&ifp->if_snd, mb_head);
1107 			m_freem(mb_head);
1108 			mb_head = mn;
1109 			ntries = 1;
1110 			goto tbdinit;
1111 		} else {
1112 			/* Nothing to worry about, just dequeue. */
1113 			ifq_dequeue(&ifp->if_snd, mb_head);
1114 		}
1115 
1116 		txp->tbd_number = segment;
1117 		txp->mb_head = mb_head;
1118 		txp->cb_status = 0;
1119 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1120 			txp->cb_command =
1121 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1122 			    FXP_CB_COMMAND_S;
1123 		} else {
1124 			txp->cb_command =
1125 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1126 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1127 			/*
1128 			 * Set a 5 second timer just in case we don't hear
1129 			 * from the card again.
1130 			 */
1131 			ifp->if_timer = 5;
1132 		}
1133 		txp->tx_threshold = tx_threshold;
1134 
1135 		/*
1136 		 * Advance the end of list forward.
1137 		 */
1138 
1139 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1140 		sc->cbl_last = txp;
1141 
1142 		/*
1143 		 * Advance the beginning of the list forward if there are
1144 		 * no other packets queued (when nothing is queued, cbl_first
1145 		 * sits on the last TxCB that was sent out).
1146 		 */
1147 		if (sc->tx_queued == 0)
1148 			sc->cbl_first = txp;
1149 
1150 		sc->tx_queued++;
1151 
1152 		BPF_MTAP(ifp, mb_head);
1153 	}
1154 
1155 	/*
1156 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1157 	 * going again if suspended.
1158 	 */
1159 	if (txp != NULL) {
1160 		fxp_scb_wait(sc);
1161 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1162 	}
1163 }
1164 
1165 #ifdef DEVICE_POLLING
1166 
1167 static void
1168 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1169 {
1170 	struct fxp_softc *sc = ifp->if_softc;
1171 	u_int8_t statack;
1172 
1173 	switch(cmd) {
1174 	case POLL_REGISTER:
1175 		/* disable interrupts */
1176 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1177 		break;
1178 	case POLL_DEREGISTER:
1179 		/* enable interrupts */
1180 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1181 		break;
1182 	default:
1183 		statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1184 			  FXP_SCB_STATACK_FR;
1185 		if (cmd == POLL_AND_CHECK_STATUS) {
1186 			u_int8_t tmp;
1187 
1188 			tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1189 			if (tmp == 0xff || tmp == 0)
1190 				return; /* nothing to do */
1191 			tmp &= ~statack;
1192 			/* ack what we can */
1193 			if (tmp != 0)
1194 				CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1195 			statack |= tmp;
1196 		}
1197 		fxp_intr_body(sc, statack, count);
1198 		break;
1199 	}
1200 }
1201 
1202 #endif /* DEVICE_POLLING */
1203 
1204 /*
1205  * Process interface interrupts.
1206  */
1207 static void
1208 fxp_intr(void *xsc)
1209 {
1210 	struct fxp_softc *sc = xsc;
1211 	u_int8_t statack;
1212 
1213 	if (sc->suspended) {
1214 		return;
1215 	}
1216 
1217 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1218 		/*
1219 		 * It should not be possible to have all bits set; the
1220 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1221 		 * all bits are set, this may indicate that the card has
1222 		 * been physically ejected, so ignore it.
1223 		 */
1224 		if (statack == 0xff)
1225 			return;
1226 
1227 		/*
1228 		 * First ACK all the interrupts in this pass.
1229 		 */
1230 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1231 		fxp_intr_body(sc, statack, -1);
1232 	}
1233 }
1234 
1235 static void
1236 fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
1237 {
1238 	struct ifnet *ifp = &sc->arpcom.ac_if;
1239 	struct mbuf *m;
1240 	struct fxp_rfa *rfa;
1241 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1242 
1243 	if (rnr)
1244 		fxp_rnr++;
1245 #ifdef DEVICE_POLLING
1246 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1247 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1248 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1249 		rnr = 1;
1250 	}
1251 #endif
1252 
1253 	/*
1254 	 * Free any finished transmit mbuf chains.
1255 	 *
1256 	 * Handle the CNA event likt a CXTNO event. It used to
1257 	 * be that this event (control unit not ready) was not
1258 	 * encountered, but it is now with the SMPng modifications.
1259 	 * The exact sequence of events that occur when the interface
1260 	 * is brought up are different now, and if this event
1261 	 * goes unhandled, the configuration/rxfilter setup sequence
1262 	 * can stall for several seconds. The result is that no
1263 	 * packets go out onto the wire for about 5 to 10 seconds
1264 	 * after the interface is ifconfig'ed for the first time.
1265 	 */
1266 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1267 		struct fxp_cb_tx *txp;
1268 
1269 		for (txp = sc->cbl_first; sc->tx_queued &&
1270 		    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1271 		    txp = txp->next) {
1272 			if ((m = txp->mb_head) != NULL) {
1273 				txp->mb_head = NULL;
1274 				sc->tx_queued--;
1275 				m_freem(m);
1276 			} else {
1277 				sc->tx_queued--;
1278 			}
1279 		}
1280 		sc->cbl_first = txp;
1281 		ifp->if_timer = 0;
1282 		if (sc->tx_queued == 0) {
1283 			if (sc->need_mcsetup)
1284 				fxp_mc_setup(sc);
1285 		}
1286 		/*
1287 		 * Try to start more packets transmitting.
1288 		 */
1289 		if (!ifq_is_empty(&ifp->if_snd))
1290 			(*ifp->if_start)(ifp);
1291 	}
1292 
1293 	/*
1294 	 * Just return if nothing happened on the receive side.
1295 	 */
1296 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1297 		return;
1298 
1299 	/*
1300 	 * Process receiver interrupts. If a no-resource (RNR)
1301 	 * condition exists, get whatever packets we can and
1302 	 * re-start the receiver.
1303 	 *
1304 	 * When using polling, we do not process the list to completion,
1305 	 * so when we get an RNR interrupt we must defer the restart
1306 	 * until we hit the last buffer with the C bit set.
1307 	 * If we run out of cycles and rfa_headm has the C bit set,
1308 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1309 	 * that the info will be used in the subsequent polling cycle.
1310 	 */
1311 	for (;;) {
1312 		m = sc->rfa_headm;
1313 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1314 		    RFA_ALIGNMENT_FUDGE);
1315 
1316 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1317 		if (count >= 0 && count-- == 0) {
1318 			if (rnr) {
1319 				/* Defer RNR processing until the next time. */
1320 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1321 				rnr = 0;
1322 			}
1323 			break;
1324 		}
1325 #endif /* DEVICE_POLLING */
1326 
1327 		if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0)
1328 			break;
1329 
1330 		/*
1331 		 * Remove first packet from the chain.
1332 		 */
1333 		sc->rfa_headm = m->m_next;
1334 		m->m_next = NULL;
1335 
1336 		/*
1337 		 * Add a new buffer to the receive chain.
1338 		 * If this fails, the old buffer is recycled
1339 		 * instead.
1340 		 */
1341 		if (fxp_add_rfabuf(sc, m) == 0) {
1342 			int total_len;
1343 
1344 			/*
1345 			 * Fetch packet length (the top 2 bits of
1346 			 * actual_size are flags set by the controller
1347 			 * upon completion), and drop the packet in case
1348 			 * of bogus length or CRC errors.
1349 			 */
1350 			total_len = rfa->actual_size & 0x3fff;
1351 			if (total_len < sizeof(struct ether_header) ||
1352 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1353 				sizeof(struct fxp_rfa) ||
1354 			    rfa->rfa_status & FXP_RFA_STATUS_CRC) {
1355 				m_freem(m);
1356 				continue;
1357 			}
1358 			m->m_pkthdr.len = m->m_len = total_len;
1359 			ifp->if_input(ifp, m);
1360 		}
1361 	}
1362 	if (rnr) {
1363 		fxp_scb_wait(sc);
1364 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1365 		    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1366 		    RFA_ALIGNMENT_FUDGE);
1367 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1368 	}
1369 }
1370 
1371 /*
1372  * Update packet in/out/collision statistics. The i82557 doesn't
1373  * allow you to access these counters without doing a fairly
1374  * expensive DMA to get _all_ of the statistics it maintains, so
1375  * we do this operation here only once per second. The statistics
1376  * counters in the kernel are updated from the previous dump-stats
1377  * DMA and then a new dump-stats DMA is started. The on-chip
1378  * counters are zeroed when the DMA completes. If we can't start
1379  * the DMA immediately, we don't wait - we just prepare to read
1380  * them again next time.
1381  */
1382 static void
1383 fxp_tick(void *xsc)
1384 {
1385 	struct fxp_softc *sc = xsc;
1386 	struct ifnet *ifp = &sc->arpcom.ac_if;
1387 	struct fxp_stats *sp = sc->fxp_stats;
1388 	struct fxp_cb_tx *txp;
1389 	struct mbuf *m;
1390 
1391 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
1392 
1393 	ifp->if_opackets += sp->tx_good;
1394 	ifp->if_collisions += sp->tx_total_collisions;
1395 	if (sp->rx_good) {
1396 		ifp->if_ipackets += sp->rx_good;
1397 		sc->rx_idle_secs = 0;
1398 	} else {
1399 		/*
1400 		 * Receiver's been idle for another second.
1401 		 */
1402 		sc->rx_idle_secs++;
1403 	}
1404 	ifp->if_ierrors +=
1405 	    sp->rx_crc_errors +
1406 	    sp->rx_alignment_errors +
1407 	    sp->rx_rnr_errors +
1408 	    sp->rx_overrun_errors;
1409 	/*
1410 	 * If any transmit underruns occured, bump up the transmit
1411 	 * threshold by another 512 bytes (64 * 8).
1412 	 */
1413 	if (sp->tx_underruns) {
1414 		ifp->if_oerrors += sp->tx_underruns;
1415 		if (tx_threshold < 192)
1416 			tx_threshold += 64;
1417 	}
1418 
1419 	/*
1420 	 * Release any xmit buffers that have completed DMA. This isn't
1421 	 * strictly necessary to do here, but it's advantagous for mbufs
1422 	 * with external storage to be released in a timely manner rather
1423 	 * than being defered for a potentially long time. This limits
1424 	 * the delay to a maximum of one second.
1425 	 */
1426 	for (txp = sc->cbl_first; sc->tx_queued &&
1427 	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1428 	    txp = txp->next) {
1429 		if ((m = txp->mb_head) != NULL) {
1430 			txp->mb_head = NULL;
1431 			sc->tx_queued--;
1432 			m_freem(m);
1433 		} else {
1434 			sc->tx_queued--;
1435 		}
1436 	}
1437 	sc->cbl_first = txp;
1438 	/*
1439 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1440 	 * then assume the receiver has locked up and attempt to clear
1441 	 * the condition by reprogramming the multicast filter. This is
1442 	 * a work-around for a bug in the 82557 where the receiver locks
1443 	 * up if it gets certain types of garbage in the syncronization
1444 	 * bits prior to the packet header. This bug is supposed to only
1445 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1446 	 * mode as well (perhaps due to a 10/100 speed transition).
1447 	 */
1448 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1449 		sc->rx_idle_secs = 0;
1450 		fxp_mc_setup(sc);
1451 	}
1452 	/*
1453 	 * If there is no pending command, start another stats
1454 	 * dump. Otherwise punt for now.
1455 	 */
1456 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1457 		/*
1458 		 * Start another stats dump.
1459 		 */
1460 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1461 	} else {
1462 		/*
1463 		 * A previous command is still waiting to be accepted.
1464 		 * Just zero our copy of the stats and wait for the
1465 		 * next timer event to update them.
1466 		 */
1467 		sp->tx_good = 0;
1468 		sp->tx_underruns = 0;
1469 		sp->tx_total_collisions = 0;
1470 
1471 		sp->rx_good = 0;
1472 		sp->rx_crc_errors = 0;
1473 		sp->rx_alignment_errors = 0;
1474 		sp->rx_rnr_errors = 0;
1475 		sp->rx_overrun_errors = 0;
1476 	}
1477 	if (sc->miibus != NULL)
1478 		mii_tick(device_get_softc(sc->miibus));
1479 	/*
1480 	 * Schedule another timeout one second from now.
1481 	 */
1482 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1483 
1484 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
1485 }
1486 
1487 /*
1488  * Stop the interface. Cancels the statistics updater and resets
1489  * the interface.
1490  */
1491 static void
1492 fxp_stop(struct fxp_softc *sc)
1493 {
1494 	struct ifnet *ifp = &sc->arpcom.ac_if;
1495 	struct fxp_cb_tx *txp;
1496 	int i;
1497 
1498 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1499 	ifp->if_timer = 0;
1500 
1501 	/*
1502 	 * Cancel stats updater.
1503 	 */
1504 	callout_stop(&sc->fxp_stat_timer);
1505 
1506 	/*
1507 	 * Issue software reset, which also unloads the microcode.
1508 	 */
1509 	sc->flags &= ~FXP_FLAG_UCODE;
1510 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1511 	DELAY(50);
1512 
1513 	/*
1514 	 * Release any xmit buffers.
1515 	 */
1516 	txp = sc->cbl_base;
1517 	if (txp != NULL) {
1518 		for (i = 0; i < FXP_NTXCB; i++) {
1519 			if (txp[i].mb_head != NULL) {
1520 				m_freem(txp[i].mb_head);
1521 				txp[i].mb_head = NULL;
1522 			}
1523 		}
1524 	}
1525 	sc->tx_queued = 0;
1526 
1527 	/*
1528 	 * Free all the receive buffers then reallocate/reinitialize
1529 	 */
1530 	if (sc->rfa_headm != NULL)
1531 		m_freem(sc->rfa_headm);
1532 	sc->rfa_headm = NULL;
1533 	sc->rfa_tailm = NULL;
1534 	for (i = 0; i < FXP_NRFABUFS; i++) {
1535 		if (fxp_add_rfabuf(sc, NULL) != 0) {
1536 			/*
1537 			 * This "can't happen" - we're at splimp()
1538 			 * and we just freed all the buffers we need
1539 			 * above.
1540 			 */
1541 			panic("fxp_stop: no buffers!");
1542 		}
1543 	}
1544 }
1545 
1546 /*
1547  * Watchdog/transmission transmit timeout handler. Called when a
1548  * transmission is started on the interface, but no interrupt is
1549  * received before the timeout. This usually indicates that the
1550  * card has wedged for some reason.
1551  */
1552 static void
1553 fxp_watchdog(struct ifnet *ifp)
1554 {
1555 	if_printf(ifp, "device timeout\n");
1556 	ifp->if_oerrors++;
1557 	fxp_init(ifp->if_softc);
1558 }
1559 
1560 static void
1561 fxp_init(void *xsc)
1562 {
1563 	struct fxp_softc *sc = xsc;
1564 	struct ifnet *ifp = &sc->arpcom.ac_if;
1565 	struct fxp_cb_config *cbp;
1566 	struct fxp_cb_ias *cb_ias;
1567 	struct fxp_cb_tx *txp;
1568 	struct fxp_cb_mcs *mcsp;
1569 	int i, prm;
1570 
1571 	/*
1572 	 * Cancel any pending I/O
1573 	 */
1574 	fxp_stop(sc);
1575 
1576 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1577 
1578 	/*
1579 	 * Initialize base of CBL and RFA memory. Loading with zero
1580 	 * sets it up for regular linear addressing.
1581 	 */
1582 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1583 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1584 
1585 	fxp_scb_wait(sc);
1586 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1587 
1588 	/*
1589 	 * Initialize base of dump-stats buffer.
1590 	 */
1591 	fxp_scb_wait(sc);
1592 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1593 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1594 
1595 	/*
1596 	 * Attempt to load microcode if requested.
1597 	 */
1598 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1599 		fxp_load_ucode(sc);
1600 
1601 	/*
1602 	 * Initialize the multicast address list.
1603 	 */
1604 	if (fxp_mc_addrs(sc)) {
1605 		mcsp = sc->mcsp;
1606 		mcsp->cb_status = 0;
1607 		mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
1608 		mcsp->link_addr = -1;
1609 		/*
1610 	 	 * Start the multicast setup command.
1611 		 */
1612 		fxp_scb_wait(sc);
1613 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1614 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1615 		/* ...and wait for it to complete. */
1616 		fxp_dma_wait(&mcsp->cb_status, sc);
1617 	}
1618 
1619 	/*
1620 	 * We temporarily use memory that contains the TxCB list to
1621 	 * construct the config CB. The TxCB list memory is rebuilt
1622 	 * later.
1623 	 */
1624 	cbp = (struct fxp_cb_config *) sc->cbl_base;
1625 
1626 	/*
1627 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1628 	 * zero and must be one bits in this structure and this is the easiest
1629 	 * way to initialize them all to proper values.
1630 	 */
1631 	bcopy(fxp_cb_config_template,
1632 		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1633 		sizeof(fxp_cb_config_template));
1634 
1635 	cbp->cb_status =	0;
1636 	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1637 	cbp->link_addr =	-1;	/* (no) next command */
1638 	cbp->byte_count =	22;	/* (22) bytes to config */
1639 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1640 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1641 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1642 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1643 	cbp->type_enable =	0;	/* actually reserved */
1644 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1645 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1646 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1647 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1648 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1649 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1650 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
1651 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1652 	cbp->ci_int =		1;	/* interrupt on CU idle */
1653 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1654 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
1655 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
1656 	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
1657 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1658 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
1659 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1660 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1661 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1662 	cbp->csma_dis =		0;	/* (don't) disable link */
1663 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1664 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1665 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1666 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1667 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
1668 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1669 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1670 	cbp->loopback =		0;	/* (don't) loopback */
1671 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1672 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1673 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1674 	cbp->promiscuous =	prm;	/* promiscuous mode */
1675 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1676 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1677 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1678 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1679 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1680 
1681 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1682 	cbp->padding =		1;	/* (do) pad short tx packets */
1683 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1684 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1685 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1686 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1687 					/* must set wake_en in PMCSR also */
1688 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1689 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1690 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1691 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1692 
1693 	if (sc->revision == FXP_REV_82557) {
1694 		/*
1695 		 * The 82557 has no hardware flow control, the values
1696 		 * below are the defaults for the chip.
1697 		 */
1698 		cbp->fc_delay_lsb =	0;
1699 		cbp->fc_delay_msb =	0x40;
1700 		cbp->pri_fc_thresh =	3;
1701 		cbp->tx_fc_dis =	0;
1702 		cbp->rx_fc_restop =	0;
1703 		cbp->rx_fc_restart =	0;
1704 		cbp->fc_filter =	0;
1705 		cbp->pri_fc_loc =	1;
1706 	} else {
1707 		cbp->fc_delay_lsb =	0x1f;
1708 		cbp->fc_delay_msb =	0x01;
1709 		cbp->pri_fc_thresh =	3;
1710 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1711 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1712 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1713 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1714 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1715 	}
1716 
1717 	/*
1718 	 * Start the config command/DMA.
1719 	 */
1720 	fxp_scb_wait(sc);
1721 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1722 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1723 	/* ...and wait for it to complete. */
1724 	fxp_dma_wait(&cbp->cb_status, sc);
1725 
1726 	/*
1727 	 * Now initialize the station address. Temporarily use the TxCB
1728 	 * memory area like we did above for the config CB.
1729 	 */
1730 	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1731 	cb_ias->cb_status = 0;
1732 	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1733 	cb_ias->link_addr = -1;
1734 	bcopy(sc->arpcom.ac_enaddr,
1735 	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1736 	    sizeof(sc->arpcom.ac_enaddr));
1737 
1738 	/*
1739 	 * Start the IAS (Individual Address Setup) command/DMA.
1740 	 */
1741 	fxp_scb_wait(sc);
1742 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1743 	/* ...and wait for it to complete. */
1744 	fxp_dma_wait(&cb_ias->cb_status, sc);
1745 
1746 	/*
1747 	 * Initialize transmit control block (TxCB) list.
1748 	 */
1749 
1750 	txp = sc->cbl_base;
1751 	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1752 	for (i = 0; i < FXP_NTXCB; i++) {
1753 		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1754 		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1755 		txp[i].link_addr =
1756 		    vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1757 		if (sc->flags & FXP_FLAG_EXT_TXCB)
1758 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1759 		else
1760 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1761 		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1762 	}
1763 	/*
1764 	 * Set the suspend flag on the first TxCB and start the control
1765 	 * unit. It will execute the NOP and then suspend.
1766 	 */
1767 	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1768 	sc->cbl_first = sc->cbl_last = txp;
1769 	sc->tx_queued = 1;
1770 
1771 	fxp_scb_wait(sc);
1772 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1773 
1774 	/*
1775 	 * Initialize receiver buffer area - RFA.
1776 	 */
1777 	fxp_scb_wait(sc);
1778 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1779 	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1780 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1781 
1782 	/*
1783 	 * Set current media.
1784 	 */
1785 	if (sc->miibus != NULL)
1786 		mii_mediachg(device_get_softc(sc->miibus));
1787 
1788 	ifp->if_flags |= IFF_RUNNING;
1789 	ifp->if_flags &= ~IFF_OACTIVE;
1790 
1791 	/*
1792 	 * Enable interrupts.
1793 	 */
1794 #ifdef DEVICE_POLLING
1795 	/*
1796 	 * ... but only do that if we are not polling. And because (presumably)
1797 	 * the default is interrupts on, we need to disable them explicitly!
1798 	 */
1799 	if ( ifp->if_flags & IFF_POLLING )
1800 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1801 	else
1802 #endif /* DEVICE_POLLING */
1803 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1804 
1805 	/*
1806 	 * Start stats updater.
1807 	 */
1808 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1809 }
1810 
1811 static int
1812 fxp_serial_ifmedia_upd(struct ifnet *ifp)
1813 {
1814 
1815 	return (0);
1816 }
1817 
1818 static void
1819 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1820 {
1821 
1822 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1823 }
1824 
1825 /*
1826  * Change media according to request.
1827  */
1828 static int
1829 fxp_ifmedia_upd(struct ifnet *ifp)
1830 {
1831 	struct fxp_softc *sc = ifp->if_softc;
1832 	struct mii_data *mii;
1833 
1834 	mii = device_get_softc(sc->miibus);
1835 	mii_mediachg(mii);
1836 	return (0);
1837 }
1838 
1839 /*
1840  * Notify the world which media we're using.
1841  */
1842 static void
1843 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1844 {
1845 	struct fxp_softc *sc = ifp->if_softc;
1846 	struct mii_data *mii;
1847 
1848 	mii = device_get_softc(sc->miibus);
1849 	mii_pollstat(mii);
1850 	ifmr->ifm_active = mii->mii_media_active;
1851 	ifmr->ifm_status = mii->mii_media_status;
1852 
1853 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1854 		sc->cu_resume_bug = 1;
1855 	else
1856 		sc->cu_resume_bug = 0;
1857 }
1858 
1859 /*
1860  * Add a buffer to the end of the RFA buffer list.
1861  * Return 0 if successful, 1 for failure. A failure results in
1862  * adding the 'oldm' (if non-NULL) on to the end of the list -
1863  * tossing out its old contents and recycling it.
1864  * The RFA struct is stuck at the beginning of mbuf cluster and the
1865  * data pointer is fixed up to point just past it.
1866  */
1867 static int
1868 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1869 {
1870 	u_int32_t v;
1871 	struct mbuf *m;
1872 	struct fxp_rfa *rfa, *p_rfa;
1873 
1874 	m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1875 	if (m == NULL) { /* try to recycle the old mbuf instead */
1876 		if (oldm == NULL)
1877 			return 1;
1878 		m = oldm;
1879 		m->m_data = m->m_ext.ext_buf;
1880 	}
1881 
1882 	/*
1883 	 * Move the data pointer up so that the incoming data packet
1884 	 * will be 32-bit aligned.
1885 	 */
1886 	m->m_data += RFA_ALIGNMENT_FUDGE;
1887 
1888 	/*
1889 	 * Get a pointer to the base of the mbuf cluster and move
1890 	 * data start past it.
1891 	 */
1892 	rfa = mtod(m, struct fxp_rfa *);
1893 	m->m_data += sizeof(struct fxp_rfa);
1894 	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
1895 
1896 	/*
1897 	 * Initialize the rest of the RFA.  Note that since the RFA
1898 	 * is misaligned, we cannot store values directly.  Instead,
1899 	 * we use an optimized, inline copy.
1900 	 */
1901 
1902 	rfa->rfa_status = 0;
1903 	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1904 	rfa->actual_size = 0;
1905 
1906 	v = -1;
1907 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1908 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1909 
1910 	/*
1911 	 * If there are other buffers already on the list, attach this
1912 	 * one to the end by fixing up the tail to point to this one.
1913 	 */
1914 	if (sc->rfa_headm != NULL) {
1915 		p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1916 		    RFA_ALIGNMENT_FUDGE);
1917 		sc->rfa_tailm->m_next = m;
1918 		v = vtophys(rfa);
1919 		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
1920 		p_rfa->rfa_control = 0;
1921 	} else {
1922 		sc->rfa_headm = m;
1923 	}
1924 	sc->rfa_tailm = m;
1925 
1926 	return (m == oldm);
1927 }
1928 
1929 static volatile int
1930 fxp_miibus_readreg(device_t dev, int phy, int reg)
1931 {
1932 	struct fxp_softc *sc = device_get_softc(dev);
1933 	int count = 10000;
1934 	int value;
1935 
1936 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1937 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1938 
1939 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1940 	    && count--)
1941 		DELAY(10);
1942 
1943 	if (count <= 0)
1944 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
1945 
1946 	return (value & 0xffff);
1947 }
1948 
1949 static void
1950 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
1951 {
1952 	struct fxp_softc *sc = device_get_softc(dev);
1953 	int count = 10000;
1954 
1955 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1956 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1957 	    (value & 0xffff));
1958 
1959 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1960 	    count--)
1961 		DELAY(10);
1962 
1963 	if (count <= 0)
1964 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
1965 }
1966 
1967 static int
1968 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1969 {
1970 	struct fxp_softc *sc = ifp->if_softc;
1971 	struct ifreq *ifr = (struct ifreq *)data;
1972 	struct mii_data *mii;
1973 	int error = 0;
1974 
1975 	switch (command) {
1976 
1977 	case SIOCSIFFLAGS:
1978 		if (ifp->if_flags & IFF_ALLMULTI)
1979 			sc->flags |= FXP_FLAG_ALL_MCAST;
1980 		else
1981 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
1982 
1983 		/*
1984 		 * If interface is marked up and not running, then start it.
1985 		 * If it is marked down and running, stop it.
1986 		 * XXX If it's up then re-initialize it. This is so flags
1987 		 * such as IFF_PROMISC are handled.
1988 		 */
1989 		if (ifp->if_flags & IFF_UP) {
1990 			fxp_init(sc);
1991 		} else {
1992 			if (ifp->if_flags & IFF_RUNNING)
1993 				fxp_stop(sc);
1994 		}
1995 		break;
1996 
1997 	case SIOCADDMULTI:
1998 	case SIOCDELMULTI:
1999 		if (ifp->if_flags & IFF_ALLMULTI)
2000 			sc->flags |= FXP_FLAG_ALL_MCAST;
2001 		else
2002 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2003 		/*
2004 		 * Multicast list has changed; set the hardware filter
2005 		 * accordingly.
2006 		 */
2007 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2008 			fxp_mc_setup(sc);
2009 		/*
2010 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2011 		 * again rather than else {}.
2012 		 */
2013 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2014 			fxp_init(sc);
2015 		error = 0;
2016 		break;
2017 
2018 	case SIOCSIFMEDIA:
2019 	case SIOCGIFMEDIA:
2020 		if (sc->miibus != NULL) {
2021 			mii = device_get_softc(sc->miibus);
2022                         error = ifmedia_ioctl(ifp, ifr,
2023                             &mii->mii_media, command);
2024 		} else {
2025                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2026 		}
2027 		break;
2028 
2029 	default:
2030 		error = ether_ioctl(ifp, command, data);
2031 		break;
2032 	}
2033 	return (error);
2034 }
2035 
2036 /*
2037  * Fill in the multicast address list and return number of entries.
2038  */
2039 static int
2040 fxp_mc_addrs(struct fxp_softc *sc)
2041 {
2042 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2043 	struct ifnet *ifp = &sc->arpcom.ac_if;
2044 	struct ifmultiaddr *ifma;
2045 	int nmcasts;
2046 
2047 	nmcasts = 0;
2048 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2049 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2050 			if (ifma->ifma_addr->sa_family != AF_LINK)
2051 				continue;
2052 			if (nmcasts >= MAXMCADDR) {
2053 				sc->flags |= FXP_FLAG_ALL_MCAST;
2054 				nmcasts = 0;
2055 				break;
2056 			}
2057 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2058 			    (void *)(uintptr_t)(volatile void *)
2059 				&sc->mcsp->mc_addr[nmcasts][0], 6);
2060 			nmcasts++;
2061 		}
2062 	}
2063 	mcsp->mc_cnt = nmcasts * 6;
2064 	return (nmcasts);
2065 }
2066 
2067 /*
2068  * Program the multicast filter.
2069  *
2070  * We have an artificial restriction that the multicast setup command
2071  * must be the first command in the chain, so we take steps to ensure
2072  * this. By requiring this, it allows us to keep up the performance of
2073  * the pre-initialized command ring (esp. link pointers) by not actually
2074  * inserting the mcsetup command in the ring - i.e. its link pointer
2075  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2076  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2077  * lead into the regular TxCB ring when it completes.
2078  *
2079  * This function must be called at splimp.
2080  */
2081 static void
2082 fxp_mc_setup(struct fxp_softc *sc)
2083 {
2084 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2085 	struct ifnet *ifp = &sc->arpcom.ac_if;
2086 	int count;
2087 
2088 	/*
2089 	 * If there are queued commands, we must wait until they are all
2090 	 * completed. If we are already waiting, then add a NOP command
2091 	 * with interrupt option so that we're notified when all commands
2092 	 * have been completed - fxp_start() ensures that no additional
2093 	 * TX commands will be added when need_mcsetup is true.
2094 	 */
2095 	if (sc->tx_queued) {
2096 		struct fxp_cb_tx *txp;
2097 
2098 		/*
2099 		 * need_mcsetup will be true if we are already waiting for the
2100 		 * NOP command to be completed (see below). In this case, bail.
2101 		 */
2102 		if (sc->need_mcsetup)
2103 			return;
2104 		sc->need_mcsetup = 1;
2105 
2106 		/*
2107 		 * Add a NOP command with interrupt so that we are notified
2108 		 * when all TX commands have been processed.
2109 		 */
2110 		txp = sc->cbl_last->next;
2111 		txp->mb_head = NULL;
2112 		txp->cb_status = 0;
2113 		txp->cb_command = FXP_CB_COMMAND_NOP |
2114 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2115 		/*
2116 		 * Advance the end of list forward.
2117 		 */
2118 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2119 		sc->cbl_last = txp;
2120 		sc->tx_queued++;
2121 		/*
2122 		 * Issue a resume in case the CU has just suspended.
2123 		 */
2124 		fxp_scb_wait(sc);
2125 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2126 		/*
2127 		 * Set a 5 second timer just in case we don't hear from the
2128 		 * card again.
2129 		 */
2130 		ifp->if_timer = 5;
2131 
2132 		return;
2133 	}
2134 	sc->need_mcsetup = 0;
2135 
2136 	/*
2137 	 * Initialize multicast setup descriptor.
2138 	 */
2139 	mcsp->next = sc->cbl_base;
2140 	mcsp->mb_head = NULL;
2141 	mcsp->cb_status = 0;
2142 	mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2143 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2144 	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2145 	(void) fxp_mc_addrs(sc);
2146 	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2147 	sc->tx_queued = 1;
2148 
2149 	/*
2150 	 * Wait until command unit is not active. This should never
2151 	 * be the case when nothing is queued, but make sure anyway.
2152 	 */
2153 	count = 100;
2154 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2155 	    FXP_SCB_CUS_ACTIVE && --count)
2156 		DELAY(10);
2157 	if (count == 0) {
2158 		if_printf(&sc->arpcom.ac_if, "command queue timeout\n");
2159 		return;
2160 	}
2161 
2162 	/*
2163 	 * Start the multicast setup command.
2164 	 */
2165 	fxp_scb_wait(sc);
2166 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2167 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2168 
2169 	ifp->if_timer = 2;
2170 	return;
2171 }
2172 
2173 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2174 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2175 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2176 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2177 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2178 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2179 
2180 #define UCODE(x)	x, sizeof(x)
2181 
2182 struct ucode {
2183 	u_int32_t	revision;
2184 	u_int32_t	*ucode;
2185 	int		length;
2186 	u_short		int_delay_offset;
2187 	u_short		bundle_max_offset;
2188 } ucode_table[] = {
2189 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2190 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2191 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2192 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2193 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2194 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2195 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2196 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2197 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2198 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2199 	{ 0, NULL, 0, 0, 0 }
2200 };
2201 
2202 static void
2203 fxp_load_ucode(struct fxp_softc *sc)
2204 {
2205 	struct ucode *uc;
2206 	struct fxp_cb_ucode *cbp;
2207 
2208 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2209 		if (sc->revision == uc->revision)
2210 			break;
2211 	if (uc->ucode == NULL)
2212 		return;
2213 	cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2214 	cbp->cb_status = 0;
2215 	cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2216 	cbp->link_addr = -1;    	/* (no) next command */
2217 	memcpy(cbp->ucode, uc->ucode, uc->length);
2218 	if (uc->int_delay_offset)
2219 		*(u_short *)&cbp->ucode[uc->int_delay_offset] =
2220 		    sc->tunable_int_delay + sc->tunable_int_delay / 2;
2221 	if (uc->bundle_max_offset)
2222 		*(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2223 		    sc->tunable_bundle_max;
2224 	/*
2225 	 * Download the ucode to the chip.
2226 	 */
2227 	fxp_scb_wait(sc);
2228 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2229 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2230 	/* ...and wait for it to complete. */
2231 	fxp_dma_wait(&cbp->cb_status, sc);
2232 	if_printf(&sc->arpcom.ac_if,
2233 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2234 	    sc->tunable_int_delay,
2235 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2236 	sc->flags |= FXP_FLAG_UCODE;
2237 }
2238 
2239 static int
2240 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2241 {
2242 	int error, value;
2243 
2244 	value = *(int *)arg1;
2245 	error = sysctl_handle_int(oidp, &value, 0, req);
2246 	if (error || !req->newptr)
2247 		return (error);
2248 	if (value < low || value > high)
2249 		return (EINVAL);
2250 	*(int *)arg1 = value;
2251 	return (0);
2252 }
2253 
2254 /*
2255  * Interrupt delay is expressed in microseconds, a multiplier is used
2256  * to convert this to the appropriate clock ticks before using.
2257  */
2258 static int
2259 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2260 {
2261 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2262 }
2263 
2264 static int
2265 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2266 {
2267 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2268 }
2269