xref: /dragonfly/sys/dev/netif/iwi/if_iwi.c (revision 89a89091)
1 /*-
2  * Copyright (c) 2004, 2005
3  *      Damien Bergamini <damien.bergamini@free.fr>. All rights reserved.
4  * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting
5  * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/dev/iwi/if_iwi.c,v 1.72 2009/07/10 15:28:33 rpaulo Exp $
30  */
31 
32 /*-
33  * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver
34  * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
35  */
36 
37 #include <sys/param.h>
38 #include <sys/sysctl.h>
39 #include <sys/sockio.h>
40 #include <sys/mbuf.h>
41 #include <sys/kernel.h>
42 #include <sys/socket.h>
43 #include <sys/systm.h>
44 #include <sys/malloc.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/module.h>
48 #include <sys/bus.h>
49 #include <sys/endian.h>
50 #include <sys/proc.h>
51 #include <sys/mount.h>
52 #include <sys/namei.h>
53 #include <sys/linker.h>
54 #include <sys/firmware.h>
55 #include <sys/taskqueue.h>
56 #include <sys/devfs.h>
57 
58 #include <sys/resource.h>
59 #include <sys/rman.h>
60 
61 #include <bus/pci/pcireg.h>
62 #include <bus/pci/pcivar.h>
63 
64 #include <net/bpf.h>
65 #include <net/if.h>
66 #include <net/if_arp.h>
67 #include <net/ethernet.h>
68 #include <net/if_dl.h>
69 #include <net/if_media.h>
70 #include <net/if_types.h>
71 #include <net/ifq_var.h>
72 
73 #include <netproto/802_11/ieee80211_var.h>
74 #include <netproto/802_11/ieee80211_radiotap.h>
75 #include <netproto/802_11/ieee80211_input.h>
76 #include <netproto/802_11/ieee80211_regdomain.h>
77 
78 #include <netinet/in.h>
79 #include <netinet/in_systm.h>
80 #include <netinet/in_var.h>
81 #include <netinet/ip.h>
82 #include <netinet/if_ether.h>
83 
84 #include <dev/netif/iwi/if_iwireg.h>
85 #include <dev/netif/iwi/if_iwivar.h>
86 
87 #define IWI_DEBUG
88 #ifdef IWI_DEBUG
89 #define DPRINTF(x)	do { if (iwi_debug > 0) kprintf x; } while (0)
90 #define DPRINTFN(n, x)	do { if (iwi_debug >= (n)) kprintf x; } while (0)
91 int iwi_debug = 0;
92 SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level");
93 
94 static const char *iwi_fw_states[] = {
95 	"IDLE", 		/* IWI_FW_IDLE */
96 	"LOADING",		/* IWI_FW_LOADING */
97 	"ASSOCIATING",		/* IWI_FW_ASSOCIATING */
98 	"DISASSOCIATING",	/* IWI_FW_DISASSOCIATING */
99 	"SCANNING",		/* IWI_FW_SCANNING */
100 };
101 #else
102 #define DPRINTF(x)
103 #define DPRINTFN(n, x)
104 #endif
105 
106 MODULE_DEPEND(iwi, pci,  1, 1, 1);
107 MODULE_DEPEND(iwi, wlan, 1, 1, 1);
108 MODULE_DEPEND(iwi, firmware, 1, 1, 1);
109 
110 enum {
111 	IWI_LED_TX,
112 	IWI_LED_RX,
113 	IWI_LED_POLL,
114 };
115 
116 struct iwi_ident {
117 	uint16_t	vendor;
118 	uint16_t	device;
119 	const char	*name;
120 };
121 
122 static const struct iwi_ident iwi_ident_table[] = {
123 	{ 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" },
124 	{ 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" },
125 	{ 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" },
126 	{ 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" },
127 
128 	{ 0, 0, NULL }
129 };
130 
131 static struct ieee80211vap *iwi_vap_create(struct ieee80211com *,
132 		    const char name[IFNAMSIZ], int unit, int opmode, int flags,
133 		    const uint8_t bssid[IEEE80211_ADDR_LEN],
134 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
135 static void	iwi_vap_delete(struct ieee80211vap *);
136 static void	iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
137 static int	iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *,
138 		    int);
139 static void	iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
140 static void	iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
141 static int	iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *,
142 		    int, bus_addr_t, bus_addr_t);
143 static void	iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
144 static void	iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
145 static int	iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *,
146 		    int);
147 static void	iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
148 static void	iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
149 static struct ieee80211_node *iwi_node_alloc(struct ieee80211vap *,
150 		    const uint8_t [IEEE80211_ADDR_LEN]);
151 static void	iwi_node_free(struct ieee80211_node *);
152 static void	iwi_media_status(struct ifnet *, struct ifmediareq *);
153 static int	iwi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
154 static void	iwi_wme_init(struct iwi_softc *);
155 static int	iwi_wme_setparams(struct iwi_softc *, struct ieee80211com *);
156 static void	iwi_update_wme_task(void *, int);
157 static int	iwi_wme_update(struct ieee80211com *);
158 static uint16_t	iwi_read_prom_word(struct iwi_softc *, uint8_t);
159 static void	iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int,
160 		    struct iwi_frame *);
161 static void	iwi_notification_intr(struct iwi_softc *, struct iwi_notif *);
162 static void	iwi_rx_intr(struct iwi_softc *);
163 static void	iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *);
164 static void	iwi_intr(void *);
165 static int	iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t);
166 static void	iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [], int);
167 static int	iwi_tx_start(struct ifnet *, struct mbuf *,
168 		    struct ieee80211_node *, int);
169 static int	iwi_raw_xmit(struct ieee80211_node *, struct mbuf *,
170 		    const struct ieee80211_bpf_params *);
171 static void	iwi_start_locked(struct ifnet *);
172 static void	iwi_start(struct ifnet *);
173 static void	iwi_watchdog(void *);
174 static int	iwi_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *ucred);
175 static void	iwi_stop_master(struct iwi_softc *);
176 static int	iwi_reset(struct iwi_softc *);
177 static int	iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *);
178 static int	iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *);
179 static void	iwi_release_fw_dma(struct iwi_softc *sc);
180 static int	iwi_config(struct iwi_softc *);
181 static int	iwi_get_firmware(struct iwi_softc *, enum ieee80211_opmode);
182 static void	iwi_put_firmware(struct iwi_softc *);
183 static int	iwi_scanchan(struct iwi_softc *, unsigned long, int);
184 static void	iwi_scan_start(struct ieee80211com *);
185 static void	iwi_scan_end(struct ieee80211com *);
186 static void	iwi_set_channel(struct ieee80211com *);
187 static void	iwi_scan_curchan(struct ieee80211_scan_state *, unsigned long maxdwell);
188 static void	iwi_scan_mindwell(struct ieee80211_scan_state *);
189 static int	iwi_auth_and_assoc(struct iwi_softc *, struct ieee80211vap *);
190 static void	iwi_disassoc_task(void *, int);
191 static int	iwi_disassociate(struct iwi_softc *, int quiet);
192 static void	iwi_init_locked(struct iwi_softc *);
193 static void	iwi_init(void *);
194 static int	iwi_init_fw_dma(struct iwi_softc *, int);
195 static void	iwi_stop_locked(void *);
196 static void	iwi_stop(struct iwi_softc *);
197 static void	iwi_restart_task(void *, int);
198 static int	iwi_getrfkill(struct iwi_softc *);
199 static void	iwi_radio_on_task(void *, int);
200 static void	iwi_radio_off_task(void *, int);
201 static void	iwi_sysctlattach(struct iwi_softc *);
202 static void	iwi_led_event(struct iwi_softc *, int);
203 static void	iwi_ledattach(struct iwi_softc *);
204 
205 static int iwi_probe(device_t);
206 static int iwi_attach(device_t);
207 static int iwi_detach(device_t);
208 static int iwi_shutdown(device_t);
209 static int iwi_suspend(device_t);
210 static int iwi_resume(device_t);
211 
212 static device_method_t iwi_methods[] = {
213 	/* Device interface */
214 	DEVMETHOD(device_probe,		iwi_probe),
215 	DEVMETHOD(device_attach,	iwi_attach),
216 	DEVMETHOD(device_detach,	iwi_detach),
217 	DEVMETHOD(device_shutdown,	iwi_shutdown),
218 	DEVMETHOD(device_suspend,	iwi_suspend),
219 	DEVMETHOD(device_resume,	iwi_resume),
220 
221 	{ 0, 0 }
222 };
223 
224 static driver_t iwi_driver = {
225 	"iwi",
226 	iwi_methods,
227 	sizeof (struct iwi_softc)
228 };
229 
230 static devclass_t iwi_devclass;
231 
232 DRIVER_MODULE(iwi, pci, iwi_driver, iwi_devclass, NULL, NULL);
233 
234 static __inline uint8_t
235 MEM_READ_1(struct iwi_softc *sc, uint32_t addr)
236 {
237 	CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
238 	return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA);
239 }
240 
241 static __inline uint32_t
242 MEM_READ_4(struct iwi_softc *sc, uint32_t addr)
243 {
244 	CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
245 	return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA);
246 }
247 
248 static int
249 iwi_probe(device_t dev)
250 {
251 	const struct iwi_ident *ident;
252 
253 	wlan_serialize_enter();
254 	for (ident = iwi_ident_table; ident->name != NULL; ident++) {
255 		if (pci_get_vendor(dev) == ident->vendor &&
256 		    pci_get_device(dev) == ident->device) {
257 			device_set_desc(dev, ident->name);
258 			wlan_serialize_exit();
259 			return 0;
260 		}
261 	}
262 	wlan_serialize_exit();
263 	return ENXIO;
264 }
265 
266 /* Base Address Register */
267 #define IWI_PCI_BAR0	0x10
268 
269 static int
270 iwi_attach(device_t dev)
271 {
272 	struct iwi_softc *sc = device_get_softc(dev);
273 	struct ifnet *ifp;
274 	struct ieee80211com *ic;
275 	uint16_t val;
276 	int i, error;
277 	uint8_t bands;
278 	uint8_t macaddr[IEEE80211_ADDR_LEN];
279 
280 	wlan_serialize_enter();
281 
282 	sc->sc_dev = dev;
283 
284 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
285 	if (ifp == NULL) {
286 		device_printf(dev, "can not if_alloc()\n");
287 		wlan_serialize_exit();
288 		return ENXIO;
289 	}
290 	ic = ifp->if_l2com;
291 
292 	devfs_clone_bitmap_init(&sc->sc_unr);
293 
294 	TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on_task, sc);
295 	TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off_task, sc);
296 	TASK_INIT(&sc->sc_restarttask, 0, iwi_restart_task, sc);
297 	TASK_INIT(&sc->sc_disassoctask, 0, iwi_disassoc_task, sc);
298 	TASK_INIT(&sc->sc_wmetask, 0, iwi_update_wme_task, sc);
299 
300 	callout_init(&sc->sc_wdtimer_callout);
301 	callout_init(&sc->sc_rftimer_callout);
302 
303 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
304 		device_printf(dev, "chip is in D%d power mode "
305 		    "-- setting to D0\n", pci_get_powerstate(dev));
306 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
307 	}
308 
309 	pci_write_config(dev, 0x41, 0, 1);
310 
311 	/* enable bus-mastering */
312 	pci_enable_busmaster(dev);
313 
314 	sc->mem_rid = IWI_PCI_BAR0;
315 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
316 	    RF_ACTIVE);
317 	if (sc->mem == NULL) {
318 		device_printf(dev, "could not allocate memory resource\n");
319 		goto fail;
320 	}
321 
322 	sc->sc_st = rman_get_bustag(sc->mem);
323 	sc->sc_sh = rman_get_bushandle(sc->mem);
324 
325 	sc->irq_rid = 0;
326 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
327 	    RF_ACTIVE | RF_SHAREABLE);
328 	if (sc->irq == NULL) {
329 		device_printf(dev, "could not allocate interrupt resource\n");
330 		goto fail;
331 	}
332 
333 	if (iwi_reset(sc) != 0) {
334 		device_printf(dev, "could not reset adapter\n");
335 		goto fail;
336 	}
337 
338 	/*
339 	 * Allocate rings.
340 	 */
341 	if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) {
342 		device_printf(dev, "could not allocate Cmd ring\n");
343 		goto fail;
344 	}
345 
346 	for (i = 0; i < 4; i++) {
347 		error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT,
348 		    IWI_CSR_TX1_RIDX + i * 4,
349 		    IWI_CSR_TX1_WIDX + i * 4);
350 		if (error != 0) {
351 			device_printf(dev, "could not allocate Tx ring %d\n",
352 				i+i);
353 			goto fail;
354 		}
355 	}
356 
357 	if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) {
358 		device_printf(dev, "could not allocate Rx ring\n");
359 		goto fail;
360 	}
361 
362 	iwi_wme_init(sc);
363 
364 	ifp->if_softc = sc;
365 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
366 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
367 	ifp->if_init = iwi_init;
368 	ifp->if_ioctl = iwi_ioctl;
369 	ifp->if_start = iwi_start;
370 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
371 	ifq_set_ready(&ifp->if_snd);
372 
373 	ic->ic_ifp = ifp;
374 	ic->ic_opmode = IEEE80211_M_STA;
375 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
376 
377 	/* set device capabilities */
378 	ic->ic_caps =
379 	      IEEE80211_C_STA		/* station mode supported */
380 	    | IEEE80211_C_IBSS		/* IBSS mode supported */
381 	    | IEEE80211_C_MONITOR	/* monitor mode supported */
382 	    | IEEE80211_C_PMGT		/* power save supported */
383 	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
384 	    | IEEE80211_C_WPA		/* 802.11i */
385 	    | IEEE80211_C_WME		/* 802.11e */
386 #if 0
387 	    | IEEE80211_C_BGSCAN	/* capable of bg scanning */
388 #endif
389 	    ;
390 
391 	/* read MAC address from EEPROM */
392 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0);
393 	macaddr[0] = val & 0xff;
394 	macaddr[1] = val >> 8;
395 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1);
396 	macaddr[2] = val & 0xff;
397 	macaddr[3] = val >> 8;
398 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2);
399 	macaddr[4] = val & 0xff;
400 	macaddr[5] = val >> 8;
401 
402 	bands = 0;
403 	setbit(&bands, IEEE80211_MODE_11B);
404 	setbit(&bands, IEEE80211_MODE_11G);
405 	if (pci_get_device(dev) >= 0x4223)
406 		setbit(&bands, IEEE80211_MODE_11A);
407 	ieee80211_init_channels(ic, NULL, &bands);
408 
409 	ieee80211_ifattach(ic, macaddr);
410 	/* override default methods */
411 	ic->ic_node_alloc = iwi_node_alloc;
412 	sc->sc_node_free = ic->ic_node_free;
413 	ic->ic_node_free = iwi_node_free;
414 	ic->ic_raw_xmit = iwi_raw_xmit;
415 	ic->ic_scan_start = iwi_scan_start;
416 	ic->ic_scan_end = iwi_scan_end;
417 	ic->ic_set_channel = iwi_set_channel;
418 	ic->ic_scan_curchan = iwi_scan_curchan;
419 	ic->ic_scan_mindwell = iwi_scan_mindwell;
420 	ic->ic_wme.wme_update = iwi_wme_update;
421 
422 	ic->ic_vap_create = iwi_vap_create;
423 	ic->ic_vap_delete = iwi_vap_delete;
424 
425 	ieee80211_radiotap_attach(ic,
426 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
427 		IWI_TX_RADIOTAP_PRESENT,
428 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
429 		IWI_RX_RADIOTAP_PRESENT);
430 
431 	iwi_sysctlattach(sc);
432 	iwi_ledattach(sc);
433 
434 	/*
435 	 * Hook our interrupt after all initialization is complete.
436 	 */
437 	error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
438 	    iwi_intr, sc, &sc->sc_ih, &wlan_global_serializer);
439 	if (error != 0) {
440 		device_printf(dev, "could not set up interrupt\n");
441 		goto fail;
442 	}
443 
444 	if (bootverbose)
445 		ieee80211_announce(ic);
446 
447 	wlan_serialize_exit();
448 	return 0;
449 fail:
450 	/* XXX fix */
451 	wlan_serialize_exit();
452 	iwi_detach(dev);
453 	return ENXIO;
454 }
455 
456 static int
457 iwi_detach(device_t dev)
458 {
459 	struct iwi_softc *sc = device_get_softc(dev);
460 	struct ifnet *ifp = sc->sc_ifp;
461 	struct ieee80211com *ic = ifp->if_l2com;
462 
463 	wlan_serialize_enter();
464 
465 	/* NB: do early to drain any pending tasks */
466 	ieee80211_draintask(ic, &sc->sc_radiontask);
467 	ieee80211_draintask(ic, &sc->sc_radiofftask);
468 	ieee80211_draintask(ic, &sc->sc_restarttask);
469 	ieee80211_draintask(ic, &sc->sc_disassoctask);
470 
471 	iwi_stop(sc);
472 
473 	ieee80211_ifdetach(ic);
474 
475 	iwi_put_firmware(sc);
476 	iwi_release_fw_dma(sc);
477 
478 	iwi_free_cmd_ring(sc, &sc->cmdq);
479 	iwi_free_tx_ring(sc, &sc->txq[0]);
480 	iwi_free_tx_ring(sc, &sc->txq[1]);
481 	iwi_free_tx_ring(sc, &sc->txq[2]);
482 	iwi_free_tx_ring(sc, &sc->txq[3]);
483 	iwi_free_rx_ring(sc, &sc->rxq);
484 
485 	bus_teardown_intr(dev, sc->irq, sc->sc_ih);
486 	bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
487 
488 	bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
489 
490 	devfs_clone_bitmap_uninit(&sc->sc_unr);
491 
492 	if (sc->sc_sysctl_tree != NULL)
493 		sysctl_ctx_free(&sc->sc_sysctl_ctx);
494 
495 	if_free(ifp);
496 
497 	wlan_serialize_exit();
498 	return 0;
499 }
500 
501 static struct ieee80211vap *
502 iwi_vap_create(struct ieee80211com *ic,
503 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
504 	const uint8_t bssid[IEEE80211_ADDR_LEN],
505 	const uint8_t mac[IEEE80211_ADDR_LEN])
506 {
507 	struct ifnet *ifp = ic->ic_ifp;
508 	struct iwi_softc *sc = ifp->if_softc;
509 	struct iwi_vap *ivp;
510 	struct ieee80211vap *vap;
511 	int i;
512 
513 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
514 		return NULL;
515 	/*
516 	 * Get firmware image (and possibly dma memory) on mode change.
517 	 */
518 	if (iwi_get_firmware(sc, opmode))
519 		return NULL;
520 	/* allocate DMA memory for mapping firmware image */
521 	i = sc->fw_fw.size;
522 	if (sc->fw_boot.size > i)
523 		i = sc->fw_boot.size;
524 	/* XXX do we dma the ucode as well ? */
525 	if (sc->fw_uc.size > i)
526 		i = sc->fw_uc.size;
527 	if (iwi_init_fw_dma(sc, i))
528 		return NULL;
529 
530 	ivp = (struct iwi_vap *) kmalloc(sizeof(struct iwi_vap),
531 	    M_80211_VAP, M_WAITOK | M_ZERO);
532 	if (ivp == NULL)
533 		return NULL;
534 	vap = &ivp->iwi_vap;
535 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
536 	/* override the default, the setting comes from the linux driver */
537 	vap->iv_bmissthreshold = 24;
538 	/* override with driver methods */
539 	ivp->iwi_newstate = vap->iv_newstate;
540 	vap->iv_newstate = iwi_newstate;
541 
542 	/* complete setup */
543 	ieee80211_vap_attach(vap, ieee80211_media_change, iwi_media_status);
544 	ic->ic_opmode = opmode;
545 	return vap;
546 }
547 
548 static void
549 iwi_vap_delete(struct ieee80211vap *vap)
550 {
551 	struct iwi_vap *ivp = IWI_VAP(vap);
552 
553 	ieee80211_vap_detach(vap);
554 	kfree(ivp, M_80211_VAP);
555 }
556 
557 static void
558 iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
559 {
560 	if (error != 0)
561 		return;
562 
563 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
564 
565 	*(bus_addr_t *)arg = segs[0].ds_addr;
566 }
567 
568 static int
569 iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count)
570 {
571 	int error;
572 
573 	ring->count = count;
574 	ring->queued = 0;
575 	ring->cur = ring->next = 0;
576 
577 	error = bus_dma_tag_create(NULL, 4, 0,
578 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
579 	    count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE,
580 	    0 , &ring->desc_dmat);
581 	if (error != 0) {
582 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
583 		goto fail;
584 	}
585 
586 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
587 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
588 	if (error != 0) {
589 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
590 		goto fail;
591 	}
592 
593 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
594 	    count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
595 	if (error != 0) {
596 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
597 		goto fail;
598 	}
599 
600 	return 0;
601 
602 fail:	iwi_free_cmd_ring(sc, ring);
603 	return error;
604 }
605 
606 static void
607 iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
608 {
609 	ring->queued = 0;
610 	ring->cur = ring->next = 0;
611 }
612 
613 static void
614 iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
615 {
616 	if (ring->desc != NULL) {
617 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
618 		    BUS_DMASYNC_POSTWRITE);
619 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
620 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
621 	}
622 
623 	if (ring->desc_dmat != NULL)
624 		bus_dma_tag_destroy(ring->desc_dmat);
625 }
626 
627 static int
628 iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count,
629     bus_addr_t csr_ridx, bus_addr_t csr_widx)
630 {
631 	int i, error;
632 
633 	ring->count = count;
634 	ring->queued = 0;
635 	ring->cur = ring->next = 0;
636 	ring->csr_ridx = csr_ridx;
637 	ring->csr_widx = csr_widx;
638 
639 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
640 	    BUS_SPACE_MAXADDR, NULL, NULL, count * IWI_TX_DESC_SIZE, 1,
641 	    count * IWI_TX_DESC_SIZE, 0, &ring->desc_dmat);
642 	if (error != 0) {
643 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
644 		goto fail;
645 	}
646 
647 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
648 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
649 	if (error != 0) {
650 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
651 		goto fail;
652 	}
653 
654 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
655 	    count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
656 	if (error != 0) {
657 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
658 		goto fail;
659 	}
660 
661 	ring->data = kmalloc(count * sizeof (struct iwi_tx_data), M_DEVBUF,
662 	    M_WAITOK | M_ZERO);
663 
664 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
665 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IWI_MAX_NSEG,
666 	    MCLBYTES, 0, &ring->data_dmat);
667 	if (error != 0) {
668 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
669 		goto fail;
670 	}
671 
672 	for (i = 0; i < count; i++) {
673 		error = bus_dmamap_create(ring->data_dmat, 0,
674 		    &ring->data[i].map);
675 		if (error != 0) {
676 			device_printf(sc->sc_dev, "could not create DMA map\n");
677 			goto fail;
678 		}
679 	}
680 
681 	return 0;
682 
683 fail:	iwi_free_tx_ring(sc, ring);
684 	return error;
685 }
686 
687 static void
688 iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
689 {
690 	struct iwi_tx_data *data;
691 	int i;
692 
693 	for (i = 0; i < ring->count; i++) {
694 		data = &ring->data[i];
695 
696 		if (data->m != NULL) {
697 			bus_dmamap_sync(ring->data_dmat, data->map,
698 			    BUS_DMASYNC_POSTWRITE);
699 			bus_dmamap_unload(ring->data_dmat, data->map);
700 			m_freem(data->m);
701 			data->m = NULL;
702 		}
703 
704 		if (data->ni != NULL) {
705 			ieee80211_free_node(data->ni);
706 			data->ni = NULL;
707 		}
708 	}
709 
710 	ring->queued = 0;
711 	ring->cur = ring->next = 0;
712 }
713 
714 static void
715 iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
716 {
717 	struct iwi_tx_data *data;
718 	int i;
719 
720 	if (ring->desc != NULL) {
721 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
722 		    BUS_DMASYNC_POSTWRITE);
723 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
724 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
725 	}
726 
727 	if (ring->desc_dmat != NULL)
728 		bus_dma_tag_destroy(ring->desc_dmat);
729 
730 	if (ring->data != NULL) {
731 		for (i = 0; i < ring->count; i++) {
732 			data = &ring->data[i];
733 
734 			if (data->m != NULL) {
735 				bus_dmamap_sync(ring->data_dmat, data->map,
736 				    BUS_DMASYNC_POSTWRITE);
737 				bus_dmamap_unload(ring->data_dmat, data->map);
738 				m_freem(data->m);
739 			}
740 
741 			if (data->ni != NULL)
742 				ieee80211_free_node(data->ni);
743 
744 			if (data->map != NULL)
745 				bus_dmamap_destroy(ring->data_dmat, data->map);
746 		}
747 
748 		kfree(ring->data, M_DEVBUF);
749 	}
750 
751 	if (ring->data_dmat != NULL)
752 		bus_dma_tag_destroy(ring->data_dmat);
753 }
754 
755 static int
756 iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count)
757 {
758 	struct iwi_rx_data *data;
759 	int i, error;
760 
761 	ring->count = count;
762 	ring->cur = 0;
763 
764 	ring->data = kmalloc(count * sizeof (struct iwi_rx_data), M_DEVBUF,
765 	    M_WAITOK | M_ZERO);
766 
767 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
768 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES,
769 	    0, &ring->data_dmat);
770 	if (error != 0) {
771 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
772 		goto fail;
773 	}
774 
775 	for (i = 0; i < count; i++) {
776 		data = &ring->data[i];
777 
778 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
779 		if (error != 0) {
780 			device_printf(sc->sc_dev, "could not create DMA map\n");
781 			goto fail;
782 		}
783 
784 		data->m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
785 		if (data->m == NULL) {
786 			device_printf(sc->sc_dev,
787 			    "could not allocate rx mbuf\n");
788 			error = ENOMEM;
789 			goto fail;
790 		}
791 
792 		error = bus_dmamap_load(ring->data_dmat, data->map,
793 		    mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
794 		    &data->physaddr, 0);
795 		if (error != 0) {
796 			device_printf(sc->sc_dev,
797 			    "could not load rx buf DMA map");
798 			goto fail;
799 		}
800 
801 		data->reg = IWI_CSR_RX_BASE + i * 4;
802 	}
803 
804 	return 0;
805 
806 fail:	iwi_free_rx_ring(sc, ring);
807 	return error;
808 }
809 
810 static void
811 iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
812 {
813 	ring->cur = 0;
814 }
815 
816 static void
817 iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
818 {
819 	struct iwi_rx_data *data;
820 	int i;
821 
822 	if (ring->data != NULL) {
823 		for (i = 0; i < ring->count; i++) {
824 			data = &ring->data[i];
825 
826 			if (data->m != NULL) {
827 				bus_dmamap_sync(ring->data_dmat, data->map,
828 				    BUS_DMASYNC_POSTREAD);
829 				bus_dmamap_unload(ring->data_dmat, data->map);
830 				m_freem(data->m);
831 			}
832 
833 			if (data->map != NULL)
834 				bus_dmamap_destroy(ring->data_dmat, data->map);
835 		}
836 
837 		kfree(ring->data, M_DEVBUF);
838 	}
839 
840 	if (ring->data_dmat != NULL)
841 		bus_dma_tag_destroy(ring->data_dmat);
842 }
843 
844 static int
845 iwi_shutdown(device_t dev)
846 {
847 	struct iwi_softc *sc = device_get_softc(dev);
848 
849 	wlan_serialize_enter();
850 	iwi_stop(sc);
851 	iwi_put_firmware(sc);		/* ??? XXX */
852 	wlan_serialize_exit();
853 
854 	return 0;
855 }
856 
857 static int
858 iwi_suspend(device_t dev)
859 {
860 	struct iwi_softc *sc = device_get_softc(dev);
861 
862 	wlan_serialize_enter();
863 	iwi_stop(sc);
864 	wlan_serialize_exit();
865 
866 	return 0;
867 }
868 
869 static int
870 iwi_resume(device_t dev)
871 {
872 	struct iwi_softc *sc = device_get_softc(dev);
873 	struct ifnet *ifp = sc->sc_ifp;
874 
875 	wlan_serialize_enter();
876 	pci_write_config(dev, 0x41, 0, 1);
877 
878 	if (ifp->if_flags & IFF_UP)
879 		iwi_init(sc);
880 
881 	wlan_serialize_exit();
882 	return 0;
883 }
884 
885 static struct ieee80211_node *
886 iwi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
887 {
888 	struct iwi_node *in;
889 
890 	in = kmalloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
891 	if (in == NULL)
892 		return NULL;
893 	/* XXX assign sta table entry for adhoc */
894 	in->in_station = -1;
895 
896 	return &in->in_node;
897 }
898 
899 static void
900 iwi_node_free(struct ieee80211_node *ni)
901 {
902 	struct ieee80211com *ic = ni->ni_ic;
903 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
904 	struct iwi_node *in = (struct iwi_node *)ni;
905 
906 	if (in->in_station != -1) {
907 		DPRINTF(("%s mac %6D station %u\n", __func__,
908 		    ni->ni_macaddr, ":", in->in_station));
909 		devfs_clone_bitmap_put(&sc->sc_unr, in->in_station);
910 	}
911 
912 	sc->sc_node_free(ni);
913 }
914 
915 /*
916  * Convert h/w rate code to IEEE rate code.
917  */
918 static int
919 iwi_cvtrate(int iwirate)
920 {
921 	switch (iwirate) {
922 	case IWI_RATE_DS1:	return 2;
923 	case IWI_RATE_DS2:	return 4;
924 	case IWI_RATE_DS5:	return 11;
925 	case IWI_RATE_DS11:	return 22;
926 	case IWI_RATE_OFDM6:	return 12;
927 	case IWI_RATE_OFDM9:	return 18;
928 	case IWI_RATE_OFDM12:	return 24;
929 	case IWI_RATE_OFDM18:	return 36;
930 	case IWI_RATE_OFDM24:	return 48;
931 	case IWI_RATE_OFDM36:	return 72;
932 	case IWI_RATE_OFDM48:	return 96;
933 	case IWI_RATE_OFDM54:	return 108;
934 	}
935 	return 0;
936 }
937 
938 /*
939  * The firmware automatically adapts the transmit speed.  We report its current
940  * value here.
941  */
942 static void
943 iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
944 {
945 	struct ieee80211vap *vap = ifp->if_softc;
946 	struct ieee80211com *ic = vap->iv_ic;
947 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
948 
949 	/* read current transmission rate from adapter */
950 	vap->iv_bss->ni_txrate =
951 	    iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE));
952 	ieee80211_media_status(ifp, imr);
953 }
954 
955 static int
956 iwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
957 {
958 	struct iwi_vap *ivp = IWI_VAP(vap);
959 	struct ieee80211com *ic = vap->iv_ic;
960 	struct ifnet *ifp = ic->ic_ifp;
961 	struct iwi_softc *sc = ifp->if_softc;
962 
963 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
964 		ieee80211_state_name[vap->iv_state],
965 		ieee80211_state_name[nstate], sc->flags));
966 
967 	switch (nstate) {
968 	case IEEE80211_S_INIT:
969 		/*
970 		 * NB: don't try to do this if iwi_stop_master has
971 		 *     shutdown the firmware and disabled interrupts.
972 		 */
973 		if (vap->iv_state == IEEE80211_S_RUN &&
974 		    (sc->flags & IWI_FLAG_FW_INITED))
975 			iwi_disassociate(sc, 0);
976 		break;
977 	case IEEE80211_S_AUTH:
978 		iwi_auth_and_assoc(sc, vap);
979 		break;
980 	case IEEE80211_S_RUN:
981 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
982 		    vap->iv_state == IEEE80211_S_SCAN) {
983 			/*
984 			 * XXX when joining an ibss network we are called
985 			 * with a SCAN -> RUN transition on scan complete.
986 			 * Use that to call iwi_auth_and_assoc.  On completing
987 			 * the join we are then called again with an
988 			 * AUTH -> RUN transition and we want to do nothing.
989 			 * This is all totally bogus and needs to be redone.
990 			 */
991 			iwi_auth_and_assoc(sc, vap);
992 		}
993 		break;
994 	case IEEE80211_S_ASSOC:
995 		/*
996 		 * If we are transitioning from AUTH then just wait
997 		 * for the ASSOC status to come back from the firmware.
998 		 * Otherwise we need to issue the association request.
999 		 */
1000 		if (vap->iv_state == IEEE80211_S_AUTH)
1001 			break;
1002 		iwi_auth_and_assoc(sc, vap);
1003 		break;
1004 	default:
1005 		break;
1006 	}
1007 
1008 	return ivp->iwi_newstate(vap, nstate, arg);
1009 }
1010 
1011 /*
1012  * WME parameters coming from IEEE 802.11e specification.  These values are
1013  * already declared in ieee80211_proto.c, but they are static so they can't
1014  * be reused here.
1015  */
1016 static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = {
1017 	{ 0, 3, 5,  7,   0 },	/* WME_AC_BE */
1018 	{ 0, 3, 5, 10,   0 },	/* WME_AC_BK */
1019 	{ 0, 2, 4,  5, 188 },	/* WME_AC_VI */
1020 	{ 0, 2, 3,  4, 102 }	/* WME_AC_VO */
1021 };
1022 
1023 static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = {
1024 	{ 0, 3, 4,  6,   0 },	/* WME_AC_BE */
1025 	{ 0, 3, 4, 10,   0 },	/* WME_AC_BK */
1026 	{ 0, 2, 3,  4,  94 },	/* WME_AC_VI */
1027 	{ 0, 2, 2,  3,  47 }	/* WME_AC_VO */
1028 };
1029 #define IWI_EXP2(v)	htole16((1 << (v)) - 1)
1030 #define IWI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
1031 
1032 static void
1033 iwi_wme_init(struct iwi_softc *sc)
1034 {
1035 	const struct wmeParams *wmep;
1036 	int ac;
1037 
1038 	memset(sc->wme, 0, sizeof sc->wme);
1039 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1040 		/* set WME values for CCK modulation */
1041 		wmep = &iwi_wme_cck_params[ac];
1042 		sc->wme[1].aifsn[ac] = wmep->wmep_aifsn;
1043 		sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1044 		sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1045 		sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1046 		sc->wme[1].acm[ac]   = wmep->wmep_acm;
1047 
1048 		/* set WME values for OFDM modulation */
1049 		wmep = &iwi_wme_ofdm_params[ac];
1050 		sc->wme[2].aifsn[ac] = wmep->wmep_aifsn;
1051 		sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1052 		sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1053 		sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1054 		sc->wme[2].acm[ac]   = wmep->wmep_acm;
1055 	}
1056 }
1057 
1058 static int
1059 iwi_wme_setparams(struct iwi_softc *sc, struct ieee80211com *ic)
1060 {
1061 	const struct wmeParams *wmep;
1062 	int ac;
1063 
1064 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1065 		/* set WME values for current operating mode */
1066 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
1067 		sc->wme[0].aifsn[ac] = wmep->wmep_aifsn;
1068 		sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1069 		sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1070 		sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1071 		sc->wme[0].acm[ac]   = wmep->wmep_acm;
1072 	}
1073 
1074 	DPRINTF(("Setting WME parameters\n"));
1075 	return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme);
1076 }
1077 #undef IWI_USEC
1078 #undef IWI_EXP2
1079 
1080 static void
1081 iwi_update_wme_task(void *arg, int npending)
1082 {
1083 	struct ieee80211com *ic = arg;
1084 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
1085 
1086 	wlan_serialize_enter();
1087 	(void) iwi_wme_setparams(sc, ic);
1088 	wlan_serialize_exit();
1089 }
1090 
1091 static int
1092 iwi_wme_update(struct ieee80211com *ic)
1093 {
1094 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
1095 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1096 
1097 	/*
1098 	 * We may be called to update the WME parameters in
1099 	 * the adapter at various places.  If we're already
1100 	 * associated then initiate the request immediately;
1101 	 * otherwise we assume the params will get sent down
1102 	 * to the adapter as part of the work iwi_auth_and_assoc
1103 	 * does.
1104 	 */
1105 	if (vap->iv_state == IEEE80211_S_RUN)
1106 		ieee80211_runtask(ic, &sc->sc_wmetask);
1107 	return (0);
1108 }
1109 
1110 static int
1111 iwi_wme_setie(struct iwi_softc *sc)
1112 {
1113 	struct ieee80211_wme_info wme;
1114 
1115 	memset(&wme, 0, sizeof wme);
1116 	wme.wme_id = IEEE80211_ELEMID_VENDOR;
1117 	wme.wme_len = sizeof (struct ieee80211_wme_info) - 2;
1118 	wme.wme_oui[0] = 0x00;
1119 	wme.wme_oui[1] = 0x50;
1120 	wme.wme_oui[2] = 0xf2;
1121 	wme.wme_type = WME_OUI_TYPE;
1122 	wme.wme_subtype = WME_INFO_OUI_SUBTYPE;
1123 	wme.wme_version = WME_VERSION;
1124 	wme.wme_info = 0;
1125 
1126 	DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len));
1127 	return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme);
1128 }
1129 
1130 /*
1131  * Read 16 bits at address 'addr' from the serial EEPROM.
1132  */
1133 static uint16_t
1134 iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr)
1135 {
1136 	uint32_t tmp;
1137 	uint16_t val;
1138 	int n;
1139 
1140 	/* clock C once before the first command */
1141 	IWI_EEPROM_CTL(sc, 0);
1142 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1143 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1144 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1145 
1146 	/* write start bit (1) */
1147 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1148 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1149 
1150 	/* write READ opcode (10) */
1151 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1152 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1153 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1154 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1155 
1156 	/* write address A7-A0 */
1157 	for (n = 7; n >= 0; n--) {
1158 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1159 		    (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D));
1160 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1161 		    (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C);
1162 	}
1163 
1164 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1165 
1166 	/* read data Q15-Q0 */
1167 	val = 0;
1168 	for (n = 15; n >= 0; n--) {
1169 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1170 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1171 		tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL);
1172 		val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n;
1173 	}
1174 
1175 	IWI_EEPROM_CTL(sc, 0);
1176 
1177 	/* clear Chip Select and clock C */
1178 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1179 	IWI_EEPROM_CTL(sc, 0);
1180 	IWI_EEPROM_CTL(sc, IWI_EEPROM_C);
1181 
1182 	return val;
1183 }
1184 
1185 static void
1186 iwi_setcurchan(struct iwi_softc *sc, int chan)
1187 {
1188 	struct ifnet *ifp = sc->sc_ifp;
1189 	struct ieee80211com *ic = ifp->if_l2com;
1190 
1191 	sc->curchan = chan;
1192 	ieee80211_radiotap_chan_change(ic);
1193 }
1194 
1195 static void
1196 iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i,
1197     struct iwi_frame *frame)
1198 {
1199 	struct ifnet *ifp = sc->sc_ifp;
1200 	struct ieee80211com *ic = ifp->if_l2com;
1201 	struct mbuf *mnew, *m;
1202 	struct ieee80211_node *ni;
1203 	int type, error, framelen;
1204 	int8_t rssi, nf;
1205 
1206 	framelen = le16toh(frame->len);
1207 	if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) {
1208 		/*
1209 		 * XXX >MCLBYTES is bogus as it means the h/w dma'd
1210 		 *     out of bounds; need to figure out how to limit
1211 		 *     frame size in the firmware
1212 		 */
1213 		/* XXX stat */
1214 		DPRINTFN(1,
1215 		    ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1216 		    le16toh(frame->len), frame->chan, frame->rssi,
1217 		    frame->rssi_dbm));
1218 		return;
1219 	}
1220 
1221 	DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1222 	    le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm));
1223 
1224 	if (frame->chan != sc->curchan)
1225 		iwi_setcurchan(sc, frame->chan);
1226 
1227 	/*
1228 	 * Try to allocate a new mbuf for this ring element and load it before
1229 	 * processing the current mbuf. If the ring element cannot be loaded,
1230 	 * drop the received packet and reuse the old mbuf. In the unlikely
1231 	 * case that the old mbuf can't be reloaded either, explicitly panic.
1232 	 */
1233 	mnew = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1234 	if (mnew == NULL) {
1235 		ifp->if_ierrors++;
1236 		return;
1237 	}
1238 
1239 	bus_dmamap_unload(sc->rxq.data_dmat, data->map);
1240 
1241 	error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1242 	    mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr,
1243 	    0);
1244 	if (error != 0) {
1245 		m_freem(mnew);
1246 
1247 		/* try to reload the old mbuf */
1248 		error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1249 		    mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
1250 		    &data->physaddr, 0);
1251 		if (error != 0) {
1252 			/* very unlikely that it will fail... */
1253 			panic("%s: could not load old rx mbuf",
1254 			    device_get_name(sc->sc_dev));
1255 		}
1256 		ifp->if_ierrors++;
1257 		return;
1258 	}
1259 
1260 	/*
1261 	 * New mbuf successfully loaded, update Rx ring and continue
1262 	 * processing.
1263 	 */
1264 	m = data->m;
1265 	data->m = mnew;
1266 	CSR_WRITE_4(sc, data->reg, data->physaddr);
1267 
1268 	/* finalize mbuf */
1269 	m->m_pkthdr.rcvif = ifp;
1270 	m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) +
1271 	    sizeof (struct iwi_frame) + framelen;
1272 
1273 	m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame));
1274 
1275 	rssi = frame->rssi_dbm;
1276 	nf = -95;
1277 	if (ieee80211_radiotap_active(ic)) {
1278 		struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap;
1279 
1280 		tap->wr_flags = 0;
1281 		tap->wr_antsignal = rssi;
1282 		tap->wr_antnoise = nf;
1283 		tap->wr_rate = iwi_cvtrate(frame->rate);
1284 		tap->wr_antenna = frame->antenna;
1285 	}
1286 
1287 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1288 	if (ni != NULL) {
1289 		type = ieee80211_input(ni, m, rssi, nf);
1290 		ieee80211_free_node(ni);
1291 	} else
1292 		type = ieee80211_input_all(ic, m, rssi, nf);
1293 
1294 	if (sc->sc_softled) {
1295 		/*
1296 		 * Blink for any data frame.  Otherwise do a
1297 		 * heartbeat-style blink when idle.  The latter
1298 		 * is mainly for station mode where we depend on
1299 		 * periodic beacon frames to trigger the poll event.
1300 		 */
1301 		if (type == IEEE80211_FC0_TYPE_DATA) {
1302 			sc->sc_rxrate = frame->rate;
1303 			iwi_led_event(sc, IWI_LED_RX);
1304 		} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
1305 			iwi_led_event(sc, IWI_LED_POLL);
1306 	}
1307 }
1308 
1309 /*
1310  * Check for an association response frame to see if QoS
1311  * has been negotiated.  We parse just enough to figure
1312  * out if we're supposed to use QoS.  The proper solution
1313  * is to pass the frame up so ieee80211_input can do the
1314  * work but that's made hard by how things currently are
1315  * done in the driver.
1316  */
1317 static void
1318 iwi_checkforqos(struct ieee80211vap *vap,
1319 	const struct ieee80211_frame *wh, int len)
1320 {
1321 #define	SUBTYPE(wh)	((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
1322 	const uint8_t *frm, *efrm, *wme;
1323 	struct ieee80211_node *ni;
1324 	uint16_t capinfo, status, associd;
1325 
1326 	/* NB: +8 for capinfo, status, associd, and first ie */
1327 	if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) ||
1328 	    SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP)
1329 		return;
1330 	/*
1331 	 * asresp frame format
1332 	 *	[2] capability information
1333 	 *	[2] status
1334 	 *	[2] association ID
1335 	 *	[tlv] supported rates
1336 	 *	[tlv] extended supported rates
1337 	 *	[tlv] WME
1338 	 */
1339 	frm = (const uint8_t *)&wh[1];
1340 	efrm = ((const uint8_t *) wh) + len;
1341 
1342 	capinfo = le16toh(*(const uint16_t *)frm);
1343 	frm += 2;
1344 	status = le16toh(*(const uint16_t *)frm);
1345 	frm += 2;
1346 	associd = le16toh(*(const uint16_t *)frm);
1347 	frm += 2;
1348 
1349 	wme = NULL;
1350 	while (frm < efrm) {
1351 		IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1], return);
1352 		switch (*frm) {
1353 		case IEEE80211_ELEMID_VENDOR:
1354 			if (iswmeoui(frm))
1355 				wme = frm;
1356 			break;
1357 		}
1358 		frm += frm[1] + 2;
1359 	}
1360 
1361 	ni = vap->iv_bss;
1362 	ni->ni_capinfo = capinfo;
1363 	ni->ni_associd = associd;
1364 	if (wme != NULL)
1365 		ni->ni_flags |= IEEE80211_NODE_QOS;
1366 	else
1367 		ni->ni_flags &= ~IEEE80211_NODE_QOS;
1368 #undef SUBTYPE
1369 }
1370 
1371 /*
1372  * Task queue callbacks for iwi_notification_intr used to avoid LOR's.
1373  */
1374 
1375 static void
1376 iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif)
1377 {
1378 	struct ifnet *ifp = sc->sc_ifp;
1379 	struct ieee80211com *ic = ifp->if_l2com;
1380 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1381 	struct iwi_notif_scan_channel *chan;
1382 	struct iwi_notif_scan_complete *scan;
1383 	struct iwi_notif_authentication *auth;
1384 	struct iwi_notif_association *assoc;
1385 	struct iwi_notif_beacon_state *beacon;
1386 
1387 	switch (notif->type) {
1388 	case IWI_NOTIF_TYPE_SCAN_CHANNEL:
1389 		chan = (struct iwi_notif_scan_channel *)(notif + 1);
1390 
1391 		DPRINTFN(3, ("Scan of channel %u complete (%u)\n",
1392 		    ieee80211_ieee2mhz(chan->nchan, 0), chan->nchan));
1393 
1394 		/* Reset the timer, the scan is still going */
1395 		sc->sc_state_timer = 3;
1396 		break;
1397 
1398 	case IWI_NOTIF_TYPE_SCAN_COMPLETE:
1399 		scan = (struct iwi_notif_scan_complete *)(notif + 1);
1400 
1401 		DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan,
1402 		    scan->status));
1403 
1404 		IWI_STATE_END(sc, IWI_FW_SCANNING);
1405 
1406 		if (scan->status == IWI_SCAN_COMPLETED) {
1407 			/* NB: don't need to defer, net80211 does it for us */
1408 			ieee80211_scan_next(vap);
1409 		}
1410 		break;
1411 
1412 	case IWI_NOTIF_TYPE_AUTHENTICATION:
1413 		auth = (struct iwi_notif_authentication *)(notif + 1);
1414 		switch (auth->state) {
1415 		case IWI_AUTH_SUCCESS:
1416 			DPRINTFN(2, ("Authentication succeeeded\n"));
1417 			ieee80211_new_state(vap, IEEE80211_S_ASSOC, -1);
1418 			break;
1419 		case IWI_AUTH_FAIL:
1420 			/*
1421 			 * These are delivered as an unsolicited deauth
1422 			 * (e.g. due to inactivity) or in response to an
1423 			 * associate request.
1424 			 */
1425 			sc->flags &= ~IWI_FLAG_ASSOCIATED;
1426 			if (vap->iv_state != IEEE80211_S_RUN) {
1427 				DPRINTFN(2, ("Authentication failed\n"));
1428 				vap->iv_stats.is_rx_auth_fail++;
1429 				IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1430 			} else {
1431 				DPRINTFN(2, ("Deauthenticated\n"));
1432 				vap->iv_stats.is_rx_deauth++;
1433 			}
1434 			ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1435 			break;
1436 		case IWI_AUTH_SENT_1:
1437 		case IWI_AUTH_RECV_2:
1438 		case IWI_AUTH_SEQ1_PASS:
1439 			break;
1440 		case IWI_AUTH_SEQ1_FAIL:
1441 			DPRINTFN(2, ("Initial authentication handshake failed; "
1442 				"you probably need shared key\n"));
1443 			vap->iv_stats.is_rx_auth_fail++;
1444 			IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1445 			/* XXX retry shared key when in auto */
1446 			break;
1447 		default:
1448 			device_printf(sc->sc_dev,
1449 			    "unknown authentication state %u\n", auth->state);
1450 			break;
1451 		}
1452 		break;
1453 
1454 	case IWI_NOTIF_TYPE_ASSOCIATION:
1455 		assoc = (struct iwi_notif_association *)(notif + 1);
1456 		switch (assoc->state) {
1457 		case IWI_AUTH_SUCCESS:
1458 			/* re-association, do nothing */
1459 			break;
1460 		case IWI_ASSOC_SUCCESS:
1461 			DPRINTFN(2, ("Association succeeded\n"));
1462 			sc->flags |= IWI_FLAG_ASSOCIATED;
1463 			IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1464 			iwi_checkforqos(vap,
1465 			    (const struct ieee80211_frame *)(assoc+1),
1466 			    le16toh(notif->len) - sizeof(*assoc));
1467 			ieee80211_new_state(vap, IEEE80211_S_RUN, -1);
1468 			break;
1469 		case IWI_ASSOC_INIT:
1470 			sc->flags &= ~IWI_FLAG_ASSOCIATED;
1471 			switch (sc->fw_state) {
1472 			case IWI_FW_ASSOCIATING:
1473 				DPRINTFN(2, ("Association failed\n"));
1474 				IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1475 				ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1476 				break;
1477 
1478 			case IWI_FW_DISASSOCIATING:
1479 				DPRINTFN(2, ("Dissassociated\n"));
1480 				IWI_STATE_END(sc, IWI_FW_DISASSOCIATING);
1481 				vap->iv_stats.is_rx_disassoc++;
1482 				ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1483 				break;
1484 			}
1485 			break;
1486 		default:
1487 			device_printf(sc->sc_dev,
1488 			    "unknown association state %u\n", assoc->state);
1489 			break;
1490 		}
1491 		break;
1492 
1493 	case IWI_NOTIF_TYPE_BEACON:
1494 		/* XXX check struct length */
1495 		beacon = (struct iwi_notif_beacon_state *)(notif + 1);
1496 
1497 		DPRINTFN(5, ("Beacon state (%u, %u)\n",
1498 		    beacon->state, le32toh(beacon->number)));
1499 
1500 		if (beacon->state == IWI_BEACON_MISS) {
1501 			/*
1502 			 * The firmware notifies us of every beacon miss
1503 			 * so we need to track the count against the
1504 			 * configured threshold before notifying the
1505 			 * 802.11 layer.
1506 			 * XXX try to roam, drop assoc only on much higher count
1507 			 */
1508 			if (le32toh(beacon->number) >= vap->iv_bmissthreshold) {
1509 				DPRINTF(("Beacon miss: %u >= %u\n",
1510 				    le32toh(beacon->number),
1511 				    vap->iv_bmissthreshold));
1512 				vap->iv_stats.is_beacon_miss++;
1513 				/*
1514 				 * It's pointless to notify the 802.11 layer
1515 				 * as it'll try to send a probe request (which
1516 				 * we'll discard) and then timeout and drop us
1517 				 * into scan state.  Instead tell the firmware
1518 				 * to disassociate and then on completion we'll
1519 				 * kick the state machine to scan.
1520 				 */
1521 				ieee80211_runtask(ic, &sc->sc_disassoctask);
1522 			}
1523 		}
1524 		break;
1525 
1526 	case IWI_NOTIF_TYPE_CALIBRATION:
1527 	case IWI_NOTIF_TYPE_NOISE:
1528 	case IWI_NOTIF_TYPE_LINK_QUALITY:
1529 		DPRINTFN(5, ("Notification (%u)\n", notif->type));
1530 		break;
1531 
1532 	default:
1533 		DPRINTF(("unknown notification type %u flags 0x%x len %u\n",
1534 		    notif->type, notif->flags, le16toh(notif->len)));
1535 		break;
1536 	}
1537 }
1538 
1539 static void
1540 iwi_rx_intr(struct iwi_softc *sc)
1541 {
1542 	struct iwi_rx_data *data;
1543 	struct iwi_hdr *hdr;
1544 	uint32_t hw;
1545 
1546 	hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX);
1547 
1548 	for (; sc->rxq.cur != hw;) {
1549 		data = &sc->rxq.data[sc->rxq.cur];
1550 
1551 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1552 		    BUS_DMASYNC_POSTREAD);
1553 
1554 		hdr = mtod(data->m, struct iwi_hdr *);
1555 
1556 		switch (hdr->type) {
1557 		case IWI_HDR_TYPE_FRAME:
1558 			iwi_frame_intr(sc, data, sc->rxq.cur,
1559 			    (struct iwi_frame *)(hdr + 1));
1560 			break;
1561 
1562 		case IWI_HDR_TYPE_NOTIF:
1563 			iwi_notification_intr(sc,
1564 			    (struct iwi_notif *)(hdr + 1));
1565 			break;
1566 
1567 		default:
1568 			device_printf(sc->sc_dev, "unknown hdr type %u\n",
1569 			    hdr->type);
1570 		}
1571 
1572 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1573 
1574 		sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT;
1575 	}
1576 
1577 	/* tell the firmware what we have processed */
1578 	hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1;
1579 	CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw);
1580 }
1581 
1582 static void
1583 iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq)
1584 {
1585 	struct ifnet *ifp = sc->sc_ifp;
1586 	struct iwi_tx_data *data;
1587 	uint32_t hw;
1588 
1589 	hw = CSR_READ_4(sc, txq->csr_ridx);
1590 
1591 	for (; txq->next != hw;) {
1592 		data = &txq->data[txq->next];
1593 
1594 		bus_dmamap_sync(txq->data_dmat, data->map,
1595 		    BUS_DMASYNC_POSTWRITE);
1596 		bus_dmamap_unload(txq->data_dmat, data->map);
1597 		if (data->m->m_flags & M_TXCB)
1598 			ieee80211_process_callback(data->ni, data->m, 0/*XXX*/);
1599 		m_freem(data->m);
1600 		data->m = NULL;
1601 		ieee80211_free_node(data->ni);
1602 		data->ni = NULL;
1603 
1604 		DPRINTFN(15, ("tx done idx=%u\n", txq->next));
1605 
1606 		ifp->if_opackets++;
1607 
1608 		txq->queued--;
1609 		txq->next = (txq->next + 1) % IWI_TX_RING_COUNT;
1610 	}
1611 
1612 	sc->sc_tx_timer = 0;
1613 	ifp->if_flags &= ~IFF_OACTIVE;
1614 
1615 	if (sc->sc_softled)
1616 		iwi_led_event(sc, IWI_LED_TX);
1617 
1618 	iwi_start_locked(ifp);
1619 }
1620 
1621 static void
1622 iwi_fatal_error_intr(struct iwi_softc *sc)
1623 {
1624 	struct ifnet *ifp = sc->sc_ifp;
1625 	struct ieee80211com *ic = ifp->if_l2com;
1626 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1627 
1628 	device_printf(sc->sc_dev, "firmware error\n");
1629 	if (vap != NULL)
1630 		ieee80211_cancel_scan(vap);
1631 	ieee80211_runtask(ic, &sc->sc_restarttask);
1632 
1633 	sc->flags &= ~IWI_FLAG_BUSY;
1634 	sc->sc_busy_timer = 0;
1635 	wakeup(sc);
1636 }
1637 
1638 static void
1639 iwi_radio_off_intr(struct iwi_softc *sc)
1640 {
1641 	struct ifnet *ifp = sc->sc_ifp;
1642 	struct ieee80211com *ic = ifp->if_l2com;
1643 
1644 	ieee80211_runtask(ic, &sc->sc_radiofftask);
1645 }
1646 
1647 static void
1648 iwi_intr(void *arg)
1649 {
1650 	struct iwi_softc *sc = arg;
1651 	uint32_t r;
1652 
1653 	if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) {
1654 		return;
1655 	}
1656 
1657 	/* acknowledge interrupts */
1658 	CSR_WRITE_4(sc, IWI_CSR_INTR, r);
1659 
1660 	if (r & IWI_INTR_FATAL_ERROR) {
1661 		iwi_fatal_error_intr(sc);
1662 		return;
1663 	}
1664 
1665 	if (r & IWI_INTR_FW_INITED) {
1666 		if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR)))
1667 			wakeup(sc);
1668 	}
1669 
1670 	if (r & IWI_INTR_RADIO_OFF)
1671 		iwi_radio_off_intr(sc);
1672 
1673 	if (r & IWI_INTR_CMD_DONE) {
1674 		sc->flags &= ~IWI_FLAG_BUSY;
1675 		sc->sc_busy_timer = 0;
1676 		wakeup(sc);
1677 	}
1678 
1679 	if (r & IWI_INTR_TX1_DONE)
1680 		iwi_tx_intr(sc, &sc->txq[0]);
1681 
1682 	if (r & IWI_INTR_TX2_DONE)
1683 		iwi_tx_intr(sc, &sc->txq[1]);
1684 
1685 	if (r & IWI_INTR_TX3_DONE)
1686 		iwi_tx_intr(sc, &sc->txq[2]);
1687 
1688 	if (r & IWI_INTR_TX4_DONE)
1689 		iwi_tx_intr(sc, &sc->txq[3]);
1690 
1691 	if (r & IWI_INTR_RX_DONE)
1692 		iwi_rx_intr(sc);
1693 
1694 	if (r & IWI_INTR_PARITY_ERROR) {
1695 		/* XXX rate-limit */
1696 		device_printf(sc->sc_dev, "parity error\n");
1697 	}
1698 }
1699 
1700 static int
1701 iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len)
1702 {
1703 	struct iwi_cmd_desc *desc;
1704 
1705 	if (sc->flags & IWI_FLAG_BUSY) {
1706 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
1707 			__func__, type);
1708 		return EAGAIN;
1709 	}
1710 
1711 	sc->flags |= IWI_FLAG_BUSY;
1712 	sc->sc_busy_timer = 2;
1713 
1714 	desc = &sc->cmdq.desc[sc->cmdq.cur];
1715 
1716 	desc->hdr.type = IWI_HDR_TYPE_COMMAND;
1717 	desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1718 	desc->type = type;
1719 	desc->len = len;
1720 	memcpy(desc->data, data, len);
1721 
1722 	bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map,
1723 	    BUS_DMASYNC_PREWRITE);
1724 
1725 	DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur,
1726 	    type, len));
1727 
1728 	sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT;
1729 	CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
1730 
1731 	return zsleep(sc, &wlan_global_serializer, 0, "iwicmd", hz);
1732 }
1733 
1734 static void
1735 iwi_write_ibssnode(struct iwi_softc *sc,
1736 	const u_int8_t addr[IEEE80211_ADDR_LEN], int entry)
1737 {
1738 	struct iwi_ibssnode node;
1739 
1740 	/* write node information into NIC memory */
1741 	memset(&node, 0, sizeof node);
1742 	IEEE80211_ADDR_COPY(node.bssid, addr);
1743 
1744 	DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry));
1745 
1746 	CSR_WRITE_REGION_1(sc,
1747 	    IWI_CSR_NODE_BASE + entry * sizeof node,
1748 	    (uint8_t *)&node, sizeof node);
1749 }
1750 
1751 static int
1752 iwi_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni,
1753     int ac)
1754 {
1755 	struct iwi_softc *sc = ifp->if_softc;
1756 	struct ieee80211vap *vap = ni->ni_vap;
1757 	struct ieee80211com *ic = ni->ni_ic;
1758 	struct iwi_node *in = (struct iwi_node *)ni;
1759 	const struct ieee80211_frame *wh;
1760 	struct ieee80211_key *k;
1761 	const struct chanAccParams *cap;
1762 	struct iwi_tx_ring *txq = &sc->txq[ac];
1763 	struct iwi_tx_data *data;
1764 	struct iwi_tx_desc *desc;
1765 	struct mbuf *mnew;
1766 	bus_dma_segment_t segs[IWI_MAX_NSEG];
1767 	int error, nsegs, hdrlen, i;
1768 	int ismcast, flags, xflags, staid;
1769 
1770 	wh = mtod(m0, const struct ieee80211_frame *);
1771 	/* NB: only data frames use this path */
1772 	hdrlen = ieee80211_hdrsize(wh);
1773 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1774 	flags = xflags = 0;
1775 
1776 	if (!ismcast)
1777 		flags |= IWI_DATA_FLAG_NEED_ACK;
1778 	if (vap->iv_flags & IEEE80211_F_SHPREAMBLE)
1779 		flags |= IWI_DATA_FLAG_SHPREAMBLE;
1780 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1781 		xflags |= IWI_DATA_XFLAG_QOS;
1782 		cap = &ic->ic_wme.wme_chanParams;
1783 		if (!cap->cap_wmeParams[ac].wmep_noackPolicy)
1784 			flags &= ~IWI_DATA_FLAG_NEED_ACK;
1785 	}
1786 
1787 	/*
1788 	 * This is only used in IBSS mode where the firmware expect an index
1789 	 * in a h/w table instead of a destination address.
1790 	 */
1791 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
1792 		if (!ismcast) {
1793 			if (in->in_station == -1) {
1794 				in->in_station = devfs_clone_bitmap_get(&sc->sc_unr,
1795 					IWI_MAX_IBSSNODE-1);
1796 				if (in->in_station == -1) {
1797 					/* h/w table is full */
1798 					m_freem(m0);
1799 					ieee80211_free_node(ni);
1800 					ifp->if_oerrors++;
1801 					return 0;
1802 				}
1803 				iwi_write_ibssnode(sc,
1804 					ni->ni_macaddr, in->in_station);
1805 			}
1806 			staid = in->in_station;
1807 		} else {
1808 			/*
1809 			 * Multicast addresses have no associated node
1810 			 * so there will be no station entry.  We reserve
1811 			 * entry 0 for one mcast address and use that.
1812 			 * If there are many being used this will be
1813 			 * expensive and we'll need to do a better job
1814 			 * but for now this handles the broadcast case.
1815 			 */
1816 			if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) {
1817 				IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1);
1818 				iwi_write_ibssnode(sc, sc->sc_mcast, 0);
1819 			}
1820 			staid = 0;
1821 		}
1822 	} else
1823 		staid = 0;
1824 
1825 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1826 		k = ieee80211_crypto_encap(ni, m0);
1827 		if (k == NULL) {
1828 			m_freem(m0);
1829 			return ENOBUFS;
1830 		}
1831 
1832 		/* packet header may have moved, reset our local pointer */
1833 		wh = mtod(m0, struct ieee80211_frame *);
1834 	}
1835 
1836 	if (ieee80211_radiotap_active_vap(vap)) {
1837 		struct iwi_tx_radiotap_header *tap = &sc->sc_txtap;
1838 
1839 		tap->wt_flags = 0;
1840 
1841 		ieee80211_radiotap_tx(vap, m0);
1842 	}
1843 
1844 	data = &txq->data[txq->cur];
1845 	desc = &txq->desc[txq->cur];
1846 
1847 	/* save and trim IEEE802.11 header */
1848 	m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh);
1849 	m_adj(m0, hdrlen);
1850 
1851 	error = bus_dmamap_load_mbuf_segment(txq->data_dmat, data->map,
1852 	    m0, segs, 1, &nsegs, BUS_DMA_NOWAIT);
1853 	if (error != 0 && error != EFBIG) {
1854 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1855 		    error);
1856 		m_freem(m0);
1857 		return error;
1858 	}
1859 	if (error != 0) {
1860 		mnew = m_defrag(m0, MB_DONTWAIT);
1861 		if (mnew == NULL) {
1862 			device_printf(sc->sc_dev,
1863 			    "could not defragment mbuf\n");
1864 			m_freem(m0);
1865 			return ENOBUFS;
1866 		}
1867 		m0 = mnew;
1868 
1869 		error = bus_dmamap_load_mbuf_segment(txq->data_dmat,
1870 		    data->map, m0, segs, 1, &nsegs, BUS_DMA_NOWAIT);
1871 		if (error != 0) {
1872 			device_printf(sc->sc_dev,
1873 			    "could not map mbuf (error %d)\n", error);
1874 			m_freem(m0);
1875 			return error;
1876 		}
1877 	}
1878 
1879 	data->m = m0;
1880 	data->ni = ni;
1881 
1882 	desc->hdr.type = IWI_HDR_TYPE_DATA;
1883 	desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1884 	desc->station = staid;
1885 	desc->cmd = IWI_DATA_CMD_TX;
1886 	desc->len = htole16(m0->m_pkthdr.len);
1887 	desc->flags = flags;
1888 	desc->xflags = xflags;
1889 
1890 #if 0
1891 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
1892 		desc->wep_txkey = vap->iv_def_txkey;
1893 	else
1894 #endif
1895 		desc->flags |= IWI_DATA_FLAG_NO_WEP;
1896 
1897 	desc->nseg = htole32(nsegs);
1898 	for (i = 0; i < nsegs; i++) {
1899 		desc->seg_addr[i] = htole32(segs[i].ds_addr);
1900 		desc->seg_len[i]  = htole16(segs[i].ds_len);
1901 	}
1902 
1903 	bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1904 	bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE);
1905 
1906 	DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n",
1907 	    ac, txq->cur, le16toh(desc->len), nsegs));
1908 
1909 	txq->queued++;
1910 	txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT;
1911 	CSR_WRITE_4(sc, txq->csr_widx, txq->cur);
1912 
1913 	return 0;
1914 }
1915 
1916 static int
1917 iwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1918 	const struct ieee80211_bpf_params *params)
1919 {
1920 	/* no support; just discard */
1921 	m_freem(m);
1922 	ieee80211_free_node(ni);
1923 	return 0;
1924 }
1925 
1926 static void
1927 iwi_start_locked(struct ifnet *ifp)
1928 {
1929 	struct iwi_softc *sc = ifp->if_softc;
1930 	struct mbuf *m;
1931 	struct ieee80211_node *ni;
1932 	int ac;
1933 
1934 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1935 		return;
1936 
1937 	for (;;) {
1938 		IF_DEQUEUE(&ifp->if_snd, m);
1939 		if (m == NULL)
1940 			break;
1941 		ac = M_WME_GETAC(m);
1942 		if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) {
1943 			/* there is no place left in this ring; tail drop */
1944 			/* XXX tail drop */
1945 			IF_PREPEND(&ifp->if_snd, m);
1946 			ifp->if_flags |= IFF_OACTIVE;
1947 			break;
1948 		}
1949 
1950 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1951 		if (iwi_tx_start(ifp, m, ni, ac) != 0) {
1952 			ieee80211_free_node(ni);
1953 			ifp->if_oerrors++;
1954 			break;
1955 		}
1956 
1957 		sc->sc_tx_timer = 5;
1958 	}
1959 }
1960 
1961 static void
1962 iwi_start(struct ifnet *ifp)
1963 {
1964 	iwi_start_locked(ifp);
1965 }
1966 
1967 static void
1968 iwi_watchdog(void *arg)
1969 {
1970 	struct iwi_softc *sc = arg;
1971 	struct ifnet *ifp = sc->sc_ifp;
1972 	struct ieee80211com *ic = ifp->if_l2com;
1973 
1974 	wlan_serialize_enter();
1975 	if (sc->sc_tx_timer > 0) {
1976 		if (--sc->sc_tx_timer == 0) {
1977 			if_printf(ifp, "device timeout\n");
1978 			ifp->if_oerrors++;
1979 			wlan_serialize_exit();
1980 			ieee80211_runtask(ic, &sc->sc_restarttask);
1981 			wlan_serialize_enter();
1982 		}
1983 	}
1984 	if (sc->sc_state_timer > 0) {
1985 		if (--sc->sc_state_timer == 0) {
1986 			if_printf(ifp, "firmware stuck in state %d, resetting\n",
1987 			    sc->fw_state);
1988 			if (sc->fw_state == IWI_FW_SCANNING) {
1989 				struct ieee80211com *ic = ifp->if_l2com;
1990 				ieee80211_cancel_scan(TAILQ_FIRST(&ic->ic_vaps));
1991 			}
1992 			wlan_serialize_exit();
1993 			ieee80211_runtask(ic, &sc->sc_restarttask);
1994 			wlan_serialize_enter();
1995 			sc->sc_state_timer = 3;
1996 		}
1997 	}
1998 	if (sc->sc_busy_timer > 0) {
1999 		if (--sc->sc_busy_timer == 0) {
2000 			if_printf(ifp, "firmware command timeout, resetting\n");
2001 			wlan_serialize_exit();
2002 			ieee80211_runtask(ic, &sc->sc_restarttask);
2003 			wlan_serialize_enter();
2004 		}
2005 	}
2006 	callout_reset(&sc->sc_wdtimer_callout, hz, iwi_watchdog, sc);
2007 	wlan_serialize_exit();
2008 }
2009 
2010 static int
2011 iwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *ucred)
2012 {
2013 	struct iwi_softc *sc = ifp->if_softc;
2014 	struct ieee80211com *ic = ifp->if_l2com;
2015 	struct ifreq *ifr = (struct ifreq *) data;
2016 	int error = 0, startall = 0;
2017 
2018 	switch (cmd) {
2019 	case SIOCSIFFLAGS:
2020 		if (ifp->if_flags & IFF_UP) {
2021 			if (!(ifp->if_flags & IFF_RUNNING)) {
2022 				iwi_init_locked(sc);
2023 				startall = 1;
2024 			}
2025 		} else {
2026 			if (ifp->if_flags & IFF_RUNNING)
2027 				iwi_stop_locked(sc);
2028 		}
2029 		if (startall)
2030 			ieee80211_start_all(ic);
2031 		break;
2032 	case SIOCGIFMEDIA:
2033 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2034 		break;
2035 	case SIOCGIFADDR:
2036 		error = ether_ioctl(ifp, cmd, data);
2037 		break;
2038 	default:
2039 		error = EINVAL;
2040 		break;
2041 	}
2042 	return error;
2043 }
2044 
2045 static void
2046 iwi_stop_master(struct iwi_softc *sc)
2047 {
2048 	uint32_t tmp;
2049 	int ntries;
2050 
2051 	/* disable interrupts */
2052 	CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0);
2053 
2054 	CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER);
2055 	for (ntries = 0; ntries < 5; ntries++) {
2056 		if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2057 			break;
2058 		DELAY(10);
2059 	}
2060 	if (ntries == 5)
2061 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2062 
2063 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2064 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET);
2065 
2066 	sc->flags &= ~IWI_FLAG_FW_INITED;
2067 }
2068 
2069 static int
2070 iwi_reset(struct iwi_softc *sc)
2071 {
2072 	uint32_t tmp;
2073 	int i, ntries;
2074 
2075 	iwi_stop_master(sc);
2076 
2077 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2078 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2079 
2080 	CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST);
2081 
2082 	/* wait for clock stabilization */
2083 	for (ntries = 0; ntries < 1000; ntries++) {
2084 		if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY)
2085 			break;
2086 		DELAY(200);
2087 	}
2088 	if (ntries == 1000) {
2089 		device_printf(sc->sc_dev,
2090 		    "timeout waiting for clock stabilization\n");
2091 		return EIO;
2092 	}
2093 
2094 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2095 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET);
2096 
2097 	DELAY(10);
2098 
2099 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2100 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2101 
2102 	/* clear NIC memory */
2103 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0);
2104 	for (i = 0; i < 0xc000; i++)
2105 		CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2106 
2107 	return 0;
2108 }
2109 
2110 static const struct iwi_firmware_ohdr *
2111 iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw)
2112 {
2113 	const struct firmware *fp = fw->fp;
2114 	const struct iwi_firmware_ohdr *hdr;
2115 
2116 	if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) {
2117 		device_printf(sc->sc_dev, "image '%s' too small\n", fp->name);
2118 		return NULL;
2119 	}
2120 	hdr = (const struct iwi_firmware_ohdr *)fp->data;
2121 	if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) ||
2122 	    (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) {
2123 		device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n",
2124 		    fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)),
2125 		    IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR,
2126 		    IWI_FW_REQ_MINOR);
2127 		return NULL;
2128 	}
2129 	fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr);
2130 	fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr);
2131 	fw->name = fp->name;
2132 	return hdr;
2133 }
2134 
2135 static const struct iwi_firmware_ohdr *
2136 iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw)
2137 {
2138 	const struct iwi_firmware_ohdr *hdr;
2139 
2140 	hdr = iwi_setup_ofw(sc, fw);
2141 	if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) {
2142 		device_printf(sc->sc_dev, "%s is not a ucode image\n",
2143 		    fw->name);
2144 		hdr = NULL;
2145 	}
2146 	return hdr;
2147 }
2148 
2149 static void
2150 iwi_getfw(struct iwi_fw *fw, const char *fwname,
2151 	  struct iwi_fw *uc, const char *ucname)
2152 {
2153 	wlan_assert_serialized();
2154 	wlan_serialize_exit();
2155 	if (fw->fp == NULL)
2156 		fw->fp = firmware_get(fwname);
2157 
2158 	/* NB: pre-3.0 ucode is packaged separately */
2159 	if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300)
2160 		uc->fp = firmware_get(ucname);
2161 	wlan_serialize_enter();
2162 }
2163 
2164 /*
2165  * Get the required firmware images if not already loaded.
2166  * Note that we hold firmware images so long as the device
2167  * is marked up in case we need to reload them on device init.
2168  * This is necessary because we re-init the device sometimes
2169  * from a context where we cannot read from the filesystem
2170  * (e.g. from the taskqueue thread when rfkill is re-enabled).
2171  * XXX return 0 on success, 1 on error.
2172  *
2173  * NB: the order of get'ing and put'ing images here is
2174  * intentional to support handling firmware images bundled
2175  * by operating mode and/or all together in one file with
2176  * the boot firmware as "master".
2177  */
2178 static int
2179 iwi_get_firmware(struct iwi_softc *sc, enum ieee80211_opmode opmode)
2180 {
2181 	const struct iwi_firmware_hdr *hdr;
2182 	const struct firmware *fp;
2183 
2184 	wlan_serialize_enter();
2185 
2186 	/* invalidate cached firmware on mode change */
2187 	if (sc->fw_mode != opmode)
2188 		iwi_put_firmware(sc);
2189 
2190 	switch (opmode) {
2191 	case IEEE80211_M_STA:
2192 		iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss");
2193 		break;
2194 	case IEEE80211_M_IBSS:
2195 		iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss");
2196 		break;
2197 	case IEEE80211_M_MONITOR:
2198 		iwi_getfw(&sc->fw_fw, "iwi_monitor",
2199 			  &sc->fw_uc, "iwi_ucode_monitor");
2200 		break;
2201 	default:
2202 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
2203 		wlan_serialize_exit();
2204 		return EINVAL;
2205 	}
2206 	fp = sc->fw_fw.fp;
2207 	if (fp == NULL) {
2208 		device_printf(sc->sc_dev, "could not load firmware\n");
2209 		goto bad;
2210 	}
2211 	if (fp->version < 300) {
2212 		/*
2213 		 * Firmware prior to 3.0 was packaged as separate
2214 		 * boot, firmware, and ucode images.  Verify the
2215 		 * ucode image was read in, retrieve the boot image
2216 		 * if needed, and check version stamps for consistency.
2217 		 * The version stamps in the data are also checked
2218 		 * above; this is a bit paranoid but is a cheap
2219 		 * safeguard against mis-packaging.
2220 		 */
2221 		if (sc->fw_uc.fp == NULL) {
2222 			device_printf(sc->sc_dev, "could not load ucode\n");
2223 			goto bad;
2224 		}
2225 		if (sc->fw_boot.fp == NULL) {
2226 			sc->fw_boot.fp = firmware_get("iwi_boot");
2227 			if (sc->fw_boot.fp == NULL) {
2228 				device_printf(sc->sc_dev,
2229 					"could not load boot firmware\n");
2230 				goto bad;
2231 			}
2232 		}
2233 		if (sc->fw_boot.fp->version != sc->fw_fw.fp->version ||
2234 		    sc->fw_boot.fp->version != sc->fw_uc.fp->version) {
2235 			device_printf(sc->sc_dev,
2236 			    "firmware version mismatch: "
2237 			    "'%s' is %d, '%s' is %d, '%s' is %d\n",
2238 			    sc->fw_boot.fp->name, sc->fw_boot.fp->version,
2239 			    sc->fw_uc.fp->name, sc->fw_uc.fp->version,
2240 			    sc->fw_fw.fp->name, sc->fw_fw.fp->version
2241 			);
2242 			goto bad;
2243 		}
2244 		/*
2245 		 * Check and setup each image.
2246 		 */
2247 		if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL ||
2248 		    iwi_setup_ofw(sc, &sc->fw_boot) == NULL ||
2249 		    iwi_setup_ofw(sc, &sc->fw_fw) == NULL)
2250 			goto bad;
2251 	} else {
2252 		/*
2253 		 * Check and setup combined image.
2254 		 */
2255 		if (fp->datasize < sizeof(struct iwi_firmware_hdr)) {
2256 			device_printf(sc->sc_dev, "image '%s' too small\n",
2257 			    fp->name);
2258 			goto bad;
2259 		}
2260 		hdr = (const struct iwi_firmware_hdr *)fp->data;
2261 		if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize)
2262 				+ le32toh(hdr->fsize)) {
2263 			device_printf(sc->sc_dev, "image '%s' too small (2)\n",
2264 			    fp->name);
2265 			goto bad;
2266 		}
2267 		sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr);
2268 		sc->fw_boot.size = le32toh(hdr->bsize);
2269 		sc->fw_boot.name = fp->name;
2270 		sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size;
2271 		sc->fw_uc.size = le32toh(hdr->usize);
2272 		sc->fw_uc.name = fp->name;
2273 		sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size;
2274 		sc->fw_fw.size = le32toh(hdr->fsize);
2275 		sc->fw_fw.name = fp->name;
2276 	}
2277 #if 0
2278 	device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n",
2279 		sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size);
2280 #endif
2281 
2282 	sc->fw_mode = opmode;
2283 	wlan_serialize_exit();
2284 	return 0;
2285 bad:
2286 	iwi_put_firmware(sc);
2287 	wlan_serialize_exit();
2288 	return 1;
2289 }
2290 
2291 static void
2292 iwi_put_fw(struct iwi_fw *fw)
2293 {
2294 	wlan_assert_serialized();
2295 	wlan_serialize_exit();
2296 	if (fw->fp != NULL) {
2297 		firmware_put(fw->fp, FIRMWARE_UNLOAD);
2298 		fw->fp = NULL;
2299 	}
2300 	wlan_serialize_enter();
2301 	fw->data = NULL;
2302 	fw->size = 0;
2303 	fw->name = NULL;
2304 }
2305 
2306 /*
2307  * Release any cached firmware images.
2308  */
2309 static void
2310 iwi_put_firmware(struct iwi_softc *sc)
2311 {
2312 	iwi_put_fw(&sc->fw_uc);
2313 	iwi_put_fw(&sc->fw_fw);
2314 	iwi_put_fw(&sc->fw_boot);
2315 }
2316 
2317 static int
2318 iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw)
2319 {
2320 	uint32_t tmp;
2321 	const uint16_t *w;
2322 	const char *uc = fw->data;
2323 	size_t size = fw->size;
2324 	int i, ntries, error;
2325 
2326 	error = 0;
2327 	CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) |
2328 	    IWI_RST_STOP_MASTER);
2329 	for (ntries = 0; ntries < 5; ntries++) {
2330 		if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2331 			break;
2332 		DELAY(10);
2333 	}
2334 	if (ntries == 5) {
2335 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2336 		error = EIO;
2337 		goto fail;
2338 	}
2339 
2340 	MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
2341 	DELAY(5000);
2342 
2343 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2344 	tmp &= ~IWI_RST_PRINCETON_RESET;
2345 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2346 
2347 	DELAY(5000);
2348 	MEM_WRITE_4(sc, 0x3000e0, 0);
2349 	DELAY(1000);
2350 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1);
2351 	DELAY(1000);
2352 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0);
2353 	DELAY(1000);
2354 	MEM_WRITE_1(sc, 0x200000, 0x00);
2355 	MEM_WRITE_1(sc, 0x200000, 0x40);
2356 	DELAY(1000);
2357 
2358 	/* write microcode into adapter memory */
2359 	for (w = (const uint16_t *)uc; size > 0; w++, size -= 2)
2360 		MEM_WRITE_2(sc, 0x200010, htole16(*w));
2361 
2362 	MEM_WRITE_1(sc, 0x200000, 0x00);
2363 	MEM_WRITE_1(sc, 0x200000, 0x80);
2364 
2365 	/* wait until we get an answer */
2366 	for (ntries = 0; ntries < 100; ntries++) {
2367 		if (MEM_READ_1(sc, 0x200000) & 1)
2368 			break;
2369 		DELAY(100);
2370 	}
2371 	if (ntries == 100) {
2372 		device_printf(sc->sc_dev,
2373 		    "timeout waiting for ucode to initialize\n");
2374 		error = EIO;
2375 		goto fail;
2376 	}
2377 
2378 	/* read the answer or the firmware will not initialize properly */
2379 	for (i = 0; i < 7; i++)
2380 		MEM_READ_4(sc, 0x200004);
2381 
2382 	MEM_WRITE_1(sc, 0x200000, 0x00);
2383 
2384 fail:
2385 	return error;
2386 }
2387 
2388 /* macro to handle unaligned little endian data in firmware image */
2389 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
2390 
2391 static int
2392 iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw)
2393 {
2394 	u_char *p, *end;
2395 	uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp;
2396 	int ntries, error;
2397 
2398 	/* copy firmware image to DMA memory */
2399 	memcpy(sc->fw_virtaddr, fw->data, fw->size);
2400 
2401 	/* make sure the adapter will get up-to-date values */
2402 	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE);
2403 
2404 	/* tell the adapter where the command blocks are stored */
2405 	MEM_WRITE_4(sc, 0x3000a0, 0x27000);
2406 
2407 	/*
2408 	 * Store command blocks into adapter's internal memory using register
2409 	 * indirections. The adapter will read the firmware image through DMA
2410 	 * using information stored in command blocks.
2411 	 */
2412 	src = sc->fw_physaddr;
2413 	p = sc->fw_virtaddr;
2414 	end = p + fw->size;
2415 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000);
2416 
2417 	while (p < end) {
2418 		dst = GETLE32(p); p += 4; src += 4;
2419 		len = GETLE32(p); p += 4; src += 4;
2420 		p += len;
2421 
2422 		while (len > 0) {
2423 			mlen = min(len, IWI_CB_MAXDATALEN);
2424 
2425 			ctl = IWI_CB_DEFAULT_CTL | mlen;
2426 			sum = ctl ^ src ^ dst;
2427 
2428 			/* write a command block */
2429 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl);
2430 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src);
2431 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst);
2432 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum);
2433 
2434 			src += mlen;
2435 			dst += mlen;
2436 			len -= mlen;
2437 		}
2438 	}
2439 
2440 	/* write a fictive final command block (sentinel) */
2441 	sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR);
2442 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2443 
2444 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2445 	tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER);
2446 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2447 
2448 	/* tell the adapter to start processing command blocks */
2449 	MEM_WRITE_4(sc, 0x3000a4, 0x540100);
2450 
2451 	/* wait until the adapter reaches the sentinel */
2452 	for (ntries = 0; ntries < 400; ntries++) {
2453 		if (MEM_READ_4(sc, 0x3000d0) >= sentinel)
2454 			break;
2455 		DELAY(100);
2456 	}
2457 	/* sync dma, just in case */
2458 	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE);
2459 	if (ntries == 400) {
2460 		device_printf(sc->sc_dev,
2461 		    "timeout processing command blocks for %s firmware\n",
2462 		    fw->name);
2463 		return EIO;
2464 	}
2465 
2466 	/* we're done with command blocks processing */
2467 	MEM_WRITE_4(sc, 0x3000a4, 0x540c00);
2468 
2469 	/* allow interrupts so we know when the firmware is ready */
2470 	CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK);
2471 
2472 	/* tell the adapter to initialize the firmware */
2473 	CSR_WRITE_4(sc, IWI_CSR_RST, 0);
2474 
2475 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2476 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY);
2477 
2478 	/* wait at most one second for firmware initialization to complete */
2479 	error = zsleep(sc, &wlan_global_serializer, 0, "iwiinit", hz);
2480 	if (error != 0) {
2481 		device_printf(sc->sc_dev, "timeout waiting for firmware "
2482 			    "initialization to complete\n");
2483 	}
2484 
2485 	return error;
2486 }
2487 
2488 static int
2489 iwi_setpowermode(struct iwi_softc *sc, struct ieee80211vap *vap)
2490 {
2491 	uint32_t data;
2492 
2493 	if (vap->iv_flags & IEEE80211_F_PMGTON) {
2494 		/* XXX set more fine-grained operation */
2495 		data = htole32(IWI_POWER_MODE_MAX);
2496 	} else
2497 		data = htole32(IWI_POWER_MODE_CAM);
2498 
2499 	DPRINTF(("Setting power mode to %u\n", le32toh(data)));
2500 	return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data);
2501 }
2502 
2503 static int
2504 iwi_setwepkeys(struct iwi_softc *sc, struct ieee80211vap *vap)
2505 {
2506 	struct iwi_wep_key wepkey;
2507 	struct ieee80211_key *wk;
2508 	int error, i;
2509 
2510 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2511 		wk = &vap->iv_nw_keys[i];
2512 
2513 		wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY;
2514 		wepkey.idx = i;
2515 		wepkey.len = wk->wk_keylen;
2516 		memset(wepkey.key, 0, sizeof wepkey.key);
2517 		memcpy(wepkey.key, wk->wk_key, wk->wk_keylen);
2518 		DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx,
2519 		    wepkey.len));
2520 		error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey,
2521 		    sizeof wepkey);
2522 		if (error != 0)
2523 			return error;
2524 	}
2525 	return 0;
2526 }
2527 
2528 static int
2529 iwi_config(struct iwi_softc *sc)
2530 {
2531 	struct ifnet *ifp = sc->sc_ifp;
2532 	struct ieee80211com *ic = ifp->if_l2com;
2533 	struct iwi_configuration config;
2534 	struct iwi_rateset rs;
2535 	struct iwi_txpower power;
2536 	uint32_t data;
2537 	int error, i;
2538 	const uint8_t *eaddr = IF_LLADDR(ifp);
2539 
2540 	DPRINTF(("Setting MAC address to %6D\n", eaddr, ":"));
2541 	error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, IF_LLADDR(ifp),
2542 	    IEEE80211_ADDR_LEN);
2543 	if (error != 0)
2544 		return error;
2545 
2546 	memset(&config, 0, sizeof config);
2547 	config.bluetooth_coexistence = sc->bluetooth;
2548 	config.silence_threshold = 0x1e;
2549 	config.antenna = sc->antenna;
2550 	config.multicast_enabled = 1;
2551 	config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2552 	config.disable_unicast_decryption = 1;
2553 	config.disable_multicast_decryption = 1;
2554 	DPRINTF(("Configuring adapter\n"));
2555 	error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2556 	if (error != 0)
2557 		return error;
2558 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
2559 		power.mode = IWI_MODE_11B;
2560 		power.nchan = 11;
2561 		for (i = 0; i < 11; i++) {
2562 			power.chan[i].chan = i + 1;
2563 			power.chan[i].power = IWI_TXPOWER_MAX;
2564 		}
2565 		DPRINTF(("Setting .11b channels tx power\n"));
2566 		error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2567 		if (error != 0)
2568 			return error;
2569 
2570 		power.mode = IWI_MODE_11G;
2571 		DPRINTF(("Setting .11g channels tx power\n"));
2572 		error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2573 		if (error != 0)
2574 			return error;
2575 	}
2576 
2577 	memset(&rs, 0, sizeof rs);
2578 	rs.mode = IWI_MODE_11G;
2579 	rs.type = IWI_RATESET_TYPE_SUPPORTED;
2580 	rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates;
2581 	memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates,
2582 	    rs.nrates);
2583 	DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates));
2584 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2585 	if (error != 0)
2586 		return error;
2587 
2588 	memset(&rs, 0, sizeof rs);
2589 	rs.mode = IWI_MODE_11A;
2590 	rs.type = IWI_RATESET_TYPE_SUPPORTED;
2591 	rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates;
2592 	memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates,
2593 	    rs.nrates);
2594 	DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates));
2595 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2596 	if (error != 0)
2597 		return error;
2598 
2599 	data = htole32(karc4random());
2600 	DPRINTF(("Setting initialization vector to %u\n", le32toh(data)));
2601 	error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data);
2602 	if (error != 0)
2603 		return error;
2604 
2605 	/* enable adapter */
2606 	DPRINTF(("Enabling adapter\n"));
2607 	return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0);
2608 }
2609 
2610 static __inline void
2611 set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type)
2612 {
2613 	uint8_t *st = &scan->scan_type[ix / 2];
2614 	if (ix % 2)
2615 		*st = (*st & 0xf0) | ((scan_type & 0xf) << 0);
2616 	else
2617 		*st = (*st & 0x0f) | ((scan_type & 0xf) << 4);
2618 }
2619 
2620 static int
2621 scan_type(const struct ieee80211_scan_state *ss,
2622 	const struct ieee80211_channel *chan)
2623 {
2624 	/* We can only set one essid for a directed scan */
2625 	if (ss->ss_nssid != 0)
2626 		return IWI_SCAN_TYPE_BDIRECTED;
2627 	if ((ss->ss_flags & IEEE80211_SCAN_ACTIVE) &&
2628 	    (chan->ic_flags & IEEE80211_CHAN_PASSIVE) == 0)
2629 		return IWI_SCAN_TYPE_BROADCAST;
2630 	return IWI_SCAN_TYPE_PASSIVE;
2631 }
2632 
2633 static __inline int
2634 scan_band(const struct ieee80211_channel *c)
2635 {
2636 	return IEEE80211_IS_CHAN_5GHZ(c) ?  IWI_CHAN_5GHZ : IWI_CHAN_2GHZ;
2637 }
2638 
2639 /*
2640  * Start a scan on the current channel or all channels.
2641  */
2642 static int
2643 iwi_scanchan(struct iwi_softc *sc, unsigned long maxdwell, int allchan)
2644 {
2645 	struct ieee80211com *ic;
2646 	struct ieee80211_channel *chan;
2647 	struct ieee80211_scan_state *ss;
2648 	struct iwi_scan_ext scan;
2649 	int error = 0;
2650 
2651 	if (sc->fw_state == IWI_FW_SCANNING) {
2652 		/*
2653 		 * This should not happen as we only trigger scan_next after
2654 		 * completion
2655 		 */
2656 		DPRINTF(("%s: called too early - still scanning\n", __func__));
2657 		return (EBUSY);
2658 	}
2659 	IWI_STATE_BEGIN(sc, IWI_FW_SCANNING);
2660 
2661 	ic = sc->sc_ifp->if_l2com;
2662 	ss = ic->ic_scan;
2663 
2664 	memset(&scan, 0, sizeof scan);
2665 	scan.full_scan_index = htole32(++sc->sc_scangen);
2666 	scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(maxdwell);
2667 	if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) {
2668 		/*
2669 		 * Use very short dwell times for when we send probe request
2670 		 * frames.  Without this bg scans hang.  Ideally this should
2671 		 * be handled with early-termination as done by net80211 but
2672 		 * that's not feasible (aborting a scan is problematic).
2673 		 */
2674 		scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(30);
2675 		scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(30);
2676 	} else {
2677 		scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(maxdwell);
2678 		scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(maxdwell);
2679 	}
2680 
2681 	/* We can only set one essid for a directed scan */
2682 	if (ss->ss_nssid != 0) {
2683 		error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ss->ss_ssid[0].ssid,
2684 		    ss->ss_ssid[0].len);
2685 		if (error)
2686 			return (error);
2687 	}
2688 
2689 	if (allchan) {
2690 		int i, next, band, b, bstart;
2691 		/*
2692 		 * Convert scan list to run-length encoded channel list
2693 		 * the firmware requires (preserving the order setup by
2694 		 * net80211).  The first entry in each run specifies the
2695 		 * band and the count of items in the run.
2696 		 */
2697 		next = 0;		/* next open slot */
2698 		bstart = 0;		/* NB: not needed, silence compiler */
2699 		band = -1;		/* NB: impossible value */
2700 		KASSERT(ss->ss_last > 0, ("no channels"));
2701 		for (i = 0; i < ss->ss_last; i++) {
2702 			chan = ss->ss_chans[i];
2703 			b = scan_band(chan);
2704 			if (b != band) {
2705 				if (band != -1)
2706 					scan.channels[bstart] =
2707 					    (next - bstart) | band;
2708 				/* NB: this allocates a slot for the run-len */
2709 				band = b, bstart = next++;
2710 			}
2711 			if (next >= IWI_SCAN_CHANNELS) {
2712 				DPRINTF(("truncating scan list\n"));
2713 				break;
2714 			}
2715 			scan.channels[next] = ieee80211_chan2ieee(ic, chan);
2716 			set_scan_type(&scan, next, scan_type(ss, chan));
2717 			next++;
2718 		}
2719 		scan.channels[bstart] = (next - bstart) | band;
2720 	} else {
2721 		/* Scan the current channel only */
2722 		chan = ic->ic_curchan;
2723 		scan.channels[0] = 1 | scan_band(chan);
2724 		scan.channels[1] = ieee80211_chan2ieee(ic, chan);
2725 		set_scan_type(&scan, 1, scan_type(ss, chan));
2726 	}
2727 #ifdef IWI_DEBUG
2728 	if (iwi_debug > 0) {
2729 		static const char *scantype[8] =
2730 		   { "PSTOP", "PASV", "DIR", "BCAST", "BDIR", "5", "6", "7" };
2731 		int i;
2732 		kprintf("Scan request: index %u dwell %d/%d/%d\n"
2733 		    , le32toh(scan.full_scan_index)
2734 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_PASSIVE])
2735 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BROADCAST])
2736 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED])
2737 		);
2738 		i = 0;
2739 		do {
2740 			int run = scan.channels[i];
2741 			if (run == 0)
2742 				break;
2743 			kprintf("Scan %d %s channels:", run & 0x3f,
2744 			    run & IWI_CHAN_2GHZ ? "2.4GHz" : "5GHz");
2745 			for (run &= 0x3f, i++; run > 0; run--, i++) {
2746 				uint8_t type = scan.scan_type[i/2];
2747 				kprintf(" %u/%s", scan.channels[i],
2748 				    scantype[(i & 1 ? type : type>>4) & 7]);
2749 			}
2750 			kprintf("\n");
2751 		} while (i < IWI_SCAN_CHANNELS);
2752 	}
2753 #endif
2754 
2755 	return (iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan));
2756 }
2757 
2758 static int
2759 iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm)
2760 {
2761 	struct iwi_sensitivity sens;
2762 
2763 	DPRINTF(("Setting sensitivity to %d\n", rssi_dbm));
2764 
2765 	memset(&sens, 0, sizeof sens);
2766 	sens.rssi = htole16(rssi_dbm);
2767 	return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens);
2768 }
2769 
2770 static int
2771 iwi_auth_and_assoc(struct iwi_softc *sc, struct ieee80211vap *vap)
2772 {
2773 	struct ieee80211com *ic = vap->iv_ic;
2774 	struct ifnet *ifp = vap->iv_ifp;
2775 	struct ieee80211_node *ni = vap->iv_bss;
2776 	struct iwi_configuration config;
2777 	struct iwi_associate *assoc = &sc->assoc;
2778 	struct iwi_rateset rs;
2779 	uint16_t capinfo;
2780 	uint32_t data;
2781 	int error, mode;
2782 
2783 	if (sc->flags & IWI_FLAG_ASSOCIATED) {
2784 		DPRINTF(("Already associated\n"));
2785 		return (-1);
2786 	}
2787 
2788 	IWI_STATE_BEGIN(sc, IWI_FW_ASSOCIATING);
2789 	error = 0;
2790 	mode = 0;
2791 
2792 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan))
2793 		mode = IWI_MODE_11A;
2794 	else if (IEEE80211_IS_CHAN_G(ic->ic_curchan))
2795 		mode = IWI_MODE_11G;
2796 	if (IEEE80211_IS_CHAN_B(ic->ic_curchan))
2797 		mode = IWI_MODE_11B;
2798 
2799 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2800 		memset(&config, 0, sizeof config);
2801 		config.bluetooth_coexistence = sc->bluetooth;
2802 		config.antenna = sc->antenna;
2803 		config.multicast_enabled = 1;
2804 		if (mode == IWI_MODE_11G)
2805 			config.use_protection = 1;
2806 		config.answer_pbreq =
2807 		    (vap->iv_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2808 		config.disable_unicast_decryption = 1;
2809 		config.disable_multicast_decryption = 1;
2810 		DPRINTF(("Configuring adapter\n"));
2811 		error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2812 		if (error != 0)
2813 			goto done;
2814 	}
2815 
2816 #ifdef IWI_DEBUG
2817 	if (iwi_debug > 0) {
2818 		kprintf("Setting ESSID to ");
2819 		ieee80211_print_essid(ni->ni_essid, ni->ni_esslen);
2820 		kprintf("\n");
2821 	}
2822 #endif
2823 	error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen);
2824 	if (error != 0)
2825 		goto done;
2826 
2827 	error = iwi_setpowermode(sc, vap);
2828 	if (error != 0)
2829 		goto done;
2830 
2831 	data = htole32(vap->iv_rtsthreshold);
2832 	DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
2833 	error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
2834 	if (error != 0)
2835 		goto done;
2836 
2837 	data = htole32(vap->iv_fragthreshold);
2838 	DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data)));
2839 	error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
2840 	if (error != 0)
2841 		goto done;
2842 
2843 	/* the rate set has already been "negotiated" */
2844 	memset(&rs, 0, sizeof rs);
2845 	rs.mode = mode;
2846 	rs.type = IWI_RATESET_TYPE_NEGOTIATED;
2847 	rs.nrates = ni->ni_rates.rs_nrates;
2848 	if (rs.nrates > IWI_RATESET_SIZE) {
2849 		DPRINTF(("Truncating negotiated rate set from %u\n",
2850 		    rs.nrates));
2851 		rs.nrates = IWI_RATESET_SIZE;
2852 	}
2853 	memcpy(rs.rates, ni->ni_rates.rs_rates, rs.nrates);
2854 	DPRINTF(("Setting negotiated rates (%u)\n", rs.nrates));
2855 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2856 	if (error != 0)
2857 		goto done;
2858 
2859 	memset(assoc, 0, sizeof *assoc);
2860 
2861 	if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) {
2862 		/* NB: don't treat WME setup as failure */
2863 		if (iwi_wme_setparams(sc, ic) == 0 && iwi_wme_setie(sc) == 0)
2864 			assoc->policy |= htole16(IWI_POLICY_WME);
2865 		/* XXX complain on failure? */
2866 	}
2867 
2868 	if (vap->iv_appie_wpa != NULL) {
2869 		struct ieee80211_appie *ie = vap->iv_appie_wpa;
2870 
2871 		DPRINTF(("Setting optional IE (len=%u)\n", ie->ie_len));
2872 		error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ie->ie_data, ie->ie_len);
2873 		if (error != 0)
2874 			goto done;
2875 	}
2876 
2877 	error = iwi_set_sensitivity(sc, ic->ic_node_getrssi(ni));
2878 	if (error != 0)
2879 		goto done;
2880 
2881 	assoc->mode = mode;
2882 	assoc->chan = ic->ic_curchan->ic_ieee;
2883 	/*
2884 	 * NB: do not arrange for shared key auth w/o privacy
2885 	 *     (i.e. a wep key); it causes a firmware error.
2886 	 */
2887 	if ((vap->iv_flags & IEEE80211_F_PRIVACY) &&
2888 	    ni->ni_authmode == IEEE80211_AUTH_SHARED) {
2889 		assoc->auth = IWI_AUTH_SHARED;
2890 		/*
2891 		 * It's possible to have privacy marked but no default
2892 		 * key setup.  This typically is due to a user app bug
2893 		 * but if we blindly grab the key the firmware will
2894 		 * barf so avoid it for now.
2895 		 */
2896 		if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE)
2897 			assoc->auth |= vap->iv_def_txkey << 4;
2898 
2899 		error = iwi_setwepkeys(sc, vap);
2900 		if (error != 0)
2901 			goto done;
2902 	}
2903 	if (vap->iv_flags & IEEE80211_F_WPA)
2904 		assoc->policy |= htole16(IWI_POLICY_WPA);
2905 	if (vap->iv_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0)
2906 		assoc->type = IWI_HC_IBSS_START;
2907 	else
2908 		assoc->type = IWI_HC_ASSOC;
2909 	memcpy(assoc->tstamp, ni->ni_tstamp.data, 8);
2910 
2911 	if (vap->iv_opmode == IEEE80211_M_IBSS)
2912 		capinfo = IEEE80211_CAPINFO_IBSS;
2913 	else
2914 		capinfo = IEEE80211_CAPINFO_ESS;
2915 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2916 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2917 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2918 	    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2919 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2920 	if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME)
2921 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2922 	assoc->capinfo = htole16(capinfo);
2923 
2924 	assoc->lintval = htole16(ic->ic_lintval);
2925 	assoc->intval = htole16(ni->ni_intval);
2926 	IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid);
2927 	if (vap->iv_opmode == IEEE80211_M_IBSS)
2928 		IEEE80211_ADDR_COPY(assoc->dst, ifp->if_broadcastaddr);
2929 	else
2930 		IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid);
2931 
2932 	DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x "
2933 	    "auth %u capinfo 0x%x lintval %u bintval %u\n",
2934 	    assoc->type == IWI_HC_IBSS_START ? "Start" : "Join",
2935 	    assoc->bssid, ":", assoc->dst, ":",
2936 	    assoc->chan, le16toh(assoc->policy), assoc->auth,
2937 	    le16toh(assoc->capinfo), le16toh(assoc->lintval),
2938 	    le16toh(assoc->intval)));
2939 	error = iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
2940 done:
2941 	if (error)
2942 		IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
2943 
2944 	return (error);
2945 }
2946 
2947 static void
2948 iwi_disassoc_task(void *arg, int pending)
2949 {
2950 	struct iwi_softc *sc = arg;
2951 
2952 	wlan_serialize_enter();
2953 	iwi_disassociate(sc, 0);
2954 	wlan_serialize_exit();
2955 }
2956 
2957 static int
2958 iwi_disassociate(struct iwi_softc *sc, int quiet)
2959 {
2960 	struct iwi_associate *assoc = &sc->assoc;
2961 
2962 	if ((sc->flags & IWI_FLAG_ASSOCIATED) == 0) {
2963 		DPRINTF(("Not associated\n"));
2964 		return (-1);
2965 	}
2966 
2967 	IWI_STATE_BEGIN(sc, IWI_FW_DISASSOCIATING);
2968 
2969 	if (quiet)
2970 		assoc->type = IWI_HC_DISASSOC_QUIET;
2971 	else
2972 		assoc->type = IWI_HC_DISASSOC;
2973 
2974 	DPRINTF(("Trying to disassociate from %6D channel %u\n",
2975 	    assoc->bssid, ":", assoc->chan));
2976 	return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
2977 }
2978 
2979 /*
2980  * release dma resources for the firmware
2981  */
2982 static void
2983 iwi_release_fw_dma(struct iwi_softc *sc)
2984 {
2985 	if (sc->fw_flags & IWI_FW_HAVE_PHY)
2986 		bus_dmamap_unload(sc->fw_dmat, sc->fw_map);
2987 	if (sc->fw_flags & IWI_FW_HAVE_MAP)
2988 		bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map);
2989 	if (sc->fw_flags & IWI_FW_HAVE_DMAT)
2990 		bus_dma_tag_destroy(sc->fw_dmat);
2991 
2992 	sc->fw_flags = 0;
2993 	sc->fw_dma_size = 0;
2994 	sc->fw_dmat = NULL;
2995 	sc->fw_map = NULL;
2996 	sc->fw_physaddr = 0;
2997 	sc->fw_virtaddr = NULL;
2998 }
2999 
3000 /*
3001  * allocate the dma descriptor for the firmware.
3002  * Return 0 on success, 1 on error.
3003  * Must be called unlocked, protected by IWI_FLAG_FW_LOADING.
3004  */
3005 static int
3006 iwi_init_fw_dma(struct iwi_softc *sc, int size)
3007 {
3008 	if (sc->fw_dma_size >= size)
3009 		return 0;
3010 	if (bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
3011 	    BUS_SPACE_MAXADDR, NULL, NULL, size, 1, size,
3012 	    0, &sc->fw_dmat) != 0) {
3013 		device_printf(sc->sc_dev,
3014 		    "could not create firmware DMA tag\n");
3015 		goto error;
3016 	}
3017 	sc->fw_flags |= IWI_FW_HAVE_DMAT;
3018 	if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0,
3019 	    &sc->fw_map) != 0) {
3020 		device_printf(sc->sc_dev,
3021 		    "could not allocate firmware DMA memory\n");
3022 		goto error;
3023 	}
3024 	sc->fw_flags |= IWI_FW_HAVE_MAP;
3025 	if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr,
3026 	    size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) {
3027 		device_printf(sc->sc_dev, "could not load firmware DMA map\n");
3028 		goto error;
3029 	}
3030 	sc->fw_flags |= IWI_FW_HAVE_PHY;
3031 	sc->fw_dma_size = size;
3032 	return 0;
3033 
3034 error:
3035 	iwi_release_fw_dma(sc);
3036 	return 1;
3037 }
3038 
3039 static void
3040 iwi_init_locked(struct iwi_softc *sc)
3041 {
3042 	struct ifnet *ifp = sc->sc_ifp;
3043 	struct iwi_rx_data *data;
3044 	int i;
3045 
3046 	if (sc->fw_state == IWI_FW_LOADING) {
3047 		device_printf(sc->sc_dev, "%s: already loading\n", __func__);
3048 		return;		/* XXX: condvar? */
3049 	}
3050 
3051 	iwi_stop_locked(sc);
3052 
3053 	IWI_STATE_BEGIN(sc, IWI_FW_LOADING);
3054 
3055 	if (iwi_reset(sc) != 0) {
3056 		device_printf(sc->sc_dev, "could not reset adapter\n");
3057 		goto fail;
3058 	}
3059 	if (iwi_load_firmware(sc, &sc->fw_boot) != 0) {
3060 		device_printf(sc->sc_dev,
3061 		    "could not load boot firmware %s\n", sc->fw_boot.name);
3062 		goto fail;
3063 	}
3064 	if (iwi_load_ucode(sc, &sc->fw_uc) != 0) {
3065 		device_printf(sc->sc_dev,
3066 		    "could not load microcode %s\n", sc->fw_uc.name);
3067 		goto fail;
3068 	}
3069 
3070 	iwi_stop_master(sc);
3071 
3072 	CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr);
3073 	CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count);
3074 	CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
3075 
3076 	CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr);
3077 	CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count);
3078 	CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur);
3079 
3080 	CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr);
3081 	CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count);
3082 	CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur);
3083 
3084 	CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr);
3085 	CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count);
3086 	CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur);
3087 
3088 	CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr);
3089 	CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count);
3090 	CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur);
3091 
3092 	for (i = 0; i < sc->rxq.count; i++) {
3093 		data = &sc->rxq.data[i];
3094 		CSR_WRITE_4(sc, data->reg, data->physaddr);
3095 	}
3096 
3097 	CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1);
3098 
3099 	if (iwi_load_firmware(sc, &sc->fw_fw) != 0) {
3100 		device_printf(sc->sc_dev,
3101 		    "could not load main firmware %s\n", sc->fw_fw.name);
3102 		goto fail;
3103 	}
3104 	sc->flags |= IWI_FLAG_FW_INITED;
3105 
3106 	IWI_STATE_END(sc, IWI_FW_LOADING);
3107 
3108 	if (iwi_config(sc) != 0) {
3109 		device_printf(sc->sc_dev, "unable to enable adapter\n");
3110 		goto fail2;
3111 	}
3112 
3113 	callout_reset(&sc->sc_wdtimer_callout, hz, iwi_watchdog, sc);
3114 	ifp->if_flags &= ~IFF_OACTIVE;
3115 	ifp->if_flags |= IFF_RUNNING;
3116 	return;
3117 fail:
3118 	IWI_STATE_END(sc, IWI_FW_LOADING);
3119 fail2:
3120 	iwi_stop_locked(sc);
3121 }
3122 
3123 static void
3124 iwi_init(void *priv)
3125 {
3126 	struct iwi_softc *sc = priv;
3127 	struct ifnet *ifp = sc->sc_ifp;
3128 	struct ieee80211com *ic = ifp->if_l2com;
3129 
3130 	iwi_init_locked(sc);
3131 
3132 	if (ifp->if_flags & IFF_RUNNING)
3133 		ieee80211_start_all(ic);
3134 }
3135 
3136 static void
3137 iwi_stop_locked(void *priv)
3138 {
3139 	struct iwi_softc *sc = priv;
3140 	struct ifnet *ifp = sc->sc_ifp;
3141 
3142 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3143 
3144 	if (sc->sc_softled) {
3145 		callout_stop(&sc->sc_ledtimer_callout);
3146 		sc->sc_blinking = 0;
3147 	}
3148 	callout_stop(&sc->sc_wdtimer_callout);
3149 	callout_stop(&sc->sc_rftimer_callout);
3150 
3151 	iwi_stop_master(sc);
3152 
3153 	CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET);
3154 
3155 	/* reset rings */
3156 	iwi_reset_cmd_ring(sc, &sc->cmdq);
3157 	iwi_reset_tx_ring(sc, &sc->txq[0]);
3158 	iwi_reset_tx_ring(sc, &sc->txq[1]);
3159 	iwi_reset_tx_ring(sc, &sc->txq[2]);
3160 	iwi_reset_tx_ring(sc, &sc->txq[3]);
3161 	iwi_reset_rx_ring(sc, &sc->rxq);
3162 
3163 	sc->sc_tx_timer = 0;
3164 	sc->sc_state_timer = 0;
3165 	sc->sc_busy_timer = 0;
3166 	sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_ASSOCIATED);
3167 	sc->fw_state = IWI_FW_IDLE;
3168 	wakeup(sc);
3169 }
3170 
3171 static void
3172 iwi_stop(struct iwi_softc *sc)
3173 {
3174 	iwi_stop_locked(sc);
3175 }
3176 
3177 static void
3178 iwi_restart_task(void *arg, int npending)
3179 {
3180 	struct iwi_softc *sc = arg;
3181 
3182 	wlan_serialize_enter();
3183 	iwi_init(sc);
3184 	wlan_serialize_exit();
3185 }
3186 
3187 /*
3188  * Return whether or not the radio is enabled in hardware
3189  * (i.e. the rfkill switch is "off").
3190  */
3191 static int
3192 iwi_getrfkill(struct iwi_softc *sc)
3193 {
3194 	return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0;
3195 }
3196 
3197 static void
3198 iwi_radio_on_task(void *arg, int pending)
3199 {
3200 	struct iwi_softc *sc = arg;
3201 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3202 
3203 	wlan_serialize_enter();
3204 	device_printf(sc->sc_dev, "radio turned on\n");
3205 
3206 	iwi_init(sc);
3207 	ieee80211_notify_radio(ic, 1);
3208 	wlan_serialize_exit();
3209 }
3210 
3211 static void
3212 iwi_rfkill_poll(void *arg)
3213 {
3214 	struct iwi_softc *sc = arg;
3215 
3216 	/*
3217 	 * Check for a change in rfkill state.  We get an
3218 	 * interrupt when a radio is disabled but not when
3219 	 * it is enabled so we must poll for the latter.
3220 	 */
3221 	if (!iwi_getrfkill(sc)) {
3222 		struct ifnet *ifp = sc->sc_ifp;
3223 		struct ieee80211com *ic = ifp->if_l2com;
3224 
3225 		ieee80211_runtask(ic, &sc->sc_radiontask);
3226 		return;
3227 	}
3228 	callout_reset(&sc->sc_rftimer_callout, 2*hz, iwi_rfkill_poll, sc);
3229 }
3230 
3231 static void
3232 iwi_radio_off_task(void *arg, int pending)
3233 {
3234 	struct iwi_softc *sc = arg;
3235 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3236 
3237 	wlan_serialize_enter();
3238 	device_printf(sc->sc_dev, "radio turned off\n");
3239 
3240 	ieee80211_notify_radio(ic, 0);
3241 
3242 	iwi_stop_locked(sc);
3243 	iwi_rfkill_poll(sc);
3244 	wlan_serialize_exit();
3245 }
3246 
3247 static int
3248 iwi_sysctl_stats(SYSCTL_HANDLER_ARGS)
3249 {
3250 	struct iwi_softc *sc = arg1;
3251 	uint32_t size, buf[128];
3252 
3253 	memset(buf, 0, sizeof buf);
3254 
3255 	if (!(sc->flags & IWI_FLAG_FW_INITED))
3256 		return SYSCTL_OUT(req, buf, sizeof buf);
3257 
3258 	size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1);
3259 	CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size);
3260 
3261 	return SYSCTL_OUT(req, buf, size);
3262 }
3263 
3264 static int
3265 iwi_sysctl_radio(SYSCTL_HANDLER_ARGS)
3266 {
3267 	struct iwi_softc *sc = arg1;
3268 	int val = !iwi_getrfkill(sc);
3269 
3270 	return SYSCTL_OUT(req, &val, sizeof val);
3271 }
3272 
3273 /*
3274  * Add sysctl knobs.
3275  */
3276 static void
3277 iwi_sysctlattach(struct iwi_softc *sc)
3278 {
3279 	struct sysctl_ctx_list *ctx;
3280 	struct sysctl_oid *tree;
3281 
3282 	ctx = &sc->sc_sysctl_ctx;
3283 	sysctl_ctx_init(ctx);
3284 
3285 	tree = SYSCTL_ADD_NODE(ctx, SYSCTL_STATIC_CHILDREN(_hw),
3286 	                       OID_AUTO,
3287 	                       device_get_nameunit(sc->sc_dev),
3288 	                       CTLFLAG_RD, 0, "");
3289 	if (tree == NULL) {
3290 		device_printf(sc->sc_dev, "can't add sysctl node\n");
3291 		return;
3292 	}
3293 
3294 	sc->sc_sysctl_tree = tree;
3295 
3296 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio",
3297 	    CTLTYPE_INT | CTLFLAG_RD, sc, 0, iwi_sysctl_radio, "I",
3298 	    "radio transmitter switch state (0=off, 1=on)");
3299 
3300 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats",
3301 	    CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, iwi_sysctl_stats, "S",
3302 	    "statistics");
3303 
3304 	sc->bluetooth = 0;
3305 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth",
3306 	    CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence");
3307 
3308 	sc->antenna = IWI_ANTENNA_AUTO;
3309 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna",
3310 	    CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)");
3311 }
3312 
3313 /*
3314  * LED support.
3315  *
3316  * Different cards have different capabilities.  Some have three
3317  * led's while others have only one.  The linux ipw driver defines
3318  * led's for link state (associated or not), band (11a, 11g, 11b),
3319  * and for link activity.  We use one led and vary the blink rate
3320  * according to the tx/rx traffic a la the ath driver.
3321  */
3322 
3323 static __inline uint32_t
3324 iwi_toggle_event(uint32_t r)
3325 {
3326 	return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA |
3327 		     IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA);
3328 }
3329 
3330 static uint32_t
3331 iwi_read_event(struct iwi_softc *sc)
3332 {
3333 	return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT);
3334 }
3335 
3336 static void
3337 iwi_write_event(struct iwi_softc *sc, uint32_t v)
3338 {
3339 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v);
3340 }
3341 
3342 static void
3343 iwi_led_done(void *arg)
3344 {
3345 	struct iwi_softc *sc = arg;
3346 
3347 	sc->sc_blinking = 0;
3348 }
3349 
3350 /*
3351  * Turn the activity LED off: flip the pin and then set a timer so no
3352  * update will happen for the specified duration.
3353  */
3354 static void
3355 iwi_led_off(void *arg)
3356 {
3357 	struct iwi_softc *sc = arg;
3358 	uint32_t v;
3359 
3360 	v = iwi_read_event(sc);
3361 	v &= ~sc->sc_ledpin;
3362 	iwi_write_event(sc, iwi_toggle_event(v));
3363 	callout_reset(&sc->sc_ledtimer_callout, sc->sc_ledoff, iwi_led_done, sc);
3364 }
3365 
3366 /*
3367  * Blink the LED according to the specified on/off times.
3368  */
3369 static void
3370 iwi_led_blink(struct iwi_softc *sc, int on, int off)
3371 {
3372 	uint32_t v;
3373 
3374 	v = iwi_read_event(sc);
3375 	v |= sc->sc_ledpin;
3376 	iwi_write_event(sc, iwi_toggle_event(v));
3377 	sc->sc_blinking = 1;
3378 	sc->sc_ledoff = off;
3379 	callout_reset(&sc->sc_ledtimer_callout, on, iwi_led_off, sc);
3380 }
3381 
3382 static void
3383 iwi_led_event(struct iwi_softc *sc, int event)
3384 {
3385 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
3386 	static const struct {
3387 		u_int		rate;		/* tx/rx iwi rate */
3388 		u_int16_t	timeOn;		/* LED on time (ms) */
3389 		u_int16_t	timeOff;	/* LED off time (ms) */
3390 	} blinkrates[] = {
3391 		{ IWI_RATE_OFDM54, 40,  10 },
3392 		{ IWI_RATE_OFDM48, 44,  11 },
3393 		{ IWI_RATE_OFDM36, 50,  13 },
3394 		{ IWI_RATE_OFDM24, 57,  14 },
3395 		{ IWI_RATE_OFDM18, 67,  16 },
3396 		{ IWI_RATE_OFDM12, 80,  20 },
3397 		{ IWI_RATE_DS11,  100,  25 },
3398 		{ IWI_RATE_OFDM9, 133,  34 },
3399 		{ IWI_RATE_OFDM6, 160,  40 },
3400 		{ IWI_RATE_DS5,   200,  50 },
3401 		{            6,   240,  58 },	/* XXX 3Mb/s if it existed */
3402 		{ IWI_RATE_DS2,   267,  66 },
3403 		{ IWI_RATE_DS1,   400, 100 },
3404 		{            0,   500, 130 },	/* unknown rate/polling */
3405 	};
3406 	uint32_t txrate;
3407 	int j = 0;			/* XXX silence compiler */
3408 
3409 	sc->sc_ledevent = ticks;	/* time of last event */
3410 	if (sc->sc_blinking)		/* don't interrupt active blink */
3411 		return;
3412 	switch (event) {
3413 	case IWI_LED_POLL:
3414 		j = NELEM(blinkrates)-1;
3415 		break;
3416 	case IWI_LED_TX:
3417 		/* read current transmission rate from adapter */
3418 		txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE);
3419 		if (blinkrates[sc->sc_txrix].rate != txrate) {
3420 			for (j = 0; j < NELEM(blinkrates)-1; j++)
3421 				if (blinkrates[j].rate == txrate)
3422 					break;
3423 			sc->sc_txrix = j;
3424 		} else
3425 			j = sc->sc_txrix;
3426 		break;
3427 	case IWI_LED_RX:
3428 		if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) {
3429 			for (j = 0; j < NELEM(blinkrates)-1; j++)
3430 				if (blinkrates[j].rate == sc->sc_rxrate)
3431 					break;
3432 			sc->sc_rxrix = j;
3433 		} else
3434 			j = sc->sc_rxrix;
3435 		break;
3436 	}
3437 	/* XXX beware of overflow */
3438 	iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000,
3439 		(blinkrates[j].timeOff * hz) / 1000);
3440 }
3441 
3442 static int
3443 iwi_sysctl_softled(SYSCTL_HANDLER_ARGS)
3444 {
3445 	struct iwi_softc *sc = arg1;
3446 	int softled = sc->sc_softled;
3447 	int error;
3448 
3449 	error = sysctl_handle_int(oidp, &softled, 0, req);
3450 	if (error || !req->newptr)
3451 		return error;
3452 	softled = (softled != 0);
3453 	if (softled != sc->sc_softled) {
3454 		if (softled) {
3455 			uint32_t v = iwi_read_event(sc);
3456 			v &= ~sc->sc_ledpin;
3457 			iwi_write_event(sc, iwi_toggle_event(v));
3458 		}
3459 		sc->sc_softled = softled;
3460 	}
3461 	return 0;
3462 }
3463 
3464 static void
3465 iwi_ledattach(struct iwi_softc *sc)
3466 {
3467 	struct sysctl_ctx_list *ctx = &sc->sc_sysctl_ctx;
3468 	struct sysctl_oid *tree = sc->sc_sysctl_tree;
3469 
3470 	sc->sc_blinking = 0;
3471 	sc->sc_ledstate = 1;
3472 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
3473 	callout_init(&sc->sc_ledtimer_callout);
3474 
3475 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3476 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
3477 		iwi_sysctl_softled, "I", "enable/disable software LED support");
3478 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3479 		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
3480 		"pin setting to turn activity LED on");
3481 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3482 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
3483 		"idle time for inactivity LED (ticks)");
3484 	/* XXX for debugging */
3485 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3486 		"nictype", CTLFLAG_RD, &sc->sc_nictype, 0,
3487 		"NIC type from EEPROM");
3488 
3489 	sc->sc_ledpin = IWI_RST_LED_ACTIVITY;
3490 	sc->sc_softled = 1;
3491 
3492 	sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff;
3493 	if (sc->sc_nictype == 1) {
3494 		/*
3495 		 * NB: led's are reversed.
3496 		 */
3497 		sc->sc_ledpin = IWI_RST_LED_ASSOCIATED;
3498 	}
3499 }
3500 
3501 static void
3502 iwi_scan_start(struct ieee80211com *ic)
3503 {
3504 	/* ignore */
3505 }
3506 
3507 static void
3508 iwi_set_channel(struct ieee80211com *ic)
3509 {
3510 	struct ifnet *ifp = ic->ic_ifp;
3511 	struct iwi_softc *sc = ifp->if_softc;
3512 	if (sc->fw_state == IWI_FW_IDLE)
3513 		iwi_setcurchan(sc, ic->ic_curchan->ic_ieee);
3514 }
3515 
3516 static void
3517 iwi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3518 {
3519 	struct ieee80211vap *vap = ss->ss_vap;
3520 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3521 	struct iwi_softc *sc = ifp->if_softc;
3522 
3523 	if (iwi_scanchan(sc, maxdwell, 0))
3524 		ieee80211_cancel_scan(vap);
3525 }
3526 
3527 static void
3528 iwi_scan_mindwell(struct ieee80211_scan_state *ss)
3529 {
3530 	/* NB: don't try to abort scan; wait for firmware to finish */
3531 }
3532 
3533 static void
3534 iwi_scan_end(struct ieee80211com *ic)
3535 {
3536 	struct ifnet *ifp = ic->ic_ifp;
3537 	struct iwi_softc *sc = ifp->if_softc;
3538 
3539 	sc->flags &= ~IWI_FLAG_CHANNEL_SCAN;
3540 	/* NB: make sure we're still scanning */
3541 	if (sc->fw_state == IWI_FW_SCANNING)
3542 		iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0);
3543 }
3544