xref: /dragonfly/sys/dev/netif/igb/if_igb.c (revision f116de0a)
1 /*
2  * Copyright (c) 2001-2011, Intel Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  *  1. Redistributions of source code must retain the above copyright notice,
9  *     this list of conditions and the following disclaimer.
10  *
11  *  2. Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *
15  *  3. Neither the name of the Intel Corporation nor the names of its
16  *     contributors may be used to endorse or promote products derived from
17  *     this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include "opt_ifpoll.h"
33 #include "opt_igb.h"
34 
35 #include <sys/param.h>
36 #include <sys/bus.h>
37 #include <sys/endian.h>
38 #include <sys/interrupt.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/proc.h>
43 #include <sys/rman.h>
44 #include <sys/serialize.h>
45 #include <sys/serialize2.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/sysctl.h>
49 #include <sys/systm.h>
50 
51 #include <net/bpf.h>
52 #include <net/ethernet.h>
53 #include <net/if.h>
54 #include <net/if_arp.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/ifq_var.h>
58 #include <net/toeplitz.h>
59 #include <net/toeplitz2.h>
60 #include <net/vlan/if_vlan_var.h>
61 #include <net/vlan/if_vlan_ether.h>
62 #include <net/if_poll.h>
63 
64 #include <netinet/in_systm.h>
65 #include <netinet/in.h>
66 #include <netinet/ip.h>
67 #include <netinet/tcp.h>
68 #include <netinet/udp.h>
69 
70 #include <bus/pci/pcivar.h>
71 #include <bus/pci/pcireg.h>
72 
73 #include <dev/netif/ig_hal/e1000_api.h>
74 #include <dev/netif/ig_hal/e1000_82575.h>
75 #include <dev/netif/igb/if_igb.h>
76 
77 #ifdef IGB_RSS_DEBUG
78 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...) \
79 do { \
80 	if (sc->rss_debug >= lvl) \
81 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
82 } while (0)
83 #else	/* !IGB_RSS_DEBUG */
84 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
85 #endif	/* IGB_RSS_DEBUG */
86 
87 #define IGB_NAME	"Intel(R) PRO/1000 "
88 #define IGB_DEVICE(id)	\
89 	{ IGB_VENDOR_ID, E1000_DEV_ID_##id, IGB_NAME #id }
90 #define IGB_DEVICE_NULL	{ 0, 0, NULL }
91 
92 static struct igb_device {
93 	uint16_t	vid;
94 	uint16_t	did;
95 	const char	*desc;
96 } igb_devices[] = {
97 	IGB_DEVICE(82575EB_COPPER),
98 	IGB_DEVICE(82575EB_FIBER_SERDES),
99 	IGB_DEVICE(82575GB_QUAD_COPPER),
100 	IGB_DEVICE(82576),
101 	IGB_DEVICE(82576_NS),
102 	IGB_DEVICE(82576_NS_SERDES),
103 	IGB_DEVICE(82576_FIBER),
104 	IGB_DEVICE(82576_SERDES),
105 	IGB_DEVICE(82576_SERDES_QUAD),
106 	IGB_DEVICE(82576_QUAD_COPPER),
107 	IGB_DEVICE(82576_QUAD_COPPER_ET2),
108 	IGB_DEVICE(82576_VF),
109 	IGB_DEVICE(82580_COPPER),
110 	IGB_DEVICE(82580_FIBER),
111 	IGB_DEVICE(82580_SERDES),
112 	IGB_DEVICE(82580_SGMII),
113 	IGB_DEVICE(82580_COPPER_DUAL),
114 	IGB_DEVICE(82580_QUAD_FIBER),
115 	IGB_DEVICE(DH89XXCC_SERDES),
116 	IGB_DEVICE(DH89XXCC_SGMII),
117 	IGB_DEVICE(DH89XXCC_SFP),
118 	IGB_DEVICE(DH89XXCC_BACKPLANE),
119 	IGB_DEVICE(I350_COPPER),
120 	IGB_DEVICE(I350_FIBER),
121 	IGB_DEVICE(I350_SERDES),
122 	IGB_DEVICE(I350_SGMII),
123 	IGB_DEVICE(I350_VF),
124 	IGB_DEVICE(I210_COPPER),
125 	IGB_DEVICE(I210_COPPER_IT),
126 	IGB_DEVICE(I210_COPPER_OEM1),
127 	IGB_DEVICE(I210_FIBER),
128 	IGB_DEVICE(I210_SERDES),
129 	IGB_DEVICE(I210_SGMII),
130 	IGB_DEVICE(I211_COPPER),
131 
132 	/* required last entry */
133 	IGB_DEVICE_NULL
134 };
135 
136 static int	igb_probe(device_t);
137 static int	igb_attach(device_t);
138 static int	igb_detach(device_t);
139 static int	igb_shutdown(device_t);
140 static int	igb_suspend(device_t);
141 static int	igb_resume(device_t);
142 
143 static boolean_t igb_is_valid_ether_addr(const uint8_t *);
144 static void	igb_setup_ifp(struct igb_softc *);
145 static boolean_t igb_txcsum_ctx(struct igb_tx_ring *, struct mbuf *);
146 static int	igb_tso_pullup(struct igb_tx_ring *, struct mbuf **);
147 static void	igb_tso_ctx(struct igb_tx_ring *, struct mbuf *, uint32_t *);
148 static void	igb_add_sysctl(struct igb_softc *);
149 static int	igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS);
150 static int	igb_sysctl_msix_rate(SYSCTL_HANDLER_ARGS);
151 static int	igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
152 static int	igb_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
153 static int	igb_sysctl_rx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
154 static void	igb_set_ring_inuse(struct igb_softc *, boolean_t);
155 static int	igb_get_rxring_inuse(const struct igb_softc *, boolean_t);
156 static int	igb_get_txring_inuse(const struct igb_softc *, boolean_t);
157 static void	igb_set_timer_cpuid(struct igb_softc *, boolean_t);
158 #ifdef IFPOLL_ENABLE
159 static int	igb_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
160 static int	igb_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
161 #endif
162 
163 static void	igb_vf_init_stats(struct igb_softc *);
164 static void	igb_reset(struct igb_softc *);
165 static void	igb_update_stats_counters(struct igb_softc *);
166 static void	igb_update_vf_stats_counters(struct igb_softc *);
167 static void	igb_update_link_status(struct igb_softc *);
168 static void	igb_init_tx_unit(struct igb_softc *);
169 static void	igb_init_rx_unit(struct igb_softc *);
170 
171 static void	igb_set_vlan(struct igb_softc *);
172 static void	igb_set_multi(struct igb_softc *);
173 static void	igb_set_promisc(struct igb_softc *);
174 static void	igb_disable_promisc(struct igb_softc *);
175 
176 static int	igb_alloc_rings(struct igb_softc *);
177 static void	igb_free_rings(struct igb_softc *);
178 static int	igb_create_tx_ring(struct igb_tx_ring *);
179 static int	igb_create_rx_ring(struct igb_rx_ring *);
180 static void	igb_free_tx_ring(struct igb_tx_ring *);
181 static void	igb_free_rx_ring(struct igb_rx_ring *);
182 static void	igb_destroy_tx_ring(struct igb_tx_ring *, int);
183 static void	igb_destroy_rx_ring(struct igb_rx_ring *, int);
184 static void	igb_init_tx_ring(struct igb_tx_ring *);
185 static int	igb_init_rx_ring(struct igb_rx_ring *);
186 static int	igb_newbuf(struct igb_rx_ring *, int, boolean_t);
187 static int	igb_encap(struct igb_tx_ring *, struct mbuf **, int *, int *);
188 static void	igb_rx_refresh(struct igb_rx_ring *, int);
189 static void	igb_setup_serializer(struct igb_softc *);
190 
191 static void	igb_stop(struct igb_softc *);
192 static void	igb_init(void *);
193 static int	igb_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
194 static void	igb_media_status(struct ifnet *, struct ifmediareq *);
195 static int	igb_media_change(struct ifnet *);
196 static void	igb_timer(void *);
197 static void	igb_watchdog(struct ifaltq_subque *);
198 static void	igb_start(struct ifnet *, struct ifaltq_subque *);
199 #ifdef IFPOLL_ENABLE
200 static void	igb_npoll(struct ifnet *, struct ifpoll_info *);
201 static void	igb_npoll_rx(struct ifnet *, void *, int);
202 static void	igb_npoll_tx(struct ifnet *, void *, int);
203 static void	igb_npoll_status(struct ifnet *);
204 #endif
205 static void	igb_serialize(struct ifnet *, enum ifnet_serialize);
206 static void	igb_deserialize(struct ifnet *, enum ifnet_serialize);
207 static int	igb_tryserialize(struct ifnet *, enum ifnet_serialize);
208 #ifdef INVARIANTS
209 static void	igb_serialize_assert(struct ifnet *, enum ifnet_serialize,
210 		    boolean_t);
211 #endif
212 
213 static void	igb_intr(void *);
214 static void	igb_intr_shared(void *);
215 static void	igb_rxeof(struct igb_rx_ring *, int);
216 static void	igb_txeof(struct igb_tx_ring *);
217 static void	igb_set_eitr(struct igb_softc *, int, int);
218 static void	igb_enable_intr(struct igb_softc *);
219 static void	igb_disable_intr(struct igb_softc *);
220 static void	igb_init_unshared_intr(struct igb_softc *);
221 static void	igb_init_intr(struct igb_softc *);
222 static int	igb_setup_intr(struct igb_softc *);
223 static void	igb_set_txintr_mask(struct igb_tx_ring *, int *, int);
224 static void	igb_set_rxintr_mask(struct igb_rx_ring *, int *, int);
225 static void	igb_set_intr_mask(struct igb_softc *);
226 static int	igb_alloc_intr(struct igb_softc *);
227 static void	igb_free_intr(struct igb_softc *);
228 static void	igb_teardown_intr(struct igb_softc *);
229 static void	igb_msix_try_alloc(struct igb_softc *);
230 static void	igb_msix_rx_conf(struct igb_softc *, int, int *, int);
231 static void	igb_msix_tx_conf(struct igb_softc *, int, int *, int);
232 static void	igb_msix_free(struct igb_softc *, boolean_t);
233 static int	igb_msix_setup(struct igb_softc *);
234 static void	igb_msix_teardown(struct igb_softc *, int);
235 static void	igb_msix_rx(void *);
236 static void	igb_msix_tx(void *);
237 static void	igb_msix_status(void *);
238 static void	igb_msix_rxtx(void *);
239 
240 /* Management and WOL Support */
241 static void	igb_get_mgmt(struct igb_softc *);
242 static void	igb_rel_mgmt(struct igb_softc *);
243 static void	igb_get_hw_control(struct igb_softc *);
244 static void	igb_rel_hw_control(struct igb_softc *);
245 static void	igb_enable_wol(device_t);
246 
247 static device_method_t igb_methods[] = {
248 	/* Device interface */
249 	DEVMETHOD(device_probe,		igb_probe),
250 	DEVMETHOD(device_attach,	igb_attach),
251 	DEVMETHOD(device_detach,	igb_detach),
252 	DEVMETHOD(device_shutdown,	igb_shutdown),
253 	DEVMETHOD(device_suspend,	igb_suspend),
254 	DEVMETHOD(device_resume,	igb_resume),
255 	DEVMETHOD_END
256 };
257 
258 static driver_t igb_driver = {
259 	"igb",
260 	igb_methods,
261 	sizeof(struct igb_softc),
262 };
263 
264 static devclass_t igb_devclass;
265 
266 DECLARE_DUMMY_MODULE(if_igb);
267 MODULE_DEPEND(igb, ig_hal, 1, 1, 1);
268 DRIVER_MODULE(if_igb, pci, igb_driver, igb_devclass, NULL, NULL);
269 
270 static int	igb_rxd = IGB_DEFAULT_RXD;
271 static int	igb_txd = IGB_DEFAULT_TXD;
272 static int	igb_rxr = 0;
273 static int	igb_txr = 0;
274 static int	igb_msi_enable = 1;
275 static int	igb_msix_enable = 1;
276 static int	igb_eee_disabled = 1;	/* Energy Efficient Ethernet */
277 static int	igb_fc_setting = e1000_fc_full;
278 
279 /*
280  * DMA Coalescing, only for i350 - default to off,
281  * this feature is for power savings
282  */
283 static int	igb_dma_coalesce = 0;
284 
285 TUNABLE_INT("hw.igb.rxd", &igb_rxd);
286 TUNABLE_INT("hw.igb.txd", &igb_txd);
287 TUNABLE_INT("hw.igb.rxr", &igb_rxr);
288 TUNABLE_INT("hw.igb.txr", &igb_txr);
289 TUNABLE_INT("hw.igb.msi.enable", &igb_msi_enable);
290 TUNABLE_INT("hw.igb.msix.enable", &igb_msix_enable);
291 TUNABLE_INT("hw.igb.fc_setting", &igb_fc_setting);
292 
293 /* i350 specific */
294 TUNABLE_INT("hw.igb.eee_disabled", &igb_eee_disabled);
295 TUNABLE_INT("hw.igb.dma_coalesce", &igb_dma_coalesce);
296 
297 static __inline void
298 igb_rxcsum(uint32_t staterr, struct mbuf *mp)
299 {
300 	/* Ignore Checksum bit is set */
301 	if (staterr & E1000_RXD_STAT_IXSM)
302 		return;
303 
304 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
305 	    E1000_RXD_STAT_IPCS)
306 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
307 
308 	if (staterr & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) {
309 		if ((staterr & E1000_RXDEXT_STATERR_TCPE) == 0) {
310 			mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
311 			    CSUM_PSEUDO_HDR | CSUM_FRAG_NOT_CHECKED;
312 			mp->m_pkthdr.csum_data = htons(0xffff);
313 		}
314 	}
315 }
316 
317 static __inline struct pktinfo *
318 igb_rssinfo(struct mbuf *m, struct pktinfo *pi,
319     uint32_t hash, uint32_t hashtype, uint32_t staterr)
320 {
321 	switch (hashtype) {
322 	case E1000_RXDADV_RSSTYPE_IPV4_TCP:
323 		pi->pi_netisr = NETISR_IP;
324 		pi->pi_flags = 0;
325 		pi->pi_l3proto = IPPROTO_TCP;
326 		break;
327 
328 	case E1000_RXDADV_RSSTYPE_IPV4:
329 		if (staterr & E1000_RXD_STAT_IXSM)
330 			return NULL;
331 
332 		if ((staterr &
333 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
334 		    E1000_RXD_STAT_TCPCS) {
335 			pi->pi_netisr = NETISR_IP;
336 			pi->pi_flags = 0;
337 			pi->pi_l3proto = IPPROTO_UDP;
338 			break;
339 		}
340 		/* FALL THROUGH */
341 	default:
342 		return NULL;
343 	}
344 
345 	m->m_flags |= M_HASH;
346 	m->m_pkthdr.hash = toeplitz_hash(hash);
347 	return pi;
348 }
349 
350 static int
351 igb_probe(device_t dev)
352 {
353 	const struct igb_device *d;
354 	uint16_t vid, did;
355 
356 	vid = pci_get_vendor(dev);
357 	did = pci_get_device(dev);
358 
359 	for (d = igb_devices; d->desc != NULL; ++d) {
360 		if (vid == d->vid && did == d->did) {
361 			device_set_desc(dev, d->desc);
362 			return 0;
363 		}
364 	}
365 	return ENXIO;
366 }
367 
368 static int
369 igb_attach(device_t dev)
370 {
371 	struct igb_softc *sc = device_get_softc(dev);
372 	uint16_t eeprom_data;
373 	int error = 0, ring_max;
374 #ifdef IFPOLL_ENABLE
375 	int offset, offset_def;
376 #endif
377 
378 #ifdef notyet
379 	/* SYSCTL stuff */
380 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
381 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
382 	    OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
383 	    igb_sysctl_nvm_info, "I", "NVM Information");
384 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
385 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
386 	    OID_AUTO, "flow_control", CTLTYPE_INT|CTLFLAG_RW,
387 	    adapter, 0, igb_set_flowcntl, "I", "Flow Control");
388 #endif
389 
390 	callout_init_mp(&sc->timer);
391 	lwkt_serialize_init(&sc->main_serialize);
392 
393 	if_initname(&sc->arpcom.ac_if, device_get_name(dev),
394 	    device_get_unit(dev));
395 	sc->dev = sc->osdep.dev = dev;
396 
397 	/*
398 	 * Determine hardware and mac type
399 	 */
400 	sc->hw.vendor_id = pci_get_vendor(dev);
401 	sc->hw.device_id = pci_get_device(dev);
402 	sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
403 	sc->hw.subsystem_vendor_id = pci_read_config(dev, PCIR_SUBVEND_0, 2);
404 	sc->hw.subsystem_device_id = pci_read_config(dev, PCIR_SUBDEV_0, 2);
405 
406 	if (e1000_set_mac_type(&sc->hw))
407 		return ENXIO;
408 
409 	/* Are we a VF device? */
410 	if (sc->hw.mac.type == e1000_vfadapt ||
411 	    sc->hw.mac.type == e1000_vfadapt_i350)
412 		sc->vf_ifp = 1;
413 	else
414 		sc->vf_ifp = 0;
415 
416 	/*
417 	 * Configure total supported RX/TX ring count
418 	 */
419 	switch (sc->hw.mac.type) {
420 	case e1000_82575:
421 		ring_max = IGB_MAX_RING_82575;
422 		break;
423 
424 	case e1000_82576:
425 		ring_max = IGB_MAX_RING_82576;
426 		break;
427 
428 	case e1000_82580:
429 		ring_max = IGB_MAX_RING_82580;
430 		break;
431 
432 	case e1000_i350:
433 		ring_max = IGB_MAX_RING_I350;
434 		break;
435 
436 	case e1000_i210:
437 		ring_max = IGB_MAX_RING_I210;
438 		break;
439 
440 	case e1000_i211:
441 		ring_max = IGB_MAX_RING_I211;
442 		break;
443 
444 	default:
445 		ring_max = IGB_MIN_RING;
446 		break;
447 	}
448 
449 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr", igb_rxr);
450 	sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, ring_max);
451 #ifdef IGB_RSS_DEBUG
452 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr_debug", sc->rx_ring_cnt);
453 #endif
454 	sc->rx_ring_inuse = sc->rx_ring_cnt;
455 
456 	sc->tx_ring_cnt = device_getenv_int(dev, "txr", igb_txr);
457 	sc->tx_ring_cnt = if_ring_count2(sc->tx_ring_cnt, ring_max);
458 #ifdef IGB_TSS_DEBUG
459 	sc->tx_ring_cnt = device_getenv_int(dev, "txr_debug", sc->tx_ring_cnt);
460 #endif
461 	sc->tx_ring_inuse = sc->tx_ring_cnt;
462 
463 	/* Enable bus mastering */
464 	pci_enable_busmaster(dev);
465 
466 	/*
467 	 * Allocate IO memory
468 	 */
469 	sc->mem_rid = PCIR_BAR(0);
470 	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
471 	    RF_ACTIVE);
472 	if (sc->mem_res == NULL) {
473 		device_printf(dev, "Unable to allocate bus resource: memory\n");
474 		error = ENXIO;
475 		goto failed;
476 	}
477 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->mem_res);
478 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->mem_res);
479 
480 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
481 
482 	/* Save PCI command register for Shared Code */
483 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
484 	sc->hw.back = &sc->osdep;
485 
486 	/* Do Shared Code initialization */
487 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
488 		device_printf(dev, "Setup of Shared code failed\n");
489 		error = ENXIO;
490 		goto failed;
491 	}
492 
493 	e1000_get_bus_info(&sc->hw);
494 
495 	sc->hw.mac.autoneg = DO_AUTO_NEG;
496 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
497 	sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
498 
499 	/* Copper options */
500 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
501 		sc->hw.phy.mdix = AUTO_ALL_MODES;
502 		sc->hw.phy.disable_polarity_correction = FALSE;
503 		sc->hw.phy.ms_type = IGB_MASTER_SLAVE;
504 	}
505 
506 	/* Set the frame limits assuming  standard ethernet sized frames. */
507 	sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
508 
509 	/* Allocate RX/TX rings */
510 	error = igb_alloc_rings(sc);
511 	if (error)
512 		goto failed;
513 
514 #ifdef IFPOLL_ENABLE
515 	/*
516 	 * NPOLLING RX CPU offset
517 	 */
518 	if (sc->rx_ring_cnt == ncpus2) {
519 		offset = 0;
520 	} else {
521 		offset_def = (sc->rx_ring_cnt * device_get_unit(dev)) % ncpus2;
522 		offset = device_getenv_int(dev, "npoll.rxoff", offset_def);
523 		if (offset >= ncpus2 ||
524 		    offset % sc->rx_ring_cnt != 0) {
525 			device_printf(dev, "invalid npoll.rxoff %d, use %d\n",
526 			    offset, offset_def);
527 			offset = offset_def;
528 		}
529 	}
530 	sc->rx_npoll_off = offset;
531 
532 	/*
533 	 * NPOLLING TX CPU offset
534 	 */
535 	if (sc->tx_ring_cnt == ncpus2) {
536 		offset = 0;
537 	} else {
538 		offset_def = (sc->tx_ring_cnt * device_get_unit(dev)) % ncpus2;
539 		offset = device_getenv_int(dev, "npoll.txoff", offset_def);
540 		if (offset >= ncpus2 ||
541 		    offset % sc->tx_ring_cnt != 0) {
542 			device_printf(dev, "invalid npoll.txoff %d, use %d\n",
543 			    offset, offset_def);
544 			offset = offset_def;
545 		}
546 	}
547 	sc->tx_npoll_off = offset;
548 #endif
549 
550 	/* Allocate interrupt */
551 	error = igb_alloc_intr(sc);
552 	if (error)
553 		goto failed;
554 
555 	/* Setup serializers */
556 	igb_setup_serializer(sc);
557 
558 	/* Allocate the appropriate stats memory */
559 	if (sc->vf_ifp) {
560 		sc->stats = kmalloc(sizeof(struct e1000_vf_stats), M_DEVBUF,
561 		    M_WAITOK | M_ZERO);
562 		igb_vf_init_stats(sc);
563 	} else {
564 		sc->stats = kmalloc(sizeof(struct e1000_hw_stats), M_DEVBUF,
565 		    M_WAITOK | M_ZERO);
566 	}
567 
568 	/* Allocate multicast array memory. */
569 	sc->mta = kmalloc(ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
570 	    M_DEVBUF, M_WAITOK);
571 
572 	/* Some adapter-specific advanced features */
573 	if (sc->hw.mac.type >= e1000_i350) {
574 #ifdef notyet
575 		igb_set_sysctl_value(adapter, "dma_coalesce",
576 		    "configure dma coalesce",
577 		    &adapter->dma_coalesce, igb_dma_coalesce);
578 		igb_set_sysctl_value(adapter, "eee_disabled",
579 		    "enable Energy Efficient Ethernet",
580 		    &adapter->hw.dev_spec._82575.eee_disable,
581 		    igb_eee_disabled);
582 #else
583 		sc->dma_coalesce = igb_dma_coalesce;
584 		sc->hw.dev_spec._82575.eee_disable = igb_eee_disabled;
585 #endif
586 		if (sc->hw.phy.media_type == e1000_media_type_copper)
587 			e1000_set_eee_i350(&sc->hw);
588 	}
589 
590 	/*
591 	 * Start from a known state, this is important in reading the nvm and
592 	 * mac from that.
593 	 */
594 	e1000_reset_hw(&sc->hw);
595 
596 	/* Make sure we have a good EEPROM before we read from it */
597 	if (sc->hw.mac.type != e1000_i210 && sc->hw.mac.type != e1000_i211 &&
598 	    e1000_validate_nvm_checksum(&sc->hw) < 0) {
599 		/*
600 		 * Some PCI-E parts fail the first check due to
601 		 * the link being in sleep state, call it again,
602 		 * if it fails a second time its a real issue.
603 		 */
604 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
605 			device_printf(dev,
606 			    "The EEPROM Checksum Is Not Valid\n");
607 			error = EIO;
608 			goto failed;
609 		}
610 	}
611 
612 	/* Copy the permanent MAC address out of the EEPROM */
613 	if (e1000_read_mac_addr(&sc->hw) < 0) {
614 		device_printf(dev, "EEPROM read error while reading MAC"
615 		    " address\n");
616 		error = EIO;
617 		goto failed;
618 	}
619 	if (!igb_is_valid_ether_addr(sc->hw.mac.addr)) {
620 		device_printf(dev, "Invalid MAC address\n");
621 		error = EIO;
622 		goto failed;
623 	}
624 
625 	/* Setup OS specific network interface */
626 	igb_setup_ifp(sc);
627 
628 	/* Add sysctl tree, must after igb_setup_ifp() */
629 	igb_add_sysctl(sc);
630 
631 	/* Now get a good starting state */
632 	igb_reset(sc);
633 
634 	/* Initialize statistics */
635 	igb_update_stats_counters(sc);
636 
637 	sc->hw.mac.get_link_status = 1;
638 	igb_update_link_status(sc);
639 
640 	/* Indicate SOL/IDER usage */
641 	if (e1000_check_reset_block(&sc->hw)) {
642 		device_printf(dev,
643 		    "PHY reset is blocked due to SOL/IDER session.\n");
644 	}
645 
646 	/* Determine if we have to control management hardware */
647 	if (e1000_enable_mng_pass_thru(&sc->hw))
648 		sc->flags |= IGB_FLAG_HAS_MGMT;
649 
650 	/*
651 	 * Setup Wake-on-Lan
652 	 */
653 	/* APME bit in EEPROM is mapped to WUC.APME */
654 	eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC) & E1000_WUC_APME;
655 	if (eeprom_data)
656 		sc->wol = E1000_WUFC_MAG;
657 	/* XXX disable WOL */
658 	sc->wol = 0;
659 
660 #ifdef notyet
661 	/* Register for VLAN events */
662 	adapter->vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
663 	     igb_register_vlan, adapter, EVENTHANDLER_PRI_FIRST);
664 	adapter->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
665 	     igb_unregister_vlan, adapter, EVENTHANDLER_PRI_FIRST);
666 #endif
667 
668 #ifdef notyet
669 	igb_add_hw_stats(adapter);
670 #endif
671 
672 	/*
673 	 * Disable interrupt to prevent spurious interrupts (line based
674 	 * interrupt, MSI or even MSI-X), which had been observed on
675 	 * several types of LOMs, from being handled.
676 	 */
677 	igb_disable_intr(sc);
678 
679 	error = igb_setup_intr(sc);
680 	if (error) {
681 		ether_ifdetach(&sc->arpcom.ac_if);
682 		goto failed;
683 	}
684 	return 0;
685 
686 failed:
687 	igb_detach(dev);
688 	return error;
689 }
690 
691 static int
692 igb_detach(device_t dev)
693 {
694 	struct igb_softc *sc = device_get_softc(dev);
695 
696 	if (device_is_attached(dev)) {
697 		struct ifnet *ifp = &sc->arpcom.ac_if;
698 
699 		ifnet_serialize_all(ifp);
700 
701 		igb_stop(sc);
702 
703 		e1000_phy_hw_reset(&sc->hw);
704 
705 		/* Give control back to firmware */
706 		igb_rel_mgmt(sc);
707 		igb_rel_hw_control(sc);
708 
709 		if (sc->wol) {
710 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
711 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
712 			igb_enable_wol(dev);
713 		}
714 
715 		igb_teardown_intr(sc);
716 
717 		ifnet_deserialize_all(ifp);
718 
719 		ether_ifdetach(ifp);
720 	} else if (sc->mem_res != NULL) {
721 		igb_rel_hw_control(sc);
722 	}
723 	bus_generic_detach(dev);
724 
725 	if (sc->sysctl_tree != NULL)
726 		sysctl_ctx_free(&sc->sysctl_ctx);
727 
728 	igb_free_intr(sc);
729 
730 	if (sc->msix_mem_res != NULL) {
731 		bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_mem_rid,
732 		    sc->msix_mem_res);
733 	}
734 	if (sc->mem_res != NULL) {
735 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid,
736 		    sc->mem_res);
737 	}
738 
739 	igb_free_rings(sc);
740 
741 	if (sc->mta != NULL)
742 		kfree(sc->mta, M_DEVBUF);
743 	if (sc->stats != NULL)
744 		kfree(sc->stats, M_DEVBUF);
745 	if (sc->serializes != NULL)
746 		kfree(sc->serializes, M_DEVBUF);
747 
748 	return 0;
749 }
750 
751 static int
752 igb_shutdown(device_t dev)
753 {
754 	return igb_suspend(dev);
755 }
756 
757 static int
758 igb_suspend(device_t dev)
759 {
760 	struct igb_softc *sc = device_get_softc(dev);
761 	struct ifnet *ifp = &sc->arpcom.ac_if;
762 
763 	ifnet_serialize_all(ifp);
764 
765 	igb_stop(sc);
766 
767 	igb_rel_mgmt(sc);
768 	igb_rel_hw_control(sc);
769 
770 	if (sc->wol) {
771 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
772 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
773 		igb_enable_wol(dev);
774 	}
775 
776 	ifnet_deserialize_all(ifp);
777 
778 	return bus_generic_suspend(dev);
779 }
780 
781 static int
782 igb_resume(device_t dev)
783 {
784 	struct igb_softc *sc = device_get_softc(dev);
785 	struct ifnet *ifp = &sc->arpcom.ac_if;
786 	int i;
787 
788 	ifnet_serialize_all(ifp);
789 
790 	igb_init(sc);
791 	igb_get_mgmt(sc);
792 
793 	for (i = 0; i < sc->tx_ring_inuse; ++i)
794 		ifsq_devstart_sched(sc->tx_rings[i].ifsq);
795 
796 	ifnet_deserialize_all(ifp);
797 
798 	return bus_generic_resume(dev);
799 }
800 
801 static int
802 igb_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
803 {
804 	struct igb_softc *sc = ifp->if_softc;
805 	struct ifreq *ifr = (struct ifreq *)data;
806 	int max_frame_size, mask, reinit;
807 	int error = 0;
808 
809 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
810 
811 	switch (command) {
812 	case SIOCSIFMTU:
813 		max_frame_size = 9234;
814 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
815 		    ETHER_CRC_LEN) {
816 			error = EINVAL;
817 			break;
818 		}
819 
820 		ifp->if_mtu = ifr->ifr_mtu;
821 		sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
822 		    ETHER_CRC_LEN;
823 
824 		if (ifp->if_flags & IFF_RUNNING)
825 			igb_init(sc);
826 		break;
827 
828 	case SIOCSIFFLAGS:
829 		if (ifp->if_flags & IFF_UP) {
830 			if (ifp->if_flags & IFF_RUNNING) {
831 				if ((ifp->if_flags ^ sc->if_flags) &
832 				    (IFF_PROMISC | IFF_ALLMULTI)) {
833 					igb_disable_promisc(sc);
834 					igb_set_promisc(sc);
835 				}
836 			} else {
837 				igb_init(sc);
838 			}
839 		} else if (ifp->if_flags & IFF_RUNNING) {
840 			igb_stop(sc);
841 		}
842 		sc->if_flags = ifp->if_flags;
843 		break;
844 
845 	case SIOCADDMULTI:
846 	case SIOCDELMULTI:
847 		if (ifp->if_flags & IFF_RUNNING) {
848 			igb_disable_intr(sc);
849 			igb_set_multi(sc);
850 #ifdef IFPOLL_ENABLE
851 			if (!(ifp->if_flags & IFF_NPOLLING))
852 #endif
853 				igb_enable_intr(sc);
854 		}
855 		break;
856 
857 	case SIOCSIFMEDIA:
858 		/* Check SOL/IDER usage */
859 		if (e1000_check_reset_block(&sc->hw)) {
860 			if_printf(ifp, "Media change is "
861 			    "blocked due to SOL/IDER session.\n");
862 			break;
863 		}
864 		/* FALL THROUGH */
865 
866 	case SIOCGIFMEDIA:
867 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
868 		break;
869 
870 	case SIOCSIFCAP:
871 		reinit = 0;
872 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
873 		if (mask & IFCAP_RXCSUM) {
874 			ifp->if_capenable ^= IFCAP_RXCSUM;
875 			reinit = 1;
876 		}
877 		if (mask & IFCAP_VLAN_HWTAGGING) {
878 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
879 			reinit = 1;
880 		}
881 		if (mask & IFCAP_TXCSUM) {
882 			ifp->if_capenable ^= IFCAP_TXCSUM;
883 			if (ifp->if_capenable & IFCAP_TXCSUM)
884 				ifp->if_hwassist |= IGB_CSUM_FEATURES;
885 			else
886 				ifp->if_hwassist &= ~IGB_CSUM_FEATURES;
887 		}
888 		if (mask & IFCAP_TSO) {
889 			ifp->if_capenable ^= IFCAP_TSO;
890 			if (ifp->if_capenable & IFCAP_TSO)
891 				ifp->if_hwassist |= CSUM_TSO;
892 			else
893 				ifp->if_hwassist &= ~CSUM_TSO;
894 		}
895 		if (mask & IFCAP_RSS)
896 			ifp->if_capenable ^= IFCAP_RSS;
897 		if (reinit && (ifp->if_flags & IFF_RUNNING))
898 			igb_init(sc);
899 		break;
900 
901 	default:
902 		error = ether_ioctl(ifp, command, data);
903 		break;
904 	}
905 	return error;
906 }
907 
908 static void
909 igb_init(void *xsc)
910 {
911 	struct igb_softc *sc = xsc;
912 	struct ifnet *ifp = &sc->arpcom.ac_if;
913 	boolean_t polling;
914 	int i;
915 
916 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
917 
918 	igb_stop(sc);
919 
920 	/* Get the latest mac address, User can use a LAA */
921 	bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
922 
923 	/* Put the address into the Receive Address Array */
924 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
925 
926 	igb_reset(sc);
927 	igb_update_link_status(sc);
928 
929 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
930 
931 	/* Configure for OS presence */
932 	igb_get_mgmt(sc);
933 
934 	polling = FALSE;
935 #ifdef IFPOLL_ENABLE
936 	if (ifp->if_flags & IFF_NPOLLING)
937 		polling = TRUE;
938 #endif
939 
940 	/* Configured used RX/TX rings */
941 	igb_set_ring_inuse(sc, polling);
942 	ifq_set_subq_mask(&ifp->if_snd, sc->tx_ring_inuse - 1);
943 
944 	/* Initialize interrupt */
945 	igb_init_intr(sc);
946 
947 	/* Prepare transmit descriptors and buffers */
948 	for (i = 0; i < sc->tx_ring_inuse; ++i)
949 		igb_init_tx_ring(&sc->tx_rings[i]);
950 	igb_init_tx_unit(sc);
951 
952 	/* Setup Multicast table */
953 	igb_set_multi(sc);
954 
955 #if 0
956 	/*
957 	 * Figure out the desired mbuf pool
958 	 * for doing jumbo/packetsplit
959 	 */
960 	if (adapter->max_frame_size <= 2048)
961 		adapter->rx_mbuf_sz = MCLBYTES;
962 	else if (adapter->max_frame_size <= 4096)
963 		adapter->rx_mbuf_sz = MJUMPAGESIZE;
964 	else
965 		adapter->rx_mbuf_sz = MJUM9BYTES;
966 #endif
967 
968 	/* Prepare receive descriptors and buffers */
969 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
970 		int error;
971 
972 		error = igb_init_rx_ring(&sc->rx_rings[i]);
973 		if (error) {
974 			if_printf(ifp, "Could not setup receive structures\n");
975 			igb_stop(sc);
976 			return;
977 		}
978 	}
979 	igb_init_rx_unit(sc);
980 
981 	/* Enable VLAN support */
982 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
983 		igb_set_vlan(sc);
984 
985 	/* Don't lose promiscuous settings */
986 	igb_set_promisc(sc);
987 
988 	ifp->if_flags |= IFF_RUNNING;
989 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
990 		ifsq_clr_oactive(sc->tx_rings[i].ifsq);
991 		ifsq_watchdog_start(&sc->tx_rings[i].tx_watchdog);
992 	}
993 
994 	igb_set_timer_cpuid(sc, polling);
995 	callout_reset_bycpu(&sc->timer, hz, igb_timer, sc, sc->timer_cpuid);
996 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
997 
998 	/* This clears any pending interrupts */
999 	E1000_READ_REG(&sc->hw, E1000_ICR);
1000 
1001 	/*
1002 	 * Only enable interrupts if we are not polling, make sure
1003 	 * they are off otherwise.
1004 	 */
1005 	if (polling) {
1006 		igb_disable_intr(sc);
1007 	} else {
1008 		igb_enable_intr(sc);
1009 		E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC);
1010 	}
1011 
1012 	/* Set Energy Efficient Ethernet */
1013 	if (sc->hw.phy.media_type == e1000_media_type_copper)
1014 		e1000_set_eee_i350(&sc->hw);
1015 }
1016 
1017 static void
1018 igb_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1019 {
1020 	struct igb_softc *sc = ifp->if_softc;
1021 
1022 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1023 
1024 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1025 		sc->hw.mac.get_link_status = 1;
1026 	igb_update_link_status(sc);
1027 
1028 	ifmr->ifm_status = IFM_AVALID;
1029 	ifmr->ifm_active = IFM_ETHER;
1030 
1031 	if (!sc->link_active)
1032 		return;
1033 
1034 	ifmr->ifm_status |= IFM_ACTIVE;
1035 
1036 	switch (sc->link_speed) {
1037 	case 10:
1038 		ifmr->ifm_active |= IFM_10_T;
1039 		break;
1040 
1041 	case 100:
1042 		/*
1043 		 * Support for 100Mb SFP - these are Fiber
1044 		 * but the media type appears as serdes
1045 		 */
1046 		if (sc->hw.phy.media_type == e1000_media_type_internal_serdes)
1047 			ifmr->ifm_active |= IFM_100_FX;
1048 		else
1049 			ifmr->ifm_active |= IFM_100_TX;
1050 		break;
1051 
1052 	case 1000:
1053 		ifmr->ifm_active |= IFM_1000_T;
1054 		break;
1055 	}
1056 
1057 	if (sc->link_duplex == FULL_DUPLEX)
1058 		ifmr->ifm_active |= IFM_FDX;
1059 	else
1060 		ifmr->ifm_active |= IFM_HDX;
1061 }
1062 
1063 static int
1064 igb_media_change(struct ifnet *ifp)
1065 {
1066 	struct igb_softc *sc = ifp->if_softc;
1067 	struct ifmedia *ifm = &sc->media;
1068 
1069 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1070 
1071 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1072 		return EINVAL;
1073 
1074 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1075 	case IFM_AUTO:
1076 		sc->hw.mac.autoneg = DO_AUTO_NEG;
1077 		sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1078 		break;
1079 
1080 	case IFM_1000_LX:
1081 	case IFM_1000_SX:
1082 	case IFM_1000_T:
1083 		sc->hw.mac.autoneg = DO_AUTO_NEG;
1084 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1085 		break;
1086 
1087 	case IFM_100_TX:
1088 		sc->hw.mac.autoneg = FALSE;
1089 		sc->hw.phy.autoneg_advertised = 0;
1090 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1091 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1092 		else
1093 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1094 		break;
1095 
1096 	case IFM_10_T:
1097 		sc->hw.mac.autoneg = FALSE;
1098 		sc->hw.phy.autoneg_advertised = 0;
1099 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1100 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1101 		else
1102 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1103 		break;
1104 
1105 	default:
1106 		if_printf(ifp, "Unsupported media type\n");
1107 		break;
1108 	}
1109 
1110 	igb_init(sc);
1111 
1112 	return 0;
1113 }
1114 
1115 static void
1116 igb_set_promisc(struct igb_softc *sc)
1117 {
1118 	struct ifnet *ifp = &sc->arpcom.ac_if;
1119 	struct e1000_hw *hw = &sc->hw;
1120 	uint32_t reg;
1121 
1122 	if (sc->vf_ifp) {
1123 		e1000_promisc_set_vf(hw, e1000_promisc_enabled);
1124 		return;
1125 	}
1126 
1127 	reg = E1000_READ_REG(hw, E1000_RCTL);
1128 	if (ifp->if_flags & IFF_PROMISC) {
1129 		reg |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1130 		E1000_WRITE_REG(hw, E1000_RCTL, reg);
1131 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1132 		reg |= E1000_RCTL_MPE;
1133 		reg &= ~E1000_RCTL_UPE;
1134 		E1000_WRITE_REG(hw, E1000_RCTL, reg);
1135 	}
1136 }
1137 
1138 static void
1139 igb_disable_promisc(struct igb_softc *sc)
1140 {
1141 	struct e1000_hw *hw = &sc->hw;
1142 	uint32_t reg;
1143 
1144 	if (sc->vf_ifp) {
1145 		e1000_promisc_set_vf(hw, e1000_promisc_disabled);
1146 		return;
1147 	}
1148 	reg = E1000_READ_REG(hw, E1000_RCTL);
1149 	reg &= ~E1000_RCTL_UPE;
1150 	reg &= ~E1000_RCTL_MPE;
1151 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
1152 }
1153 
1154 static void
1155 igb_set_multi(struct igb_softc *sc)
1156 {
1157 	struct ifnet *ifp = &sc->arpcom.ac_if;
1158 	struct ifmultiaddr *ifma;
1159 	uint32_t reg_rctl = 0;
1160 	uint8_t *mta;
1161 	int mcnt = 0;
1162 
1163 	mta = sc->mta;
1164 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1165 
1166 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1167 		if (ifma->ifma_addr->sa_family != AF_LINK)
1168 			continue;
1169 
1170 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1171 			break;
1172 
1173 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1174 		    &mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN);
1175 		mcnt++;
1176 	}
1177 
1178 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1179 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1180 		reg_rctl |= E1000_RCTL_MPE;
1181 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1182 	} else {
1183 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1184 	}
1185 }
1186 
1187 static void
1188 igb_timer(void *xsc)
1189 {
1190 	struct igb_softc *sc = xsc;
1191 
1192 	lwkt_serialize_enter(&sc->main_serialize);
1193 
1194 	igb_update_link_status(sc);
1195 	igb_update_stats_counters(sc);
1196 
1197 	callout_reset_bycpu(&sc->timer, hz, igb_timer, sc, sc->timer_cpuid);
1198 
1199 	lwkt_serialize_exit(&sc->main_serialize);
1200 }
1201 
1202 static void
1203 igb_update_link_status(struct igb_softc *sc)
1204 {
1205 	struct ifnet *ifp = &sc->arpcom.ac_if;
1206 	struct e1000_hw *hw = &sc->hw;
1207 	uint32_t link_check, thstat, ctrl;
1208 
1209 	link_check = thstat = ctrl = 0;
1210 
1211 	/* Get the cached link value or read for real */
1212 	switch (hw->phy.media_type) {
1213 	case e1000_media_type_copper:
1214 		if (hw->mac.get_link_status) {
1215 			/* Do the work to read phy */
1216 			e1000_check_for_link(hw);
1217 			link_check = !hw->mac.get_link_status;
1218 		} else {
1219 			link_check = TRUE;
1220 		}
1221 		break;
1222 
1223 	case e1000_media_type_fiber:
1224 		e1000_check_for_link(hw);
1225 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1226 		break;
1227 
1228 	case e1000_media_type_internal_serdes:
1229 		e1000_check_for_link(hw);
1230 		link_check = hw->mac.serdes_has_link;
1231 		break;
1232 
1233 	/* VF device is type_unknown */
1234 	case e1000_media_type_unknown:
1235 		e1000_check_for_link(hw);
1236 		link_check = !hw->mac.get_link_status;
1237 		/* Fall thru */
1238 	default:
1239 		break;
1240 	}
1241 
1242 	/* Check for thermal downshift or shutdown */
1243 	if (hw->mac.type == e1000_i350) {
1244 		thstat = E1000_READ_REG(hw, E1000_THSTAT);
1245 		ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1246 	}
1247 
1248 	/* Now we check if a transition has happened */
1249 	if (link_check && sc->link_active == 0) {
1250 		e1000_get_speed_and_duplex(hw,
1251 		    &sc->link_speed, &sc->link_duplex);
1252 		if (bootverbose) {
1253 			const char *flowctl;
1254 
1255 			/* Get the flow control for display */
1256 			switch (hw->fc.current_mode) {
1257 			case e1000_fc_rx_pause:
1258 				flowctl = "RX";
1259 				break;
1260 
1261 			case e1000_fc_tx_pause:
1262 				flowctl = "TX";
1263 				break;
1264 
1265 			case e1000_fc_full:
1266 				flowctl = "Full";
1267 				break;
1268 
1269 			default:
1270 				flowctl = "None";
1271 				break;
1272 			}
1273 
1274 			if_printf(ifp, "Link is up %d Mbps %s, "
1275 			    "Flow control: %s\n",
1276 			    sc->link_speed,
1277 			    sc->link_duplex == FULL_DUPLEX ?
1278 			    "Full Duplex" : "Half Duplex",
1279 			    flowctl);
1280 		}
1281 		sc->link_active = 1;
1282 
1283 		ifp->if_baudrate = sc->link_speed * 1000000;
1284 		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1285 		    (thstat & E1000_THSTAT_LINK_THROTTLE))
1286 			if_printf(ifp, "Link: thermal downshift\n");
1287 		/* This can sleep */
1288 		ifp->if_link_state = LINK_STATE_UP;
1289 		if_link_state_change(ifp);
1290 	} else if (!link_check && sc->link_active == 1) {
1291 		ifp->if_baudrate = sc->link_speed = 0;
1292 		sc->link_duplex = 0;
1293 		if (bootverbose)
1294 			if_printf(ifp, "Link is Down\n");
1295 		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1296 		    (thstat & E1000_THSTAT_PWR_DOWN))
1297 			if_printf(ifp, "Link: thermal shutdown\n");
1298 		sc->link_active = 0;
1299 		/* This can sleep */
1300 		ifp->if_link_state = LINK_STATE_DOWN;
1301 		if_link_state_change(ifp);
1302 	}
1303 }
1304 
1305 static void
1306 igb_stop(struct igb_softc *sc)
1307 {
1308 	struct ifnet *ifp = &sc->arpcom.ac_if;
1309 	int i;
1310 
1311 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1312 
1313 	igb_disable_intr(sc);
1314 
1315 	callout_stop(&sc->timer);
1316 
1317 	ifp->if_flags &= ~IFF_RUNNING;
1318 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1319 		ifsq_clr_oactive(sc->tx_rings[i].ifsq);
1320 		ifsq_watchdog_stop(&sc->tx_rings[i].tx_watchdog);
1321 		sc->tx_rings[i].tx_flags &= ~IGB_TXFLAG_ENABLED;
1322 	}
1323 
1324 	e1000_reset_hw(&sc->hw);
1325 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1326 
1327 	e1000_led_off(&sc->hw);
1328 	e1000_cleanup_led(&sc->hw);
1329 
1330 	for (i = 0; i < sc->tx_ring_cnt; ++i)
1331 		igb_free_tx_ring(&sc->tx_rings[i]);
1332 	for (i = 0; i < sc->rx_ring_cnt; ++i)
1333 		igb_free_rx_ring(&sc->rx_rings[i]);
1334 }
1335 
1336 static void
1337 igb_reset(struct igb_softc *sc)
1338 {
1339 	struct ifnet *ifp = &sc->arpcom.ac_if;
1340 	struct e1000_hw *hw = &sc->hw;
1341 	struct e1000_fc_info *fc = &hw->fc;
1342 	uint32_t pba = 0;
1343 	uint16_t hwm;
1344 
1345 	/* Let the firmware know the OS is in control */
1346 	igb_get_hw_control(sc);
1347 
1348 	/*
1349 	 * Packet Buffer Allocation (PBA)
1350 	 * Writing PBA sets the receive portion of the buffer
1351 	 * the remainder is used for the transmit buffer.
1352 	 */
1353 	switch (hw->mac.type) {
1354 	case e1000_82575:
1355 		pba = E1000_PBA_32K;
1356 		break;
1357 
1358 	case e1000_82576:
1359 	case e1000_vfadapt:
1360 		pba = E1000_READ_REG(hw, E1000_RXPBS);
1361 		pba &= E1000_RXPBS_SIZE_MASK_82576;
1362 		break;
1363 
1364 	case e1000_82580:
1365 	case e1000_i350:
1366 	case e1000_vfadapt_i350:
1367 		pba = E1000_READ_REG(hw, E1000_RXPBS);
1368 		pba = e1000_rxpbs_adjust_82580(pba);
1369 		break;
1370 
1371 	case e1000_i210:
1372 	case e1000_i211:
1373 		pba = E1000_PBA_34K;
1374 		break;
1375 
1376 	default:
1377 		break;
1378 	}
1379 
1380 	/* Special needs in case of Jumbo frames */
1381 	if (hw->mac.type == e1000_82575 && ifp->if_mtu > ETHERMTU) {
1382 		uint32_t tx_space, min_tx, min_rx;
1383 
1384 		pba = E1000_READ_REG(hw, E1000_PBA);
1385 		tx_space = pba >> 16;
1386 		pba &= 0xffff;
1387 
1388 		min_tx = (sc->max_frame_size +
1389 		    sizeof(struct e1000_tx_desc) - ETHER_CRC_LEN) * 2;
1390 		min_tx = roundup2(min_tx, 1024);
1391 		min_tx >>= 10;
1392 		min_rx = sc->max_frame_size;
1393 		min_rx = roundup2(min_rx, 1024);
1394 		min_rx >>= 10;
1395 		if (tx_space < min_tx && (min_tx - tx_space) < pba) {
1396 			pba = pba - (min_tx - tx_space);
1397 			/*
1398 			 * if short on rx space, rx wins
1399 			 * and must trump tx adjustment
1400 			 */
1401 			if (pba < min_rx)
1402 				pba = min_rx;
1403 		}
1404 		E1000_WRITE_REG(hw, E1000_PBA, pba);
1405 	}
1406 
1407 	/*
1408 	 * These parameters control the automatic generation (Tx) and
1409 	 * response (Rx) to Ethernet PAUSE frames.
1410 	 * - High water mark should allow for at least two frames to be
1411 	 *   received after sending an XOFF.
1412 	 * - Low water mark works best when it is very near the high water mark.
1413 	 *   This allows the receiver to restart by sending XON when it has
1414 	 *   drained a bit.
1415 	 */
1416 	hwm = min(((pba << 10) * 9 / 10),
1417 	    ((pba << 10) - 2 * sc->max_frame_size));
1418 
1419 	if (hw->mac.type < e1000_82576) {
1420 		fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1421 		fc->low_water = fc->high_water - 8;
1422 	} else {
1423 		fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1424 		fc->low_water = fc->high_water - 16;
1425 	}
1426 	fc->pause_time = IGB_FC_PAUSE_TIME;
1427 	fc->send_xon = TRUE;
1428 	fc->requested_mode = e1000_fc_default;
1429 
1430 	/* Issue a global reset */
1431 	e1000_reset_hw(hw);
1432 	E1000_WRITE_REG(hw, E1000_WUC, 0);
1433 
1434 	if (e1000_init_hw(hw) < 0)
1435 		if_printf(ifp, "Hardware Initialization Failed\n");
1436 
1437 	/* Setup DMA Coalescing */
1438 	if (hw->mac.type > e1000_82580 && hw->mac.type != e1000_i211) {
1439 		uint32_t dmac;
1440 		uint32_t reg;
1441 
1442 		if (sc->dma_coalesce == 0) {
1443 			/*
1444 			 * Disabled
1445 			 */
1446 			reg = E1000_READ_REG(hw, E1000_DMACR);
1447 			reg &= ~E1000_DMACR_DMAC_EN;
1448 			E1000_WRITE_REG(hw, E1000_DMACR, reg);
1449 			goto reset_out;
1450 		}
1451 
1452 		/* Set starting thresholds */
1453 		E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
1454 		E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
1455 
1456 		hwm = 64 * pba - sc->max_frame_size / 16;
1457 		if (hwm < 64 * (pba - 6))
1458 			hwm = 64 * (pba - 6);
1459 		reg = E1000_READ_REG(hw, E1000_FCRTC);
1460 		reg &= ~E1000_FCRTC_RTH_COAL_MASK;
1461 		reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
1462 		    & E1000_FCRTC_RTH_COAL_MASK);
1463 		E1000_WRITE_REG(hw, E1000_FCRTC, reg);
1464 
1465 		dmac = pba - sc->max_frame_size / 512;
1466 		if (dmac < pba - 10)
1467 			dmac = pba - 10;
1468 		reg = E1000_READ_REG(hw, E1000_DMACR);
1469 		reg &= ~E1000_DMACR_DMACTHR_MASK;
1470 		reg = ((dmac << E1000_DMACR_DMACTHR_SHIFT)
1471 		    & E1000_DMACR_DMACTHR_MASK);
1472 		/* Transition to L0x or L1 if available.. */
1473 		reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
1474 		/* timer = value in sc->dma_coalesce in 32usec intervals */
1475 		reg |= (sc->dma_coalesce >> 5);
1476 		E1000_WRITE_REG(hw, E1000_DMACR, reg);
1477 
1478 		/* Set the interval before transition */
1479 		reg = E1000_READ_REG(hw, E1000_DMCTLX);
1480 		reg |= 0x80000004;
1481 		E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
1482 
1483 		/* Free space in tx packet buffer to wake from DMA coal */
1484 		E1000_WRITE_REG(hw, E1000_DMCTXTH,
1485 		    (20480 - (2 * sc->max_frame_size)) >> 6);
1486 
1487 		/* Make low power state decision controlled by DMA coal */
1488 		reg = E1000_READ_REG(hw, E1000_PCIEMISC);
1489 		reg &= ~E1000_PCIEMISC_LX_DECISION;
1490 		E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
1491 		if_printf(ifp, "DMA Coalescing enabled\n");
1492 	} else if (hw->mac.type == e1000_82580) {
1493 		uint32_t reg = E1000_READ_REG(hw, E1000_PCIEMISC);
1494 
1495 		E1000_WRITE_REG(hw, E1000_DMACR, 0);
1496 		E1000_WRITE_REG(hw, E1000_PCIEMISC,
1497 		    reg & ~E1000_PCIEMISC_LX_DECISION);
1498 	}
1499 
1500 reset_out:
1501 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1502 	e1000_get_phy_info(hw);
1503 	e1000_check_for_link(hw);
1504 }
1505 
1506 static void
1507 igb_setup_ifp(struct igb_softc *sc)
1508 {
1509 	struct ifnet *ifp = &sc->arpcom.ac_if;
1510 	int i;
1511 
1512 	ifp->if_softc = sc;
1513 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1514 	ifp->if_init = igb_init;
1515 	ifp->if_ioctl = igb_ioctl;
1516 	ifp->if_start = igb_start;
1517 	ifp->if_serialize = igb_serialize;
1518 	ifp->if_deserialize = igb_deserialize;
1519 	ifp->if_tryserialize = igb_tryserialize;
1520 #ifdef INVARIANTS
1521 	ifp->if_serialize_assert = igb_serialize_assert;
1522 #endif
1523 #ifdef IFPOLL_ENABLE
1524 	ifp->if_npoll = igb_npoll;
1525 #endif
1526 
1527 	ifq_set_maxlen(&ifp->if_snd, sc->tx_rings[0].num_tx_desc - 1);
1528 	ifq_set_ready(&ifp->if_snd);
1529 	ifq_set_subq_cnt(&ifp->if_snd, sc->tx_ring_cnt);
1530 
1531 	ifp->if_mapsubq = ifq_mapsubq_mask;
1532 	ifq_set_subq_mask(&ifp->if_snd, 0);
1533 
1534 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1535 
1536 	ifp->if_capabilities =
1537 	    IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_TSO;
1538 	if (IGB_ENABLE_HWRSS(sc))
1539 		ifp->if_capabilities |= IFCAP_RSS;
1540 	ifp->if_capenable = ifp->if_capabilities;
1541 	ifp->if_hwassist = IGB_CSUM_FEATURES | CSUM_TSO;
1542 
1543 	/*
1544 	 * Tell the upper layer(s) we support long frames
1545 	 */
1546 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1547 
1548 	/* Setup TX rings and subqueues */
1549 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1550 		struct ifaltq_subque *ifsq = ifq_get_subq(&ifp->if_snd, i);
1551 		struct igb_tx_ring *txr = &sc->tx_rings[i];
1552 
1553 		ifsq_set_cpuid(ifsq, txr->tx_intr_cpuid);
1554 		ifsq_set_priv(ifsq, txr);
1555 		ifsq_set_hw_serialize(ifsq, &txr->tx_serialize);
1556 		txr->ifsq = ifsq;
1557 
1558 		ifsq_watchdog_init(&txr->tx_watchdog, ifsq, igb_watchdog);
1559 	}
1560 
1561 	/*
1562 	 * Specify the media types supported by this adapter and register
1563 	 * callbacks to update media and link information
1564 	 */
1565 	ifmedia_init(&sc->media, IFM_IMASK, igb_media_change, igb_media_status);
1566 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1567 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1568 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1569 		    0, NULL);
1570 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
1571 	} else {
1572 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1573 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1574 		    0, NULL);
1575 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1576 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1577 		    0, NULL);
1578 		if (sc->hw.phy.type != e1000_phy_ife) {
1579 			ifmedia_add(&sc->media,
1580 			    IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1581 			ifmedia_add(&sc->media,
1582 			    IFM_ETHER | IFM_1000_T, 0, NULL);
1583 		}
1584 	}
1585 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1586 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1587 }
1588 
1589 static void
1590 igb_add_sysctl(struct igb_softc *sc)
1591 {
1592 	char node[32];
1593 	int i;
1594 
1595 	sysctl_ctx_init(&sc->sysctl_ctx);
1596 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1597 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
1598 	    device_get_nameunit(sc->dev), CTLFLAG_RD, 0, "");
1599 	if (sc->sysctl_tree == NULL) {
1600 		device_printf(sc->dev, "can't add sysctl node\n");
1601 		return;
1602 	}
1603 
1604 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1605 	    OID_AUTO, "rxr", CTLFLAG_RD, &sc->rx_ring_cnt, 0, "# of RX rings");
1606 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1607 	    OID_AUTO, "rxr_inuse", CTLFLAG_RD, &sc->rx_ring_inuse, 0,
1608 	    "# of RX rings used");
1609 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1610 	    OID_AUTO, "txr", CTLFLAG_RD, &sc->tx_ring_cnt, 0, "# of TX rings");
1611 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1612 	    OID_AUTO, "txr_inuse", CTLFLAG_RD, &sc->tx_ring_inuse, 0,
1613 	    "# of TX rings used");
1614 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1615 	    OID_AUTO, "rxd", CTLFLAG_RD, &sc->rx_rings[0].num_rx_desc, 0,
1616 	    "# of RX descs");
1617 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1618 	    OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_rings[0].num_tx_desc, 0,
1619 	    "# of TX descs");
1620 
1621 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
1622 		SYSCTL_ADD_PROC(&sc->sysctl_ctx,
1623 		    SYSCTL_CHILDREN(sc->sysctl_tree),
1624 		    OID_AUTO, "intr_rate", CTLTYPE_INT | CTLFLAG_RW,
1625 		    sc, 0, igb_sysctl_intr_rate, "I", "interrupt rate");
1626 	} else {
1627 		for (i = 0; i < sc->msix_cnt; ++i) {
1628 			struct igb_msix_data *msix = &sc->msix_data[i];
1629 
1630 			ksnprintf(node, sizeof(node), "msix%d_rate", i);
1631 			SYSCTL_ADD_PROC(&sc->sysctl_ctx,
1632 			    SYSCTL_CHILDREN(sc->sysctl_tree),
1633 			    OID_AUTO, node, CTLTYPE_INT | CTLFLAG_RW,
1634 			    msix, 0, igb_sysctl_msix_rate, "I",
1635 			    msix->msix_rate_desc);
1636 		}
1637 	}
1638 
1639 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1640 	    OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1641 	    sc, 0, igb_sysctl_tx_intr_nsegs, "I",
1642 	    "# of segments per TX interrupt");
1643 
1644 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1645 	    OID_AUTO, "tx_wreg_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1646 	    sc, 0, igb_sysctl_tx_wreg_nsegs, "I",
1647 	    "# of segments sent before write to hardware register");
1648 
1649 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1650 	    OID_AUTO, "rx_wreg_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1651 	    sc, 0, igb_sysctl_rx_wreg_nsegs, "I",
1652 	    "# of segments received before write to hardware register");
1653 
1654 #ifdef IFPOLL_ENABLE
1655 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1656 	    OID_AUTO, "npoll_rxoff", CTLTYPE_INT|CTLFLAG_RW,
1657 	    sc, 0, igb_sysctl_npoll_rxoff, "I", "NPOLLING RX cpu offset");
1658 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1659 	    OID_AUTO, "npoll_txoff", CTLTYPE_INT|CTLFLAG_RW,
1660 	    sc, 0, igb_sysctl_npoll_txoff, "I", "NPOLLING TX cpu offset");
1661 #endif
1662 
1663 #ifdef IGB_RSS_DEBUG
1664 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1665 	    OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug, 0,
1666 	    "RSS debug level");
1667 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1668 		ksnprintf(node, sizeof(node), "rx%d_pkt", i);
1669 		SYSCTL_ADD_ULONG(&sc->sysctl_ctx,
1670 		    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, node,
1671 		    CTLFLAG_RW, &sc->rx_rings[i].rx_packets, "RXed packets");
1672 	}
1673 #endif
1674 #ifdef IGB_TSS_DEBUG
1675 	for  (i = 0; i < sc->tx_ring_cnt; ++i) {
1676 		ksnprintf(node, sizeof(node), "tx%d_pkt", i);
1677 		SYSCTL_ADD_ULONG(&sc->sysctl_ctx,
1678 		    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, node,
1679 		    CTLFLAG_RW, &sc->tx_rings[i].tx_packets, "TXed packets");
1680 	}
1681 #endif
1682 }
1683 
1684 static int
1685 igb_alloc_rings(struct igb_softc *sc)
1686 {
1687 	int error, i;
1688 
1689 	/*
1690 	 * Create top level busdma tag
1691 	 */
1692 	error = bus_dma_tag_create(NULL, 1, 0,
1693 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1694 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1695 	    &sc->parent_tag);
1696 	if (error) {
1697 		device_printf(sc->dev, "could not create top level DMA tag\n");
1698 		return error;
1699 	}
1700 
1701 	/*
1702 	 * Allocate TX descriptor rings and buffers
1703 	 */
1704 	sc->tx_rings = kmalloc_cachealign(
1705 	    sizeof(struct igb_tx_ring) * sc->tx_ring_cnt,
1706 	    M_DEVBUF, M_WAITOK | M_ZERO);
1707 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1708 		struct igb_tx_ring *txr = &sc->tx_rings[i];
1709 
1710 		/* Set up some basics */
1711 		txr->sc = sc;
1712 		txr->me = i;
1713 		lwkt_serialize_init(&txr->tx_serialize);
1714 
1715 		error = igb_create_tx_ring(txr);
1716 		if (error)
1717 			return error;
1718 	}
1719 
1720 	/*
1721 	 * Allocate RX descriptor rings and buffers
1722 	 */
1723 	sc->rx_rings = kmalloc_cachealign(
1724 	    sizeof(struct igb_rx_ring) * sc->rx_ring_cnt,
1725 	    M_DEVBUF, M_WAITOK | M_ZERO);
1726 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1727 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
1728 
1729 		/* Set up some basics */
1730 		rxr->sc = sc;
1731 		rxr->me = i;
1732 		lwkt_serialize_init(&rxr->rx_serialize);
1733 
1734 		error = igb_create_rx_ring(rxr);
1735 		if (error)
1736 			return error;
1737 	}
1738 
1739 	return 0;
1740 }
1741 
1742 static void
1743 igb_free_rings(struct igb_softc *sc)
1744 {
1745 	int i;
1746 
1747 	if (sc->tx_rings != NULL) {
1748 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
1749 			struct igb_tx_ring *txr = &sc->tx_rings[i];
1750 
1751 			igb_destroy_tx_ring(txr, txr->num_tx_desc);
1752 		}
1753 		kfree(sc->tx_rings, M_DEVBUF);
1754 	}
1755 
1756 	if (sc->rx_rings != NULL) {
1757 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
1758 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
1759 
1760 			igb_destroy_rx_ring(rxr, rxr->num_rx_desc);
1761 		}
1762 		kfree(sc->rx_rings, M_DEVBUF);
1763 	}
1764 }
1765 
1766 static int
1767 igb_create_tx_ring(struct igb_tx_ring *txr)
1768 {
1769 	int tsize, error, i, ntxd;
1770 
1771 	/*
1772 	 * Validate number of transmit descriptors. It must not exceed
1773 	 * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
1774 	 */
1775 	ntxd = device_getenv_int(txr->sc->dev, "txd", igb_txd);
1776 	if ((ntxd * sizeof(struct e1000_tx_desc)) % IGB_DBA_ALIGN != 0 ||
1777 	    ntxd > IGB_MAX_TXD || ntxd < IGB_MIN_TXD) {
1778 		device_printf(txr->sc->dev,
1779 		    "Using %d TX descriptors instead of %d!\n",
1780 		    IGB_DEFAULT_TXD, ntxd);
1781 		txr->num_tx_desc = IGB_DEFAULT_TXD;
1782 	} else {
1783 		txr->num_tx_desc = ntxd;
1784 	}
1785 
1786 	/*
1787 	 * Allocate TX descriptor ring
1788 	 */
1789 	tsize = roundup2(txr->num_tx_desc * sizeof(union e1000_adv_tx_desc),
1790 	    IGB_DBA_ALIGN);
1791 	txr->txdma.dma_vaddr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1792 	    IGB_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
1793 	    &txr->txdma.dma_tag, &txr->txdma.dma_map, &txr->txdma.dma_paddr);
1794 	if (txr->txdma.dma_vaddr == NULL) {
1795 		device_printf(txr->sc->dev,
1796 		    "Unable to allocate TX Descriptor memory\n");
1797 		return ENOMEM;
1798 	}
1799 	txr->tx_base = txr->txdma.dma_vaddr;
1800 	bzero(txr->tx_base, tsize);
1801 
1802 	tsize = __VM_CACHELINE_ALIGN(
1803 	    sizeof(struct igb_tx_buf) * txr->num_tx_desc);
1804 	txr->tx_buf = kmalloc_cachealign(tsize, M_DEVBUF, M_WAITOK | M_ZERO);
1805 
1806 	/*
1807 	 * Allocate TX head write-back buffer
1808 	 */
1809 	txr->tx_hdr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1810 	    __VM_CACHELINE_SIZE, __VM_CACHELINE_SIZE, BUS_DMA_WAITOK,
1811 	    &txr->tx_hdr_dtag, &txr->tx_hdr_dmap, &txr->tx_hdr_paddr);
1812 	if (txr->tx_hdr == NULL) {
1813 		device_printf(txr->sc->dev,
1814 		    "Unable to allocate TX head write-back buffer\n");
1815 		return ENOMEM;
1816 	}
1817 
1818 	/*
1819 	 * Create DMA tag for TX buffers
1820 	 */
1821 	error = bus_dma_tag_create(txr->sc->parent_tag,
1822 	    1, 0,		/* alignment, bounds */
1823 	    BUS_SPACE_MAXADDR,	/* lowaddr */
1824 	    BUS_SPACE_MAXADDR,	/* highaddr */
1825 	    NULL, NULL,		/* filter, filterarg */
1826 	    IGB_TSO_SIZE,	/* maxsize */
1827 	    IGB_MAX_SCATTER,	/* nsegments */
1828 	    PAGE_SIZE,		/* maxsegsize */
1829 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
1830 	    BUS_DMA_ONEBPAGE,	/* flags */
1831 	    &txr->tx_tag);
1832 	if (error) {
1833 		device_printf(txr->sc->dev, "Unable to allocate TX DMA tag\n");
1834 		kfree(txr->tx_buf, M_DEVBUF);
1835 		txr->tx_buf = NULL;
1836 		return error;
1837 	}
1838 
1839 	/*
1840 	 * Create DMA maps for TX buffers
1841 	 */
1842 	for (i = 0; i < txr->num_tx_desc; ++i) {
1843 		struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1844 
1845 		error = bus_dmamap_create(txr->tx_tag,
1846 		    BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE, &txbuf->map);
1847 		if (error) {
1848 			device_printf(txr->sc->dev,
1849 			    "Unable to create TX DMA map\n");
1850 			igb_destroy_tx_ring(txr, i);
1851 			return error;
1852 		}
1853 	}
1854 
1855 	if (txr->sc->hw.mac.type == e1000_82575)
1856 		txr->tx_flags |= IGB_TXFLAG_TSO_IPLEN0;
1857 
1858 	/*
1859 	 * Initialize various watermark
1860 	 */
1861 	txr->spare_desc = IGB_TX_SPARE;
1862 	txr->intr_nsegs = txr->num_tx_desc / 16;
1863 	txr->wreg_nsegs = IGB_DEF_TXWREG_NSEGS;
1864 	txr->oact_hi_desc = txr->num_tx_desc / 2;
1865 	txr->oact_lo_desc = txr->num_tx_desc / 8;
1866 	if (txr->oact_lo_desc > IGB_TX_OACTIVE_MAX)
1867 		txr->oact_lo_desc = IGB_TX_OACTIVE_MAX;
1868 	if (txr->oact_lo_desc < txr->spare_desc + IGB_TX_RESERVED)
1869 		txr->oact_lo_desc = txr->spare_desc + IGB_TX_RESERVED;
1870 
1871 	return 0;
1872 }
1873 
1874 static void
1875 igb_free_tx_ring(struct igb_tx_ring *txr)
1876 {
1877 	int i;
1878 
1879 	for (i = 0; i < txr->num_tx_desc; ++i) {
1880 		struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1881 
1882 		if (txbuf->m_head != NULL) {
1883 			bus_dmamap_unload(txr->tx_tag, txbuf->map);
1884 			m_freem(txbuf->m_head);
1885 			txbuf->m_head = NULL;
1886 		}
1887 	}
1888 }
1889 
1890 static void
1891 igb_destroy_tx_ring(struct igb_tx_ring *txr, int ndesc)
1892 {
1893 	int i;
1894 
1895 	if (txr->txdma.dma_vaddr != NULL) {
1896 		bus_dmamap_unload(txr->txdma.dma_tag, txr->txdma.dma_map);
1897 		bus_dmamem_free(txr->txdma.dma_tag, txr->txdma.dma_vaddr,
1898 		    txr->txdma.dma_map);
1899 		bus_dma_tag_destroy(txr->txdma.dma_tag);
1900 		txr->txdma.dma_vaddr = NULL;
1901 	}
1902 
1903 	if (txr->tx_hdr != NULL) {
1904 		bus_dmamap_unload(txr->tx_hdr_dtag, txr->tx_hdr_dmap);
1905 		bus_dmamem_free(txr->tx_hdr_dtag, txr->tx_hdr,
1906 		    txr->tx_hdr_dmap);
1907 		bus_dma_tag_destroy(txr->tx_hdr_dtag);
1908 		txr->tx_hdr = NULL;
1909 	}
1910 
1911 	if (txr->tx_buf == NULL)
1912 		return;
1913 
1914 	for (i = 0; i < ndesc; ++i) {
1915 		struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1916 
1917 		KKASSERT(txbuf->m_head == NULL);
1918 		bus_dmamap_destroy(txr->tx_tag, txbuf->map);
1919 	}
1920 	bus_dma_tag_destroy(txr->tx_tag);
1921 
1922 	kfree(txr->tx_buf, M_DEVBUF);
1923 	txr->tx_buf = NULL;
1924 }
1925 
1926 static void
1927 igb_init_tx_ring(struct igb_tx_ring *txr)
1928 {
1929 	/* Clear the old descriptor contents */
1930 	bzero(txr->tx_base,
1931 	    sizeof(union e1000_adv_tx_desc) * txr->num_tx_desc);
1932 
1933 	/* Clear TX head write-back buffer */
1934 	*(txr->tx_hdr) = 0;
1935 
1936 	/* Reset indices */
1937 	txr->next_avail_desc = 0;
1938 	txr->next_to_clean = 0;
1939 	txr->tx_nsegs = 0;
1940 
1941 	/* Set number of descriptors available */
1942 	txr->tx_avail = txr->num_tx_desc;
1943 
1944 	/* Enable this TX ring */
1945 	txr->tx_flags |= IGB_TXFLAG_ENABLED;
1946 }
1947 
1948 static void
1949 igb_init_tx_unit(struct igb_softc *sc)
1950 {
1951 	struct e1000_hw *hw = &sc->hw;
1952 	uint32_t tctl;
1953 	int i;
1954 
1955 	/* Setup the Tx Descriptor Rings */
1956 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
1957 		struct igb_tx_ring *txr = &sc->tx_rings[i];
1958 		uint64_t bus_addr = txr->txdma.dma_paddr;
1959 		uint64_t hdr_paddr = txr->tx_hdr_paddr;
1960 		uint32_t txdctl = 0;
1961 		uint32_t dca_txctrl;
1962 
1963 		E1000_WRITE_REG(hw, E1000_TDLEN(i),
1964 		    txr->num_tx_desc * sizeof(struct e1000_tx_desc));
1965 		E1000_WRITE_REG(hw, E1000_TDBAH(i),
1966 		    (uint32_t)(bus_addr >> 32));
1967 		E1000_WRITE_REG(hw, E1000_TDBAL(i),
1968 		    (uint32_t)bus_addr);
1969 
1970 		/* Setup the HW Tx Head and Tail descriptor pointers */
1971 		E1000_WRITE_REG(hw, E1000_TDT(i), 0);
1972 		E1000_WRITE_REG(hw, E1000_TDH(i), 0);
1973 
1974 		dca_txctrl = E1000_READ_REG(hw, E1000_DCA_TXCTRL(i));
1975 		dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1976 		E1000_WRITE_REG(hw, E1000_DCA_TXCTRL(i), dca_txctrl);
1977 
1978 		/*
1979 		 * Don't set WB_on_EITR:
1980 		 * - 82575 does not have it
1981 		 * - It almost has no effect on 82576, see:
1982 		 *   82576 specification update errata #26
1983 		 * - It causes unnecessary bus traffic
1984 		 */
1985 		E1000_WRITE_REG(hw, E1000_TDWBAH(i),
1986 		    (uint32_t)(hdr_paddr >> 32));
1987 		E1000_WRITE_REG(hw, E1000_TDWBAL(i),
1988 		    ((uint32_t)hdr_paddr) | E1000_TX_HEAD_WB_ENABLE);
1989 
1990 		/*
1991 		 * WTHRESH is ignored by the hardware, since header
1992 		 * write back mode is used.
1993 		 */
1994 		txdctl |= IGB_TX_PTHRESH;
1995 		txdctl |= IGB_TX_HTHRESH << 8;
1996 		txdctl |= IGB_TX_WTHRESH << 16;
1997 		txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1998 		E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
1999 	}
2000 
2001 	if (sc->vf_ifp)
2002 		return;
2003 
2004 	e1000_config_collision_dist(hw);
2005 
2006 	/* Program the Transmit Control Register */
2007 	tctl = E1000_READ_REG(hw, E1000_TCTL);
2008 	tctl &= ~E1000_TCTL_CT;
2009 	tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2010 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
2011 
2012 	/* This write will effectively turn on the transmit unit. */
2013 	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
2014 }
2015 
2016 static boolean_t
2017 igb_txcsum_ctx(struct igb_tx_ring *txr, struct mbuf *mp)
2018 {
2019 	struct e1000_adv_tx_context_desc *TXD;
2020 	uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
2021 	int ehdrlen, ctxd, ip_hlen = 0;
2022 	boolean_t offload = TRUE;
2023 
2024 	if ((mp->m_pkthdr.csum_flags & IGB_CSUM_FEATURES) == 0)
2025 		offload = FALSE;
2026 
2027 	vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
2028 
2029 	ctxd = txr->next_avail_desc;
2030 	TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
2031 
2032 	/*
2033 	 * In advanced descriptors the vlan tag must
2034 	 * be placed into the context descriptor, thus
2035 	 * we need to be here just for that setup.
2036 	 */
2037 	if (mp->m_flags & M_VLANTAG) {
2038 		uint16_t vlantag;
2039 
2040 		vlantag = htole16(mp->m_pkthdr.ether_vlantag);
2041 		vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
2042 	} else if (!offload) {
2043 		return FALSE;
2044 	}
2045 
2046 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2047 	KASSERT(ehdrlen > 0, ("invalid ether hlen"));
2048 
2049 	/* Set the ether header length */
2050 	vlan_macip_lens |= ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
2051 	if (mp->m_pkthdr.csum_flags & CSUM_IP) {
2052 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
2053 		ip_hlen = mp->m_pkthdr.csum_iphlen;
2054 		KASSERT(ip_hlen > 0, ("invalid ip hlen"));
2055 	}
2056 	vlan_macip_lens |= ip_hlen;
2057 
2058 	type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
2059 	if (mp->m_pkthdr.csum_flags & CSUM_TCP)
2060 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
2061 	else if (mp->m_pkthdr.csum_flags & CSUM_UDP)
2062 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP;
2063 
2064 	/*
2065 	 * 82575 needs the TX context index added; the queue
2066 	 * index is used as TX context index here.
2067 	 */
2068 	if (txr->sc->hw.mac.type == e1000_82575)
2069 		mss_l4len_idx = txr->me << 4;
2070 
2071 	/* Now copy bits into descriptor */
2072 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
2073 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
2074 	TXD->seqnum_seed = htole32(0);
2075 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
2076 
2077 	/* We've consumed the first desc, adjust counters */
2078 	if (++ctxd == txr->num_tx_desc)
2079 		ctxd = 0;
2080 	txr->next_avail_desc = ctxd;
2081 	--txr->tx_avail;
2082 
2083 	return offload;
2084 }
2085 
2086 static void
2087 igb_txeof(struct igb_tx_ring *txr)
2088 {
2089 	struct ifnet *ifp = &txr->sc->arpcom.ac_if;
2090 	int first, hdr, avail;
2091 
2092 	if (txr->tx_avail == txr->num_tx_desc)
2093 		return;
2094 
2095 	first = txr->next_to_clean;
2096 	hdr = *(txr->tx_hdr);
2097 
2098 	if (first == hdr)
2099 		return;
2100 
2101 	avail = txr->tx_avail;
2102 	while (first != hdr) {
2103 		struct igb_tx_buf *txbuf = &txr->tx_buf[first];
2104 
2105 		++avail;
2106 		if (txbuf->m_head) {
2107 			bus_dmamap_unload(txr->tx_tag, txbuf->map);
2108 			m_freem(txbuf->m_head);
2109 			txbuf->m_head = NULL;
2110 			IFNET_STAT_INC(ifp, opackets, 1);
2111 		}
2112 		if (++first == txr->num_tx_desc)
2113 			first = 0;
2114 	}
2115 	txr->next_to_clean = first;
2116 	txr->tx_avail = avail;
2117 
2118 	/*
2119 	 * If we have a minimum free, clear OACTIVE
2120 	 * to tell the stack that it is OK to send packets.
2121 	 */
2122 	if (IGB_IS_NOT_OACTIVE(txr)) {
2123 		ifsq_clr_oactive(txr->ifsq);
2124 
2125 		/*
2126 		 * We have enough TX descriptors, turn off
2127 		 * the watchdog.  We allow small amount of
2128 		 * packets (roughly intr_nsegs) pending on
2129 		 * the transmit ring.
2130 		 */
2131 		txr->tx_watchdog.wd_timer = 0;
2132 	}
2133 }
2134 
2135 static int
2136 igb_create_rx_ring(struct igb_rx_ring *rxr)
2137 {
2138 	int rsize, i, error, nrxd;
2139 
2140 	/*
2141 	 * Validate number of receive descriptors. It must not exceed
2142 	 * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
2143 	 */
2144 	nrxd = device_getenv_int(rxr->sc->dev, "rxd", igb_rxd);
2145 	if ((nrxd * sizeof(struct e1000_rx_desc)) % IGB_DBA_ALIGN != 0 ||
2146 	    nrxd > IGB_MAX_RXD || nrxd < IGB_MIN_RXD) {
2147 		device_printf(rxr->sc->dev,
2148 		    "Using %d RX descriptors instead of %d!\n",
2149 		    IGB_DEFAULT_RXD, nrxd);
2150 		rxr->num_rx_desc = IGB_DEFAULT_RXD;
2151 	} else {
2152 		rxr->num_rx_desc = nrxd;
2153 	}
2154 
2155 	/*
2156 	 * Allocate RX descriptor ring
2157 	 */
2158 	rsize = roundup2(rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc),
2159 	    IGB_DBA_ALIGN);
2160 	rxr->rxdma.dma_vaddr = bus_dmamem_coherent_any(rxr->sc->parent_tag,
2161 	    IGB_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2162 	    &rxr->rxdma.dma_tag, &rxr->rxdma.dma_map,
2163 	    &rxr->rxdma.dma_paddr);
2164 	if (rxr->rxdma.dma_vaddr == NULL) {
2165 		device_printf(rxr->sc->dev,
2166 		    "Unable to allocate RxDescriptor memory\n");
2167 		return ENOMEM;
2168 	}
2169 	rxr->rx_base = rxr->rxdma.dma_vaddr;
2170 	bzero(rxr->rx_base, rsize);
2171 
2172 	rsize = __VM_CACHELINE_ALIGN(
2173 	    sizeof(struct igb_rx_buf) * rxr->num_rx_desc);
2174 	rxr->rx_buf = kmalloc_cachealign(rsize, M_DEVBUF, M_WAITOK | M_ZERO);
2175 
2176 	/*
2177 	 * Create DMA tag for RX buffers
2178 	 */
2179 	error = bus_dma_tag_create(rxr->sc->parent_tag,
2180 	    1, 0,		/* alignment, bounds */
2181 	    BUS_SPACE_MAXADDR,	/* lowaddr */
2182 	    BUS_SPACE_MAXADDR,	/* highaddr */
2183 	    NULL, NULL,		/* filter, filterarg */
2184 	    MCLBYTES,		/* maxsize */
2185 	    1,			/* nsegments */
2186 	    MCLBYTES,		/* maxsegsize */
2187 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2188 	    &rxr->rx_tag);
2189 	if (error) {
2190 		device_printf(rxr->sc->dev,
2191 		    "Unable to create RX payload DMA tag\n");
2192 		kfree(rxr->rx_buf, M_DEVBUF);
2193 		rxr->rx_buf = NULL;
2194 		return error;
2195 	}
2196 
2197 	/*
2198 	 * Create spare DMA map for RX buffers
2199 	 */
2200 	error = bus_dmamap_create(rxr->rx_tag, BUS_DMA_WAITOK,
2201 	    &rxr->rx_sparemap);
2202 	if (error) {
2203 		device_printf(rxr->sc->dev,
2204 		    "Unable to create spare RX DMA maps\n");
2205 		bus_dma_tag_destroy(rxr->rx_tag);
2206 		kfree(rxr->rx_buf, M_DEVBUF);
2207 		rxr->rx_buf = NULL;
2208 		return error;
2209 	}
2210 
2211 	/*
2212 	 * Create DMA maps for RX buffers
2213 	 */
2214 	for (i = 0; i < rxr->num_rx_desc; i++) {
2215 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2216 
2217 		error = bus_dmamap_create(rxr->rx_tag,
2218 		    BUS_DMA_WAITOK, &rxbuf->map);
2219 		if (error) {
2220 			device_printf(rxr->sc->dev,
2221 			    "Unable to create RX DMA maps\n");
2222 			igb_destroy_rx_ring(rxr, i);
2223 			return error;
2224 		}
2225 	}
2226 
2227 	/*
2228 	 * Initialize various watermark
2229 	 */
2230 	rxr->wreg_nsegs = IGB_DEF_RXWREG_NSEGS;
2231 
2232 	return 0;
2233 }
2234 
2235 static void
2236 igb_free_rx_ring(struct igb_rx_ring *rxr)
2237 {
2238 	int i;
2239 
2240 	for (i = 0; i < rxr->num_rx_desc; ++i) {
2241 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2242 
2243 		if (rxbuf->m_head != NULL) {
2244 			bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2245 			m_freem(rxbuf->m_head);
2246 			rxbuf->m_head = NULL;
2247 		}
2248 	}
2249 
2250 	if (rxr->fmp != NULL)
2251 		m_freem(rxr->fmp);
2252 	rxr->fmp = NULL;
2253 	rxr->lmp = NULL;
2254 }
2255 
2256 static void
2257 igb_destroy_rx_ring(struct igb_rx_ring *rxr, int ndesc)
2258 {
2259 	int i;
2260 
2261 	if (rxr->rxdma.dma_vaddr != NULL) {
2262 		bus_dmamap_unload(rxr->rxdma.dma_tag, rxr->rxdma.dma_map);
2263 		bus_dmamem_free(rxr->rxdma.dma_tag, rxr->rxdma.dma_vaddr,
2264 		    rxr->rxdma.dma_map);
2265 		bus_dma_tag_destroy(rxr->rxdma.dma_tag);
2266 		rxr->rxdma.dma_vaddr = NULL;
2267 	}
2268 
2269 	if (rxr->rx_buf == NULL)
2270 		return;
2271 
2272 	for (i = 0; i < ndesc; ++i) {
2273 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2274 
2275 		KKASSERT(rxbuf->m_head == NULL);
2276 		bus_dmamap_destroy(rxr->rx_tag, rxbuf->map);
2277 	}
2278 	bus_dmamap_destroy(rxr->rx_tag, rxr->rx_sparemap);
2279 	bus_dma_tag_destroy(rxr->rx_tag);
2280 
2281 	kfree(rxr->rx_buf, M_DEVBUF);
2282 	rxr->rx_buf = NULL;
2283 }
2284 
2285 static void
2286 igb_setup_rxdesc(union e1000_adv_rx_desc *rxd, const struct igb_rx_buf *rxbuf)
2287 {
2288 	rxd->read.pkt_addr = htole64(rxbuf->paddr);
2289 	rxd->wb.upper.status_error = 0;
2290 }
2291 
2292 static int
2293 igb_newbuf(struct igb_rx_ring *rxr, int i, boolean_t wait)
2294 {
2295 	struct mbuf *m;
2296 	bus_dma_segment_t seg;
2297 	bus_dmamap_t map;
2298 	struct igb_rx_buf *rxbuf;
2299 	int error, nseg;
2300 
2301 	m = m_getcl(wait ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2302 	if (m == NULL) {
2303 		if (wait) {
2304 			if_printf(&rxr->sc->arpcom.ac_if,
2305 			    "Unable to allocate RX mbuf\n");
2306 		}
2307 		return ENOBUFS;
2308 	}
2309 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2310 
2311 	if (rxr->sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2312 		m_adj(m, ETHER_ALIGN);
2313 
2314 	error = bus_dmamap_load_mbuf_segment(rxr->rx_tag,
2315 	    rxr->rx_sparemap, m, &seg, 1, &nseg, BUS_DMA_NOWAIT);
2316 	if (error) {
2317 		m_freem(m);
2318 		if (wait) {
2319 			if_printf(&rxr->sc->arpcom.ac_if,
2320 			    "Unable to load RX mbuf\n");
2321 		}
2322 		return error;
2323 	}
2324 
2325 	rxbuf = &rxr->rx_buf[i];
2326 	if (rxbuf->m_head != NULL)
2327 		bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2328 
2329 	map = rxbuf->map;
2330 	rxbuf->map = rxr->rx_sparemap;
2331 	rxr->rx_sparemap = map;
2332 
2333 	rxbuf->m_head = m;
2334 	rxbuf->paddr = seg.ds_addr;
2335 
2336 	igb_setup_rxdesc(&rxr->rx_base[i], rxbuf);
2337 	return 0;
2338 }
2339 
2340 static int
2341 igb_init_rx_ring(struct igb_rx_ring *rxr)
2342 {
2343 	int i;
2344 
2345 	/* Clear the ring contents */
2346 	bzero(rxr->rx_base,
2347 	    rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc));
2348 
2349 	/* Now replenish the ring mbufs */
2350 	for (i = 0; i < rxr->num_rx_desc; ++i) {
2351 		int error;
2352 
2353 		error = igb_newbuf(rxr, i, TRUE);
2354 		if (error)
2355 			return error;
2356 	}
2357 
2358 	/* Setup our descriptor indices */
2359 	rxr->next_to_check = 0;
2360 
2361 	rxr->fmp = NULL;
2362 	rxr->lmp = NULL;
2363 	rxr->discard = FALSE;
2364 
2365 	return 0;
2366 }
2367 
2368 static void
2369 igb_init_rx_unit(struct igb_softc *sc)
2370 {
2371 	struct ifnet *ifp = &sc->arpcom.ac_if;
2372 	struct e1000_hw *hw = &sc->hw;
2373 	uint32_t rctl, rxcsum, srrctl = 0;
2374 	int i;
2375 
2376 	/*
2377 	 * Make sure receives are disabled while setting
2378 	 * up the descriptor ring
2379 	 */
2380 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2381 	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2382 
2383 #if 0
2384 	/*
2385 	** Set up for header split
2386 	*/
2387 	if (igb_header_split) {
2388 		/* Use a standard mbuf for the header */
2389 		srrctl |= IGB_HDR_BUF << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2390 		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2391 	} else
2392 #endif
2393 		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2394 
2395 	/*
2396 	** Set up for jumbo frames
2397 	*/
2398 	if (ifp->if_mtu > ETHERMTU) {
2399 		rctl |= E1000_RCTL_LPE;
2400 #if 0
2401 		if (adapter->rx_mbuf_sz == MJUMPAGESIZE) {
2402 			srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2403 			rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
2404 		} else if (adapter->rx_mbuf_sz > MJUMPAGESIZE) {
2405 			srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2406 			rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
2407 		}
2408 		/* Set maximum packet len */
2409 		psize = adapter->max_frame_size;
2410 		/* are we on a vlan? */
2411 		if (adapter->ifp->if_vlantrunk != NULL)
2412 			psize += VLAN_TAG_SIZE;
2413 		E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
2414 #else
2415 		srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2416 		rctl |= E1000_RCTL_SZ_2048;
2417 #endif
2418 	} else {
2419 		rctl &= ~E1000_RCTL_LPE;
2420 		srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2421 		rctl |= E1000_RCTL_SZ_2048;
2422 	}
2423 
2424 	/* Setup the Base and Length of the Rx Descriptor Rings */
2425 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
2426 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
2427 		uint64_t bus_addr = rxr->rxdma.dma_paddr;
2428 		uint32_t rxdctl;
2429 
2430 		E1000_WRITE_REG(hw, E1000_RDLEN(i),
2431 		    rxr->num_rx_desc * sizeof(struct e1000_rx_desc));
2432 		E1000_WRITE_REG(hw, E1000_RDBAH(i),
2433 		    (uint32_t)(bus_addr >> 32));
2434 		E1000_WRITE_REG(hw, E1000_RDBAL(i),
2435 		    (uint32_t)bus_addr);
2436 		E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
2437 		/* Enable this Queue */
2438 		rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
2439 		rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2440 		rxdctl &= 0xFFF00000;
2441 		rxdctl |= IGB_RX_PTHRESH;
2442 		rxdctl |= IGB_RX_HTHRESH << 8;
2443 		/*
2444 		 * Don't set WTHRESH to a value above 1 on 82576, see:
2445 		 * 82576 specification update errata #26
2446 		 */
2447 		rxdctl |= IGB_RX_WTHRESH << 16;
2448 		E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
2449 	}
2450 
2451 	rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2452 	rxcsum &= ~(E1000_RXCSUM_PCSS_MASK | E1000_RXCSUM_IPPCSE);
2453 
2454 	/*
2455 	 * Receive Checksum Offload for TCP and UDP
2456 	 *
2457 	 * Checksum offloading is also enabled if multiple receive
2458 	 * queue is to be supported, since we need it to figure out
2459 	 * fragments.
2460 	 */
2461 	if ((ifp->if_capenable & IFCAP_RXCSUM) || IGB_ENABLE_HWRSS(sc)) {
2462 		/*
2463 		 * NOTE:
2464 		 * PCSD must be enabled to enable multiple
2465 		 * receive queues.
2466 		 */
2467 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2468 		    E1000_RXCSUM_PCSD;
2469 	} else {
2470 		rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2471 		    E1000_RXCSUM_PCSD);
2472 	}
2473 	E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2474 
2475 	if (IGB_ENABLE_HWRSS(sc)) {
2476 		uint8_t key[IGB_NRSSRK * IGB_RSSRK_SIZE];
2477 		uint32_t reta_shift;
2478 		int j, r;
2479 
2480 		/*
2481 		 * NOTE:
2482 		 * When we reach here, RSS has already been disabled
2483 		 * in igb_stop(), so we could safely configure RSS key
2484 		 * and redirect table.
2485 		 */
2486 
2487 		/*
2488 		 * Configure RSS key
2489 		 */
2490 		toeplitz_get_key(key, sizeof(key));
2491 		for (i = 0; i < IGB_NRSSRK; ++i) {
2492 			uint32_t rssrk;
2493 
2494 			rssrk = IGB_RSSRK_VAL(key, i);
2495 			IGB_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2496 
2497 			E1000_WRITE_REG(hw, E1000_RSSRK(i), rssrk);
2498 		}
2499 
2500 		/*
2501 		 * Configure RSS redirect table in following fashion:
2502 	 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2503 		 */
2504 		reta_shift = IGB_RETA_SHIFT;
2505 		if (hw->mac.type == e1000_82575)
2506 			reta_shift = IGB_RETA_SHIFT_82575;
2507 
2508 		r = 0;
2509 		for (j = 0; j < IGB_NRETA; ++j) {
2510 			uint32_t reta = 0;
2511 
2512 			for (i = 0; i < IGB_RETA_SIZE; ++i) {
2513 				uint32_t q;
2514 
2515 				q = (r % sc->rx_ring_inuse) << reta_shift;
2516 				reta |= q << (8 * i);
2517 				++r;
2518 			}
2519 			IGB_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2520 			E1000_WRITE_REG(hw, E1000_RETA(j), reta);
2521 		}
2522 
2523 		/*
2524 		 * Enable multiple receive queues.
2525 		 * Enable IPv4 RSS standard hash functions.
2526 		 * Disable RSS interrupt on 82575
2527 		 */
2528 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2529 				E1000_MRQC_ENABLE_RSS_4Q |
2530 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
2531 				E1000_MRQC_RSS_FIELD_IPV4);
2532 	}
2533 
2534 	/* Setup the Receive Control Register */
2535 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2536 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2537 	    E1000_RCTL_RDMTS_HALF |
2538 	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2539 	/* Strip CRC bytes. */
2540 	rctl |= E1000_RCTL_SECRC;
2541 	/* Make sure VLAN Filters are off */
2542 	rctl &= ~E1000_RCTL_VFE;
2543 	/* Don't store bad packets */
2544 	rctl &= ~E1000_RCTL_SBP;
2545 
2546 	/* Enable Receives */
2547 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2548 
2549 	/*
2550 	 * Setup the HW Rx Head and Tail Descriptor Pointers
2551 	 *   - needs to be after enable
2552 	 */
2553 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
2554 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
2555 
2556 		E1000_WRITE_REG(hw, E1000_RDH(i), rxr->next_to_check);
2557 		E1000_WRITE_REG(hw, E1000_RDT(i), rxr->num_rx_desc - 1);
2558 	}
2559 }
2560 
2561 static void
2562 igb_rx_refresh(struct igb_rx_ring *rxr, int i)
2563 {
2564 	if (--i < 0)
2565 		i = rxr->num_rx_desc - 1;
2566 	E1000_WRITE_REG(&rxr->sc->hw, E1000_RDT(rxr->me), i);
2567 }
2568 
2569 static void
2570 igb_rxeof(struct igb_rx_ring *rxr, int count)
2571 {
2572 	struct ifnet *ifp = &rxr->sc->arpcom.ac_if;
2573 	union e1000_adv_rx_desc	*cur;
2574 	uint32_t staterr;
2575 	int i, ncoll = 0;
2576 
2577 	i = rxr->next_to_check;
2578 	cur = &rxr->rx_base[i];
2579 	staterr = le32toh(cur->wb.upper.status_error);
2580 
2581 	if ((staterr & E1000_RXD_STAT_DD) == 0)
2582 		return;
2583 
2584 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2585 		struct pktinfo *pi = NULL, pi0;
2586 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2587 		struct mbuf *m = NULL;
2588 		boolean_t eop;
2589 
2590 		eop = (staterr & E1000_RXD_STAT_EOP) ? TRUE : FALSE;
2591 		if (eop)
2592 			--count;
2593 
2594 		++ncoll;
2595 		if ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) == 0 &&
2596 		    !rxr->discard) {
2597 			struct mbuf *mp = rxbuf->m_head;
2598 			uint32_t hash, hashtype;
2599 			uint16_t vlan;
2600 			int len;
2601 
2602 			len = le16toh(cur->wb.upper.length);
2603 			if (rxr->sc->hw.mac.type == e1000_i350 &&
2604 			    (staterr & E1000_RXDEXT_STATERR_LB))
2605 				vlan = be16toh(cur->wb.upper.vlan);
2606 			else
2607 				vlan = le16toh(cur->wb.upper.vlan);
2608 
2609 			hash = le32toh(cur->wb.lower.hi_dword.rss);
2610 			hashtype = le32toh(cur->wb.lower.lo_dword.data) &
2611 			    E1000_RXDADV_RSSTYPE_MASK;
2612 
2613 			IGB_RSS_DPRINTF(rxr->sc, 10,
2614 			    "ring%d, hash 0x%08x, hashtype %u\n",
2615 			    rxr->me, hash, hashtype);
2616 
2617 			bus_dmamap_sync(rxr->rx_tag, rxbuf->map,
2618 			    BUS_DMASYNC_POSTREAD);
2619 
2620 			if (igb_newbuf(rxr, i, FALSE) != 0) {
2621 				IFNET_STAT_INC(ifp, iqdrops, 1);
2622 				goto discard;
2623 			}
2624 
2625 			mp->m_len = len;
2626 			if (rxr->fmp == NULL) {
2627 				mp->m_pkthdr.len = len;
2628 				rxr->fmp = mp;
2629 				rxr->lmp = mp;
2630 			} else {
2631 				rxr->lmp->m_next = mp;
2632 				rxr->lmp = rxr->lmp->m_next;
2633 				rxr->fmp->m_pkthdr.len += len;
2634 			}
2635 
2636 			if (eop) {
2637 				m = rxr->fmp;
2638 				rxr->fmp = NULL;
2639 				rxr->lmp = NULL;
2640 
2641 				m->m_pkthdr.rcvif = ifp;
2642 				IFNET_STAT_INC(ifp, ipackets, 1);
2643 
2644 				if (ifp->if_capenable & IFCAP_RXCSUM)
2645 					igb_rxcsum(staterr, m);
2646 
2647 				if (staterr & E1000_RXD_STAT_VP) {
2648 					m->m_pkthdr.ether_vlantag = vlan;
2649 					m->m_flags |= M_VLANTAG;
2650 				}
2651 
2652 				if (ifp->if_capenable & IFCAP_RSS) {
2653 					pi = igb_rssinfo(m, &pi0,
2654 					    hash, hashtype, staterr);
2655 				}
2656 #ifdef IGB_RSS_DEBUG
2657 				rxr->rx_packets++;
2658 #endif
2659 			}
2660 		} else {
2661 			IFNET_STAT_INC(ifp, ierrors, 1);
2662 discard:
2663 			igb_setup_rxdesc(cur, rxbuf);
2664 			if (!eop)
2665 				rxr->discard = TRUE;
2666 			else
2667 				rxr->discard = FALSE;
2668 			if (rxr->fmp != NULL) {
2669 				m_freem(rxr->fmp);
2670 				rxr->fmp = NULL;
2671 				rxr->lmp = NULL;
2672 			}
2673 			m = NULL;
2674 		}
2675 
2676 		if (m != NULL)
2677 			ether_input_pkt(ifp, m, pi);
2678 
2679 		/* Advance our pointers to the next descriptor. */
2680 		if (++i == rxr->num_rx_desc)
2681 			i = 0;
2682 
2683 		if (ncoll >= rxr->wreg_nsegs) {
2684 			igb_rx_refresh(rxr, i);
2685 			ncoll = 0;
2686 		}
2687 
2688 		cur = &rxr->rx_base[i];
2689 		staterr = le32toh(cur->wb.upper.status_error);
2690 	}
2691 	rxr->next_to_check = i;
2692 
2693 	if (ncoll > 0)
2694 		igb_rx_refresh(rxr, i);
2695 }
2696 
2697 
2698 static void
2699 igb_set_vlan(struct igb_softc *sc)
2700 {
2701 	struct e1000_hw *hw = &sc->hw;
2702 	uint32_t reg;
2703 #if 0
2704 	struct ifnet *ifp = sc->arpcom.ac_if;
2705 #endif
2706 
2707 	if (sc->vf_ifp) {
2708 		e1000_rlpml_set_vf(hw, sc->max_frame_size + VLAN_TAG_SIZE);
2709 		return;
2710 	}
2711 
2712 	reg = E1000_READ_REG(hw, E1000_CTRL);
2713 	reg |= E1000_CTRL_VME;
2714 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
2715 
2716 #if 0
2717 	/* Enable the Filter Table */
2718 	if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) {
2719 		reg = E1000_READ_REG(hw, E1000_RCTL);
2720 		reg &= ~E1000_RCTL_CFIEN;
2721 		reg |= E1000_RCTL_VFE;
2722 		E1000_WRITE_REG(hw, E1000_RCTL, reg);
2723 	}
2724 #endif
2725 
2726 	/* Update the frame size */
2727 	E1000_WRITE_REG(&sc->hw, E1000_RLPML,
2728 	    sc->max_frame_size + VLAN_TAG_SIZE);
2729 
2730 #if 0
2731 	/* Don't bother with table if no vlans */
2732 	if ((adapter->num_vlans == 0) ||
2733 	    ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0))
2734 		return;
2735 	/*
2736 	** A soft reset zero's out the VFTA, so
2737 	** we need to repopulate it now.
2738 	*/
2739 	for (int i = 0; i < IGB_VFTA_SIZE; i++)
2740 		if (adapter->shadow_vfta[i] != 0) {
2741 			if (adapter->vf_ifp)
2742 				e1000_vfta_set_vf(hw,
2743 				    adapter->shadow_vfta[i], TRUE);
2744 			else
2745 				E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
2746 				 i, adapter->shadow_vfta[i]);
2747 		}
2748 #endif
2749 }
2750 
2751 static void
2752 igb_enable_intr(struct igb_softc *sc)
2753 {
2754 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
2755 		lwkt_serialize_handler_enable(&sc->main_serialize);
2756 	} else {
2757 		int i;
2758 
2759 		for (i = 0; i < sc->msix_cnt; ++i) {
2760 			lwkt_serialize_handler_enable(
2761 			    sc->msix_data[i].msix_serialize);
2762 		}
2763 	}
2764 
2765 	if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2766 		if (sc->intr_type == PCI_INTR_TYPE_MSIX)
2767 			E1000_WRITE_REG(&sc->hw, E1000_EIAC, sc->intr_mask);
2768 		else
2769 			E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2770 		E1000_WRITE_REG(&sc->hw, E1000_EIAM, sc->intr_mask);
2771 		E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
2772 		E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
2773 	} else {
2774 		E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
2775 	}
2776 	E1000_WRITE_FLUSH(&sc->hw);
2777 }
2778 
2779 static void
2780 igb_disable_intr(struct igb_softc *sc)
2781 {
2782 	if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2783 		E1000_WRITE_REG(&sc->hw, E1000_EIMC, 0xffffffff);
2784 		E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2785 	}
2786 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
2787 	E1000_WRITE_FLUSH(&sc->hw);
2788 
2789 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
2790 		lwkt_serialize_handler_disable(&sc->main_serialize);
2791 	} else {
2792 		int i;
2793 
2794 		for (i = 0; i < sc->msix_cnt; ++i) {
2795 			lwkt_serialize_handler_disable(
2796 			    sc->msix_data[i].msix_serialize);
2797 		}
2798 	}
2799 }
2800 
2801 /*
2802  * Bit of a misnomer, what this really means is
2803  * to enable OS management of the system... aka
2804  * to disable special hardware management features
2805  */
2806 static void
2807 igb_get_mgmt(struct igb_softc *sc)
2808 {
2809 	if (sc->flags & IGB_FLAG_HAS_MGMT) {
2810 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
2811 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2812 
2813 		/* disable hardware interception of ARP */
2814 		manc &= ~E1000_MANC_ARP_EN;
2815 
2816 		/* enable receiving management packets to the host */
2817 		manc |= E1000_MANC_EN_MNG2HOST;
2818 		manc2h |= 1 << 5; /* Mng Port 623 */
2819 		manc2h |= 1 << 6; /* Mng Port 664 */
2820 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
2821 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2822 	}
2823 }
2824 
2825 /*
2826  * Give control back to hardware management controller
2827  * if there is one.
2828  */
2829 static void
2830 igb_rel_mgmt(struct igb_softc *sc)
2831 {
2832 	if (sc->flags & IGB_FLAG_HAS_MGMT) {
2833 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2834 
2835 		/* Re-enable hardware interception of ARP */
2836 		manc |= E1000_MANC_ARP_EN;
2837 		manc &= ~E1000_MANC_EN_MNG2HOST;
2838 
2839 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2840 	}
2841 }
2842 
2843 /*
2844  * Sets CTRL_EXT:DRV_LOAD bit.
2845  *
2846  * For ASF and Pass Through versions of f/w this means that
2847  * the driver is loaded.
2848  */
2849 static void
2850 igb_get_hw_control(struct igb_softc *sc)
2851 {
2852 	uint32_t ctrl_ext;
2853 
2854 	if (sc->vf_ifp)
2855 		return;
2856 
2857 	/* Let firmware know the driver has taken over */
2858 	ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2859 	E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2860 	    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2861 }
2862 
2863 /*
2864  * Resets CTRL_EXT:DRV_LOAD bit.
2865  *
2866  * For ASF and Pass Through versions of f/w this means that the
2867  * driver is no longer loaded.
2868  */
2869 static void
2870 igb_rel_hw_control(struct igb_softc *sc)
2871 {
2872 	uint32_t ctrl_ext;
2873 
2874 	if (sc->vf_ifp)
2875 		return;
2876 
2877 	/* Let firmware taken over control of h/w */
2878 	ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2879 	E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2880 	    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2881 }
2882 
2883 static int
2884 igb_is_valid_ether_addr(const uint8_t *addr)
2885 {
2886 	uint8_t zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
2887 
2888 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
2889 		return FALSE;
2890 	return TRUE;
2891 }
2892 
2893 /*
2894  * Enable PCI Wake On Lan capability
2895  */
2896 static void
2897 igb_enable_wol(device_t dev)
2898 {
2899 	uint16_t cap, status;
2900 	uint8_t id;
2901 
2902 	/* First find the capabilities pointer*/
2903 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
2904 
2905 	/* Read the PM Capabilities */
2906 	id = pci_read_config(dev, cap, 1);
2907 	if (id != PCIY_PMG)     /* Something wrong */
2908 		return;
2909 
2910 	/*
2911 	 * OK, we have the power capabilities,
2912 	 * so now get the status register
2913 	 */
2914 	cap += PCIR_POWER_STATUS;
2915 	status = pci_read_config(dev, cap, 2);
2916 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2917 	pci_write_config(dev, cap, status, 2);
2918 }
2919 
2920 static void
2921 igb_update_stats_counters(struct igb_softc *sc)
2922 {
2923 	struct e1000_hw *hw = &sc->hw;
2924 	struct e1000_hw_stats *stats;
2925 	struct ifnet *ifp = &sc->arpcom.ac_if;
2926 
2927 	/*
2928 	 * The virtual function adapter has only a
2929 	 * small controlled set of stats, do only
2930 	 * those and return.
2931 	 */
2932 	if (sc->vf_ifp) {
2933 		igb_update_vf_stats_counters(sc);
2934 		return;
2935 	}
2936 	stats = sc->stats;
2937 
2938 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
2939 	    (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
2940 		stats->symerrs +=
2941 		    E1000_READ_REG(hw,E1000_SYMERRS);
2942 		stats->sec += E1000_READ_REG(hw, E1000_SEC);
2943 	}
2944 
2945 	stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
2946 	stats->mpc += E1000_READ_REG(hw, E1000_MPC);
2947 	stats->scc += E1000_READ_REG(hw, E1000_SCC);
2948 	stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
2949 
2950 	stats->mcc += E1000_READ_REG(hw, E1000_MCC);
2951 	stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
2952 	stats->colc += E1000_READ_REG(hw, E1000_COLC);
2953 	stats->dc += E1000_READ_REG(hw, E1000_DC);
2954 	stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
2955 	stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
2956 	stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
2957 
2958 	/*
2959 	 * For watchdog management we need to know if we have been
2960 	 * paused during the last interval, so capture that here.
2961 	 */
2962 	sc->pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
2963 	stats->xoffrxc += sc->pause_frames;
2964 	stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
2965 	stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
2966 	stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
2967 	stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
2968 	stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
2969 	stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
2970 	stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
2971 	stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
2972 	stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
2973 	stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
2974 	stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
2975 	stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
2976 
2977 	/* For the 64-bit byte counters the low dword must be read first. */
2978 	/* Both registers clear on the read of the high dword */
2979 
2980 	stats->gorc += E1000_READ_REG(hw, E1000_GORCL) +
2981 	    ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
2982 	stats->gotc += E1000_READ_REG(hw, E1000_GOTCL) +
2983 	    ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
2984 
2985 	stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
2986 	stats->ruc += E1000_READ_REG(hw, E1000_RUC);
2987 	stats->rfc += E1000_READ_REG(hw, E1000_RFC);
2988 	stats->roc += E1000_READ_REG(hw, E1000_ROC);
2989 	stats->rjc += E1000_READ_REG(hw, E1000_RJC);
2990 
2991 	stats->tor += E1000_READ_REG(hw, E1000_TORH);
2992 	stats->tot += E1000_READ_REG(hw, E1000_TOTH);
2993 
2994 	stats->tpr += E1000_READ_REG(hw, E1000_TPR);
2995 	stats->tpt += E1000_READ_REG(hw, E1000_TPT);
2996 	stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
2997 	stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
2998 	stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
2999 	stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
3000 	stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
3001 	stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
3002 	stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
3003 	stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
3004 
3005 	/* Interrupt Counts */
3006 
3007 	stats->iac += E1000_READ_REG(hw, E1000_IAC);
3008 	stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
3009 	stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
3010 	stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
3011 	stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
3012 	stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
3013 	stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
3014 	stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
3015 	stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
3016 
3017 	/* Host to Card Statistics */
3018 
3019 	stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
3020 	stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
3021 	stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
3022 	stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
3023 	stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
3024 	stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
3025 	stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
3026 	stats->hgorc += (E1000_READ_REG(hw, E1000_HGORCL) +
3027 	    ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32));
3028 	stats->hgotc += (E1000_READ_REG(hw, E1000_HGOTCL) +
3029 	    ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32));
3030 	stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
3031 	stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
3032 	stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
3033 
3034 	stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
3035 	stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
3036 	stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
3037 	stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
3038 	stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
3039 	stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
3040 
3041 	IFNET_STAT_SET(ifp, collisions, stats->colc);
3042 
3043 	/* Rx Errors */
3044 	IFNET_STAT_SET(ifp, ierrors,
3045 	    stats->rxerrc + stats->crcerrs + stats->algnerrc +
3046 	    stats->ruc + stats->roc + stats->mpc + stats->cexterr);
3047 
3048 	/* Tx Errors */
3049 	IFNET_STAT_SET(ifp, oerrors,
3050 	    stats->ecol + stats->latecol + sc->watchdog_events);
3051 
3052 	/* Driver specific counters */
3053 	sc->device_control = E1000_READ_REG(hw, E1000_CTRL);
3054 	sc->rx_control = E1000_READ_REG(hw, E1000_RCTL);
3055 	sc->int_mask = E1000_READ_REG(hw, E1000_IMS);
3056 	sc->eint_mask = E1000_READ_REG(hw, E1000_EIMS);
3057 	sc->packet_buf_alloc_tx =
3058 	    ((E1000_READ_REG(hw, E1000_PBA) & 0xffff0000) >> 16);
3059 	sc->packet_buf_alloc_rx =
3060 	    (E1000_READ_REG(hw, E1000_PBA) & 0xffff);
3061 }
3062 
3063 static void
3064 igb_vf_init_stats(struct igb_softc *sc)
3065 {
3066 	struct e1000_hw *hw = &sc->hw;
3067 	struct e1000_vf_stats *stats;
3068 
3069 	stats = sc->stats;
3070 	stats->last_gprc = E1000_READ_REG(hw, E1000_VFGPRC);
3071 	stats->last_gorc = E1000_READ_REG(hw, E1000_VFGORC);
3072 	stats->last_gptc = E1000_READ_REG(hw, E1000_VFGPTC);
3073 	stats->last_gotc = E1000_READ_REG(hw, E1000_VFGOTC);
3074 	stats->last_mprc = E1000_READ_REG(hw, E1000_VFMPRC);
3075 }
3076 
3077 static void
3078 igb_update_vf_stats_counters(struct igb_softc *sc)
3079 {
3080 	struct e1000_hw *hw = &sc->hw;
3081 	struct e1000_vf_stats *stats;
3082 
3083 	if (sc->link_speed == 0)
3084 		return;
3085 
3086 	stats = sc->stats;
3087 	UPDATE_VF_REG(E1000_VFGPRC, stats->last_gprc, stats->gprc);
3088 	UPDATE_VF_REG(E1000_VFGORC, stats->last_gorc, stats->gorc);
3089 	UPDATE_VF_REG(E1000_VFGPTC, stats->last_gptc, stats->gptc);
3090 	UPDATE_VF_REG(E1000_VFGOTC, stats->last_gotc, stats->gotc);
3091 	UPDATE_VF_REG(E1000_VFMPRC, stats->last_mprc, stats->mprc);
3092 }
3093 
3094 #ifdef IFPOLL_ENABLE
3095 
3096 static void
3097 igb_npoll_status(struct ifnet *ifp)
3098 {
3099 	struct igb_softc *sc = ifp->if_softc;
3100 	uint32_t reg_icr;
3101 
3102 	ASSERT_SERIALIZED(&sc->main_serialize);
3103 
3104 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3105 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3106 		sc->hw.mac.get_link_status = 1;
3107 		igb_update_link_status(sc);
3108 	}
3109 }
3110 
3111 static void
3112 igb_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
3113 {
3114 	struct igb_tx_ring *txr = arg;
3115 
3116 	ASSERT_SERIALIZED(&txr->tx_serialize);
3117 
3118 	igb_txeof(txr);
3119 	if (!ifsq_is_empty(txr->ifsq))
3120 		ifsq_devstart(txr->ifsq);
3121 }
3122 
3123 static void
3124 igb_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
3125 {
3126 	struct igb_rx_ring *rxr = arg;
3127 
3128 	ASSERT_SERIALIZED(&rxr->rx_serialize);
3129 
3130 	igb_rxeof(rxr, cycle);
3131 }
3132 
3133 static void
3134 igb_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3135 {
3136 	struct igb_softc *sc = ifp->if_softc;
3137 	int i, txr_cnt, rxr_cnt;
3138 
3139 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3140 
3141 	if (info) {
3142 		int off;
3143 
3144 		info->ifpi_status.status_func = igb_npoll_status;
3145 		info->ifpi_status.serializer = &sc->main_serialize;
3146 
3147 		txr_cnt = igb_get_txring_inuse(sc, TRUE);
3148 		off = sc->tx_npoll_off;
3149 		for (i = 0; i < txr_cnt; ++i) {
3150 			struct igb_tx_ring *txr = &sc->tx_rings[i];
3151 			int idx = i + off;
3152 
3153 			KKASSERT(idx < ncpus2);
3154 			info->ifpi_tx[idx].poll_func = igb_npoll_tx;
3155 			info->ifpi_tx[idx].arg = txr;
3156 			info->ifpi_tx[idx].serializer = &txr->tx_serialize;
3157 			ifsq_set_cpuid(txr->ifsq, idx);
3158 		}
3159 
3160 		rxr_cnt = igb_get_rxring_inuse(sc, TRUE);
3161 		off = sc->rx_npoll_off;
3162 		for (i = 0; i < rxr_cnt; ++i) {
3163 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
3164 			int idx = i + off;
3165 
3166 			KKASSERT(idx < ncpus2);
3167 			info->ifpi_rx[idx].poll_func = igb_npoll_rx;
3168 			info->ifpi_rx[idx].arg = rxr;
3169 			info->ifpi_rx[idx].serializer = &rxr->rx_serialize;
3170 		}
3171 
3172 		if (ifp->if_flags & IFF_RUNNING) {
3173 			if (rxr_cnt == sc->rx_ring_inuse &&
3174 			    txr_cnt == sc->tx_ring_inuse) {
3175 				igb_set_timer_cpuid(sc, TRUE);
3176 				igb_disable_intr(sc);
3177 			} else {
3178 				igb_init(sc);
3179 			}
3180 		}
3181 	} else {
3182 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
3183 			struct igb_tx_ring *txr = &sc->tx_rings[i];
3184 
3185 			ifsq_set_cpuid(txr->ifsq, txr->tx_intr_cpuid);
3186 		}
3187 
3188 		if (ifp->if_flags & IFF_RUNNING) {
3189 			txr_cnt = igb_get_txring_inuse(sc, FALSE);
3190 			rxr_cnt = igb_get_rxring_inuse(sc, FALSE);
3191 
3192 			if (rxr_cnt == sc->rx_ring_inuse &&
3193 			    txr_cnt == sc->tx_ring_inuse) {
3194 				igb_set_timer_cpuid(sc, FALSE);
3195 				igb_enable_intr(sc);
3196 			} else {
3197 				igb_init(sc);
3198 			}
3199 		}
3200 	}
3201 }
3202 
3203 #endif /* IFPOLL_ENABLE */
3204 
3205 static void
3206 igb_intr(void *xsc)
3207 {
3208 	struct igb_softc *sc = xsc;
3209 	struct ifnet *ifp = &sc->arpcom.ac_if;
3210 	uint32_t eicr;
3211 
3212 	ASSERT_SERIALIZED(&sc->main_serialize);
3213 
3214 	eicr = E1000_READ_REG(&sc->hw, E1000_EICR);
3215 
3216 	if (eicr == 0)
3217 		return;
3218 
3219 	if (ifp->if_flags & IFF_RUNNING) {
3220 		struct igb_tx_ring *txr = &sc->tx_rings[0];
3221 		int i;
3222 
3223 		for (i = 0; i < sc->rx_ring_inuse; ++i) {
3224 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
3225 
3226 			if (eicr & rxr->rx_intr_mask) {
3227 				lwkt_serialize_enter(&rxr->rx_serialize);
3228 				igb_rxeof(rxr, -1);
3229 				lwkt_serialize_exit(&rxr->rx_serialize);
3230 			}
3231 		}
3232 
3233 		if (eicr & txr->tx_intr_mask) {
3234 			lwkt_serialize_enter(&txr->tx_serialize);
3235 			igb_txeof(txr);
3236 			if (!ifsq_is_empty(txr->ifsq))
3237 				ifsq_devstart(txr->ifsq);
3238 			lwkt_serialize_exit(&txr->tx_serialize);
3239 		}
3240 	}
3241 
3242 	if (eicr & E1000_EICR_OTHER) {
3243 		uint32_t icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3244 
3245 		/* Link status change */
3246 		if (icr & E1000_ICR_LSC) {
3247 			sc->hw.mac.get_link_status = 1;
3248 			igb_update_link_status(sc);
3249 		}
3250 	}
3251 
3252 	/*
3253 	 * Reading EICR has the side effect to clear interrupt mask,
3254 	 * so all interrupts need to be enabled here.
3255 	 */
3256 	E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
3257 }
3258 
3259 static void
3260 igb_intr_shared(void *xsc)
3261 {
3262 	struct igb_softc *sc = xsc;
3263 	struct ifnet *ifp = &sc->arpcom.ac_if;
3264 	uint32_t reg_icr;
3265 
3266 	ASSERT_SERIALIZED(&sc->main_serialize);
3267 
3268 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3269 
3270 	/* Hot eject?  */
3271 	if (reg_icr == 0xffffffff)
3272 		return;
3273 
3274 	/* Definitely not our interrupt.  */
3275 	if (reg_icr == 0x0)
3276 		return;
3277 
3278 	if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0)
3279 		return;
3280 
3281 	if (ifp->if_flags & IFF_RUNNING) {
3282 		if (reg_icr &
3283 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
3284 			int i;
3285 
3286 			for (i = 0; i < sc->rx_ring_inuse; ++i) {
3287 				struct igb_rx_ring *rxr = &sc->rx_rings[i];
3288 
3289 				lwkt_serialize_enter(&rxr->rx_serialize);
3290 				igb_rxeof(rxr, -1);
3291 				lwkt_serialize_exit(&rxr->rx_serialize);
3292 			}
3293 		}
3294 
3295 		if (reg_icr & E1000_ICR_TXDW) {
3296 			struct igb_tx_ring *txr = &sc->tx_rings[0];
3297 
3298 			lwkt_serialize_enter(&txr->tx_serialize);
3299 			igb_txeof(txr);
3300 			if (!ifsq_is_empty(txr->ifsq))
3301 				ifsq_devstart(txr->ifsq);
3302 			lwkt_serialize_exit(&txr->tx_serialize);
3303 		}
3304 	}
3305 
3306 	/* Link status change */
3307 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3308 		sc->hw.mac.get_link_status = 1;
3309 		igb_update_link_status(sc);
3310 	}
3311 
3312 	if (reg_icr & E1000_ICR_RXO)
3313 		sc->rx_overruns++;
3314 }
3315 
3316 static int
3317 igb_encap(struct igb_tx_ring *txr, struct mbuf **m_headp,
3318     int *segs_used, int *idx)
3319 {
3320 	bus_dma_segment_t segs[IGB_MAX_SCATTER];
3321 	bus_dmamap_t map;
3322 	struct igb_tx_buf *tx_buf, *tx_buf_mapped;
3323 	union e1000_adv_tx_desc	*txd = NULL;
3324 	struct mbuf *m_head = *m_headp;
3325 	uint32_t olinfo_status = 0, cmd_type_len = 0, cmd_rs = 0;
3326 	int maxsegs, nsegs, i, j, error;
3327 	uint32_t hdrlen = 0;
3328 
3329 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3330 		error = igb_tso_pullup(txr, m_headp);
3331 		if (error)
3332 			return error;
3333 		m_head = *m_headp;
3334 	}
3335 
3336 	/* Set basic descriptor constants */
3337 	cmd_type_len |= E1000_ADVTXD_DTYP_DATA;
3338 	cmd_type_len |= E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
3339 	if (m_head->m_flags & M_VLANTAG)
3340 		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3341 
3342 	/*
3343 	 * Map the packet for DMA.
3344 	 */
3345 	tx_buf = &txr->tx_buf[txr->next_avail_desc];
3346 	tx_buf_mapped = tx_buf;
3347 	map = tx_buf->map;
3348 
3349 	maxsegs = txr->tx_avail - IGB_TX_RESERVED;
3350 	KASSERT(maxsegs >= txr->spare_desc, ("not enough spare TX desc\n"));
3351 	if (maxsegs > IGB_MAX_SCATTER)
3352 		maxsegs = IGB_MAX_SCATTER;
3353 
3354 	error = bus_dmamap_load_mbuf_defrag(txr->tx_tag, map, m_headp,
3355 	    segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3356 	if (error) {
3357 		if (error == ENOBUFS)
3358 			txr->sc->mbuf_defrag_failed++;
3359 		else
3360 			txr->sc->no_tx_dma_setup++;
3361 
3362 		m_freem(*m_headp);
3363 		*m_headp = NULL;
3364 		return error;
3365 	}
3366 	bus_dmamap_sync(txr->tx_tag, map, BUS_DMASYNC_PREWRITE);
3367 
3368 	m_head = *m_headp;
3369 
3370 	/*
3371 	 * Set up the TX context descriptor, if any hardware offloading is
3372 	 * needed.  This includes CSUM, VLAN, and TSO.  It will consume one
3373 	 * TX descriptor.
3374 	 *
3375 	 * Unlike these chips' predecessors (em/emx), TX context descriptor
3376 	 * will _not_ interfere TX data fetching pipelining.
3377 	 */
3378 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3379 		igb_tso_ctx(txr, m_head, &hdrlen);
3380 		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3381 		olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3382 		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3383 		txr->tx_nsegs++;
3384 		(*segs_used)++;
3385 	} else if (igb_txcsum_ctx(txr, m_head)) {
3386 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3387 			olinfo_status |= (E1000_TXD_POPTS_IXSM << 8);
3388 		if (m_head->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_TCP))
3389 			olinfo_status |= (E1000_TXD_POPTS_TXSM << 8);
3390 		txr->tx_nsegs++;
3391 		(*segs_used)++;
3392 	}
3393 
3394 	*segs_used += nsegs;
3395 	txr->tx_nsegs += nsegs;
3396 	if (txr->tx_nsegs >= txr->intr_nsegs) {
3397 		/*
3398 		 * Report Status (RS) is turned on every intr_nsegs
3399 		 * descriptors (roughly).
3400 		 */
3401 		txr->tx_nsegs = 0;
3402 		cmd_rs = E1000_ADVTXD_DCMD_RS;
3403 	}
3404 
3405 	/* Calculate payload length */
3406 	olinfo_status |= ((m_head->m_pkthdr.len - hdrlen)
3407 	    << E1000_ADVTXD_PAYLEN_SHIFT);
3408 
3409 	/*
3410 	 * 82575 needs the TX context index added; the queue
3411 	 * index is used as TX context index here.
3412 	 */
3413 	if (txr->sc->hw.mac.type == e1000_82575)
3414 		olinfo_status |= txr->me << 4;
3415 
3416 	/* Set up our transmit descriptors */
3417 	i = txr->next_avail_desc;
3418 	for (j = 0; j < nsegs; j++) {
3419 		bus_size_t seg_len;
3420 		bus_addr_t seg_addr;
3421 
3422 		tx_buf = &txr->tx_buf[i];
3423 		txd = (union e1000_adv_tx_desc *)&txr->tx_base[i];
3424 		seg_addr = segs[j].ds_addr;
3425 		seg_len = segs[j].ds_len;
3426 
3427 		txd->read.buffer_addr = htole64(seg_addr);
3428 		txd->read.cmd_type_len = htole32(cmd_type_len | seg_len);
3429 		txd->read.olinfo_status = htole32(olinfo_status);
3430 		if (++i == txr->num_tx_desc)
3431 			i = 0;
3432 		tx_buf->m_head = NULL;
3433 	}
3434 
3435 	KASSERT(txr->tx_avail > nsegs, ("invalid avail TX desc\n"));
3436 	txr->next_avail_desc = i;
3437 	txr->tx_avail -= nsegs;
3438 
3439 	tx_buf->m_head = m_head;
3440 	tx_buf_mapped->map = tx_buf->map;
3441 	tx_buf->map = map;
3442 
3443 	/*
3444 	 * Last Descriptor of Packet needs End Of Packet (EOP)
3445 	 */
3446 	txd->read.cmd_type_len |= htole32(E1000_ADVTXD_DCMD_EOP | cmd_rs);
3447 
3448 	/*
3449 	 * Defer TDT updating, until enough descrptors are setup
3450 	 */
3451 	*idx = i;
3452 #ifdef IGB_TSS_DEBUG
3453 	++txr->tx_packets;
3454 #endif
3455 
3456 	return 0;
3457 }
3458 
3459 static void
3460 igb_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
3461 {
3462 	struct igb_softc *sc = ifp->if_softc;
3463 	struct igb_tx_ring *txr = ifsq_get_priv(ifsq);
3464 	struct mbuf *m_head;
3465 	int idx = -1, nsegs = 0;
3466 
3467 	KKASSERT(txr->ifsq == ifsq);
3468 	ASSERT_SERIALIZED(&txr->tx_serialize);
3469 
3470 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq))
3471 		return;
3472 
3473 	if (!sc->link_active || (txr->tx_flags & IGB_TXFLAG_ENABLED) == 0) {
3474 		ifsq_purge(ifsq);
3475 		return;
3476 	}
3477 
3478 	if (!IGB_IS_NOT_OACTIVE(txr))
3479 		igb_txeof(txr);
3480 
3481 	while (!ifsq_is_empty(ifsq)) {
3482 		if (IGB_IS_OACTIVE(txr)) {
3483 			ifsq_set_oactive(ifsq);
3484 			/* Set watchdog on */
3485 			txr->tx_watchdog.wd_timer = 5;
3486 			break;
3487 		}
3488 
3489 		m_head = ifsq_dequeue(ifsq);
3490 		if (m_head == NULL)
3491 			break;
3492 
3493 		if (igb_encap(txr, &m_head, &nsegs, &idx)) {
3494 			IFNET_STAT_INC(ifp, oerrors, 1);
3495 			continue;
3496 		}
3497 
3498 		if (nsegs >= txr->wreg_nsegs) {
3499 			E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), idx);
3500 			idx = -1;
3501 			nsegs = 0;
3502 		}
3503 
3504 		/* Send a copy of the frame to the BPF listener */
3505 		ETHER_BPF_MTAP(ifp, m_head);
3506 	}
3507 	if (idx >= 0)
3508 		E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), idx);
3509 }
3510 
3511 static void
3512 igb_watchdog(struct ifaltq_subque *ifsq)
3513 {
3514 	struct igb_tx_ring *txr = ifsq_get_priv(ifsq);
3515 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
3516 	struct igb_softc *sc = ifp->if_softc;
3517 	int i;
3518 
3519 	KKASSERT(txr->ifsq == ifsq);
3520 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3521 
3522 	/*
3523 	 * If flow control has paused us since last checking
3524 	 * it invalidates the watchdog timing, so dont run it.
3525 	 */
3526 	if (sc->pause_frames) {
3527 		sc->pause_frames = 0;
3528 		txr->tx_watchdog.wd_timer = 5;
3529 		return;
3530 	}
3531 
3532 	if_printf(ifp, "Watchdog timeout -- resetting\n");
3533 	if_printf(ifp, "Queue(%d) tdh = %d, hw tdt = %d\n", txr->me,
3534 	    E1000_READ_REG(&sc->hw, E1000_TDH(txr->me)),
3535 	    E1000_READ_REG(&sc->hw, E1000_TDT(txr->me)));
3536 	if_printf(ifp, "TX(%d) desc avail = %d, "
3537 	    "Next TX to Clean = %d\n",
3538 	    txr->me, txr->tx_avail, txr->next_to_clean);
3539 
3540 	IFNET_STAT_INC(ifp, oerrors, 1);
3541 	sc->watchdog_events++;
3542 
3543 	igb_init(sc);
3544 	for (i = 0; i < sc->tx_ring_inuse; ++i)
3545 		ifsq_devstart_sched(sc->tx_rings[i].ifsq);
3546 }
3547 
3548 static void
3549 igb_set_eitr(struct igb_softc *sc, int idx, int rate)
3550 {
3551 	uint32_t eitr = 0;
3552 
3553 	if (rate > 0) {
3554 		if (sc->hw.mac.type == e1000_82575) {
3555 			eitr = 1000000000 / 256 / rate;
3556 			/*
3557 			 * NOTE:
3558 			 * Document is wrong on the 2 bits left shift
3559 			 */
3560 		} else {
3561 			eitr = 1000000 / rate;
3562 			eitr <<= IGB_EITR_INTVL_SHIFT;
3563 		}
3564 
3565 		if (eitr == 0) {
3566 			/* Don't disable it */
3567 			eitr = 1 << IGB_EITR_INTVL_SHIFT;
3568 		} else if (eitr > IGB_EITR_INTVL_MASK) {
3569 			/* Don't allow it to be too large */
3570 			eitr = IGB_EITR_INTVL_MASK;
3571 		}
3572 	}
3573 	if (sc->hw.mac.type == e1000_82575)
3574 		eitr |= eitr << 16;
3575 	else
3576 		eitr |= E1000_EITR_CNT_IGNR;
3577 	E1000_WRITE_REG(&sc->hw, E1000_EITR(idx), eitr);
3578 }
3579 
3580 static int
3581 igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS)
3582 {
3583 	struct igb_softc *sc = (void *)arg1;
3584 	struct ifnet *ifp = &sc->arpcom.ac_if;
3585 	int error, intr_rate;
3586 
3587 	intr_rate = sc->intr_rate;
3588 	error = sysctl_handle_int(oidp, &intr_rate, 0, req);
3589 	if (error || req->newptr == NULL)
3590 		return error;
3591 	if (intr_rate < 0)
3592 		return EINVAL;
3593 
3594 	ifnet_serialize_all(ifp);
3595 
3596 	sc->intr_rate = intr_rate;
3597 	if (ifp->if_flags & IFF_RUNNING)
3598 		igb_set_eitr(sc, 0, sc->intr_rate);
3599 
3600 	if (bootverbose)
3601 		if_printf(ifp, "interrupt rate set to %d/sec\n", sc->intr_rate);
3602 
3603 	ifnet_deserialize_all(ifp);
3604 
3605 	return 0;
3606 }
3607 
3608 static int
3609 igb_sysctl_msix_rate(SYSCTL_HANDLER_ARGS)
3610 {
3611 	struct igb_msix_data *msix = (void *)arg1;
3612 	struct igb_softc *sc = msix->msix_sc;
3613 	struct ifnet *ifp = &sc->arpcom.ac_if;
3614 	int error, msix_rate;
3615 
3616 	msix_rate = msix->msix_rate;
3617 	error = sysctl_handle_int(oidp, &msix_rate, 0, req);
3618 	if (error || req->newptr == NULL)
3619 		return error;
3620 	if (msix_rate < 0)
3621 		return EINVAL;
3622 
3623 	lwkt_serialize_enter(msix->msix_serialize);
3624 
3625 	msix->msix_rate = msix_rate;
3626 	if (ifp->if_flags & IFF_RUNNING)
3627 		igb_set_eitr(sc, msix->msix_vector, msix->msix_rate);
3628 
3629 	if (bootverbose) {
3630 		if_printf(ifp, "%s set to %d/sec\n", msix->msix_rate_desc,
3631 		    msix->msix_rate);
3632 	}
3633 
3634 	lwkt_serialize_exit(msix->msix_serialize);
3635 
3636 	return 0;
3637 }
3638 
3639 static int
3640 igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
3641 {
3642 	struct igb_softc *sc = (void *)arg1;
3643 	struct ifnet *ifp = &sc->arpcom.ac_if;
3644 	struct igb_tx_ring *txr = &sc->tx_rings[0];
3645 	int error, nsegs;
3646 
3647 	nsegs = txr->intr_nsegs;
3648 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3649 	if (error || req->newptr == NULL)
3650 		return error;
3651 	if (nsegs <= 0)
3652 		return EINVAL;
3653 
3654 	ifnet_serialize_all(ifp);
3655 
3656 	if (nsegs >= txr->num_tx_desc - txr->oact_lo_desc ||
3657 	    nsegs >= txr->oact_hi_desc - IGB_MAX_SCATTER) {
3658 		error = EINVAL;
3659 	} else {
3660 		int i;
3661 
3662 		error = 0;
3663 		for (i = 0; i < sc->tx_ring_cnt; ++i)
3664 			sc->tx_rings[i].intr_nsegs = nsegs;
3665 	}
3666 
3667 	ifnet_deserialize_all(ifp);
3668 
3669 	return error;
3670 }
3671 
3672 static int
3673 igb_sysctl_rx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3674 {
3675 	struct igb_softc *sc = (void *)arg1;
3676 	struct ifnet *ifp = &sc->arpcom.ac_if;
3677 	int error, nsegs, i;
3678 
3679 	nsegs = sc->rx_rings[0].wreg_nsegs;
3680 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3681 	if (error || req->newptr == NULL)
3682 		return error;
3683 
3684 	ifnet_serialize_all(ifp);
3685 	for (i = 0; i < sc->rx_ring_cnt; ++i)
3686 		sc->rx_rings[i].wreg_nsegs =nsegs;
3687 	ifnet_deserialize_all(ifp);
3688 
3689 	return 0;
3690 }
3691 
3692 static int
3693 igb_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3694 {
3695 	struct igb_softc *sc = (void *)arg1;
3696 	struct ifnet *ifp = &sc->arpcom.ac_if;
3697 	int error, nsegs, i;
3698 
3699 	nsegs = sc->tx_rings[0].wreg_nsegs;
3700 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3701 	if (error || req->newptr == NULL)
3702 		return error;
3703 
3704 	ifnet_serialize_all(ifp);
3705 	for (i = 0; i < sc->tx_ring_cnt; ++i)
3706 		sc->tx_rings[i].wreg_nsegs =nsegs;
3707 	ifnet_deserialize_all(ifp);
3708 
3709 	return 0;
3710 }
3711 
3712 #ifdef IFPOLL_ENABLE
3713 
3714 static int
3715 igb_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
3716 {
3717 	struct igb_softc *sc = (void *)arg1;
3718 	struct ifnet *ifp = &sc->arpcom.ac_if;
3719 	int error, off;
3720 
3721 	off = sc->rx_npoll_off;
3722 	error = sysctl_handle_int(oidp, &off, 0, req);
3723 	if (error || req->newptr == NULL)
3724 		return error;
3725 	if (off < 0)
3726 		return EINVAL;
3727 
3728 	ifnet_serialize_all(ifp);
3729 	if (off >= ncpus2 || off % sc->rx_ring_cnt != 0) {
3730 		error = EINVAL;
3731 	} else {
3732 		error = 0;
3733 		sc->rx_npoll_off = off;
3734 	}
3735 	ifnet_deserialize_all(ifp);
3736 
3737 	return error;
3738 }
3739 
3740 static int
3741 igb_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
3742 {
3743 	struct igb_softc *sc = (void *)arg1;
3744 	struct ifnet *ifp = &sc->arpcom.ac_if;
3745 	int error, off;
3746 
3747 	off = sc->tx_npoll_off;
3748 	error = sysctl_handle_int(oidp, &off, 0, req);
3749 	if (error || req->newptr == NULL)
3750 		return error;
3751 	if (off < 0)
3752 		return EINVAL;
3753 
3754 	ifnet_serialize_all(ifp);
3755 	if (off >= ncpus2 || off % sc->tx_ring_cnt != 0) {
3756 		error = EINVAL;
3757 	} else {
3758 		error = 0;
3759 		sc->tx_npoll_off = off;
3760 	}
3761 	ifnet_deserialize_all(ifp);
3762 
3763 	return error;
3764 }
3765 
3766 #endif	/* IFPOLL_ENABLE */
3767 
3768 static void
3769 igb_init_intr(struct igb_softc *sc)
3770 {
3771 	igb_set_intr_mask(sc);
3772 
3773 	if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0)
3774 		igb_init_unshared_intr(sc);
3775 
3776 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
3777 		igb_set_eitr(sc, 0, sc->intr_rate);
3778 	} else {
3779 		int i;
3780 
3781 		for (i = 0; i < sc->msix_cnt; ++i)
3782 			igb_set_eitr(sc, i, sc->msix_data[i].msix_rate);
3783 	}
3784 }
3785 
3786 static void
3787 igb_init_unshared_intr(struct igb_softc *sc)
3788 {
3789 	struct e1000_hw *hw = &sc->hw;
3790 	const struct igb_rx_ring *rxr;
3791 	const struct igb_tx_ring *txr;
3792 	uint32_t ivar, index;
3793 	int i;
3794 
3795 	/*
3796 	 * Enable extended mode
3797 	 */
3798 	if (sc->hw.mac.type != e1000_82575) {
3799 		uint32_t gpie;
3800 		int ivar_max;
3801 
3802 		gpie = E1000_GPIE_NSICR;
3803 		if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3804 			gpie |= E1000_GPIE_MSIX_MODE |
3805 			    E1000_GPIE_EIAME |
3806 			    E1000_GPIE_PBA;
3807 		}
3808 		E1000_WRITE_REG(hw, E1000_GPIE, gpie);
3809 
3810 		/*
3811 		 * Clear IVARs
3812 		 */
3813 		switch (sc->hw.mac.type) {
3814 		case e1000_82576:
3815 			ivar_max = IGB_MAX_IVAR_82576;
3816 			break;
3817 
3818 		case e1000_82580:
3819 			ivar_max = IGB_MAX_IVAR_82580;
3820 			break;
3821 
3822 		case e1000_i350:
3823 			ivar_max = IGB_MAX_IVAR_I350;
3824 			break;
3825 
3826 		case e1000_vfadapt:
3827 		case e1000_vfadapt_i350:
3828 			ivar_max = IGB_MAX_IVAR_VF;
3829 			break;
3830 
3831 		case e1000_i210:
3832 			ivar_max = IGB_MAX_IVAR_I210;
3833 			break;
3834 
3835 		case e1000_i211:
3836 			ivar_max = IGB_MAX_IVAR_I211;
3837 			break;
3838 
3839 		default:
3840 			panic("unknown mac type %d\n", sc->hw.mac.type);
3841 		}
3842 		for (i = 0; i < ivar_max; ++i)
3843 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, i, 0);
3844 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, 0);
3845 	} else {
3846 		uint32_t tmp;
3847 
3848 		KASSERT(sc->intr_type != PCI_INTR_TYPE_MSIX,
3849 		    ("82575 w/ MSI-X"));
3850 		tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
3851 		tmp |= E1000_CTRL_EXT_IRCA;
3852 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
3853 	}
3854 
3855 	/*
3856 	 * Map TX/RX interrupts to EICR
3857 	 */
3858 	switch (sc->hw.mac.type) {
3859 	case e1000_82580:
3860 	case e1000_i350:
3861 	case e1000_vfadapt:
3862 	case e1000_vfadapt_i350:
3863 	case e1000_i210:
3864 	case e1000_i211:
3865 		/* RX entries */
3866 		for (i = 0; i < sc->rx_ring_inuse; ++i) {
3867 			rxr = &sc->rx_rings[i];
3868 
3869 			index = i >> 1;
3870 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3871 
3872 			if (i & 1) {
3873 				ivar &= 0xff00ffff;
3874 				ivar |=
3875 				(rxr->rx_intr_bit | E1000_IVAR_VALID) << 16;
3876 			} else {
3877 				ivar &= 0xffffff00;
3878 				ivar |=
3879 				(rxr->rx_intr_bit | E1000_IVAR_VALID);
3880 			}
3881 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3882 		}
3883 		/* TX entries */
3884 		for (i = 0; i < sc->tx_ring_inuse; ++i) {
3885 			txr = &sc->tx_rings[i];
3886 
3887 			index = i >> 1;
3888 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3889 
3890 			if (i & 1) {
3891 				ivar &= 0x00ffffff;
3892 				ivar |=
3893 				(txr->tx_intr_bit | E1000_IVAR_VALID) << 24;
3894 			} else {
3895 				ivar &= 0xffff00ff;
3896 				ivar |=
3897 				(txr->tx_intr_bit | E1000_IVAR_VALID) << 8;
3898 			}
3899 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3900 		}
3901 		if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3902 			ivar = (sc->sts_intr_bit | E1000_IVAR_VALID) << 8;
3903 			E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3904 		}
3905 		break;
3906 
3907 	case e1000_82576:
3908 		/* RX entries */
3909 		for (i = 0; i < sc->rx_ring_inuse; ++i) {
3910 			rxr = &sc->rx_rings[i];
3911 
3912 			index = i & 0x7; /* Each IVAR has two entries */
3913 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3914 
3915 			if (i < 8) {
3916 				ivar &= 0xffffff00;
3917 				ivar |=
3918 				(rxr->rx_intr_bit | E1000_IVAR_VALID);
3919 			} else {
3920 				ivar &= 0xff00ffff;
3921 				ivar |=
3922 				(rxr->rx_intr_bit | E1000_IVAR_VALID) << 16;
3923 			}
3924 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3925 		}
3926 		/* TX entries */
3927 		for (i = 0; i < sc->tx_ring_inuse; ++i) {
3928 			txr = &sc->tx_rings[i];
3929 
3930 			index = i & 0x7; /* Each IVAR has two entries */
3931 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3932 
3933 			if (i < 8) {
3934 				ivar &= 0xffff00ff;
3935 				ivar |=
3936 				(txr->tx_intr_bit | E1000_IVAR_VALID) << 8;
3937 			} else {
3938 				ivar &= 0x00ffffff;
3939 				ivar |=
3940 				(txr->tx_intr_bit | E1000_IVAR_VALID) << 24;
3941 			}
3942 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3943 		}
3944 		if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3945 			ivar = (sc->sts_intr_bit | E1000_IVAR_VALID) << 8;
3946 			E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3947 		}
3948 		break;
3949 
3950 	case e1000_82575:
3951 		/*
3952 		 * Enable necessary interrupt bits.
3953 		 *
3954 		 * The name of the register is confusing; in addition to
3955 		 * configuring the first vector of MSI-X, it also configures
3956 		 * which bits of EICR could be set by the hardware even when
3957 		 * MSI or line interrupt is used; it thus controls interrupt
3958 		 * generation.  It MUST be configured explicitly; the default
3959 		 * value mentioned in the datasheet is wrong: RX queue0 and
3960 		 * TX queue0 are NOT enabled by default.
3961 		 */
3962 		E1000_WRITE_REG(&sc->hw, E1000_MSIXBM(0), sc->intr_mask);
3963 		break;
3964 
3965 	default:
3966 		panic("unknown mac type %d\n", sc->hw.mac.type);
3967 	}
3968 }
3969 
3970 static int
3971 igb_setup_intr(struct igb_softc *sc)
3972 {
3973 	int error;
3974 
3975 	if (sc->intr_type == PCI_INTR_TYPE_MSIX)
3976 		return igb_msix_setup(sc);
3977 
3978 	error = bus_setup_intr(sc->dev, sc->intr_res, INTR_MPSAFE,
3979 	    (sc->flags & IGB_FLAG_SHARED_INTR) ? igb_intr_shared : igb_intr,
3980 	    sc, &sc->intr_tag, &sc->main_serialize);
3981 	if (error) {
3982 		device_printf(sc->dev, "Failed to register interrupt handler");
3983 		return error;
3984 	}
3985 	return 0;
3986 }
3987 
3988 static void
3989 igb_set_txintr_mask(struct igb_tx_ring *txr, int *intr_bit0, int intr_bitmax)
3990 {
3991 	if (txr->sc->hw.mac.type == e1000_82575) {
3992 		txr->tx_intr_bit = 0;	/* unused */
3993 		switch (txr->me) {
3994 		case 0:
3995 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE0;
3996 			break;
3997 		case 1:
3998 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE1;
3999 			break;
4000 		case 2:
4001 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE2;
4002 			break;
4003 		case 3:
4004 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE3;
4005 			break;
4006 		default:
4007 			panic("unsupported # of TX ring, %d\n", txr->me);
4008 		}
4009 	} else {
4010 		int intr_bit = *intr_bit0;
4011 
4012 		txr->tx_intr_bit = intr_bit % intr_bitmax;
4013 		txr->tx_intr_mask = 1 << txr->tx_intr_bit;
4014 
4015 		*intr_bit0 = intr_bit + 1;
4016 	}
4017 }
4018 
4019 static void
4020 igb_set_rxintr_mask(struct igb_rx_ring *rxr, int *intr_bit0, int intr_bitmax)
4021 {
4022 	if (rxr->sc->hw.mac.type == e1000_82575) {
4023 		rxr->rx_intr_bit = 0;	/* unused */
4024 		switch (rxr->me) {
4025 		case 0:
4026 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE0;
4027 			break;
4028 		case 1:
4029 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE1;
4030 			break;
4031 		case 2:
4032 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE2;
4033 			break;
4034 		case 3:
4035 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE3;
4036 			break;
4037 		default:
4038 			panic("unsupported # of RX ring, %d\n", rxr->me);
4039 		}
4040 	} else {
4041 		int intr_bit = *intr_bit0;
4042 
4043 		rxr->rx_intr_bit = intr_bit % intr_bitmax;
4044 		rxr->rx_intr_mask = 1 << rxr->rx_intr_bit;
4045 
4046 		*intr_bit0 = intr_bit + 1;
4047 	}
4048 }
4049 
4050 static void
4051 igb_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
4052 {
4053 	struct igb_softc *sc = ifp->if_softc;
4054 
4055 	ifnet_serialize_array_enter(sc->serializes, sc->serialize_cnt, slz);
4056 }
4057 
4058 static void
4059 igb_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
4060 {
4061 	struct igb_softc *sc = ifp->if_softc;
4062 
4063 	ifnet_serialize_array_exit(sc->serializes, sc->serialize_cnt, slz);
4064 }
4065 
4066 static int
4067 igb_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
4068 {
4069 	struct igb_softc *sc = ifp->if_softc;
4070 
4071 	return ifnet_serialize_array_try(sc->serializes, sc->serialize_cnt,
4072 	    slz);
4073 }
4074 
4075 #ifdef INVARIANTS
4076 
4077 static void
4078 igb_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
4079     boolean_t serialized)
4080 {
4081 	struct igb_softc *sc = ifp->if_softc;
4082 
4083 	ifnet_serialize_array_assert(sc->serializes, sc->serialize_cnt,
4084 	    slz, serialized);
4085 }
4086 
4087 #endif	/* INVARIANTS */
4088 
4089 static void
4090 igb_set_intr_mask(struct igb_softc *sc)
4091 {
4092 	int i;
4093 
4094 	sc->intr_mask = sc->sts_intr_mask;
4095 	for (i = 0; i < sc->rx_ring_inuse; ++i)
4096 		sc->intr_mask |= sc->rx_rings[i].rx_intr_mask;
4097 	for (i = 0; i < sc->tx_ring_inuse; ++i)
4098 		sc->intr_mask |= sc->tx_rings[i].tx_intr_mask;
4099 	if (bootverbose) {
4100 		if_printf(&sc->arpcom.ac_if, "intr mask 0x%08x\n",
4101 		    sc->intr_mask);
4102 	}
4103 }
4104 
4105 static int
4106 igb_alloc_intr(struct igb_softc *sc)
4107 {
4108 	int i, intr_bit, intr_bitmax;
4109 	u_int intr_flags;
4110 
4111 	igb_msix_try_alloc(sc);
4112 	if (sc->intr_type == PCI_INTR_TYPE_MSIX)
4113 		goto done;
4114 
4115 	/*
4116 	 * Allocate MSI/legacy interrupt resource
4117 	 */
4118 	sc->intr_type = pci_alloc_1intr(sc->dev, igb_msi_enable,
4119 	    &sc->intr_rid, &intr_flags);
4120 
4121 	if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
4122 		int unshared;
4123 
4124 		unshared = device_getenv_int(sc->dev, "irq.unshared", 0);
4125 		if (!unshared) {
4126 			sc->flags |= IGB_FLAG_SHARED_INTR;
4127 			if (bootverbose)
4128 				device_printf(sc->dev, "IRQ shared\n");
4129 		} else {
4130 			intr_flags &= ~RF_SHAREABLE;
4131 			if (bootverbose)
4132 				device_printf(sc->dev, "IRQ unshared\n");
4133 		}
4134 	}
4135 
4136 	sc->intr_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
4137 	    &sc->intr_rid, intr_flags);
4138 	if (sc->intr_res == NULL) {
4139 		device_printf(sc->dev, "Unable to allocate bus resource: "
4140 		    "interrupt\n");
4141 		return ENXIO;
4142 	}
4143 
4144 	for (i = 0; i < sc->tx_ring_cnt; ++i)
4145 		sc->tx_rings[i].tx_intr_cpuid = rman_get_cpuid(sc->intr_res);
4146 
4147 	/*
4148 	 * Setup MSI/legacy interrupt mask
4149 	 */
4150 	switch (sc->hw.mac.type) {
4151 	case e1000_82575:
4152 		intr_bitmax = IGB_MAX_TXRXINT_82575;
4153 		break;
4154 
4155 	case e1000_82576:
4156 		intr_bitmax = IGB_MAX_TXRXINT_82576;
4157 		break;
4158 
4159 	case e1000_82580:
4160 		intr_bitmax = IGB_MAX_TXRXINT_82580;
4161 		break;
4162 
4163 	case e1000_i350:
4164 		intr_bitmax = IGB_MAX_TXRXINT_I350;
4165 		break;
4166 
4167 	case e1000_i210:
4168 		intr_bitmax = IGB_MAX_TXRXINT_I210;
4169 		break;
4170 
4171 	case e1000_i211:
4172 		intr_bitmax = IGB_MAX_TXRXINT_I211;
4173 		break;
4174 
4175 	default:
4176 		intr_bitmax = IGB_MIN_TXRXINT;
4177 		break;
4178 	}
4179 	intr_bit = 0;
4180 	for (i = 0; i < sc->tx_ring_cnt; ++i)
4181 		igb_set_txintr_mask(&sc->tx_rings[i], &intr_bit, intr_bitmax);
4182 	for (i = 0; i < sc->rx_ring_cnt; ++i)
4183 		igb_set_rxintr_mask(&sc->rx_rings[i], &intr_bit, intr_bitmax);
4184 	sc->sts_intr_bit = 0;
4185 	sc->sts_intr_mask = E1000_EICR_OTHER;
4186 
4187 	/* Initialize interrupt rate */
4188 	sc->intr_rate = IGB_INTR_RATE;
4189 done:
4190 	igb_set_ring_inuse(sc, FALSE);
4191 	igb_set_intr_mask(sc);
4192 	return 0;
4193 }
4194 
4195 static void
4196 igb_free_intr(struct igb_softc *sc)
4197 {
4198 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
4199 		if (sc->intr_res != NULL) {
4200 			bus_release_resource(sc->dev, SYS_RES_IRQ, sc->intr_rid,
4201 			    sc->intr_res);
4202 		}
4203 		if (sc->intr_type == PCI_INTR_TYPE_MSI)
4204 			pci_release_msi(sc->dev);
4205 	} else {
4206 		igb_msix_free(sc, TRUE);
4207 	}
4208 }
4209 
4210 static void
4211 igb_teardown_intr(struct igb_softc *sc)
4212 {
4213 	if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4214 		bus_teardown_intr(sc->dev, sc->intr_res, sc->intr_tag);
4215 	else
4216 		igb_msix_teardown(sc, sc->msix_cnt);
4217 }
4218 
4219 static void
4220 igb_msix_try_alloc(struct igb_softc *sc)
4221 {
4222 	int msix_enable, msix_cnt, msix_cnt2, alloc_cnt;
4223 	int i, x, error;
4224 	int offset, offset_def;
4225 	struct igb_msix_data *msix;
4226 	boolean_t aggregate, setup = FALSE;
4227 
4228 	/*
4229 	 * Don't enable MSI-X on 82575, see:
4230 	 * 82575 specification update errata #25
4231 	 */
4232 	if (sc->hw.mac.type == e1000_82575)
4233 		return;
4234 
4235 	/* Don't enable MSI-X on VF */
4236 	if (sc->vf_ifp)
4237 		return;
4238 
4239 	msix_enable = device_getenv_int(sc->dev, "msix.enable",
4240 	    igb_msix_enable);
4241 	if (!msix_enable)
4242 		return;
4243 
4244 	msix_cnt = pci_msix_count(sc->dev);
4245 #ifdef IGB_MSIX_DEBUG
4246 	msix_cnt = device_getenv_int(sc->dev, "msix.count", msix_cnt);
4247 #endif
4248 	if (msix_cnt <= 1) {
4249 		/* One MSI-X model does not make sense */
4250 		return;
4251 	}
4252 
4253 	i = 0;
4254 	while ((1 << (i + 1)) <= msix_cnt)
4255 		++i;
4256 	msix_cnt2 = 1 << i;
4257 
4258 	if (bootverbose) {
4259 		device_printf(sc->dev, "MSI-X count %d/%d\n",
4260 		    msix_cnt2, msix_cnt);
4261 	}
4262 
4263 	KKASSERT(msix_cnt2 <= msix_cnt);
4264 	if (msix_cnt == msix_cnt2) {
4265 		/* We need at least one MSI-X for link status */
4266 		msix_cnt2 >>= 1;
4267 		if (msix_cnt2 <= 1) {
4268 			/* One MSI-X for RX/TX does not make sense */
4269 			device_printf(sc->dev, "not enough MSI-X for TX/RX, "
4270 			    "MSI-X count %d/%d\n", msix_cnt2, msix_cnt);
4271 			return;
4272 		}
4273 		KKASSERT(msix_cnt > msix_cnt2);
4274 
4275 		if (bootverbose) {
4276 			device_printf(sc->dev, "MSI-X count fixup %d/%d\n",
4277 			    msix_cnt2, msix_cnt);
4278 		}
4279 	}
4280 
4281 	sc->rx_ring_msix = sc->rx_ring_cnt;
4282 	if (sc->rx_ring_msix > msix_cnt2)
4283 		sc->rx_ring_msix = msix_cnt2;
4284 
4285 	sc->tx_ring_msix = sc->tx_ring_cnt;
4286 	if (sc->tx_ring_msix > msix_cnt2)
4287 		sc->tx_ring_msix = msix_cnt2;
4288 
4289 	if (msix_cnt >= sc->tx_ring_msix + sc->rx_ring_msix + 1) {
4290 		/*
4291 		 * Independent TX/RX MSI-X
4292 		 */
4293 		aggregate = FALSE;
4294 		if (bootverbose)
4295 			device_printf(sc->dev, "independent TX/RX MSI-X\n");
4296 		alloc_cnt = sc->tx_ring_msix + sc->rx_ring_msix;
4297 	} else {
4298 		/*
4299 		 * Aggregate TX/RX MSI-X
4300 		 */
4301 		aggregate = TRUE;
4302 		if (bootverbose)
4303 			device_printf(sc->dev, "aggregate TX/RX MSI-X\n");
4304 		alloc_cnt = msix_cnt2;
4305 		if (alloc_cnt > ncpus2)
4306 			alloc_cnt = ncpus2;
4307 		if (sc->rx_ring_msix > alloc_cnt)
4308 			sc->rx_ring_msix = alloc_cnt;
4309 		if (sc->tx_ring_msix > alloc_cnt)
4310 			sc->tx_ring_msix = alloc_cnt;
4311 	}
4312 	++alloc_cnt;	/* For link status */
4313 
4314 	if (bootverbose) {
4315 		device_printf(sc->dev, "MSI-X alloc %d, "
4316 		    "RX ring %d, TX ring %d\n", alloc_cnt,
4317 		    sc->rx_ring_msix, sc->tx_ring_msix);
4318 	}
4319 
4320 	sc->msix_mem_rid = PCIR_BAR(IGB_MSIX_BAR);
4321 	sc->msix_mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
4322 	    &sc->msix_mem_rid, RF_ACTIVE);
4323 	if (sc->msix_mem_res == NULL) {
4324 		device_printf(sc->dev, "Unable to map MSI-X table\n");
4325 		return;
4326 	}
4327 
4328 	sc->msix_cnt = alloc_cnt;
4329 	sc->msix_data = kmalloc_cachealign(
4330 	    sizeof(struct igb_msix_data) * sc->msix_cnt,
4331 	    M_DEVBUF, M_WAITOK | M_ZERO);
4332 	for (x = 0; x < sc->msix_cnt; ++x) {
4333 		msix = &sc->msix_data[x];
4334 
4335 		lwkt_serialize_init(&msix->msix_serialize0);
4336 		msix->msix_sc = sc;
4337 		msix->msix_rid = -1;
4338 		msix->msix_vector = x;
4339 		msix->msix_mask = 1 << msix->msix_vector;
4340 		msix->msix_rate = IGB_INTR_RATE;
4341 	}
4342 
4343 	x = 0;
4344 	if (!aggregate) {
4345 		/*
4346 		 * RX rings
4347 		 */
4348 		if (sc->rx_ring_msix == ncpus2) {
4349 			offset = 0;
4350 		} else {
4351 			offset_def = (sc->rx_ring_msix *
4352 			    device_get_unit(sc->dev)) % ncpus2;
4353 
4354 			offset = device_getenv_int(sc->dev,
4355 			    "msix.rxoff", offset_def);
4356 			if (offset >= ncpus2 ||
4357 			    offset % sc->rx_ring_msix != 0) {
4358 				device_printf(sc->dev,
4359 				    "invalid msix.rxoff %d, use %d\n",
4360 				    offset, offset_def);
4361 				offset = offset_def;
4362 			}
4363 		}
4364 		igb_msix_rx_conf(sc, 0, &x, offset);
4365 
4366 		/*
4367 		 * TX rings
4368 		 */
4369 		if (sc->tx_ring_msix == ncpus2) {
4370 			offset = 0;
4371 		} else {
4372 			offset_def = (sc->tx_ring_msix *
4373 			    device_get_unit(sc->dev)) % ncpus2;
4374 
4375 			offset = device_getenv_int(sc->dev,
4376 			    "msix.txoff", offset_def);
4377 			if (offset >= ncpus2 ||
4378 			    offset % sc->tx_ring_msix != 0) {
4379 				device_printf(sc->dev,
4380 				    "invalid msix.txoff %d, use %d\n",
4381 				    offset, offset_def);
4382 				offset = offset_def;
4383 			}
4384 		}
4385 		igb_msix_tx_conf(sc, 0, &x, offset);
4386 	} else {
4387 		int ring_agg, ring_max;
4388 
4389 		ring_agg = sc->rx_ring_msix;
4390 		if (ring_agg > sc->tx_ring_msix)
4391 			ring_agg = sc->tx_ring_msix;
4392 
4393 		ring_max = sc->rx_ring_msix;
4394 		if (ring_max < sc->tx_ring_msix)
4395 			ring_max = sc->tx_ring_msix;
4396 
4397 		if (ring_max == ncpus2) {
4398 			offset = 0;
4399 		} else {
4400 			offset_def = (ring_max * device_get_unit(sc->dev)) %
4401 			    ncpus2;
4402 
4403 			offset = device_getenv_int(sc->dev, "msix.off",
4404 			    offset_def);
4405 			if (offset >= ncpus2 || offset % ring_max != 0) {
4406 				device_printf(sc->dev,
4407 				    "invalid msix.off %d, use %d\n",
4408 				    offset, offset_def);
4409 				offset = offset_def;
4410 			}
4411 		}
4412 
4413 		for (i = 0; i < ring_agg; ++i) {
4414 			struct igb_tx_ring *txr = &sc->tx_rings[i];
4415 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
4416 
4417 			KKASSERT(x < sc->msix_cnt);
4418 			msix = &sc->msix_data[x++];
4419 
4420 			txr->tx_intr_bit = msix->msix_vector;
4421 			txr->tx_intr_mask = msix->msix_mask;
4422 			rxr->rx_intr_bit = msix->msix_vector;
4423 			rxr->rx_intr_mask = msix->msix_mask;
4424 
4425 			msix->msix_serialize = &msix->msix_serialize0;
4426 			msix->msix_func = igb_msix_rxtx;
4427 			msix->msix_arg = msix;
4428 			msix->msix_rx = rxr;
4429 			msix->msix_tx = txr;
4430 
4431 			msix->msix_cpuid = i + offset;
4432 			KKASSERT(msix->msix_cpuid < ncpus2);
4433 			txr->tx_intr_cpuid = msix->msix_cpuid;
4434 
4435 			ksnprintf(msix->msix_desc, sizeof(msix->msix_desc),
4436 			    "%s rxtx%d", device_get_nameunit(sc->dev), i);
4437 			msix->msix_rate = IGB_MSIX_RX_RATE;
4438 			ksnprintf(msix->msix_rate_desc,
4439 			    sizeof(msix->msix_rate_desc),
4440 			    "RXTX%d interrupt rate", i);
4441 		}
4442 
4443 		if (ring_agg != ring_max) {
4444 			if (ring_max == sc->tx_ring_msix)
4445 				igb_msix_tx_conf(sc, i, &x, offset);
4446 			else
4447 				igb_msix_rx_conf(sc, i, &x, offset);
4448 		}
4449 	}
4450 
4451 	/*
4452 	 * Link status
4453 	 */
4454 	KKASSERT(x < sc->msix_cnt);
4455 	msix = &sc->msix_data[x++];
4456 	sc->sts_intr_bit = msix->msix_vector;
4457 	sc->sts_intr_mask = msix->msix_mask;
4458 
4459 	msix->msix_serialize = &sc->main_serialize;
4460 	msix->msix_func = igb_msix_status;
4461 	msix->msix_arg = sc;
4462 	msix->msix_cpuid = 0;
4463 	ksnprintf(msix->msix_desc, sizeof(msix->msix_desc), "%s sts",
4464 	    device_get_nameunit(sc->dev));
4465 	ksnprintf(msix->msix_rate_desc, sizeof(msix->msix_rate_desc),
4466 	    "status interrupt rate");
4467 
4468 	KKASSERT(x == sc->msix_cnt);
4469 
4470 	error = pci_setup_msix(sc->dev);
4471 	if (error) {
4472 		device_printf(sc->dev, "Setup MSI-X failed\n");
4473 		goto back;
4474 	}
4475 	setup = TRUE;
4476 
4477 	for (i = 0; i < sc->msix_cnt; ++i) {
4478 		msix = &sc->msix_data[i];
4479 
4480 		error = pci_alloc_msix_vector(sc->dev, msix->msix_vector,
4481 		    &msix->msix_rid, msix->msix_cpuid);
4482 		if (error) {
4483 			device_printf(sc->dev,
4484 			    "Unable to allocate MSI-X %d on cpu%d\n",
4485 			    msix->msix_vector, msix->msix_cpuid);
4486 			goto back;
4487 		}
4488 
4489 		msix->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
4490 		    &msix->msix_rid, RF_ACTIVE);
4491 		if (msix->msix_res == NULL) {
4492 			device_printf(sc->dev,
4493 			    "Unable to allocate MSI-X %d resource\n",
4494 			    msix->msix_vector);
4495 			error = ENOMEM;
4496 			goto back;
4497 		}
4498 	}
4499 
4500 	pci_enable_msix(sc->dev);
4501 	sc->intr_type = PCI_INTR_TYPE_MSIX;
4502 back:
4503 	if (error)
4504 		igb_msix_free(sc, setup);
4505 }
4506 
4507 static void
4508 igb_msix_free(struct igb_softc *sc, boolean_t setup)
4509 {
4510 	int i;
4511 
4512 	KKASSERT(sc->msix_cnt > 1);
4513 
4514 	for (i = 0; i < sc->msix_cnt; ++i) {
4515 		struct igb_msix_data *msix = &sc->msix_data[i];
4516 
4517 		if (msix->msix_res != NULL) {
4518 			bus_release_resource(sc->dev, SYS_RES_IRQ,
4519 			    msix->msix_rid, msix->msix_res);
4520 		}
4521 		if (msix->msix_rid >= 0)
4522 			pci_release_msix_vector(sc->dev, msix->msix_rid);
4523 	}
4524 	if (setup)
4525 		pci_teardown_msix(sc->dev);
4526 
4527 	sc->msix_cnt = 0;
4528 	kfree(sc->msix_data, M_DEVBUF);
4529 	sc->msix_data = NULL;
4530 }
4531 
4532 static int
4533 igb_msix_setup(struct igb_softc *sc)
4534 {
4535 	int i;
4536 
4537 	for (i = 0; i < sc->msix_cnt; ++i) {
4538 		struct igb_msix_data *msix = &sc->msix_data[i];
4539 		int error;
4540 
4541 		error = bus_setup_intr_descr(sc->dev, msix->msix_res,
4542 		    INTR_MPSAFE, msix->msix_func, msix->msix_arg,
4543 		    &msix->msix_handle, msix->msix_serialize, msix->msix_desc);
4544 		if (error) {
4545 			device_printf(sc->dev, "could not set up %s "
4546 			    "interrupt handler.\n", msix->msix_desc);
4547 			igb_msix_teardown(sc, i);
4548 			return error;
4549 		}
4550 	}
4551 	return 0;
4552 }
4553 
4554 static void
4555 igb_msix_teardown(struct igb_softc *sc, int msix_cnt)
4556 {
4557 	int i;
4558 
4559 	for (i = 0; i < msix_cnt; ++i) {
4560 		struct igb_msix_data *msix = &sc->msix_data[i];
4561 
4562 		bus_teardown_intr(sc->dev, msix->msix_res, msix->msix_handle);
4563 	}
4564 }
4565 
4566 static void
4567 igb_msix_rx(void *arg)
4568 {
4569 	struct igb_rx_ring *rxr = arg;
4570 
4571 	ASSERT_SERIALIZED(&rxr->rx_serialize);
4572 	igb_rxeof(rxr, -1);
4573 
4574 	E1000_WRITE_REG(&rxr->sc->hw, E1000_EIMS, rxr->rx_intr_mask);
4575 }
4576 
4577 static void
4578 igb_msix_tx(void *arg)
4579 {
4580 	struct igb_tx_ring *txr = arg;
4581 
4582 	ASSERT_SERIALIZED(&txr->tx_serialize);
4583 
4584 	igb_txeof(txr);
4585 	if (!ifsq_is_empty(txr->ifsq))
4586 		ifsq_devstart(txr->ifsq);
4587 
4588 	E1000_WRITE_REG(&txr->sc->hw, E1000_EIMS, txr->tx_intr_mask);
4589 }
4590 
4591 static void
4592 igb_msix_status(void *arg)
4593 {
4594 	struct igb_softc *sc = arg;
4595 	uint32_t icr;
4596 
4597 	ASSERT_SERIALIZED(&sc->main_serialize);
4598 
4599 	icr = E1000_READ_REG(&sc->hw, E1000_ICR);
4600 	if (icr & E1000_ICR_LSC) {
4601 		sc->hw.mac.get_link_status = 1;
4602 		igb_update_link_status(sc);
4603 	}
4604 
4605 	E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->sts_intr_mask);
4606 }
4607 
4608 static void
4609 igb_set_ring_inuse(struct igb_softc *sc, boolean_t polling)
4610 {
4611 	sc->rx_ring_inuse = igb_get_rxring_inuse(sc, polling);
4612 	sc->tx_ring_inuse = igb_get_txring_inuse(sc, polling);
4613 	if (bootverbose) {
4614 		if_printf(&sc->arpcom.ac_if, "RX rings %d/%d, TX rings %d/%d\n",
4615 		    sc->rx_ring_inuse, sc->rx_ring_cnt,
4616 		    sc->tx_ring_inuse, sc->tx_ring_cnt);
4617 	}
4618 }
4619 
4620 static int
4621 igb_get_rxring_inuse(const struct igb_softc *sc, boolean_t polling)
4622 {
4623 	if (!IGB_ENABLE_HWRSS(sc))
4624 		return 1;
4625 
4626 	if (polling)
4627 		return sc->rx_ring_cnt;
4628 	else if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4629 		return IGB_MIN_RING_RSS;
4630 	else
4631 		return sc->rx_ring_msix;
4632 }
4633 
4634 static int
4635 igb_get_txring_inuse(const struct igb_softc *sc, boolean_t polling)
4636 {
4637 	if (!IGB_ENABLE_HWTSS(sc))
4638 		return 1;
4639 
4640 	if (polling)
4641 		return sc->tx_ring_cnt;
4642 	else if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4643 		return IGB_MIN_RING;
4644 	else
4645 		return sc->tx_ring_msix;
4646 }
4647 
4648 static int
4649 igb_tso_pullup(struct igb_tx_ring *txr, struct mbuf **mp)
4650 {
4651 	int hoff, iphlen, thoff;
4652 	struct mbuf *m;
4653 
4654 	m = *mp;
4655 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4656 
4657 	iphlen = m->m_pkthdr.csum_iphlen;
4658 	thoff = m->m_pkthdr.csum_thlen;
4659 	hoff = m->m_pkthdr.csum_lhlen;
4660 
4661 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4662 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4663 	KASSERT(hoff > 0, ("invalid ether hlen"));
4664 
4665 	if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
4666 		m = m_pullup(m, hoff + iphlen + thoff);
4667 		if (m == NULL) {
4668 			*mp = NULL;
4669 			return ENOBUFS;
4670 		}
4671 		*mp = m;
4672 	}
4673 	if (txr->tx_flags & IGB_TXFLAG_TSO_IPLEN0) {
4674 		struct ip *ip;
4675 
4676 		ip = mtodoff(m, struct ip *, hoff);
4677 		ip->ip_len = 0;
4678 	}
4679 
4680 	return 0;
4681 }
4682 
4683 static void
4684 igb_tso_ctx(struct igb_tx_ring *txr, struct mbuf *m, uint32_t *hlen)
4685 {
4686 	struct e1000_adv_tx_context_desc *TXD;
4687 	uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
4688 	int hoff, ctxd, iphlen, thoff;
4689 
4690 	iphlen = m->m_pkthdr.csum_iphlen;
4691 	thoff = m->m_pkthdr.csum_thlen;
4692 	hoff = m->m_pkthdr.csum_lhlen;
4693 
4694 	vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
4695 
4696 	ctxd = txr->next_avail_desc;
4697 	TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
4698 
4699 	if (m->m_flags & M_VLANTAG) {
4700 		uint16_t vlantag;
4701 
4702 		vlantag = htole16(m->m_pkthdr.ether_vlantag);
4703 		vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
4704 	}
4705 
4706 	vlan_macip_lens |= (hoff << E1000_ADVTXD_MACLEN_SHIFT);
4707 	vlan_macip_lens |= iphlen;
4708 
4709 	type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4710 	type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
4711 	type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
4712 
4713 	mss_l4len_idx |= (m->m_pkthdr.tso_segsz << E1000_ADVTXD_MSS_SHIFT);
4714 	mss_l4len_idx |= (thoff << E1000_ADVTXD_L4LEN_SHIFT);
4715 
4716 	/*
4717 	 * 82575 needs the TX context index added; the queue
4718 	 * index is used as TX context index here.
4719 	 */
4720 	if (txr->sc->hw.mac.type == e1000_82575)
4721 		mss_l4len_idx |= txr->me << 4;
4722 
4723 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
4724 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
4725 	TXD->seqnum_seed = htole32(0);
4726 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
4727 
4728 	/* We've consumed the first desc, adjust counters */
4729 	if (++ctxd == txr->num_tx_desc)
4730 		ctxd = 0;
4731 	txr->next_avail_desc = ctxd;
4732 	--txr->tx_avail;
4733 
4734 	*hlen = hoff + iphlen + thoff;
4735 }
4736 
4737 static void
4738 igb_setup_serializer(struct igb_softc *sc)
4739 {
4740 	const struct igb_msix_data *msix;
4741 	int i, j;
4742 
4743 	/*
4744 	 * Allocate serializer array
4745 	 */
4746 
4747 	/* Main + TX + RX */
4748 	sc->serialize_cnt = 1 + sc->tx_ring_cnt + sc->rx_ring_cnt;
4749 
4750 	/* Aggregate TX/RX MSI-X */
4751 	for (i = 0; i < sc->msix_cnt; ++i) {
4752 		msix = &sc->msix_data[i];
4753 		if (msix->msix_serialize == &msix->msix_serialize0)
4754 			sc->serialize_cnt++;
4755 	}
4756 
4757 	sc->serializes =
4758 	    kmalloc(sc->serialize_cnt * sizeof(struct lwkt_serialize *),
4759 	        M_DEVBUF, M_WAITOK | M_ZERO);
4760 
4761 	/*
4762 	 * Setup serializers
4763 	 *
4764 	 * NOTE: Order is critical
4765 	 */
4766 
4767 	i = 0;
4768 
4769 	KKASSERT(i < sc->serialize_cnt);
4770 	sc->serializes[i++] = &sc->main_serialize;
4771 
4772 	for (j = 0; j < sc->msix_cnt; ++j) {
4773 		msix = &sc->msix_data[j];
4774 		if (msix->msix_serialize == &msix->msix_serialize0) {
4775 			KKASSERT(i < sc->serialize_cnt);
4776 			sc->serializes[i++] = msix->msix_serialize;
4777 		}
4778 	}
4779 
4780 	for (j = 0; j < sc->tx_ring_cnt; ++j) {
4781 		KKASSERT(i < sc->serialize_cnt);
4782 		sc->serializes[i++] = &sc->tx_rings[j].tx_serialize;
4783 	}
4784 
4785 	for (j = 0; j < sc->rx_ring_cnt; ++j) {
4786 		KKASSERT(i < sc->serialize_cnt);
4787 		sc->serializes[i++] = &sc->rx_rings[j].rx_serialize;
4788 	}
4789 
4790 	KKASSERT(i == sc->serialize_cnt);
4791 }
4792 
4793 static void
4794 igb_msix_rx_conf(struct igb_softc *sc, int i, int *x0, int offset)
4795 {
4796 	int x = *x0;
4797 
4798 	for (; i < sc->rx_ring_msix; ++i) {
4799 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
4800 		struct igb_msix_data *msix;
4801 
4802 		KKASSERT(x < sc->msix_cnt);
4803 		msix = &sc->msix_data[x++];
4804 
4805 		rxr->rx_intr_bit = msix->msix_vector;
4806 		rxr->rx_intr_mask = msix->msix_mask;
4807 
4808 		msix->msix_serialize = &rxr->rx_serialize;
4809 		msix->msix_func = igb_msix_rx;
4810 		msix->msix_arg = rxr;
4811 
4812 		msix->msix_cpuid = i + offset;
4813 		KKASSERT(msix->msix_cpuid < ncpus2);
4814 
4815 		ksnprintf(msix->msix_desc, sizeof(msix->msix_desc), "%s rx%d",
4816 		    device_get_nameunit(sc->dev), i);
4817 
4818 		msix->msix_rate = IGB_MSIX_RX_RATE;
4819 		ksnprintf(msix->msix_rate_desc, sizeof(msix->msix_rate_desc),
4820 		    "RX%d interrupt rate", i);
4821 	}
4822 	*x0 = x;
4823 }
4824 
4825 static void
4826 igb_msix_tx_conf(struct igb_softc *sc, int i, int *x0, int offset)
4827 {
4828 	int x = *x0;
4829 
4830 	for (; i < sc->tx_ring_msix; ++i) {
4831 		struct igb_tx_ring *txr = &sc->tx_rings[i];
4832 		struct igb_msix_data *msix;
4833 
4834 		KKASSERT(x < sc->msix_cnt);
4835 		msix = &sc->msix_data[x++];
4836 
4837 		txr->tx_intr_bit = msix->msix_vector;
4838 		txr->tx_intr_mask = msix->msix_mask;
4839 
4840 		msix->msix_serialize = &txr->tx_serialize;
4841 		msix->msix_func = igb_msix_tx;
4842 		msix->msix_arg = txr;
4843 
4844 		msix->msix_cpuid = i + offset;
4845 		KKASSERT(msix->msix_cpuid < ncpus2);
4846 		txr->tx_intr_cpuid = msix->msix_cpuid;
4847 
4848 		ksnprintf(msix->msix_desc, sizeof(msix->msix_desc), "%s tx%d",
4849 		    device_get_nameunit(sc->dev), i);
4850 
4851 		msix->msix_rate = IGB_MSIX_TX_RATE;
4852 		ksnprintf(msix->msix_rate_desc, sizeof(msix->msix_rate_desc),
4853 		    "TX%d interrupt rate", i);
4854 	}
4855 	*x0 = x;
4856 }
4857 
4858 static void
4859 igb_msix_rxtx(void *arg)
4860 {
4861 	struct igb_msix_data *msix = arg;
4862 	struct igb_rx_ring *rxr = msix->msix_rx;
4863 	struct igb_tx_ring *txr = msix->msix_tx;
4864 
4865 	ASSERT_SERIALIZED(&msix->msix_serialize0);
4866 
4867 	lwkt_serialize_enter(&rxr->rx_serialize);
4868 	igb_rxeof(rxr, -1);
4869 	lwkt_serialize_exit(&rxr->rx_serialize);
4870 
4871 	lwkt_serialize_enter(&txr->tx_serialize);
4872 	igb_txeof(txr);
4873 	if (!ifsq_is_empty(txr->ifsq))
4874 		ifsq_devstart(txr->ifsq);
4875 	lwkt_serialize_exit(&txr->tx_serialize);
4876 
4877 	E1000_WRITE_REG(&msix->msix_sc->hw, E1000_EIMS, msix->msix_mask);
4878 }
4879 
4880 static void
4881 igb_set_timer_cpuid(struct igb_softc *sc, boolean_t polling)
4882 {
4883 	if (polling || sc->intr_type == PCI_INTR_TYPE_MSIX)
4884 		sc->timer_cpuid = 0; /* XXX fixed */
4885 	else
4886 		sc->timer_cpuid = rman_get_cpuid(sc->intr_res);
4887 }
4888