xref: /dragonfly/sys/dev/netif/ig_hal/e1000_api.c (revision 25a2db75)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2011, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 #include "e1000_api.h"
36 
37 /**
38  *  e1000_init_mac_params - Initialize MAC function pointers
39  *  @hw: pointer to the HW structure
40  *
41  *  This function initializes the function pointers for the MAC
42  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
43  **/
44 s32 e1000_init_mac_params(struct e1000_hw *hw)
45 {
46 	s32 ret_val = E1000_SUCCESS;
47 
48 	if (hw->mac.ops.init_params) {
49 		ret_val = hw->mac.ops.init_params(hw);
50 		if (ret_val) {
51 			DEBUGOUT("MAC Initialization Error\n");
52 			goto out;
53 		}
54 	} else {
55 		DEBUGOUT("mac.init_mac_params was NULL\n");
56 		ret_val = -E1000_ERR_CONFIG;
57 	}
58 
59 out:
60 	return ret_val;
61 }
62 
63 /**
64  *  e1000_init_nvm_params - Initialize NVM function pointers
65  *  @hw: pointer to the HW structure
66  *
67  *  This function initializes the function pointers for the NVM
68  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
69  **/
70 s32 e1000_init_nvm_params(struct e1000_hw *hw)
71 {
72 	s32 ret_val = E1000_SUCCESS;
73 
74 	if (hw->nvm.ops.init_params) {
75 		ret_val = hw->nvm.ops.init_params(hw);
76 		if (ret_val) {
77 			DEBUGOUT("NVM Initialization Error\n");
78 			goto out;
79 		}
80 	} else {
81 		DEBUGOUT("nvm.init_nvm_params was NULL\n");
82 		ret_val = -E1000_ERR_CONFIG;
83 	}
84 
85 out:
86 	return ret_val;
87 }
88 
89 /**
90  *  e1000_init_phy_params - Initialize PHY function pointers
91  *  @hw: pointer to the HW structure
92  *
93  *  This function initializes the function pointers for the PHY
94  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
95  **/
96 s32 e1000_init_phy_params(struct e1000_hw *hw)
97 {
98 	s32 ret_val = E1000_SUCCESS;
99 
100 	if (hw->phy.ops.init_params) {
101 		ret_val = hw->phy.ops.init_params(hw);
102 		if (ret_val) {
103 			DEBUGOUT("PHY Initialization Error\n");
104 			goto out;
105 		}
106 	} else {
107 		DEBUGOUT("phy.init_phy_params was NULL\n");
108 		ret_val =  -E1000_ERR_CONFIG;
109 	}
110 
111 out:
112 	return ret_val;
113 }
114 
115 /**
116  *  e1000_init_mbx_params - Initialize mailbox function pointers
117  *  @hw: pointer to the HW structure
118  *
119  *  This function initializes the function pointers for the PHY
120  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
121  **/
122 s32 e1000_init_mbx_params(struct e1000_hw *hw)
123 {
124 	s32 ret_val = E1000_SUCCESS;
125 
126 	if (hw->mbx.ops.init_params) {
127 		ret_val = hw->mbx.ops.init_params(hw);
128 		if (ret_val) {
129 			DEBUGOUT("Mailbox Initialization Error\n");
130 			goto out;
131 		}
132 	} else {
133 		DEBUGOUT("mbx.init_mbx_params was NULL\n");
134 		ret_val =  -E1000_ERR_CONFIG;
135 	}
136 
137 out:
138 	return ret_val;
139 }
140 
141 /**
142  *  e1000_set_mac_type - Sets MAC type
143  *  @hw: pointer to the HW structure
144  *
145  *  This function sets the mac type of the adapter based on the
146  *  device ID stored in the hw structure.
147  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
148  *  e1000_setup_init_funcs()).
149  **/
150 s32 e1000_set_mac_type(struct e1000_hw *hw)
151 {
152 	struct e1000_mac_info *mac = &hw->mac;
153 	s32 ret_val = E1000_SUCCESS;
154 
155 	DEBUGFUNC("e1000_set_mac_type");
156 
157 	switch (hw->device_id) {
158 #ifndef NO_82542_SUPPORT
159 	case E1000_DEV_ID_82542:
160 		mac->type = e1000_82542;
161 		break;
162 #endif
163 	case E1000_DEV_ID_82543GC_FIBER:
164 	case E1000_DEV_ID_82543GC_COPPER:
165 		mac->type = e1000_82543;
166 		break;
167 	case E1000_DEV_ID_82544EI_COPPER:
168 	case E1000_DEV_ID_82544EI_FIBER:
169 	case E1000_DEV_ID_82544GC_COPPER:
170 	case E1000_DEV_ID_82544GC_LOM:
171 		mac->type = e1000_82544;
172 		break;
173 	case E1000_DEV_ID_82540EM:
174 	case E1000_DEV_ID_82540EM_LOM:
175 	case E1000_DEV_ID_82540EP:
176 	case E1000_DEV_ID_82540EP_LOM:
177 	case E1000_DEV_ID_82540EP_LP:
178 		mac->type = e1000_82540;
179 		break;
180 	case E1000_DEV_ID_82545EM_COPPER:
181 	case E1000_DEV_ID_82545EM_FIBER:
182 		mac->type = e1000_82545;
183 		break;
184 	case E1000_DEV_ID_82545GM_COPPER:
185 	case E1000_DEV_ID_82545GM_FIBER:
186 	case E1000_DEV_ID_82545GM_SERDES:
187 		mac->type = e1000_82545_rev_3;
188 		break;
189 	case E1000_DEV_ID_82546EB_COPPER:
190 	case E1000_DEV_ID_82546EB_FIBER:
191 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
192 		mac->type = e1000_82546;
193 		break;
194 	case E1000_DEV_ID_82546GB_COPPER:
195 	case E1000_DEV_ID_82546GB_FIBER:
196 	case E1000_DEV_ID_82546GB_SERDES:
197 	case E1000_DEV_ID_82546GB_PCIE:
198 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
199 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
200 		mac->type = e1000_82546_rev_3;
201 		break;
202 	case E1000_DEV_ID_82541EI:
203 	case E1000_DEV_ID_82541EI_MOBILE:
204 	case E1000_DEV_ID_82541ER_LOM:
205 		mac->type = e1000_82541;
206 		break;
207 	case E1000_DEV_ID_82541ER:
208 	case E1000_DEV_ID_82541GI:
209 	case E1000_DEV_ID_82541GI_LF:
210 	case E1000_DEV_ID_82541GI_MOBILE:
211 		mac->type = e1000_82541_rev_2;
212 		break;
213 	case E1000_DEV_ID_82547EI:
214 	case E1000_DEV_ID_82547EI_MOBILE:
215 		mac->type = e1000_82547;
216 		break;
217 	case E1000_DEV_ID_82547GI:
218 		mac->type = e1000_82547_rev_2;
219 		break;
220 	case E1000_DEV_ID_82571EB_COPPER:
221 	case E1000_DEV_ID_82571EB_FIBER:
222 	case E1000_DEV_ID_82571EB_SERDES:
223 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
224 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
225 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
226 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
227 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
228 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
229 	case E1000_DEV_ID_82571EB_QUAD_COPPER_BP:
230 		mac->type = e1000_82571;
231 		break;
232 	case E1000_DEV_ID_82572EI:
233 	case E1000_DEV_ID_82572EI_COPPER:
234 	case E1000_DEV_ID_82572EI_FIBER:
235 	case E1000_DEV_ID_82572EI_SERDES:
236 		mac->type = e1000_82572;
237 		break;
238 	case E1000_DEV_ID_82573E:
239 	case E1000_DEV_ID_82573E_IAMT:
240 	case E1000_DEV_ID_82573L:
241 		mac->type = e1000_82573;
242 		break;
243 	case E1000_DEV_ID_82574L:
244 	case E1000_DEV_ID_82574LA:
245 		mac->type = e1000_82574;
246 		break;
247 	case E1000_DEV_ID_82583V:
248 		mac->type = e1000_82583;
249 		break;
250 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
251 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
252 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
253 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
254 		mac->type = e1000_80003es2lan;
255 		break;
256 	case E1000_DEV_ID_ICH8_IFE:
257 	case E1000_DEV_ID_ICH8_IFE_GT:
258 	case E1000_DEV_ID_ICH8_IFE_G:
259 	case E1000_DEV_ID_ICH8_IGP_M:
260 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
261 	case E1000_DEV_ID_ICH8_IGP_AMT:
262 	case E1000_DEV_ID_ICH8_IGP_C:
263 	case E1000_DEV_ID_ICH8_82567V_3:
264 		mac->type = e1000_ich8lan;
265 		break;
266 	case E1000_DEV_ID_ICH9_IFE:
267 	case E1000_DEV_ID_ICH9_IFE_GT:
268 	case E1000_DEV_ID_ICH9_IFE_G:
269 	case E1000_DEV_ID_ICH9_IGP_M:
270 	case E1000_DEV_ID_ICH9_IGP_M_AMT:
271 	case E1000_DEV_ID_ICH9_IGP_M_V:
272 	case E1000_DEV_ID_ICH9_IGP_AMT:
273 	case E1000_DEV_ID_ICH9_BM:
274 	case E1000_DEV_ID_ICH9_IGP_C:
275 	case E1000_DEV_ID_ICH10_R_BM_LM:
276 	case E1000_DEV_ID_ICH10_R_BM_LF:
277 	case E1000_DEV_ID_ICH10_R_BM_V:
278 		mac->type = e1000_ich9lan;
279 		break;
280 	case E1000_DEV_ID_ICH10_D_BM_LM:
281 	case E1000_DEV_ID_ICH10_D_BM_LF:
282 	case E1000_DEV_ID_ICH10_D_BM_V:
283 		mac->type = e1000_ich10lan;
284 		break;
285 	case E1000_DEV_ID_PCH_D_HV_DM:
286 	case E1000_DEV_ID_PCH_D_HV_DC:
287 	case E1000_DEV_ID_PCH_M_HV_LM:
288 	case E1000_DEV_ID_PCH_M_HV_LC:
289 		mac->type = e1000_pchlan;
290 		break;
291 	case E1000_DEV_ID_PCH2_LV_LM:
292 	case E1000_DEV_ID_PCH2_LV_V:
293 		mac->type = e1000_pch2lan;
294 		break;
295 	case E1000_DEV_ID_82575EB_COPPER:
296 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
297 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
298 		mac->type = e1000_82575;
299 		break;
300 	case E1000_DEV_ID_82576:
301 	case E1000_DEV_ID_82576_FIBER:
302 	case E1000_DEV_ID_82576_SERDES:
303 	case E1000_DEV_ID_82576_QUAD_COPPER:
304 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
305 	case E1000_DEV_ID_82576_NS:
306 	case E1000_DEV_ID_82576_NS_SERDES:
307 	case E1000_DEV_ID_82576_SERDES_QUAD:
308 		mac->type = e1000_82576;
309 		break;
310 	case E1000_DEV_ID_82580_COPPER:
311 	case E1000_DEV_ID_82580_FIBER:
312 	case E1000_DEV_ID_82580_SERDES:
313 	case E1000_DEV_ID_82580_SGMII:
314 	case E1000_DEV_ID_82580_COPPER_DUAL:
315 	case E1000_DEV_ID_82580_QUAD_FIBER:
316 	case E1000_DEV_ID_DH89XXCC_SGMII:
317 	case E1000_DEV_ID_DH89XXCC_SERDES:
318 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
319 	case E1000_DEV_ID_DH89XXCC_SFP:
320 		mac->type = e1000_82580;
321 		break;
322 	case E1000_DEV_ID_I350_COPPER:
323 	case E1000_DEV_ID_I350_FIBER:
324 	case E1000_DEV_ID_I350_SERDES:
325 	case E1000_DEV_ID_I350_SGMII:
326 	case E1000_DEV_ID_I350_DA4:
327 		mac->type = e1000_i350;
328 		break;
329 #if defined(QV_RELEASE) && defined(SPRINGVILLE_FLASHLESS_HW)
330 	case E1000_DEV_ID_I210_NVMLESS:
331 #endif /* QV_RELEASE && SPRINGVILLE_FLASHLESS_HW */
332 	case E1000_DEV_ID_I210_COPPER:
333 	case E1000_DEV_ID_I210_COPPER_OEM1:
334 	case E1000_DEV_ID_I210_COPPER_IT:
335 	case E1000_DEV_ID_I210_FIBER:
336 	case E1000_DEV_ID_I210_SERDES:
337 	case E1000_DEV_ID_I210_SGMII:
338 		mac->type = e1000_i210;
339 		break;
340 	case E1000_DEV_ID_I211_COPPER:
341 		mac->type = e1000_i211;
342 		break;
343 	case E1000_DEV_ID_82576_VF:
344 		mac->type = e1000_vfadapt;
345 		break;
346 	case E1000_DEV_ID_I350_VF:
347 		mac->type = e1000_vfadapt_i350;
348 		break;
349 
350 	default:
351 		/* Should never have loaded on this device */
352 		ret_val = -E1000_ERR_MAC_INIT;
353 		break;
354 	}
355 
356 	return ret_val;
357 }
358 
359 /**
360  *  e1000_setup_init_funcs - Initializes function pointers
361  *  @hw: pointer to the HW structure
362  *  @init_device: TRUE will initialize the rest of the function pointers
363  *		  getting the device ready for use.  FALSE will only set
364  *		  MAC type and the function pointers for the other init
365  *		  functions.  Passing FALSE will not generate any hardware
366  *		  reads or writes.
367  *
368  *  This function must be called by a driver in order to use the rest
369  *  of the 'shared' code files. Called by drivers only.
370  **/
371 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
372 {
373 	s32 ret_val;
374 
375 	/* Can't do much good without knowing the MAC type. */
376 	ret_val = e1000_set_mac_type(hw);
377 	if (ret_val) {
378 		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
379 		goto out;
380 	}
381 
382 	if (!hw->hw_addr) {
383 		DEBUGOUT("ERROR: Registers not mapped\n");
384 		ret_val = -E1000_ERR_CONFIG;
385 		goto out;
386 	}
387 
388 	/*
389 	 * Init function pointers to generic implementations. We do this first
390 	 * allowing a driver module to override it afterward.
391 	 */
392 	e1000_init_mac_ops_generic(hw);
393 	e1000_init_phy_ops_generic(hw);
394 	e1000_init_nvm_ops_generic(hw);
395 	e1000_init_mbx_ops_generic(hw);
396 
397 	/*
398 	 * Set up the init function pointers. These are functions within the
399 	 * adapter family file that sets up function pointers for the rest of
400 	 * the functions in that family.
401 	 */
402 	switch (hw->mac.type) {
403 #ifndef NO_82542_SUPPORT
404 	case e1000_82542:
405 		e1000_init_function_pointers_82542(hw);
406 		break;
407 #endif
408 	case e1000_82543:
409 	case e1000_82544:
410 		e1000_init_function_pointers_82543(hw);
411 		break;
412 	case e1000_82540:
413 	case e1000_82545:
414 	case e1000_82545_rev_3:
415 	case e1000_82546:
416 	case e1000_82546_rev_3:
417 		e1000_init_function_pointers_82540(hw);
418 		break;
419 	case e1000_82541:
420 	case e1000_82541_rev_2:
421 	case e1000_82547:
422 	case e1000_82547_rev_2:
423 		e1000_init_function_pointers_82541(hw);
424 		break;
425 	case e1000_82571:
426 	case e1000_82572:
427 	case e1000_82573:
428 	case e1000_82574:
429 	case e1000_82583:
430 		e1000_init_function_pointers_82571(hw);
431 		break;
432 	case e1000_80003es2lan:
433 		e1000_init_function_pointers_80003es2lan(hw);
434 		break;
435 	case e1000_ich8lan:
436 	case e1000_ich9lan:
437 	case e1000_ich10lan:
438 	case e1000_pchlan:
439 	case e1000_pch2lan:
440 		e1000_init_function_pointers_ich8lan(hw);
441 		break;
442 	case e1000_82575:
443 	case e1000_82576:
444 	case e1000_82580:
445 	case e1000_i350:
446 		e1000_init_function_pointers_82575(hw);
447 		break;
448 	case e1000_i210:
449 	case e1000_i211:
450 		e1000_init_function_pointers_i210(hw);
451 		break;
452 	case e1000_vfadapt:
453 		e1000_init_function_pointers_vf(hw);
454 		break;
455 	case e1000_vfadapt_i350:
456 		e1000_init_function_pointers_vf(hw);
457 		break;
458 	default:
459 		DEBUGOUT("Hardware not supported\n");
460 		ret_val = -E1000_ERR_CONFIG;
461 		break;
462 	}
463 
464 	/*
465 	 * Initialize the rest of the function pointers. These require some
466 	 * register reads/writes in some cases.
467 	 */
468 	if (!(ret_val) && init_device) {
469 		ret_val = e1000_init_mac_params(hw);
470 		if (ret_val)
471 			goto out;
472 
473 		ret_val = e1000_init_nvm_params(hw);
474 		if (ret_val)
475 			goto out;
476 
477 		ret_val = e1000_init_phy_params(hw);
478 		if (ret_val)
479 			goto out;
480 
481 		ret_val = e1000_init_mbx_params(hw);
482 		if (ret_val)
483 			goto out;
484 	}
485 
486 out:
487 	return ret_val;
488 }
489 
490 /**
491  *  e1000_get_bus_info - Obtain bus information for adapter
492  *  @hw: pointer to the HW structure
493  *
494  *  This will obtain information about the HW bus for which the
495  *  adapter is attached and stores it in the hw structure. This is a
496  *  function pointer entry point called by drivers.
497  **/
498 s32 e1000_get_bus_info(struct e1000_hw *hw)
499 {
500 	if (hw->mac.ops.get_bus_info)
501 		return hw->mac.ops.get_bus_info(hw);
502 
503 	return E1000_SUCCESS;
504 }
505 
506 /**
507  *  e1000_clear_vfta - Clear VLAN filter table
508  *  @hw: pointer to the HW structure
509  *
510  *  This clears the VLAN filter table on the adapter. This is a function
511  *  pointer entry point called by drivers.
512  **/
513 void e1000_clear_vfta(struct e1000_hw *hw)
514 {
515 	if (hw->mac.ops.clear_vfta)
516 		hw->mac.ops.clear_vfta(hw);
517 }
518 
519 /**
520  *  e1000_write_vfta - Write value to VLAN filter table
521  *  @hw: pointer to the HW structure
522  *  @offset: the 32-bit offset in which to write the value to.
523  *  @value: the 32-bit value to write at location offset.
524  *
525  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
526  *  table. This is a function pointer entry point called by drivers.
527  **/
528 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
529 {
530 	if (hw->mac.ops.write_vfta)
531 		hw->mac.ops.write_vfta(hw, offset, value);
532 }
533 
534 /**
535  *  e1000_update_mc_addr_list - Update Multicast addresses
536  *  @hw: pointer to the HW structure
537  *  @mc_addr_list: array of multicast addresses to program
538  *  @mc_addr_count: number of multicast addresses to program
539  *
540  *  Updates the Multicast Table Array.
541  *  The caller must have a packed mc_addr_list of multicast addresses.
542  **/
543 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
544 			       u32 mc_addr_count)
545 {
546 	if (hw->mac.ops.update_mc_addr_list)
547 		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
548 						mc_addr_count);
549 }
550 
551 /**
552  *  e1000_force_mac_fc - Force MAC flow control
553  *  @hw: pointer to the HW structure
554  *
555  *  Force the MAC's flow control settings. Currently no func pointer exists
556  *  and all implementations are handled in the generic version of this
557  *  function.
558  **/
559 s32 e1000_force_mac_fc(struct e1000_hw *hw)
560 {
561 	return e1000_force_mac_fc_generic(hw);
562 }
563 
564 /**
565  *  e1000_check_for_link - Check/Store link connection
566  *  @hw: pointer to the HW structure
567  *
568  *  This checks the link condition of the adapter and stores the
569  *  results in the hw->mac structure. This is a function pointer entry
570  *  point called by drivers.
571  **/
572 s32 e1000_check_for_link(struct e1000_hw *hw)
573 {
574 	if (hw->mac.ops.check_for_link)
575 		return hw->mac.ops.check_for_link(hw);
576 
577 	return -E1000_ERR_CONFIG;
578 }
579 
580 /**
581  *  e1000_check_mng_mode - Check management mode
582  *  @hw: pointer to the HW structure
583  *
584  *  This checks if the adapter has manageability enabled.
585  *  This is a function pointer entry point called by drivers.
586  **/
587 bool e1000_check_mng_mode(struct e1000_hw *hw)
588 {
589 	if (hw->mac.ops.check_mng_mode)
590 		return hw->mac.ops.check_mng_mode(hw);
591 
592 	return FALSE;
593 }
594 
595 /**
596  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
597  *  @hw: pointer to the HW structure
598  *  @buffer: pointer to the host interface
599  *  @length: size of the buffer
600  *
601  *  Writes the DHCP information to the host interface.
602  **/
603 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
604 {
605 	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
606 }
607 
608 /**
609  *  e1000_reset_hw - Reset hardware
610  *  @hw: pointer to the HW structure
611  *
612  *  This resets the hardware into a known state. This is a function pointer
613  *  entry point called by drivers.
614  **/
615 s32 e1000_reset_hw(struct e1000_hw *hw)
616 {
617 	if (hw->mac.ops.reset_hw)
618 		return hw->mac.ops.reset_hw(hw);
619 
620 	return -E1000_ERR_CONFIG;
621 }
622 
623 /**
624  *  e1000_init_hw - Initialize hardware
625  *  @hw: pointer to the HW structure
626  *
627  *  This inits the hardware readying it for operation. This is a function
628  *  pointer entry point called by drivers.
629  **/
630 s32 e1000_init_hw(struct e1000_hw *hw)
631 {
632 	if (hw->mac.ops.init_hw)
633 		return hw->mac.ops.init_hw(hw);
634 
635 	return -E1000_ERR_CONFIG;
636 }
637 
638 /**
639  *  e1000_setup_link - Configures link and flow control
640  *  @hw: pointer to the HW structure
641  *
642  *  This configures link and flow control settings for the adapter. This
643  *  is a function pointer entry point called by drivers. While modules can
644  *  also call this, they probably call their own version of this function.
645  **/
646 s32 e1000_setup_link(struct e1000_hw *hw)
647 {
648 	if (hw->mac.ops.setup_link)
649 		return hw->mac.ops.setup_link(hw);
650 
651 	return -E1000_ERR_CONFIG;
652 }
653 
654 /**
655  *  e1000_get_speed_and_duplex - Returns current speed and duplex
656  *  @hw: pointer to the HW structure
657  *  @speed: pointer to a 16-bit value to store the speed
658  *  @duplex: pointer to a 16-bit value to store the duplex.
659  *
660  *  This returns the speed and duplex of the adapter in the two 'out'
661  *  variables passed in. This is a function pointer entry point called
662  *  by drivers.
663  **/
664 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
665 {
666 	if (hw->mac.ops.get_link_up_info)
667 		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
668 
669 	return -E1000_ERR_CONFIG;
670 }
671 
672 /**
673  *  e1000_setup_led - Configures SW controllable LED
674  *  @hw: pointer to the HW structure
675  *
676  *  This prepares the SW controllable LED for use and saves the current state
677  *  of the LED so it can be later restored. This is a function pointer entry
678  *  point called by drivers.
679  **/
680 s32 e1000_setup_led(struct e1000_hw *hw)
681 {
682 	if (hw->mac.ops.setup_led)
683 		return hw->mac.ops.setup_led(hw);
684 
685 	return E1000_SUCCESS;
686 }
687 
688 /**
689  *  e1000_cleanup_led - Restores SW controllable LED
690  *  @hw: pointer to the HW structure
691  *
692  *  This restores the SW controllable LED to the value saved off by
693  *  e1000_setup_led. This is a function pointer entry point called by drivers.
694  **/
695 s32 e1000_cleanup_led(struct e1000_hw *hw)
696 {
697 	if (hw->mac.ops.cleanup_led)
698 		return hw->mac.ops.cleanup_led(hw);
699 
700 	return E1000_SUCCESS;
701 }
702 
703 /**
704  *  e1000_blink_led - Blink SW controllable LED
705  *  @hw: pointer to the HW structure
706  *
707  *  This starts the adapter LED blinking. Request the LED to be setup first
708  *  and cleaned up after. This is a function pointer entry point called by
709  *  drivers.
710  **/
711 s32 e1000_blink_led(struct e1000_hw *hw)
712 {
713 	if (hw->mac.ops.blink_led)
714 		return hw->mac.ops.blink_led(hw);
715 
716 	return E1000_SUCCESS;
717 }
718 
719 /**
720  *  e1000_id_led_init - store LED configurations in SW
721  *  @hw: pointer to the HW structure
722  *
723  *  Initializes the LED config in SW. This is a function pointer entry point
724  *  called by drivers.
725  **/
726 s32 e1000_id_led_init(struct e1000_hw *hw)
727 {
728 	if (hw->mac.ops.id_led_init)
729 		return hw->mac.ops.id_led_init(hw);
730 
731 	return E1000_SUCCESS;
732 }
733 
734 /**
735  *  e1000_led_on - Turn on SW controllable LED
736  *  @hw: pointer to the HW structure
737  *
738  *  Turns the SW defined LED on. This is a function pointer entry point
739  *  called by drivers.
740  **/
741 s32 e1000_led_on(struct e1000_hw *hw)
742 {
743 	if (hw->mac.ops.led_on)
744 		return hw->mac.ops.led_on(hw);
745 
746 	return E1000_SUCCESS;
747 }
748 
749 /**
750  *  e1000_led_off - Turn off SW controllable LED
751  *  @hw: pointer to the HW structure
752  *
753  *  Turns the SW defined LED off. This is a function pointer entry point
754  *  called by drivers.
755  **/
756 s32 e1000_led_off(struct e1000_hw *hw)
757 {
758 	if (hw->mac.ops.led_off)
759 		return hw->mac.ops.led_off(hw);
760 
761 	return E1000_SUCCESS;
762 }
763 
764 /**
765  *  e1000_reset_adaptive - Reset adaptive IFS
766  *  @hw: pointer to the HW structure
767  *
768  *  Resets the adaptive IFS. Currently no func pointer exists and all
769  *  implementations are handled in the generic version of this function.
770  **/
771 void e1000_reset_adaptive(struct e1000_hw *hw)
772 {
773 	e1000_reset_adaptive_generic(hw);
774 }
775 
776 /**
777  *  e1000_update_adaptive - Update adaptive IFS
778  *  @hw: pointer to the HW structure
779  *
780  *  Updates adapter IFS. Currently no func pointer exists and all
781  *  implementations are handled in the generic version of this function.
782  **/
783 void e1000_update_adaptive(struct e1000_hw *hw)
784 {
785 	e1000_update_adaptive_generic(hw);
786 }
787 
788 /**
789  *  e1000_disable_pcie_master - Disable PCI-Express master access
790  *  @hw: pointer to the HW structure
791  *
792  *  Disables PCI-Express master access and verifies there are no pending
793  *  requests. Currently no func pointer exists and all implementations are
794  *  handled in the generic version of this function.
795  **/
796 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
797 {
798 	return e1000_disable_pcie_master_generic(hw);
799 }
800 
801 /**
802  *  e1000_config_collision_dist - Configure collision distance
803  *  @hw: pointer to the HW structure
804  *
805  *  Configures the collision distance to the default value and is used
806  *  during link setup.
807  **/
808 void e1000_config_collision_dist(struct e1000_hw *hw)
809 {
810 	if (hw->mac.ops.config_collision_dist)
811 		hw->mac.ops.config_collision_dist(hw);
812 }
813 
814 /**
815  *  e1000_rar_set - Sets a receive address register
816  *  @hw: pointer to the HW structure
817  *  @addr: address to set the RAR to
818  *  @index: the RAR to set
819  *
820  *  Sets a Receive Address Register (RAR) to the specified address.
821  **/
822 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
823 {
824 	if (hw->mac.ops.rar_set)
825 		hw->mac.ops.rar_set(hw, addr, index);
826 }
827 
828 /**
829  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
830  *  @hw: pointer to the HW structure
831  *
832  *  Ensures that the MDI/MDIX SW state is valid.
833  **/
834 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
835 {
836 	if (hw->mac.ops.validate_mdi_setting)
837 		return hw->mac.ops.validate_mdi_setting(hw);
838 
839 	return E1000_SUCCESS;
840 }
841 
842 /**
843  *  e1000_hash_mc_addr - Determines address location in multicast table
844  *  @hw: pointer to the HW structure
845  *  @mc_addr: Multicast address to hash.
846  *
847  *  This hashes an address to determine its location in the multicast
848  *  table. Currently no func pointer exists and all implementations
849  *  are handled in the generic version of this function.
850  **/
851 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
852 {
853 	return e1000_hash_mc_addr_generic(hw, mc_addr);
854 }
855 
856 /**
857  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
858  *  @hw: pointer to the HW structure
859  *
860  *  Enables packet filtering on transmit packets if manageability is enabled
861  *  and host interface is enabled.
862  *  Currently no func pointer exists and all implementations are handled in the
863  *  generic version of this function.
864  **/
865 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
866 {
867 	return e1000_enable_tx_pkt_filtering_generic(hw);
868 }
869 
870 /**
871  *  e1000_mng_host_if_write - Writes to the manageability host interface
872  *  @hw: pointer to the HW structure
873  *  @buffer: pointer to the host interface buffer
874  *  @length: size of the buffer
875  *  @offset: location in the buffer to write to
876  *  @sum: sum of the data (not checksum)
877  *
878  *  This function writes the buffer content at the offset given on the host if.
879  *  It also does alignment considerations to do the writes in most efficient
880  *  way.  Also fills up the sum of the buffer in *buffer parameter.
881  **/
882 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
883 			    u16 offset, u8 *sum)
884 {
885 	if (hw->mac.ops.mng_host_if_write)
886 		return hw->mac.ops.mng_host_if_write(hw, buffer, length,
887 						     offset, sum);
888 
889 	return E1000_NOT_IMPLEMENTED;
890 }
891 
892 /**
893  *  e1000_mng_write_cmd_header - Writes manageability command header
894  *  @hw: pointer to the HW structure
895  *  @hdr: pointer to the host interface command header
896  *
897  *  Writes the command header after does the checksum calculation.
898  **/
899 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
900 			       struct e1000_host_mng_command_header *hdr)
901 {
902 	if (hw->mac.ops.mng_write_cmd_header)
903 		return hw->mac.ops.mng_write_cmd_header(hw, hdr);
904 
905 	return E1000_NOT_IMPLEMENTED;
906 }
907 
908 /**
909  *  e1000_mng_enable_host_if - Checks host interface is enabled
910  *  @hw: pointer to the HW structure
911  *
912  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
913  *
914  *  This function checks whether the HOST IF is enabled for command operation
915  *  and also checks whether the previous command is completed.  It busy waits
916  *  in case of previous command is not completed.
917  **/
918 s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
919 {
920 	if (hw->mac.ops.mng_enable_host_if)
921 		return hw->mac.ops.mng_enable_host_if(hw);
922 
923 	return E1000_NOT_IMPLEMENTED;
924 }
925 
926 /**
927  *  e1000_wait_autoneg - Waits for autonegotiation completion
928  *  @hw: pointer to the HW structure
929  *
930  *  Waits for autoneg to complete. Currently no func pointer exists and all
931  *  implementations are handled in the generic version of this function.
932  **/
933 s32 e1000_wait_autoneg(struct e1000_hw *hw)
934 {
935 	if (hw->mac.ops.wait_autoneg)
936 		return hw->mac.ops.wait_autoneg(hw);
937 
938 	return E1000_SUCCESS;
939 }
940 
941 /**
942  *  e1000_check_reset_block - Verifies PHY can be reset
943  *  @hw: pointer to the HW structure
944  *
945  *  Checks if the PHY is in a state that can be reset or if manageability
946  *  has it tied up. This is a function pointer entry point called by drivers.
947  **/
948 s32 e1000_check_reset_block(struct e1000_hw *hw)
949 {
950 	if (hw->phy.ops.check_reset_block)
951 		return hw->phy.ops.check_reset_block(hw);
952 
953 	return E1000_SUCCESS;
954 }
955 
956 /**
957  *  e1000_read_phy_reg - Reads PHY register
958  *  @hw: pointer to the HW structure
959  *  @offset: the register to read
960  *  @data: the buffer to store the 16-bit read.
961  *
962  *  Reads the PHY register and returns the value in data.
963  *  This is a function pointer entry point called by drivers.
964  **/
965 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
966 {
967 	if (hw->phy.ops.read_reg)
968 		return hw->phy.ops.read_reg(hw, offset, data);
969 
970 	return E1000_SUCCESS;
971 }
972 
973 /**
974  *  e1000_write_phy_reg - Writes PHY register
975  *  @hw: pointer to the HW structure
976  *  @offset: the register to write
977  *  @data: the value to write.
978  *
979  *  Writes the PHY register at offset with the value in data.
980  *  This is a function pointer entry point called by drivers.
981  **/
982 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
983 {
984 	if (hw->phy.ops.write_reg)
985 		return hw->phy.ops.write_reg(hw, offset, data);
986 
987 	return E1000_SUCCESS;
988 }
989 
990 /**
991  *  e1000_release_phy - Generic release PHY
992  *  @hw: pointer to the HW structure
993  *
994  *  Return if silicon family does not require a semaphore when accessing the
995  *  PHY.
996  **/
997 void e1000_release_phy(struct e1000_hw *hw)
998 {
999 	if (hw->phy.ops.release)
1000 		hw->phy.ops.release(hw);
1001 }
1002 
1003 /**
1004  *  e1000_acquire_phy - Generic acquire PHY
1005  *  @hw: pointer to the HW structure
1006  *
1007  *  Return success if silicon family does not require a semaphore when
1008  *  accessing the PHY.
1009  **/
1010 s32 e1000_acquire_phy(struct e1000_hw *hw)
1011 {
1012 	if (hw->phy.ops.acquire)
1013 		return hw->phy.ops.acquire(hw);
1014 
1015 	return E1000_SUCCESS;
1016 }
1017 
1018 /**
1019  *  e1000_cfg_on_link_up - Configure PHY upon link up
1020  *  @hw: pointer to the HW structure
1021  **/
1022 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1023 {
1024 	if (hw->phy.ops.cfg_on_link_up)
1025 		return hw->phy.ops.cfg_on_link_up(hw);
1026 
1027 	return E1000_SUCCESS;
1028 }
1029 
1030 /**
1031  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
1032  *  @hw: pointer to the HW structure
1033  *  @offset: the register to read
1034  *  @data: the location to store the 16-bit value read.
1035  *
1036  *  Reads a register out of the Kumeran interface. Currently no func pointer
1037  *  exists and all implementations are handled in the generic version of
1038  *  this function.
1039  **/
1040 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1041 {
1042 	return e1000_read_kmrn_reg_generic(hw, offset, data);
1043 }
1044 
1045 /**
1046  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1047  *  @hw: pointer to the HW structure
1048  *  @offset: the register to write
1049  *  @data: the value to write.
1050  *
1051  *  Writes a register to the Kumeran interface. Currently no func pointer
1052  *  exists and all implementations are handled in the generic version of
1053  *  this function.
1054  **/
1055 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1056 {
1057 	return e1000_write_kmrn_reg_generic(hw, offset, data);
1058 }
1059 
1060 /**
1061  *  e1000_get_cable_length - Retrieves cable length estimation
1062  *  @hw: pointer to the HW structure
1063  *
1064  *  This function estimates the cable length and stores them in
1065  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1066  *  entry point called by drivers.
1067  **/
1068 s32 e1000_get_cable_length(struct e1000_hw *hw)
1069 {
1070 	if (hw->phy.ops.get_cable_length)
1071 		return hw->phy.ops.get_cable_length(hw);
1072 
1073 	return E1000_SUCCESS;
1074 }
1075 
1076 /**
1077  *  e1000_get_phy_info - Retrieves PHY information from registers
1078  *  @hw: pointer to the HW structure
1079  *
1080  *  This function gets some information from various PHY registers and
1081  *  populates hw->phy values with it. This is a function pointer entry
1082  *  point called by drivers.
1083  **/
1084 s32 e1000_get_phy_info(struct e1000_hw *hw)
1085 {
1086 	if (hw->phy.ops.get_info)
1087 		return hw->phy.ops.get_info(hw);
1088 
1089 	return E1000_SUCCESS;
1090 }
1091 
1092 /**
1093  *  e1000_phy_hw_reset - Hard PHY reset
1094  *  @hw: pointer to the HW structure
1095  *
1096  *  Performs a hard PHY reset. This is a function pointer entry point called
1097  *  by drivers.
1098  **/
1099 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1100 {
1101 	if (hw->phy.ops.reset)
1102 		return hw->phy.ops.reset(hw);
1103 
1104 	return E1000_SUCCESS;
1105 }
1106 
1107 /**
1108  *  e1000_phy_commit - Soft PHY reset
1109  *  @hw: pointer to the HW structure
1110  *
1111  *  Performs a soft PHY reset on those that apply. This is a function pointer
1112  *  entry point called by drivers.
1113  **/
1114 s32 e1000_phy_commit(struct e1000_hw *hw)
1115 {
1116 	if (hw->phy.ops.commit)
1117 		return hw->phy.ops.commit(hw);
1118 
1119 	return E1000_SUCCESS;
1120 }
1121 
1122 /**
1123  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1124  *  @hw: pointer to the HW structure
1125  *  @active: boolean used to enable/disable lplu
1126  *
1127  *  Success returns 0, Failure returns 1
1128  *
1129  *  The low power link up (lplu) state is set to the power management level D0
1130  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1131  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1132  *  is used during Dx states where the power conservation is most important.
1133  *  During driver activity, SmartSpeed should be enabled so performance is
1134  *  maintained.  This is a function pointer entry point called by drivers.
1135  **/
1136 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1137 {
1138 	if (hw->phy.ops.set_d0_lplu_state)
1139 		return hw->phy.ops.set_d0_lplu_state(hw, active);
1140 
1141 	return E1000_SUCCESS;
1142 }
1143 
1144 /**
1145  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1146  *  @hw: pointer to the HW structure
1147  *  @active: boolean used to enable/disable lplu
1148  *
1149  *  Success returns 0, Failure returns 1
1150  *
1151  *  The low power link up (lplu) state is set to the power management level D3
1152  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1153  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1154  *  is used during Dx states where the power conservation is most important.
1155  *  During driver activity, SmartSpeed should be enabled so performance is
1156  *  maintained.  This is a function pointer entry point called by drivers.
1157  **/
1158 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1159 {
1160 	if (hw->phy.ops.set_d3_lplu_state)
1161 		return hw->phy.ops.set_d3_lplu_state(hw, active);
1162 
1163 	return E1000_SUCCESS;
1164 }
1165 
1166 /**
1167  *  e1000_read_mac_addr - Reads MAC address
1168  *  @hw: pointer to the HW structure
1169  *
1170  *  Reads the MAC address out of the adapter and stores it in the HW structure.
1171  *  Currently no func pointer exists and all implementations are handled in the
1172  *  generic version of this function.
1173  **/
1174 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1175 {
1176 	if (hw->mac.ops.read_mac_addr)
1177 		return hw->mac.ops.read_mac_addr(hw);
1178 
1179 	return e1000_read_mac_addr_generic(hw);
1180 }
1181 
1182 /**
1183  *  e1000_read_pba_string - Read device part number string
1184  *  @hw: pointer to the HW structure
1185  *  @pba_num: pointer to device part number
1186  *  @pba_num_size: size of part number buffer
1187  *
1188  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1189  *  the value in pba_num.
1190  *  Currently no func pointer exists and all implementations are handled in the
1191  *  generic version of this function.
1192  **/
1193 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1194 {
1195 	return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1196 }
1197 
1198 /**
1199  *  e1000_read_pba_length - Read device part number string length
1200  *  @hw: pointer to the HW structure
1201  *  @pba_num_size: size of part number buffer
1202  *
1203  *  Reads the product board assembly (PBA) number length from the EEPROM and
1204  *  stores the value in pba_num.
1205  *  Currently no func pointer exists and all implementations are handled in the
1206  *  generic version of this function.
1207  **/
1208 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1209 {
1210 	return e1000_read_pba_length_generic(hw, pba_num_size);
1211 }
1212 
1213 /**
1214  *  e1000_read_pba_num - Read device part number
1215  *  @hw: pointer to the HW structure
1216  *  @pba_num: pointer to device part number
1217  *
1218  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1219  *  the value in pba_num.
1220  *  Currently no func pointer exists and all implementations are handled in the
1221  *  generic version of this function.
1222  **/
1223 s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
1224 {
1225 	return e1000_read_pba_num_generic(hw, pba_num);
1226 }
1227 
1228 /**
1229  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1230  *  @hw: pointer to the HW structure
1231  *
1232  *  Validates the NVM checksum is correct. This is a function pointer entry
1233  *  point called by drivers.
1234  **/
1235 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1236 {
1237 	if (hw->nvm.ops.validate)
1238 		return hw->nvm.ops.validate(hw);
1239 
1240 	return -E1000_ERR_CONFIG;
1241 }
1242 
1243 /**
1244  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1245  *  @hw: pointer to the HW structure
1246  *
1247  *  Updates the NVM checksum. Currently no func pointer exists and all
1248  *  implementations are handled in the generic version of this function.
1249  **/
1250 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1251 {
1252 	if (hw->nvm.ops.update)
1253 		return hw->nvm.ops.update(hw);
1254 
1255 	return -E1000_ERR_CONFIG;
1256 }
1257 
1258 /**
1259  *  e1000_reload_nvm - Reloads EEPROM
1260  *  @hw: pointer to the HW structure
1261  *
1262  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1263  *  extended control register.
1264  **/
1265 void e1000_reload_nvm(struct e1000_hw *hw)
1266 {
1267 	if (hw->nvm.ops.reload)
1268 		hw->nvm.ops.reload(hw);
1269 }
1270 
1271 /**
1272  *  e1000_read_nvm - Reads NVM (EEPROM)
1273  *  @hw: pointer to the HW structure
1274  *  @offset: the word offset to read
1275  *  @words: number of 16-bit words to read
1276  *  @data: pointer to the properly sized buffer for the data.
1277  *
1278  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1279  *  pointer entry point called by drivers.
1280  **/
1281 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1282 {
1283 	if (hw->nvm.ops.read)
1284 		return hw->nvm.ops.read(hw, offset, words, data);
1285 
1286 	return -E1000_ERR_CONFIG;
1287 }
1288 
1289 /**
1290  *  e1000_write_nvm - Writes to NVM (EEPROM)
1291  *  @hw: pointer to the HW structure
1292  *  @offset: the word offset to read
1293  *  @words: number of 16-bit words to write
1294  *  @data: pointer to the properly sized buffer for the data.
1295  *
1296  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1297  *  pointer entry point called by drivers.
1298  **/
1299 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1300 {
1301 	if (hw->nvm.ops.write)
1302 		return hw->nvm.ops.write(hw, offset, words, data);
1303 
1304 	return E1000_SUCCESS;
1305 }
1306 
1307 /**
1308  *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1309  *  @hw: pointer to the HW structure
1310  *  @reg: 32bit register offset
1311  *  @offset: the register to write
1312  *  @data: the value to write.
1313  *
1314  *  Writes the PHY register at offset with the value in data.
1315  *  This is a function pointer entry point called by drivers.
1316  **/
1317 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1318 			      u8 data)
1319 {
1320 	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1321 }
1322 
1323 /**
1324  * e1000_power_up_phy - Restores link in case of PHY power down
1325  * @hw: pointer to the HW structure
1326  *
1327  * The phy may be powered down to save power, to turn off link when the
1328  * driver is unloaded, or wake on lan is not enabled (among others).
1329  **/
1330 void e1000_power_up_phy(struct e1000_hw *hw)
1331 {
1332 	if (hw->phy.ops.power_up)
1333 		hw->phy.ops.power_up(hw);
1334 
1335 	e1000_setup_link(hw);
1336 }
1337 
1338 /**
1339  * e1000_power_down_phy - Power down PHY
1340  * @hw: pointer to the HW structure
1341  *
1342  * The phy may be powered down to save power, to turn off link when the
1343  * driver is unloaded, or wake on lan is not enabled (among others).
1344  **/
1345 void e1000_power_down_phy(struct e1000_hw *hw)
1346 {
1347 	if (hw->phy.ops.power_down)
1348 		hw->phy.ops.power_down(hw);
1349 }
1350 
1351 /**
1352  *  e1000_power_up_fiber_serdes_link - Power up serdes link
1353  *  @hw: pointer to the HW structure
1354  *
1355  *  Power on the optics and PCS.
1356  **/
1357 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1358 {
1359 	if (hw->mac.ops.power_up_serdes)
1360 		hw->mac.ops.power_up_serdes(hw);
1361 }
1362 
1363 /**
1364  *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1365  *  @hw: pointer to the HW structure
1366  *
1367  *  Shutdown the optics and PCS on driver unload.
1368  **/
1369 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1370 {
1371 	if (hw->mac.ops.shutdown_serdes)
1372 		hw->mac.ops.shutdown_serdes(hw);
1373 }
1374 
1375 /**
1376  * e1000_div_64b_by_32b - divide 64-bit number by 32-bit divisor
1377  * @n: pointer to unsigned 64-bit number
1378  * @divisor: unsigned 64-bit divisor
1379  *
1380  * Divide unsigned 64-bit number by unsigned 32-bit divisor; put result of
1381  * the integer division in-place of number and return remainder.  This is
1382  * needed for some 32-bit OS'es which have issues with 64-bit division.
1383  **/
1384 u32 e1000_div_64b_by_32b(u64 *n, u32 divisor)
1385 {
1386 	u32 remainder = *n % divisor;
1387 	*n = *n / divisor;
1388 	return remainder;
1389 }
1390