xref: /dragonfly/sys/dev/netif/igb/if_igb.c (revision d9d67b59)
1 /*
2  * Copyright (c) 2001-2013, Intel Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  *  1. Redistributions of source code must retain the above copyright notice,
9  *     this list of conditions and the following disclaimer.
10  *
11  *  2. Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *
15  *  3. Neither the name of the Intel Corporation nor the names of its
16  *     contributors may be used to endorse or promote products derived from
17  *     this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include "opt_ifpoll.h"
33 #include "opt_igb.h"
34 
35 #include <sys/param.h>
36 #include <sys/bus.h>
37 #include <sys/endian.h>
38 #include <sys/interrupt.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/proc.h>
43 #include <sys/rman.h>
44 #include <sys/serialize.h>
45 #include <sys/serialize2.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/sysctl.h>
49 #include <sys/systm.h>
50 
51 #include <net/bpf.h>
52 #include <net/ethernet.h>
53 #include <net/if.h>
54 #include <net/if_arp.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/ifq_var.h>
58 #include <net/if_ringmap.h>
59 #include <net/toeplitz.h>
60 #include <net/toeplitz2.h>
61 #include <net/vlan/if_vlan_var.h>
62 #include <net/vlan/if_vlan_ether.h>
63 #include <net/if_poll.h>
64 
65 #include <netinet/in_systm.h>
66 #include <netinet/in.h>
67 #include <netinet/ip.h>
68 
69 #include <bus/pci/pcivar.h>
70 #include <bus/pci/pcireg.h>
71 
72 #include <dev/netif/ig_hal/e1000_api.h>
73 #include <dev/netif/ig_hal/e1000_82575.h>
74 #include <dev/netif/ig_hal/e1000_dragonfly.h>
75 #include <dev/netif/igb/if_igb.h>
76 
77 #ifdef IGB_RSS_DEBUG
78 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...) \
79 do { \
80 	if (sc->rss_debug >= lvl) \
81 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
82 } while (0)
83 #else	/* !IGB_RSS_DEBUG */
84 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
85 #endif	/* IGB_RSS_DEBUG */
86 
87 #define IGB_NAME	"Intel(R) PRO/1000 "
88 #define IGB_DEVICE(id)	\
89 	{ IGB_VENDOR_ID, E1000_DEV_ID_##id, IGB_NAME #id }
90 #define IGB_DEVICE_NULL	{ 0, 0, NULL }
91 
92 static struct igb_device {
93 	uint16_t	vid;
94 	uint16_t	did;
95 	const char	*desc;
96 } igb_devices[] = {
97 	IGB_DEVICE(82575EB_COPPER),
98 	IGB_DEVICE(82575EB_FIBER_SERDES),
99 	IGB_DEVICE(82575GB_QUAD_COPPER),
100 	IGB_DEVICE(82576),
101 	IGB_DEVICE(82576_NS),
102 	IGB_DEVICE(82576_NS_SERDES),
103 	IGB_DEVICE(82576_FIBER),
104 	IGB_DEVICE(82576_SERDES),
105 	IGB_DEVICE(82576_SERDES_QUAD),
106 	IGB_DEVICE(82576_QUAD_COPPER),
107 	IGB_DEVICE(82576_QUAD_COPPER_ET2),
108 	IGB_DEVICE(82576_VF),
109 	IGB_DEVICE(82580_COPPER),
110 	IGB_DEVICE(82580_FIBER),
111 	IGB_DEVICE(82580_SERDES),
112 	IGB_DEVICE(82580_SGMII),
113 	IGB_DEVICE(82580_COPPER_DUAL),
114 	IGB_DEVICE(82580_QUAD_FIBER),
115 	IGB_DEVICE(DH89XXCC_SERDES),
116 	IGB_DEVICE(DH89XXCC_SGMII),
117 	IGB_DEVICE(DH89XXCC_SFP),
118 	IGB_DEVICE(DH89XXCC_BACKPLANE),
119 	IGB_DEVICE(I350_COPPER),
120 	IGB_DEVICE(I350_FIBER),
121 	IGB_DEVICE(I350_SERDES),
122 	IGB_DEVICE(I350_SGMII),
123 	IGB_DEVICE(I350_VF),
124 	IGB_DEVICE(I210_COPPER),
125 	IGB_DEVICE(I210_COPPER_IT),
126 	IGB_DEVICE(I210_COPPER_OEM1),
127 	IGB_DEVICE(I210_COPPER_FLASHLESS),
128 	IGB_DEVICE(I210_SERDES_FLASHLESS),
129 	IGB_DEVICE(I210_FIBER),
130 	IGB_DEVICE(I210_SERDES),
131 	IGB_DEVICE(I210_SGMII),
132 	IGB_DEVICE(I211_COPPER),
133 	IGB_DEVICE(I354_BACKPLANE_1GBPS),
134 	IGB_DEVICE(I354_BACKPLANE_2_5GBPS),
135 	IGB_DEVICE(I354_SGMII),
136 
137 	/* required last entry */
138 	IGB_DEVICE_NULL
139 };
140 
141 static int	igb_probe(device_t);
142 static int	igb_attach(device_t);
143 static int	igb_detach(device_t);
144 static int	igb_shutdown(device_t);
145 static int	igb_suspend(device_t);
146 static int	igb_resume(device_t);
147 
148 static boolean_t igb_is_valid_ether_addr(const uint8_t *);
149 static void	igb_setup_ifp(struct igb_softc *);
150 static boolean_t igb_txcsum_ctx(struct igb_tx_ring *, struct mbuf *);
151 static int	igb_tso_pullup(struct igb_tx_ring *, struct mbuf **);
152 static void	igb_tso_ctx(struct igb_tx_ring *, struct mbuf *, uint32_t *);
153 static void	igb_add_sysctl(struct igb_softc *);
154 static void	igb_add_intr_rate_sysctl(struct igb_softc *, int,
155 		    const char *, const char *);
156 static int	igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS);
157 static int	igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
158 static int	igb_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
159 static int	igb_sysctl_rx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
160 static void	igb_set_ring_inuse(struct igb_softc *, boolean_t);
161 static int	igb_get_rxring_inuse(const struct igb_softc *, boolean_t);
162 static int	igb_get_txring_inuse(const struct igb_softc *, boolean_t);
163 static void	igb_set_timer_cpuid(struct igb_softc *, boolean_t);
164 
165 static void	igb_vf_init_stats(struct igb_softc *);
166 static void	igb_reset(struct igb_softc *, boolean_t);
167 static void	igb_update_stats_counters(struct igb_softc *);
168 static void	igb_update_vf_stats_counters(struct igb_softc *);
169 static void	igb_update_link_status(struct igb_softc *);
170 static void	igb_init_tx_unit(struct igb_softc *);
171 static void	igb_init_rx_unit(struct igb_softc *, boolean_t);
172 static void	igb_init_dmac(struct igb_softc *, uint32_t);
173 
174 static void	igb_set_vlan(struct igb_softc *);
175 static void	igb_set_multi(struct igb_softc *);
176 static void	igb_set_promisc(struct igb_softc *);
177 static void	igb_disable_promisc(struct igb_softc *);
178 
179 static int	igb_get_ring_max(const struct igb_softc *);
180 static void	igb_get_rxring_cnt(const struct igb_softc *, int *, int *);
181 static void	igb_get_txring_cnt(const struct igb_softc *, int *, int *);
182 static int	igb_alloc_rings(struct igb_softc *);
183 static void	igb_free_rings(struct igb_softc *);
184 static int	igb_create_tx_ring(struct igb_tx_ring *);
185 static int	igb_create_rx_ring(struct igb_rx_ring *);
186 static void	igb_free_tx_ring(struct igb_tx_ring *);
187 static void	igb_free_rx_ring(struct igb_rx_ring *);
188 static void	igb_destroy_tx_ring(struct igb_tx_ring *, int);
189 static void	igb_destroy_rx_ring(struct igb_rx_ring *, int);
190 static void	igb_init_tx_ring(struct igb_tx_ring *);
191 static int	igb_init_rx_ring(struct igb_rx_ring *);
192 static int	igb_newbuf(struct igb_rx_ring *, int, boolean_t);
193 static int	igb_encap(struct igb_tx_ring *, struct mbuf **, int *, int *);
194 static void	igb_rx_refresh(struct igb_rx_ring *, int);
195 static void	igb_setup_serialize(struct igb_softc *);
196 
197 static void	igb_stop(struct igb_softc *);
198 static void	igb_init(void *);
199 static int	igb_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
200 static void	igb_media_status(struct ifnet *, struct ifmediareq *);
201 static int	igb_media_change(struct ifnet *);
202 static void	igb_timer(void *);
203 static void	igb_watchdog(struct ifaltq_subque *);
204 static void	igb_start(struct ifnet *, struct ifaltq_subque *);
205 #ifdef IFPOLL_ENABLE
206 static void	igb_npoll(struct ifnet *, struct ifpoll_info *);
207 static void	igb_npoll_rx(struct ifnet *, void *, int);
208 static void	igb_npoll_tx(struct ifnet *, void *, int);
209 static void	igb_npoll_status(struct ifnet *);
210 #endif
211 static void	igb_serialize(struct ifnet *, enum ifnet_serialize);
212 static void	igb_deserialize(struct ifnet *, enum ifnet_serialize);
213 static int	igb_tryserialize(struct ifnet *, enum ifnet_serialize);
214 #ifdef INVARIANTS
215 static void	igb_serialize_assert(struct ifnet *, enum ifnet_serialize,
216 		    boolean_t);
217 #endif
218 
219 static void	igb_intr(void *);
220 static void	igb_intr_shared(void *);
221 static void	igb_rxeof(struct igb_rx_ring *, int);
222 static void	igb_txeof(struct igb_tx_ring *, int);
223 static void	igb_set_eitr(struct igb_softc *, int, int);
224 static void	igb_enable_intr(struct igb_softc *);
225 static void	igb_disable_intr(struct igb_softc *);
226 static void	igb_init_unshared_intr(struct igb_softc *);
227 static void	igb_init_intr(struct igb_softc *);
228 static int	igb_setup_intr(struct igb_softc *);
229 static void	igb_set_txintr_mask(struct igb_tx_ring *, int *, int);
230 static void	igb_set_rxintr_mask(struct igb_rx_ring *, int *, int);
231 static void	igb_set_intr_mask(struct igb_softc *);
232 static int	igb_alloc_intr(struct igb_softc *);
233 static void	igb_free_intr(struct igb_softc *);
234 static void	igb_teardown_intr(struct igb_softc *, int);
235 static void	igb_alloc_msix(struct igb_softc *);
236 static void	igb_free_msix(struct igb_softc *, boolean_t);
237 static void	igb_msix_rx(void *);
238 static void	igb_msix_tx(void *);
239 static void	igb_msix_status(void *);
240 static void	igb_msix_rxtx(void *);
241 
242 /* Management and WOL Support */
243 static void	igb_get_mgmt(struct igb_softc *);
244 static void	igb_rel_mgmt(struct igb_softc *);
245 static void	igb_get_hw_control(struct igb_softc *);
246 static void	igb_rel_hw_control(struct igb_softc *);
247 static void	igb_enable_wol(device_t);
248 
249 static device_method_t igb_methods[] = {
250 	/* Device interface */
251 	DEVMETHOD(device_probe,		igb_probe),
252 	DEVMETHOD(device_attach,	igb_attach),
253 	DEVMETHOD(device_detach,	igb_detach),
254 	DEVMETHOD(device_shutdown,	igb_shutdown),
255 	DEVMETHOD(device_suspend,	igb_suspend),
256 	DEVMETHOD(device_resume,	igb_resume),
257 	DEVMETHOD_END
258 };
259 
260 static driver_t igb_driver = {
261 	"igb",
262 	igb_methods,
263 	sizeof(struct igb_softc),
264 };
265 
266 static devclass_t igb_devclass;
267 
268 DECLARE_DUMMY_MODULE(if_igb);
269 MODULE_DEPEND(igb, ig_hal, 1, 1, 1);
270 DRIVER_MODULE(if_igb, pci, igb_driver, igb_devclass, NULL, NULL);
271 
272 static int	igb_rxd = IGB_DEFAULT_RXD;
273 static int	igb_txd = IGB_DEFAULT_TXD;
274 static int	igb_rxr = 0;
275 static int	igb_txr = 0;
276 static int	igb_msi_enable = 1;
277 static int	igb_msix_enable = 1;
278 static int	igb_eee_disabled = 1;	/* Energy Efficient Ethernet */
279 
280 static char	igb_flowctrl[IFM_ETH_FC_STRLEN] = IFM_ETH_FC_NONE;
281 
282 /*
283  * DMA Coalescing, only for i350 - default to off,
284  * this feature is for power savings
285  */
286 static int	igb_dma_coalesce = 0;
287 
288 TUNABLE_INT("hw.igb.rxd", &igb_rxd);
289 TUNABLE_INT("hw.igb.txd", &igb_txd);
290 TUNABLE_INT("hw.igb.rxr", &igb_rxr);
291 TUNABLE_INT("hw.igb.txr", &igb_txr);
292 TUNABLE_INT("hw.igb.msi.enable", &igb_msi_enable);
293 TUNABLE_INT("hw.igb.msix.enable", &igb_msix_enable);
294 TUNABLE_STR("hw.igb.flow_ctrl", igb_flowctrl, sizeof(igb_flowctrl));
295 
296 /* i350 specific */
297 TUNABLE_INT("hw.igb.eee_disabled", &igb_eee_disabled);
298 TUNABLE_INT("hw.igb.dma_coalesce", &igb_dma_coalesce);
299 
300 static __inline void
301 igb_rxcsum(uint32_t staterr, struct mbuf *mp)
302 {
303 	/* Ignore Checksum bit is set */
304 	if (staterr & E1000_RXD_STAT_IXSM)
305 		return;
306 
307 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
308 	    E1000_RXD_STAT_IPCS)
309 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
310 
311 	if (staterr & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) {
312 		if ((staterr & E1000_RXDEXT_STATERR_TCPE) == 0) {
313 			mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
314 			    CSUM_PSEUDO_HDR | CSUM_FRAG_NOT_CHECKED;
315 			mp->m_pkthdr.csum_data = htons(0xffff);
316 		}
317 	}
318 }
319 
320 static __inline struct pktinfo *
321 igb_rssinfo(struct mbuf *m, struct pktinfo *pi,
322     uint32_t hash, uint32_t hashtype, uint32_t staterr)
323 {
324 	switch (hashtype) {
325 	case E1000_RXDADV_RSSTYPE_IPV4_TCP:
326 		pi->pi_netisr = NETISR_IP;
327 		pi->pi_flags = 0;
328 		pi->pi_l3proto = IPPROTO_TCP;
329 		break;
330 
331 	case E1000_RXDADV_RSSTYPE_IPV4:
332 		if (staterr & E1000_RXD_STAT_IXSM)
333 			return NULL;
334 
335 		if ((staterr &
336 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
337 		    E1000_RXD_STAT_TCPCS) {
338 			pi->pi_netisr = NETISR_IP;
339 			pi->pi_flags = 0;
340 			pi->pi_l3proto = IPPROTO_UDP;
341 			break;
342 		}
343 		/* FALL THROUGH */
344 	default:
345 		return NULL;
346 	}
347 
348 	m_sethash(m, toeplitz_hash(hash));
349 	return pi;
350 }
351 
352 static int
353 igb_get_ring_max(const struct igb_softc *sc)
354 {
355 
356 	switch (sc->hw.mac.type) {
357 	case e1000_82575:
358 		return (IGB_MAX_RING_82575);
359 
360 	case e1000_82576:
361 		return (IGB_MAX_RING_82576);
362 
363 	case e1000_82580:
364 		return (IGB_MAX_RING_82580);
365 
366 	case e1000_i350:
367 		return (IGB_MAX_RING_I350);
368 
369 	case e1000_i354:
370 		return (IGB_MAX_RING_I354);
371 
372 	case e1000_i210:
373 		return (IGB_MAX_RING_I210);
374 
375 	case e1000_i211:
376 		return (IGB_MAX_RING_I211);
377 
378 	default:
379 		return (IGB_MIN_RING);
380 	}
381 }
382 
383 static void
384 igb_get_rxring_cnt(const struct igb_softc *sc, int *ring_cnt, int *ring_max)
385 {
386 
387 	*ring_max = igb_get_ring_max(sc);
388 	*ring_cnt = device_getenv_int(sc->dev, "rxr", igb_rxr);
389 }
390 
391 static void
392 igb_get_txring_cnt(const struct igb_softc *sc, int *ring_cnt, int *ring_max)
393 {
394 
395 	*ring_max = igb_get_ring_max(sc);
396 	*ring_cnt = device_getenv_int(sc->dev, "txr", igb_txr);
397 }
398 
399 static int
400 igb_probe(device_t dev)
401 {
402 	const struct igb_device *d;
403 	uint16_t vid, did;
404 
405 	vid = pci_get_vendor(dev);
406 	did = pci_get_device(dev);
407 
408 	for (d = igb_devices; d->desc != NULL; ++d) {
409 		if (vid == d->vid && did == d->did) {
410 			device_set_desc(dev, d->desc);
411 			return 0;
412 		}
413 	}
414 	return ENXIO;
415 }
416 
417 static int
418 igb_attach(device_t dev)
419 {
420 	struct igb_softc *sc = device_get_softc(dev);
421 	uint16_t eeprom_data;
422 	int error = 0, ring_max, ring_cnt;
423 	char flowctrl[IFM_ETH_FC_STRLEN];
424 
425 #ifdef notyet
426 	/* SYSCTL stuff */
427 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
428 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
429 	    OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
430 	    igb_sysctl_nvm_info, "I", "NVM Information");
431 #endif
432 
433 	ifmedia_init(&sc->media, IFM_IMASK | IFM_ETH_FCMASK,
434 	    igb_media_change, igb_media_status);
435 	callout_init_mp(&sc->timer);
436 	lwkt_serialize_init(&sc->main_serialize);
437 
438 	if_initname(&sc->arpcom.ac_if, device_get_name(dev),
439 	    device_get_unit(dev));
440 	sc->dev = sc->osdep.dev = dev;
441 
442 	/* Enable bus mastering */
443 	pci_enable_busmaster(dev);
444 
445 	/*
446 	 * Determine hardware and mac type
447 	 */
448 	sc->hw.vendor_id = pci_get_vendor(dev);
449 	sc->hw.device_id = pci_get_device(dev);
450 	sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
451 	sc->hw.subsystem_vendor_id = pci_read_config(dev, PCIR_SUBVEND_0, 2);
452 	sc->hw.subsystem_device_id = pci_read_config(dev, PCIR_SUBDEV_0, 2);
453 
454 	if (e1000_set_mac_type(&sc->hw))
455 		return ENXIO;
456 
457 	/* Are we a VF device? */
458 	if (sc->hw.mac.type == e1000_vfadapt ||
459 	    sc->hw.mac.type == e1000_vfadapt_i350)
460 		sc->vf_ifp = 1;
461 	else
462 		sc->vf_ifp = 0;
463 
464 	/*
465 	 * Configure total supported RX/TX ring count
466 	 */
467 	igb_get_rxring_cnt(sc, &ring_cnt, &ring_max);
468 	sc->rx_rmap = if_ringmap_alloc(dev, ring_cnt, ring_max);
469 	igb_get_txring_cnt(sc, &ring_cnt, &ring_max);
470 	sc->tx_rmap = if_ringmap_alloc(dev, ring_cnt, ring_max);
471 	if_ringmap_match(dev, sc->rx_rmap, sc->tx_rmap);
472 
473 	sc->rx_ring_cnt = if_ringmap_count(sc->rx_rmap);
474 	sc->rx_ring_inuse = sc->rx_ring_cnt;
475 	sc->tx_ring_cnt = if_ringmap_count(sc->tx_rmap);
476 	sc->tx_ring_inuse = sc->tx_ring_cnt;
477 
478 	/* Setup flow control. */
479 	device_getenv_string(dev, "flow_ctrl", flowctrl, sizeof(flowctrl),
480 	    igb_flowctrl);
481 	sc->ifm_flowctrl = ifmedia_str2ethfc(flowctrl);
482 
483 	/*
484 	 * Allocate IO memory
485 	 */
486 	sc->mem_rid = PCIR_BAR(0);
487 	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
488 	    RF_ACTIVE);
489 	if (sc->mem_res == NULL) {
490 		device_printf(dev, "Unable to allocate bus resource: memory\n");
491 		error = ENXIO;
492 		goto failed;
493 	}
494 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->mem_res);
495 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->mem_res);
496 
497 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
498 
499 	/* Save PCI command register for Shared Code */
500 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
501 	sc->hw.back = &sc->osdep;
502 
503 	/* Do Shared Code initialization */
504 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
505 		device_printf(dev, "Setup of Shared code failed\n");
506 		error = ENXIO;
507 		goto failed;
508 	}
509 
510 	e1000_get_bus_info(&sc->hw);
511 
512 	sc->hw.mac.autoneg = DO_AUTO_NEG;
513 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
514 	sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
515 
516 	/* Copper options */
517 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
518 		sc->hw.phy.mdix = AUTO_ALL_MODES;
519 		sc->hw.phy.disable_polarity_correction = FALSE;
520 		sc->hw.phy.ms_type = IGB_MASTER_SLAVE;
521 	}
522 
523 	/* Set the frame limits assuming  standard ethernet sized frames. */
524 	sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
525 
526 	/* Allocate RX/TX rings */
527 	error = igb_alloc_rings(sc);
528 	if (error)
529 		goto failed;
530 
531 	/* Allocate interrupt */
532 	error = igb_alloc_intr(sc);
533 	if (error)
534 		goto failed;
535 
536 	/* Setup serializes */
537 	igb_setup_serialize(sc);
538 
539 	/* Allocate the appropriate stats memory */
540 	if (sc->vf_ifp) {
541 		sc->stats = kmalloc(sizeof(struct e1000_vf_stats), M_DEVBUF,
542 		    M_WAITOK | M_ZERO);
543 		igb_vf_init_stats(sc);
544 	} else {
545 		sc->stats = kmalloc(sizeof(struct e1000_hw_stats), M_DEVBUF,
546 		    M_WAITOK | M_ZERO);
547 	}
548 
549 	/* Allocate multicast array memory. */
550 	sc->mta = kmalloc(ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
551 	    M_DEVBUF, M_WAITOK);
552 
553 	/* Some adapter-specific advanced features */
554 	if (sc->hw.mac.type >= e1000_i350) {
555 #ifdef notyet
556 		igb_set_sysctl_value(adapter, "dma_coalesce",
557 		    "configure dma coalesce",
558 		    &adapter->dma_coalesce, igb_dma_coalesce);
559 		igb_set_sysctl_value(adapter, "eee_disabled",
560 		    "enable Energy Efficient Ethernet",
561 		    &adapter->hw.dev_spec._82575.eee_disable,
562 		    igb_eee_disabled);
563 #else
564 		sc->dma_coalesce = igb_dma_coalesce;
565 		sc->hw.dev_spec._82575.eee_disable = igb_eee_disabled;
566 #endif
567 		if (sc->hw.phy.media_type == e1000_media_type_copper) {
568                         if (sc->hw.mac.type == e1000_i354)
569 				e1000_set_eee_i354(&sc->hw, TRUE, TRUE);
570 			else
571 				e1000_set_eee_i350(&sc->hw, TRUE, TRUE);
572 		}
573 	}
574 
575 	/*
576 	 * Start from a known state, this is important in reading the nvm and
577 	 * mac from that.
578 	 */
579 	e1000_reset_hw(&sc->hw);
580 
581 	/* Make sure we have a good EEPROM before we read from it */
582 	if (sc->hw.mac.type != e1000_i210 && sc->hw.mac.type != e1000_i211 &&
583 	    e1000_validate_nvm_checksum(&sc->hw) < 0) {
584 		/*
585 		 * Some PCI-E parts fail the first check due to
586 		 * the link being in sleep state, call it again,
587 		 * if it fails a second time its a real issue.
588 		 */
589 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
590 			device_printf(dev,
591 			    "The EEPROM Checksum Is Not Valid\n");
592 			error = EIO;
593 			goto failed;
594 		}
595 	}
596 
597 	/* Copy the permanent MAC address out of the EEPROM */
598 	if (e1000_read_mac_addr(&sc->hw) < 0) {
599 		device_printf(dev, "EEPROM read error while reading MAC"
600 		    " address\n");
601 		error = EIO;
602 		goto failed;
603 	}
604 	if (!igb_is_valid_ether_addr(sc->hw.mac.addr)) {
605 		device_printf(dev, "Invalid MAC address\n");
606 		error = EIO;
607 		goto failed;
608 	}
609 
610 	/* Setup OS specific network interface */
611 	igb_setup_ifp(sc);
612 
613 	/* Add sysctl tree, must after igb_setup_ifp() */
614 	igb_add_sysctl(sc);
615 
616 	/* Now get a good starting state */
617 	igb_reset(sc, FALSE);
618 
619 	/* Initialize statistics */
620 	igb_update_stats_counters(sc);
621 
622 	sc->hw.mac.get_link_status = 1;
623 	igb_update_link_status(sc);
624 
625 	/* Indicate SOL/IDER usage */
626 	if (e1000_check_reset_block(&sc->hw)) {
627 		device_printf(dev,
628 		    "PHY reset is blocked due to SOL/IDER session.\n");
629 	}
630 
631 	/* Determine if we have to control management hardware */
632 	if (e1000_enable_mng_pass_thru(&sc->hw))
633 		sc->flags |= IGB_FLAG_HAS_MGMT;
634 
635 	/*
636 	 * Setup Wake-on-Lan
637 	 */
638 	/* APME bit in EEPROM is mapped to WUC.APME */
639 	eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC) & E1000_WUC_APME;
640 	if (eeprom_data)
641 		sc->wol = E1000_WUFC_MAG;
642 	/* XXX disable WOL */
643 	sc->wol = 0;
644 
645 #ifdef notyet
646 	/* Register for VLAN events */
647 	adapter->vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
648 	     igb_register_vlan, adapter, EVENTHANDLER_PRI_FIRST);
649 	adapter->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
650 	     igb_unregister_vlan, adapter, EVENTHANDLER_PRI_FIRST);
651 #endif
652 
653 #ifdef notyet
654 	igb_add_hw_stats(adapter);
655 #endif
656 
657 	/*
658 	 * Disable interrupt to prevent spurious interrupts (line based
659 	 * interrupt, MSI or even MSI-X), which had been observed on
660 	 * several types of LOMs, from being handled.
661 	 */
662 	igb_disable_intr(sc);
663 
664 	error = igb_setup_intr(sc);
665 	if (error) {
666 		ether_ifdetach(&sc->arpcom.ac_if);
667 		goto failed;
668 	}
669 	return 0;
670 
671 failed:
672 	igb_detach(dev);
673 	return error;
674 }
675 
676 static int
677 igb_detach(device_t dev)
678 {
679 	struct igb_softc *sc = device_get_softc(dev);
680 
681 	if (device_is_attached(dev)) {
682 		struct ifnet *ifp = &sc->arpcom.ac_if;
683 
684 		ifnet_serialize_all(ifp);
685 
686 		igb_stop(sc);
687 
688 		e1000_phy_hw_reset(&sc->hw);
689 
690 		/* Give control back to firmware */
691 		igb_rel_mgmt(sc);
692 		igb_rel_hw_control(sc);
693 
694 		if (sc->wol) {
695 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
696 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
697 			igb_enable_wol(dev);
698 		}
699 
700 		igb_teardown_intr(sc, sc->intr_cnt);
701 
702 		ifnet_deserialize_all(ifp);
703 
704 		ether_ifdetach(ifp);
705 	} else if (sc->mem_res != NULL) {
706 		igb_rel_hw_control(sc);
707 	}
708 
709 	ifmedia_removeall(&sc->media);
710 	bus_generic_detach(dev);
711 
712 	igb_free_intr(sc);
713 
714 	if (sc->msix_mem_res != NULL) {
715 		bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_mem_rid,
716 		    sc->msix_mem_res);
717 	}
718 	if (sc->mem_res != NULL) {
719 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid,
720 		    sc->mem_res);
721 	}
722 
723 	igb_free_rings(sc);
724 
725 	if (sc->mta != NULL)
726 		kfree(sc->mta, M_DEVBUF);
727 	if (sc->stats != NULL)
728 		kfree(sc->stats, M_DEVBUF);
729 	if (sc->serializes != NULL)
730 		kfree(sc->serializes, M_DEVBUF);
731 	if (sc->rx_rmap != NULL)
732 		if_ringmap_free(sc->rx_rmap);
733 	if (sc->rx_rmap_intr != NULL)
734 		if_ringmap_free(sc->rx_rmap_intr);
735 	if (sc->tx_rmap != NULL)
736 		if_ringmap_free(sc->tx_rmap);
737 	if (sc->tx_rmap_intr != NULL)
738 		if_ringmap_free(sc->tx_rmap_intr);
739 
740 	return 0;
741 }
742 
743 static int
744 igb_shutdown(device_t dev)
745 {
746 	return igb_suspend(dev);
747 }
748 
749 static int
750 igb_suspend(device_t dev)
751 {
752 	struct igb_softc *sc = device_get_softc(dev);
753 	struct ifnet *ifp = &sc->arpcom.ac_if;
754 
755 	ifnet_serialize_all(ifp);
756 
757 	igb_stop(sc);
758 
759 	igb_rel_mgmt(sc);
760 	igb_rel_hw_control(sc);
761 
762 	if (sc->wol) {
763 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
764 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
765 		igb_enable_wol(dev);
766 	}
767 
768 	ifnet_deserialize_all(ifp);
769 
770 	return bus_generic_suspend(dev);
771 }
772 
773 static int
774 igb_resume(device_t dev)
775 {
776 	struct igb_softc *sc = device_get_softc(dev);
777 	struct ifnet *ifp = &sc->arpcom.ac_if;
778 	int i;
779 
780 	ifnet_serialize_all(ifp);
781 
782 	igb_init(sc);
783 	igb_get_mgmt(sc);
784 
785 	for (i = 0; i < sc->tx_ring_inuse; ++i)
786 		ifsq_devstart_sched(sc->tx_rings[i].ifsq);
787 
788 	ifnet_deserialize_all(ifp);
789 
790 	return bus_generic_resume(dev);
791 }
792 
793 static int
794 igb_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
795 {
796 	struct igb_softc *sc = ifp->if_softc;
797 	struct ifreq *ifr = (struct ifreq *)data;
798 	int max_frame_size, mask, reinit;
799 	int error = 0;
800 
801 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
802 
803 	switch (command) {
804 	case SIOCSIFMTU:
805 		max_frame_size = 9234;
806 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
807 		    ETHER_CRC_LEN) {
808 			error = EINVAL;
809 			break;
810 		}
811 
812 		ifp->if_mtu = ifr->ifr_mtu;
813 		sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
814 		    ETHER_CRC_LEN;
815 
816 		if (ifp->if_flags & IFF_RUNNING)
817 			igb_init(sc);
818 		break;
819 
820 	case SIOCSIFFLAGS:
821 		if (ifp->if_flags & IFF_UP) {
822 			if (ifp->if_flags & IFF_RUNNING) {
823 				if ((ifp->if_flags ^ sc->if_flags) &
824 				    (IFF_PROMISC | IFF_ALLMULTI)) {
825 					igb_disable_promisc(sc);
826 					igb_set_promisc(sc);
827 				}
828 			} else {
829 				igb_init(sc);
830 			}
831 		} else if (ifp->if_flags & IFF_RUNNING) {
832 			igb_stop(sc);
833 		}
834 		sc->if_flags = ifp->if_flags;
835 		break;
836 
837 	case SIOCADDMULTI:
838 	case SIOCDELMULTI:
839 		if (ifp->if_flags & IFF_RUNNING) {
840 			igb_disable_intr(sc);
841 			igb_set_multi(sc);
842 #ifdef IFPOLL_ENABLE
843 			if (!(ifp->if_flags & IFF_NPOLLING))
844 #endif
845 				igb_enable_intr(sc);
846 		}
847 		break;
848 
849 	case SIOCSIFMEDIA:
850 		/* Check SOL/IDER usage */
851 		if (e1000_check_reset_block(&sc->hw)) {
852 			if_printf(ifp, "Media change is "
853 			    "blocked due to SOL/IDER session.\n");
854 			break;
855 		}
856 		/* FALL THROUGH */
857 
858 	case SIOCGIFMEDIA:
859 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
860 		break;
861 
862 	case SIOCSIFCAP:
863 		reinit = 0;
864 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
865 		if (mask & IFCAP_RXCSUM) {
866 			ifp->if_capenable ^= IFCAP_RXCSUM;
867 			reinit = 1;
868 		}
869 		if (mask & IFCAP_VLAN_HWTAGGING) {
870 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
871 			reinit = 1;
872 		}
873 		if (mask & IFCAP_TXCSUM) {
874 			ifp->if_capenable ^= IFCAP_TXCSUM;
875 			if (ifp->if_capenable & IFCAP_TXCSUM)
876 				ifp->if_hwassist |= IGB_CSUM_FEATURES;
877 			else
878 				ifp->if_hwassist &= ~IGB_CSUM_FEATURES;
879 		}
880 		if (mask & IFCAP_TSO) {
881 			ifp->if_capenable ^= IFCAP_TSO;
882 			if (ifp->if_capenable & IFCAP_TSO)
883 				ifp->if_hwassist |= CSUM_TSO;
884 			else
885 				ifp->if_hwassist &= ~CSUM_TSO;
886 		}
887 		if (mask & IFCAP_RSS)
888 			ifp->if_capenable ^= IFCAP_RSS;
889 		if (reinit && (ifp->if_flags & IFF_RUNNING))
890 			igb_init(sc);
891 		break;
892 
893 	default:
894 		error = ether_ioctl(ifp, command, data);
895 		break;
896 	}
897 	return error;
898 }
899 
900 static void
901 igb_init(void *xsc)
902 {
903 	struct igb_softc *sc = xsc;
904 	struct ifnet *ifp = &sc->arpcom.ac_if;
905 	boolean_t polling;
906 	int i;
907 
908 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
909 
910 	igb_stop(sc);
911 
912 	/* Get the latest mac address, User can use a LAA */
913 	bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
914 
915 	/* Put the address into the Receive Address Array */
916 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
917 
918 	igb_reset(sc, FALSE);
919 	igb_update_link_status(sc);
920 
921 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
922 
923 	/* Configure for OS presence */
924 	igb_get_mgmt(sc);
925 
926 	polling = FALSE;
927 #ifdef IFPOLL_ENABLE
928 	if (ifp->if_flags & IFF_NPOLLING)
929 		polling = TRUE;
930 #endif
931 
932 	/* Configured used RX/TX rings */
933 	igb_set_ring_inuse(sc, polling);
934 	ifq_set_subq_divisor(&ifp->if_snd, sc->tx_ring_inuse);
935 
936 	/* Initialize interrupt */
937 	igb_init_intr(sc);
938 
939 	/* Prepare transmit descriptors and buffers */
940 	for (i = 0; i < sc->tx_ring_inuse; ++i)
941 		igb_init_tx_ring(&sc->tx_rings[i]);
942 	igb_init_tx_unit(sc);
943 
944 	/* Setup Multicast table */
945 	igb_set_multi(sc);
946 
947 #if 0
948 	/*
949 	 * Figure out the desired mbuf pool
950 	 * for doing jumbo/packetsplit
951 	 */
952 	if (adapter->max_frame_size <= 2048)
953 		adapter->rx_mbuf_sz = MCLBYTES;
954 	else if (adapter->max_frame_size <= 4096)
955 		adapter->rx_mbuf_sz = MJUMPAGESIZE;
956 	else
957 		adapter->rx_mbuf_sz = MJUM9BYTES;
958 #endif
959 
960 	/* Prepare receive descriptors and buffers */
961 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
962 		int error;
963 
964 		error = igb_init_rx_ring(&sc->rx_rings[i]);
965 		if (error) {
966 			if_printf(ifp, "Could not setup receive structures\n");
967 			igb_stop(sc);
968 			return;
969 		}
970 	}
971 	igb_init_rx_unit(sc, polling);
972 
973 	/* Enable VLAN support */
974 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
975 		igb_set_vlan(sc);
976 
977 	/* Don't lose promiscuous settings */
978 	igb_set_promisc(sc);
979 
980 	ifp->if_flags |= IFF_RUNNING;
981 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
982 		ifsq_clr_oactive(sc->tx_rings[i].ifsq);
983 		ifsq_watchdog_start(&sc->tx_rings[i].tx_watchdog);
984 	}
985 
986 	igb_set_timer_cpuid(sc, polling);
987 	callout_reset_bycpu(&sc->timer, hz, igb_timer, sc, sc->timer_cpuid);
988 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
989 
990 	/* This clears any pending interrupts */
991 	E1000_READ_REG(&sc->hw, E1000_ICR);
992 
993 	/*
994 	 * Only enable interrupts if we are not polling, make sure
995 	 * they are off otherwise.
996 	 */
997 	if (polling) {
998 		igb_disable_intr(sc);
999 	} else {
1000 		igb_enable_intr(sc);
1001 		E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC);
1002 	}
1003 
1004 	/* Set Energy Efficient Ethernet */
1005 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
1006 		if (sc->hw.mac.type == e1000_i354)
1007 			e1000_set_eee_i354(&sc->hw, TRUE, TRUE);
1008 		else
1009 			e1000_set_eee_i350(&sc->hw, TRUE, TRUE);
1010 	}
1011 }
1012 
1013 static void
1014 igb_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1015 {
1016 	struct igb_softc *sc = ifp->if_softc;
1017 
1018 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1019 
1020 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1021 		sc->hw.mac.get_link_status = 1;
1022 	igb_update_link_status(sc);
1023 
1024 	ifmr->ifm_status = IFM_AVALID;
1025 	ifmr->ifm_active = IFM_ETHER;
1026 
1027 	if (!sc->link_active) {
1028 		if (sc->hw.mac.autoneg)
1029 			ifmr->ifm_active |= IFM_NONE;
1030 		else
1031 			ifmr->ifm_active |= sc->media.ifm_media;
1032 		return;
1033 	}
1034 
1035 	ifmr->ifm_status |= IFM_ACTIVE;
1036 	if (sc->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
1037 		ifmr->ifm_active |= sc->ifm_flowctrl;
1038 
1039 	switch (sc->link_speed) {
1040 	case 10:
1041 		ifmr->ifm_active |= IFM_10_T;
1042 		break;
1043 
1044 	case 100:
1045 		/*
1046 		 * Support for 100Mb SFP - these are Fiber
1047 		 * but the media type appears as serdes
1048 		 */
1049 		if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1050 		    sc->hw.phy.media_type == e1000_media_type_internal_serdes)
1051 			ifmr->ifm_active |= IFM_100_FX;
1052 		else
1053 			ifmr->ifm_active |= IFM_100_TX;
1054 		break;
1055 
1056 	case 1000:
1057 		if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1058 		    sc->hw.phy.media_type == e1000_media_type_internal_serdes)
1059 			ifmr->ifm_active |= IFM_1000_SX;
1060 		else
1061 			ifmr->ifm_active |= IFM_1000_T;
1062 		break;
1063 
1064 	case 2500:
1065 		ifmr->ifm_active |= IFM_2500_SX;
1066 		break;
1067 	}
1068 
1069 	if (sc->link_duplex == FULL_DUPLEX)
1070 		ifmr->ifm_active |= IFM_FDX;
1071 	else
1072 		ifmr->ifm_active |= IFM_HDX;
1073 
1074 	if (sc->link_duplex == FULL_DUPLEX)
1075 		ifmr->ifm_active |= e1000_fc2ifmedia(sc->hw.fc.current_mode);
1076 }
1077 
1078 static int
1079 igb_media_change(struct ifnet *ifp)
1080 {
1081 	struct igb_softc *sc = ifp->if_softc;
1082 	struct ifmedia *ifm = &sc->media;
1083 
1084 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1085 
1086 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1087 		return EINVAL;
1088 
1089 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1090 	case IFM_AUTO:
1091 		sc->hw.mac.autoneg = DO_AUTO_NEG;
1092 		sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1093 		break;
1094 
1095 	case IFM_1000_SX:
1096 	case IFM_1000_T:
1097 		sc->hw.mac.autoneg = DO_AUTO_NEG;
1098 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1099 		break;
1100 
1101 	case IFM_100_TX:
1102 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1103 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1104 		} else {
1105 			if (IFM_OPTIONS(ifm->ifm_media) &
1106 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1107 				if (bootverbose) {
1108 					if_printf(ifp, "Flow control is not "
1109 					    "allowed for half-duplex\n");
1110 				}
1111 				return EINVAL;
1112 			}
1113 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1114 		}
1115 		sc->hw.mac.autoneg = FALSE;
1116 		sc->hw.phy.autoneg_advertised = 0;
1117 		break;
1118 
1119 	case IFM_10_T:
1120 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1121 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1122 		} else {
1123 			if (IFM_OPTIONS(ifm->ifm_media) &
1124 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1125 				if (bootverbose) {
1126 					if_printf(ifp, "Flow control is not "
1127 					    "allowed for half-duplex\n");
1128 				}
1129 				return EINVAL;
1130 			}
1131 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1132 		}
1133 		sc->hw.mac.autoneg = FALSE;
1134 		sc->hw.phy.autoneg_advertised = 0;
1135 		break;
1136 
1137 	default:
1138 		if (bootverbose) {
1139 			if_printf(ifp, "Unsupported media type %d\n",
1140 			    IFM_SUBTYPE(ifm->ifm_media));
1141 		}
1142 		return EINVAL;
1143 	}
1144 	sc->ifm_flowctrl = ifm->ifm_media & IFM_ETH_FCMASK;
1145 
1146 	if (ifp->if_flags & IFF_RUNNING)
1147 		igb_init(sc);
1148 
1149 	return 0;
1150 }
1151 
1152 static void
1153 igb_set_promisc(struct igb_softc *sc)
1154 {
1155 	struct ifnet *ifp = &sc->arpcom.ac_if;
1156 	struct e1000_hw *hw = &sc->hw;
1157 	uint32_t reg;
1158 
1159 	if (sc->vf_ifp) {
1160 		e1000_promisc_set_vf(hw, e1000_promisc_enabled);
1161 		return;
1162 	}
1163 
1164 	reg = E1000_READ_REG(hw, E1000_RCTL);
1165 	if (ifp->if_flags & IFF_PROMISC) {
1166 		reg |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1167 		E1000_WRITE_REG(hw, E1000_RCTL, reg);
1168 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1169 		reg |= E1000_RCTL_MPE;
1170 		reg &= ~E1000_RCTL_UPE;
1171 		E1000_WRITE_REG(hw, E1000_RCTL, reg);
1172 	}
1173 }
1174 
1175 static void
1176 igb_disable_promisc(struct igb_softc *sc)
1177 {
1178 	struct e1000_hw *hw = &sc->hw;
1179 	struct ifnet *ifp = &sc->arpcom.ac_if;
1180 	uint32_t reg;
1181 	int mcnt = 0;
1182 
1183 	if (sc->vf_ifp) {
1184 		e1000_promisc_set_vf(hw, e1000_promisc_disabled);
1185 		return;
1186 	}
1187 	reg = E1000_READ_REG(hw, E1000_RCTL);
1188 	reg &= ~E1000_RCTL_UPE;
1189 	if (ifp->if_flags & IFF_ALLMULTI) {
1190 		mcnt = MAX_NUM_MULTICAST_ADDRESSES;
1191 	} else {
1192 		struct  ifmultiaddr *ifma;
1193 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1194 			if (ifma->ifma_addr->sa_family != AF_LINK)
1195 				continue;
1196 			if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1197 				break;
1198 			mcnt++;
1199 		}
1200 	}
1201 	/* Don't disable if in MAX groups */
1202 	if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1203 		reg &= ~E1000_RCTL_MPE;
1204 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
1205 }
1206 
1207 static void
1208 igb_set_multi(struct igb_softc *sc)
1209 {
1210 	struct ifnet *ifp = &sc->arpcom.ac_if;
1211 	struct ifmultiaddr *ifma;
1212 	uint32_t reg_rctl = 0;
1213 	uint8_t *mta;
1214 	int mcnt = 0;
1215 
1216 	mta = sc->mta;
1217 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1218 
1219 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1220 		if (ifma->ifma_addr->sa_family != AF_LINK)
1221 			continue;
1222 
1223 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1224 			break;
1225 
1226 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1227 		    &mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN);
1228 		mcnt++;
1229 	}
1230 
1231 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1232 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1233 		reg_rctl |= E1000_RCTL_MPE;
1234 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1235 	} else {
1236 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1237 	}
1238 }
1239 
1240 static void
1241 igb_timer(void *xsc)
1242 {
1243 	struct igb_softc *sc = xsc;
1244 
1245 	lwkt_serialize_enter(&sc->main_serialize);
1246 
1247 	igb_update_link_status(sc);
1248 	igb_update_stats_counters(sc);
1249 
1250 	callout_reset_bycpu(&sc->timer, hz, igb_timer, sc, sc->timer_cpuid);
1251 
1252 	lwkt_serialize_exit(&sc->main_serialize);
1253 }
1254 
1255 static void
1256 igb_update_link_status(struct igb_softc *sc)
1257 {
1258 	struct ifnet *ifp = &sc->arpcom.ac_if;
1259 	struct e1000_hw *hw = &sc->hw;
1260 	uint32_t link_check, thstat, ctrl;
1261 
1262 	link_check = thstat = ctrl = 0;
1263 
1264 	/* Get the cached link value or read for real */
1265 	switch (hw->phy.media_type) {
1266 	case e1000_media_type_copper:
1267 		if (hw->mac.get_link_status) {
1268 			/* Do the work to read phy */
1269 			e1000_check_for_link(hw);
1270 			link_check = !hw->mac.get_link_status;
1271 		} else {
1272 			link_check = TRUE;
1273 		}
1274 		break;
1275 
1276 	case e1000_media_type_fiber:
1277 		e1000_check_for_link(hw);
1278 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1279 		break;
1280 
1281 	case e1000_media_type_internal_serdes:
1282 		e1000_check_for_link(hw);
1283 		link_check = hw->mac.serdes_has_link;
1284 		break;
1285 
1286 	/* VF device is type_unknown */
1287 	case e1000_media_type_unknown:
1288 		e1000_check_for_link(hw);
1289 		link_check = !hw->mac.get_link_status;
1290 		/* Fall thru */
1291 	default:
1292 		break;
1293 	}
1294 
1295 	/* Check for thermal downshift or shutdown */
1296 	if (hw->mac.type == e1000_i350) {
1297 		thstat = E1000_READ_REG(hw, E1000_THSTAT);
1298 		ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1299 	}
1300 
1301 	/* Now we check if a transition has happened */
1302 	if (link_check && sc->link_active == 0) {
1303 		e1000_get_speed_and_duplex(hw,
1304 		    &sc->link_speed, &sc->link_duplex);
1305 		if (bootverbose) {
1306 			char flowctrl[IFM_ETH_FC_STRLEN];
1307 
1308 			/* Get the flow control for display */
1309 			e1000_fc2str(hw->fc.current_mode, flowctrl,
1310 			    sizeof(flowctrl));
1311 
1312 			if_printf(ifp, "Link is up %d Mbps %s, "
1313 			    "Flow control: %s\n",
1314 			    sc->link_speed,
1315 			    sc->link_duplex == FULL_DUPLEX ?
1316 			    "Full Duplex" : "Half Duplex",
1317 			    flowctrl);
1318 		}
1319 		if (sc->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
1320 			e1000_force_flowctrl(hw, sc->ifm_flowctrl);
1321 		sc->link_active = 1;
1322 
1323 		ifp->if_baudrate = sc->link_speed * 1000000;
1324 		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1325 		    (thstat & E1000_THSTAT_LINK_THROTTLE))
1326 			if_printf(ifp, "Link: thermal downshift\n");
1327 		/* Delay Link Up for Phy update */
1328 		if ((hw->mac.type == e1000_i210 ||
1329 		     hw->mac.type == e1000_i211) &&
1330 		    hw->phy.id == I210_I_PHY_ID)
1331 			msec_delay(IGB_I210_LINK_DELAY);
1332 		/*
1333 		 * Reset if the media type changed.
1334 		 * Support AutoMediaDetect for Marvell M88 PHY in i354.
1335 		 */
1336 		if (hw->dev_spec._82575.media_changed) {
1337 			hw->dev_spec._82575.media_changed = FALSE;
1338 			igb_reset(sc, TRUE);
1339 		}
1340 		/* This can sleep */
1341 		ifp->if_link_state = LINK_STATE_UP;
1342 		if_link_state_change(ifp);
1343 	} else if (!link_check && sc->link_active == 1) {
1344 		ifp->if_baudrate = sc->link_speed = 0;
1345 		sc->link_duplex = 0;
1346 		if (bootverbose)
1347 			if_printf(ifp, "Link is Down\n");
1348 		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1349 		    (thstat & E1000_THSTAT_PWR_DOWN))
1350 			if_printf(ifp, "Link: thermal shutdown\n");
1351 		sc->link_active = 0;
1352 		/* This can sleep */
1353 		ifp->if_link_state = LINK_STATE_DOWN;
1354 		if_link_state_change(ifp);
1355 	}
1356 }
1357 
1358 static void
1359 igb_stop(struct igb_softc *sc)
1360 {
1361 	struct ifnet *ifp = &sc->arpcom.ac_if;
1362 	int i;
1363 
1364 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1365 
1366 	igb_disable_intr(sc);
1367 
1368 	callout_stop(&sc->timer);
1369 
1370 	ifp->if_flags &= ~IFF_RUNNING;
1371 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1372 		ifsq_clr_oactive(sc->tx_rings[i].ifsq);
1373 		ifsq_watchdog_stop(&sc->tx_rings[i].tx_watchdog);
1374 		sc->tx_rings[i].tx_flags &= ~IGB_TXFLAG_ENABLED;
1375 	}
1376 
1377 	e1000_reset_hw(&sc->hw);
1378 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1379 
1380 	e1000_led_off(&sc->hw);
1381 	e1000_cleanup_led(&sc->hw);
1382 
1383 	for (i = 0; i < sc->tx_ring_cnt; ++i)
1384 		igb_free_tx_ring(&sc->tx_rings[i]);
1385 	for (i = 0; i < sc->rx_ring_cnt; ++i)
1386 		igb_free_rx_ring(&sc->rx_rings[i]);
1387 }
1388 
1389 static void
1390 igb_reset(struct igb_softc *sc, boolean_t media_reset)
1391 {
1392 	struct ifnet *ifp = &sc->arpcom.ac_if;
1393 	struct e1000_hw *hw = &sc->hw;
1394 	struct e1000_fc_info *fc = &hw->fc;
1395 	uint32_t pba = 0;
1396 	uint16_t hwm;
1397 
1398 	/* Let the firmware know the OS is in control */
1399 	igb_get_hw_control(sc);
1400 
1401 	/*
1402 	 * Packet Buffer Allocation (PBA)
1403 	 * Writing PBA sets the receive portion of the buffer
1404 	 * the remainder is used for the transmit buffer.
1405 	 */
1406 	switch (hw->mac.type) {
1407 	case e1000_82575:
1408 		pba = E1000_PBA_32K;
1409 		break;
1410 
1411 	case e1000_82576:
1412 	case e1000_vfadapt:
1413 		pba = E1000_READ_REG(hw, E1000_RXPBS);
1414 		pba &= E1000_RXPBS_SIZE_MASK_82576;
1415 		break;
1416 
1417 	case e1000_82580:
1418 	case e1000_i350:
1419 	case e1000_i354:
1420 	case e1000_vfadapt_i350:
1421 		pba = E1000_READ_REG(hw, E1000_RXPBS);
1422 		pba = e1000_rxpbs_adjust_82580(pba);
1423 		break;
1424 
1425 	case e1000_i210:
1426 	case e1000_i211:
1427 		pba = E1000_PBA_34K;
1428 		break;
1429 
1430 	default:
1431 		break;
1432 	}
1433 
1434 	/* Special needs in case of Jumbo frames */
1435 	if (hw->mac.type == e1000_82575 && ifp->if_mtu > ETHERMTU) {
1436 		uint32_t tx_space, min_tx, min_rx;
1437 
1438 		pba = E1000_READ_REG(hw, E1000_PBA);
1439 		tx_space = pba >> 16;
1440 		pba &= 0xffff;
1441 
1442 		min_tx = (sc->max_frame_size +
1443 		    sizeof(struct e1000_tx_desc) - ETHER_CRC_LEN) * 2;
1444 		min_tx = roundup2(min_tx, 1024);
1445 		min_tx >>= 10;
1446 		min_rx = sc->max_frame_size;
1447 		min_rx = roundup2(min_rx, 1024);
1448 		min_rx >>= 10;
1449 		if (tx_space < min_tx && (min_tx - tx_space) < pba) {
1450 			pba = pba - (min_tx - tx_space);
1451 			/*
1452 			 * if short on rx space, rx wins
1453 			 * and must trump tx adjustment
1454 			 */
1455 			if (pba < min_rx)
1456 				pba = min_rx;
1457 		}
1458 		E1000_WRITE_REG(hw, E1000_PBA, pba);
1459 	}
1460 
1461 	/*
1462 	 * These parameters control the automatic generation (Tx) and
1463 	 * response (Rx) to Ethernet PAUSE frames.
1464 	 * - High water mark should allow for at least two frames to be
1465 	 *   received after sending an XOFF.
1466 	 * - Low water mark works best when it is very near the high water mark.
1467 	 *   This allows the receiver to restart by sending XON when it has
1468 	 *   drained a bit.
1469 	 */
1470 	hwm = min(((pba << 10) * 9 / 10),
1471 	    ((pba << 10) - 2 * sc->max_frame_size));
1472 
1473 	if (hw->mac.type < e1000_82576) {
1474 		fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1475 		fc->low_water = fc->high_water - 8;
1476 	} else {
1477 		fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1478 		fc->low_water = fc->high_water - 16;
1479 	}
1480 	fc->pause_time = IGB_FC_PAUSE_TIME;
1481 	fc->send_xon = TRUE;
1482 	fc->requested_mode = e1000_ifmedia2fc(sc->ifm_flowctrl);
1483 
1484 	/* Issue a global reset */
1485 	e1000_reset_hw(hw);
1486 	E1000_WRITE_REG(hw, E1000_WUC, 0);
1487 
1488 	/* Reset for AutoMediaDetect */
1489 	if (media_reset) {
1490 		e1000_setup_init_funcs(hw, TRUE);
1491 		e1000_get_bus_info(hw);
1492 	}
1493 
1494 	if (e1000_init_hw(hw) < 0)
1495 		if_printf(ifp, "Hardware Initialization Failed\n");
1496 
1497 	/* Setup DMA Coalescing */
1498 	igb_init_dmac(sc, pba);
1499 
1500 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1501 	e1000_get_phy_info(hw);
1502 	e1000_check_for_link(hw);
1503 }
1504 
1505 static void
1506 igb_setup_ifp(struct igb_softc *sc)
1507 {
1508 	struct ifnet *ifp = &sc->arpcom.ac_if;
1509 	int i;
1510 
1511 	ifp->if_softc = sc;
1512 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1513 	ifp->if_init = igb_init;
1514 	ifp->if_ioctl = igb_ioctl;
1515 	ifp->if_start = igb_start;
1516 	ifp->if_serialize = igb_serialize;
1517 	ifp->if_deserialize = igb_deserialize;
1518 	ifp->if_tryserialize = igb_tryserialize;
1519 #ifdef INVARIANTS
1520 	ifp->if_serialize_assert = igb_serialize_assert;
1521 #endif
1522 #ifdef IFPOLL_ENABLE
1523 	ifp->if_npoll = igb_npoll;
1524 #endif
1525 
1526 	ifp->if_nmbclusters = sc->rx_ring_cnt * sc->rx_rings[0].num_rx_desc;
1527 
1528 	ifq_set_maxlen(&ifp->if_snd, sc->tx_rings[0].num_tx_desc - 1);
1529 	ifq_set_ready(&ifp->if_snd);
1530 	ifq_set_subq_cnt(&ifp->if_snd, sc->tx_ring_cnt);
1531 
1532 	ifp->if_mapsubq = ifq_mapsubq_modulo;
1533 	ifq_set_subq_divisor(&ifp->if_snd, 1);
1534 
1535 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1536 
1537 	ifp->if_capabilities =
1538 	    IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_TSO;
1539 	if (IGB_ENABLE_HWRSS(sc))
1540 		ifp->if_capabilities |= IFCAP_RSS;
1541 	ifp->if_capenable = ifp->if_capabilities;
1542 	ifp->if_hwassist = IGB_CSUM_FEATURES | CSUM_TSO;
1543 
1544 	/*
1545 	 * Tell the upper layer(s) we support long frames
1546 	 */
1547 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1548 
1549 	/* Setup TX rings and subqueues */
1550 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1551 		struct ifaltq_subque *ifsq = ifq_get_subq(&ifp->if_snd, i);
1552 		struct igb_tx_ring *txr = &sc->tx_rings[i];
1553 
1554 		ifsq_set_cpuid(ifsq, txr->tx_intr_cpuid);
1555 		ifsq_set_priv(ifsq, txr);
1556 		ifsq_set_hw_serialize(ifsq, &txr->tx_serialize);
1557 		txr->ifsq = ifsq;
1558 
1559 		ifsq_watchdog_init(&txr->tx_watchdog, ifsq, igb_watchdog);
1560 	}
1561 
1562 	/*
1563 	 * Specify the media types supported by this adapter and register
1564 	 * callbacks to update media and link information
1565 	 */
1566 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1567 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1568 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1569 		    0, NULL);
1570 	} else {
1571 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1572 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1573 		    0, NULL);
1574 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1575 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1576 		    0, NULL);
1577 		if (sc->hw.phy.type != e1000_phy_ife) {
1578 			ifmedia_add(&sc->media,
1579 			    IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1580 		}
1581 	}
1582 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1583 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO | sc->ifm_flowctrl);
1584 }
1585 
1586 static void
1587 igb_add_sysctl(struct igb_softc *sc)
1588 {
1589 	struct sysctl_ctx_list *ctx;
1590 	struct sysctl_oid *tree;
1591 #if defined(IGB_RSS_DEBUG) || defined(IGB_TSS_DEBUG)
1592 	char node[32];
1593 	int i;
1594 #endif
1595 
1596 	ctx = device_get_sysctl_ctx(sc->dev);
1597 	tree = device_get_sysctl_tree(sc->dev);
1598 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1599 	    OID_AUTO, "rxr", CTLFLAG_RD, &sc->rx_ring_cnt, 0, "# of RX rings");
1600 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1601 	    OID_AUTO, "rxr_inuse", CTLFLAG_RD, &sc->rx_ring_inuse, 0,
1602 	    "# of RX rings used");
1603 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1604 	    OID_AUTO, "txr", CTLFLAG_RD, &sc->tx_ring_cnt, 0, "# of TX rings");
1605 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1606 	    OID_AUTO, "txr_inuse", CTLFLAG_RD, &sc->tx_ring_inuse, 0,
1607 	    "# of TX rings used");
1608 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1609 	    OID_AUTO, "rxd", CTLFLAG_RD, &sc->rx_rings[0].num_rx_desc, 0,
1610 	    "# of RX descs");
1611 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1612 	    OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_rings[0].num_tx_desc, 0,
1613 	    "# of TX descs");
1614 
1615 #define IGB_ADD_INTR_RATE_SYSCTL(sc, use, name) \
1616 do { \
1617 	igb_add_intr_rate_sysctl(sc, IGB_INTR_USE_##use, #name "_intr_rate", \
1618 	    #use " interrupt rate"); \
1619 } while (0)
1620 
1621 	IGB_ADD_INTR_RATE_SYSCTL(sc, RXTX, rxtx);
1622 	IGB_ADD_INTR_RATE_SYSCTL(sc, RX, rx);
1623 	IGB_ADD_INTR_RATE_SYSCTL(sc, TX, tx);
1624 	IGB_ADD_INTR_RATE_SYSCTL(sc, STATUS, sts);
1625 
1626 #undef IGB_ADD_INTR_RATE_SYSCTL
1627 
1628 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1629 	    OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1630 	    sc, 0, igb_sysctl_tx_intr_nsegs, "I",
1631 	    "# of segments per TX interrupt");
1632 
1633 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1634 	    OID_AUTO, "tx_wreg_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1635 	    sc, 0, igb_sysctl_tx_wreg_nsegs, "I",
1636 	    "# of segments sent before write to hardware register");
1637 
1638 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1639 	    OID_AUTO, "rx_wreg_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1640 	    sc, 0, igb_sysctl_rx_wreg_nsegs, "I",
1641 	    "# of segments received before write to hardware register");
1642 
1643 	if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
1644 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1645 		    OID_AUTO, "tx_msix_cpumap", CTLTYPE_OPAQUE | CTLFLAG_RD,
1646 		    sc->tx_rmap_intr, 0, if_ringmap_cpumap_sysctl, "I",
1647 		    "TX MSI-X CPU map");
1648 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1649 		    OID_AUTO, "rx_msix_cpumap", CTLTYPE_OPAQUE | CTLFLAG_RD,
1650 		    sc->rx_rmap_intr, 0, if_ringmap_cpumap_sysctl, "I",
1651 		    "RX MSI-X CPU map");
1652 	}
1653 #ifdef IFPOLL_ENABLE
1654 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1655 	    OID_AUTO, "tx_poll_cpumap", CTLTYPE_OPAQUE | CTLFLAG_RD,
1656 	    sc->tx_rmap, 0, if_ringmap_cpumap_sysctl, "I",
1657 	    "TX polling CPU map");
1658 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1659 	    OID_AUTO, "rx_poll_cpumap", CTLTYPE_OPAQUE | CTLFLAG_RD,
1660 	    sc->rx_rmap, 0, if_ringmap_cpumap_sysctl, "I",
1661 	    "RX polling CPU map");
1662 #endif
1663 
1664 #ifdef IGB_RSS_DEBUG
1665 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1666 	    OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug, 0,
1667 	    "RSS debug level");
1668 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1669 		ksnprintf(node, sizeof(node), "rx%d_pkt", i);
1670 		SYSCTL_ADD_ULONG(ctx,
1671 		    SYSCTL_CHILDREN(tree), OID_AUTO, node,
1672 		    CTLFLAG_RW, &sc->rx_rings[i].rx_packets, "RXed packets");
1673 	}
1674 #endif
1675 #ifdef IGB_TSS_DEBUG
1676 	for  (i = 0; i < sc->tx_ring_cnt; ++i) {
1677 		ksnprintf(node, sizeof(node), "tx%d_pkt", i);
1678 		SYSCTL_ADD_ULONG(ctx,
1679 		    SYSCTL_CHILDREN(tree), OID_AUTO, node,
1680 		    CTLFLAG_RW, &sc->tx_rings[i].tx_packets, "TXed packets");
1681 	}
1682 #endif
1683 }
1684 
1685 static int
1686 igb_alloc_rings(struct igb_softc *sc)
1687 {
1688 	int error, i;
1689 
1690 	/*
1691 	 * Create top level busdma tag
1692 	 */
1693 	error = bus_dma_tag_create(NULL, 1, 0,
1694 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1695 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1696 	    &sc->parent_tag);
1697 	if (error) {
1698 		device_printf(sc->dev, "could not create top level DMA tag\n");
1699 		return error;
1700 	}
1701 
1702 	/*
1703 	 * Allocate TX descriptor rings and buffers
1704 	 */
1705 	sc->tx_rings = kmalloc_cachealign(
1706 	    sizeof(struct igb_tx_ring) * sc->tx_ring_cnt,
1707 	    M_DEVBUF, M_WAITOK | M_ZERO);
1708 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1709 		struct igb_tx_ring *txr = &sc->tx_rings[i];
1710 
1711 		/* Set up some basics */
1712 		txr->sc = sc;
1713 		txr->me = i;
1714 		txr->tx_intr_cpuid = -1;
1715 		lwkt_serialize_init(&txr->tx_serialize);
1716 
1717 		error = igb_create_tx_ring(txr);
1718 		if (error)
1719 			return error;
1720 	}
1721 
1722 	/*
1723 	 * Allocate RX descriptor rings and buffers
1724 	 */
1725 	sc->rx_rings = kmalloc_cachealign(
1726 	    sizeof(struct igb_rx_ring) * sc->rx_ring_cnt,
1727 	    M_DEVBUF, M_WAITOK | M_ZERO);
1728 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1729 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
1730 
1731 		/* Set up some basics */
1732 		rxr->sc = sc;
1733 		rxr->me = i;
1734 		lwkt_serialize_init(&rxr->rx_serialize);
1735 
1736 		error = igb_create_rx_ring(rxr);
1737 		if (error)
1738 			return error;
1739 	}
1740 
1741 	return 0;
1742 }
1743 
1744 static void
1745 igb_free_rings(struct igb_softc *sc)
1746 {
1747 	int i;
1748 
1749 	if (sc->tx_rings != NULL) {
1750 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
1751 			struct igb_tx_ring *txr = &sc->tx_rings[i];
1752 
1753 			igb_destroy_tx_ring(txr, txr->num_tx_desc);
1754 		}
1755 		kfree(sc->tx_rings, M_DEVBUF);
1756 	}
1757 
1758 	if (sc->rx_rings != NULL) {
1759 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
1760 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
1761 
1762 			igb_destroy_rx_ring(rxr, rxr->num_rx_desc);
1763 		}
1764 		kfree(sc->rx_rings, M_DEVBUF);
1765 	}
1766 }
1767 
1768 static int
1769 igb_create_tx_ring(struct igb_tx_ring *txr)
1770 {
1771 	int tsize, error, i, ntxd;
1772 
1773 	/*
1774 	 * Validate number of transmit descriptors. It must not exceed
1775 	 * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
1776 	 */
1777 	ntxd = device_getenv_int(txr->sc->dev, "txd", igb_txd);
1778 	if ((ntxd * sizeof(struct e1000_tx_desc)) % IGB_DBA_ALIGN != 0 ||
1779 	    ntxd > IGB_MAX_TXD || ntxd < IGB_MIN_TXD) {
1780 		device_printf(txr->sc->dev,
1781 		    "Using %d TX descriptors instead of %d!\n",
1782 		    IGB_DEFAULT_TXD, ntxd);
1783 		txr->num_tx_desc = IGB_DEFAULT_TXD;
1784 	} else {
1785 		txr->num_tx_desc = ntxd;
1786 	}
1787 
1788 	/*
1789 	 * Allocate TX descriptor ring
1790 	 */
1791 	tsize = roundup2(txr->num_tx_desc * sizeof(union e1000_adv_tx_desc),
1792 	    IGB_DBA_ALIGN);
1793 	txr->txdma.dma_vaddr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1794 	    IGB_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
1795 	    &txr->txdma.dma_tag, &txr->txdma.dma_map, &txr->txdma.dma_paddr);
1796 	if (txr->txdma.dma_vaddr == NULL) {
1797 		device_printf(txr->sc->dev,
1798 		    "Unable to allocate TX Descriptor memory\n");
1799 		return ENOMEM;
1800 	}
1801 	txr->tx_base = txr->txdma.dma_vaddr;
1802 	bzero(txr->tx_base, tsize);
1803 
1804 	tsize = __VM_CACHELINE_ALIGN(
1805 	    sizeof(struct igb_tx_buf) * txr->num_tx_desc);
1806 	txr->tx_buf = kmalloc_cachealign(tsize, M_DEVBUF, M_WAITOK | M_ZERO);
1807 
1808 	/*
1809 	 * Allocate TX head write-back buffer
1810 	 */
1811 	txr->tx_hdr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1812 	    __VM_CACHELINE_SIZE, __VM_CACHELINE_SIZE, BUS_DMA_WAITOK,
1813 	    &txr->tx_hdr_dtag, &txr->tx_hdr_dmap, &txr->tx_hdr_paddr);
1814 	if (txr->tx_hdr == NULL) {
1815 		device_printf(txr->sc->dev,
1816 		    "Unable to allocate TX head write-back buffer\n");
1817 		return ENOMEM;
1818 	}
1819 
1820 	/*
1821 	 * Create DMA tag for TX buffers
1822 	 */
1823 	error = bus_dma_tag_create(txr->sc->parent_tag,
1824 	    1, 0,		/* alignment, bounds */
1825 	    BUS_SPACE_MAXADDR,	/* lowaddr */
1826 	    BUS_SPACE_MAXADDR,	/* highaddr */
1827 	    NULL, NULL,		/* filter, filterarg */
1828 	    IGB_TSO_SIZE,	/* maxsize */
1829 	    IGB_MAX_SCATTER,	/* nsegments */
1830 	    PAGE_SIZE,		/* maxsegsize */
1831 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
1832 	    BUS_DMA_ONEBPAGE,	/* flags */
1833 	    &txr->tx_tag);
1834 	if (error) {
1835 		device_printf(txr->sc->dev, "Unable to allocate TX DMA tag\n");
1836 		kfree(txr->tx_buf, M_DEVBUF);
1837 		txr->tx_buf = NULL;
1838 		return error;
1839 	}
1840 
1841 	/*
1842 	 * Create DMA maps for TX buffers
1843 	 */
1844 	for (i = 0; i < txr->num_tx_desc; ++i) {
1845 		struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1846 
1847 		error = bus_dmamap_create(txr->tx_tag,
1848 		    BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE, &txbuf->map);
1849 		if (error) {
1850 			device_printf(txr->sc->dev,
1851 			    "Unable to create TX DMA map\n");
1852 			igb_destroy_tx_ring(txr, i);
1853 			return error;
1854 		}
1855 	}
1856 
1857 	if (txr->sc->hw.mac.type == e1000_82575)
1858 		txr->tx_flags |= IGB_TXFLAG_TSO_IPLEN0;
1859 
1860 	/*
1861 	 * Initialize various watermark
1862 	 */
1863 	txr->intr_nsegs = txr->num_tx_desc / 16;
1864 	txr->wreg_nsegs = IGB_DEF_TXWREG_NSEGS;
1865 
1866 	return 0;
1867 }
1868 
1869 static void
1870 igb_free_tx_ring(struct igb_tx_ring *txr)
1871 {
1872 	int i;
1873 
1874 	for (i = 0; i < txr->num_tx_desc; ++i) {
1875 		struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1876 
1877 		if (txbuf->m_head != NULL) {
1878 			bus_dmamap_unload(txr->tx_tag, txbuf->map);
1879 			m_freem(txbuf->m_head);
1880 			txbuf->m_head = NULL;
1881 		}
1882 	}
1883 }
1884 
1885 static void
1886 igb_destroy_tx_ring(struct igb_tx_ring *txr, int ndesc)
1887 {
1888 	int i;
1889 
1890 	if (txr->txdma.dma_vaddr != NULL) {
1891 		bus_dmamap_unload(txr->txdma.dma_tag, txr->txdma.dma_map);
1892 		bus_dmamem_free(txr->txdma.dma_tag, txr->txdma.dma_vaddr,
1893 		    txr->txdma.dma_map);
1894 		bus_dma_tag_destroy(txr->txdma.dma_tag);
1895 		txr->txdma.dma_vaddr = NULL;
1896 	}
1897 
1898 	if (txr->tx_hdr != NULL) {
1899 		bus_dmamap_unload(txr->tx_hdr_dtag, txr->tx_hdr_dmap);
1900 		bus_dmamem_free(txr->tx_hdr_dtag, txr->tx_hdr,
1901 		    txr->tx_hdr_dmap);
1902 		bus_dma_tag_destroy(txr->tx_hdr_dtag);
1903 		txr->tx_hdr = NULL;
1904 	}
1905 
1906 	if (txr->tx_buf == NULL)
1907 		return;
1908 
1909 	for (i = 0; i < ndesc; ++i) {
1910 		struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1911 
1912 		KKASSERT(txbuf->m_head == NULL);
1913 		bus_dmamap_destroy(txr->tx_tag, txbuf->map);
1914 	}
1915 	bus_dma_tag_destroy(txr->tx_tag);
1916 
1917 	kfree(txr->tx_buf, M_DEVBUF);
1918 	txr->tx_buf = NULL;
1919 }
1920 
1921 static void
1922 igb_init_tx_ring(struct igb_tx_ring *txr)
1923 {
1924 	/* Clear the old descriptor contents */
1925 	bzero(txr->tx_base,
1926 	    sizeof(union e1000_adv_tx_desc) * txr->num_tx_desc);
1927 
1928 	/* Clear TX head write-back buffer */
1929 	*(txr->tx_hdr) = 0;
1930 
1931 	/* Reset indices */
1932 	txr->next_avail_desc = 0;
1933 	txr->next_to_clean = 0;
1934 	txr->tx_nsegs = 0;
1935 
1936 	/* Set number of descriptors available */
1937 	txr->tx_avail = txr->num_tx_desc;
1938 
1939 	/* Enable this TX ring */
1940 	txr->tx_flags |= IGB_TXFLAG_ENABLED;
1941 }
1942 
1943 static void
1944 igb_init_tx_unit(struct igb_softc *sc)
1945 {
1946 	struct e1000_hw *hw = &sc->hw;
1947 	uint32_t tctl;
1948 	int i;
1949 
1950 	/* Setup the Tx Descriptor Rings */
1951 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
1952 		struct igb_tx_ring *txr = &sc->tx_rings[i];
1953 		uint64_t bus_addr = txr->txdma.dma_paddr;
1954 		uint64_t hdr_paddr = txr->tx_hdr_paddr;
1955 		uint32_t txdctl = 0;
1956 		uint32_t dca_txctrl;
1957 
1958 		E1000_WRITE_REG(hw, E1000_TDLEN(i),
1959 		    txr->num_tx_desc * sizeof(struct e1000_tx_desc));
1960 		E1000_WRITE_REG(hw, E1000_TDBAH(i),
1961 		    (uint32_t)(bus_addr >> 32));
1962 		E1000_WRITE_REG(hw, E1000_TDBAL(i),
1963 		    (uint32_t)bus_addr);
1964 
1965 		/* Setup the HW Tx Head and Tail descriptor pointers */
1966 		E1000_WRITE_REG(hw, E1000_TDT(i), 0);
1967 		E1000_WRITE_REG(hw, E1000_TDH(i), 0);
1968 
1969 		dca_txctrl = E1000_READ_REG(hw, E1000_DCA_TXCTRL(i));
1970 		dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1971 		E1000_WRITE_REG(hw, E1000_DCA_TXCTRL(i), dca_txctrl);
1972 
1973 		/*
1974 		 * Don't set WB_on_EITR:
1975 		 * - 82575 does not have it
1976 		 * - It almost has no effect on 82576, see:
1977 		 *   82576 specification update errata #26
1978 		 * - It causes unnecessary bus traffic
1979 		 */
1980 		E1000_WRITE_REG(hw, E1000_TDWBAH(i),
1981 		    (uint32_t)(hdr_paddr >> 32));
1982 		E1000_WRITE_REG(hw, E1000_TDWBAL(i),
1983 		    ((uint32_t)hdr_paddr) | E1000_TX_HEAD_WB_ENABLE);
1984 
1985 		/*
1986 		 * WTHRESH is ignored by the hardware, since header
1987 		 * write back mode is used.
1988 		 */
1989 		txdctl |= IGB_TX_PTHRESH;
1990 		txdctl |= IGB_TX_HTHRESH << 8;
1991 		txdctl |= IGB_TX_WTHRESH << 16;
1992 		txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1993 		E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
1994 	}
1995 
1996 	if (sc->vf_ifp)
1997 		return;
1998 
1999 	e1000_config_collision_dist(hw);
2000 
2001 	/* Program the Transmit Control Register */
2002 	tctl = E1000_READ_REG(hw, E1000_TCTL);
2003 	tctl &= ~E1000_TCTL_CT;
2004 	tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2005 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
2006 
2007 	/* This write will effectively turn on the transmit unit. */
2008 	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
2009 }
2010 
2011 static boolean_t
2012 igb_txcsum_ctx(struct igb_tx_ring *txr, struct mbuf *mp)
2013 {
2014 	struct e1000_adv_tx_context_desc *TXD;
2015 	uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
2016 	int ehdrlen, ctxd, ip_hlen = 0;
2017 	boolean_t offload = TRUE;
2018 
2019 	if ((mp->m_pkthdr.csum_flags & IGB_CSUM_FEATURES) == 0)
2020 		offload = FALSE;
2021 
2022 	vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
2023 
2024 	ctxd = txr->next_avail_desc;
2025 	TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
2026 
2027 	/*
2028 	 * In advanced descriptors the vlan tag must
2029 	 * be placed into the context descriptor, thus
2030 	 * we need to be here just for that setup.
2031 	 */
2032 	if (mp->m_flags & M_VLANTAG) {
2033 		uint16_t vlantag;
2034 
2035 		vlantag = htole16(mp->m_pkthdr.ether_vlantag);
2036 		vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
2037 	} else if (!offload) {
2038 		return FALSE;
2039 	}
2040 
2041 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2042 	KASSERT(ehdrlen > 0, ("invalid ether hlen"));
2043 
2044 	/* Set the ether header length */
2045 	vlan_macip_lens |= ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
2046 	if (mp->m_pkthdr.csum_flags & CSUM_IP) {
2047 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
2048 		ip_hlen = mp->m_pkthdr.csum_iphlen;
2049 		KASSERT(ip_hlen > 0, ("invalid ip hlen"));
2050 	}
2051 	vlan_macip_lens |= ip_hlen;
2052 
2053 	type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
2054 	if (mp->m_pkthdr.csum_flags & CSUM_TCP)
2055 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
2056 	else if (mp->m_pkthdr.csum_flags & CSUM_UDP)
2057 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP;
2058 
2059 	/*
2060 	 * 82575 needs the TX context index added; the queue
2061 	 * index is used as TX context index here.
2062 	 */
2063 	if (txr->sc->hw.mac.type == e1000_82575)
2064 		mss_l4len_idx = txr->me << 4;
2065 
2066 	/* Now copy bits into descriptor */
2067 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
2068 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
2069 	TXD->seqnum_seed = htole32(0);
2070 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
2071 
2072 	/* We've consumed the first desc, adjust counters */
2073 	if (++ctxd == txr->num_tx_desc)
2074 		ctxd = 0;
2075 	txr->next_avail_desc = ctxd;
2076 	--txr->tx_avail;
2077 
2078 	return offload;
2079 }
2080 
2081 static void
2082 igb_txeof(struct igb_tx_ring *txr, int hdr)
2083 {
2084 	int first, avail;
2085 
2086 	if (txr->tx_avail == txr->num_tx_desc)
2087 		return;
2088 
2089 	first = txr->next_to_clean;
2090 	if (first == hdr)
2091 		return;
2092 
2093 	avail = txr->tx_avail;
2094 	while (first != hdr) {
2095 		struct igb_tx_buf *txbuf = &txr->tx_buf[first];
2096 
2097 		++avail;
2098 		if (txbuf->m_head) {
2099 			bus_dmamap_unload(txr->tx_tag, txbuf->map);
2100 			m_freem(txbuf->m_head);
2101 			txbuf->m_head = NULL;
2102 		}
2103 		if (++first == txr->num_tx_desc)
2104 			first = 0;
2105 	}
2106 	txr->next_to_clean = first;
2107 	txr->tx_avail = avail;
2108 
2109 	/*
2110 	 * If we have a minimum free, clear OACTIVE
2111 	 * to tell the stack that it is OK to send packets.
2112 	 */
2113 	if (txr->tx_avail > IGB_MAX_SCATTER + IGB_TX_RESERVED) {
2114 		ifsq_clr_oactive(txr->ifsq);
2115 
2116 		/*
2117 		 * We have enough TX descriptors, turn off
2118 		 * the watchdog.  We allow small amount of
2119 		 * packets (roughly intr_nsegs) pending on
2120 		 * the transmit ring.
2121 		 */
2122 		txr->tx_watchdog.wd_timer = 0;
2123 	}
2124 }
2125 
2126 static int
2127 igb_create_rx_ring(struct igb_rx_ring *rxr)
2128 {
2129 	int rsize, i, error, nrxd;
2130 
2131 	/*
2132 	 * Validate number of receive descriptors. It must not exceed
2133 	 * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
2134 	 */
2135 	nrxd = device_getenv_int(rxr->sc->dev, "rxd", igb_rxd);
2136 	if ((nrxd * sizeof(struct e1000_rx_desc)) % IGB_DBA_ALIGN != 0 ||
2137 	    nrxd > IGB_MAX_RXD || nrxd < IGB_MIN_RXD) {
2138 		device_printf(rxr->sc->dev,
2139 		    "Using %d RX descriptors instead of %d!\n",
2140 		    IGB_DEFAULT_RXD, nrxd);
2141 		rxr->num_rx_desc = IGB_DEFAULT_RXD;
2142 	} else {
2143 		rxr->num_rx_desc = nrxd;
2144 	}
2145 
2146 	/*
2147 	 * Allocate RX descriptor ring
2148 	 */
2149 	rsize = roundup2(rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc),
2150 	    IGB_DBA_ALIGN);
2151 	rxr->rxdma.dma_vaddr = bus_dmamem_coherent_any(rxr->sc->parent_tag,
2152 	    IGB_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2153 	    &rxr->rxdma.dma_tag, &rxr->rxdma.dma_map,
2154 	    &rxr->rxdma.dma_paddr);
2155 	if (rxr->rxdma.dma_vaddr == NULL) {
2156 		device_printf(rxr->sc->dev,
2157 		    "Unable to allocate RxDescriptor memory\n");
2158 		return ENOMEM;
2159 	}
2160 	rxr->rx_base = rxr->rxdma.dma_vaddr;
2161 	bzero(rxr->rx_base, rsize);
2162 
2163 	rsize = __VM_CACHELINE_ALIGN(
2164 	    sizeof(struct igb_rx_buf) * rxr->num_rx_desc);
2165 	rxr->rx_buf = kmalloc_cachealign(rsize, M_DEVBUF, M_WAITOK | M_ZERO);
2166 
2167 	/*
2168 	 * Create DMA tag for RX buffers
2169 	 */
2170 	error = bus_dma_tag_create(rxr->sc->parent_tag,
2171 	    1, 0,		/* alignment, bounds */
2172 	    BUS_SPACE_MAXADDR,	/* lowaddr */
2173 	    BUS_SPACE_MAXADDR,	/* highaddr */
2174 	    NULL, NULL,		/* filter, filterarg */
2175 	    MCLBYTES,		/* maxsize */
2176 	    1,			/* nsegments */
2177 	    MCLBYTES,		/* maxsegsize */
2178 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2179 	    &rxr->rx_tag);
2180 	if (error) {
2181 		device_printf(rxr->sc->dev,
2182 		    "Unable to create RX payload DMA tag\n");
2183 		kfree(rxr->rx_buf, M_DEVBUF);
2184 		rxr->rx_buf = NULL;
2185 		return error;
2186 	}
2187 
2188 	/*
2189 	 * Create spare DMA map for RX buffers
2190 	 */
2191 	error = bus_dmamap_create(rxr->rx_tag, BUS_DMA_WAITOK,
2192 	    &rxr->rx_sparemap);
2193 	if (error) {
2194 		device_printf(rxr->sc->dev,
2195 		    "Unable to create spare RX DMA maps\n");
2196 		bus_dma_tag_destroy(rxr->rx_tag);
2197 		kfree(rxr->rx_buf, M_DEVBUF);
2198 		rxr->rx_buf = NULL;
2199 		return error;
2200 	}
2201 
2202 	/*
2203 	 * Create DMA maps for RX buffers
2204 	 */
2205 	for (i = 0; i < rxr->num_rx_desc; i++) {
2206 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2207 
2208 		error = bus_dmamap_create(rxr->rx_tag,
2209 		    BUS_DMA_WAITOK, &rxbuf->map);
2210 		if (error) {
2211 			device_printf(rxr->sc->dev,
2212 			    "Unable to create RX DMA maps\n");
2213 			igb_destroy_rx_ring(rxr, i);
2214 			return error;
2215 		}
2216 	}
2217 
2218 	/*
2219 	 * Initialize various watermark
2220 	 */
2221 	rxr->wreg_nsegs = IGB_DEF_RXWREG_NSEGS;
2222 
2223 	return 0;
2224 }
2225 
2226 static void
2227 igb_free_rx_ring(struct igb_rx_ring *rxr)
2228 {
2229 	int i;
2230 
2231 	for (i = 0; i < rxr->num_rx_desc; ++i) {
2232 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2233 
2234 		if (rxbuf->m_head != NULL) {
2235 			bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2236 			m_freem(rxbuf->m_head);
2237 			rxbuf->m_head = NULL;
2238 		}
2239 	}
2240 
2241 	if (rxr->fmp != NULL)
2242 		m_freem(rxr->fmp);
2243 	rxr->fmp = NULL;
2244 	rxr->lmp = NULL;
2245 }
2246 
2247 static void
2248 igb_destroy_rx_ring(struct igb_rx_ring *rxr, int ndesc)
2249 {
2250 	int i;
2251 
2252 	if (rxr->rxdma.dma_vaddr != NULL) {
2253 		bus_dmamap_unload(rxr->rxdma.dma_tag, rxr->rxdma.dma_map);
2254 		bus_dmamem_free(rxr->rxdma.dma_tag, rxr->rxdma.dma_vaddr,
2255 		    rxr->rxdma.dma_map);
2256 		bus_dma_tag_destroy(rxr->rxdma.dma_tag);
2257 		rxr->rxdma.dma_vaddr = NULL;
2258 	}
2259 
2260 	if (rxr->rx_buf == NULL)
2261 		return;
2262 
2263 	for (i = 0; i < ndesc; ++i) {
2264 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2265 
2266 		KKASSERT(rxbuf->m_head == NULL);
2267 		bus_dmamap_destroy(rxr->rx_tag, rxbuf->map);
2268 	}
2269 	bus_dmamap_destroy(rxr->rx_tag, rxr->rx_sparemap);
2270 	bus_dma_tag_destroy(rxr->rx_tag);
2271 
2272 	kfree(rxr->rx_buf, M_DEVBUF);
2273 	rxr->rx_buf = NULL;
2274 }
2275 
2276 static void
2277 igb_setup_rxdesc(union e1000_adv_rx_desc *rxd, const struct igb_rx_buf *rxbuf)
2278 {
2279 	rxd->read.pkt_addr = htole64(rxbuf->paddr);
2280 	rxd->wb.upper.status_error = 0;
2281 }
2282 
2283 static int
2284 igb_newbuf(struct igb_rx_ring *rxr, int i, boolean_t wait)
2285 {
2286 	struct mbuf *m;
2287 	bus_dma_segment_t seg;
2288 	bus_dmamap_t map;
2289 	struct igb_rx_buf *rxbuf;
2290 	int error, nseg;
2291 
2292 	m = m_getcl(wait ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
2293 	if (m == NULL) {
2294 		if (wait) {
2295 			if_printf(&rxr->sc->arpcom.ac_if,
2296 			    "Unable to allocate RX mbuf\n");
2297 		}
2298 		return ENOBUFS;
2299 	}
2300 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2301 
2302 	if (rxr->sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2303 		m_adj(m, ETHER_ALIGN);
2304 
2305 	error = bus_dmamap_load_mbuf_segment(rxr->rx_tag,
2306 	    rxr->rx_sparemap, m, &seg, 1, &nseg, BUS_DMA_NOWAIT);
2307 	if (error) {
2308 		m_freem(m);
2309 		if (wait) {
2310 			if_printf(&rxr->sc->arpcom.ac_if,
2311 			    "Unable to load RX mbuf\n");
2312 		}
2313 		return error;
2314 	}
2315 
2316 	rxbuf = &rxr->rx_buf[i];
2317 	if (rxbuf->m_head != NULL)
2318 		bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2319 
2320 	map = rxbuf->map;
2321 	rxbuf->map = rxr->rx_sparemap;
2322 	rxr->rx_sparemap = map;
2323 
2324 	rxbuf->m_head = m;
2325 	rxbuf->paddr = seg.ds_addr;
2326 
2327 	igb_setup_rxdesc(&rxr->rx_base[i], rxbuf);
2328 	return 0;
2329 }
2330 
2331 static int
2332 igb_init_rx_ring(struct igb_rx_ring *rxr)
2333 {
2334 	int i;
2335 
2336 	/* Clear the ring contents */
2337 	bzero(rxr->rx_base,
2338 	    rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc));
2339 
2340 	/* Now replenish the ring mbufs */
2341 	for (i = 0; i < rxr->num_rx_desc; ++i) {
2342 		int error;
2343 
2344 		error = igb_newbuf(rxr, i, TRUE);
2345 		if (error)
2346 			return error;
2347 	}
2348 
2349 	/* Setup our descriptor indices */
2350 	rxr->next_to_check = 0;
2351 
2352 	rxr->fmp = NULL;
2353 	rxr->lmp = NULL;
2354 	rxr->discard = FALSE;
2355 
2356 	return 0;
2357 }
2358 
2359 static void
2360 igb_init_rx_unit(struct igb_softc *sc, boolean_t polling)
2361 {
2362 	struct ifnet *ifp = &sc->arpcom.ac_if;
2363 	struct e1000_hw *hw = &sc->hw;
2364 	uint32_t rctl, rxcsum, srrctl = 0;
2365 	int i;
2366 
2367 	/*
2368 	 * Make sure receives are disabled while setting
2369 	 * up the descriptor ring
2370 	 */
2371 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2372 	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2373 
2374 #if 0
2375 	/*
2376 	** Set up for header split
2377 	*/
2378 	if (igb_header_split) {
2379 		/* Use a standard mbuf for the header */
2380 		srrctl |= IGB_HDR_BUF << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2381 		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2382 	} else
2383 #endif
2384 		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2385 
2386 	/*
2387 	** Set up for jumbo frames
2388 	*/
2389 	if (ifp->if_mtu > ETHERMTU) {
2390 		rctl |= E1000_RCTL_LPE;
2391 #if 0
2392 		if (adapter->rx_mbuf_sz == MJUMPAGESIZE) {
2393 			srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2394 			rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
2395 		} else if (adapter->rx_mbuf_sz > MJUMPAGESIZE) {
2396 			srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2397 			rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
2398 		}
2399 		/* Set maximum packet len */
2400 		psize = adapter->max_frame_size;
2401 		/* are we on a vlan? */
2402 		if (adapter->ifp->if_vlantrunk != NULL)
2403 			psize += VLAN_TAG_SIZE;
2404 		E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
2405 #else
2406 		srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2407 		rctl |= E1000_RCTL_SZ_2048;
2408 #endif
2409 	} else {
2410 		rctl &= ~E1000_RCTL_LPE;
2411 		srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2412 		rctl |= E1000_RCTL_SZ_2048;
2413 	}
2414 
2415 	/* Setup the Base and Length of the Rx Descriptor Rings */
2416 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
2417 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
2418 		uint64_t bus_addr = rxr->rxdma.dma_paddr;
2419 		uint32_t rxdctl;
2420 
2421 		E1000_WRITE_REG(hw, E1000_RDLEN(i),
2422 		    rxr->num_rx_desc * sizeof(struct e1000_rx_desc));
2423 		E1000_WRITE_REG(hw, E1000_RDBAH(i),
2424 		    (uint32_t)(bus_addr >> 32));
2425 		E1000_WRITE_REG(hw, E1000_RDBAL(i),
2426 		    (uint32_t)bus_addr);
2427 		E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
2428 		/* Enable this Queue */
2429 		rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
2430 		rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2431 		rxdctl &= 0xFFF00000;
2432 		rxdctl |= IGB_RX_PTHRESH;
2433 		rxdctl |= IGB_RX_HTHRESH << 8;
2434 		/*
2435 		 * Don't set WTHRESH to a value above 1 on 82576, see:
2436 		 * 82576 specification update errata #26
2437 		 */
2438 		rxdctl |= IGB_RX_WTHRESH << 16;
2439 		E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
2440 	}
2441 
2442 	rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2443 	rxcsum &= ~(E1000_RXCSUM_PCSS_MASK | E1000_RXCSUM_IPPCSE);
2444 
2445 	/*
2446 	 * Receive Checksum Offload for TCP and UDP
2447 	 *
2448 	 * Checksum offloading is also enabled if multiple receive
2449 	 * queue is to be supported, since we need it to figure out
2450 	 * fragments.
2451 	 */
2452 	if ((ifp->if_capenable & IFCAP_RXCSUM) || IGB_ENABLE_HWRSS(sc)) {
2453 		/*
2454 		 * NOTE:
2455 		 * PCSD must be enabled to enable multiple
2456 		 * receive queues.
2457 		 */
2458 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2459 		    E1000_RXCSUM_PCSD;
2460 	} else {
2461 		rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2462 		    E1000_RXCSUM_PCSD);
2463 	}
2464 	E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2465 
2466 	if (sc->rx_ring_inuse > 1) {
2467 		uint8_t key[IGB_NRSSRK * IGB_RSSRK_SIZE];
2468 		const struct if_ringmap *rm;
2469 		uint32_t reta_shift;
2470 		int j, r;
2471 
2472 		/*
2473 		 * NOTE:
2474 		 * When we reach here, RSS has already been disabled
2475 		 * in igb_stop(), so we could safely configure RSS key
2476 		 * and redirect table.
2477 		 */
2478 
2479 		/*
2480 		 * Configure RSS key
2481 		 */
2482 		toeplitz_get_key(key, sizeof(key));
2483 		for (i = 0; i < IGB_NRSSRK; ++i) {
2484 			uint32_t rssrk;
2485 
2486 			rssrk = IGB_RSSRK_VAL(key, i);
2487 			IGB_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2488 
2489 			E1000_WRITE_REG(hw, E1000_RSSRK(i), rssrk);
2490 		}
2491 
2492 		/*
2493 		 * Configure RSS redirect table
2494 		 */
2495 		if (polling)
2496 			rm = sc->rx_rmap;
2497 		else
2498 			rm = sc->rx_rmap_intr;
2499 		if_ringmap_rdrtable(rm, sc->rdr_table, IGB_RDRTABLE_SIZE);
2500 
2501 		reta_shift = IGB_RETA_SHIFT;
2502 		if (hw->mac.type == e1000_82575)
2503 			reta_shift = IGB_RETA_SHIFT_82575;
2504 
2505 		r = 0;
2506 		for (j = 0; j < IGB_NRETA; ++j) {
2507 			uint32_t reta = 0;
2508 
2509 			for (i = 0; i < IGB_RETA_SIZE; ++i) {
2510 				uint32_t q;
2511 
2512 				q = sc->rdr_table[r] << reta_shift;
2513 				reta |= q << (8 * i);
2514 				++r;
2515 			}
2516 			IGB_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2517 			E1000_WRITE_REG(hw, E1000_RETA(j), reta);
2518 		}
2519 
2520 		/*
2521 		 * Enable multiple receive queues.
2522 		 * Enable IPv4 RSS standard hash functions.
2523 		 * Disable RSS interrupt on 82575
2524 		 */
2525 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2526 				E1000_MRQC_ENABLE_RSS_4Q |
2527 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
2528 				E1000_MRQC_RSS_FIELD_IPV4);
2529 	}
2530 
2531 	/* Setup the Receive Control Register */
2532 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2533 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2534 	    E1000_RCTL_RDMTS_HALF |
2535 	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2536 	/* Strip CRC bytes. */
2537 	rctl |= E1000_RCTL_SECRC;
2538 	/* Make sure VLAN Filters are off */
2539 	rctl &= ~E1000_RCTL_VFE;
2540 	/* Don't store bad packets */
2541 	rctl &= ~E1000_RCTL_SBP;
2542 
2543 	/* Enable Receives */
2544 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2545 
2546 	/*
2547 	 * Setup the HW Rx Head and Tail Descriptor Pointers
2548 	 *   - needs to be after enable
2549 	 */
2550 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
2551 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
2552 
2553 		E1000_WRITE_REG(hw, E1000_RDH(i), rxr->next_to_check);
2554 		E1000_WRITE_REG(hw, E1000_RDT(i), rxr->num_rx_desc - 1);
2555 	}
2556 }
2557 
2558 static void
2559 igb_rx_refresh(struct igb_rx_ring *rxr, int i)
2560 {
2561 	if (--i < 0)
2562 		i = rxr->num_rx_desc - 1;
2563 	E1000_WRITE_REG(&rxr->sc->hw, E1000_RDT(rxr->me), i);
2564 }
2565 
2566 static void
2567 igb_rxeof(struct igb_rx_ring *rxr, int count)
2568 {
2569 	struct ifnet *ifp = &rxr->sc->arpcom.ac_if;
2570 	union e1000_adv_rx_desc	*cur;
2571 	uint32_t staterr;
2572 	int i, ncoll = 0, cpuid = mycpuid;
2573 
2574 	i = rxr->next_to_check;
2575 	cur = &rxr->rx_base[i];
2576 	staterr = le32toh(cur->wb.upper.status_error);
2577 
2578 	if ((staterr & E1000_RXD_STAT_DD) == 0)
2579 		return;
2580 
2581 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2582 		struct pktinfo *pi = NULL, pi0;
2583 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2584 		struct mbuf *m = NULL;
2585 		boolean_t eop;
2586 
2587 		eop = (staterr & E1000_RXD_STAT_EOP) ? TRUE : FALSE;
2588 		if (eop)
2589 			--count;
2590 
2591 		++ncoll;
2592 		if ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) == 0 &&
2593 		    !rxr->discard) {
2594 			struct mbuf *mp = rxbuf->m_head;
2595 			uint32_t hash, hashtype;
2596 			uint16_t vlan;
2597 			int len;
2598 
2599 			len = le16toh(cur->wb.upper.length);
2600 			if ((rxr->sc->hw.mac.type == e1000_i350 ||
2601 			     rxr->sc->hw.mac.type == e1000_i354) &&
2602 			    (staterr & E1000_RXDEXT_STATERR_LB))
2603 				vlan = be16toh(cur->wb.upper.vlan);
2604 			else
2605 				vlan = le16toh(cur->wb.upper.vlan);
2606 
2607 			hash = le32toh(cur->wb.lower.hi_dword.rss);
2608 			hashtype = le32toh(cur->wb.lower.lo_dword.data) &
2609 			    E1000_RXDADV_RSSTYPE_MASK;
2610 
2611 			IGB_RSS_DPRINTF(rxr->sc, 10,
2612 			    "ring%d, hash 0x%08x, hashtype %u\n",
2613 			    rxr->me, hash, hashtype);
2614 
2615 			bus_dmamap_sync(rxr->rx_tag, rxbuf->map,
2616 			    BUS_DMASYNC_POSTREAD);
2617 
2618 			if (igb_newbuf(rxr, i, FALSE) != 0) {
2619 				IFNET_STAT_INC(ifp, iqdrops, 1);
2620 				goto discard;
2621 			}
2622 
2623 			mp->m_len = len;
2624 			if (rxr->fmp == NULL) {
2625 				mp->m_pkthdr.len = len;
2626 				rxr->fmp = mp;
2627 				rxr->lmp = mp;
2628 			} else {
2629 				rxr->lmp->m_next = mp;
2630 				rxr->lmp = rxr->lmp->m_next;
2631 				rxr->fmp->m_pkthdr.len += len;
2632 			}
2633 
2634 			if (eop) {
2635 				m = rxr->fmp;
2636 				rxr->fmp = NULL;
2637 				rxr->lmp = NULL;
2638 
2639 				m->m_pkthdr.rcvif = ifp;
2640 				IFNET_STAT_INC(ifp, ipackets, 1);
2641 
2642 				if (ifp->if_capenable & IFCAP_RXCSUM)
2643 					igb_rxcsum(staterr, m);
2644 
2645 				if (staterr & E1000_RXD_STAT_VP) {
2646 					m->m_pkthdr.ether_vlantag = vlan;
2647 					m->m_flags |= M_VLANTAG;
2648 				}
2649 
2650 				if (ifp->if_capenable & IFCAP_RSS) {
2651 					pi = igb_rssinfo(m, &pi0,
2652 					    hash, hashtype, staterr);
2653 				}
2654 #ifdef IGB_RSS_DEBUG
2655 				rxr->rx_packets++;
2656 #endif
2657 			}
2658 		} else {
2659 			IFNET_STAT_INC(ifp, ierrors, 1);
2660 discard:
2661 			igb_setup_rxdesc(cur, rxbuf);
2662 			if (!eop)
2663 				rxr->discard = TRUE;
2664 			else
2665 				rxr->discard = FALSE;
2666 			if (rxr->fmp != NULL) {
2667 				m_freem(rxr->fmp);
2668 				rxr->fmp = NULL;
2669 				rxr->lmp = NULL;
2670 			}
2671 			m = NULL;
2672 		}
2673 
2674 		if (m != NULL)
2675 			ifp->if_input(ifp, m, pi, cpuid);
2676 
2677 		/* Advance our pointers to the next descriptor. */
2678 		if (++i == rxr->num_rx_desc)
2679 			i = 0;
2680 
2681 		if (ncoll >= rxr->wreg_nsegs) {
2682 			igb_rx_refresh(rxr, i);
2683 			ncoll = 0;
2684 		}
2685 
2686 		cur = &rxr->rx_base[i];
2687 		staterr = le32toh(cur->wb.upper.status_error);
2688 	}
2689 	rxr->next_to_check = i;
2690 
2691 	if (ncoll > 0)
2692 		igb_rx_refresh(rxr, i);
2693 }
2694 
2695 
2696 static void
2697 igb_set_vlan(struct igb_softc *sc)
2698 {
2699 	struct e1000_hw *hw = &sc->hw;
2700 	uint32_t reg;
2701 #if 0
2702 	struct ifnet *ifp = sc->arpcom.ac_if;
2703 #endif
2704 
2705 	if (sc->vf_ifp) {
2706 		e1000_rlpml_set_vf(hw, sc->max_frame_size + VLAN_TAG_SIZE);
2707 		return;
2708 	}
2709 
2710 	reg = E1000_READ_REG(hw, E1000_CTRL);
2711 	reg |= E1000_CTRL_VME;
2712 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
2713 
2714 #if 0
2715 	/* Enable the Filter Table */
2716 	if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) {
2717 		reg = E1000_READ_REG(hw, E1000_RCTL);
2718 		reg &= ~E1000_RCTL_CFIEN;
2719 		reg |= E1000_RCTL_VFE;
2720 		E1000_WRITE_REG(hw, E1000_RCTL, reg);
2721 	}
2722 #endif
2723 
2724 	/* Update the frame size */
2725 	E1000_WRITE_REG(&sc->hw, E1000_RLPML,
2726 	    sc->max_frame_size + VLAN_TAG_SIZE);
2727 
2728 #if 0
2729 	/* Don't bother with table if no vlans */
2730 	if ((adapter->num_vlans == 0) ||
2731 	    ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0))
2732 		return;
2733 	/*
2734 	** A soft reset zero's out the VFTA, so
2735 	** we need to repopulate it now.
2736 	*/
2737 	for (int i = 0; i < IGB_VFTA_SIZE; i++)
2738 		if (adapter->shadow_vfta[i] != 0) {
2739 			if (adapter->vf_ifp)
2740 				e1000_vfta_set_vf(hw,
2741 				    adapter->shadow_vfta[i], TRUE);
2742 			else
2743 				E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
2744 				 i, adapter->shadow_vfta[i]);
2745 		}
2746 #endif
2747 }
2748 
2749 static void
2750 igb_enable_intr(struct igb_softc *sc)
2751 {
2752 	int i;
2753 
2754 	for (i = 0; i < sc->intr_cnt; ++i)
2755 		lwkt_serialize_handler_enable(sc->intr_data[i].intr_serialize);
2756 
2757 	if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2758 		if (sc->intr_type == PCI_INTR_TYPE_MSIX)
2759 			E1000_WRITE_REG(&sc->hw, E1000_EIAC, sc->intr_mask);
2760 		else
2761 			E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2762 		E1000_WRITE_REG(&sc->hw, E1000_EIAM, sc->intr_mask);
2763 		E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
2764 		E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
2765 	} else {
2766 		E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
2767 	}
2768 	E1000_WRITE_FLUSH(&sc->hw);
2769 }
2770 
2771 static void
2772 igb_disable_intr(struct igb_softc *sc)
2773 {
2774 	int i;
2775 
2776 	if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2777 		E1000_WRITE_REG(&sc->hw, E1000_EIMC, 0xffffffff);
2778 		E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2779 	}
2780 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
2781 	E1000_WRITE_FLUSH(&sc->hw);
2782 
2783 	for (i = 0; i < sc->intr_cnt; ++i)
2784 		lwkt_serialize_handler_disable(sc->intr_data[i].intr_serialize);
2785 }
2786 
2787 /*
2788  * Bit of a misnomer, what this really means is
2789  * to enable OS management of the system... aka
2790  * to disable special hardware management features
2791  */
2792 static void
2793 igb_get_mgmt(struct igb_softc *sc)
2794 {
2795 	if (sc->flags & IGB_FLAG_HAS_MGMT) {
2796 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
2797 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2798 
2799 		/* disable hardware interception of ARP */
2800 		manc &= ~E1000_MANC_ARP_EN;
2801 
2802 		/* enable receiving management packets to the host */
2803 		manc |= E1000_MANC_EN_MNG2HOST;
2804 		manc2h |= 1 << 5; /* Mng Port 623 */
2805 		manc2h |= 1 << 6; /* Mng Port 664 */
2806 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
2807 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2808 	}
2809 }
2810 
2811 /*
2812  * Give control back to hardware management controller
2813  * if there is one.
2814  */
2815 static void
2816 igb_rel_mgmt(struct igb_softc *sc)
2817 {
2818 	if (sc->flags & IGB_FLAG_HAS_MGMT) {
2819 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2820 
2821 		/* Re-enable hardware interception of ARP */
2822 		manc |= E1000_MANC_ARP_EN;
2823 		manc &= ~E1000_MANC_EN_MNG2HOST;
2824 
2825 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2826 	}
2827 }
2828 
2829 /*
2830  * Sets CTRL_EXT:DRV_LOAD bit.
2831  *
2832  * For ASF and Pass Through versions of f/w this means that
2833  * the driver is loaded.
2834  */
2835 static void
2836 igb_get_hw_control(struct igb_softc *sc)
2837 {
2838 	uint32_t ctrl_ext;
2839 
2840 	if (sc->vf_ifp)
2841 		return;
2842 
2843 	/* Let firmware know the driver has taken over */
2844 	ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2845 	E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2846 	    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2847 }
2848 
2849 /*
2850  * Resets CTRL_EXT:DRV_LOAD bit.
2851  *
2852  * For ASF and Pass Through versions of f/w this means that the
2853  * driver is no longer loaded.
2854  */
2855 static void
2856 igb_rel_hw_control(struct igb_softc *sc)
2857 {
2858 	uint32_t ctrl_ext;
2859 
2860 	if (sc->vf_ifp)
2861 		return;
2862 
2863 	/* Let firmware taken over control of h/w */
2864 	ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2865 	E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2866 	    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2867 }
2868 
2869 static boolean_t
2870 igb_is_valid_ether_addr(const uint8_t *addr)
2871 {
2872 	uint8_t zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
2873 
2874 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
2875 		return FALSE;
2876 	return TRUE;
2877 }
2878 
2879 /*
2880  * Enable PCI Wake On Lan capability
2881  */
2882 static void
2883 igb_enable_wol(device_t dev)
2884 {
2885 	uint16_t cap, status;
2886 	uint8_t id;
2887 
2888 	/* First find the capabilities pointer*/
2889 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
2890 
2891 	/* Read the PM Capabilities */
2892 	id = pci_read_config(dev, cap, 1);
2893 	if (id != PCIY_PMG)     /* Something wrong */
2894 		return;
2895 
2896 	/*
2897 	 * OK, we have the power capabilities,
2898 	 * so now get the status register
2899 	 */
2900 	cap += PCIR_POWER_STATUS;
2901 	status = pci_read_config(dev, cap, 2);
2902 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2903 	pci_write_config(dev, cap, status, 2);
2904 }
2905 
2906 static void
2907 igb_update_stats_counters(struct igb_softc *sc)
2908 {
2909 	struct e1000_hw *hw = &sc->hw;
2910 	struct e1000_hw_stats *stats;
2911 	struct ifnet *ifp = &sc->arpcom.ac_if;
2912 
2913 	/*
2914 	 * The virtual function adapter has only a
2915 	 * small controlled set of stats, do only
2916 	 * those and return.
2917 	 */
2918 	if (sc->vf_ifp) {
2919 		igb_update_vf_stats_counters(sc);
2920 		return;
2921 	}
2922 	stats = sc->stats;
2923 
2924 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
2925 	    (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
2926 		stats->symerrs +=
2927 		    E1000_READ_REG(hw,E1000_SYMERRS);
2928 		stats->sec += E1000_READ_REG(hw, E1000_SEC);
2929 	}
2930 
2931 	stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
2932 	stats->mpc += E1000_READ_REG(hw, E1000_MPC);
2933 	stats->scc += E1000_READ_REG(hw, E1000_SCC);
2934 	stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
2935 
2936 	stats->mcc += E1000_READ_REG(hw, E1000_MCC);
2937 	stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
2938 	stats->colc += E1000_READ_REG(hw, E1000_COLC);
2939 	stats->dc += E1000_READ_REG(hw, E1000_DC);
2940 	stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
2941 	stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
2942 	stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
2943 
2944 	/*
2945 	 * For watchdog management we need to know if we have been
2946 	 * paused during the last interval, so capture that here.
2947 	 */
2948 	sc->pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
2949 	stats->xoffrxc += sc->pause_frames;
2950 	stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
2951 	stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
2952 	stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
2953 	stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
2954 	stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
2955 	stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
2956 	stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
2957 	stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
2958 	stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
2959 	stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
2960 	stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
2961 	stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
2962 
2963 	/* For the 64-bit byte counters the low dword must be read first. */
2964 	/* Both registers clear on the read of the high dword */
2965 
2966 	stats->gorc += E1000_READ_REG(hw, E1000_GORCL) +
2967 	    ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
2968 	stats->gotc += E1000_READ_REG(hw, E1000_GOTCL) +
2969 	    ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
2970 
2971 	stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
2972 	stats->ruc += E1000_READ_REG(hw, E1000_RUC);
2973 	stats->rfc += E1000_READ_REG(hw, E1000_RFC);
2974 	stats->roc += E1000_READ_REG(hw, E1000_ROC);
2975 	stats->rjc += E1000_READ_REG(hw, E1000_RJC);
2976 
2977 	stats->tor += E1000_READ_REG(hw, E1000_TORH);
2978 	stats->tot += E1000_READ_REG(hw, E1000_TOTH);
2979 
2980 	stats->tpr += E1000_READ_REG(hw, E1000_TPR);
2981 	stats->tpt += E1000_READ_REG(hw, E1000_TPT);
2982 	stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
2983 	stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
2984 	stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
2985 	stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
2986 	stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
2987 	stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
2988 	stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
2989 	stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
2990 
2991 	/* Interrupt Counts */
2992 
2993 	stats->iac += E1000_READ_REG(hw, E1000_IAC);
2994 	stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
2995 	stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
2996 	stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
2997 	stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
2998 	stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
2999 	stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
3000 	stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
3001 	stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
3002 
3003 	/* Host to Card Statistics */
3004 
3005 	stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
3006 	stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
3007 	stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
3008 	stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
3009 	stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
3010 	stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
3011 	stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
3012 	stats->hgorc += (E1000_READ_REG(hw, E1000_HGORCL) +
3013 	    ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32));
3014 	stats->hgotc += (E1000_READ_REG(hw, E1000_HGOTCL) +
3015 	    ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32));
3016 	stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
3017 	stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
3018 	stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
3019 
3020 	stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
3021 	stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
3022 	stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
3023 	stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
3024 	stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
3025 	stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
3026 
3027 	IFNET_STAT_SET(ifp, collisions, stats->colc);
3028 
3029 	/* Rx Errors */
3030 	IFNET_STAT_SET(ifp, ierrors,
3031 	    stats->rxerrc + stats->crcerrs + stats->algnerrc +
3032 	    stats->ruc + stats->roc + stats->mpc + stats->cexterr);
3033 
3034 	/* Tx Errors */
3035 	IFNET_STAT_SET(ifp, oerrors,
3036 	    stats->ecol + stats->latecol + sc->watchdog_events);
3037 
3038 	/* Driver specific counters */
3039 	sc->device_control = E1000_READ_REG(hw, E1000_CTRL);
3040 	sc->rx_control = E1000_READ_REG(hw, E1000_RCTL);
3041 	sc->int_mask = E1000_READ_REG(hw, E1000_IMS);
3042 	sc->eint_mask = E1000_READ_REG(hw, E1000_EIMS);
3043 	sc->packet_buf_alloc_tx =
3044 	    ((E1000_READ_REG(hw, E1000_PBA) & 0xffff0000) >> 16);
3045 	sc->packet_buf_alloc_rx =
3046 	    (E1000_READ_REG(hw, E1000_PBA) & 0xffff);
3047 }
3048 
3049 static void
3050 igb_vf_init_stats(struct igb_softc *sc)
3051 {
3052 	struct e1000_hw *hw = &sc->hw;
3053 	struct e1000_vf_stats *stats;
3054 
3055 	stats = sc->stats;
3056 	stats->last_gprc = E1000_READ_REG(hw, E1000_VFGPRC);
3057 	stats->last_gorc = E1000_READ_REG(hw, E1000_VFGORC);
3058 	stats->last_gptc = E1000_READ_REG(hw, E1000_VFGPTC);
3059 	stats->last_gotc = E1000_READ_REG(hw, E1000_VFGOTC);
3060 	stats->last_mprc = E1000_READ_REG(hw, E1000_VFMPRC);
3061 }
3062 
3063 static void
3064 igb_update_vf_stats_counters(struct igb_softc *sc)
3065 {
3066 	struct e1000_hw *hw = &sc->hw;
3067 	struct e1000_vf_stats *stats;
3068 
3069 	if (sc->link_speed == 0)
3070 		return;
3071 
3072 	stats = sc->stats;
3073 	UPDATE_VF_REG(E1000_VFGPRC, stats->last_gprc, stats->gprc);
3074 	UPDATE_VF_REG(E1000_VFGORC, stats->last_gorc, stats->gorc);
3075 	UPDATE_VF_REG(E1000_VFGPTC, stats->last_gptc, stats->gptc);
3076 	UPDATE_VF_REG(E1000_VFGOTC, stats->last_gotc, stats->gotc);
3077 	UPDATE_VF_REG(E1000_VFMPRC, stats->last_mprc, stats->mprc);
3078 }
3079 
3080 #ifdef IFPOLL_ENABLE
3081 
3082 static void
3083 igb_npoll_status(struct ifnet *ifp)
3084 {
3085 	struct igb_softc *sc = ifp->if_softc;
3086 	uint32_t reg_icr;
3087 
3088 	ASSERT_SERIALIZED(&sc->main_serialize);
3089 
3090 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3091 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3092 		sc->hw.mac.get_link_status = 1;
3093 		igb_update_link_status(sc);
3094 	}
3095 }
3096 
3097 static void
3098 igb_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
3099 {
3100 	struct igb_tx_ring *txr = arg;
3101 
3102 	ASSERT_SERIALIZED(&txr->tx_serialize);
3103 
3104 	igb_txeof(txr, *(txr->tx_hdr));
3105 	if (!ifsq_is_empty(txr->ifsq))
3106 		ifsq_devstart(txr->ifsq);
3107 }
3108 
3109 static void
3110 igb_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
3111 {
3112 	struct igb_rx_ring *rxr = arg;
3113 
3114 	ASSERT_SERIALIZED(&rxr->rx_serialize);
3115 
3116 	igb_rxeof(rxr, cycle);
3117 }
3118 
3119 static void
3120 igb_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3121 {
3122 	struct igb_softc *sc = ifp->if_softc;
3123 	int i, txr_cnt, rxr_cnt;
3124 
3125 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3126 
3127 	if (info) {
3128 		int cpu;
3129 
3130 		info->ifpi_status.status_func = igb_npoll_status;
3131 		info->ifpi_status.serializer = &sc->main_serialize;
3132 
3133 		txr_cnt = igb_get_txring_inuse(sc, TRUE);
3134 		for (i = 0; i < txr_cnt; ++i) {
3135 			struct igb_tx_ring *txr = &sc->tx_rings[i];
3136 
3137 			cpu = if_ringmap_cpumap(sc->tx_rmap, i);
3138 			KKASSERT(cpu < netisr_ncpus);
3139 			info->ifpi_tx[cpu].poll_func = igb_npoll_tx;
3140 			info->ifpi_tx[cpu].arg = txr;
3141 			info->ifpi_tx[cpu].serializer = &txr->tx_serialize;
3142 			ifsq_set_cpuid(txr->ifsq, cpu);
3143 		}
3144 
3145 		rxr_cnt = igb_get_rxring_inuse(sc, TRUE);
3146 		for (i = 0; i < rxr_cnt; ++i) {
3147 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
3148 
3149 			cpu = if_ringmap_cpumap(sc->rx_rmap, i);
3150 			KKASSERT(cpu < netisr_ncpus);
3151 			info->ifpi_rx[cpu].poll_func = igb_npoll_rx;
3152 			info->ifpi_rx[cpu].arg = rxr;
3153 			info->ifpi_rx[cpu].serializer = &rxr->rx_serialize;
3154 		}
3155 	} else {
3156 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
3157 			struct igb_tx_ring *txr = &sc->tx_rings[i];
3158 
3159 			ifsq_set_cpuid(txr->ifsq, txr->tx_intr_cpuid);
3160 		}
3161 	}
3162 	if (ifp->if_flags & IFF_RUNNING)
3163 		igb_init(sc);
3164 }
3165 
3166 #endif /* IFPOLL_ENABLE */
3167 
3168 static void
3169 igb_intr(void *xsc)
3170 {
3171 	struct igb_softc *sc = xsc;
3172 	struct ifnet *ifp = &sc->arpcom.ac_if;
3173 	uint32_t eicr;
3174 
3175 	ASSERT_SERIALIZED(&sc->main_serialize);
3176 
3177 	eicr = E1000_READ_REG(&sc->hw, E1000_EICR);
3178 
3179 	if (eicr == 0)
3180 		return;
3181 
3182 	if (ifp->if_flags & IFF_RUNNING) {
3183 		struct igb_tx_ring *txr = &sc->tx_rings[0];
3184 		int i;
3185 
3186 		for (i = 0; i < sc->rx_ring_inuse; ++i) {
3187 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
3188 
3189 			if (eicr & rxr->rx_intr_mask) {
3190 				lwkt_serialize_enter(&rxr->rx_serialize);
3191 				igb_rxeof(rxr, -1);
3192 				lwkt_serialize_exit(&rxr->rx_serialize);
3193 			}
3194 		}
3195 
3196 		if (eicr & txr->tx_intr_mask) {
3197 			lwkt_serialize_enter(&txr->tx_serialize);
3198 			igb_txeof(txr, *(txr->tx_hdr));
3199 			if (!ifsq_is_empty(txr->ifsq))
3200 				ifsq_devstart(txr->ifsq);
3201 			lwkt_serialize_exit(&txr->tx_serialize);
3202 		}
3203 	}
3204 
3205 	if (eicr & E1000_EICR_OTHER) {
3206 		uint32_t icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3207 
3208 		/* Link status change */
3209 		if (icr & E1000_ICR_LSC) {
3210 			sc->hw.mac.get_link_status = 1;
3211 			igb_update_link_status(sc);
3212 		}
3213 	}
3214 
3215 	/*
3216 	 * Reading EICR has the side effect to clear interrupt mask,
3217 	 * so all interrupts need to be enabled here.
3218 	 */
3219 	E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
3220 }
3221 
3222 static void
3223 igb_intr_shared(void *xsc)
3224 {
3225 	struct igb_softc *sc = xsc;
3226 	struct ifnet *ifp = &sc->arpcom.ac_if;
3227 	uint32_t reg_icr;
3228 
3229 	ASSERT_SERIALIZED(&sc->main_serialize);
3230 
3231 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3232 
3233 	/* Hot eject?  */
3234 	if (reg_icr == 0xffffffff)
3235 		return;
3236 
3237 	/* Definitely not our interrupt.  */
3238 	if (reg_icr == 0x0)
3239 		return;
3240 
3241 	if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0)
3242 		return;
3243 
3244 	if (ifp->if_flags & IFF_RUNNING) {
3245 		if (reg_icr &
3246 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
3247 			int i;
3248 
3249 			for (i = 0; i < sc->rx_ring_inuse; ++i) {
3250 				struct igb_rx_ring *rxr = &sc->rx_rings[i];
3251 
3252 				lwkt_serialize_enter(&rxr->rx_serialize);
3253 				igb_rxeof(rxr, -1);
3254 				lwkt_serialize_exit(&rxr->rx_serialize);
3255 			}
3256 		}
3257 
3258 		if (reg_icr & E1000_ICR_TXDW) {
3259 			struct igb_tx_ring *txr = &sc->tx_rings[0];
3260 
3261 			lwkt_serialize_enter(&txr->tx_serialize);
3262 			igb_txeof(txr, *(txr->tx_hdr));
3263 			if (!ifsq_is_empty(txr->ifsq))
3264 				ifsq_devstart(txr->ifsq);
3265 			lwkt_serialize_exit(&txr->tx_serialize);
3266 		}
3267 	}
3268 
3269 	/* Link status change */
3270 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3271 		sc->hw.mac.get_link_status = 1;
3272 		igb_update_link_status(sc);
3273 	}
3274 
3275 	if (reg_icr & E1000_ICR_RXO)
3276 		sc->rx_overruns++;
3277 }
3278 
3279 static int
3280 igb_encap(struct igb_tx_ring *txr, struct mbuf **m_headp,
3281     int *segs_used, int *idx)
3282 {
3283 	bus_dma_segment_t segs[IGB_MAX_SCATTER];
3284 	bus_dmamap_t map;
3285 	struct igb_tx_buf *tx_buf, *tx_buf_mapped;
3286 	union e1000_adv_tx_desc	*txd = NULL;
3287 	struct mbuf *m_head = *m_headp;
3288 	uint32_t olinfo_status = 0, cmd_type_len = 0, cmd_rs = 0;
3289 	int maxsegs, nsegs, i, j, error;
3290 	uint32_t hdrlen = 0;
3291 
3292 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3293 		error = igb_tso_pullup(txr, m_headp);
3294 		if (error)
3295 			return error;
3296 		m_head = *m_headp;
3297 	}
3298 
3299 	/* Set basic descriptor constants */
3300 	cmd_type_len |= E1000_ADVTXD_DTYP_DATA;
3301 	cmd_type_len |= E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
3302 	if (m_head->m_flags & M_VLANTAG)
3303 		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3304 
3305 	/*
3306 	 * Map the packet for DMA.
3307 	 */
3308 	tx_buf = &txr->tx_buf[txr->next_avail_desc];
3309 	tx_buf_mapped = tx_buf;
3310 	map = tx_buf->map;
3311 
3312 	maxsegs = txr->tx_avail - IGB_TX_RESERVED;
3313 	if (maxsegs > IGB_MAX_SCATTER)
3314 		maxsegs = IGB_MAX_SCATTER;
3315 
3316 	error = bus_dmamap_load_mbuf_defrag(txr->tx_tag, map, m_headp,
3317 	    segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3318 	if (error) {
3319 		if (error == ENOBUFS)
3320 			txr->sc->mbuf_defrag_failed++;
3321 		else
3322 			txr->sc->no_tx_dma_setup++;
3323 
3324 		m_freem(*m_headp);
3325 		*m_headp = NULL;
3326 		return error;
3327 	}
3328 	bus_dmamap_sync(txr->tx_tag, map, BUS_DMASYNC_PREWRITE);
3329 
3330 	m_head = *m_headp;
3331 
3332 	/*
3333 	 * Set up the TX context descriptor, if any hardware offloading is
3334 	 * needed.  This includes CSUM, VLAN, and TSO.  It will consume one
3335 	 * TX descriptor.
3336 	 *
3337 	 * Unlike these chips' predecessors (em/emx), TX context descriptor
3338 	 * will _not_ interfere TX data fetching pipelining.
3339 	 */
3340 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3341 		igb_tso_ctx(txr, m_head, &hdrlen);
3342 		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3343 		olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3344 		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3345 		txr->tx_nsegs++;
3346 		(*segs_used)++;
3347 	} else if (igb_txcsum_ctx(txr, m_head)) {
3348 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3349 			olinfo_status |= (E1000_TXD_POPTS_IXSM << 8);
3350 		if (m_head->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_TCP))
3351 			olinfo_status |= (E1000_TXD_POPTS_TXSM << 8);
3352 		txr->tx_nsegs++;
3353 		(*segs_used)++;
3354 	}
3355 
3356 	*segs_used += nsegs;
3357 	txr->tx_nsegs += nsegs;
3358 	if (txr->tx_nsegs >= txr->intr_nsegs) {
3359 		/*
3360 		 * Report Status (RS) is turned on every intr_nsegs
3361 		 * descriptors (roughly).
3362 		 */
3363 		txr->tx_nsegs = 0;
3364 		cmd_rs = E1000_ADVTXD_DCMD_RS;
3365 	}
3366 
3367 	/* Calculate payload length */
3368 	olinfo_status |= ((m_head->m_pkthdr.len - hdrlen)
3369 	    << E1000_ADVTXD_PAYLEN_SHIFT);
3370 
3371 	/*
3372 	 * 82575 needs the TX context index added; the queue
3373 	 * index is used as TX context index here.
3374 	 */
3375 	if (txr->sc->hw.mac.type == e1000_82575)
3376 		olinfo_status |= txr->me << 4;
3377 
3378 	/* Set up our transmit descriptors */
3379 	i = txr->next_avail_desc;
3380 	for (j = 0; j < nsegs; j++) {
3381 		bus_size_t seg_len;
3382 		bus_addr_t seg_addr;
3383 
3384 		tx_buf = &txr->tx_buf[i];
3385 		txd = (union e1000_adv_tx_desc *)&txr->tx_base[i];
3386 		seg_addr = segs[j].ds_addr;
3387 		seg_len = segs[j].ds_len;
3388 
3389 		txd->read.buffer_addr = htole64(seg_addr);
3390 		txd->read.cmd_type_len = htole32(cmd_type_len | seg_len);
3391 		txd->read.olinfo_status = htole32(olinfo_status);
3392 		if (++i == txr->num_tx_desc)
3393 			i = 0;
3394 		tx_buf->m_head = NULL;
3395 	}
3396 
3397 	KASSERT(txr->tx_avail > nsegs, ("invalid avail TX desc\n"));
3398 	txr->next_avail_desc = i;
3399 	txr->tx_avail -= nsegs;
3400 
3401 	tx_buf->m_head = m_head;
3402 	tx_buf_mapped->map = tx_buf->map;
3403 	tx_buf->map = map;
3404 
3405 	/*
3406 	 * Last Descriptor of Packet needs End Of Packet (EOP)
3407 	 */
3408 	txd->read.cmd_type_len |= htole32(E1000_ADVTXD_DCMD_EOP | cmd_rs);
3409 
3410 	/*
3411 	 * Defer TDT updating, until enough descrptors are setup
3412 	 */
3413 	*idx = i;
3414 #ifdef IGB_TSS_DEBUG
3415 	++txr->tx_packets;
3416 #endif
3417 
3418 	return 0;
3419 }
3420 
3421 static void
3422 igb_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
3423 {
3424 	struct igb_softc *sc = ifp->if_softc;
3425 	struct igb_tx_ring *txr = ifsq_get_priv(ifsq);
3426 	struct mbuf *m_head;
3427 	int idx = -1, nsegs = 0;
3428 
3429 	KKASSERT(txr->ifsq == ifsq);
3430 	ASSERT_SERIALIZED(&txr->tx_serialize);
3431 
3432 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq))
3433 		return;
3434 
3435 	if (!sc->link_active || (txr->tx_flags & IGB_TXFLAG_ENABLED) == 0) {
3436 		ifsq_purge(ifsq);
3437 		return;
3438 	}
3439 
3440 	while (!ifsq_is_empty(ifsq)) {
3441 		if (txr->tx_avail <= IGB_MAX_SCATTER + IGB_TX_RESERVED) {
3442 			ifsq_set_oactive(ifsq);
3443 			/* Set watchdog on */
3444 			txr->tx_watchdog.wd_timer = 5;
3445 			break;
3446 		}
3447 
3448 		m_head = ifsq_dequeue(ifsq);
3449 		if (m_head == NULL)
3450 			break;
3451 
3452 		if (igb_encap(txr, &m_head, &nsegs, &idx)) {
3453 			IFNET_STAT_INC(ifp, oerrors, 1);
3454 			continue;
3455 		}
3456 
3457 		/*
3458 		 * TX interrupt are aggressively aggregated, so increasing
3459 		 * opackets at TX interrupt time will make the opackets
3460 		 * statistics vastly inaccurate; we do the opackets increment
3461 		 * now.
3462 		 */
3463 		IFNET_STAT_INC(ifp, opackets, 1);
3464 
3465 		if (nsegs >= txr->wreg_nsegs) {
3466 			E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), idx);
3467 			idx = -1;
3468 			nsegs = 0;
3469 		}
3470 
3471 		/* Send a copy of the frame to the BPF listener */
3472 		ETHER_BPF_MTAP(ifp, m_head);
3473 	}
3474 	if (idx >= 0)
3475 		E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), idx);
3476 }
3477 
3478 static void
3479 igb_watchdog(struct ifaltq_subque *ifsq)
3480 {
3481 	struct igb_tx_ring *txr = ifsq_get_priv(ifsq);
3482 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
3483 	struct igb_softc *sc = ifp->if_softc;
3484 	int i;
3485 
3486 	KKASSERT(txr->ifsq == ifsq);
3487 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3488 
3489 	/*
3490 	 * If flow control has paused us since last checking
3491 	 * it invalidates the watchdog timing, so dont run it.
3492 	 */
3493 	if (sc->pause_frames) {
3494 		sc->pause_frames = 0;
3495 		txr->tx_watchdog.wd_timer = 5;
3496 		return;
3497 	}
3498 
3499 	if_printf(ifp, "Watchdog timeout -- resetting\n");
3500 	if_printf(ifp, "Queue(%d) tdh = %d, hw tdt = %d\n", txr->me,
3501 	    E1000_READ_REG(&sc->hw, E1000_TDH(txr->me)),
3502 	    E1000_READ_REG(&sc->hw, E1000_TDT(txr->me)));
3503 	if_printf(ifp, "TX(%d) desc avail = %d, "
3504 	    "Next TX to Clean = %d\n",
3505 	    txr->me, txr->tx_avail, txr->next_to_clean);
3506 
3507 	IFNET_STAT_INC(ifp, oerrors, 1);
3508 	sc->watchdog_events++;
3509 
3510 	igb_init(sc);
3511 	for (i = 0; i < sc->tx_ring_inuse; ++i)
3512 		ifsq_devstart_sched(sc->tx_rings[i].ifsq);
3513 }
3514 
3515 static void
3516 igb_set_eitr(struct igb_softc *sc, int idx, int rate)
3517 {
3518 	uint32_t eitr = 0;
3519 
3520 	if (rate > 0) {
3521 		if (sc->hw.mac.type == e1000_82575) {
3522 			eitr = 1000000000 / 256 / rate;
3523 			/*
3524 			 * NOTE:
3525 			 * Document is wrong on the 2 bits left shift
3526 			 */
3527 		} else {
3528 			eitr = 1000000 / rate;
3529 			eitr <<= IGB_EITR_INTVL_SHIFT;
3530 		}
3531 
3532 		if (eitr == 0) {
3533 			/* Don't disable it */
3534 			eitr = 1 << IGB_EITR_INTVL_SHIFT;
3535 		} else if (eitr > IGB_EITR_INTVL_MASK) {
3536 			/* Don't allow it to be too large */
3537 			eitr = IGB_EITR_INTVL_MASK;
3538 		}
3539 	}
3540 	if (sc->hw.mac.type == e1000_82575)
3541 		eitr |= eitr << 16;
3542 	else
3543 		eitr |= E1000_EITR_CNT_IGNR;
3544 	E1000_WRITE_REG(&sc->hw, E1000_EITR(idx), eitr);
3545 }
3546 
3547 static void
3548 igb_add_intr_rate_sysctl(struct igb_softc *sc, int use,
3549     const char *name, const char *desc)
3550 {
3551 	int i;
3552 
3553 	for (i = 0; i < sc->intr_cnt; ++i) {
3554 		if (sc->intr_data[i].intr_use == use) {
3555 			SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
3556 			    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)),
3557 			    OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW,
3558 			    sc, use, igb_sysctl_intr_rate, "I", desc);
3559 			break;
3560 		}
3561 	}
3562 }
3563 
3564 static int
3565 igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS)
3566 {
3567 	struct igb_softc *sc = (void *)arg1;
3568 	int use = arg2;
3569 	struct ifnet *ifp = &sc->arpcom.ac_if;
3570 	int error, rate, i;
3571 	struct igb_intr_data *intr;
3572 
3573 	rate = 0;
3574 	for (i = 0; i < sc->intr_cnt; ++i) {
3575 		intr = &sc->intr_data[i];
3576 		if (intr->intr_use == use) {
3577 			rate = intr->intr_rate;
3578 			break;
3579 		}
3580 	}
3581 
3582 	error = sysctl_handle_int(oidp, &rate, 0, req);
3583 	if (error || req->newptr == NULL)
3584 		return error;
3585 	if (rate <= 0)
3586 		return EINVAL;
3587 
3588 	ifnet_serialize_all(ifp);
3589 
3590 	for (i = 0; i < sc->intr_cnt; ++i) {
3591 		intr = &sc->intr_data[i];
3592 		if (intr->intr_use == use && intr->intr_rate != rate) {
3593 			intr->intr_rate = rate;
3594 			if (ifp->if_flags & IFF_RUNNING)
3595 				igb_set_eitr(sc, i, rate);
3596 		}
3597 	}
3598 
3599 	ifnet_deserialize_all(ifp);
3600 
3601 	return error;
3602 }
3603 
3604 static int
3605 igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
3606 {
3607 	struct igb_softc *sc = (void *)arg1;
3608 	struct ifnet *ifp = &sc->arpcom.ac_if;
3609 	struct igb_tx_ring *txr = &sc->tx_rings[0];
3610 	int error, nsegs;
3611 
3612 	nsegs = txr->intr_nsegs;
3613 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3614 	if (error || req->newptr == NULL)
3615 		return error;
3616 	if (nsegs <= 0)
3617 		return EINVAL;
3618 
3619 	ifnet_serialize_all(ifp);
3620 
3621 	if (nsegs >= txr->num_tx_desc - IGB_MAX_SCATTER - IGB_TX_RESERVED) {
3622 		error = EINVAL;
3623 	} else {
3624 		int i;
3625 
3626 		error = 0;
3627 		for (i = 0; i < sc->tx_ring_cnt; ++i)
3628 			sc->tx_rings[i].intr_nsegs = nsegs;
3629 	}
3630 
3631 	ifnet_deserialize_all(ifp);
3632 
3633 	return error;
3634 }
3635 
3636 static int
3637 igb_sysctl_rx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3638 {
3639 	struct igb_softc *sc = (void *)arg1;
3640 	struct ifnet *ifp = &sc->arpcom.ac_if;
3641 	int error, nsegs, i;
3642 
3643 	nsegs = sc->rx_rings[0].wreg_nsegs;
3644 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3645 	if (error || req->newptr == NULL)
3646 		return error;
3647 
3648 	ifnet_serialize_all(ifp);
3649 	for (i = 0; i < sc->rx_ring_cnt; ++i)
3650 		sc->rx_rings[i].wreg_nsegs = nsegs;
3651 	ifnet_deserialize_all(ifp);
3652 
3653 	return 0;
3654 }
3655 
3656 static int
3657 igb_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3658 {
3659 	struct igb_softc *sc = (void *)arg1;
3660 	struct ifnet *ifp = &sc->arpcom.ac_if;
3661 	int error, nsegs, i;
3662 
3663 	nsegs = sc->tx_rings[0].wreg_nsegs;
3664 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3665 	if (error || req->newptr == NULL)
3666 		return error;
3667 
3668 	ifnet_serialize_all(ifp);
3669 	for (i = 0; i < sc->tx_ring_cnt; ++i)
3670 		sc->tx_rings[i].wreg_nsegs = nsegs;
3671 	ifnet_deserialize_all(ifp);
3672 
3673 	return 0;
3674 }
3675 
3676 static void
3677 igb_init_intr(struct igb_softc *sc)
3678 {
3679 	int i;
3680 
3681 	igb_set_intr_mask(sc);
3682 
3683 	if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0)
3684 		igb_init_unshared_intr(sc);
3685 
3686 	for (i = 0; i < sc->intr_cnt; ++i)
3687 		igb_set_eitr(sc, i, sc->intr_data[i].intr_rate);
3688 }
3689 
3690 static void
3691 igb_init_unshared_intr(struct igb_softc *sc)
3692 {
3693 	struct e1000_hw *hw = &sc->hw;
3694 	const struct igb_rx_ring *rxr;
3695 	const struct igb_tx_ring *txr;
3696 	uint32_t ivar, index;
3697 	int i;
3698 
3699 	/*
3700 	 * Enable extended mode
3701 	 */
3702 	if (sc->hw.mac.type != e1000_82575) {
3703 		uint32_t gpie;
3704 		int ivar_max;
3705 
3706 		gpie = E1000_GPIE_NSICR;
3707 		if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3708 			gpie |= E1000_GPIE_MSIX_MODE |
3709 			    E1000_GPIE_EIAME |
3710 			    E1000_GPIE_PBA;
3711 		}
3712 		E1000_WRITE_REG(hw, E1000_GPIE, gpie);
3713 
3714 		/*
3715 		 * Clear IVARs
3716 		 */
3717 		switch (sc->hw.mac.type) {
3718 		case e1000_82576:
3719 			ivar_max = IGB_MAX_IVAR_82576;
3720 			break;
3721 
3722 		case e1000_82580:
3723 			ivar_max = IGB_MAX_IVAR_82580;
3724 			break;
3725 
3726 		case e1000_i350:
3727 			ivar_max = IGB_MAX_IVAR_I350;
3728 			break;
3729 
3730 		case e1000_i354:
3731 			ivar_max = IGB_MAX_IVAR_I354;
3732 			break;
3733 
3734 		case e1000_vfadapt:
3735 		case e1000_vfadapt_i350:
3736 			ivar_max = IGB_MAX_IVAR_VF;
3737 			break;
3738 
3739 		case e1000_i210:
3740 			ivar_max = IGB_MAX_IVAR_I210;
3741 			break;
3742 
3743 		case e1000_i211:
3744 			ivar_max = IGB_MAX_IVAR_I211;
3745 			break;
3746 
3747 		default:
3748 			panic("unknown mac type %d\n", sc->hw.mac.type);
3749 		}
3750 		for (i = 0; i < ivar_max; ++i)
3751 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, i, 0);
3752 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, 0);
3753 	} else {
3754 		uint32_t tmp;
3755 
3756 		KASSERT(sc->intr_type != PCI_INTR_TYPE_MSIX,
3757 		    ("82575 w/ MSI-X"));
3758 		tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
3759 		tmp |= E1000_CTRL_EXT_IRCA;
3760 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
3761 	}
3762 
3763 	/*
3764 	 * Map TX/RX interrupts to EICR
3765 	 */
3766 	switch (sc->hw.mac.type) {
3767 	case e1000_82580:
3768 	case e1000_i350:
3769 	case e1000_i354:
3770 	case e1000_vfadapt:
3771 	case e1000_vfadapt_i350:
3772 	case e1000_i210:
3773 	case e1000_i211:
3774 		/* RX entries */
3775 		for (i = 0; i < sc->rx_ring_inuse; ++i) {
3776 			rxr = &sc->rx_rings[i];
3777 
3778 			index = i >> 1;
3779 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3780 
3781 			if (i & 1) {
3782 				ivar &= 0xff00ffff;
3783 				ivar |=
3784 				(rxr->rx_intr_vec | E1000_IVAR_VALID) << 16;
3785 			} else {
3786 				ivar &= 0xffffff00;
3787 				ivar |=
3788 				(rxr->rx_intr_vec | E1000_IVAR_VALID);
3789 			}
3790 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3791 		}
3792 		/* TX entries */
3793 		for (i = 0; i < sc->tx_ring_inuse; ++i) {
3794 			txr = &sc->tx_rings[i];
3795 
3796 			index = i >> 1;
3797 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3798 
3799 			if (i & 1) {
3800 				ivar &= 0x00ffffff;
3801 				ivar |=
3802 				(txr->tx_intr_vec | E1000_IVAR_VALID) << 24;
3803 			} else {
3804 				ivar &= 0xffff00ff;
3805 				ivar |=
3806 				(txr->tx_intr_vec | E1000_IVAR_VALID) << 8;
3807 			}
3808 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3809 		}
3810 		if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3811 			ivar = (sc->sts_msix_vec | E1000_IVAR_VALID) << 8;
3812 			E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3813 		}
3814 		break;
3815 
3816 	case e1000_82576:
3817 		/* RX entries */
3818 		for (i = 0; i < sc->rx_ring_inuse; ++i) {
3819 			rxr = &sc->rx_rings[i];
3820 
3821 			index = i & 0x7; /* Each IVAR has two entries */
3822 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3823 
3824 			if (i < 8) {
3825 				ivar &= 0xffffff00;
3826 				ivar |=
3827 				(rxr->rx_intr_vec | E1000_IVAR_VALID);
3828 			} else {
3829 				ivar &= 0xff00ffff;
3830 				ivar |=
3831 				(rxr->rx_intr_vec | E1000_IVAR_VALID) << 16;
3832 			}
3833 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3834 		}
3835 		/* TX entries */
3836 		for (i = 0; i < sc->tx_ring_inuse; ++i) {
3837 			txr = &sc->tx_rings[i];
3838 
3839 			index = i & 0x7; /* Each IVAR has two entries */
3840 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3841 
3842 			if (i < 8) {
3843 				ivar &= 0xffff00ff;
3844 				ivar |=
3845 				(txr->tx_intr_vec | E1000_IVAR_VALID) << 8;
3846 			} else {
3847 				ivar &= 0x00ffffff;
3848 				ivar |=
3849 				(txr->tx_intr_vec | E1000_IVAR_VALID) << 24;
3850 			}
3851 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3852 		}
3853 		if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3854 			ivar = (sc->sts_msix_vec | E1000_IVAR_VALID) << 8;
3855 			E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3856 		}
3857 		break;
3858 
3859 	case e1000_82575:
3860 		/*
3861 		 * Enable necessary interrupt bits.
3862 		 *
3863 		 * The name of the register is confusing; in addition to
3864 		 * configuring the first vector of MSI-X, it also configures
3865 		 * which bits of EICR could be set by the hardware even when
3866 		 * MSI or line interrupt is used; it thus controls interrupt
3867 		 * generation.  It MUST be configured explicitly; the default
3868 		 * value mentioned in the datasheet is wrong: RX queue0 and
3869 		 * TX queue0 are NOT enabled by default.
3870 		 */
3871 		E1000_WRITE_REG(&sc->hw, E1000_MSIXBM(0), sc->intr_mask);
3872 		break;
3873 
3874 	default:
3875 		panic("unknown mac type %d\n", sc->hw.mac.type);
3876 	}
3877 }
3878 
3879 static int
3880 igb_setup_intr(struct igb_softc *sc)
3881 {
3882 	int i;
3883 
3884 	for (i = 0; i < sc->intr_cnt; ++i) {
3885 		struct igb_intr_data *intr = &sc->intr_data[i];
3886 		int error;
3887 
3888 		error = bus_setup_intr_descr(sc->dev, intr->intr_res,
3889 		    INTR_MPSAFE, intr->intr_func, intr->intr_funcarg,
3890 		    &intr->intr_hand, intr->intr_serialize, intr->intr_desc);
3891 		if (error) {
3892 			device_printf(sc->dev, "can't setup %dth intr\n", i);
3893 			igb_teardown_intr(sc, i);
3894 			return error;
3895 		}
3896 	}
3897 	return 0;
3898 }
3899 
3900 static void
3901 igb_set_txintr_mask(struct igb_tx_ring *txr, int *intr_vec0, int intr_vecmax)
3902 {
3903 	if (txr->sc->hw.mac.type == e1000_82575) {
3904 		txr->tx_intr_vec = 0;	/* unused */
3905 		switch (txr->me) {
3906 		case 0:
3907 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE0;
3908 			break;
3909 		case 1:
3910 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE1;
3911 			break;
3912 		case 2:
3913 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE2;
3914 			break;
3915 		case 3:
3916 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE3;
3917 			break;
3918 		default:
3919 			panic("unsupported # of TX ring, %d\n", txr->me);
3920 		}
3921 	} else {
3922 		int intr_vec = *intr_vec0;
3923 
3924 		txr->tx_intr_vec = intr_vec % intr_vecmax;
3925 		txr->tx_intr_mask = 1 << txr->tx_intr_vec;
3926 
3927 		*intr_vec0 = intr_vec + 1;
3928 	}
3929 }
3930 
3931 static void
3932 igb_set_rxintr_mask(struct igb_rx_ring *rxr, int *intr_vec0, int intr_vecmax)
3933 {
3934 	if (rxr->sc->hw.mac.type == e1000_82575) {
3935 		rxr->rx_intr_vec = 0;	/* unused */
3936 		switch (rxr->me) {
3937 		case 0:
3938 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE0;
3939 			break;
3940 		case 1:
3941 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE1;
3942 			break;
3943 		case 2:
3944 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE2;
3945 			break;
3946 		case 3:
3947 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE3;
3948 			break;
3949 		default:
3950 			panic("unsupported # of RX ring, %d\n", rxr->me);
3951 		}
3952 	} else {
3953 		int intr_vec = *intr_vec0;
3954 
3955 		rxr->rx_intr_vec = intr_vec % intr_vecmax;
3956 		rxr->rx_intr_mask = 1 << rxr->rx_intr_vec;
3957 
3958 		*intr_vec0 = intr_vec + 1;
3959 	}
3960 }
3961 
3962 static void
3963 igb_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3964 {
3965 	struct igb_softc *sc = ifp->if_softc;
3966 
3967 	ifnet_serialize_array_enter(sc->serializes, sc->serialize_cnt, slz);
3968 }
3969 
3970 static void
3971 igb_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3972 {
3973 	struct igb_softc *sc = ifp->if_softc;
3974 
3975 	ifnet_serialize_array_exit(sc->serializes, sc->serialize_cnt, slz);
3976 }
3977 
3978 static int
3979 igb_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3980 {
3981 	struct igb_softc *sc = ifp->if_softc;
3982 
3983 	return ifnet_serialize_array_try(sc->serializes, sc->serialize_cnt,
3984 	    slz);
3985 }
3986 
3987 #ifdef INVARIANTS
3988 
3989 static void
3990 igb_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3991     boolean_t serialized)
3992 {
3993 	struct igb_softc *sc = ifp->if_softc;
3994 
3995 	ifnet_serialize_array_assert(sc->serializes, sc->serialize_cnt,
3996 	    slz, serialized);
3997 }
3998 
3999 #endif	/* INVARIANTS */
4000 
4001 static void
4002 igb_set_intr_mask(struct igb_softc *sc)
4003 {
4004 	int i;
4005 
4006 	sc->intr_mask = sc->sts_intr_mask;
4007 	for (i = 0; i < sc->rx_ring_inuse; ++i)
4008 		sc->intr_mask |= sc->rx_rings[i].rx_intr_mask;
4009 	for (i = 0; i < sc->tx_ring_inuse; ++i)
4010 		sc->intr_mask |= sc->tx_rings[i].tx_intr_mask;
4011 	if (bootverbose) {
4012 		if_printf(&sc->arpcom.ac_if, "intr mask 0x%08x\n",
4013 		    sc->intr_mask);
4014 	}
4015 }
4016 
4017 static int
4018 igb_alloc_intr(struct igb_softc *sc)
4019 {
4020 	struct igb_tx_ring *txr;
4021 	struct igb_intr_data *intr;
4022 	int i, intr_vec, intr_vecmax;
4023 	u_int intr_flags;
4024 
4025 	igb_alloc_msix(sc);
4026 	if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
4027 		igb_set_ring_inuse(sc, FALSE);
4028 		goto done;
4029 	}
4030 
4031 	/*
4032 	 * Reset some settings changed by igb_alloc_msix().
4033 	 */
4034 	if (sc->rx_rmap_intr != NULL) {
4035 		if_ringmap_free(sc->rx_rmap_intr);
4036 		sc->rx_rmap_intr = NULL;
4037 	}
4038 	if (sc->tx_rmap_intr != NULL) {
4039 		if_ringmap_free(sc->tx_rmap_intr);
4040 		sc->tx_rmap_intr = NULL;
4041 	}
4042 	if (sc->intr_data != NULL) {
4043 		kfree(sc->intr_data, M_DEVBUF);
4044 		sc->intr_data = NULL;
4045 	}
4046 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
4047 		txr = &sc->tx_rings[i];
4048 		txr->tx_intr_vec = 0;
4049 		txr->tx_intr_mask = 0;
4050 		txr->tx_intr_cpuid = -1;
4051 	}
4052 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
4053 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
4054 
4055 		rxr->rx_intr_vec = 0;
4056 		rxr->rx_intr_mask = 0;
4057 		rxr->rx_txr = NULL;
4058 	}
4059 
4060 	sc->intr_cnt = 1;
4061 	sc->intr_data = kmalloc(sizeof(struct igb_intr_data), M_DEVBUF,
4062 	    M_WAITOK | M_ZERO);
4063 	intr = &sc->intr_data[0];
4064 
4065 	/*
4066 	 * Allocate MSI/legacy interrupt resource
4067 	 */
4068 	sc->intr_type = pci_alloc_1intr(sc->dev, igb_msi_enable,
4069 	    &intr->intr_rid, &intr_flags);
4070 
4071 	if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
4072 		int unshared;
4073 
4074 		unshared = device_getenv_int(sc->dev, "irq.unshared", 0);
4075 		if (!unshared) {
4076 			sc->flags |= IGB_FLAG_SHARED_INTR;
4077 			if (bootverbose)
4078 				device_printf(sc->dev, "IRQ shared\n");
4079 		} else {
4080 			intr_flags &= ~RF_SHAREABLE;
4081 			if (bootverbose)
4082 				device_printf(sc->dev, "IRQ unshared\n");
4083 		}
4084 	}
4085 
4086 	intr->intr_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
4087 	    &intr->intr_rid, intr_flags);
4088 	if (intr->intr_res == NULL) {
4089 		device_printf(sc->dev, "Unable to allocate bus resource: "
4090 		    "interrupt\n");
4091 		return ENXIO;
4092 	}
4093 
4094 	intr->intr_serialize = &sc->main_serialize;
4095 	intr->intr_cpuid = rman_get_cpuid(intr->intr_res);
4096 	intr->intr_func = (sc->flags & IGB_FLAG_SHARED_INTR) ?
4097 	    igb_intr_shared : igb_intr;
4098 	intr->intr_funcarg = sc;
4099 	intr->intr_rate = IGB_INTR_RATE;
4100 	intr->intr_use = IGB_INTR_USE_RXTX;
4101 
4102 	sc->tx_rings[0].tx_intr_cpuid = intr->intr_cpuid;
4103 
4104 	/*
4105 	 * Setup MSI/legacy interrupt mask
4106 	 */
4107 	switch (sc->hw.mac.type) {
4108 	case e1000_82575:
4109 		intr_vecmax = IGB_MAX_TXRXINT_82575;
4110 		break;
4111 
4112 	case e1000_82576:
4113 		intr_vecmax = IGB_MAX_TXRXINT_82576;
4114 		break;
4115 
4116 	case e1000_82580:
4117 		intr_vecmax = IGB_MAX_TXRXINT_82580;
4118 		break;
4119 
4120 	case e1000_i350:
4121 		intr_vecmax = IGB_MAX_TXRXINT_I350;
4122 		break;
4123 
4124 	case e1000_i354:
4125 		intr_vecmax = IGB_MAX_TXRXINT_I354;
4126 		break;
4127 
4128 	case e1000_i210:
4129 		intr_vecmax = IGB_MAX_TXRXINT_I210;
4130 		break;
4131 
4132 	case e1000_i211:
4133 		intr_vecmax = IGB_MAX_TXRXINT_I211;
4134 		break;
4135 
4136 	default:
4137 		intr_vecmax = IGB_MIN_TXRXINT;
4138 		break;
4139 	}
4140 	intr_vec = 0;
4141 	for (i = 0; i < sc->tx_ring_cnt; ++i)
4142 		igb_set_txintr_mask(&sc->tx_rings[i], &intr_vec, intr_vecmax);
4143 	for (i = 0; i < sc->rx_ring_cnt; ++i)
4144 		igb_set_rxintr_mask(&sc->rx_rings[i], &intr_vec, intr_vecmax);
4145 	sc->sts_intr_mask = E1000_EICR_OTHER;
4146 
4147 	igb_set_ring_inuse(sc, FALSE);
4148 	KKASSERT(sc->rx_ring_inuse <= IGB_MIN_RING_RSS);
4149 	if (sc->rx_ring_inuse == IGB_MIN_RING_RSS) {
4150 		/*
4151 		 * Allocate RX ring map for RSS setup.
4152 		 */
4153 		sc->rx_rmap_intr = if_ringmap_alloc(sc->dev,
4154 		    IGB_MIN_RING_RSS, IGB_MIN_RING_RSS);
4155 		KASSERT(if_ringmap_count(sc->rx_rmap_intr) ==
4156 		    sc->rx_ring_inuse, ("RX ring inuse mismatch"));
4157 	}
4158 done:
4159 	igb_set_intr_mask(sc);
4160 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
4161 		txr = &sc->tx_rings[i];
4162 		if (txr->tx_intr_cpuid < 0)
4163 			txr->tx_intr_cpuid = 0;
4164 	}
4165 	return 0;
4166 }
4167 
4168 static void
4169 igb_free_intr(struct igb_softc *sc)
4170 {
4171 	if (sc->intr_data == NULL)
4172 		return;
4173 
4174 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
4175 		struct igb_intr_data *intr = &sc->intr_data[0];
4176 
4177 		KKASSERT(sc->intr_cnt == 1);
4178 		if (intr->intr_res != NULL) {
4179 			bus_release_resource(sc->dev, SYS_RES_IRQ,
4180 			    intr->intr_rid, intr->intr_res);
4181 		}
4182 		if (sc->intr_type == PCI_INTR_TYPE_MSI)
4183 			pci_release_msi(sc->dev);
4184 
4185 		kfree(sc->intr_data, M_DEVBUF);
4186 	} else {
4187 		igb_free_msix(sc, TRUE);
4188 	}
4189 }
4190 
4191 static void
4192 igb_teardown_intr(struct igb_softc *sc, int intr_cnt)
4193 {
4194 	int i;
4195 
4196 	if (sc->intr_data == NULL)
4197 		return;
4198 
4199 	for (i = 0; i < intr_cnt; ++i) {
4200 		struct igb_intr_data *intr = &sc->intr_data[i];
4201 
4202 		bus_teardown_intr(sc->dev, intr->intr_res, intr->intr_hand);
4203 	}
4204 }
4205 
4206 static void
4207 igb_alloc_msix(struct igb_softc *sc)
4208 {
4209 	int msix_enable, msix_cnt, msix_ring, alloc_cnt;
4210 	int i, x, error;
4211 	int ring_cnt, ring_cntmax;
4212 	struct igb_intr_data *intr;
4213 	boolean_t setup = FALSE;
4214 
4215 	/*
4216 	 * Don't enable MSI-X on 82575, see:
4217 	 * 82575 specification update errata #25
4218 	 */
4219 	if (sc->hw.mac.type == e1000_82575)
4220 		return;
4221 
4222 	/* Don't enable MSI-X on VF */
4223 	if (sc->vf_ifp)
4224 		return;
4225 
4226 	msix_enable = device_getenv_int(sc->dev, "msix.enable",
4227 	    igb_msix_enable);
4228 	if (!msix_enable)
4229 		return;
4230 
4231 	msix_cnt = pci_msix_count(sc->dev);
4232 #ifdef IGB_MSIX_DEBUG
4233 	msix_cnt = device_getenv_int(sc->dev, "msix.count", msix_cnt);
4234 #endif
4235 	if (msix_cnt <= 1) {
4236 		/* One MSI-X model does not make sense. */
4237 		return;
4238 	}
4239 	if (bootverbose)
4240 		device_printf(sc->dev, "MSI-X count %d\n", msix_cnt);
4241 	msix_ring = msix_cnt - 1; /* -1 for status */
4242 
4243 	/*
4244 	 * Configure # of RX/TX rings usable by MSI-X.
4245 	 */
4246 	igb_get_rxring_cnt(sc, &ring_cnt, &ring_cntmax);
4247 	if (ring_cntmax > msix_ring)
4248 		ring_cntmax = msix_ring;
4249 	sc->rx_rmap_intr = if_ringmap_alloc(sc->dev, ring_cnt, ring_cntmax);
4250 
4251 	igb_get_txring_cnt(sc, &ring_cnt, &ring_cntmax);
4252 	if (ring_cntmax > msix_ring)
4253 		ring_cntmax = msix_ring;
4254 	sc->tx_rmap_intr = if_ringmap_alloc(sc->dev, ring_cnt, ring_cntmax);
4255 
4256 	if_ringmap_match(sc->dev, sc->rx_rmap_intr, sc->tx_rmap_intr);
4257 	sc->rx_ring_msix = if_ringmap_count(sc->rx_rmap_intr);
4258 	KASSERT(sc->rx_ring_msix <= sc->rx_ring_cnt,
4259 	    ("total RX ring count %d, MSI-X RX ring count %d",
4260 	     sc->rx_ring_cnt, sc->rx_ring_msix));
4261 	sc->tx_ring_msix = if_ringmap_count(sc->tx_rmap_intr);
4262 	KASSERT(sc->tx_ring_msix <= sc->tx_ring_cnt,
4263 	    ("total TX ring count %d, MSI-X TX ring count %d",
4264 	     sc->tx_ring_cnt, sc->tx_ring_msix));
4265 
4266 	/*
4267 	 * Aggregate TX/RX MSI-X
4268 	 */
4269 	ring_cntmax = sc->rx_ring_msix;
4270 	if (ring_cntmax < sc->tx_ring_msix)
4271 		ring_cntmax = sc->tx_ring_msix;
4272 	KASSERT(ring_cntmax <= msix_ring,
4273 	    ("invalid ring count max %d, MSI-X count for rings %d",
4274 	     ring_cntmax, msix_ring));
4275 
4276 	alloc_cnt = ring_cntmax + 1; /* +1 for status */
4277 	if (bootverbose) {
4278 		device_printf(sc->dev, "MSI-X alloc %d, "
4279 		    "RX ring %d, TX ring %d\n", alloc_cnt,
4280 		    sc->rx_ring_msix, sc->tx_ring_msix);
4281 	}
4282 
4283 	sc->msix_mem_rid = PCIR_BAR(IGB_MSIX_BAR);
4284 	sc->msix_mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
4285 	    &sc->msix_mem_rid, RF_ACTIVE);
4286 	if (sc->msix_mem_res == NULL) {
4287 		sc->msix_mem_rid = PCIR_BAR(IGB_MSIX_BAR_ALT);
4288 		sc->msix_mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
4289 		    &sc->msix_mem_rid, RF_ACTIVE);
4290 		if (sc->msix_mem_res == NULL) {
4291 			device_printf(sc->dev, "Unable to map MSI-X table\n");
4292 			return;
4293 		}
4294 	}
4295 
4296 	sc->intr_cnt = alloc_cnt;
4297 	sc->intr_data = kmalloc(sizeof(struct igb_intr_data) * sc->intr_cnt,
4298 	    M_DEVBUF, M_WAITOK | M_ZERO);
4299 	for (x = 0; x < sc->intr_cnt; ++x) {
4300 		intr = &sc->intr_data[x];
4301 		intr->intr_rid = -1;
4302 		intr->intr_rate = IGB_INTR_RATE;
4303 	}
4304 
4305 	x = 0;
4306 	for (i = 0; i < sc->rx_ring_msix; ++i) {
4307 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
4308 		struct igb_tx_ring *txr = NULL;
4309 		int cpuid, j;
4310 
4311 		KKASSERT(x < sc->intr_cnt);
4312 		rxr->rx_intr_vec = x;
4313 		rxr->rx_intr_mask = 1 << rxr->rx_intr_vec;
4314 
4315 		cpuid = if_ringmap_cpumap(sc->rx_rmap_intr, i);
4316 
4317 		/*
4318 		 * Try finding TX ring to piggyback.
4319 		 */
4320 		for (j = 0; j < sc->tx_ring_msix; ++j) {
4321 			if (cpuid ==
4322 			    if_ringmap_cpumap(sc->tx_rmap_intr, j)) {
4323 				txr = &sc->tx_rings[j];
4324 				KKASSERT(txr->tx_intr_cpuid < 0);
4325 				break;
4326 			}
4327 		}
4328 		rxr->rx_txr = txr;
4329 
4330 		intr = &sc->intr_data[x++];
4331 		intr->intr_serialize = &rxr->rx_serialize;
4332 		intr->intr_cpuid = cpuid;
4333 		KKASSERT(intr->intr_cpuid < netisr_ncpus);
4334 		intr->intr_funcarg = rxr;
4335 		if (txr != NULL) {
4336 			intr->intr_func = igb_msix_rxtx;
4337 			intr->intr_use = IGB_INTR_USE_RXTX;
4338 			ksnprintf(intr->intr_desc0, sizeof(intr->intr_desc0),
4339 			    "%s rx%dtx%d", device_get_nameunit(sc->dev),
4340 			    i, txr->me);
4341 
4342 			txr->tx_intr_vec = rxr->rx_intr_vec;
4343 			txr->tx_intr_mask = rxr->rx_intr_mask;
4344 			txr->tx_intr_cpuid = intr->intr_cpuid;
4345 		} else {
4346 			intr->intr_func = igb_msix_rx;
4347 			intr->intr_rate = IGB_MSIX_RX_RATE;
4348 			intr->intr_use = IGB_INTR_USE_RX;
4349 
4350 			ksnprintf(intr->intr_desc0, sizeof(intr->intr_desc0),
4351 			    "%s rx%d", device_get_nameunit(sc->dev), i);
4352 		}
4353 		intr->intr_desc = intr->intr_desc0;
4354 	}
4355 
4356 	for (i = 0; i < sc->tx_ring_msix; ++i) {
4357 		struct igb_tx_ring *txr = &sc->tx_rings[i];
4358 
4359 		if (txr->tx_intr_cpuid >= 0) {
4360 			/* Piggybacked by RX ring. */
4361 			continue;
4362 		}
4363 
4364 		KKASSERT(x < sc->intr_cnt);
4365 		txr->tx_intr_vec = x;
4366 		txr->tx_intr_mask = 1 << txr->tx_intr_vec;
4367 
4368 		intr = &sc->intr_data[x++];
4369 		intr->intr_serialize = &txr->tx_serialize;
4370 		intr->intr_func = igb_msix_tx;
4371 		intr->intr_funcarg = txr;
4372 		intr->intr_rate = IGB_MSIX_TX_RATE;
4373 		intr->intr_use = IGB_INTR_USE_TX;
4374 
4375 		intr->intr_cpuid = if_ringmap_cpumap(sc->tx_rmap_intr, i);
4376 		KKASSERT(intr->intr_cpuid < netisr_ncpus);
4377 		txr->tx_intr_cpuid = intr->intr_cpuid;
4378 
4379 		ksnprintf(intr->intr_desc0, sizeof(intr->intr_desc0), "%s tx%d",
4380 		    device_get_nameunit(sc->dev), i);
4381 		intr->intr_desc = intr->intr_desc0;
4382 	}
4383 
4384 	/*
4385 	 * Link status
4386 	 */
4387 	KKASSERT(x < sc->intr_cnt);
4388 	sc->sts_msix_vec = x;
4389 	sc->sts_intr_mask = 1 << sc->sts_msix_vec;
4390 
4391 	intr = &sc->intr_data[x++];
4392 	intr->intr_serialize = &sc->main_serialize;
4393 	intr->intr_func = igb_msix_status;
4394 	intr->intr_funcarg = sc;
4395 	intr->intr_cpuid = 0;
4396 	intr->intr_use = IGB_INTR_USE_STATUS;
4397 
4398 	ksnprintf(intr->intr_desc0, sizeof(intr->intr_desc0), "%s sts",
4399 	    device_get_nameunit(sc->dev));
4400 	intr->intr_desc = intr->intr_desc0;
4401 
4402 	KKASSERT(x == sc->intr_cnt);
4403 
4404 	error = pci_setup_msix(sc->dev);
4405 	if (error) {
4406 		device_printf(sc->dev, "Setup MSI-X failed\n");
4407 		goto back;
4408 	}
4409 	setup = TRUE;
4410 
4411 	for (i = 0; i < sc->intr_cnt; ++i) {
4412 		intr = &sc->intr_data[i];
4413 
4414 		error = pci_alloc_msix_vector(sc->dev, i, &intr->intr_rid,
4415 		    intr->intr_cpuid);
4416 		if (error) {
4417 			device_printf(sc->dev,
4418 			    "Unable to allocate MSI-X %d on cpu%d\n", i,
4419 			    intr->intr_cpuid);
4420 			goto back;
4421 		}
4422 
4423 		intr->intr_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
4424 		    &intr->intr_rid, RF_ACTIVE);
4425 		if (intr->intr_res == NULL) {
4426 			device_printf(sc->dev,
4427 			    "Unable to allocate MSI-X %d resource\n", i);
4428 			error = ENOMEM;
4429 			goto back;
4430 		}
4431 	}
4432 
4433 	pci_enable_msix(sc->dev);
4434 	sc->intr_type = PCI_INTR_TYPE_MSIX;
4435 back:
4436 	if (error)
4437 		igb_free_msix(sc, setup);
4438 }
4439 
4440 static void
4441 igb_free_msix(struct igb_softc *sc, boolean_t setup)
4442 {
4443 	int i;
4444 
4445 	KKASSERT(sc->intr_cnt > 1);
4446 
4447 	for (i = 0; i < sc->intr_cnt; ++i) {
4448 		struct igb_intr_data *intr = &sc->intr_data[i];
4449 
4450 		if (intr->intr_res != NULL) {
4451 			bus_release_resource(sc->dev, SYS_RES_IRQ,
4452 			    intr->intr_rid, intr->intr_res);
4453 		}
4454 		if (intr->intr_rid >= 0)
4455 			pci_release_msix_vector(sc->dev, intr->intr_rid);
4456 	}
4457 	if (setup)
4458 		pci_teardown_msix(sc->dev);
4459 
4460 	sc->intr_cnt = 0;
4461 	kfree(sc->intr_data, M_DEVBUF);
4462 	sc->intr_data = NULL;
4463 }
4464 
4465 static void
4466 igb_msix_rx(void *arg)
4467 {
4468 	struct igb_rx_ring *rxr = arg;
4469 
4470 	ASSERT_SERIALIZED(&rxr->rx_serialize);
4471 	igb_rxeof(rxr, -1);
4472 
4473 	E1000_WRITE_REG(&rxr->sc->hw, E1000_EIMS, rxr->rx_intr_mask);
4474 }
4475 
4476 static void
4477 igb_msix_tx(void *arg)
4478 {
4479 	struct igb_tx_ring *txr = arg;
4480 
4481 	ASSERT_SERIALIZED(&txr->tx_serialize);
4482 
4483 	igb_txeof(txr, *(txr->tx_hdr));
4484 	if (!ifsq_is_empty(txr->ifsq))
4485 		ifsq_devstart(txr->ifsq);
4486 
4487 	E1000_WRITE_REG(&txr->sc->hw, E1000_EIMS, txr->tx_intr_mask);
4488 }
4489 
4490 static void
4491 igb_msix_status(void *arg)
4492 {
4493 	struct igb_softc *sc = arg;
4494 	uint32_t icr;
4495 
4496 	ASSERT_SERIALIZED(&sc->main_serialize);
4497 
4498 	icr = E1000_READ_REG(&sc->hw, E1000_ICR);
4499 	if (icr & E1000_ICR_LSC) {
4500 		sc->hw.mac.get_link_status = 1;
4501 		igb_update_link_status(sc);
4502 	}
4503 
4504 	E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->sts_intr_mask);
4505 }
4506 
4507 static void
4508 igb_set_ring_inuse(struct igb_softc *sc, boolean_t polling)
4509 {
4510 	sc->rx_ring_inuse = igb_get_rxring_inuse(sc, polling);
4511 	sc->tx_ring_inuse = igb_get_txring_inuse(sc, polling);
4512 	if (bootverbose) {
4513 		if_printf(&sc->arpcom.ac_if, "RX rings %d/%d, TX rings %d/%d\n",
4514 		    sc->rx_ring_inuse, sc->rx_ring_cnt,
4515 		    sc->tx_ring_inuse, sc->tx_ring_cnt);
4516 	}
4517 }
4518 
4519 static int
4520 igb_get_rxring_inuse(const struct igb_softc *sc, boolean_t polling)
4521 {
4522 	if (!IGB_ENABLE_HWRSS(sc))
4523 		return 1;
4524 
4525 	if (polling)
4526 		return sc->rx_ring_cnt;
4527 	else if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4528 		return IGB_MIN_RING_RSS;
4529 	else
4530 		return sc->rx_ring_msix;
4531 }
4532 
4533 static int
4534 igb_get_txring_inuse(const struct igb_softc *sc, boolean_t polling)
4535 {
4536 	if (!IGB_ENABLE_HWTSS(sc))
4537 		return 1;
4538 
4539 	if (polling)
4540 		return sc->tx_ring_cnt;
4541 	else if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4542 		return IGB_MIN_RING;
4543 	else
4544 		return sc->tx_ring_msix;
4545 }
4546 
4547 static int
4548 igb_tso_pullup(struct igb_tx_ring *txr, struct mbuf **mp)
4549 {
4550 	int hoff, iphlen, thoff;
4551 	struct mbuf *m;
4552 
4553 	m = *mp;
4554 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4555 
4556 	iphlen = m->m_pkthdr.csum_iphlen;
4557 	thoff = m->m_pkthdr.csum_thlen;
4558 	hoff = m->m_pkthdr.csum_lhlen;
4559 
4560 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4561 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4562 	KASSERT(hoff > 0, ("invalid ether hlen"));
4563 
4564 	if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
4565 		m = m_pullup(m, hoff + iphlen + thoff);
4566 		if (m == NULL) {
4567 			*mp = NULL;
4568 			return ENOBUFS;
4569 		}
4570 		*mp = m;
4571 	}
4572 	if (txr->tx_flags & IGB_TXFLAG_TSO_IPLEN0) {
4573 		struct ip *ip;
4574 
4575 		ip = mtodoff(m, struct ip *, hoff);
4576 		ip->ip_len = 0;
4577 	}
4578 
4579 	return 0;
4580 }
4581 
4582 static void
4583 igb_tso_ctx(struct igb_tx_ring *txr, struct mbuf *m, uint32_t *hlen)
4584 {
4585 	struct e1000_adv_tx_context_desc *TXD;
4586 	uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
4587 	int hoff, ctxd, iphlen, thoff;
4588 
4589 	iphlen = m->m_pkthdr.csum_iphlen;
4590 	thoff = m->m_pkthdr.csum_thlen;
4591 	hoff = m->m_pkthdr.csum_lhlen;
4592 
4593 	vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
4594 
4595 	ctxd = txr->next_avail_desc;
4596 	TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
4597 
4598 	if (m->m_flags & M_VLANTAG) {
4599 		uint16_t vlantag;
4600 
4601 		vlantag = htole16(m->m_pkthdr.ether_vlantag);
4602 		vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
4603 	}
4604 
4605 	vlan_macip_lens |= (hoff << E1000_ADVTXD_MACLEN_SHIFT);
4606 	vlan_macip_lens |= iphlen;
4607 
4608 	type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4609 	type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
4610 	type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
4611 
4612 	mss_l4len_idx |= (m->m_pkthdr.tso_segsz << E1000_ADVTXD_MSS_SHIFT);
4613 	mss_l4len_idx |= (thoff << E1000_ADVTXD_L4LEN_SHIFT);
4614 
4615 	/*
4616 	 * 82575 needs the TX context index added; the queue
4617 	 * index is used as TX context index here.
4618 	 */
4619 	if (txr->sc->hw.mac.type == e1000_82575)
4620 		mss_l4len_idx |= txr->me << 4;
4621 
4622 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
4623 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
4624 	TXD->seqnum_seed = htole32(0);
4625 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
4626 
4627 	/* We've consumed the first desc, adjust counters */
4628 	if (++ctxd == txr->num_tx_desc)
4629 		ctxd = 0;
4630 	txr->next_avail_desc = ctxd;
4631 	--txr->tx_avail;
4632 
4633 	*hlen = hoff + iphlen + thoff;
4634 }
4635 
4636 static void
4637 igb_setup_serialize(struct igb_softc *sc)
4638 {
4639 	int i = 0, j;
4640 
4641 	/* Main + RX + TX */
4642 	sc->serialize_cnt = 1 + sc->rx_ring_cnt + sc->tx_ring_cnt;
4643 	sc->serializes =
4644 	    kmalloc(sc->serialize_cnt * sizeof(struct lwkt_serialize *),
4645 	        M_DEVBUF, M_WAITOK | M_ZERO);
4646 
4647 	/*
4648 	 * Setup serializes
4649 	 *
4650 	 * NOTE: Order is critical
4651 	 */
4652 
4653 	KKASSERT(i < sc->serialize_cnt);
4654 	sc->serializes[i++] = &sc->main_serialize;
4655 
4656 	for (j = 0; j < sc->rx_ring_cnt; ++j) {
4657 		KKASSERT(i < sc->serialize_cnt);
4658 		sc->serializes[i++] = &sc->rx_rings[j].rx_serialize;
4659 	}
4660 
4661 	for (j = 0; j < sc->tx_ring_cnt; ++j) {
4662 		KKASSERT(i < sc->serialize_cnt);
4663 		sc->serializes[i++] = &sc->tx_rings[j].tx_serialize;
4664 	}
4665 
4666 	KKASSERT(i == sc->serialize_cnt);
4667 }
4668 
4669 static void
4670 igb_msix_rxtx(void *arg)
4671 {
4672 	struct igb_rx_ring *rxr = arg;
4673 	struct igb_tx_ring *txr;
4674 	int hdr;
4675 
4676 	ASSERT_SERIALIZED(&rxr->rx_serialize);
4677 
4678 	igb_rxeof(rxr, -1);
4679 
4680 	/*
4681 	 * NOTE:
4682 	 * Since next_to_clean is only changed by igb_txeof(),
4683 	 * which is called only in interrupt handler, the
4684 	 * check w/o holding tx serializer is MPSAFE.
4685 	 */
4686 	txr = rxr->rx_txr;
4687 	hdr = *(txr->tx_hdr);
4688 	if (hdr != txr->next_to_clean) {
4689 		lwkt_serialize_enter(&txr->tx_serialize);
4690 		igb_txeof(txr, hdr);
4691 		if (!ifsq_is_empty(txr->ifsq))
4692 			ifsq_devstart(txr->ifsq);
4693 		lwkt_serialize_exit(&txr->tx_serialize);
4694 	}
4695 
4696 	E1000_WRITE_REG(&rxr->sc->hw, E1000_EIMS, rxr->rx_intr_mask);
4697 }
4698 
4699 static void
4700 igb_set_timer_cpuid(struct igb_softc *sc, boolean_t polling)
4701 {
4702 	if (polling || sc->intr_type == PCI_INTR_TYPE_MSIX)
4703 		sc->timer_cpuid = 0; /* XXX fixed */
4704 	else
4705 		sc->timer_cpuid = rman_get_cpuid(sc->intr_data[0].intr_res);
4706 }
4707 
4708 static void
4709 igb_init_dmac(struct igb_softc *sc, uint32_t pba)
4710 {
4711 	struct e1000_hw *hw = &sc->hw;
4712 	uint32_t reg;
4713 
4714 	if (hw->mac.type == e1000_i211)
4715 		return;
4716 
4717 	if (hw->mac.type > e1000_82580) {
4718 		uint32_t dmac;
4719 		uint16_t hwm;
4720 
4721 		if (sc->dma_coalesce == 0) { /* Disabling it */
4722 			reg = ~E1000_DMACR_DMAC_EN;
4723 			E1000_WRITE_REG(hw, E1000_DMACR, reg);
4724 			return;
4725 		} else {
4726 			if_printf(&sc->arpcom.ac_if,
4727 			    "DMA Coalescing enabled\n");
4728 		}
4729 
4730 		/* Set starting threshold */
4731 		E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
4732 
4733 		hwm = 64 * pba - sc->max_frame_size / 16;
4734 		if (hwm < 64 * (pba - 6))
4735 			hwm = 64 * (pba - 6);
4736 		reg = E1000_READ_REG(hw, E1000_FCRTC);
4737 		reg &= ~E1000_FCRTC_RTH_COAL_MASK;
4738 		reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
4739 		    & E1000_FCRTC_RTH_COAL_MASK);
4740 		E1000_WRITE_REG(hw, E1000_FCRTC, reg);
4741 
4742 		dmac = pba - sc->max_frame_size / 512;
4743 		if (dmac < pba - 10)
4744 			dmac = pba - 10;
4745 		reg = E1000_READ_REG(hw, E1000_DMACR);
4746 		reg &= ~E1000_DMACR_DMACTHR_MASK;
4747 		reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT)
4748 		    & E1000_DMACR_DMACTHR_MASK);
4749 
4750 		/* transition to L0x or L1 if available..*/
4751 		reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
4752 
4753 		/*
4754 		 * Check if status is 2.5Gb backplane connection
4755 		 * before configuration of watchdog timer, which
4756 		 * is in msec values in 12.8usec intervals watchdog
4757 		 * timer = msec values in 32usec intervals for non
4758 		 * 2.5Gb connection.
4759 		 */
4760 		if (hw->mac.type == e1000_i354) {
4761 			int status = E1000_READ_REG(hw, E1000_STATUS);
4762 
4763 			if ((status & E1000_STATUS_2P5_SKU) &&
4764 			    !(status & E1000_STATUS_2P5_SKU_OVER))
4765 				reg |= ((sc->dma_coalesce * 5) >> 6);
4766 			else
4767 				reg |= (sc->dma_coalesce >> 5);
4768 		} else {
4769 			reg |= (sc->dma_coalesce >> 5);
4770 		}
4771 
4772 		E1000_WRITE_REG(hw, E1000_DMACR, reg);
4773 
4774 		E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
4775 
4776 		/* Set the interval before transition */
4777 		reg = E1000_READ_REG(hw, E1000_DMCTLX);
4778 		if (hw->mac.type == e1000_i350)
4779 			reg |= IGB_DMCTLX_DCFLUSH_DIS;
4780 		/*
4781 		 * In 2.5Gb connection, TTLX unit is 0.4 usec, which
4782 		 * is 0x4*2 = 0xA.  But delay is still 4 usec.
4783 		 */
4784 		if (hw->mac.type == e1000_i354) {
4785 			int status = E1000_READ_REG(hw, E1000_STATUS);
4786 
4787 			if ((status & E1000_STATUS_2P5_SKU) &&
4788 			    !(status & E1000_STATUS_2P5_SKU_OVER))
4789 				reg |= 0xA;
4790 			else
4791 				reg |= 0x4;
4792 		} else {
4793 			reg |= 0x4;
4794 		}
4795 		E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
4796 
4797 		/* Free space in tx packet buffer to wake from DMA coal */
4798 		E1000_WRITE_REG(hw, E1000_DMCTXTH,
4799 		    (IGB_TXPBSIZE - (2 * sc->max_frame_size)) >> 6);
4800 
4801 		/* Make low power state decision controlled by DMA coal */
4802 		reg = E1000_READ_REG(hw, E1000_PCIEMISC);
4803 		reg &= ~E1000_PCIEMISC_LX_DECISION;
4804 		E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
4805 	} else if (hw->mac.type == e1000_82580) {
4806 		reg = E1000_READ_REG(hw, E1000_PCIEMISC);
4807 		E1000_WRITE_REG(hw, E1000_PCIEMISC,
4808 		    reg & ~E1000_PCIEMISC_LX_DECISION);
4809 		E1000_WRITE_REG(hw, E1000_DMACR, 0);
4810 	}
4811 }
4812