xref: /dragonfly/sys/dev/netif/fxp/if_fxp.c (revision e293de53)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD: src/sys/dev/fxp/if_fxp.c,v 1.110.2.30 2003/06/12 16:47:05 mux Exp $
29  * $DragonFly: src/sys/dev/netif/fxp/if_fxp.c,v 1.61 2008/09/17 08:51:29 sephe Exp $
30  */
31 
32 /*
33  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
34  */
35 
36 #include "opt_polling.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/mbuf.h>
41 #include <sys/malloc.h>
42 #include <sys/kernel.h>
43 #include <sys/interrupt.h>
44 #include <sys/socket.h>
45 #include <sys/sysctl.h>
46 #include <sys/thread2.h>
47 
48 #include <net/if.h>
49 #include <net/ifq_var.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 
53 #ifdef NS
54 #include <netns/ns.h>
55 #include <netns/ns_if.h>
56 #endif
57 
58 #include <net/bpf.h>
59 #include <sys/sockio.h>
60 #include <sys/bus.h>
61 #include <sys/rman.h>
62 
63 #include <net/ethernet.h>
64 #include <net/if_arp.h>
65 
66 #include <vm/vm.h>		/* for vtophys */
67 #include <vm/pmap.h>		/* for vtophys */
68 
69 #include <net/if_types.h>
70 #include <net/vlan/if_vlan_var.h>
71 
72 #include <bus/pci/pcivar.h>
73 #include <bus/pci/pcireg.h>		/* for PCIM_CMD_xxx */
74 
75 #include "../mii_layer/mii.h"
76 #include "../mii_layer/miivar.h"
77 
78 #include "if_fxpreg.h"
79 #include "if_fxpvar.h"
80 #include "rcvbundl.h"
81 
82 #include "miibus_if.h"
83 
84 /*
85  * NOTE!  On the Alpha, we have an alignment constraint.  The
86  * card DMAs the packet immediately following the RFA.  However,
87  * the first thing in the packet is a 14-byte Ethernet header.
88  * This means that the packet is misaligned.  To compensate,
89  * we actually offset the RFA 2 bytes into the cluster.  This
90  * alignes the packet after the Ethernet header at a 32-bit
91  * boundary.  HOWEVER!  This means that the RFA is misaligned!
92  */
93 #define	RFA_ALIGNMENT_FUDGE	2
94 
95 /*
96  * Set initial transmit threshold at 64 (512 bytes). This is
97  * increased by 64 (512 bytes) at a time, to maximum of 192
98  * (1536 bytes), if an underrun occurs.
99  */
100 static int tx_threshold = 64;
101 
102 /*
103  * The configuration byte map has several undefined fields which
104  * must be one or must be zero.  Set up a template for these bits
105  * only, (assuming a 82557 chip) leaving the actual configuration
106  * to fxp_init.
107  *
108  * See struct fxp_cb_config for the bit definitions.
109  */
110 static u_char fxp_cb_config_template[] = {
111 	0x0, 0x0,		/* cb_status */
112 	0x0, 0x0,		/* cb_command */
113 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
114 	0x0,	/*  0 */
115 	0x0,	/*  1 */
116 	0x0,	/*  2 */
117 	0x0,	/*  3 */
118 	0x0,	/*  4 */
119 	0x0,	/*  5 */
120 	0x32,	/*  6 */
121 	0x0,	/*  7 */
122 	0x0,	/*  8 */
123 	0x0,	/*  9 */
124 	0x6,	/* 10 */
125 	0x0,	/* 11 */
126 	0x0,	/* 12 */
127 	0x0,	/* 13 */
128 	0xf2,	/* 14 */
129 	0x48,	/* 15 */
130 	0x0,	/* 16 */
131 	0x40,	/* 17 */
132 	0xf0,	/* 18 */
133 	0x0,	/* 19 */
134 	0x3f,	/* 20 */
135 	0x5	/* 21 */
136 };
137 
138 struct fxp_ident {
139 	u_int16_t	devid;
140 	int16_t		revid;		/* -1 matches anything */
141 	char 		*name;
142 };
143 
144 /*
145  * Claim various Intel PCI device identifiers for this driver.  The
146  * sub-vendor and sub-device field are extensively used to identify
147  * particular variants, but we don't currently differentiate between
148  * them.
149  */
150 static struct fxp_ident fxp_ident_table[] = {
151      { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
152      { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
153      { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
154      { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
155      { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
156      { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
157      { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
158      { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
159      { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
160      { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
161      { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
162      { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
163      { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
164      { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
165      { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
166      { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
167      { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
168      { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
169      { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
170      { 0x1064,	-1,	"Intel 82562ET/EZ/GT/GZ (ICH6/ICH6R) Pro/100 VE Ethernet" },
171      { 0x1065,	-1,	"Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
172      { 0x1068,	-1,	"Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
173      { 0x1069,	-1,	"Intel 82562EM/EX/GX Pro/100 Ethernet" },
174      { 0x1091,	-1,	"Intel 82562GX Pro/100 Ethernet" },
175      { 0x1092,	-1,	"Intel Pro/100 VE Network Connection" },
176      { 0x1093,	-1,	"Intel Pro/100 VM Network Connection" },
177      { 0x1094,	-1,	"Intel Pro/100 946GZ (ICH7) Network Connection" },
178      { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
179      { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
180      { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
181      { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
182      { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
183      { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
184      { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
185      { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
186      { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
187      { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
188      { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
189      { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
190      { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
191      { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
192      { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
193      { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
194      { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
195      { 0x27dc,	-1,	"Intel 82801GB (ICH7) 10/100 Ethernet" },
196      { 0,	-1,	NULL },
197 };
198 
199 static int		fxp_probe(device_t dev);
200 static int		fxp_attach(device_t dev);
201 static int		fxp_detach(device_t dev);
202 static int		fxp_shutdown(device_t dev);
203 static int		fxp_suspend(device_t dev);
204 static int		fxp_resume(device_t dev);
205 
206 static void		fxp_intr(void *xsc);
207 static void		fxp_intr_body(struct fxp_softc *sc,
208 				u_int8_t statack, int count);
209 
210 static void 		fxp_init(void *xsc);
211 static void 		fxp_tick(void *xsc);
212 static void		fxp_powerstate_d0(device_t dev);
213 static void 		fxp_start(struct ifnet *ifp);
214 static void		fxp_stop(struct fxp_softc *sc);
215 static void 		fxp_release(device_t dev);
216 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
217 			    caddr_t data, struct ucred *);
218 static void 		fxp_watchdog(struct ifnet *ifp);
219 static int		fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
220 static int		fxp_mc_addrs(struct fxp_softc *sc);
221 static void		fxp_mc_setup(struct fxp_softc *sc);
222 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
223 			    int autosize);
224 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
225 			    u_int16_t data);
226 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
227 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
228 			    int offset, int words);
229 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
230 			    int offset, int words);
231 static int		fxp_ifmedia_upd(struct ifnet *ifp);
232 static void		fxp_ifmedia_sts(struct ifnet *ifp,
233 			    struct ifmediareq *ifmr);
234 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
235 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
236 			    struct ifmediareq *ifmr);
237 static int		fxp_miibus_readreg(device_t dev, int phy, int reg);
238 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
239 			    int value);
240 static void		fxp_load_ucode(struct fxp_softc *sc);
241 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
242 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
243 #ifdef DEVICE_POLLING
244 static poll_handler_t fxp_poll;
245 #endif
246 
247 static void		fxp_lwcopy(volatile u_int32_t *src,
248 			    volatile u_int32_t *dst);
249 static void 		fxp_scb_wait(struct fxp_softc *sc);
250 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
251 static void		fxp_dma_wait(volatile u_int16_t *status,
252 			    struct fxp_softc *sc);
253 
254 static device_method_t fxp_methods[] = {
255 	/* Device interface */
256 	DEVMETHOD(device_probe,		fxp_probe),
257 	DEVMETHOD(device_attach,	fxp_attach),
258 	DEVMETHOD(device_detach,	fxp_detach),
259 	DEVMETHOD(device_shutdown,	fxp_shutdown),
260 	DEVMETHOD(device_suspend,	fxp_suspend),
261 	DEVMETHOD(device_resume,	fxp_resume),
262 
263 	/* MII interface */
264 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
265 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
266 
267 	{ 0, 0 }
268 };
269 
270 static driver_t fxp_driver = {
271 	"fxp",
272 	fxp_methods,
273 	sizeof(struct fxp_softc),
274 };
275 
276 static devclass_t fxp_devclass;
277 
278 DECLARE_DUMMY_MODULE(if_fxp);
279 MODULE_DEPEND(if_fxp, miibus, 1, 1, 1);
280 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
281 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
282 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
283 
284 static int fxp_rnr;
285 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
286 
287 /*
288  * Copy a 16-bit aligned 32-bit quantity.
289  */
290 static void
291 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
292 {
293 #ifdef __i386__
294 	*dst = *src;
295 #else
296 	volatile u_int16_t *a = (volatile u_int16_t *)src;
297 	volatile u_int16_t *b = (volatile u_int16_t *)dst;
298 
299 	b[0] = a[0];
300 	b[1] = a[1];
301 #endif
302 }
303 
304 /*
305  * Wait for the previous command to be accepted (but not necessarily
306  * completed).
307  */
308 static void
309 fxp_scb_wait(struct fxp_softc *sc)
310 {
311 	int i = 10000;
312 
313 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
314 		DELAY(2);
315 	if (i == 0) {
316 		if_printf(&sc->arpcom.ac_if,
317 		    "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
318 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
319 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
320 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
321 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
322 	}
323 }
324 
325 static void
326 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
327 {
328 
329 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
330 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
331 		fxp_scb_wait(sc);
332 	}
333 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
334 }
335 
336 static void
337 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
338 {
339 	int i = 10000;
340 
341 	while (!(*status & FXP_CB_STATUS_C) && --i)
342 		DELAY(2);
343 	if (i == 0)
344 		if_printf(&sc->arpcom.ac_if, "DMA timeout\n");
345 }
346 
347 /*
348  * Return identification string if this is device is ours.
349  */
350 static int
351 fxp_probe(device_t dev)
352 {
353 	u_int16_t devid;
354 	u_int8_t revid;
355 	struct fxp_ident *ident;
356 
357 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
358 		devid = pci_get_device(dev);
359 		revid = pci_get_revid(dev);
360 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
361 			if (ident->devid == devid &&
362 			    (ident->revid == revid || ident->revid == -1)) {
363 				device_set_desc(dev, ident->name);
364 				return (0);
365 			}
366 		}
367 	}
368 	return (ENXIO);
369 }
370 
371 static void
372 fxp_powerstate_d0(device_t dev)
373 {
374 	u_int32_t iobase, membase, irq;
375 
376 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
377 		/* Save important PCI config data. */
378 		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
379 		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
380 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
381 
382 		/* Reset the power state. */
383 		device_printf(dev, "chip is in D%d power mode "
384 		    "-- setting to D0\n", pci_get_powerstate(dev));
385 
386 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
387 
388 		/* Restore PCI config data. */
389 		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
390 		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
391 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
392 	}
393 }
394 
395 static int
396 fxp_attach(device_t dev)
397 {
398 	int error = 0;
399 	struct fxp_softc *sc = device_get_softc(dev);
400 	struct ifnet *ifp;
401 	u_int32_t val;
402 	u_int16_t data;
403 	int i, rid, m1, m2, prefer_iomap;
404 
405 	callout_init(&sc->fxp_stat_timer);
406 	sysctl_ctx_init(&sc->sysctl_ctx);
407 
408 	/*
409 	 * Enable bus mastering. Enable memory space too, in case
410 	 * BIOS/Prom forgot about it.
411 	 */
412 	pci_enable_busmaster(dev);
413 	pci_enable_io(dev, SYS_RES_MEMORY);
414 	val = pci_read_config(dev, PCIR_COMMAND, 2);
415 
416 	fxp_powerstate_d0(dev);
417 
418 	/*
419 	 * Figure out which we should try first - memory mapping or i/o mapping?
420 	 * We default to memory mapping. Then we accept an override from the
421 	 * command line. Then we check to see which one is enabled.
422 	 */
423 	m1 = PCIM_CMD_MEMEN;
424 	m2 = PCIM_CMD_PORTEN;
425 	prefer_iomap = 0;
426 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
427 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
428 		m1 = PCIM_CMD_PORTEN;
429 		m2 = PCIM_CMD_MEMEN;
430 	}
431 
432 	if (val & m1) {
433 		sc->rtp =
434 		    (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
435 		sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
436 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
437 		    RF_ACTIVE);
438 	}
439 	if (sc->mem == NULL && (val & m2)) {
440 		sc->rtp =
441 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
442 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
443 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
444             	    RF_ACTIVE);
445 	}
446 
447 	if (!sc->mem) {
448 		device_printf(dev, "could not map device registers\n");
449 		error = ENXIO;
450 		goto fail;
451         }
452 	if (bootverbose) {
453 		device_printf(dev, "using %s space register mapping\n",
454 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
455 	}
456 
457 	sc->sc_st = rman_get_bustag(sc->mem);
458 	sc->sc_sh = rman_get_bushandle(sc->mem);
459 
460 	/*
461 	 * Allocate our interrupt.
462 	 */
463 	rid = 0;
464 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
465 	    RF_SHAREABLE | RF_ACTIVE);
466 	if (sc->irq == NULL) {
467 		device_printf(dev, "could not map interrupt\n");
468 		error = ENXIO;
469 		goto fail;
470 	}
471 
472 	/*
473 	 * Reset to a stable state.
474 	 */
475 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
476 	DELAY(10);
477 
478 	sc->cbl_base = kmalloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
479 	    M_DEVBUF, M_WAITOK | M_ZERO);
480 
481 	sc->fxp_stats = kmalloc(sizeof(struct fxp_stats), M_DEVBUF,
482 	    M_WAITOK | M_ZERO);
483 
484 	sc->mcsp = kmalloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_WAITOK);
485 
486 	/*
487 	 * Pre-allocate our receive buffers.
488 	 */
489 	for (i = 0; i < FXP_NRFABUFS; i++) {
490 		if (fxp_add_rfabuf(sc, NULL) != 0) {
491 			goto failmem;
492 		}
493 	}
494 
495 	/*
496 	 * Find out how large of an SEEPROM we have.
497 	 */
498 	fxp_autosize_eeprom(sc);
499 
500 	/*
501 	 * Determine whether we must use the 503 serial interface.
502 	 */
503 	fxp_read_eeprom(sc, &data, 6, 1);
504 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
505 	    (data & FXP_PHY_SERIAL_ONLY))
506 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
507 
508 	/*
509 	 * Create the sysctl tree
510 	 */
511 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
512 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
513 	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
514 	if (sc->sysctl_tree == NULL)
515 		goto fail;
516 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
517 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
518 	    &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I",
519 	    "FXP driver receive interrupt microcode bundling delay");
520 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
521 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
522 	    &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I",
523 	    "FXP driver receive interrupt microcode bundle size limit");
524 
525 	/*
526 	 * Pull in device tunables.
527 	 */
528 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
529 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
530 	resource_int_value(device_get_name(dev), device_get_unit(dev),
531 	    "int_delay", &sc->tunable_int_delay);
532 	resource_int_value(device_get_name(dev), device_get_unit(dev),
533 	    "bundle_max", &sc->tunable_bundle_max);
534 
535 	/*
536 	 * Find out the chip revision; lump all 82557 revs together.
537 	 */
538 	fxp_read_eeprom(sc, &data, 5, 1);
539 	if ((data >> 8) == 1)
540 		sc->revision = FXP_REV_82557;
541 	else
542 		sc->revision = pci_get_revid(dev);
543 
544 	/*
545 	 * Enable workarounds for certain chip revision deficiencies.
546 	 *
547 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
548 	 * some systems based a normal 82559 design, have a defect where
549 	 * the chip can cause a PCI protocol violation if it receives
550 	 * a CU_RESUME command when it is entering the IDLE state.  The
551 	 * workaround is to disable Dynamic Standby Mode, so the chip never
552 	 * deasserts CLKRUN#, and always remains in an active state.
553 	 *
554 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
555 	 */
556 	i = pci_get_device(dev);
557 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
558 	    sc->revision >= FXP_REV_82559_A0) {
559 		fxp_read_eeprom(sc, &data, 10, 1);
560 		if (data & 0x02) {			/* STB enable */
561 			u_int16_t cksum;
562 			int i;
563 
564 			device_printf(dev,
565 			    "Disabling dynamic standby mode in EEPROM\n");
566 			data &= ~0x02;
567 			fxp_write_eeprom(sc, &data, 10, 1);
568 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
569 			cksum = 0;
570 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
571 				fxp_read_eeprom(sc, &data, i, 1);
572 				cksum += data;
573 			}
574 			i = (1 << sc->eeprom_size) - 1;
575 			cksum = 0xBABA - cksum;
576 			fxp_read_eeprom(sc, &data, i, 1);
577 			fxp_write_eeprom(sc, &cksum, i, 1);
578 			device_printf(dev,
579 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
580 			    i, data, cksum);
581 #if 1
582 			/*
583 			 * If the user elects to continue, try the software
584 			 * workaround, as it is better than nothing.
585 			 */
586 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
587 #endif
588 		}
589 	}
590 
591 	/*
592 	 * If we are not a 82557 chip, we can enable extended features.
593 	 */
594 	if (sc->revision != FXP_REV_82557) {
595 		/*
596 		 * If MWI is enabled in the PCI configuration, and there
597 		 * is a valid cacheline size (8 or 16 dwords), then tell
598 		 * the board to turn on MWI.
599 		 */
600 		if (val & PCIM_CMD_MWRICEN &&
601 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
602 			sc->flags |= FXP_FLAG_MWI_ENABLE;
603 
604 		/* turn on the extended TxCB feature */
605 		sc->flags |= FXP_FLAG_EXT_TXCB;
606 
607 		/* enable reception of long frames for VLAN */
608 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
609 	}
610 
611 	/*
612 	 * Read MAC address.
613 	 */
614 	fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
615 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
616 		device_printf(dev, "10Mbps\n");
617 	if (bootverbose) {
618 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
619 		    pci_get_vendor(dev), pci_get_device(dev),
620 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
621 		    pci_get_revid(dev));
622 		fxp_read_eeprom(sc, &data, 10, 1);
623 		device_printf(dev, "Dynamic Standby mode is %s\n",
624 		    data & 0x02 ? "enabled" : "disabled");
625 	}
626 
627 	/*
628 	 * If this is only a 10Mbps device, then there is no MII, and
629 	 * the PHY will use a serial interface instead.
630 	 *
631 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
632 	 * doesn't have a programming interface of any sort.  The
633 	 * media is sensed automatically based on how the link partner
634 	 * is configured.  This is, in essence, manual configuration.
635 	 */
636 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
637 		ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
638 		    fxp_serial_ifmedia_sts);
639 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
640 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
641 	} else {
642 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
643 		    fxp_ifmedia_sts)) {
644 	                device_printf(dev, "MII without any PHY!\n");
645 			error = ENXIO;
646 			goto fail;
647 		}
648 	}
649 
650 	ifp = &sc->arpcom.ac_if;
651 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
652 	ifp->if_baudrate = 100000000;
653 	ifp->if_init = fxp_init;
654 	ifp->if_softc = sc;
655 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
656 	ifp->if_ioctl = fxp_ioctl;
657 	ifp->if_start = fxp_start;
658 #ifdef DEVICE_POLLING
659 	ifp->if_poll = fxp_poll;
660 #endif
661 	ifp->if_watchdog = fxp_watchdog;
662 
663 	/*
664 	 * Attach the interface.
665 	 */
666 	ether_ifattach(ifp, sc->arpcom.ac_enaddr, NULL);
667 
668 	/*
669 	 * Tell the upper layer(s) we support long frames.
670 	 */
671 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
672 
673 	/*
674 	 * Let the system queue as many packets as we have available
675 	 * TX descriptors.
676 	 */
677 	ifq_set_maxlen(&ifp->if_snd, FXP_USABLE_TXCB);
678 	ifq_set_ready(&ifp->if_snd);
679 
680 	error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
681 			       fxp_intr, sc, &sc->ih,
682 			       ifp->if_serializer);
683 	if (error) {
684 		ether_ifdetach(ifp);
685 		if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
686 			ifmedia_removeall(&sc->sc_media);
687 		device_printf(dev, "could not setup irq\n");
688 		goto fail;
689 	}
690 
691 	ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->irq));
692 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
693 
694 	return (0);
695 
696 failmem:
697 	device_printf(dev, "Failed to malloc memory\n");
698 	error = ENOMEM;
699 fail:
700 	fxp_release(dev);
701 	return (error);
702 }
703 
704 /*
705  * release all resources
706  */
707 static void
708 fxp_release(device_t dev)
709 {
710 	struct fxp_softc *sc = device_get_softc(dev);
711 
712 	if (sc->miibus)
713 		device_delete_child(dev, sc->miibus);
714 	bus_generic_detach(dev);
715 
716 	if (sc->cbl_base)
717 		kfree(sc->cbl_base, M_DEVBUF);
718 	if (sc->fxp_stats)
719 		kfree(sc->fxp_stats, M_DEVBUF);
720 	if (sc->mcsp)
721 		kfree(sc->mcsp, M_DEVBUF);
722 	if (sc->rfa_headm)
723 		m_freem(sc->rfa_headm);
724 
725 	if (sc->irq)
726 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq);
727 	if (sc->mem)
728 		bus_release_resource(dev, sc->rtp, sc->rgd, sc->mem);
729 
730         sysctl_ctx_free(&sc->sysctl_ctx);
731 }
732 
733 /*
734  * Detach interface.
735  */
736 static int
737 fxp_detach(device_t dev)
738 {
739 	struct fxp_softc *sc = device_get_softc(dev);
740 
741 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
742 
743 	/*
744 	 * Stop DMA and drop transmit queue.
745 	 */
746 	fxp_stop(sc);
747 
748 	/*
749 	 * Disable interrupts.
750 	 *
751 	 * NOTE: This should be done after fxp_stop(), because software
752 	 * resetting in fxp_stop() may leave interrupts turned on.
753 	 */
754 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
755 
756 	/*
757 	 * Free all media structures.
758 	 */
759 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
760 		ifmedia_removeall(&sc->sc_media);
761 
762 	if (sc->ih)
763 		bus_teardown_intr(dev, sc->irq, sc->ih);
764 
765 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
766 
767 	/*
768 	 * Close down routes etc.
769 	 */
770 	ether_ifdetach(&sc->arpcom.ac_if);
771 
772 	/* Release our allocated resources. */
773 	fxp_release(dev);
774 
775 	return (0);
776 }
777 
778 /*
779  * Device shutdown routine. Called at system shutdown after sync. The
780  * main purpose of this routine is to shut off receiver DMA so that
781  * kernel memory doesn't get clobbered during warmboot.
782  */
783 static int
784 fxp_shutdown(device_t dev)
785 {
786 	struct fxp_softc *sc = device_get_softc(dev);
787 	struct ifnet *ifp = &sc->arpcom.ac_if;
788 
789 	lwkt_serialize_enter(ifp->if_serializer);
790 	/*
791 	 * Make sure that DMA is disabled prior to reboot. Not doing
792 	 * do could allow DMA to corrupt kernel memory during the
793 	 * reboot before the driver initializes.
794 	 */
795 	fxp_stop(sc);
796 	lwkt_serialize_exit(ifp->if_serializer);
797 	return (0);
798 }
799 
800 /*
801  * Device suspend routine.  Stop the interface and save some PCI
802  * settings in case the BIOS doesn't restore them properly on
803  * resume.
804  */
805 static int
806 fxp_suspend(device_t dev)
807 {
808 	struct fxp_softc *sc = device_get_softc(dev);
809 	int i;
810 
811 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
812 
813 	fxp_stop(sc);
814 
815 	for (i = 0; i < 5; i++)
816 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
817 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
818 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
819 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
820 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
821 
822 	sc->suspended = 1;
823 
824 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
825 	return (0);
826 }
827 
828 /*
829  * Device resume routine.  Restore some PCI settings in case the BIOS
830  * doesn't, re-enable busmastering, and restart the interface if
831  * appropriate.
832  */
833 static int
834 fxp_resume(device_t dev)
835 {
836 	struct fxp_softc *sc = device_get_softc(dev);
837 	struct ifnet *ifp = &sc->arpcom.ac_if;
838 	int i;
839 
840 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
841 
842 	fxp_powerstate_d0(dev);
843 
844 	/* better way to do this? */
845 	for (i = 0; i < 5; i++)
846 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
847 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
848 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
849 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
850 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
851 
852 	/* reenable busmastering and memory space */
853 	pci_enable_busmaster(dev);
854 	pci_enable_io(dev, SYS_RES_MEMORY);
855 
856 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
857 	DELAY(10);
858 
859 	/* reinitialize interface if necessary */
860 	if (ifp->if_flags & IFF_UP)
861 		fxp_init(sc);
862 
863 	sc->suspended = 0;
864 
865 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
866 	return (0);
867 }
868 
869 static void
870 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
871 {
872 	u_int16_t reg;
873 	int x;
874 
875 	/*
876 	 * Shift in data.
877 	 */
878 	for (x = 1 << (length - 1); x; x >>= 1) {
879 		if (data & x)
880 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
881 		else
882 			reg = FXP_EEPROM_EECS;
883 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
884 		DELAY(1);
885 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
886 		DELAY(1);
887 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
888 		DELAY(1);
889 	}
890 }
891 
892 /*
893  * Read from the serial EEPROM. Basically, you manually shift in
894  * the read opcode (one bit at a time) and then shift in the address,
895  * and then you shift out the data (all of this one bit at a time).
896  * The word size is 16 bits, so you have to provide the address for
897  * every 16 bits of data.
898  */
899 static u_int16_t
900 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
901 {
902 	u_int16_t reg, data;
903 	int x;
904 
905 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
906 	/*
907 	 * Shift in read opcode.
908 	 */
909 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
910 	/*
911 	 * Shift in address.
912 	 */
913 	data = 0;
914 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
915 		if (offset & x)
916 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
917 		else
918 			reg = FXP_EEPROM_EECS;
919 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
920 		DELAY(1);
921 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
922 		DELAY(1);
923 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
924 		DELAY(1);
925 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
926 		data++;
927 		if (autosize && reg == 0) {
928 			sc->eeprom_size = data;
929 			break;
930 		}
931 	}
932 	/*
933 	 * Shift out data.
934 	 */
935 	data = 0;
936 	reg = FXP_EEPROM_EECS;
937 	for (x = 1 << 15; x; x >>= 1) {
938 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
939 		DELAY(1);
940 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
941 			data |= x;
942 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
943 		DELAY(1);
944 	}
945 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
946 	DELAY(1);
947 
948 	return (data);
949 }
950 
951 static void
952 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
953 {
954 	int i;
955 
956 	/*
957 	 * Erase/write enable.
958 	 */
959 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
960 	fxp_eeprom_shiftin(sc, 0x4, 3);
961 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
962 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
963 	DELAY(1);
964 	/*
965 	 * Shift in write opcode, address, data.
966 	 */
967 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
968 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
969 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
970 	fxp_eeprom_shiftin(sc, data, 16);
971 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
972 	DELAY(1);
973 	/*
974 	 * Wait for EEPROM to finish up.
975 	 */
976 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
977 	DELAY(1);
978 	for (i = 0; i < 1000; i++) {
979 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
980 			break;
981 		DELAY(50);
982 	}
983 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
984 	DELAY(1);
985 	/*
986 	 * Erase/write disable.
987 	 */
988 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
989 	fxp_eeprom_shiftin(sc, 0x4, 3);
990 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
991 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
992 	DELAY(1);
993 }
994 
995 /*
996  * From NetBSD:
997  *
998  * Figure out EEPROM size.
999  *
1000  * 559's can have either 64-word or 256-word EEPROMs, the 558
1001  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1002  * talks about the existance of 16 to 256 word EEPROMs.
1003  *
1004  * The only known sizes are 64 and 256, where the 256 version is used
1005  * by CardBus cards to store CIS information.
1006  *
1007  * The address is shifted in msb-to-lsb, and after the last
1008  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1009  * after which follows the actual data. We try to detect this zero, by
1010  * probing the data-out bit in the EEPROM control register just after
1011  * having shifted in a bit. If the bit is zero, we assume we've
1012  * shifted enough address bits. The data-out should be tri-state,
1013  * before this, which should translate to a logical one.
1014  */
1015 static void
1016 fxp_autosize_eeprom(struct fxp_softc *sc)
1017 {
1018 
1019 	/* guess maximum size of 256 words */
1020 	sc->eeprom_size = 8;
1021 
1022 	/* autosize */
1023 	fxp_eeprom_getword(sc, 0, 1);
1024 }
1025 
1026 static void
1027 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1028 {
1029 	int i;
1030 
1031 	for (i = 0; i < words; i++)
1032 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1033 }
1034 
1035 static void
1036 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1037 {
1038 	int i;
1039 
1040 	for (i = 0; i < words; i++)
1041 		fxp_eeprom_putword(sc, offset + i, data[i]);
1042 }
1043 
1044 /*
1045  * Start packet transmission on the interface.
1046  */
1047 static void
1048 fxp_start(struct ifnet *ifp)
1049 {
1050 	struct fxp_softc *sc = ifp->if_softc;
1051 	struct fxp_cb_tx *txp;
1052 
1053 	ASSERT_SERIALIZED(ifp->if_serializer);
1054 
1055 	/*
1056 	 * See if we need to suspend xmit until the multicast filter
1057 	 * has been reprogrammed (which can only be done at the head
1058 	 * of the command chain).
1059 	 */
1060 	if (sc->need_mcsetup) {
1061 		ifq_purge(&ifp->if_snd);
1062 		return;
1063 	}
1064 
1065 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1066 		return;
1067 
1068 	txp = NULL;
1069 
1070 	/*
1071 	 * We're finished if there is nothing more to add to the list or if
1072 	 * we're all filled up with buffers to transmit.
1073 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1074 	 *       a NOP command when needed.
1075 	 */
1076 	while (!ifq_is_empty(&ifp->if_snd) && sc->tx_queued < FXP_USABLE_TXCB) {
1077 		struct mbuf *m, *mb_head;
1078 		int segment, ntries = 0;
1079 
1080 		/*
1081 		 * Grab a packet to transmit.
1082 		 */
1083 		mb_head = ifq_dequeue(&ifp->if_snd, NULL);
1084 		if (mb_head == NULL)
1085 			break;
1086 tbdinit:
1087 		/*
1088 		 * Make sure that the packet fits into one TX desc
1089 		 */
1090 		segment = 0;
1091 		for (m = mb_head; m != NULL; m = m->m_next) {
1092 			if (m->m_len != 0) {
1093 				++segment;
1094 				if (segment >= FXP_NTXSEG)
1095 					break;
1096 			}
1097 		}
1098 		if (segment >= FXP_NTXSEG) {
1099 			struct mbuf *mn;
1100 
1101 			if (ntries) {
1102 				/*
1103 				 * Packet is excessively fragmented,
1104 				 * and will never fit into one TX
1105 				 * desc.  Give it up.
1106 				 */
1107 				m_freem(mb_head);
1108 				ifp->if_oerrors++;
1109 				continue;
1110 			}
1111 
1112 			mn = m_dup(mb_head, MB_DONTWAIT);
1113 			if (mn == NULL) {
1114 				m_freem(mb_head);
1115 				ifp->if_oerrors++;
1116 				continue;
1117 			}
1118 
1119 			m_freem(mb_head);
1120 			mb_head = mn;
1121 			ntries = 1;
1122 			goto tbdinit;
1123 		}
1124 
1125 		/*
1126 		 * Get pointer to next available tx desc.
1127 		 */
1128 		txp = sc->cbl_last->next;
1129 
1130 		/*
1131 		 * Go through each of the mbufs in the chain and initialize
1132 		 * the transmit buffer descriptors with the physical address
1133 		 * and size of the mbuf.
1134 		 */
1135 		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1136 			if (m->m_len != 0) {
1137 				KKASSERT(segment < FXP_NTXSEG);
1138 
1139 				txp->tbd[segment].tb_addr =
1140 				    vtophys(mtod(m, vm_offset_t));
1141 				txp->tbd[segment].tb_size = m->m_len;
1142 				segment++;
1143 			}
1144 		}
1145 		KKASSERT(m == NULL);
1146 
1147 		txp->tbd_number = segment;
1148 		txp->mb_head = mb_head;
1149 		txp->cb_status = 0;
1150 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1151 			txp->cb_command =
1152 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1153 			    FXP_CB_COMMAND_S;
1154 		} else {
1155 			txp->cb_command =
1156 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1157 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1158 		}
1159 		txp->tx_threshold = tx_threshold;
1160 
1161 		/*
1162 		 * Advance the end of list forward.
1163 		 */
1164 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1165 		sc->cbl_last = txp;
1166 
1167 		/*
1168 		 * Advance the beginning of the list forward if there are
1169 		 * no other packets queued (when nothing is queued, cbl_first
1170 		 * sits on the last TxCB that was sent out).
1171 		 */
1172 		if (sc->tx_queued == 0)
1173 			sc->cbl_first = txp;
1174 
1175 		sc->tx_queued++;
1176 		/*
1177 		 * Set a 5 second timer just in case we don't hear
1178 		 * from the card again.
1179 		 */
1180 		ifp->if_timer = 5;
1181 
1182 		BPF_MTAP(ifp, mb_head);
1183 	}
1184 
1185 	if (sc->tx_queued >= FXP_USABLE_TXCB)
1186 		ifp->if_flags |= IFF_OACTIVE;
1187 
1188 	/*
1189 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1190 	 * going again if suspended.
1191 	 */
1192 	if (txp != NULL) {
1193 		fxp_scb_wait(sc);
1194 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1195 	}
1196 }
1197 
1198 #ifdef DEVICE_POLLING
1199 
1200 static void
1201 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1202 {
1203 	struct fxp_softc *sc = ifp->if_softc;
1204 	u_int8_t statack;
1205 
1206 	ASSERT_SERIALIZED(ifp->if_serializer);
1207 
1208 	switch(cmd) {
1209 	case POLL_REGISTER:
1210 		/* disable interrupts */
1211 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1212 		break;
1213 	case POLL_DEREGISTER:
1214 		/* enable interrupts */
1215 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1216 		break;
1217 	default:
1218 		statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1219 			  FXP_SCB_STATACK_FR;
1220 		if (cmd == POLL_AND_CHECK_STATUS) {
1221 			u_int8_t tmp;
1222 
1223 			tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1224 			if (tmp == 0xff || tmp == 0)
1225 				return; /* nothing to do */
1226 			tmp &= ~statack;
1227 			/* ack what we can */
1228 			if (tmp != 0)
1229 				CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1230 			statack |= tmp;
1231 		}
1232 		fxp_intr_body(sc, statack, count);
1233 		break;
1234 	}
1235 }
1236 
1237 #endif /* DEVICE_POLLING */
1238 
1239 /*
1240  * Process interface interrupts.
1241  */
1242 static void
1243 fxp_intr(void *xsc)
1244 {
1245 	struct fxp_softc *sc = xsc;
1246 	u_int8_t statack;
1247 
1248 	ASSERT_SERIALIZED(sc->arpcom.ac_if.if_serializer);
1249 
1250 	if (sc->suspended) {
1251 		return;
1252 	}
1253 
1254 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1255 		/*
1256 		 * It should not be possible to have all bits set; the
1257 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1258 		 * all bits are set, this may indicate that the card has
1259 		 * been physically ejected, so ignore it.
1260 		 */
1261 		if (statack == 0xff)
1262 			return;
1263 
1264 		/*
1265 		 * First ACK all the interrupts in this pass.
1266 		 */
1267 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1268 		fxp_intr_body(sc, statack, -1);
1269 	}
1270 }
1271 
1272 static void
1273 fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
1274 {
1275 	struct ifnet *ifp = &sc->arpcom.ac_if;
1276 	struct mbuf *m;
1277 	struct fxp_rfa *rfa;
1278 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1279 	struct mbuf_chain chain[MAXCPU];
1280 
1281 	if (rnr)
1282 		fxp_rnr++;
1283 #ifdef DEVICE_POLLING
1284 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1285 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1286 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1287 		rnr = 1;
1288 	}
1289 #endif
1290 
1291 	/*
1292 	 * Free any finished transmit mbuf chains.
1293 	 *
1294 	 * Handle the CNA event likt a CXTNO event. It used to
1295 	 * be that this event (control unit not ready) was not
1296 	 * encountered, but it is now with the SMPng modifications.
1297 	 * The exact sequence of events that occur when the interface
1298 	 * is brought up are different now, and if this event
1299 	 * goes unhandled, the configuration/rxfilter setup sequence
1300 	 * can stall for several seconds. The result is that no
1301 	 * packets go out onto the wire for about 5 to 10 seconds
1302 	 * after the interface is ifconfig'ed for the first time.
1303 	 */
1304 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1305 		struct fxp_cb_tx *txp;
1306 
1307 		for (txp = sc->cbl_first; sc->tx_queued &&
1308 		    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1309 		    txp = txp->next) {
1310 			if ((m = txp->mb_head) != NULL) {
1311 				txp->mb_head = NULL;
1312 				sc->tx_queued--;
1313 				m_freem(m);
1314 			} else {
1315 				sc->tx_queued--;
1316 			}
1317 		}
1318 		sc->cbl_first = txp;
1319 
1320 		if (sc->tx_queued < FXP_USABLE_TXCB)
1321 			ifp->if_flags &= ~IFF_OACTIVE;
1322 
1323 		if (sc->tx_queued == 0) {
1324 			ifp->if_timer = 0;
1325 			if (sc->need_mcsetup)
1326 				fxp_mc_setup(sc);
1327 		}
1328 
1329 		/*
1330 		 * Try to start more packets transmitting.
1331 		 */
1332 		if (!ifq_is_empty(&ifp->if_snd))
1333 			if_devstart(ifp);
1334 	}
1335 
1336 	/*
1337 	 * Just return if nothing happened on the receive side.
1338 	 */
1339 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1340 		return;
1341 
1342 	ether_input_chain_init(chain);
1343 
1344 	/*
1345 	 * Process receiver interrupts. If a no-resource (RNR)
1346 	 * condition exists, get whatever packets we can and
1347 	 * re-start the receiver.
1348 	 *
1349 	 * When using polling, we do not process the list to completion,
1350 	 * so when we get an RNR interrupt we must defer the restart
1351 	 * until we hit the last buffer with the C bit set.
1352 	 * If we run out of cycles and rfa_headm has the C bit set,
1353 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1354 	 * that the info will be used in the subsequent polling cycle.
1355 	 */
1356 	for (;;) {
1357 		m = sc->rfa_headm;
1358 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1359 		    RFA_ALIGNMENT_FUDGE);
1360 
1361 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1362 		if (count >= 0 && count-- == 0) {
1363 			if (rnr) {
1364 				/* Defer RNR processing until the next time. */
1365 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1366 				rnr = 0;
1367 			}
1368 			break;
1369 		}
1370 #endif /* DEVICE_POLLING */
1371 
1372 		if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0)
1373 			break;
1374 
1375 		/*
1376 		 * Remove first packet from the chain.
1377 		 */
1378 		sc->rfa_headm = m->m_next;
1379 		m->m_next = NULL;
1380 
1381 		/*
1382 		 * Add a new buffer to the receive chain.
1383 		 * If this fails, the old buffer is recycled
1384 		 * instead.
1385 		 */
1386 		if (fxp_add_rfabuf(sc, m) == 0) {
1387 			int total_len;
1388 
1389 			/*
1390 			 * Fetch packet length (the top 2 bits of
1391 			 * actual_size are flags set by the controller
1392 			 * upon completion), and drop the packet in case
1393 			 * of bogus length or CRC errors.
1394 			 */
1395 			total_len = rfa->actual_size & 0x3fff;
1396 			if (total_len < sizeof(struct ether_header) ||
1397 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1398 				sizeof(struct fxp_rfa) ||
1399 			    rfa->rfa_status & FXP_RFA_STATUS_CRC) {
1400 				m_freem(m);
1401 				continue;
1402 			}
1403 			m->m_pkthdr.len = m->m_len = total_len;
1404 			ether_input_chain(ifp, m, NULL, chain);
1405 		}
1406 	}
1407 
1408 	ether_input_dispatch(chain);
1409 
1410 	if (rnr) {
1411 		fxp_scb_wait(sc);
1412 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1413 		    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1414 		    RFA_ALIGNMENT_FUDGE);
1415 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1416 	}
1417 }
1418 
1419 /*
1420  * Update packet in/out/collision statistics. The i82557 doesn't
1421  * allow you to access these counters without doing a fairly
1422  * expensive DMA to get _all_ of the statistics it maintains, so
1423  * we do this operation here only once per second. The statistics
1424  * counters in the kernel are updated from the previous dump-stats
1425  * DMA and then a new dump-stats DMA is started. The on-chip
1426  * counters are zeroed when the DMA completes. If we can't start
1427  * the DMA immediately, we don't wait - we just prepare to read
1428  * them again next time.
1429  */
1430 static void
1431 fxp_tick(void *xsc)
1432 {
1433 	struct fxp_softc *sc = xsc;
1434 	struct ifnet *ifp = &sc->arpcom.ac_if;
1435 	struct fxp_stats *sp = sc->fxp_stats;
1436 	struct fxp_cb_tx *txp;
1437 	struct mbuf *m;
1438 
1439 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
1440 
1441 	ifp->if_opackets += sp->tx_good;
1442 	ifp->if_collisions += sp->tx_total_collisions;
1443 	if (sp->rx_good) {
1444 		ifp->if_ipackets += sp->rx_good;
1445 		sc->rx_idle_secs = 0;
1446 	} else {
1447 		/*
1448 		 * Receiver's been idle for another second.
1449 		 */
1450 		sc->rx_idle_secs++;
1451 	}
1452 	ifp->if_ierrors +=
1453 	    sp->rx_crc_errors +
1454 	    sp->rx_alignment_errors +
1455 	    sp->rx_rnr_errors +
1456 	    sp->rx_overrun_errors;
1457 	/*
1458 	 * If any transmit underruns occured, bump up the transmit
1459 	 * threshold by another 512 bytes (64 * 8).
1460 	 */
1461 	if (sp->tx_underruns) {
1462 		ifp->if_oerrors += sp->tx_underruns;
1463 		if (tx_threshold < 192)
1464 			tx_threshold += 64;
1465 	}
1466 
1467 	/*
1468 	 * Release any xmit buffers that have completed DMA. This isn't
1469 	 * strictly necessary to do here, but it's advantagous for mbufs
1470 	 * with external storage to be released in a timely manner rather
1471 	 * than being defered for a potentially long time. This limits
1472 	 * the delay to a maximum of one second.
1473 	 */
1474 	for (txp = sc->cbl_first; sc->tx_queued &&
1475 	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1476 	    txp = txp->next) {
1477 		if ((m = txp->mb_head) != NULL) {
1478 			txp->mb_head = NULL;
1479 			sc->tx_queued--;
1480 			m_freem(m);
1481 		} else {
1482 			sc->tx_queued--;
1483 		}
1484 	}
1485 	sc->cbl_first = txp;
1486 
1487 	if (sc->tx_queued < FXP_USABLE_TXCB)
1488 		ifp->if_flags &= ~IFF_OACTIVE;
1489 	if (sc->tx_queued == 0)
1490 		ifp->if_timer = 0;
1491 
1492  	/*
1493 	 * Try to start more packets transmitting.
1494 	 */
1495 	if (!ifq_is_empty(&ifp->if_snd))
1496 		if_devstart(ifp);
1497 
1498 	/*
1499 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1500 	 * then assume the receiver has locked up and attempt to clear
1501 	 * the condition by reprogramming the multicast filter. This is
1502 	 * a work-around for a bug in the 82557 where the receiver locks
1503 	 * up if it gets certain types of garbage in the syncronization
1504 	 * bits prior to the packet header. This bug is supposed to only
1505 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1506 	 * mode as well (perhaps due to a 10/100 speed transition).
1507 	 */
1508 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1509 		sc->rx_idle_secs = 0;
1510 		fxp_mc_setup(sc);
1511 	}
1512 	/*
1513 	 * If there is no pending command, start another stats
1514 	 * dump. Otherwise punt for now.
1515 	 */
1516 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1517 		/*
1518 		 * Start another stats dump.
1519 		 */
1520 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1521 	} else {
1522 		/*
1523 		 * A previous command is still waiting to be accepted.
1524 		 * Just zero our copy of the stats and wait for the
1525 		 * next timer event to update them.
1526 		 */
1527 		sp->tx_good = 0;
1528 		sp->tx_underruns = 0;
1529 		sp->tx_total_collisions = 0;
1530 
1531 		sp->rx_good = 0;
1532 		sp->rx_crc_errors = 0;
1533 		sp->rx_alignment_errors = 0;
1534 		sp->rx_rnr_errors = 0;
1535 		sp->rx_overrun_errors = 0;
1536 	}
1537 	if (sc->miibus != NULL)
1538 		mii_tick(device_get_softc(sc->miibus));
1539 	/*
1540 	 * Schedule another timeout one second from now.
1541 	 */
1542 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1543 
1544 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
1545 }
1546 
1547 /*
1548  * Stop the interface. Cancels the statistics updater and resets
1549  * the interface.
1550  */
1551 static void
1552 fxp_stop(struct fxp_softc *sc)
1553 {
1554 	struct ifnet *ifp = &sc->arpcom.ac_if;
1555 	struct fxp_cb_tx *txp;
1556 	int i;
1557 
1558 	ASSERT_SERIALIZED(ifp->if_serializer);
1559 
1560 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1561 	ifp->if_timer = 0;
1562 
1563 	/*
1564 	 * Cancel stats updater.
1565 	 */
1566 	callout_stop(&sc->fxp_stat_timer);
1567 
1568 	/*
1569 	 * Issue software reset, which also unloads the microcode.
1570 	 */
1571 	sc->flags &= ~FXP_FLAG_UCODE;
1572 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1573 	DELAY(50);
1574 
1575 	/*
1576 	 * Release any xmit buffers.
1577 	 */
1578 	txp = sc->cbl_base;
1579 	if (txp != NULL) {
1580 		for (i = 0; i < FXP_NTXCB; i++) {
1581 			if (txp[i].mb_head != NULL) {
1582 				m_freem(txp[i].mb_head);
1583 				txp[i].mb_head = NULL;
1584 			}
1585 		}
1586 	}
1587 	sc->tx_queued = 0;
1588 
1589 	/*
1590 	 * Free all the receive buffers then reallocate/reinitialize
1591 	 */
1592 	if (sc->rfa_headm != NULL)
1593 		m_freem(sc->rfa_headm);
1594 	sc->rfa_headm = NULL;
1595 	sc->rfa_tailm = NULL;
1596 	for (i = 0; i < FXP_NRFABUFS; i++) {
1597 		if (fxp_add_rfabuf(sc, NULL) != 0) {
1598 			/*
1599 			 * This "can't happen" - we're at splimp()
1600 			 * and we just freed all the buffers we need
1601 			 * above.
1602 			 */
1603 			panic("fxp_stop: no buffers!");
1604 		}
1605 	}
1606 }
1607 
1608 /*
1609  * Watchdog/transmission transmit timeout handler. Called when a
1610  * transmission is started on the interface, but no interrupt is
1611  * received before the timeout. This usually indicates that the
1612  * card has wedged for some reason.
1613  */
1614 static void
1615 fxp_watchdog(struct ifnet *ifp)
1616 {
1617 	ASSERT_SERIALIZED(ifp->if_serializer);
1618 
1619 	if_printf(ifp, "device timeout\n");
1620 	ifp->if_oerrors++;
1621 	fxp_init(ifp->if_softc);
1622 }
1623 
1624 static void
1625 fxp_init(void *xsc)
1626 {
1627 	struct fxp_softc *sc = xsc;
1628 	struct ifnet *ifp = &sc->arpcom.ac_if;
1629 	struct fxp_cb_config *cbp;
1630 	struct fxp_cb_ias *cb_ias;
1631 	struct fxp_cb_tx *txp;
1632 	struct fxp_cb_mcs *mcsp;
1633 	int i, prm;
1634 
1635 	ASSERT_SERIALIZED(ifp->if_serializer);
1636 
1637 	/*
1638 	 * Cancel any pending I/O
1639 	 */
1640 	fxp_stop(sc);
1641 
1642 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1643 
1644 	/*
1645 	 * Initialize base of CBL and RFA memory. Loading with zero
1646 	 * sets it up for regular linear addressing.
1647 	 */
1648 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1649 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1650 
1651 	fxp_scb_wait(sc);
1652 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1653 
1654 	/*
1655 	 * Initialize base of dump-stats buffer.
1656 	 */
1657 	fxp_scb_wait(sc);
1658 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1659 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1660 
1661 	/*
1662 	 * Attempt to load microcode if requested.
1663 	 */
1664 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1665 		fxp_load_ucode(sc);
1666 
1667 	/*
1668 	 * Initialize the multicast address list.
1669 	 */
1670 	if (fxp_mc_addrs(sc)) {
1671 		mcsp = sc->mcsp;
1672 		mcsp->cb_status = 0;
1673 		mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
1674 		mcsp->link_addr = -1;
1675 		/*
1676 	 	 * Start the multicast setup command.
1677 		 */
1678 		fxp_scb_wait(sc);
1679 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1680 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1681 		/* ...and wait for it to complete. */
1682 		fxp_dma_wait(&mcsp->cb_status, sc);
1683 	}
1684 
1685 	/*
1686 	 * We temporarily use memory that contains the TxCB list to
1687 	 * construct the config CB. The TxCB list memory is rebuilt
1688 	 * later.
1689 	 */
1690 	cbp = (struct fxp_cb_config *) sc->cbl_base;
1691 
1692 	/*
1693 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1694 	 * zero and must be one bits in this structure and this is the easiest
1695 	 * way to initialize them all to proper values.
1696 	 */
1697 	bcopy(fxp_cb_config_template,
1698 		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1699 		sizeof(fxp_cb_config_template));
1700 
1701 	cbp->cb_status =	0;
1702 	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1703 	cbp->link_addr =	-1;	/* (no) next command */
1704 	cbp->byte_count =	22;	/* (22) bytes to config */
1705 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1706 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1707 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1708 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1709 	cbp->type_enable =	0;	/* actually reserved */
1710 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1711 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1712 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1713 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1714 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1715 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1716 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
1717 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1718 	cbp->ci_int =		1;	/* interrupt on CU idle */
1719 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1720 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
1721 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
1722 	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
1723 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1724 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
1725 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1726 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1727 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1728 	cbp->csma_dis =		0;	/* (don't) disable link */
1729 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1730 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1731 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1732 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1733 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
1734 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1735 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1736 	cbp->loopback =		0;	/* (don't) loopback */
1737 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1738 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1739 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1740 	cbp->promiscuous =	prm;	/* promiscuous mode */
1741 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1742 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1743 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1744 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1745 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1746 
1747 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1748 	cbp->padding =		1;	/* (do) pad short tx packets */
1749 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1750 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1751 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1752 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1753 					/* must set wake_en in PMCSR also */
1754 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1755 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1756 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1757 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1758 
1759 	if (sc->revision == FXP_REV_82557) {
1760 		/*
1761 		 * The 82557 has no hardware flow control, the values
1762 		 * below are the defaults for the chip.
1763 		 */
1764 		cbp->fc_delay_lsb =	0;
1765 		cbp->fc_delay_msb =	0x40;
1766 		cbp->pri_fc_thresh =	3;
1767 		cbp->tx_fc_dis =	0;
1768 		cbp->rx_fc_restop =	0;
1769 		cbp->rx_fc_restart =	0;
1770 		cbp->fc_filter =	0;
1771 		cbp->pri_fc_loc =	1;
1772 	} else {
1773 		cbp->fc_delay_lsb =	0x1f;
1774 		cbp->fc_delay_msb =	0x01;
1775 		cbp->pri_fc_thresh =	3;
1776 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1777 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1778 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1779 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1780 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1781 	}
1782 
1783 	/*
1784 	 * Start the config command/DMA.
1785 	 */
1786 	fxp_scb_wait(sc);
1787 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1788 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1789 	/* ...and wait for it to complete. */
1790 	fxp_dma_wait(&cbp->cb_status, sc);
1791 
1792 	/*
1793 	 * Now initialize the station address. Temporarily use the TxCB
1794 	 * memory area like we did above for the config CB.
1795 	 */
1796 	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1797 	cb_ias->cb_status = 0;
1798 	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1799 	cb_ias->link_addr = -1;
1800 	bcopy(sc->arpcom.ac_enaddr,
1801 	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1802 	    sizeof(sc->arpcom.ac_enaddr));
1803 
1804 	/*
1805 	 * Start the IAS (Individual Address Setup) command/DMA.
1806 	 */
1807 	fxp_scb_wait(sc);
1808 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1809 	/* ...and wait for it to complete. */
1810 	fxp_dma_wait(&cb_ias->cb_status, sc);
1811 
1812 	/*
1813 	 * Initialize transmit control block (TxCB) list.
1814 	 */
1815 
1816 	txp = sc->cbl_base;
1817 	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1818 	for (i = 0; i < FXP_NTXCB; i++) {
1819 		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1820 		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1821 		txp[i].link_addr =
1822 		    vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1823 		if (sc->flags & FXP_FLAG_EXT_TXCB)
1824 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1825 		else
1826 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1827 		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1828 	}
1829 	/*
1830 	 * Set the suspend flag on the first TxCB and start the control
1831 	 * unit. It will execute the NOP and then suspend.
1832 	 */
1833 	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1834 	sc->cbl_first = sc->cbl_last = txp;
1835 	sc->tx_queued = 1;
1836 
1837 	fxp_scb_wait(sc);
1838 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1839 
1840 	/*
1841 	 * Initialize receiver buffer area - RFA.
1842 	 */
1843 	fxp_scb_wait(sc);
1844 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1845 	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1846 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1847 
1848 	/*
1849 	 * Set current media.
1850 	 */
1851 	if (sc->miibus != NULL)
1852 		mii_mediachg(device_get_softc(sc->miibus));
1853 
1854 	ifp->if_flags |= IFF_RUNNING;
1855 	ifp->if_flags &= ~IFF_OACTIVE;
1856 
1857 	/*
1858 	 * Enable interrupts.
1859 	 */
1860 #ifdef DEVICE_POLLING
1861 	/*
1862 	 * ... but only do that if we are not polling. And because (presumably)
1863 	 * the default is interrupts on, we need to disable them explicitly!
1864 	 */
1865 	if ( ifp->if_flags & IFF_POLLING )
1866 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1867 	else
1868 #endif /* DEVICE_POLLING */
1869 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1870 
1871 	/*
1872 	 * Start stats updater.
1873 	 */
1874 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1875 }
1876 
1877 static int
1878 fxp_serial_ifmedia_upd(struct ifnet *ifp)
1879 {
1880 	ASSERT_SERIALIZED(ifp->if_serializer);
1881 	return (0);
1882 }
1883 
1884 static void
1885 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1886 {
1887 	ASSERT_SERIALIZED(ifp->if_serializer);
1888 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1889 }
1890 
1891 /*
1892  * Change media according to request.
1893  */
1894 static int
1895 fxp_ifmedia_upd(struct ifnet *ifp)
1896 {
1897 	struct fxp_softc *sc = ifp->if_softc;
1898 	struct mii_data *mii;
1899 
1900 	ASSERT_SERIALIZED(ifp->if_serializer);
1901 
1902 	mii = device_get_softc(sc->miibus);
1903 	mii_mediachg(mii);
1904 	return (0);
1905 }
1906 
1907 /*
1908  * Notify the world which media we're using.
1909  */
1910 static void
1911 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1912 {
1913 	struct fxp_softc *sc = ifp->if_softc;
1914 	struct mii_data *mii;
1915 
1916 	ASSERT_SERIALIZED(ifp->if_serializer);
1917 
1918 	mii = device_get_softc(sc->miibus);
1919 	mii_pollstat(mii);
1920 	ifmr->ifm_active = mii->mii_media_active;
1921 	ifmr->ifm_status = mii->mii_media_status;
1922 
1923 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1924 		sc->cu_resume_bug = 1;
1925 	else
1926 		sc->cu_resume_bug = 0;
1927 }
1928 
1929 /*
1930  * Add a buffer to the end of the RFA buffer list.
1931  * Return 0 if successful, 1 for failure. A failure results in
1932  * adding the 'oldm' (if non-NULL) on to the end of the list -
1933  * tossing out its old contents and recycling it.
1934  * The RFA struct is stuck at the beginning of mbuf cluster and the
1935  * data pointer is fixed up to point just past it.
1936  */
1937 static int
1938 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1939 {
1940 	u_int32_t v;
1941 	struct mbuf *m;
1942 	struct fxp_rfa *rfa, *p_rfa;
1943 
1944 	m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1945 	if (m == NULL) { /* try to recycle the old mbuf instead */
1946 		if (oldm == NULL)
1947 			return 1;
1948 		m = oldm;
1949 		m->m_data = m->m_ext.ext_buf;
1950 	}
1951 
1952 	/*
1953 	 * Move the data pointer up so that the incoming data packet
1954 	 * will be 32-bit aligned.
1955 	 */
1956 	m->m_data += RFA_ALIGNMENT_FUDGE;
1957 
1958 	/*
1959 	 * Get a pointer to the base of the mbuf cluster and move
1960 	 * data start past it.
1961 	 */
1962 	rfa = mtod(m, struct fxp_rfa *);
1963 	m->m_data += sizeof(struct fxp_rfa);
1964 	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
1965 
1966 	/*
1967 	 * Initialize the rest of the RFA.  Note that since the RFA
1968 	 * is misaligned, we cannot store values directly.  Instead,
1969 	 * we use an optimized, inline copy.
1970 	 */
1971 
1972 	rfa->rfa_status = 0;
1973 	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1974 	rfa->actual_size = 0;
1975 
1976 	v = -1;
1977 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1978 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1979 
1980 	/*
1981 	 * If there are other buffers already on the list, attach this
1982 	 * one to the end by fixing up the tail to point to this one.
1983 	 */
1984 	if (sc->rfa_headm != NULL) {
1985 		p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1986 		    RFA_ALIGNMENT_FUDGE);
1987 		sc->rfa_tailm->m_next = m;
1988 		v = vtophys(rfa);
1989 		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
1990 		p_rfa->rfa_control = 0;
1991 	} else {
1992 		sc->rfa_headm = m;
1993 	}
1994 	sc->rfa_tailm = m;
1995 
1996 	return (m == oldm);
1997 }
1998 
1999 static int
2000 fxp_miibus_readreg(device_t dev, int phy, int reg)
2001 {
2002 	struct fxp_softc *sc = device_get_softc(dev);
2003 	int count = 10000;
2004 	int value;
2005 
2006 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2007 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2008 
2009 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2010 	    && count--)
2011 		DELAY(10);
2012 
2013 	if (count <= 0)
2014 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2015 
2016 	return (value & 0xffff);
2017 }
2018 
2019 static void
2020 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2021 {
2022 	struct fxp_softc *sc = device_get_softc(dev);
2023 	int count = 10000;
2024 
2025 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2026 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2027 	    (value & 0xffff));
2028 
2029 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2030 	    count--)
2031 		DELAY(10);
2032 
2033 	if (count <= 0)
2034 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2035 }
2036 
2037 static int
2038 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2039 {
2040 	struct fxp_softc *sc = ifp->if_softc;
2041 	struct ifreq *ifr = (struct ifreq *)data;
2042 	struct mii_data *mii;
2043 	int error = 0;
2044 
2045 	ASSERT_SERIALIZED(ifp->if_serializer);
2046 
2047 	switch (command) {
2048 
2049 	case SIOCSIFFLAGS:
2050 		if (ifp->if_flags & IFF_ALLMULTI)
2051 			sc->flags |= FXP_FLAG_ALL_MCAST;
2052 		else
2053 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2054 
2055 		/*
2056 		 * If interface is marked up and not running, then start it.
2057 		 * If it is marked down and running, stop it.
2058 		 * XXX If it's up then re-initialize it. This is so flags
2059 		 * such as IFF_PROMISC are handled.
2060 		 */
2061 		if (ifp->if_flags & IFF_UP) {
2062 			fxp_init(sc);
2063 		} else {
2064 			if (ifp->if_flags & IFF_RUNNING)
2065 				fxp_stop(sc);
2066 		}
2067 		break;
2068 
2069 	case SIOCADDMULTI:
2070 	case SIOCDELMULTI:
2071 		if (ifp->if_flags & IFF_ALLMULTI)
2072 			sc->flags |= FXP_FLAG_ALL_MCAST;
2073 		else
2074 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2075 		/*
2076 		 * Multicast list has changed; set the hardware filter
2077 		 * accordingly.
2078 		 */
2079 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2080 			fxp_mc_setup(sc);
2081 		/*
2082 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2083 		 * again rather than else {}.
2084 		 */
2085 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2086 			fxp_init(sc);
2087 		error = 0;
2088 		break;
2089 
2090 	case SIOCSIFMEDIA:
2091 	case SIOCGIFMEDIA:
2092 		if (sc->miibus != NULL) {
2093 			mii = device_get_softc(sc->miibus);
2094                         error = ifmedia_ioctl(ifp, ifr,
2095                             &mii->mii_media, command);
2096 		} else {
2097                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2098 		}
2099 		break;
2100 
2101 	default:
2102 		error = ether_ioctl(ifp, command, data);
2103 		break;
2104 	}
2105 	return (error);
2106 }
2107 
2108 /*
2109  * Fill in the multicast address list and return number of entries.
2110  */
2111 static int
2112 fxp_mc_addrs(struct fxp_softc *sc)
2113 {
2114 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2115 	struct ifnet *ifp = &sc->arpcom.ac_if;
2116 	struct ifmultiaddr *ifma;
2117 	int nmcasts;
2118 
2119 	nmcasts = 0;
2120 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2121 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2122 			if (ifma->ifma_addr->sa_family != AF_LINK)
2123 				continue;
2124 			if (nmcasts >= MAXMCADDR) {
2125 				sc->flags |= FXP_FLAG_ALL_MCAST;
2126 				nmcasts = 0;
2127 				break;
2128 			}
2129 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2130 			    (void *)(uintptr_t)(volatile void *)
2131 				&sc->mcsp->mc_addr[nmcasts][0], 6);
2132 			nmcasts++;
2133 		}
2134 	}
2135 	mcsp->mc_cnt = nmcasts * 6;
2136 	return (nmcasts);
2137 }
2138 
2139 /*
2140  * Program the multicast filter.
2141  *
2142  * We have an artificial restriction that the multicast setup command
2143  * must be the first command in the chain, so we take steps to ensure
2144  * this. By requiring this, it allows us to keep up the performance of
2145  * the pre-initialized command ring (esp. link pointers) by not actually
2146  * inserting the mcsetup command in the ring - i.e. its link pointer
2147  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2148  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2149  * lead into the regular TxCB ring when it completes.
2150  *
2151  * This function must be called at splimp.
2152  */
2153 static void
2154 fxp_mc_setup(struct fxp_softc *sc)
2155 {
2156 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2157 	struct ifnet *ifp = &sc->arpcom.ac_if;
2158 	int count;
2159 
2160 	/*
2161 	 * If there are queued commands, we must wait until they are all
2162 	 * completed. If we are already waiting, then add a NOP command
2163 	 * with interrupt option so that we're notified when all commands
2164 	 * have been completed - fxp_start() ensures that no additional
2165 	 * TX commands will be added when need_mcsetup is true.
2166 	 */
2167 	if (sc->tx_queued) {
2168 		struct fxp_cb_tx *txp;
2169 
2170 		/*
2171 		 * need_mcsetup will be true if we are already waiting for the
2172 		 * NOP command to be completed (see below). In this case, bail.
2173 		 */
2174 		if (sc->need_mcsetup)
2175 			return;
2176 		sc->need_mcsetup = 1;
2177 
2178 		/*
2179 		 * Add a NOP command with interrupt so that we are notified
2180 		 * when all TX commands have been processed.
2181 		 */
2182 		txp = sc->cbl_last->next;
2183 		txp->mb_head = NULL;
2184 		txp->cb_status = 0;
2185 		txp->cb_command = FXP_CB_COMMAND_NOP |
2186 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2187 		/*
2188 		 * Advance the end of list forward.
2189 		 */
2190 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2191 		sc->cbl_last = txp;
2192 		sc->tx_queued++;
2193 		/*
2194 		 * Issue a resume in case the CU has just suspended.
2195 		 */
2196 		fxp_scb_wait(sc);
2197 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2198 		/*
2199 		 * Set a 5 second timer just in case we don't hear from the
2200 		 * card again.
2201 		 */
2202 		ifp->if_timer = 5;
2203 
2204 		return;
2205 	}
2206 	sc->need_mcsetup = 0;
2207 
2208 	/*
2209 	 * Initialize multicast setup descriptor.
2210 	 */
2211 	mcsp->next = sc->cbl_base;
2212 	mcsp->mb_head = NULL;
2213 	mcsp->cb_status = 0;
2214 	mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2215 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2216 	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2217 	fxp_mc_addrs(sc);
2218 	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2219 	sc->tx_queued = 1;
2220 
2221 	/*
2222 	 * Wait until command unit is not active. This should never
2223 	 * be the case when nothing is queued, but make sure anyway.
2224 	 */
2225 	count = 100;
2226 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2227 	    FXP_SCB_CUS_ACTIVE && --count)
2228 		DELAY(10);
2229 	if (count == 0) {
2230 		if_printf(&sc->arpcom.ac_if, "command queue timeout\n");
2231 		return;
2232 	}
2233 
2234 	/*
2235 	 * Start the multicast setup command.
2236 	 */
2237 	fxp_scb_wait(sc);
2238 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2239 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2240 
2241 	ifp->if_timer = 2;
2242 	return;
2243 }
2244 
2245 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2246 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2247 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2248 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2249 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2250 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2251 
2252 #define UCODE(x)	x, sizeof(x)
2253 
2254 struct ucode {
2255 	u_int32_t	revision;
2256 	u_int32_t	*ucode;
2257 	int		length;
2258 	u_short		int_delay_offset;
2259 	u_short		bundle_max_offset;
2260 } ucode_table[] = {
2261 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2262 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2263 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2264 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2265 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2266 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2267 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2268 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2269 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2270 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2271 	{ 0, NULL, 0, 0, 0 }
2272 };
2273 
2274 static void
2275 fxp_load_ucode(struct fxp_softc *sc)
2276 {
2277 	struct ucode *uc;
2278 	struct fxp_cb_ucode *cbp;
2279 
2280 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2281 		if (sc->revision == uc->revision)
2282 			break;
2283 	if (uc->ucode == NULL)
2284 		return;
2285 	cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2286 	cbp->cb_status = 0;
2287 	cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2288 	cbp->link_addr = -1;    	/* (no) next command */
2289 	memcpy(cbp->ucode, uc->ucode, uc->length);
2290 	if (uc->int_delay_offset)
2291 		*(u_short *)&cbp->ucode[uc->int_delay_offset] =
2292 		    sc->tunable_int_delay + sc->tunable_int_delay / 2;
2293 	if (uc->bundle_max_offset)
2294 		*(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2295 		    sc->tunable_bundle_max;
2296 	/*
2297 	 * Download the ucode to the chip.
2298 	 */
2299 	fxp_scb_wait(sc);
2300 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2301 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2302 	/* ...and wait for it to complete. */
2303 	fxp_dma_wait(&cbp->cb_status, sc);
2304 	if_printf(&sc->arpcom.ac_if,
2305 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2306 	    sc->tunable_int_delay,
2307 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2308 	sc->flags |= FXP_FLAG_UCODE;
2309 }
2310 
2311 /*
2312  * Interrupt delay is expressed in microseconds, a multiplier is used
2313  * to convert this to the appropriate clock ticks before using.
2314  */
2315 static int
2316 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2317 {
2318 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2319 }
2320 
2321 static int
2322 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2323 {
2324 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2325 }
2326