xref: /dragonfly/sys/dev/netif/fxp/if_fxp.c (revision cc93b0eb)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD: src/sys/dev/fxp/if_fxp.c,v 1.110.2.30 2003/06/12 16:47:05 mux Exp $
29  * $DragonFly: src/sys/dev/netif/fxp/if_fxp.c,v 1.55 2008/06/27 10:55:23 sephe Exp $
30  */
31 
32 /*
33  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
34  */
35 
36 #include "opt_polling.h"
37 #include "opt_ethernet.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/mbuf.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/interrupt.h>
45 #include <sys/socket.h>
46 #include <sys/sysctl.h>
47 #include <sys/thread2.h>
48 
49 #include <net/if.h>
50 #include <net/ifq_var.h>
51 #include <net/if_dl.h>
52 #include <net/if_media.h>
53 
54 #ifdef NS
55 #include <netns/ns.h>
56 #include <netns/ns_if.h>
57 #endif
58 
59 #include <net/bpf.h>
60 #include <sys/sockio.h>
61 #include <sys/bus.h>
62 #include <sys/rman.h>
63 
64 #include <net/ethernet.h>
65 #include <net/if_arp.h>
66 
67 #include <vm/vm.h>		/* for vtophys */
68 #include <vm/pmap.h>		/* for vtophys */
69 
70 #include <net/if_types.h>
71 #include <net/vlan/if_vlan_var.h>
72 
73 #include <bus/pci/pcivar.h>
74 #include <bus/pci/pcireg.h>		/* for PCIM_CMD_xxx */
75 
76 #include "../mii_layer/mii.h"
77 #include "../mii_layer/miivar.h"
78 
79 #include "if_fxpreg.h"
80 #include "if_fxpvar.h"
81 #include "rcvbundl.h"
82 
83 #include "miibus_if.h"
84 
85 /*
86  * NOTE!  On the Alpha, we have an alignment constraint.  The
87  * card DMAs the packet immediately following the RFA.  However,
88  * the first thing in the packet is a 14-byte Ethernet header.
89  * This means that the packet is misaligned.  To compensate,
90  * we actually offset the RFA 2 bytes into the cluster.  This
91  * alignes the packet after the Ethernet header at a 32-bit
92  * boundary.  HOWEVER!  This means that the RFA is misaligned!
93  */
94 #define	RFA_ALIGNMENT_FUDGE	2
95 
96 /*
97  * Set initial transmit threshold at 64 (512 bytes). This is
98  * increased by 64 (512 bytes) at a time, to maximum of 192
99  * (1536 bytes), if an underrun occurs.
100  */
101 static int tx_threshold = 64;
102 
103 /*
104  * The configuration byte map has several undefined fields which
105  * must be one or must be zero.  Set up a template for these bits
106  * only, (assuming a 82557 chip) leaving the actual configuration
107  * to fxp_init.
108  *
109  * See struct fxp_cb_config for the bit definitions.
110  */
111 static u_char fxp_cb_config_template[] = {
112 	0x0, 0x0,		/* cb_status */
113 	0x0, 0x0,		/* cb_command */
114 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
115 	0x0,	/*  0 */
116 	0x0,	/*  1 */
117 	0x0,	/*  2 */
118 	0x0,	/*  3 */
119 	0x0,	/*  4 */
120 	0x0,	/*  5 */
121 	0x32,	/*  6 */
122 	0x0,	/*  7 */
123 	0x0,	/*  8 */
124 	0x0,	/*  9 */
125 	0x6,	/* 10 */
126 	0x0,	/* 11 */
127 	0x0,	/* 12 */
128 	0x0,	/* 13 */
129 	0xf2,	/* 14 */
130 	0x48,	/* 15 */
131 	0x0,	/* 16 */
132 	0x40,	/* 17 */
133 	0xf0,	/* 18 */
134 	0x0,	/* 19 */
135 	0x3f,	/* 20 */
136 	0x5	/* 21 */
137 };
138 
139 struct fxp_ident {
140 	u_int16_t	devid;
141 	int16_t		revid;		/* -1 matches anything */
142 	char 		*name;
143 };
144 
145 /*
146  * Claim various Intel PCI device identifiers for this driver.  The
147  * sub-vendor and sub-device field are extensively used to identify
148  * particular variants, but we don't currently differentiate between
149  * them.
150  */
151 static struct fxp_ident fxp_ident_table[] = {
152      { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
153      { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
154      { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
155      { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
156      { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
157      { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
158      { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
159      { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
160      { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
161      { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
162      { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
163      { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
164      { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
165      { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
166      { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
167      { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
168      { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
169      { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
170      { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
171      { 0x1064,	-1,	"Intel 82562ET/EZ/GT/GZ (ICH6/ICH6R) Pro/100 VE Ethernet" },
172      { 0x1065,	-1,	"Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
173      { 0x1068,	-1,	"Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
174      { 0x1069,	-1,	"Intel 82562EM/EX/GX Pro/100 Ethernet" },
175      { 0x1091,	-1,	"Intel 82562GX Pro/100 Ethernet" },
176      { 0x1092,	-1,	"Intel Pro/100 VE Network Connection" },
177      { 0x1093,	-1,	"Intel Pro/100 VM Network Connection" },
178      { 0x1094,	-1,	"Intel Pro/100 946GZ (ICH7) Network Connection" },
179      { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
180      { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
181      { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
182      { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
183      { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
184      { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
185      { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
186      { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
187      { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
188      { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
189      { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
190      { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
191      { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
192      { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
193      { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
194      { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
195      { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
196      { 0x27dc,	-1,	"Intel 82801GB (ICH7) 10/100 Ethernet" },
197      { 0,	-1,	NULL },
198 };
199 
200 static int		fxp_probe(device_t dev);
201 static int		fxp_attach(device_t dev);
202 static int		fxp_detach(device_t dev);
203 static int		fxp_shutdown(device_t dev);
204 static int		fxp_suspend(device_t dev);
205 static int		fxp_resume(device_t dev);
206 
207 static void		fxp_intr(void *xsc);
208 static void		fxp_intr_body(struct fxp_softc *sc,
209 				u_int8_t statack, int count);
210 
211 static void 		fxp_init(void *xsc);
212 static void 		fxp_tick(void *xsc);
213 static void		fxp_powerstate_d0(device_t dev);
214 static void 		fxp_start(struct ifnet *ifp);
215 static void		fxp_stop(struct fxp_softc *sc);
216 static void 		fxp_release(device_t dev);
217 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
218 			    caddr_t data, struct ucred *);
219 static void 		fxp_watchdog(struct ifnet *ifp);
220 static int		fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
221 static int		fxp_mc_addrs(struct fxp_softc *sc);
222 static void		fxp_mc_setup(struct fxp_softc *sc);
223 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
224 			    int autosize);
225 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
226 			    u_int16_t data);
227 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
228 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
229 			    int offset, int words);
230 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
231 			    int offset, int words);
232 static int		fxp_ifmedia_upd(struct ifnet *ifp);
233 static void		fxp_ifmedia_sts(struct ifnet *ifp,
234 			    struct ifmediareq *ifmr);
235 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
236 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
237 			    struct ifmediareq *ifmr);
238 static int		fxp_miibus_readreg(device_t dev, int phy, int reg);
239 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
240 			    int value);
241 static void		fxp_load_ucode(struct fxp_softc *sc);
242 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
243 			    int low, int high);
244 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
245 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
246 #ifdef DEVICE_POLLING
247 static poll_handler_t fxp_poll;
248 #endif
249 
250 static void		fxp_lwcopy(volatile u_int32_t *src,
251 			    volatile u_int32_t *dst);
252 static void 		fxp_scb_wait(struct fxp_softc *sc);
253 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
254 static void		fxp_dma_wait(volatile u_int16_t *status,
255 			    struct fxp_softc *sc);
256 
257 static device_method_t fxp_methods[] = {
258 	/* Device interface */
259 	DEVMETHOD(device_probe,		fxp_probe),
260 	DEVMETHOD(device_attach,	fxp_attach),
261 	DEVMETHOD(device_detach,	fxp_detach),
262 	DEVMETHOD(device_shutdown,	fxp_shutdown),
263 	DEVMETHOD(device_suspend,	fxp_suspend),
264 	DEVMETHOD(device_resume,	fxp_resume),
265 
266 	/* MII interface */
267 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
268 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
269 
270 	{ 0, 0 }
271 };
272 
273 static driver_t fxp_driver = {
274 	"fxp",
275 	fxp_methods,
276 	sizeof(struct fxp_softc),
277 };
278 
279 static devclass_t fxp_devclass;
280 
281 DECLARE_DUMMY_MODULE(if_fxp);
282 MODULE_DEPEND(if_fxp, miibus, 1, 1, 1);
283 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
284 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
285 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
286 
287 static int fxp_rnr;
288 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
289 
290 /*
291  * Copy a 16-bit aligned 32-bit quantity.
292  */
293 static void
294 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
295 {
296 #ifdef __i386__
297 	*dst = *src;
298 #else
299 	volatile u_int16_t *a = (volatile u_int16_t *)src;
300 	volatile u_int16_t *b = (volatile u_int16_t *)dst;
301 
302 	b[0] = a[0];
303 	b[1] = a[1];
304 #endif
305 }
306 
307 /*
308  * Wait for the previous command to be accepted (but not necessarily
309  * completed).
310  */
311 static void
312 fxp_scb_wait(struct fxp_softc *sc)
313 {
314 	int i = 10000;
315 
316 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
317 		DELAY(2);
318 	if (i == 0) {
319 		if_printf(&sc->arpcom.ac_if,
320 		    "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
321 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
322 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
323 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
324 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
325 	}
326 }
327 
328 static void
329 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
330 {
331 
332 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
333 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
334 		fxp_scb_wait(sc);
335 	}
336 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
337 }
338 
339 static void
340 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
341 {
342 	int i = 10000;
343 
344 	while (!(*status & FXP_CB_STATUS_C) && --i)
345 		DELAY(2);
346 	if (i == 0)
347 		if_printf(&sc->arpcom.ac_if, "DMA timeout\n");
348 }
349 
350 /*
351  * Return identification string if this is device is ours.
352  */
353 static int
354 fxp_probe(device_t dev)
355 {
356 	u_int16_t devid;
357 	u_int8_t revid;
358 	struct fxp_ident *ident;
359 
360 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
361 		devid = pci_get_device(dev);
362 		revid = pci_get_revid(dev);
363 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
364 			if (ident->devid == devid &&
365 			    (ident->revid == revid || ident->revid == -1)) {
366 				device_set_desc(dev, ident->name);
367 				return (0);
368 			}
369 		}
370 	}
371 	return (ENXIO);
372 }
373 
374 static void
375 fxp_powerstate_d0(device_t dev)
376 {
377 	u_int32_t iobase, membase, irq;
378 
379 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
380 		/* Save important PCI config data. */
381 		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
382 		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
383 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
384 
385 		/* Reset the power state. */
386 		device_printf(dev, "chip is in D%d power mode "
387 		    "-- setting to D0\n", pci_get_powerstate(dev));
388 
389 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
390 
391 		/* Restore PCI config data. */
392 		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
393 		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
394 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
395 	}
396 }
397 
398 static int
399 fxp_attach(device_t dev)
400 {
401 	int error = 0;
402 	struct fxp_softc *sc = device_get_softc(dev);
403 	struct ifnet *ifp;
404 	u_int32_t val;
405 	u_int16_t data;
406 	int i, rid, m1, m2, prefer_iomap;
407 
408 	callout_init(&sc->fxp_stat_timer);
409 	sysctl_ctx_init(&sc->sysctl_ctx);
410 
411 	/*
412 	 * Enable bus mastering. Enable memory space too, in case
413 	 * BIOS/Prom forgot about it.
414 	 */
415 	pci_enable_busmaster(dev);
416 	pci_enable_io(dev, SYS_RES_MEMORY);
417 	val = pci_read_config(dev, PCIR_COMMAND, 2);
418 
419 	fxp_powerstate_d0(dev);
420 
421 	/*
422 	 * Figure out which we should try first - memory mapping or i/o mapping?
423 	 * We default to memory mapping. Then we accept an override from the
424 	 * command line. Then we check to see which one is enabled.
425 	 */
426 	m1 = PCIM_CMD_MEMEN;
427 	m2 = PCIM_CMD_PORTEN;
428 	prefer_iomap = 0;
429 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
430 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
431 		m1 = PCIM_CMD_PORTEN;
432 		m2 = PCIM_CMD_MEMEN;
433 	}
434 
435 	if (val & m1) {
436 		sc->rtp =
437 		    (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
438 		sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
439 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
440 		    RF_ACTIVE);
441 	}
442 	if (sc->mem == NULL && (val & m2)) {
443 		sc->rtp =
444 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
445 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
446 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
447             	    RF_ACTIVE);
448 	}
449 
450 	if (!sc->mem) {
451 		device_printf(dev, "could not map device registers\n");
452 		error = ENXIO;
453 		goto fail;
454         }
455 	if (bootverbose) {
456 		device_printf(dev, "using %s space register mapping\n",
457 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
458 	}
459 
460 	sc->sc_st = rman_get_bustag(sc->mem);
461 	sc->sc_sh = rman_get_bushandle(sc->mem);
462 
463 	/*
464 	 * Allocate our interrupt.
465 	 */
466 	rid = 0;
467 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
468 	    RF_SHAREABLE | RF_ACTIVE);
469 	if (sc->irq == NULL) {
470 		device_printf(dev, "could not map interrupt\n");
471 		error = ENXIO;
472 		goto fail;
473 	}
474 
475 	/*
476 	 * Reset to a stable state.
477 	 */
478 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
479 	DELAY(10);
480 
481 	sc->cbl_base = kmalloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
482 	    M_DEVBUF, M_WAITOK | M_ZERO);
483 
484 	sc->fxp_stats = kmalloc(sizeof(struct fxp_stats), M_DEVBUF,
485 	    M_WAITOK | M_ZERO);
486 
487 	sc->mcsp = kmalloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_WAITOK);
488 
489 	/*
490 	 * Pre-allocate our receive buffers.
491 	 */
492 	for (i = 0; i < FXP_NRFABUFS; i++) {
493 		if (fxp_add_rfabuf(sc, NULL) != 0) {
494 			goto failmem;
495 		}
496 	}
497 
498 	/*
499 	 * Find out how large of an SEEPROM we have.
500 	 */
501 	fxp_autosize_eeprom(sc);
502 
503 	/*
504 	 * Determine whether we must use the 503 serial interface.
505 	 */
506 	fxp_read_eeprom(sc, &data, 6, 1);
507 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
508 	    (data & FXP_PHY_SERIAL_ONLY))
509 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
510 
511 	/*
512 	 * Create the sysctl tree
513 	 */
514 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
515 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
516 	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
517 	if (sc->sysctl_tree == NULL)
518 		goto fail;
519 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
520 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
521 	    &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I",
522 	    "FXP driver receive interrupt microcode bundling delay");
523 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
524 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
525 	    &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I",
526 	    "FXP driver receive interrupt microcode bundle size limit");
527 
528 	/*
529 	 * Pull in device tunables.
530 	 */
531 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
532 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
533 	resource_int_value(device_get_name(dev), device_get_unit(dev),
534 	    "int_delay", &sc->tunable_int_delay);
535 	resource_int_value(device_get_name(dev), device_get_unit(dev),
536 	    "bundle_max", &sc->tunable_bundle_max);
537 
538 	/*
539 	 * Find out the chip revision; lump all 82557 revs together.
540 	 */
541 	fxp_read_eeprom(sc, &data, 5, 1);
542 	if ((data >> 8) == 1)
543 		sc->revision = FXP_REV_82557;
544 	else
545 		sc->revision = pci_get_revid(dev);
546 
547 	/*
548 	 * Enable workarounds for certain chip revision deficiencies.
549 	 *
550 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
551 	 * some systems based a normal 82559 design, have a defect where
552 	 * the chip can cause a PCI protocol violation if it receives
553 	 * a CU_RESUME command when it is entering the IDLE state.  The
554 	 * workaround is to disable Dynamic Standby Mode, so the chip never
555 	 * deasserts CLKRUN#, and always remains in an active state.
556 	 *
557 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
558 	 */
559 	i = pci_get_device(dev);
560 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
561 	    sc->revision >= FXP_REV_82559_A0) {
562 		fxp_read_eeprom(sc, &data, 10, 1);
563 		if (data & 0x02) {			/* STB enable */
564 			u_int16_t cksum;
565 			int i;
566 
567 			device_printf(dev,
568 			    "Disabling dynamic standby mode in EEPROM\n");
569 			data &= ~0x02;
570 			fxp_write_eeprom(sc, &data, 10, 1);
571 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
572 			cksum = 0;
573 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
574 				fxp_read_eeprom(sc, &data, i, 1);
575 				cksum += data;
576 			}
577 			i = (1 << sc->eeprom_size) - 1;
578 			cksum = 0xBABA - cksum;
579 			fxp_read_eeprom(sc, &data, i, 1);
580 			fxp_write_eeprom(sc, &cksum, i, 1);
581 			device_printf(dev,
582 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
583 			    i, data, cksum);
584 #if 1
585 			/*
586 			 * If the user elects to continue, try the software
587 			 * workaround, as it is better than nothing.
588 			 */
589 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
590 #endif
591 		}
592 	}
593 
594 	/*
595 	 * If we are not a 82557 chip, we can enable extended features.
596 	 */
597 	if (sc->revision != FXP_REV_82557) {
598 		/*
599 		 * If MWI is enabled in the PCI configuration, and there
600 		 * is a valid cacheline size (8 or 16 dwords), then tell
601 		 * the board to turn on MWI.
602 		 */
603 		if (val & PCIM_CMD_MWRICEN &&
604 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
605 			sc->flags |= FXP_FLAG_MWI_ENABLE;
606 
607 		/* turn on the extended TxCB feature */
608 		sc->flags |= FXP_FLAG_EXT_TXCB;
609 
610 		/* enable reception of long frames for VLAN */
611 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
612 	}
613 
614 	/*
615 	 * Read MAC address.
616 	 */
617 	fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
618 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
619 		device_printf(dev, "10Mbps\n");
620 	if (bootverbose) {
621 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
622 		    pci_get_vendor(dev), pci_get_device(dev),
623 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
624 		    pci_get_revid(dev));
625 		fxp_read_eeprom(sc, &data, 10, 1);
626 		device_printf(dev, "Dynamic Standby mode is %s\n",
627 		    data & 0x02 ? "enabled" : "disabled");
628 	}
629 
630 	/*
631 	 * If this is only a 10Mbps device, then there is no MII, and
632 	 * the PHY will use a serial interface instead.
633 	 *
634 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
635 	 * doesn't have a programming interface of any sort.  The
636 	 * media is sensed automatically based on how the link partner
637 	 * is configured.  This is, in essence, manual configuration.
638 	 */
639 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
640 		ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
641 		    fxp_serial_ifmedia_sts);
642 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
643 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
644 	} else {
645 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
646 		    fxp_ifmedia_sts)) {
647 	                device_printf(dev, "MII without any PHY!\n");
648 			error = ENXIO;
649 			goto fail;
650 		}
651 	}
652 
653 	ifp = &sc->arpcom.ac_if;
654 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
655 	ifp->if_baudrate = 100000000;
656 	ifp->if_init = fxp_init;
657 	ifp->if_softc = sc;
658 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
659 	ifp->if_ioctl = fxp_ioctl;
660 	ifp->if_start = fxp_start;
661 #ifdef DEVICE_POLLING
662 	ifp->if_poll = fxp_poll;
663 #endif
664 	ifp->if_watchdog = fxp_watchdog;
665 
666 	/*
667 	 * Attach the interface.
668 	 */
669 	ether_ifattach(ifp, sc->arpcom.ac_enaddr, NULL);
670 
671 	/*
672 	 * Tell the upper layer(s) we support long frames.
673 	 */
674 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
675 
676 	/*
677 	 * Let the system queue as many packets as we have available
678 	 * TX descriptors.
679 	 */
680 	ifq_set_maxlen(&ifp->if_snd, FXP_USABLE_TXCB);
681 	ifq_set_ready(&ifp->if_snd);
682 
683 	error = bus_setup_intr(dev, sc->irq, INTR_NETSAFE,
684 			       fxp_intr, sc, &sc->ih,
685 			       ifp->if_serializer);
686 	if (error) {
687 		ether_ifdetach(ifp);
688 		if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
689 			ifmedia_removeall(&sc->sc_media);
690 		device_printf(dev, "could not setup irq\n");
691 		goto fail;
692 	}
693 
694 	ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->irq));
695 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
696 
697 	return (0);
698 
699 failmem:
700 	device_printf(dev, "Failed to malloc memory\n");
701 	error = ENOMEM;
702 fail:
703 	fxp_release(dev);
704 	return (error);
705 }
706 
707 /*
708  * release all resources
709  */
710 static void
711 fxp_release(device_t dev)
712 {
713 	struct fxp_softc *sc = device_get_softc(dev);
714 
715 	if (sc->miibus)
716 		device_delete_child(dev, sc->miibus);
717 	bus_generic_detach(dev);
718 
719 	if (sc->cbl_base)
720 		kfree(sc->cbl_base, M_DEVBUF);
721 	if (sc->fxp_stats)
722 		kfree(sc->fxp_stats, M_DEVBUF);
723 	if (sc->mcsp)
724 		kfree(sc->mcsp, M_DEVBUF);
725 	if (sc->rfa_headm)
726 		m_freem(sc->rfa_headm);
727 
728 	if (sc->irq)
729 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq);
730 	if (sc->mem)
731 		bus_release_resource(dev, sc->rtp, sc->rgd, sc->mem);
732 
733         sysctl_ctx_free(&sc->sysctl_ctx);
734 }
735 
736 /*
737  * Detach interface.
738  */
739 static int
740 fxp_detach(device_t dev)
741 {
742 	struct fxp_softc *sc = device_get_softc(dev);
743 
744 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
745 
746 	/*
747 	 * Stop DMA and drop transmit queue.
748 	 */
749 	fxp_stop(sc);
750 
751 	/*
752 	 * Disable interrupts.
753 	 *
754 	 * NOTE: This should be done after fxp_stop(), because software
755 	 * resetting in fxp_stop() may leave interrupts turned on.
756 	 */
757 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
758 
759 	/*
760 	 * Free all media structures.
761 	 */
762 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
763 		ifmedia_removeall(&sc->sc_media);
764 
765 	if (sc->ih)
766 		bus_teardown_intr(dev, sc->irq, sc->ih);
767 
768 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
769 
770 	/*
771 	 * Close down routes etc.
772 	 */
773 	ether_ifdetach(&sc->arpcom.ac_if);
774 
775 	/* Release our allocated resources. */
776 	fxp_release(dev);
777 
778 	return (0);
779 }
780 
781 /*
782  * Device shutdown routine. Called at system shutdown after sync. The
783  * main purpose of this routine is to shut off receiver DMA so that
784  * kernel memory doesn't get clobbered during warmboot.
785  */
786 static int
787 fxp_shutdown(device_t dev)
788 {
789 	struct fxp_softc *sc = device_get_softc(dev);
790 	struct ifnet *ifp = &sc->arpcom.ac_if;
791 
792 	lwkt_serialize_enter(ifp->if_serializer);
793 	/*
794 	 * Make sure that DMA is disabled prior to reboot. Not doing
795 	 * do could allow DMA to corrupt kernel memory during the
796 	 * reboot before the driver initializes.
797 	 */
798 	fxp_stop(sc);
799 	lwkt_serialize_exit(ifp->if_serializer);
800 	return (0);
801 }
802 
803 /*
804  * Device suspend routine.  Stop the interface and save some PCI
805  * settings in case the BIOS doesn't restore them properly on
806  * resume.
807  */
808 static int
809 fxp_suspend(device_t dev)
810 {
811 	struct fxp_softc *sc = device_get_softc(dev);
812 	int i;
813 
814 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
815 
816 	fxp_stop(sc);
817 
818 	for (i = 0; i < 5; i++)
819 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
820 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
821 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
822 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
823 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
824 
825 	sc->suspended = 1;
826 
827 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
828 	return (0);
829 }
830 
831 /*
832  * Device resume routine.  Restore some PCI settings in case the BIOS
833  * doesn't, re-enable busmastering, and restart the interface if
834  * appropriate.
835  */
836 static int
837 fxp_resume(device_t dev)
838 {
839 	struct fxp_softc *sc = device_get_softc(dev);
840 	struct ifnet *ifp = &sc->arpcom.ac_if;
841 	int i;
842 
843 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
844 
845 	fxp_powerstate_d0(dev);
846 
847 	/* better way to do this? */
848 	for (i = 0; i < 5; i++)
849 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
850 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
851 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
852 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
853 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
854 
855 	/* reenable busmastering and memory space */
856 	pci_enable_busmaster(dev);
857 	pci_enable_io(dev, SYS_RES_MEMORY);
858 
859 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
860 	DELAY(10);
861 
862 	/* reinitialize interface if necessary */
863 	if (ifp->if_flags & IFF_UP)
864 		fxp_init(sc);
865 
866 	sc->suspended = 0;
867 
868 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
869 	return (0);
870 }
871 
872 static void
873 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
874 {
875 	u_int16_t reg;
876 	int x;
877 
878 	/*
879 	 * Shift in data.
880 	 */
881 	for (x = 1 << (length - 1); x; x >>= 1) {
882 		if (data & x)
883 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
884 		else
885 			reg = FXP_EEPROM_EECS;
886 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
887 		DELAY(1);
888 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
889 		DELAY(1);
890 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
891 		DELAY(1);
892 	}
893 }
894 
895 /*
896  * Read from the serial EEPROM. Basically, you manually shift in
897  * the read opcode (one bit at a time) and then shift in the address,
898  * and then you shift out the data (all of this one bit at a time).
899  * The word size is 16 bits, so you have to provide the address for
900  * every 16 bits of data.
901  */
902 static u_int16_t
903 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
904 {
905 	u_int16_t reg, data;
906 	int x;
907 
908 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
909 	/*
910 	 * Shift in read opcode.
911 	 */
912 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
913 	/*
914 	 * Shift in address.
915 	 */
916 	data = 0;
917 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
918 		if (offset & x)
919 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
920 		else
921 			reg = FXP_EEPROM_EECS;
922 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
923 		DELAY(1);
924 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
925 		DELAY(1);
926 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
927 		DELAY(1);
928 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
929 		data++;
930 		if (autosize && reg == 0) {
931 			sc->eeprom_size = data;
932 			break;
933 		}
934 	}
935 	/*
936 	 * Shift out data.
937 	 */
938 	data = 0;
939 	reg = FXP_EEPROM_EECS;
940 	for (x = 1 << 15; x; x >>= 1) {
941 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
942 		DELAY(1);
943 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
944 			data |= x;
945 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
946 		DELAY(1);
947 	}
948 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
949 	DELAY(1);
950 
951 	return (data);
952 }
953 
954 static void
955 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
956 {
957 	int i;
958 
959 	/*
960 	 * Erase/write enable.
961 	 */
962 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
963 	fxp_eeprom_shiftin(sc, 0x4, 3);
964 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
965 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
966 	DELAY(1);
967 	/*
968 	 * Shift in write opcode, address, data.
969 	 */
970 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
971 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
972 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
973 	fxp_eeprom_shiftin(sc, data, 16);
974 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
975 	DELAY(1);
976 	/*
977 	 * Wait for EEPROM to finish up.
978 	 */
979 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
980 	DELAY(1);
981 	for (i = 0; i < 1000; i++) {
982 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
983 			break;
984 		DELAY(50);
985 	}
986 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
987 	DELAY(1);
988 	/*
989 	 * Erase/write disable.
990 	 */
991 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
992 	fxp_eeprom_shiftin(sc, 0x4, 3);
993 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
994 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
995 	DELAY(1);
996 }
997 
998 /*
999  * From NetBSD:
1000  *
1001  * Figure out EEPROM size.
1002  *
1003  * 559's can have either 64-word or 256-word EEPROMs, the 558
1004  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1005  * talks about the existance of 16 to 256 word EEPROMs.
1006  *
1007  * The only known sizes are 64 and 256, where the 256 version is used
1008  * by CardBus cards to store CIS information.
1009  *
1010  * The address is shifted in msb-to-lsb, and after the last
1011  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1012  * after which follows the actual data. We try to detect this zero, by
1013  * probing the data-out bit in the EEPROM control register just after
1014  * having shifted in a bit. If the bit is zero, we assume we've
1015  * shifted enough address bits. The data-out should be tri-state,
1016  * before this, which should translate to a logical one.
1017  */
1018 static void
1019 fxp_autosize_eeprom(struct fxp_softc *sc)
1020 {
1021 
1022 	/* guess maximum size of 256 words */
1023 	sc->eeprom_size = 8;
1024 
1025 	/* autosize */
1026 	fxp_eeprom_getword(sc, 0, 1);
1027 }
1028 
1029 static void
1030 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1031 {
1032 	int i;
1033 
1034 	for (i = 0; i < words; i++)
1035 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1036 }
1037 
1038 static void
1039 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1040 {
1041 	int i;
1042 
1043 	for (i = 0; i < words; i++)
1044 		fxp_eeprom_putword(sc, offset + i, data[i]);
1045 }
1046 
1047 /*
1048  * Start packet transmission on the interface.
1049  */
1050 static void
1051 fxp_start(struct ifnet *ifp)
1052 {
1053 	struct fxp_softc *sc = ifp->if_softc;
1054 	struct fxp_cb_tx *txp;
1055 
1056 	/*
1057 	 * See if we need to suspend xmit until the multicast filter
1058 	 * has been reprogrammed (which can only be done at the head
1059 	 * of the command chain).
1060 	 */
1061 	if (sc->need_mcsetup) {
1062 		ifq_purge(&ifp->if_snd);
1063 		return;
1064 	}
1065 
1066 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1067 		return;
1068 
1069 	txp = NULL;
1070 
1071 	/*
1072 	 * We're finished if there is nothing more to add to the list or if
1073 	 * we're all filled up with buffers to transmit.
1074 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1075 	 *       a NOP command when needed.
1076 	 */
1077 	while (!ifq_is_empty(&ifp->if_snd) && sc->tx_queued < FXP_USABLE_TXCB) {
1078 		struct mbuf *m, *mb_head;
1079 		int segment, ntries = 0;
1080 
1081 		/*
1082 		 * Grab a packet to transmit.
1083 		 */
1084 		mb_head = ifq_dequeue(&ifp->if_snd, NULL);
1085 		if (mb_head == NULL)
1086 			break;
1087 tbdinit:
1088 		/*
1089 		 * Make sure that the packet fits into one TX desc
1090 		 */
1091 		segment = 0;
1092 		for (m = mb_head; m != NULL; m = m->m_next) {
1093 			if (m->m_len != 0) {
1094 				++segment;
1095 				if (segment >= FXP_NTXSEG)
1096 					break;
1097 			}
1098 		}
1099 		if (segment >= FXP_NTXSEG) {
1100 			struct mbuf *mn;
1101 
1102 			if (ntries) {
1103 				/*
1104 				 * Packet is excessively fragmented,
1105 				 * and will never fit into one TX
1106 				 * desc.  Give it up.
1107 				 */
1108 				m_freem(mb_head);
1109 				ifp->if_oerrors++;
1110 				continue;
1111 			}
1112 
1113 			mn = m_dup(mb_head, MB_DONTWAIT);
1114 			if (mn == NULL) {
1115 				m_freem(mb_head);
1116 				ifp->if_oerrors++;
1117 				continue;
1118 			}
1119 
1120 			m_freem(mb_head);
1121 			mb_head = mn;
1122 			ntries = 1;
1123 			goto tbdinit;
1124 		}
1125 
1126 		/*
1127 		 * Get pointer to next available tx desc.
1128 		 */
1129 		txp = sc->cbl_last->next;
1130 
1131 		/*
1132 		 * Go through each of the mbufs in the chain and initialize
1133 		 * the transmit buffer descriptors with the physical address
1134 		 * and size of the mbuf.
1135 		 */
1136 		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1137 			if (m->m_len != 0) {
1138 				KKASSERT(segment < FXP_NTXSEG);
1139 
1140 				txp->tbd[segment].tb_addr =
1141 				    vtophys(mtod(m, vm_offset_t));
1142 				txp->tbd[segment].tb_size = m->m_len;
1143 				segment++;
1144 			}
1145 		}
1146 		KKASSERT(m == NULL);
1147 
1148 		txp->tbd_number = segment;
1149 		txp->mb_head = mb_head;
1150 		txp->cb_status = 0;
1151 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1152 			txp->cb_command =
1153 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1154 			    FXP_CB_COMMAND_S;
1155 		} else {
1156 			txp->cb_command =
1157 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1158 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1159 		}
1160 		txp->tx_threshold = tx_threshold;
1161 
1162 		/*
1163 		 * Advance the end of list forward.
1164 		 */
1165 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1166 		sc->cbl_last = txp;
1167 
1168 		/*
1169 		 * Advance the beginning of the list forward if there are
1170 		 * no other packets queued (when nothing is queued, cbl_first
1171 		 * sits on the last TxCB that was sent out).
1172 		 */
1173 		if (sc->tx_queued == 0)
1174 			sc->cbl_first = txp;
1175 
1176 		sc->tx_queued++;
1177 		/*
1178 		 * Set a 5 second timer just in case we don't hear
1179 		 * from the card again.
1180 		 */
1181 		ifp->if_timer = 5;
1182 
1183 		BPF_MTAP(ifp, mb_head);
1184 	}
1185 
1186 	if (sc->tx_queued >= FXP_USABLE_TXCB)
1187 		ifp->if_flags |= IFF_OACTIVE;
1188 
1189 	/*
1190 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1191 	 * going again if suspended.
1192 	 */
1193 	if (txp != NULL) {
1194 		fxp_scb_wait(sc);
1195 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1196 	}
1197 }
1198 
1199 #ifdef DEVICE_POLLING
1200 
1201 static void
1202 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1203 {
1204 	struct fxp_softc *sc = ifp->if_softc;
1205 	u_int8_t statack;
1206 
1207 	switch(cmd) {
1208 	case POLL_REGISTER:
1209 		/* disable interrupts */
1210 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1211 		break;
1212 	case POLL_DEREGISTER:
1213 		/* enable interrupts */
1214 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1215 		break;
1216 	default:
1217 		statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1218 			  FXP_SCB_STATACK_FR;
1219 		if (cmd == POLL_AND_CHECK_STATUS) {
1220 			u_int8_t tmp;
1221 
1222 			tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1223 			if (tmp == 0xff || tmp == 0)
1224 				return; /* nothing to do */
1225 			tmp &= ~statack;
1226 			/* ack what we can */
1227 			if (tmp != 0)
1228 				CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1229 			statack |= tmp;
1230 		}
1231 		fxp_intr_body(sc, statack, count);
1232 		break;
1233 	}
1234 }
1235 
1236 #endif /* DEVICE_POLLING */
1237 
1238 /*
1239  * Process interface interrupts.
1240  */
1241 static void
1242 fxp_intr(void *xsc)
1243 {
1244 	struct fxp_softc *sc = xsc;
1245 	u_int8_t statack;
1246 
1247 	if (sc->suspended) {
1248 		return;
1249 	}
1250 
1251 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1252 		/*
1253 		 * It should not be possible to have all bits set; the
1254 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1255 		 * all bits are set, this may indicate that the card has
1256 		 * been physically ejected, so ignore it.
1257 		 */
1258 		if (statack == 0xff)
1259 			return;
1260 
1261 		/*
1262 		 * First ACK all the interrupts in this pass.
1263 		 */
1264 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1265 		fxp_intr_body(sc, statack, -1);
1266 	}
1267 }
1268 
1269 static void
1270 fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
1271 {
1272 	struct ifnet *ifp = &sc->arpcom.ac_if;
1273 	struct mbuf *m;
1274 	struct fxp_rfa *rfa;
1275 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1276 #ifdef ETHER_INPUT_CHAIN
1277 	struct mbuf_chain chain[MAXCPU];
1278 #endif
1279 
1280 	if (rnr)
1281 		fxp_rnr++;
1282 #ifdef DEVICE_POLLING
1283 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1284 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1285 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1286 		rnr = 1;
1287 	}
1288 #endif
1289 
1290 	/*
1291 	 * Free any finished transmit mbuf chains.
1292 	 *
1293 	 * Handle the CNA event likt a CXTNO event. It used to
1294 	 * be that this event (control unit not ready) was not
1295 	 * encountered, but it is now with the SMPng modifications.
1296 	 * The exact sequence of events that occur when the interface
1297 	 * is brought up are different now, and if this event
1298 	 * goes unhandled, the configuration/rxfilter setup sequence
1299 	 * can stall for several seconds. The result is that no
1300 	 * packets go out onto the wire for about 5 to 10 seconds
1301 	 * after the interface is ifconfig'ed for the first time.
1302 	 */
1303 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1304 		struct fxp_cb_tx *txp;
1305 
1306 		for (txp = sc->cbl_first; sc->tx_queued &&
1307 		    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1308 		    txp = txp->next) {
1309 			if ((m = txp->mb_head) != NULL) {
1310 				txp->mb_head = NULL;
1311 				sc->tx_queued--;
1312 				m_freem(m);
1313 			} else {
1314 				sc->tx_queued--;
1315 			}
1316 		}
1317 		sc->cbl_first = txp;
1318 
1319 		if (sc->tx_queued < FXP_USABLE_TXCB)
1320 			ifp->if_flags &= ~IFF_OACTIVE;
1321 
1322 		if (sc->tx_queued == 0) {
1323 			ifp->if_timer = 0;
1324 			if (sc->need_mcsetup)
1325 				fxp_mc_setup(sc);
1326 		}
1327 
1328 		/*
1329 		 * Try to start more packets transmitting.
1330 		 */
1331 		if (!ifq_is_empty(&ifp->if_snd))
1332 			if_devstart(ifp);
1333 	}
1334 
1335 	/*
1336 	 * Just return if nothing happened on the receive side.
1337 	 */
1338 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1339 		return;
1340 
1341 #ifdef ETHER_INPUT_CHAIN
1342 	ether_input_chain_init(chain);
1343 #endif
1344 
1345 	/*
1346 	 * Process receiver interrupts. If a no-resource (RNR)
1347 	 * condition exists, get whatever packets we can and
1348 	 * re-start the receiver.
1349 	 *
1350 	 * When using polling, we do not process the list to completion,
1351 	 * so when we get an RNR interrupt we must defer the restart
1352 	 * until we hit the last buffer with the C bit set.
1353 	 * If we run out of cycles and rfa_headm has the C bit set,
1354 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1355 	 * that the info will be used in the subsequent polling cycle.
1356 	 */
1357 	for (;;) {
1358 		m = sc->rfa_headm;
1359 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1360 		    RFA_ALIGNMENT_FUDGE);
1361 
1362 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1363 		if (count >= 0 && count-- == 0) {
1364 			if (rnr) {
1365 				/* Defer RNR processing until the next time. */
1366 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1367 				rnr = 0;
1368 			}
1369 			break;
1370 		}
1371 #endif /* DEVICE_POLLING */
1372 
1373 		if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0)
1374 			break;
1375 
1376 		/*
1377 		 * Remove first packet from the chain.
1378 		 */
1379 		sc->rfa_headm = m->m_next;
1380 		m->m_next = NULL;
1381 
1382 		/*
1383 		 * Add a new buffer to the receive chain.
1384 		 * If this fails, the old buffer is recycled
1385 		 * instead.
1386 		 */
1387 		if (fxp_add_rfabuf(sc, m) == 0) {
1388 			int total_len;
1389 
1390 			/*
1391 			 * Fetch packet length (the top 2 bits of
1392 			 * actual_size are flags set by the controller
1393 			 * upon completion), and drop the packet in case
1394 			 * of bogus length or CRC errors.
1395 			 */
1396 			total_len = rfa->actual_size & 0x3fff;
1397 			if (total_len < sizeof(struct ether_header) ||
1398 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1399 				sizeof(struct fxp_rfa) ||
1400 			    rfa->rfa_status & FXP_RFA_STATUS_CRC) {
1401 				m_freem(m);
1402 				continue;
1403 			}
1404 			m->m_pkthdr.len = m->m_len = total_len;
1405 #ifdef ETHER_INPUT_CHAIN
1406 #ifdef ETHER_INPUT2
1407 			ether_input_chain2(ifp, m, chain);
1408 #else
1409 			ether_input_chain(ifp, m, chain);
1410 #endif
1411 #else
1412 			ifp->if_input(ifp, m);
1413 #endif
1414 		}
1415 	}
1416 
1417 #ifdef ETHER_INPUT_CHAIN
1418 	ether_input_dispatch(chain);
1419 #endif
1420 
1421 	if (rnr) {
1422 		fxp_scb_wait(sc);
1423 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1424 		    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1425 		    RFA_ALIGNMENT_FUDGE);
1426 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1427 	}
1428 }
1429 
1430 /*
1431  * Update packet in/out/collision statistics. The i82557 doesn't
1432  * allow you to access these counters without doing a fairly
1433  * expensive DMA to get _all_ of the statistics it maintains, so
1434  * we do this operation here only once per second. The statistics
1435  * counters in the kernel are updated from the previous dump-stats
1436  * DMA and then a new dump-stats DMA is started. The on-chip
1437  * counters are zeroed when the DMA completes. If we can't start
1438  * the DMA immediately, we don't wait - we just prepare to read
1439  * them again next time.
1440  */
1441 static void
1442 fxp_tick(void *xsc)
1443 {
1444 	struct fxp_softc *sc = xsc;
1445 	struct ifnet *ifp = &sc->arpcom.ac_if;
1446 	struct fxp_stats *sp = sc->fxp_stats;
1447 	struct fxp_cb_tx *txp;
1448 	struct mbuf *m;
1449 
1450 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
1451 
1452 	ifp->if_opackets += sp->tx_good;
1453 	ifp->if_collisions += sp->tx_total_collisions;
1454 	if (sp->rx_good) {
1455 		ifp->if_ipackets += sp->rx_good;
1456 		sc->rx_idle_secs = 0;
1457 	} else {
1458 		/*
1459 		 * Receiver's been idle for another second.
1460 		 */
1461 		sc->rx_idle_secs++;
1462 	}
1463 	ifp->if_ierrors +=
1464 	    sp->rx_crc_errors +
1465 	    sp->rx_alignment_errors +
1466 	    sp->rx_rnr_errors +
1467 	    sp->rx_overrun_errors;
1468 	/*
1469 	 * If any transmit underruns occured, bump up the transmit
1470 	 * threshold by another 512 bytes (64 * 8).
1471 	 */
1472 	if (sp->tx_underruns) {
1473 		ifp->if_oerrors += sp->tx_underruns;
1474 		if (tx_threshold < 192)
1475 			tx_threshold += 64;
1476 	}
1477 
1478 	/*
1479 	 * Release any xmit buffers that have completed DMA. This isn't
1480 	 * strictly necessary to do here, but it's advantagous for mbufs
1481 	 * with external storage to be released in a timely manner rather
1482 	 * than being defered for a potentially long time. This limits
1483 	 * the delay to a maximum of one second.
1484 	 */
1485 	for (txp = sc->cbl_first; sc->tx_queued &&
1486 	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1487 	    txp = txp->next) {
1488 		if ((m = txp->mb_head) != NULL) {
1489 			txp->mb_head = NULL;
1490 			sc->tx_queued--;
1491 			m_freem(m);
1492 		} else {
1493 			sc->tx_queued--;
1494 		}
1495 	}
1496 	sc->cbl_first = txp;
1497 
1498 	if (sc->tx_queued < FXP_USABLE_TXCB)
1499 		ifp->if_flags &= ~IFF_OACTIVE;
1500 	if (sc->tx_queued == 0)
1501 		ifp->if_timer = 0;
1502 
1503  	/*
1504 	 * Try to start more packets transmitting.
1505 	 */
1506 	if (!ifq_is_empty(&ifp->if_snd))
1507 		if_devstart(ifp);
1508 
1509 	/*
1510 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1511 	 * then assume the receiver has locked up and attempt to clear
1512 	 * the condition by reprogramming the multicast filter. This is
1513 	 * a work-around for a bug in the 82557 where the receiver locks
1514 	 * up if it gets certain types of garbage in the syncronization
1515 	 * bits prior to the packet header. This bug is supposed to only
1516 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1517 	 * mode as well (perhaps due to a 10/100 speed transition).
1518 	 */
1519 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1520 		sc->rx_idle_secs = 0;
1521 		fxp_mc_setup(sc);
1522 	}
1523 	/*
1524 	 * If there is no pending command, start another stats
1525 	 * dump. Otherwise punt for now.
1526 	 */
1527 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1528 		/*
1529 		 * Start another stats dump.
1530 		 */
1531 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1532 	} else {
1533 		/*
1534 		 * A previous command is still waiting to be accepted.
1535 		 * Just zero our copy of the stats and wait for the
1536 		 * next timer event to update them.
1537 		 */
1538 		sp->tx_good = 0;
1539 		sp->tx_underruns = 0;
1540 		sp->tx_total_collisions = 0;
1541 
1542 		sp->rx_good = 0;
1543 		sp->rx_crc_errors = 0;
1544 		sp->rx_alignment_errors = 0;
1545 		sp->rx_rnr_errors = 0;
1546 		sp->rx_overrun_errors = 0;
1547 	}
1548 	if (sc->miibus != NULL)
1549 		mii_tick(device_get_softc(sc->miibus));
1550 	/*
1551 	 * Schedule another timeout one second from now.
1552 	 */
1553 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1554 
1555 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
1556 }
1557 
1558 /*
1559  * Stop the interface. Cancels the statistics updater and resets
1560  * the interface.
1561  */
1562 static void
1563 fxp_stop(struct fxp_softc *sc)
1564 {
1565 	struct ifnet *ifp = &sc->arpcom.ac_if;
1566 	struct fxp_cb_tx *txp;
1567 	int i;
1568 
1569 	ASSERT_SERIALIZED(ifp->if_serializer);
1570 
1571 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1572 	ifp->if_timer = 0;
1573 
1574 	/*
1575 	 * Cancel stats updater.
1576 	 */
1577 	callout_stop(&sc->fxp_stat_timer);
1578 
1579 	/*
1580 	 * Issue software reset, which also unloads the microcode.
1581 	 */
1582 	sc->flags &= ~FXP_FLAG_UCODE;
1583 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1584 	DELAY(50);
1585 
1586 	/*
1587 	 * Release any xmit buffers.
1588 	 */
1589 	txp = sc->cbl_base;
1590 	if (txp != NULL) {
1591 		for (i = 0; i < FXP_NTXCB; i++) {
1592 			if (txp[i].mb_head != NULL) {
1593 				m_freem(txp[i].mb_head);
1594 				txp[i].mb_head = NULL;
1595 			}
1596 		}
1597 	}
1598 	sc->tx_queued = 0;
1599 
1600 	/*
1601 	 * Free all the receive buffers then reallocate/reinitialize
1602 	 */
1603 	if (sc->rfa_headm != NULL)
1604 		m_freem(sc->rfa_headm);
1605 	sc->rfa_headm = NULL;
1606 	sc->rfa_tailm = NULL;
1607 	for (i = 0; i < FXP_NRFABUFS; i++) {
1608 		if (fxp_add_rfabuf(sc, NULL) != 0) {
1609 			/*
1610 			 * This "can't happen" - we're at splimp()
1611 			 * and we just freed all the buffers we need
1612 			 * above.
1613 			 */
1614 			panic("fxp_stop: no buffers!");
1615 		}
1616 	}
1617 }
1618 
1619 /*
1620  * Watchdog/transmission transmit timeout handler. Called when a
1621  * transmission is started on the interface, but no interrupt is
1622  * received before the timeout. This usually indicates that the
1623  * card has wedged for some reason.
1624  */
1625 static void
1626 fxp_watchdog(struct ifnet *ifp)
1627 {
1628 	if_printf(ifp, "device timeout\n");
1629 	ifp->if_oerrors++;
1630 	fxp_init(ifp->if_softc);
1631 }
1632 
1633 static void
1634 fxp_init(void *xsc)
1635 {
1636 	struct fxp_softc *sc = xsc;
1637 	struct ifnet *ifp = &sc->arpcom.ac_if;
1638 	struct fxp_cb_config *cbp;
1639 	struct fxp_cb_ias *cb_ias;
1640 	struct fxp_cb_tx *txp;
1641 	struct fxp_cb_mcs *mcsp;
1642 	int i, prm;
1643 
1644 	/*
1645 	 * Cancel any pending I/O
1646 	 */
1647 	fxp_stop(sc);
1648 
1649 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1650 
1651 	/*
1652 	 * Initialize base of CBL and RFA memory. Loading with zero
1653 	 * sets it up for regular linear addressing.
1654 	 */
1655 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1656 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1657 
1658 	fxp_scb_wait(sc);
1659 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1660 
1661 	/*
1662 	 * Initialize base of dump-stats buffer.
1663 	 */
1664 	fxp_scb_wait(sc);
1665 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1666 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1667 
1668 	/*
1669 	 * Attempt to load microcode if requested.
1670 	 */
1671 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1672 		fxp_load_ucode(sc);
1673 
1674 	/*
1675 	 * Initialize the multicast address list.
1676 	 */
1677 	if (fxp_mc_addrs(sc)) {
1678 		mcsp = sc->mcsp;
1679 		mcsp->cb_status = 0;
1680 		mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
1681 		mcsp->link_addr = -1;
1682 		/*
1683 	 	 * Start the multicast setup command.
1684 		 */
1685 		fxp_scb_wait(sc);
1686 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1687 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1688 		/* ...and wait for it to complete. */
1689 		fxp_dma_wait(&mcsp->cb_status, sc);
1690 	}
1691 
1692 	/*
1693 	 * We temporarily use memory that contains the TxCB list to
1694 	 * construct the config CB. The TxCB list memory is rebuilt
1695 	 * later.
1696 	 */
1697 	cbp = (struct fxp_cb_config *) sc->cbl_base;
1698 
1699 	/*
1700 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1701 	 * zero and must be one bits in this structure and this is the easiest
1702 	 * way to initialize them all to proper values.
1703 	 */
1704 	bcopy(fxp_cb_config_template,
1705 		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1706 		sizeof(fxp_cb_config_template));
1707 
1708 	cbp->cb_status =	0;
1709 	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1710 	cbp->link_addr =	-1;	/* (no) next command */
1711 	cbp->byte_count =	22;	/* (22) bytes to config */
1712 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1713 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1714 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1715 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1716 	cbp->type_enable =	0;	/* actually reserved */
1717 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1718 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1719 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1720 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1721 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1722 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1723 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
1724 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1725 	cbp->ci_int =		1;	/* interrupt on CU idle */
1726 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1727 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
1728 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
1729 	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
1730 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1731 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
1732 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1733 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1734 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1735 	cbp->csma_dis =		0;	/* (don't) disable link */
1736 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1737 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1738 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1739 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1740 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
1741 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1742 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1743 	cbp->loopback =		0;	/* (don't) loopback */
1744 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1745 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1746 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1747 	cbp->promiscuous =	prm;	/* promiscuous mode */
1748 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1749 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1750 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1751 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1752 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1753 
1754 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1755 	cbp->padding =		1;	/* (do) pad short tx packets */
1756 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1757 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1758 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1759 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1760 					/* must set wake_en in PMCSR also */
1761 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1762 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1763 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1764 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1765 
1766 	if (sc->revision == FXP_REV_82557) {
1767 		/*
1768 		 * The 82557 has no hardware flow control, the values
1769 		 * below are the defaults for the chip.
1770 		 */
1771 		cbp->fc_delay_lsb =	0;
1772 		cbp->fc_delay_msb =	0x40;
1773 		cbp->pri_fc_thresh =	3;
1774 		cbp->tx_fc_dis =	0;
1775 		cbp->rx_fc_restop =	0;
1776 		cbp->rx_fc_restart =	0;
1777 		cbp->fc_filter =	0;
1778 		cbp->pri_fc_loc =	1;
1779 	} else {
1780 		cbp->fc_delay_lsb =	0x1f;
1781 		cbp->fc_delay_msb =	0x01;
1782 		cbp->pri_fc_thresh =	3;
1783 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1784 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1785 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1786 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1787 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1788 	}
1789 
1790 	/*
1791 	 * Start the config command/DMA.
1792 	 */
1793 	fxp_scb_wait(sc);
1794 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1795 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1796 	/* ...and wait for it to complete. */
1797 	fxp_dma_wait(&cbp->cb_status, sc);
1798 
1799 	/*
1800 	 * Now initialize the station address. Temporarily use the TxCB
1801 	 * memory area like we did above for the config CB.
1802 	 */
1803 	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1804 	cb_ias->cb_status = 0;
1805 	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1806 	cb_ias->link_addr = -1;
1807 	bcopy(sc->arpcom.ac_enaddr,
1808 	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1809 	    sizeof(sc->arpcom.ac_enaddr));
1810 
1811 	/*
1812 	 * Start the IAS (Individual Address Setup) command/DMA.
1813 	 */
1814 	fxp_scb_wait(sc);
1815 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1816 	/* ...and wait for it to complete. */
1817 	fxp_dma_wait(&cb_ias->cb_status, sc);
1818 
1819 	/*
1820 	 * Initialize transmit control block (TxCB) list.
1821 	 */
1822 
1823 	txp = sc->cbl_base;
1824 	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1825 	for (i = 0; i < FXP_NTXCB; i++) {
1826 		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1827 		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1828 		txp[i].link_addr =
1829 		    vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1830 		if (sc->flags & FXP_FLAG_EXT_TXCB)
1831 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1832 		else
1833 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1834 		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1835 	}
1836 	/*
1837 	 * Set the suspend flag on the first TxCB and start the control
1838 	 * unit. It will execute the NOP and then suspend.
1839 	 */
1840 	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1841 	sc->cbl_first = sc->cbl_last = txp;
1842 	sc->tx_queued = 1;
1843 
1844 	fxp_scb_wait(sc);
1845 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1846 
1847 	/*
1848 	 * Initialize receiver buffer area - RFA.
1849 	 */
1850 	fxp_scb_wait(sc);
1851 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1852 	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1853 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1854 
1855 	/*
1856 	 * Set current media.
1857 	 */
1858 	if (sc->miibus != NULL)
1859 		mii_mediachg(device_get_softc(sc->miibus));
1860 
1861 	ifp->if_flags |= IFF_RUNNING;
1862 	ifp->if_flags &= ~IFF_OACTIVE;
1863 
1864 	/*
1865 	 * Enable interrupts.
1866 	 */
1867 #ifdef DEVICE_POLLING
1868 	/*
1869 	 * ... but only do that if we are not polling. And because (presumably)
1870 	 * the default is interrupts on, we need to disable them explicitly!
1871 	 */
1872 	if ( ifp->if_flags & IFF_POLLING )
1873 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1874 	else
1875 #endif /* DEVICE_POLLING */
1876 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1877 
1878 	/*
1879 	 * Start stats updater.
1880 	 */
1881 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1882 }
1883 
1884 static int
1885 fxp_serial_ifmedia_upd(struct ifnet *ifp)
1886 {
1887 
1888 	return (0);
1889 }
1890 
1891 static void
1892 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1893 {
1894 
1895 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1896 }
1897 
1898 /*
1899  * Change media according to request.
1900  */
1901 static int
1902 fxp_ifmedia_upd(struct ifnet *ifp)
1903 {
1904 	struct fxp_softc *sc = ifp->if_softc;
1905 	struct mii_data *mii;
1906 
1907 	mii = device_get_softc(sc->miibus);
1908 	mii_mediachg(mii);
1909 	return (0);
1910 }
1911 
1912 /*
1913  * Notify the world which media we're using.
1914  */
1915 static void
1916 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1917 {
1918 	struct fxp_softc *sc = ifp->if_softc;
1919 	struct mii_data *mii;
1920 
1921 	mii = device_get_softc(sc->miibus);
1922 	mii_pollstat(mii);
1923 	ifmr->ifm_active = mii->mii_media_active;
1924 	ifmr->ifm_status = mii->mii_media_status;
1925 
1926 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1927 		sc->cu_resume_bug = 1;
1928 	else
1929 		sc->cu_resume_bug = 0;
1930 }
1931 
1932 /*
1933  * Add a buffer to the end of the RFA buffer list.
1934  * Return 0 if successful, 1 for failure. A failure results in
1935  * adding the 'oldm' (if non-NULL) on to the end of the list -
1936  * tossing out its old contents and recycling it.
1937  * The RFA struct is stuck at the beginning of mbuf cluster and the
1938  * data pointer is fixed up to point just past it.
1939  */
1940 static int
1941 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1942 {
1943 	u_int32_t v;
1944 	struct mbuf *m;
1945 	struct fxp_rfa *rfa, *p_rfa;
1946 
1947 	m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1948 	if (m == NULL) { /* try to recycle the old mbuf instead */
1949 		if (oldm == NULL)
1950 			return 1;
1951 		m = oldm;
1952 		m->m_data = m->m_ext.ext_buf;
1953 	}
1954 
1955 	/*
1956 	 * Move the data pointer up so that the incoming data packet
1957 	 * will be 32-bit aligned.
1958 	 */
1959 	m->m_data += RFA_ALIGNMENT_FUDGE;
1960 
1961 	/*
1962 	 * Get a pointer to the base of the mbuf cluster and move
1963 	 * data start past it.
1964 	 */
1965 	rfa = mtod(m, struct fxp_rfa *);
1966 	m->m_data += sizeof(struct fxp_rfa);
1967 	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
1968 
1969 	/*
1970 	 * Initialize the rest of the RFA.  Note that since the RFA
1971 	 * is misaligned, we cannot store values directly.  Instead,
1972 	 * we use an optimized, inline copy.
1973 	 */
1974 
1975 	rfa->rfa_status = 0;
1976 	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1977 	rfa->actual_size = 0;
1978 
1979 	v = -1;
1980 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1981 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1982 
1983 	/*
1984 	 * If there are other buffers already on the list, attach this
1985 	 * one to the end by fixing up the tail to point to this one.
1986 	 */
1987 	if (sc->rfa_headm != NULL) {
1988 		p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1989 		    RFA_ALIGNMENT_FUDGE);
1990 		sc->rfa_tailm->m_next = m;
1991 		v = vtophys(rfa);
1992 		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
1993 		p_rfa->rfa_control = 0;
1994 	} else {
1995 		sc->rfa_headm = m;
1996 	}
1997 	sc->rfa_tailm = m;
1998 
1999 	return (m == oldm);
2000 }
2001 
2002 static int
2003 fxp_miibus_readreg(device_t dev, int phy, int reg)
2004 {
2005 	struct fxp_softc *sc = device_get_softc(dev);
2006 	int count = 10000;
2007 	int value;
2008 
2009 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2010 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2011 
2012 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2013 	    && count--)
2014 		DELAY(10);
2015 
2016 	if (count <= 0)
2017 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2018 
2019 	return (value & 0xffff);
2020 }
2021 
2022 static void
2023 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2024 {
2025 	struct fxp_softc *sc = device_get_softc(dev);
2026 	int count = 10000;
2027 
2028 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2029 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2030 	    (value & 0xffff));
2031 
2032 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2033 	    count--)
2034 		DELAY(10);
2035 
2036 	if (count <= 0)
2037 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2038 }
2039 
2040 static int
2041 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2042 {
2043 	struct fxp_softc *sc = ifp->if_softc;
2044 	struct ifreq *ifr = (struct ifreq *)data;
2045 	struct mii_data *mii;
2046 	int error = 0;
2047 
2048 	switch (command) {
2049 
2050 	case SIOCSIFFLAGS:
2051 		if (ifp->if_flags & IFF_ALLMULTI)
2052 			sc->flags |= FXP_FLAG_ALL_MCAST;
2053 		else
2054 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2055 
2056 		/*
2057 		 * If interface is marked up and not running, then start it.
2058 		 * If it is marked down and running, stop it.
2059 		 * XXX If it's up then re-initialize it. This is so flags
2060 		 * such as IFF_PROMISC are handled.
2061 		 */
2062 		if (ifp->if_flags & IFF_UP) {
2063 			fxp_init(sc);
2064 		} else {
2065 			if (ifp->if_flags & IFF_RUNNING)
2066 				fxp_stop(sc);
2067 		}
2068 		break;
2069 
2070 	case SIOCADDMULTI:
2071 	case SIOCDELMULTI:
2072 		if (ifp->if_flags & IFF_ALLMULTI)
2073 			sc->flags |= FXP_FLAG_ALL_MCAST;
2074 		else
2075 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2076 		/*
2077 		 * Multicast list has changed; set the hardware filter
2078 		 * accordingly.
2079 		 */
2080 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2081 			fxp_mc_setup(sc);
2082 		/*
2083 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2084 		 * again rather than else {}.
2085 		 */
2086 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2087 			fxp_init(sc);
2088 		error = 0;
2089 		break;
2090 
2091 	case SIOCSIFMEDIA:
2092 	case SIOCGIFMEDIA:
2093 		if (sc->miibus != NULL) {
2094 			mii = device_get_softc(sc->miibus);
2095                         error = ifmedia_ioctl(ifp, ifr,
2096                             &mii->mii_media, command);
2097 		} else {
2098                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2099 		}
2100 		break;
2101 
2102 	default:
2103 		error = ether_ioctl(ifp, command, data);
2104 		break;
2105 	}
2106 	return (error);
2107 }
2108 
2109 /*
2110  * Fill in the multicast address list and return number of entries.
2111  */
2112 static int
2113 fxp_mc_addrs(struct fxp_softc *sc)
2114 {
2115 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2116 	struct ifnet *ifp = &sc->arpcom.ac_if;
2117 	struct ifmultiaddr *ifma;
2118 	int nmcasts;
2119 
2120 	nmcasts = 0;
2121 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2122 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2123 			if (ifma->ifma_addr->sa_family != AF_LINK)
2124 				continue;
2125 			if (nmcasts >= MAXMCADDR) {
2126 				sc->flags |= FXP_FLAG_ALL_MCAST;
2127 				nmcasts = 0;
2128 				break;
2129 			}
2130 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2131 			    (void *)(uintptr_t)(volatile void *)
2132 				&sc->mcsp->mc_addr[nmcasts][0], 6);
2133 			nmcasts++;
2134 		}
2135 	}
2136 	mcsp->mc_cnt = nmcasts * 6;
2137 	return (nmcasts);
2138 }
2139 
2140 /*
2141  * Program the multicast filter.
2142  *
2143  * We have an artificial restriction that the multicast setup command
2144  * must be the first command in the chain, so we take steps to ensure
2145  * this. By requiring this, it allows us to keep up the performance of
2146  * the pre-initialized command ring (esp. link pointers) by not actually
2147  * inserting the mcsetup command in the ring - i.e. its link pointer
2148  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2149  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2150  * lead into the regular TxCB ring when it completes.
2151  *
2152  * This function must be called at splimp.
2153  */
2154 static void
2155 fxp_mc_setup(struct fxp_softc *sc)
2156 {
2157 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2158 	struct ifnet *ifp = &sc->arpcom.ac_if;
2159 	int count;
2160 
2161 	/*
2162 	 * If there are queued commands, we must wait until they are all
2163 	 * completed. If we are already waiting, then add a NOP command
2164 	 * with interrupt option so that we're notified when all commands
2165 	 * have been completed - fxp_start() ensures that no additional
2166 	 * TX commands will be added when need_mcsetup is true.
2167 	 */
2168 	if (sc->tx_queued) {
2169 		struct fxp_cb_tx *txp;
2170 
2171 		/*
2172 		 * need_mcsetup will be true if we are already waiting for the
2173 		 * NOP command to be completed (see below). In this case, bail.
2174 		 */
2175 		if (sc->need_mcsetup)
2176 			return;
2177 		sc->need_mcsetup = 1;
2178 
2179 		/*
2180 		 * Add a NOP command with interrupt so that we are notified
2181 		 * when all TX commands have been processed.
2182 		 */
2183 		txp = sc->cbl_last->next;
2184 		txp->mb_head = NULL;
2185 		txp->cb_status = 0;
2186 		txp->cb_command = FXP_CB_COMMAND_NOP |
2187 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2188 		/*
2189 		 * Advance the end of list forward.
2190 		 */
2191 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2192 		sc->cbl_last = txp;
2193 		sc->tx_queued++;
2194 		/*
2195 		 * Issue a resume in case the CU has just suspended.
2196 		 */
2197 		fxp_scb_wait(sc);
2198 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2199 		/*
2200 		 * Set a 5 second timer just in case we don't hear from the
2201 		 * card again.
2202 		 */
2203 		ifp->if_timer = 5;
2204 
2205 		return;
2206 	}
2207 	sc->need_mcsetup = 0;
2208 
2209 	/*
2210 	 * Initialize multicast setup descriptor.
2211 	 */
2212 	mcsp->next = sc->cbl_base;
2213 	mcsp->mb_head = NULL;
2214 	mcsp->cb_status = 0;
2215 	mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2216 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2217 	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2218 	fxp_mc_addrs(sc);
2219 	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2220 	sc->tx_queued = 1;
2221 
2222 	/*
2223 	 * Wait until command unit is not active. This should never
2224 	 * be the case when nothing is queued, but make sure anyway.
2225 	 */
2226 	count = 100;
2227 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2228 	    FXP_SCB_CUS_ACTIVE && --count)
2229 		DELAY(10);
2230 	if (count == 0) {
2231 		if_printf(&sc->arpcom.ac_if, "command queue timeout\n");
2232 		return;
2233 	}
2234 
2235 	/*
2236 	 * Start the multicast setup command.
2237 	 */
2238 	fxp_scb_wait(sc);
2239 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2240 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2241 
2242 	ifp->if_timer = 2;
2243 	return;
2244 }
2245 
2246 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2247 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2248 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2249 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2250 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2251 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2252 
2253 #define UCODE(x)	x, sizeof(x)
2254 
2255 struct ucode {
2256 	u_int32_t	revision;
2257 	u_int32_t	*ucode;
2258 	int		length;
2259 	u_short		int_delay_offset;
2260 	u_short		bundle_max_offset;
2261 } ucode_table[] = {
2262 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2263 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2264 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2265 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2266 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2267 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2268 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2269 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2270 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2271 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2272 	{ 0, NULL, 0, 0, 0 }
2273 };
2274 
2275 static void
2276 fxp_load_ucode(struct fxp_softc *sc)
2277 {
2278 	struct ucode *uc;
2279 	struct fxp_cb_ucode *cbp;
2280 
2281 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2282 		if (sc->revision == uc->revision)
2283 			break;
2284 	if (uc->ucode == NULL)
2285 		return;
2286 	cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2287 	cbp->cb_status = 0;
2288 	cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2289 	cbp->link_addr = -1;    	/* (no) next command */
2290 	memcpy(cbp->ucode, uc->ucode, uc->length);
2291 	if (uc->int_delay_offset)
2292 		*(u_short *)&cbp->ucode[uc->int_delay_offset] =
2293 		    sc->tunable_int_delay + sc->tunable_int_delay / 2;
2294 	if (uc->bundle_max_offset)
2295 		*(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2296 		    sc->tunable_bundle_max;
2297 	/*
2298 	 * Download the ucode to the chip.
2299 	 */
2300 	fxp_scb_wait(sc);
2301 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2302 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2303 	/* ...and wait for it to complete. */
2304 	fxp_dma_wait(&cbp->cb_status, sc);
2305 	if_printf(&sc->arpcom.ac_if,
2306 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2307 	    sc->tunable_int_delay,
2308 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2309 	sc->flags |= FXP_FLAG_UCODE;
2310 }
2311 
2312 static int
2313 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2314 {
2315 	int error, value;
2316 
2317 	value = *(int *)arg1;
2318 	error = sysctl_handle_int(oidp, &value, 0, req);
2319 	if (error || !req->newptr)
2320 		return (error);
2321 	if (value < low || value > high)
2322 		return (EINVAL);
2323 	*(int *)arg1 = value;
2324 	return (0);
2325 }
2326 
2327 /*
2328  * Interrupt delay is expressed in microseconds, a multiplier is used
2329  * to convert this to the appropriate clock ticks before using.
2330  */
2331 static int
2332 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2333 {
2334 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2335 }
2336 
2337 static int
2338 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2339 {
2340 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2341 }
2342