xref: /dragonfly/sys/dev/netif/iwn/if_iwn.c (revision 8a0bcd56)
1 /*-
2  * Copyright (c) 2007-2009
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  * Copyright (c) 2008
5  *	Benjamin Close <benjsc@FreeBSD.org>
6  * Copyright (c) 2008 Sam Leffler, Errno Consulting
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
23  * adapters.
24  */
25 
26 /* $FreeBSD$ */
27 
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/sysctl.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/bus.h>
37 #include <sys/rman.h>
38 #include <sys/endian.h>
39 #include <sys/firmware.h>
40 #include <sys/limits.h>
41 #include <sys/module.h>
42 #include <sys/queue.h>
43 #include <sys/taskqueue.h>
44 #include <sys/libkern.h>
45 
46 #include <sys/bus.h>
47 #include <sys/resource.h>
48 #include <machine/clock.h>
49 
50 #include <bus/pci/pcireg.h>
51 #include <bus/pci/pcivar.h>
52 
53 #include <net/bpf.h>
54 #include <net/if.h>
55 #include <net/if_arp.h>
56 #include <net/ifq_var.h>
57 #include <net/ethernet.h>
58 #include <net/if_dl.h>
59 #include <net/if_media.h>
60 #include <net/if_types.h>
61 
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/in_var.h>
65 #include <netinet/if_ether.h>
66 #include <netinet/ip.h>
67 
68 #include <netproto/802_11/ieee80211_var.h>
69 #include <netproto/802_11/ieee80211_radiotap.h>
70 #include <netproto/802_11/ieee80211_regdomain.h>
71 #include <netproto/802_11/ieee80211_ratectl.h>
72 
73 #include "if_iwnreg.h"
74 #include "if_iwnvar.h"
75 
76 static int	iwn_pci_probe(device_t);
77 static int	iwn_pci_attach(device_t);
78 static const struct iwn_hal *iwn_hal_attach(struct iwn_softc *);
79 static void	iwn_radiotap_attach(struct iwn_softc *);
80 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
81 		    const char name[IFNAMSIZ], int unit, int opmode,
82 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
83 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
84 static void	iwn_vap_delete(struct ieee80211vap *);
85 static int	iwn_cleanup(device_t);
86 static int	iwn_pci_detach(device_t);
87 static int	iwn_nic_lock(struct iwn_softc *);
88 static int	iwn_eeprom_lock(struct iwn_softc *);
89 static int	iwn_init_otprom(struct iwn_softc *);
90 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
91 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
92 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
93 		    void **, bus_size_t, bus_size_t, int);
94 static void	iwn_dma_contig_free(struct iwn_dma_info *);
95 static int	iwn_alloc_sched(struct iwn_softc *);
96 static void	iwn_free_sched(struct iwn_softc *);
97 static int	iwn_alloc_kw(struct iwn_softc *);
98 static void	iwn_free_kw(struct iwn_softc *);
99 static int	iwn_alloc_ict(struct iwn_softc *);
100 static void	iwn_free_ict(struct iwn_softc *);
101 static int	iwn_alloc_fwmem(struct iwn_softc *);
102 static void	iwn_free_fwmem(struct iwn_softc *);
103 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
104 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
105 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
106 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
107 		    int);
108 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
109 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
110 static void	iwn5000_ict_reset(struct iwn_softc *);
111 static int	iwn_read_eeprom(struct iwn_softc *,
112 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
113 static void	iwn4965_read_eeprom(struct iwn_softc *);
114 static void	iwn4965_print_power_group(struct iwn_softc *, int);
115 static void	iwn5000_read_eeprom(struct iwn_softc *);
116 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
117 static void	iwn_read_eeprom_band(struct iwn_softc *, int);
118 #if 0	/* HT */
119 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int);
120 #endif
121 static void	iwn_read_eeprom_channels(struct iwn_softc *, int,
122 		    uint32_t);
123 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
124 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
125 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
126 static void	iwn_newassoc(struct ieee80211_node *, int);
127 static int	iwn_media_change(struct ifnet *);
128 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
129 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
130 		    struct iwn_rx_data *);
131 static void	iwn_timer_callout(void *);
132 static void	iwn_calib_reset(struct iwn_softc *);
133 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
134 		    struct iwn_rx_data *);
135 #if 0	/* HT */
136 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
137 		    struct iwn_rx_data *);
138 #endif
139 static void	iwn5000_rx_calib_results(struct iwn_softc *,
140 		    struct iwn_rx_desc *, struct iwn_rx_data *);
141 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
142 		    struct iwn_rx_data *);
143 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
144 		    struct iwn_rx_data *);
145 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
146 		    struct iwn_rx_data *);
147 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
148 		    uint8_t);
149 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
150 static void	iwn_notif_intr(struct iwn_softc *);
151 static void	iwn_wakeup_intr(struct iwn_softc *);
152 static void	iwn_rftoggle_intr(struct iwn_softc *);
153 static void	iwn_fatal_intr(struct iwn_softc *);
154 static void	iwn_intr(void *);
155 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
156 		    uint16_t);
157 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
158 		    uint16_t);
159 #ifdef notyet
160 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
161 #endif
162 static uint8_t	iwn_plcp_signal(int);
163 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
164 		    struct ieee80211_node *, struct iwn_tx_ring *);
165 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
166 		    const struct ieee80211_bpf_params *);
167 static void	iwn_start(struct ifnet *);
168 static void	iwn_start_locked(struct ifnet *);
169 static void	iwn_watchdog(struct iwn_softc *sc);
170 static int	iwn_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
171 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
172 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
173 		    int);
174 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
175 		    int);
176 static int	iwn_set_link_quality(struct iwn_softc *, uint8_t, int);
177 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
178 static int	iwn_wme_update(struct ieee80211com *);
179 static void	iwn_update_mcast(struct ifnet *);
180 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
181 static int	iwn_set_critical_temp(struct iwn_softc *);
182 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
183 static void	iwn4965_power_calibration(struct iwn_softc *, int);
184 static int	iwn4965_set_txpower(struct iwn_softc *,
185 		    struct ieee80211_channel *, int);
186 static int	iwn5000_set_txpower(struct iwn_softc *,
187 		    struct ieee80211_channel *, int);
188 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
189 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
190 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
191 static int	iwn4965_get_temperature(struct iwn_softc *);
192 static int	iwn5000_get_temperature(struct iwn_softc *);
193 static int	iwn_init_sensitivity(struct iwn_softc *);
194 static void	iwn_collect_noise(struct iwn_softc *,
195 		    const struct iwn_rx_general_stats *);
196 static int	iwn4965_init_gains(struct iwn_softc *);
197 static int	iwn5000_init_gains(struct iwn_softc *);
198 static int	iwn4965_set_gains(struct iwn_softc *);
199 static int	iwn5000_set_gains(struct iwn_softc *);
200 static void	iwn_tune_sensitivity(struct iwn_softc *,
201 		    const struct iwn_rx_stats *);
202 static int	iwn_send_sensitivity(struct iwn_softc *);
203 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
204 static int	iwn_config(struct iwn_softc *);
205 static int	iwn_scan(struct iwn_softc *);
206 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
207 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
208 #if 0	/* HT */
209 static int	iwn_ampdu_rx_start(struct ieee80211com *,
210 		    struct ieee80211_node *, uint8_t);
211 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
212 		    struct ieee80211_node *, uint8_t);
213 static int	iwn_ampdu_tx_start(struct ieee80211com *,
214 		    struct ieee80211_node *, uint8_t);
215 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
216 		    struct ieee80211_node *, uint8_t);
217 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
218 		    struct ieee80211_node *, uint8_t, uint16_t);
219 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, uint8_t, uint16_t);
220 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
221 		    struct ieee80211_node *, uint8_t, uint16_t);
222 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, uint8_t, uint16_t);
223 #endif
224 static int	iwn5000_query_calibration(struct iwn_softc *);
225 static int	iwn5000_send_calibration(struct iwn_softc *);
226 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
227 static int	iwn4965_post_alive(struct iwn_softc *);
228 static int	iwn5000_post_alive(struct iwn_softc *);
229 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
230 		    int);
231 static int	iwn4965_load_firmware(struct iwn_softc *);
232 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
233 		    const uint8_t *, int);
234 static int	iwn5000_load_firmware(struct iwn_softc *);
235 static int	iwn_read_firmware(struct iwn_softc *);
236 static int	iwn_clock_wait(struct iwn_softc *);
237 static int	iwn_apm_init(struct iwn_softc *);
238 static void	iwn_apm_stop_master(struct iwn_softc *);
239 static void	iwn_apm_stop(struct iwn_softc *);
240 static int	iwn4965_nic_config(struct iwn_softc *);
241 static int	iwn5000_nic_config(struct iwn_softc *);
242 static int	iwn_hw_prepare(struct iwn_softc *);
243 static int	iwn_hw_init(struct iwn_softc *);
244 static void	iwn_hw_stop(struct iwn_softc *);
245 static void	iwn_init_locked(struct iwn_softc *);
246 static void	iwn_init(void *);
247 static void	iwn_stop_locked(struct iwn_softc *);
248 static void	iwn_stop(struct iwn_softc *);
249 static void 	iwn_scan_start(struct ieee80211com *);
250 static void 	iwn_scan_end(struct ieee80211com *);
251 static void 	iwn_set_channel(struct ieee80211com *);
252 static void 	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
253 static void 	iwn_scan_mindwell(struct ieee80211_scan_state *);
254 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
255 		    struct ieee80211_channel *);
256 static int	iwn_setregdomain(struct ieee80211com *,
257 		    struct ieee80211_regdomain *, int,
258 		    struct ieee80211_channel []);
259 static void	iwn_hw_reset_task(void *, int);
260 static void	iwn_radio_on_task(void *, int);
261 static void	iwn_radio_off_task(void *, int);
262 static void	iwn_sysctlattach(struct iwn_softc *);
263 static int	iwn_pci_shutdown(device_t);
264 static int	iwn_pci_suspend(device_t);
265 static int	iwn_pci_resume(device_t);
266 
267 #define IWN_DEBUG
268 #ifdef IWN_DEBUG
269 enum {
270 	IWN_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
271 	IWN_DEBUG_RECV		= 0x00000002,	/* basic recv operation */
272 	IWN_DEBUG_STATE		= 0x00000004,	/* 802.11 state transitions */
273 	IWN_DEBUG_TXPOW		= 0x00000008,	/* tx power processing */
274 	IWN_DEBUG_RESET		= 0x00000010,	/* reset processing */
275 	IWN_DEBUG_OPS		= 0x00000020,	/* iwn_ops processing */
276 	IWN_DEBUG_BEACON 	= 0x00000040,	/* beacon handling */
277 	IWN_DEBUG_WATCHDOG 	= 0x00000080,	/* watchdog timeout */
278 	IWN_DEBUG_INTR		= 0x00000100,	/* ISR */
279 	IWN_DEBUG_CALIBRATE	= 0x00000200,	/* periodic calibration */
280 	IWN_DEBUG_NODE		= 0x00000400,	/* node management */
281 	IWN_DEBUG_LED		= 0x00000800,	/* led management */
282 	IWN_DEBUG_CMD		= 0x00001000,	/* cmd submission */
283 	IWN_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
284 	IWN_DEBUG_ANY		= 0xffffffff
285 };
286 
287 #define DPRINTF(sc, m, fmt, ...) do {			\
288 	if (sc->sc_debug & (m))				\
289 		kprintf(fmt, __VA_ARGS__);		\
290 } while (0)
291 
292 static const char *iwn_intr_str(uint8_t);
293 #else
294 #define DPRINTF(sc, m, fmt, ...) do { (void) sc; } while (0)
295 #endif
296 
297 struct iwn_ident {
298 	uint16_t	vendor;
299 	uint16_t	device;
300 	const char	*name;
301 };
302 
303 static const struct iwn_ident iwn_ident_table [] = {
304 	{ 0x8086, 0x4229, "Intel(R) PRO/Wireless 4965BGN" },
305 	{ 0x8086, 0x422D, "Intel(R) PRO/Wireless 4965BGN" },
306 	{ 0x8086, 0x4230, "Intel(R) PRO/Wireless 4965BGN" },
307 	{ 0x8086, 0x4233, "Intel(R) PRO/Wireless 4965BGN" },
308 	{ 0x8086, 0x4232, "Intel(R) PRO/Wireless 5100" },
309 	{ 0x8086, 0x4237, "Intel(R) PRO/Wireless 5100" },
310 	{ 0x8086, 0x423C, "Intel(R) PRO/Wireless 5150" },
311 	{ 0x8086, 0x423D, "Intel(R) PRO/Wireless 5150" },
312 	{ 0x8086, 0x4235, "Intel(R) PRO/Wireless 5300" },
313 	{ 0x8086, 0x4236, "Intel(R) PRO/Wireless 5300" },
314 	{ 0x8086, 0x423A, "Intel(R) PRO/Wireless 5350" },
315 	{ 0x8086, 0x423B, "Intel(R) PRO/Wireless 5350" },
316 	{ 0x8086, 0x0083, "Intel(R) PRO/Wireless 1000" },
317 	{ 0x8086, 0x0084, "Intel(R) PRO/Wireless 1000" },
318 	{ 0x8086, 0x008D, "Intel(R) PRO/Wireless 6000" },
319 	{ 0x8086, 0x008E, "Intel(R) PRO/Wireless 6000" },
320 	{ 0x8086, 0x4238, "Intel(R) PRO/Wireless 6000" },
321 	{ 0x8086, 0x4239, "Intel(R) PRO/Wireless 6000" },
322 	{ 0x8086, 0x422B, "Intel(R) PRO/Wireless 6000" },
323 	{ 0x8086, 0x422C, "Intel(R) PRO/Wireless 6000" },
324 	{ 0x8086, 0x0086, "Intel(R) PRO/Wireless 6050" },
325 	{ 0x8086, 0x0087, "Intel(R) PRO/Wireless 6050" },
326 	{ 0, 0, NULL }
327 };
328 
329 static const struct iwn_hal iwn4965_hal = {
330 	iwn4965_load_firmware,
331 	iwn4965_read_eeprom,
332 	iwn4965_post_alive,
333 	iwn4965_nic_config,
334 	iwn4965_update_sched,
335 	iwn4965_get_temperature,
336 	iwn4965_get_rssi,
337 	iwn4965_set_txpower,
338 	iwn4965_init_gains,
339 	iwn4965_set_gains,
340 	iwn4965_add_node,
341 	iwn4965_tx_done,
342 #if 0	/* HT */
343 	iwn4965_ampdu_tx_start,
344 	iwn4965_ampdu_tx_stop,
345 #endif
346 	IWN4965_NTXQUEUES,
347 	IWN4965_NDMACHNLS,
348 	IWN4965_ID_BROADCAST,
349 	IWN4965_RXONSZ,
350 	IWN4965_SCHEDSZ,
351 	IWN4965_FW_TEXT_MAXSZ,
352 	IWN4965_FW_DATA_MAXSZ,
353 	IWN4965_FWSZ,
354 	IWN4965_SCHED_TXFACT
355 };
356 
357 static const struct iwn_hal iwn5000_hal = {
358 	iwn5000_load_firmware,
359 	iwn5000_read_eeprom,
360 	iwn5000_post_alive,
361 	iwn5000_nic_config,
362 	iwn5000_update_sched,
363 	iwn5000_get_temperature,
364 	iwn5000_get_rssi,
365 	iwn5000_set_txpower,
366 	iwn5000_init_gains,
367 	iwn5000_set_gains,
368 	iwn5000_add_node,
369 	iwn5000_tx_done,
370 #if 0	/* HT */
371 	iwn5000_ampdu_tx_start,
372 	iwn5000_ampdu_tx_stop,
373 #endif
374 	IWN5000_NTXQUEUES,
375 	IWN5000_NDMACHNLS,
376 	IWN5000_ID_BROADCAST,
377 	IWN5000_RXONSZ,
378 	IWN5000_SCHEDSZ,
379 	IWN5000_FW_TEXT_MAXSZ,
380 	IWN5000_FW_DATA_MAXSZ,
381 	IWN5000_FWSZ,
382 	IWN5000_SCHED_TXFACT
383 };
384 
385 static int
386 iwn_pci_probe(device_t dev)
387 {
388 	const struct iwn_ident *ident;
389 
390 	/* no wlan serializer needed */
391 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
392 		if (pci_get_vendor(dev) == ident->vendor &&
393 		    pci_get_device(dev) == ident->device) {
394 			device_set_desc(dev, ident->name);
395 			return 0;
396 		}
397 	}
398 	return ENXIO;
399 }
400 
401 static int
402 iwn_pci_attach(device_t dev)
403 {
404 	struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
405 	struct ieee80211com *ic;
406 	struct ifnet *ifp;
407 	const struct iwn_hal *hal;
408 	uint32_t tmp;
409 	int i, error, result;
410 	uint8_t macaddr[IEEE80211_ADDR_LEN];
411 
412 	wlan_serialize_enter();
413 
414 	sc->sc_dev = dev;
415 	sc->sc_dmat = NULL;
416 
417 	if (bus_dma_tag_create(sc->sc_dmat,
418 			1, 0,
419 			BUS_SPACE_MAXADDR_32BIT,
420 			BUS_SPACE_MAXADDR,
421 			NULL, NULL,
422 			BUS_SPACE_MAXSIZE,
423 			IWN_MAX_SCATTER,
424 			BUS_SPACE_MAXSIZE,
425 			BUS_DMA_ALLOCNOW,
426 			&sc->sc_dmat)) {
427 		device_printf(dev, "cannot allocate DMA tag\n");
428 		error = ENOMEM;
429 		goto fail;
430 	}
431 
432 
433 
434 	/* prepare sysctl tree for use in sub modules */
435 	sysctl_ctx_init(&sc->sc_sysctl_ctx);
436 	sc->sc_sysctl_tree = SYSCTL_ADD_NODE(&sc->sc_sysctl_ctx,
437 		SYSCTL_STATIC_CHILDREN(_hw),
438 		OID_AUTO,
439 		device_get_nameunit(sc->sc_dev),
440 		CTLFLAG_RD, 0, "");
441 
442 	/*
443 	 * Get the offset of the PCI Express Capability Structure in PCI
444 	 * Configuration Space.
445 	 */
446 	error = pci_find_extcap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
447 	if (error != 0) {
448 		device_printf(dev, "PCIe capability structure not found!\n");
449 		goto fail2;
450 	}
451 
452 	/* Clear device-specific "PCI retry timeout" register (41h). */
453 	pci_write_config(dev, 0x41, 0, 1);
454 
455 	/* Hardware bug workaround. */
456 	tmp = pci_read_config(dev, PCIR_COMMAND, 1);
457 	if (tmp & PCIM_CMD_INTxDIS) {
458 		DPRINTF(sc, IWN_DEBUG_RESET, "%s: PCIe INTx Disable set\n",
459 		    __func__);
460 		tmp &= ~PCIM_CMD_INTxDIS;
461 		pci_write_config(dev, PCIR_COMMAND, tmp, 1);
462 	}
463 
464 	/* Enable bus-mastering. */
465 	pci_enable_busmaster(dev);
466 
467 	sc->mem_rid = PCIR_BAR(0);
468 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
469 	    RF_ACTIVE);
470 	if (sc->mem == NULL ) {
471 		device_printf(dev, "could not allocate memory resources\n");
472 		error = ENOMEM;
473 		goto fail2;
474 	}
475 
476 	sc->sc_st = rman_get_bustag(sc->mem);
477 	sc->sc_sh = rman_get_bushandle(sc->mem);
478 	sc->irq_rid = 0;
479 	if ((result = pci_msi_count(dev)) == 1 &&
480 	    pci_alloc_msi(dev, &result) == 0)
481 		sc->irq_rid = 1;
482 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
483 	    RF_ACTIVE | RF_SHAREABLE);
484 	if (sc->irq == NULL) {
485 		device_printf(dev, "could not allocate interrupt resource\n");
486 		error = ENOMEM;
487 		goto fail;
488 	}
489 
490 	callout_init(&sc->sc_timer_to);
491 	TASK_INIT(&sc->sc_reinit_task, 0, iwn_hw_reset_task, sc );
492 	TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on_task, sc );
493 	TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off_task, sc );
494 
495 	/* Attach Hardware Abstraction Layer. */
496 	hal = iwn_hal_attach(sc);
497 	if (hal == NULL) {
498 		error = ENXIO;	/* XXX: Wrong error code? */
499 		goto fail;
500 	}
501 
502 	error = iwn_hw_prepare(sc);
503 	if (error != 0) {
504 		device_printf(dev, "hardware not ready, error %d\n", error);
505 		goto fail;
506 	}
507 
508 	/* Allocate DMA memory for firmware transfers. */
509 	error = iwn_alloc_fwmem(sc);
510 	if (error != 0) {
511 		device_printf(dev,
512 		    "could not allocate memory for firmware, error %d\n",
513 		    error);
514 		goto fail;
515 	}
516 
517 	/* Allocate "Keep Warm" page. */
518 	error = iwn_alloc_kw(sc);
519 	if (error != 0) {
520 		device_printf(dev,
521 		    "could not allocate \"Keep Warm\" page, error %d\n", error);
522 		goto fail;
523 	}
524 
525 	/* Allocate ICT table for 5000 Series. */
526 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
527 	    (error = iwn_alloc_ict(sc)) != 0) {
528 		device_printf(dev,
529 		    "%s: could not allocate ICT table, error %d\n",
530 		    __func__, error);
531 		goto fail;
532 	}
533 
534 	/* Allocate TX scheduler "rings". */
535 	error = iwn_alloc_sched(sc);
536 	if (error != 0) {
537 		device_printf(dev,
538 		    "could not allocate TX scheduler rings, error %d\n",
539 		    error);
540 		goto fail;
541 	}
542 
543 	/* Allocate TX rings (16 on 4965AGN, 20 on 5000). */
544 	for (i = 0; i < hal->ntxqs; i++) {
545 		error = iwn_alloc_tx_ring(sc, &sc->txq[i], i);
546 		if (error != 0) {
547 			device_printf(dev,
548 			    "could not allocate Tx ring %d, error %d\n",
549 			    i, error);
550 			goto fail;
551 		}
552 	}
553 
554 	/* Allocate RX ring. */
555 	error = iwn_alloc_rx_ring(sc, &sc->rxq);
556 	if (error != 0 ){
557 		device_printf(dev,
558 		    "could not allocate Rx ring, error %d\n", error);
559 		goto fail;
560 	}
561 
562 	/* Clear pending interrupts. */
563 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
564 
565 	/* Count the number of available chains. */
566 	sc->ntxchains =
567 	    ((sc->txchainmask >> 2) & 1) +
568 	    ((sc->txchainmask >> 1) & 1) +
569 	    ((sc->txchainmask >> 0) & 1);
570 	sc->nrxchains =
571 	    ((sc->rxchainmask >> 2) & 1) +
572 	    ((sc->rxchainmask >> 1) & 1) +
573 	    ((sc->rxchainmask >> 0) & 1);
574 
575 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
576 	if (ifp == NULL) {
577 		device_printf(dev, "can not allocate ifnet structure\n");
578 		goto fail;
579 	}
580 	ic = ifp->if_l2com;
581 
582 	ic->ic_ifp = ifp;
583 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
584 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
585 
586 	/* Set device capabilities. */
587 	ic->ic_caps =
588 		  IEEE80211_C_STA		/* station mode supported */
589 		| IEEE80211_C_MONITOR		/* monitor mode supported */
590 		| IEEE80211_C_TXPMGT		/* tx power management */
591 		| IEEE80211_C_SHSLOT		/* short slot time supported */
592 		| IEEE80211_C_WPA
593 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
594 		| IEEE80211_C_BGSCAN		/* background scanning */
595 #if 0
596 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
597 #endif
598 		| IEEE80211_C_WME		/* WME */
599 		;
600 #if 0	/* HT */
601 	/* XXX disable until HT channel setup works */
602 	ic->ic_htcaps =
603 		  IEEE80211_HTCAP_SMPS_ENA	/* SM PS mode enabled */
604 		| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width */
605 		| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
606 		| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
607 		| IEEE80211_HTCAP_RXSTBC_2STREAM/* 1-2 spatial streams */
608 		| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
609 		/* s/w capabilities */
610 		| IEEE80211_HTC_HT		/* HT operation */
611 		| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
612 		| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
613 		;
614 
615 	/* Set HT capabilities. */
616 	ic->ic_htcaps =
617 #if IWN_RBUF_SIZE == 8192
618 	    IEEE80211_HTCAP_AMSDU7935 |
619 #endif
620 	    IEEE80211_HTCAP_CBW20_40 |
621 	    IEEE80211_HTCAP_SGI20 |
622 	    IEEE80211_HTCAP_SGI40;
623 	if (sc->hw_type != IWN_HW_REV_TYPE_4965)
624 		ic->ic_htcaps |= IEEE80211_HTCAP_GF;
625 	if (sc->hw_type == IWN_HW_REV_TYPE_6050)
626 		ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
627 	else
628 		ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
629 #endif
630 
631 	/* Read MAC address, channels, etc from EEPROM. */
632 	error = iwn_read_eeprom(sc, macaddr);
633 	if (error != 0) {
634 		device_printf(dev, "could not read EEPROM, error %d\n",
635 		    error);
636 		goto fail;
637 	}
638 
639 	device_printf(sc->sc_dev, "MIMO %dT%dR, %.4s, address %6D\n",
640 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
641 	    macaddr, ":");
642 
643 #if 0	/* HT */
644 	/* Set supported HT rates. */
645 	ic->ic_sup_mcs[0] = 0xff;
646 	if (sc->nrxchains > 1)
647 		ic->ic_sup_mcs[1] = 0xff;
648 	if (sc->nrxchains > 2)
649 		ic->ic_sup_mcs[2] = 0xff;
650 #endif
651 
652 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
653 	ifp->if_softc = sc;
654 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
655 	ifp->if_init = iwn_init;
656 	ifp->if_ioctl = iwn_ioctl;
657 	ifp->if_start = iwn_start;
658 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
659 	ifq_set_ready(&ifp->if_snd);
660 
661 	ieee80211_ifattach(ic, macaddr);
662 	ic->ic_vap_create = iwn_vap_create;
663 	ic->ic_vap_delete = iwn_vap_delete;
664 	ic->ic_raw_xmit = iwn_raw_xmit;
665 	ic->ic_node_alloc = iwn_node_alloc;
666 	ic->ic_newassoc = iwn_newassoc;
667 	ic->ic_wme.wme_update = iwn_wme_update;
668 	ic->ic_update_mcast = iwn_update_mcast;
669 	ic->ic_scan_start = iwn_scan_start;
670 	ic->ic_scan_end = iwn_scan_end;
671 	ic->ic_set_channel = iwn_set_channel;
672 	ic->ic_scan_curchan = iwn_scan_curchan;
673 	ic->ic_scan_mindwell = iwn_scan_mindwell;
674 	ic->ic_setregdomain = iwn_setregdomain;
675 #if 0	/* HT */
676 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
677 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
678 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
679 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
680 #endif
681 
682 	iwn_radiotap_attach(sc);
683 	iwn_sysctlattach(sc);
684 
685 	/*
686 	 * Hook our interrupt after all initialization is complete.
687 	 */
688 	error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
689 			       iwn_intr, sc, &sc->sc_ih,
690 			       &wlan_global_serializer);
691 	if (error != 0) {
692 		device_printf(dev, "could not set up interrupt, error %d\n",
693 		    error);
694 		goto fail;
695 	}
696 
697 	ieee80211_announce(ic);
698 	wlan_serialize_exit();
699 	return 0;
700 fail:
701 	iwn_cleanup(dev);
702 fail2:
703 	wlan_serialize_exit();
704 	return error;
705 }
706 
707 static const struct iwn_hal *
708 iwn_hal_attach(struct iwn_softc *sc)
709 {
710 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
711 
712 	switch (sc->hw_type) {
713 	case IWN_HW_REV_TYPE_4965:
714 		sc->sc_hal = &iwn4965_hal;
715 		sc->limits = &iwn4965_sensitivity_limits;
716 		sc->fwname = "iwn4965fw";
717 		sc->txchainmask = IWN_ANT_AB;
718 		sc->rxchainmask = IWN_ANT_ABC;
719 		break;
720 	case IWN_HW_REV_TYPE_5100:
721 		sc->sc_hal = &iwn5000_hal;
722 		sc->limits = &iwn5000_sensitivity_limits;
723 		sc->fwname = "iwn5000fw";
724 		sc->txchainmask = IWN_ANT_B;
725 		sc->rxchainmask = IWN_ANT_AB;
726 		break;
727 	case IWN_HW_REV_TYPE_5150:
728 		sc->sc_hal = &iwn5000_hal;
729 		sc->limits = &iwn5150_sensitivity_limits;
730 		sc->fwname = "iwn5150fw";
731 		sc->txchainmask = IWN_ANT_A;
732 		sc->rxchainmask = IWN_ANT_AB;
733 		break;
734 	case IWN_HW_REV_TYPE_5300:
735 	case IWN_HW_REV_TYPE_5350:
736 		sc->sc_hal = &iwn5000_hal;
737 		sc->limits = &iwn5000_sensitivity_limits;
738 		sc->fwname = "iwn5000fw";
739 		sc->txchainmask = IWN_ANT_ABC;
740 		sc->rxchainmask = IWN_ANT_ABC;
741 		break;
742 	case IWN_HW_REV_TYPE_1000:
743 		sc->sc_hal = &iwn5000_hal;
744 		sc->limits = &iwn1000_sensitivity_limits;
745 		sc->fwname = "iwn1000fw";
746 		sc->txchainmask = IWN_ANT_A;
747 		sc->rxchainmask = IWN_ANT_AB;
748 		break;
749 	case IWN_HW_REV_TYPE_6000:
750 		sc->sc_hal = &iwn5000_hal;
751 		sc->limits = &iwn6000_sensitivity_limits;
752 		sc->fwname = "iwn6000fw";
753 		switch (pci_get_device(sc->sc_dev)) {
754 		case 0x422C:
755 		case 0x4239:
756 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
757 			sc->txchainmask = IWN_ANT_BC;
758 			sc->rxchainmask = IWN_ANT_BC;
759 			break;
760 		default:
761 			sc->txchainmask = IWN_ANT_ABC;
762 			sc->rxchainmask = IWN_ANT_ABC;
763 			break;
764 		}
765 		break;
766 	case IWN_HW_REV_TYPE_6050:
767 		sc->sc_hal = &iwn5000_hal;
768 		sc->limits = &iwn6000_sensitivity_limits;
769 		sc->fwname = "iwn6000fw";
770 		sc->txchainmask = IWN_ANT_AB;
771 		sc->rxchainmask = IWN_ANT_AB;
772 		break;
773 	default:
774 		device_printf(sc->sc_dev, "adapter type %d not supported\n",
775 		    sc->hw_type);
776 		return NULL;
777 	}
778 	return sc->sc_hal;
779 }
780 
781 /*
782  * Attach the interface to 802.11 radiotap.
783  */
784 static void
785 iwn_radiotap_attach(struct iwn_softc *sc)
786 {
787 	struct ifnet *ifp = sc->sc_ifp;
788 	struct ieee80211com *ic = ifp->if_l2com;
789 
790 	ieee80211_radiotap_attach(ic,
791 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
792 		IWN_TX_RADIOTAP_PRESENT,
793 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
794 		IWN_RX_RADIOTAP_PRESENT);
795 }
796 
797 static struct ieee80211vap *
798 iwn_vap_create(struct ieee80211com *ic,
799 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
800 	const uint8_t bssid[IEEE80211_ADDR_LEN],
801 	const uint8_t mac[IEEE80211_ADDR_LEN])
802 {
803 	struct iwn_vap *ivp;
804 	struct ieee80211vap *vap;
805 
806 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
807 		return NULL;
808 	ivp = (struct iwn_vap *) kmalloc(sizeof(struct iwn_vap),
809 	    M_80211_VAP, M_INTWAIT | M_ZERO);
810 	if (ivp == NULL)
811 		return NULL;
812 	vap = &ivp->iv_vap;
813 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
814 	vap->iv_bmissthreshold = 10;		/* override default */
815 	/* Override with driver methods. */
816 	ivp->iv_newstate = vap->iv_newstate;
817 	vap->iv_newstate = iwn_newstate;
818 
819 	ieee80211_ratectl_init(vap);
820 	/* Complete setup. */
821 	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status);
822 	ic->ic_opmode = opmode;
823 	return vap;
824 }
825 
826 static void
827 iwn_vap_delete(struct ieee80211vap *vap)
828 {
829 	struct iwn_vap *ivp = IWN_VAP(vap);
830 
831 	ieee80211_ratectl_deinit(vap);
832 	ieee80211_vap_detach(vap);
833 	kfree(ivp, M_80211_VAP);
834 }
835 
836 static int
837 iwn_cleanup(device_t dev)
838 {
839 	struct iwn_softc *sc = device_get_softc(dev);
840 	struct ifnet *ifp = sc->sc_ifp;
841 	struct ieee80211com *ic;
842 	int i;
843 
844 	if (ifp != NULL) {
845 		ic = ifp->if_l2com;
846 
847 		ieee80211_draintask(ic, &sc->sc_reinit_task);
848 		ieee80211_draintask(ic, &sc->sc_radioon_task);
849 		ieee80211_draintask(ic, &sc->sc_radiooff_task);
850 
851 		iwn_stop(sc);
852 		callout_stop(&sc->sc_timer_to);
853 		ieee80211_ifdetach(ic);
854 	}
855 
856 	/* cleanup sysctl nodes */
857 	sysctl_ctx_free(&sc->sc_sysctl_ctx);
858 
859 	/* Free DMA resources. */
860 	iwn_free_rx_ring(sc, &sc->rxq);
861 	if (sc->sc_hal != NULL)
862 		for (i = 0; i < sc->sc_hal->ntxqs; i++)
863 			iwn_free_tx_ring(sc, &sc->txq[i]);
864 	iwn_free_sched(sc);
865 	iwn_free_kw(sc);
866 	if (sc->ict != NULL) {
867 		iwn_free_ict(sc);
868 		sc->ict = NULL;
869 	}
870 	iwn_free_fwmem(sc);
871 
872 	if (sc->irq != NULL) {
873 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
874 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
875 		if (sc->irq_rid == 1)
876 			pci_release_msi(dev);
877 		sc->irq = NULL;
878 	}
879 
880 	if (sc->mem != NULL) {
881 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
882 		sc->mem = NULL;
883 	}
884 
885 	if (ifp != NULL) {
886 		if_free(ifp);
887 		sc->sc_ifp = NULL;
888 	}
889 
890 	return 0;
891 }
892 
893 static int
894 iwn_pci_detach(device_t dev)
895 {
896 	struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
897 
898 	wlan_serialize_enter();
899 	iwn_cleanup(dev);
900 	bus_dma_tag_destroy(sc->sc_dmat);
901 	wlan_serialize_exit();
902 
903 	return 0;
904 }
905 
906 static int
907 iwn_nic_lock(struct iwn_softc *sc)
908 {
909 	int ntries;
910 
911 	/* Request exclusive access to NIC. */
912 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
913 
914 	/* Spin until we actually get the lock. */
915 	for (ntries = 0; ntries < 1000; ntries++) {
916 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
917 		    (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
918 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
919 			return 0;
920 		DELAY(10);
921 	}
922 	return ETIMEDOUT;
923 }
924 
925 static __inline void
926 iwn_nic_unlock(struct iwn_softc *sc)
927 {
928 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
929 }
930 
931 static __inline uint32_t
932 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
933 {
934 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
935 	IWN_BARRIER_READ_WRITE(sc);
936 	return IWN_READ(sc, IWN_PRPH_RDATA);
937 }
938 
939 static __inline void
940 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
941 {
942 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
943 	IWN_BARRIER_WRITE(sc);
944 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
945 }
946 
947 static __inline void
948 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
949 {
950 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
951 }
952 
953 static __inline void
954 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
955 {
956 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
957 }
958 
959 static __inline void
960 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
961     const uint32_t *data, int count)
962 {
963 	for (; count > 0; count--, data++, addr += 4)
964 		iwn_prph_write(sc, addr, *data);
965 }
966 
967 static __inline uint32_t
968 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
969 {
970 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
971 	IWN_BARRIER_READ_WRITE(sc);
972 	return IWN_READ(sc, IWN_MEM_RDATA);
973 }
974 
975 static __inline void
976 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
977 {
978 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
979 	IWN_BARRIER_WRITE(sc);
980 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
981 }
982 
983 static __inline void
984 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
985 {
986 	uint32_t tmp;
987 
988 	tmp = iwn_mem_read(sc, addr & ~3);
989 	if (addr & 3)
990 		tmp = (tmp & 0x0000ffff) | data << 16;
991 	else
992 		tmp = (tmp & 0xffff0000) | data;
993 	iwn_mem_write(sc, addr & ~3, tmp);
994 }
995 
996 static __inline void
997 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
998     int count)
999 {
1000 	for (; count > 0; count--, addr += 4)
1001 		*data++ = iwn_mem_read(sc, addr);
1002 }
1003 
1004 static __inline void
1005 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1006     int count)
1007 {
1008 	for (; count > 0; count--, addr += 4)
1009 		iwn_mem_write(sc, addr, val);
1010 }
1011 
1012 static int
1013 iwn_eeprom_lock(struct iwn_softc *sc)
1014 {
1015 	int i, ntries;
1016 
1017 	for (i = 0; i < 100; i++) {
1018 		/* Request exclusive access to EEPROM. */
1019 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1020 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1021 
1022 		/* Spin until we actually get the lock. */
1023 		for (ntries = 0; ntries < 100; ntries++) {
1024 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1025 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1026 				return 0;
1027 			DELAY(10);
1028 		}
1029 	}
1030 	return ETIMEDOUT;
1031 }
1032 
1033 static __inline void
1034 iwn_eeprom_unlock(struct iwn_softc *sc)
1035 {
1036 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1037 }
1038 
1039 /*
1040  * Initialize access by host to One Time Programmable ROM.
1041  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1042  */
1043 static int
1044 iwn_init_otprom(struct iwn_softc *sc)
1045 {
1046 	uint16_t prev, base, next;
1047 	int count, error;
1048 
1049 	/* Wait for clock stabilization before accessing prph. */
1050 	error = iwn_clock_wait(sc);
1051 	if (error != 0)
1052 		return error;
1053 
1054 	error = iwn_nic_lock(sc);
1055 	if (error != 0)
1056 		return error;
1057 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1058 	DELAY(5);
1059 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1060 	iwn_nic_unlock(sc);
1061 
1062 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1063 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1064 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1065 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1066 	}
1067 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1068 	/* Clear ECC status. */
1069 	IWN_SETBITS(sc, IWN_OTP_GP,
1070 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1071 
1072 	/*
1073 	 * Find the block before last block (contains the EEPROM image)
1074 	 * for HW without OTP shadow RAM.
1075 	 */
1076 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1077 		/* Switch to absolute addressing mode. */
1078 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1079 		base = prev = 0;
1080 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1081 			error = iwn_read_prom_data(sc, base, &next, 2);
1082 			if (error != 0)
1083 				return error;
1084 			if (next == 0)	/* End of linked-list. */
1085 				break;
1086 			prev = base;
1087 			base = le16toh(next);
1088 		}
1089 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1090 			return EIO;
1091 		/* Skip "next" word. */
1092 		sc->prom_base = prev + 1;
1093 	}
1094 	return 0;
1095 }
1096 
1097 static int
1098 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1099 {
1100 	uint32_t val, tmp;
1101 	int ntries;
1102 	uint8_t *out = data;
1103 
1104 	addr += sc->prom_base;
1105 	for (; count > 0; count -= 2, addr++) {
1106 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1107 		for (ntries = 0; ntries < 10; ntries++) {
1108 			val = IWN_READ(sc, IWN_EEPROM);
1109 			if (val & IWN_EEPROM_READ_VALID)
1110 				break;
1111 			DELAY(5);
1112 		}
1113 		if (ntries == 10) {
1114 			device_printf(sc->sc_dev,
1115 			    "timeout reading ROM at 0x%x\n", addr);
1116 			return ETIMEDOUT;
1117 		}
1118 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1119 			/* OTPROM, check for ECC errors. */
1120 			tmp = IWN_READ(sc, IWN_OTP_GP);
1121 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1122 				device_printf(sc->sc_dev,
1123 				    "OTPROM ECC error at 0x%x\n", addr);
1124 				return EIO;
1125 			}
1126 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1127 				/* Correctable ECC error, clear bit. */
1128 				IWN_SETBITS(sc, IWN_OTP_GP,
1129 				    IWN_OTP_GP_ECC_CORR_STTS);
1130 			}
1131 		}
1132 		*out++ = val >> 16;
1133 		if (count > 1)
1134 			*out++ = val >> 24;
1135 	}
1136 	return 0;
1137 }
1138 
1139 static void
1140 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1141 {
1142 	if (error != 0)
1143 		return;
1144 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1145 	*(bus_addr_t *)arg = segs[0].ds_addr;
1146 }
1147 
1148 static int
1149 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1150 	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
1151 {
1152 	int error;
1153 
1154 	dma->size = size;
1155 	dma->tag = NULL;
1156 
1157 	error = bus_dma_tag_create(sc->sc_dmat, alignment,
1158 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1159 	    1, size, flags, &dma->tag);
1160 	if (error != 0) {
1161 		device_printf(sc->sc_dev,
1162 		    "%s: bus_dma_tag_create failed, error %d\n",
1163 		    __func__, error);
1164 		goto fail;
1165 	}
1166 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1167 	    flags | BUS_DMA_ZERO, &dma->map);
1168 	if (error != 0) {
1169 		device_printf(sc->sc_dev,
1170 		    "%s: bus_dmamem_alloc failed, error %d\n", __func__, error);
1171 		goto fail;
1172 	}
1173 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
1174 	    size, iwn_dma_map_addr, &dma->paddr, flags);
1175 	if (error != 0) {
1176 		device_printf(sc->sc_dev,
1177 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1178 		goto fail;
1179 	}
1180 
1181 	if (kvap != NULL)
1182 		*kvap = dma->vaddr;
1183 	return 0;
1184 fail:
1185 	iwn_dma_contig_free(dma);
1186 	return error;
1187 }
1188 
1189 static void
1190 iwn_dma_contig_free(struct iwn_dma_info *dma)
1191 {
1192 	if (dma->tag != NULL) {
1193 		if (dma->map != NULL) {
1194 			if (dma->paddr == 0) {
1195 				bus_dmamap_sync(dma->tag, dma->map,
1196 				    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1197 				bus_dmamap_unload(dma->tag, dma->map);
1198 			}
1199 			bus_dmamap_destroy(dma->tag, dma->map);
1200 		}
1201 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1202 		bus_dma_tag_destroy(dma->tag);
1203 	}
1204 }
1205 
1206 static int
1207 iwn_alloc_sched(struct iwn_softc *sc)
1208 {
1209 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1210 	return iwn_dma_contig_alloc(sc, &sc->sched_dma,
1211 	    (void **)&sc->sched, sc->sc_hal->schedsz, 1024, BUS_DMA_NOWAIT);
1212 }
1213 
1214 static void
1215 iwn_free_sched(struct iwn_softc *sc)
1216 {
1217 	iwn_dma_contig_free(&sc->sched_dma);
1218 }
1219 
1220 static int
1221 iwn_alloc_kw(struct iwn_softc *sc)
1222 {
1223 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1224 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096,
1225 	    BUS_DMA_NOWAIT);
1226 }
1227 
1228 static void
1229 iwn_free_kw(struct iwn_softc *sc)
1230 {
1231 	iwn_dma_contig_free(&sc->kw_dma);
1232 }
1233 
1234 static int
1235 iwn_alloc_ict(struct iwn_softc *sc)
1236 {
1237 	/* ICT table must be aligned on a 4KB boundary. */
1238 	return iwn_dma_contig_alloc(sc, &sc->ict_dma,
1239 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096, BUS_DMA_NOWAIT);
1240 }
1241 
1242 static void
1243 iwn_free_ict(struct iwn_softc *sc)
1244 {
1245 	iwn_dma_contig_free(&sc->ict_dma);
1246 }
1247 
1248 static int
1249 iwn_alloc_fwmem(struct iwn_softc *sc)
1250 {
1251 	/* Must be aligned on a 16-byte boundary. */
1252 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL,
1253 	    sc->sc_hal->fwsz, 16, BUS_DMA_NOWAIT);
1254 }
1255 
1256 static void
1257 iwn_free_fwmem(struct iwn_softc *sc)
1258 {
1259 	iwn_dma_contig_free(&sc->fw_dma);
1260 }
1261 
1262 static int
1263 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1264 {
1265 	bus_size_t size;
1266 	int i, error;
1267 
1268 	ring->cur = 0;
1269 
1270 	/* Allocate RX descriptors (256-byte aligned). */
1271 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1272 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma,
1273 	    (void **)&ring->desc, size, 256, BUS_DMA_NOWAIT);
1274 	if (error != 0) {
1275 		device_printf(sc->sc_dev,
1276 		    "%s: could not allocate Rx ring DMA memory, error %d\n",
1277 		    __func__, error);
1278 		goto fail;
1279 	}
1280 
1281 	error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
1282 	    BUS_SPACE_MAXADDR_32BIT,
1283 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
1284 	    MCLBYTES, BUS_DMA_NOWAIT, &ring->data_dmat);
1285 	if (error != 0) {
1286 		device_printf(sc->sc_dev,
1287 		    "%s: bus_dma_tag_create_failed, error %d\n",
1288 		    __func__, error);
1289 		goto fail;
1290 	}
1291 
1292 	/* Allocate RX status area (16-byte aligned). */
1293 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma,
1294 	    (void **)&ring->stat, sizeof (struct iwn_rx_status),
1295 	    16, BUS_DMA_NOWAIT);
1296 	if (error != 0) {
1297 		device_printf(sc->sc_dev,
1298 		    "%s: could not allocate Rx status DMA memory, error %d\n",
1299 		    __func__, error);
1300 		goto fail;
1301 	}
1302 
1303 	/*
1304 	 * Allocate and map RX buffers.
1305 	 */
1306 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1307 		struct iwn_rx_data *data = &ring->data[i];
1308 		bus_addr_t paddr;
1309 
1310 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1311 		if (error != 0) {
1312 			device_printf(sc->sc_dev,
1313 			    "%s: bus_dmamap_create failed, error %d\n",
1314 			    __func__, error);
1315 			goto fail;
1316 		}
1317 
1318 		data->m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1319 		if (data->m == NULL) {
1320 			device_printf(sc->sc_dev,
1321 			    "%s: could not allocate rx mbuf\n", __func__);
1322 			error = ENOMEM;
1323 			goto fail;
1324 		}
1325 
1326 		/* Map page. */
1327 		error = bus_dmamap_load(ring->data_dmat, data->map,
1328 		    mtod(data->m, caddr_t), MCLBYTES,
1329 		    iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1330 		if (error != 0 && error != EFBIG) {
1331 			device_printf(sc->sc_dev,
1332 			    "%s: bus_dmamap_load failed, error %d\n",
1333 			    __func__, error);
1334 			m_freem(data->m);
1335 			error = ENOMEM;	/* XXX unique code */
1336 			goto fail;
1337 		}
1338 		bus_dmamap_sync(ring->data_dmat, data->map,
1339 		    BUS_DMASYNC_PREWRITE);
1340 
1341 		/* Set physical address of RX buffer (256-byte aligned). */
1342 		ring->desc[i] = htole32(paddr >> 8);
1343 	}
1344 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1345 	    BUS_DMASYNC_PREWRITE);
1346 	return 0;
1347 fail:
1348 	iwn_free_rx_ring(sc, ring);
1349 	return error;
1350 }
1351 
1352 static void
1353 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1354 {
1355 	int ntries;
1356 
1357 	if (iwn_nic_lock(sc) == 0) {
1358 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1359 		for (ntries = 0; ntries < 1000; ntries++) {
1360 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1361 			    IWN_FH_RX_STATUS_IDLE)
1362 				break;
1363 			DELAY(10);
1364 		}
1365 		iwn_nic_unlock(sc);
1366 #ifdef IWN_DEBUG
1367 		if (ntries == 1000)
1368 			DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
1369 			    "timeout resetting Rx ring");
1370 #endif
1371 	}
1372 	ring->cur = 0;
1373 	sc->last_rx_valid = 0;
1374 }
1375 
1376 static void
1377 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1378 {
1379 	int i;
1380 
1381 	iwn_dma_contig_free(&ring->desc_dma);
1382 	iwn_dma_contig_free(&ring->stat_dma);
1383 
1384 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1385 		struct iwn_rx_data *data = &ring->data[i];
1386 
1387 		if (data->m != NULL) {
1388 			bus_dmamap_sync(ring->data_dmat, data->map,
1389 			    BUS_DMASYNC_POSTREAD);
1390 			bus_dmamap_unload(ring->data_dmat, data->map);
1391 			m_freem(data->m);
1392 		}
1393 		if (data->map != NULL)
1394 			bus_dmamap_destroy(ring->data_dmat, data->map);
1395 	}
1396 }
1397 
1398 static int
1399 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1400 {
1401 	bus_size_t size;
1402 	bus_addr_t paddr;
1403 	int i, error;
1404 
1405 	ring->qid = qid;
1406 	ring->queued = 0;
1407 	ring->cur = 0;
1408 
1409 	/* Allocate TX descriptors (256-byte aligned.) */
1410 	size = IWN_TX_RING_COUNT * sizeof(struct iwn_tx_desc);
1411 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma,
1412 	    (void **)&ring->desc, size, 256, BUS_DMA_NOWAIT);
1413 	if (error != 0) {
1414 		device_printf(sc->sc_dev,
1415 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1416 		    __func__, error);
1417 		goto fail;
1418 	}
1419 
1420 	/*
1421 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1422 	 * to allocate commands space for other rings.
1423 	 */
1424 	if (qid > 4)
1425 		return 0;
1426 
1427 	size = IWN_TX_RING_COUNT * sizeof(struct iwn_tx_cmd);
1428 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma,
1429 	    (void **)&ring->cmd, size, 4, BUS_DMA_NOWAIT);
1430 	if (error != 0) {
1431 		device_printf(sc->sc_dev,
1432 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1433 		    __func__, error);
1434 		goto fail;
1435 	}
1436 
1437 	error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
1438 	    BUS_SPACE_MAXADDR_32BIT,
1439 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IWN_MAX_SCATTER - 1,
1440 	    MCLBYTES, BUS_DMA_NOWAIT, &ring->data_dmat);
1441 	if (error != 0) {
1442 		device_printf(sc->sc_dev,
1443 		    "%s: bus_dma_tag_create_failed, error %d\n",
1444 		    __func__, error);
1445 		goto fail;
1446 	}
1447 
1448 	paddr = ring->cmd_dma.paddr;
1449 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1450 		struct iwn_tx_data *data = &ring->data[i];
1451 
1452 		data->cmd_paddr = paddr;
1453 		data->scratch_paddr = paddr + 12;
1454 		paddr += sizeof (struct iwn_tx_cmd);
1455 
1456 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1457 		if (error != 0) {
1458 			device_printf(sc->sc_dev,
1459 			    "%s: bus_dmamap_create failed, error %d\n",
1460 			    __func__, error);
1461 			goto fail;
1462 		}
1463 		bus_dmamap_sync(ring->data_dmat, data->map,
1464 		    BUS_DMASYNC_PREWRITE);
1465 	}
1466 	return 0;
1467 fail:
1468 	iwn_free_tx_ring(sc, ring);
1469 	return error;
1470 }
1471 
1472 static void
1473 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1474 {
1475 	int i;
1476 
1477 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1478 		struct iwn_tx_data *data = &ring->data[i];
1479 
1480 		if (data->m != NULL) {
1481 			bus_dmamap_unload(ring->data_dmat, data->map);
1482 			m_freem(data->m);
1483 			data->m = NULL;
1484 		}
1485 	}
1486 	/* Clear TX descriptors. */
1487 	memset(ring->desc, 0, ring->desc_dma.size);
1488 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1489 	    BUS_DMASYNC_PREWRITE);
1490 	sc->qfullmsk &= ~(1 << ring->qid);
1491 	ring->queued = 0;
1492 	ring->cur = 0;
1493 }
1494 
1495 static void
1496 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1497 {
1498 	int i;
1499 
1500 	iwn_dma_contig_free(&ring->desc_dma);
1501 	iwn_dma_contig_free(&ring->cmd_dma);
1502 
1503 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1504 		struct iwn_tx_data *data = &ring->data[i];
1505 
1506 		if (data->m != NULL) {
1507 			bus_dmamap_sync(ring->data_dmat, data->map,
1508 			    BUS_DMASYNC_POSTWRITE);
1509 			bus_dmamap_unload(ring->data_dmat, data->map);
1510 			m_freem(data->m);
1511 		}
1512 		if (data->map != NULL)
1513 			bus_dmamap_destroy(ring->data_dmat, data->map);
1514 	}
1515 }
1516 
1517 static void
1518 iwn5000_ict_reset(struct iwn_softc *sc)
1519 {
1520 	/* Disable interrupts. */
1521 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1522 
1523 	/* Reset ICT table. */
1524 	memset(sc->ict, 0, IWN_ICT_SIZE);
1525 	sc->ict_cur = 0;
1526 
1527 	/* Set physical address of ICT table (4KB aligned.) */
1528 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
1529 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1530 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1531 
1532 	/* Enable periodic RX interrupt. */
1533 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1534 	/* Switch to ICT interrupt mode in driver. */
1535 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1536 
1537 	/* Re-enable interrupts. */
1538 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1539 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1540 }
1541 
1542 static int
1543 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1544 {
1545 	const struct iwn_hal *hal = sc->sc_hal;
1546 	int error;
1547 	uint16_t val;
1548 
1549 	/* Check whether adapter has an EEPROM or an OTPROM. */
1550 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1551 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1552 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1553 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
1554 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
1555 
1556 	/* Adapter has to be powered on for EEPROM access to work. */
1557 	error = iwn_apm_init(sc);
1558 	if (error != 0) {
1559 		device_printf(sc->sc_dev,
1560 		    "%s: could not power ON adapter, error %d\n",
1561 		    __func__, error);
1562 		return error;
1563 	}
1564 
1565 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1566 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
1567 		return EIO;
1568 	}
1569 	error = iwn_eeprom_lock(sc);
1570 	if (error != 0) {
1571 		device_printf(sc->sc_dev,
1572 		    "%s: could not lock ROM, error %d\n",
1573 		    __func__, error);
1574 		return error;
1575 	}
1576 
1577 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1578 		error = iwn_init_otprom(sc);
1579 		if (error != 0) {
1580 			device_printf(sc->sc_dev,
1581 			    "%s: could not initialize OTPROM, error %d\n",
1582 			    __func__, error);
1583 			return error;
1584 		}
1585 	}
1586 
1587 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1588 	sc->rfcfg = le16toh(val);
1589 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
1590 
1591 	/* Read MAC address. */
1592 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
1593 
1594 	/* Read adapter-specific information from EEPROM. */
1595 	hal->read_eeprom(sc);
1596 
1597 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1598 
1599 	iwn_eeprom_unlock(sc);
1600 	return 0;
1601 }
1602 
1603 static void
1604 iwn4965_read_eeprom(struct iwn_softc *sc)
1605 {
1606 	uint32_t addr;
1607 	int i;
1608 	uint16_t val;
1609 
1610 	/* Read regulatory domain (4 ASCII characters.) */
1611 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1612 
1613 	/* Read the list of authorized channels (20MHz ones only.) */
1614 	for (i = 0; i < 5; i++) {
1615 		addr = iwn4965_regulatory_bands[i];
1616 		iwn_read_eeprom_channels(sc, i, addr);
1617 	}
1618 
1619 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1620 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1621 	sc->maxpwr2GHz = val & 0xff;
1622 	sc->maxpwr5GHz = val >> 8;
1623 	/* Check that EEPROM values are within valid range. */
1624 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1625 		sc->maxpwr5GHz = 38;
1626 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1627 		sc->maxpwr2GHz = 38;
1628 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
1629 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
1630 
1631 	/* Read samples for each TX power group. */
1632 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1633 	    sizeof sc->bands);
1634 
1635 	/* Read voltage at which samples were taken. */
1636 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1637 	sc->eeprom_voltage = (int16_t)le16toh(val);
1638 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
1639 	    sc->eeprom_voltage);
1640 
1641 #ifdef IWN_DEBUG
1642 	/* Print samples. */
1643 	if (sc->sc_debug & IWN_DEBUG_ANY) {
1644 		for (i = 0; i < IWN_NBANDS; i++)
1645 			iwn4965_print_power_group(sc, i);
1646 	}
1647 #endif
1648 }
1649 
1650 #ifdef IWN_DEBUG
1651 static void
1652 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1653 {
1654 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1655 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1656 	int j, c;
1657 
1658 	kprintf("===band %d===\n", i);
1659 	kprintf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1660 	kprintf("chan1 num=%d\n", chans[0].num);
1661 	for (c = 0; c < 2; c++) {
1662 		for (j = 0; j < IWN_NSAMPLES; j++) {
1663 			kprintf("chain %d, sample %d: temp=%d gain=%d "
1664 			    "power=%d pa_det=%d\n", c, j,
1665 			    chans[0].samples[c][j].temp,
1666 			    chans[0].samples[c][j].gain,
1667 			    chans[0].samples[c][j].power,
1668 			    chans[0].samples[c][j].pa_det);
1669 		}
1670 	}
1671 	kprintf("chan2 num=%d\n", chans[1].num);
1672 	for (c = 0; c < 2; c++) {
1673 		for (j = 0; j < IWN_NSAMPLES; j++) {
1674 			kprintf("chain %d, sample %d: temp=%d gain=%d "
1675 			    "power=%d pa_det=%d\n", c, j,
1676 			    chans[1].samples[c][j].temp,
1677 			    chans[1].samples[c][j].gain,
1678 			    chans[1].samples[c][j].power,
1679 			    chans[1].samples[c][j].pa_det);
1680 		}
1681 	}
1682 }
1683 #endif
1684 
1685 static void
1686 iwn5000_read_eeprom(struct iwn_softc *sc)
1687 {
1688 	struct iwn5000_eeprom_calib_hdr hdr;
1689 	int32_t temp, volt;
1690 	uint32_t addr, base;
1691 	int i;
1692 	uint16_t val;
1693 
1694 	/* Read regulatory domain (4 ASCII characters.) */
1695 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1696 	base = le16toh(val);
1697 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1698 	    sc->eeprom_domain, 4);
1699 
1700 	/* Read the list of authorized channels (20MHz ones only.) */
1701 	for (i = 0; i < 5; i++) {
1702 		addr = base + iwn5000_regulatory_bands[i];
1703 		iwn_read_eeprom_channels(sc, i, addr);
1704 	}
1705 
1706 	/* Read enhanced TX power information for 6000 Series. */
1707 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1708 		iwn_read_eeprom_enhinfo(sc);
1709 
1710 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1711 	base = le16toh(val);
1712 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1713 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
1714 	    "%s: calib version=%u pa type=%u voltage=%u\n",
1715 	    __func__, hdr.version, hdr.pa_type, le16toh(hdr.volt));
1716 	    sc->calib_ver = hdr.version;
1717 
1718 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1719 		/* Compute temperature offset. */
1720 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1721 		temp = le16toh(val);
1722 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1723 		volt = le16toh(val);
1724 		sc->temp_off = temp - (volt / -5);
1725 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
1726 		    temp, volt, sc->temp_off);
1727 	} else {
1728 		/* Read crystal calibration. */
1729 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1730 		    &sc->eeprom_crystal, sizeof (uint32_t));
1731 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
1732 		le32toh(sc->eeprom_crystal));
1733 	}
1734 }
1735 
1736 /*
1737  * Translate EEPROM flags to net80211.
1738  */
1739 static uint32_t
1740 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
1741 {
1742 	uint32_t nflags;
1743 
1744 	nflags = 0;
1745 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
1746 		nflags |= IEEE80211_CHAN_PASSIVE;
1747 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
1748 		nflags |= IEEE80211_CHAN_NOADHOC;
1749 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
1750 		nflags |= IEEE80211_CHAN_DFS;
1751 		/* XXX apparently IBSS may still be marked */
1752 		nflags |= IEEE80211_CHAN_NOADHOC;
1753 	}
1754 
1755 	return nflags;
1756 }
1757 
1758 static void
1759 iwn_read_eeprom_band(struct iwn_softc *sc, int n)
1760 {
1761 	struct ifnet *ifp = sc->sc_ifp;
1762 	struct ieee80211com *ic = ifp->if_l2com;
1763 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
1764 	const struct iwn_chan_band *band = &iwn_bands[n];
1765 	struct ieee80211_channel *c;
1766 	int i, chan, nflags;
1767 
1768 	for (i = 0; i < band->nchan; i++) {
1769 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
1770 			DPRINTF(sc, IWN_DEBUG_RESET,
1771 			    "skip chan %d flags 0x%x maxpwr %d\n",
1772 			    band->chan[i], channels[i].flags,
1773 			    channels[i].maxpwr);
1774 			continue;
1775 		}
1776 		chan = band->chan[i];
1777 		nflags = iwn_eeprom_channel_flags(&channels[i]);
1778 
1779 		DPRINTF(sc, IWN_DEBUG_RESET,
1780 		    "add chan %d flags 0x%x maxpwr %d\n",
1781 		    chan, channels[i].flags, channels[i].maxpwr);
1782 
1783 		c = &ic->ic_channels[ic->ic_nchans++];
1784 		c->ic_ieee = chan;
1785 		c->ic_maxregpower = channels[i].maxpwr;
1786 		c->ic_maxpower = 2*c->ic_maxregpower;
1787 
1788 		/* Save maximum allowed TX power for this channel. */
1789 		sc->maxpwr[chan] = channels[i].maxpwr;
1790 
1791 		if (n == 0) {	/* 2GHz band */
1792 			c->ic_freq = ieee80211_ieee2mhz(chan,
1793 			    IEEE80211_CHAN_G);
1794 
1795 			/* G =>'s B is supported */
1796 			c->ic_flags = IEEE80211_CHAN_B | nflags;
1797 
1798 			c = &ic->ic_channels[ic->ic_nchans++];
1799 			c[0] = c[-1];
1800 			c->ic_flags = IEEE80211_CHAN_G | nflags;
1801 		} else {	/* 5GHz band */
1802 			c->ic_freq = ieee80211_ieee2mhz(chan,
1803 			    IEEE80211_CHAN_A);
1804 			c->ic_flags = IEEE80211_CHAN_A | nflags;
1805 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1806 		}
1807 #if 0	/* HT */
1808 		/* XXX no constraints on using HT20 */
1809 		/* add HT20, HT40 added separately */
1810 		c = &ic->ic_channels[ic->ic_nchans++];
1811 		c[0] = c[-1];
1812 		c->ic_flags |= IEEE80211_CHAN_HT20;
1813 		/* XXX NARROW =>'s 1/2 and 1/4 width? */
1814 #endif
1815 	}
1816 }
1817 
1818 #if 0	/* HT */
1819 static void
1820 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n)
1821 {
1822 	struct ifnet *ifp = sc->sc_ifp;
1823 	struct ieee80211com *ic = ifp->if_l2com;
1824 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
1825 	const struct iwn_chan_band *band = &iwn_bands[n];
1826 	struct ieee80211_channel *c, *cent, *extc;
1827 	int i;
1828 
1829 	for (i = 0; i < band->nchan; i++) {
1830 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID) ||
1831 		    !(channels[i].flags & IWN_EEPROM_CHAN_WIDE)) {
1832 			DPRINTF(sc, IWN_DEBUG_RESET,
1833 			    "skip chan %d flags 0x%x maxpwr %d\n",
1834 			    band->chan[i], channels[i].flags,
1835 			    channels[i].maxpwr);
1836 			continue;
1837 		}
1838 		/*
1839 		 * Each entry defines an HT40 channel pair; find the
1840 		 * center channel, then the extension channel above.
1841 		 */
1842 		cent = ieee80211_find_channel_byieee(ic, band->chan[i],
1843 		    band->flags & ~IEEE80211_CHAN_HT);
1844 		if (cent == NULL) {	/* XXX shouldn't happen */
1845 			device_printf(sc->sc_dev,
1846 			    "%s: no entry for channel %d\n",
1847 			    __func__, band->chan[i]);
1848 			continue;
1849 		}
1850 		extc = ieee80211_find_channel(ic, cent->ic_freq+20,
1851 		    band->flags & ~IEEE80211_CHAN_HT);
1852 		if (extc == NULL) {
1853 			DPRINTF(sc, IWN_DEBUG_RESET,
1854 			    "skip chan %d, extension channel not found\n",
1855 			    band->chan[i]);
1856 			continue;
1857 		}
1858 
1859 		DPRINTF(sc, IWN_DEBUG_RESET,
1860 		    "add ht40 chan %d flags 0x%x maxpwr %d\n",
1861 		    band->chan[i], channels[i].flags, channels[i].maxpwr);
1862 
1863 		c = &ic->ic_channels[ic->ic_nchans++];
1864 		c[0] = cent[0];
1865 		c->ic_extieee = extc->ic_ieee;
1866 		c->ic_flags &= ~IEEE80211_CHAN_HT;
1867 		c->ic_flags |= IEEE80211_CHAN_HT40U;
1868 		c = &ic->ic_channels[ic->ic_nchans++];
1869 		c[0] = extc[0];
1870 		c->ic_extieee = cent->ic_ieee;
1871 		c->ic_flags &= ~IEEE80211_CHAN_HT;
1872 		c->ic_flags |= IEEE80211_CHAN_HT40D;
1873 	}
1874 }
1875 #endif
1876 
1877 static void
1878 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1879 {
1880 	struct ifnet *ifp = sc->sc_ifp;
1881 	struct ieee80211com *ic = ifp->if_l2com;
1882 
1883 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
1884 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
1885 
1886 	if (n < 5)
1887 		iwn_read_eeprom_band(sc, n);
1888 #if 0	/* HT */
1889 	else
1890 		iwn_read_eeprom_ht40(sc, n);
1891 #endif
1892 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1893 }
1894 
1895 #define nitems(_a)	(sizeof((_a)) / sizeof((_a)[0]))
1896 
1897 static void
1898 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1899 {
1900 	struct iwn_eeprom_enhinfo enhinfo[35];
1901 	uint16_t val, base;
1902 	int8_t maxpwr;
1903 	int i;
1904 
1905 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1906 	base = le16toh(val);
1907 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1908 	    enhinfo, sizeof enhinfo);
1909 
1910 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1911 	for (i = 0; i < nitems(enhinfo); i++) {
1912 		if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
1913 			continue;	/* Skip invalid entries. */
1914 
1915 		maxpwr = 0;
1916 		if (sc->txchainmask & IWN_ANT_A)
1917 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1918 		if (sc->txchainmask & IWN_ANT_B)
1919 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1920 		if (sc->txchainmask & IWN_ANT_C)
1921 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1922 		if (sc->ntxchains == 2)
1923 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1924 		else if (sc->ntxchains == 3)
1925 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1926 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
1927 
1928 		DPRINTF(sc, IWN_DEBUG_RESET, "enhinfo %d, maxpwr=%d\n", i,
1929 		    maxpwr);
1930 		sc->enh_maxpwr[i] = maxpwr;
1931 	}
1932 }
1933 
1934 static struct ieee80211_node *
1935 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1936 {
1937 	return kmalloc(sizeof (struct iwn_node), M_80211_NODE,M_INTWAIT | M_ZERO);
1938 }
1939 
1940 static void
1941 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1942 {
1943 	/* XXX move */
1944 	//if (!isnew) {
1945 		ieee80211_ratectl_node_deinit(ni);
1946 	//}
1947 
1948 	ieee80211_ratectl_node_init(ni);
1949 }
1950 
1951 static int
1952 iwn_media_change(struct ifnet *ifp)
1953 {
1954 	int error = ieee80211_media_change(ifp);
1955 	/* NB: only the fixed rate can change and that doesn't need a reset */
1956 	return (error == ENETRESET ? 0 : error);
1957 }
1958 
1959 static int
1960 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1961 {
1962 	struct iwn_vap *ivp = IWN_VAP(vap);
1963 	struct ieee80211com *ic = vap->iv_ic;
1964 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
1965 	int error;
1966 
1967 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1968 		ieee80211_state_name[vap->iv_state],
1969 		ieee80211_state_name[nstate]);
1970 
1971 	callout_stop(&sc->sc_timer_to);
1972 
1973 	if (nstate == IEEE80211_S_AUTH && vap->iv_state != IEEE80211_S_AUTH) {
1974 		/* !AUTH -> AUTH requires adapter config */
1975 		/* Reset state to handle reassociations correctly. */
1976 		sc->rxon.associd = 0;
1977 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1978 		iwn_calib_reset(sc);
1979 		error = iwn_auth(sc, vap);
1980 	}
1981 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1982 		/*
1983 		 * !RUN -> RUN requires setting the association id
1984 		 * which is done with a firmware cmd.  We also defer
1985 		 * starting the timers until that work is done.
1986 		 */
1987 		error = iwn_run(sc, vap);
1988 	}
1989 	if (nstate == IEEE80211_S_RUN) {
1990 		/*
1991 		 * RUN -> RUN transition; just restart the timers.
1992 		 */
1993 		iwn_calib_reset(sc);
1994 	}
1995 	return ivp->iv_newstate(vap, nstate, arg);
1996 }
1997 
1998 /*
1999  * Process an RX_PHY firmware notification.  This is usually immediately
2000  * followed by an MPDU_RX_DONE notification.
2001  */
2002 static void
2003 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2004     struct iwn_rx_data *data)
2005 {
2006 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2007 
2008 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
2009 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2010 
2011 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2012 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2013 	sc->last_rx_valid = 1;
2014 }
2015 
2016 static void
2017 iwn_timer_callout(void *arg)
2018 {
2019 	struct iwn_softc *sc = arg;
2020 	uint32_t flags = 0;
2021 
2022 	wlan_serialize_enter();
2023 	if (sc->calib_cnt && --sc->calib_cnt == 0) {
2024 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2025 		    "send statistics request");
2026 		(void) iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2027 		    sizeof flags, 1);
2028 		sc->calib_cnt = 60;	/* do calibration every 60s */
2029 	}
2030 	iwn_watchdog(sc);		/* NB: piggyback tx watchdog */
2031 	callout_reset(&sc->sc_timer_to, hz, iwn_timer_callout, sc);
2032 	wlan_serialize_exit();
2033 }
2034 
2035 static void
2036 iwn_calib_reset(struct iwn_softc *sc)
2037 {
2038 	callout_reset(&sc->sc_timer_to, hz, iwn_timer_callout, sc);
2039 	sc->calib_cnt = 60;		/* do calibration every 60s */
2040 }
2041 
2042 /*
2043  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2044  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2045  */
2046 static void
2047 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2048     struct iwn_rx_data *data)
2049 {
2050 	const struct iwn_hal *hal = sc->sc_hal;
2051 	struct ifnet *ifp = sc->sc_ifp;
2052 	struct ieee80211com *ic = ifp->if_l2com;
2053 	struct iwn_rx_ring *ring = &sc->rxq;
2054 	struct ieee80211_frame *wh;
2055 	struct ieee80211_node *ni;
2056 	struct mbuf *m, *m1;
2057 	struct iwn_rx_stat *stat;
2058 	caddr_t head;
2059 	bus_addr_t paddr;
2060 	uint32_t flags;
2061 	int error, len, rssi, nf;
2062 
2063 	if (desc->type == IWN_MPDU_RX_DONE) {
2064 		/* Check for prior RX_PHY notification. */
2065 		if (!sc->last_rx_valid) {
2066 			DPRINTF(sc, IWN_DEBUG_ANY,
2067 			    "%s: missing RX_PHY\n", __func__);
2068 			ifp->if_ierrors++;
2069 			return;
2070 		}
2071 		sc->last_rx_valid = 0;
2072 		stat = &sc->last_rx_stat;
2073 	} else
2074 		stat = (struct iwn_rx_stat *)(desc + 1);
2075 
2076 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2077 
2078 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2079 		device_printf(sc->sc_dev,
2080 		    "%s: invalid rx statistic header, len %d\n",
2081 		    __func__, stat->cfg_phy_len);
2082 		ifp->if_ierrors++;
2083 		return;
2084 	}
2085 	if (desc->type == IWN_MPDU_RX_DONE) {
2086 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2087 		head = (caddr_t)(mpdu + 1);
2088 		len = le16toh(mpdu->len);
2089 	} else {
2090 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
2091 		len = le16toh(stat->len);
2092 	}
2093 
2094 	flags = le32toh(*(uint32_t *)(head + len));
2095 
2096 	/* Discard frames with a bad FCS early. */
2097 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2098 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: rx flags error %x\n",
2099 		    __func__, flags);
2100 		ifp->if_ierrors++;
2101 		return;
2102 	}
2103 	/* Discard frames that are too short. */
2104 	if (len < sizeof (*wh)) {
2105 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
2106 		    __func__, len);
2107 		ifp->if_ierrors++;
2108 		return;
2109 	}
2110 
2111 	/* XXX don't need mbuf, just dma buffer */
2112 	m1 = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
2113 	if (m1 == NULL) {
2114 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
2115 		    __func__);
2116 		ifp->if_ierrors++;
2117 		return;
2118 	}
2119 	bus_dmamap_unload(ring->data_dmat, data->map);
2120 
2121 	error = bus_dmamap_load(ring->data_dmat, data->map,
2122 	    mtod(m1, caddr_t), MCLBYTES,
2123 	    iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
2124 	if (error != 0 && error != EFBIG) {
2125 		device_printf(sc->sc_dev,
2126 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
2127 		m_freem(m1);
2128 		ifp->if_ierrors++;
2129 		return;
2130 	}
2131 
2132 	m = data->m;
2133 	data->m = m1;
2134 	/* Update RX descriptor. */
2135 	ring->desc[ring->cur] = htole32(paddr >> 8);
2136 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2137 	    BUS_DMASYNC_PREWRITE);
2138 
2139 	/* Finalize mbuf. */
2140 	m->m_pkthdr.rcvif = ifp;
2141 	m->m_data = head;
2142 	m->m_pkthdr.len = m->m_len = len;
2143 
2144 	rssi = hal->get_rssi(sc, stat);
2145 
2146 	/* Grab a reference to the source node. */
2147 	wh = mtod(m, struct ieee80211_frame *);
2148 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2149 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
2150 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
2151 
2152 	if (ieee80211_radiotap_active(ic)) {
2153 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2154 
2155 		tap->wr_tsft = htole64(stat->tstamp);
2156 		tap->wr_flags = 0;
2157 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2158 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2159 		switch (stat->rate) {
2160 		/* CCK rates. */
2161 		case  10: tap->wr_rate =   2; break;
2162 		case  20: tap->wr_rate =   4; break;
2163 		case  55: tap->wr_rate =  11; break;
2164 		case 110: tap->wr_rate =  22; break;
2165 		/* OFDM rates. */
2166 		case 0xd: tap->wr_rate =  12; break;
2167 		case 0xf: tap->wr_rate =  18; break;
2168 		case 0x5: tap->wr_rate =  24; break;
2169 		case 0x7: tap->wr_rate =  36; break;
2170 		case 0x9: tap->wr_rate =  48; break;
2171 		case 0xb: tap->wr_rate =  72; break;
2172 		case 0x1: tap->wr_rate =  96; break;
2173 		case 0x3: tap->wr_rate = 108; break;
2174 		/* Unknown rate: should not happen. */
2175 		default:  tap->wr_rate =   0;
2176 		}
2177 		tap->wr_dbm_antsignal = rssi;
2178 		tap->wr_dbm_antnoise = nf;
2179 	}
2180 
2181 	/* Send the frame to the 802.11 layer. */
2182 	if (ni != NULL) {
2183 		(void) ieee80211_input(ni, m, rssi - nf, nf);
2184 		/* Node is no longer needed. */
2185 		ieee80211_free_node(ni);
2186 	} else {
2187 		(void) ieee80211_input_all(ic, m, rssi - nf, nf);
2188 	}
2189 }
2190 
2191 #if 0	/* HT */
2192 /* Process an incoming Compressed BlockAck. */
2193 static void
2194 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2195     struct iwn_rx_data *data)
2196 {
2197 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2198 	struct iwn_tx_ring *txq;
2199 
2200 	txq = &sc->txq[letoh16(ba->qid)];
2201 	/* XXX TBD */
2202 }
2203 #endif
2204 
2205 /*
2206  * Process a CALIBRATION_RESULT notification sent by the initialization
2207  * firmware on response to a CMD_CALIB_CONFIG command (5000 only.)
2208  */
2209 static void
2210 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2211     struct iwn_rx_data *data)
2212 {
2213 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2214 	int len, idx = -1;
2215 
2216 	/* Runtime firmware should not send such a notification. */
2217 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2218 		return;
2219 
2220 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2221 	len = (le32toh(desc->len) & 0x3fff) - 4;
2222 
2223 	switch (calib->code) {
2224 	case IWN5000_PHY_CALIB_DC:
2225 		if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2226 		    sc->hw_type == IWN_HW_REV_TYPE_6050)
2227 			idx = 0;
2228 		break;
2229 	case IWN5000_PHY_CALIB_LO:
2230 		idx = 1;
2231 		break;
2232 	case IWN5000_PHY_CALIB_TX_IQ:
2233 		idx = 2;
2234 		break;
2235 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2236 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2237 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2238 			idx = 3;
2239 		break;
2240 	case IWN5000_PHY_CALIB_BASE_BAND:
2241 		idx = 4;
2242 		break;
2243 	}
2244 	if (idx == -1)	/* Ignore other results. */
2245 		return;
2246 
2247 	/* Save calibration result. */
2248 	if (sc->calibcmd[idx].buf != NULL)
2249 		kfree(sc->calibcmd[idx].buf, M_DEVBUF);
2250 	sc->calibcmd[idx].buf = kmalloc(len, M_DEVBUF, M_INTWAIT);
2251 	if (sc->calibcmd[idx].buf == NULL) {
2252 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2253 		    "not enough memory for calibration result %d\n",
2254 		    calib->code);
2255 		return;
2256 	}
2257 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2258 	    "saving calibration result code=%d len=%d\n", calib->code, len);
2259 	sc->calibcmd[idx].len = len;
2260 	memcpy(sc->calibcmd[idx].buf, calib, len);
2261 }
2262 
2263 /*
2264  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2265  * The latter is sent by the firmware after each received beacon.
2266  */
2267 static void
2268 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2269     struct iwn_rx_data *data)
2270 {
2271 	const struct iwn_hal *hal = sc->sc_hal;
2272 	struct ifnet *ifp = sc->sc_ifp;
2273 	struct ieee80211com *ic = ifp->if_l2com;
2274 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2275 	struct iwn_calib_state *calib = &sc->calib;
2276 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2277 	int temp;
2278 
2279 	/* Beacon stats are meaningful only when associated and not scanning. */
2280 	if (vap->iv_state != IEEE80211_S_RUN ||
2281 	    (ic->ic_flags & IEEE80211_F_SCAN))
2282 		return;
2283 
2284 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2285 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: cmd %d\n", __func__, desc->type);
2286 	iwn_calib_reset(sc);	/* Reset TX power calibration timeout. */
2287 
2288 	/* Test if temperature has changed. */
2289 	if (stats->general.temp != sc->rawtemp) {
2290 		/* Convert "raw" temperature to degC. */
2291 		sc->rawtemp = stats->general.temp;
2292 		temp = hal->get_temperature(sc);
2293 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
2294 		    __func__, temp);
2295 
2296 		/* Update TX power if need be (4965AGN only.) */
2297 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2298 			iwn4965_power_calibration(sc, temp);
2299 	}
2300 
2301 	if (desc->type != IWN_BEACON_STATISTICS)
2302 		return;	/* Reply to a statistics request. */
2303 
2304 	sc->noise = iwn_get_noise(&stats->rx.general);
2305 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
2306 
2307 	/* Test that RSSI and noise are present in stats report. */
2308 	if (le32toh(stats->rx.general.flags) != 1) {
2309 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
2310 		    "received statistics without RSSI");
2311 		return;
2312 	}
2313 
2314 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2315 		iwn_collect_noise(sc, &stats->rx.general);
2316 	else if (calib->state == IWN_CALIB_STATE_RUN)
2317 		iwn_tune_sensitivity(sc, &stats->rx);
2318 }
2319 
2320 /*
2321  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2322  * and 5000 adapters have different incompatible TX status formats.
2323  */
2324 static void
2325 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2326     struct iwn_rx_data *data)
2327 {
2328 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2329 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2330 
2331 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
2332 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
2333 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
2334 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
2335 	    le32toh(stat->status));
2336 
2337 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2338 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2339 }
2340 
2341 static void
2342 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2343     struct iwn_rx_data *data)
2344 {
2345 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2346 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2347 
2348 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
2349 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
2350 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
2351 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
2352 	    le32toh(stat->status));
2353 
2354 #ifdef notyet
2355 	/* Reset TX scheduler slot. */
2356 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2357 #endif
2358 
2359 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2360 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2361 }
2362 
2363 /*
2364  * Adapter-independent backend for TX_DONE firmware notifications.
2365  */
2366 static void
2367 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2368     uint8_t status)
2369 {
2370 	struct ifnet *ifp = sc->sc_ifp;
2371 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2372 	struct iwn_tx_data *data = &ring->data[desc->idx];
2373 	struct mbuf *m;
2374 	struct ieee80211_node *ni;
2375 	struct ieee80211vap *vap;
2376 
2377 	KASSERT(data->ni != NULL, ("no node"));
2378 
2379 	/* Unmap and free mbuf. */
2380 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
2381 	bus_dmamap_unload(ring->data_dmat, data->map);
2382 	m = data->m, data->m = NULL;
2383 	ni = data->ni, data->ni = NULL;
2384 	vap = ni->ni_vap;
2385 
2386 	if (m->m_flags & M_TXCB) {
2387 		/*
2388 		 * Channels marked for "radar" require traffic to be received
2389 		 * to unlock before we can transmit.  Until traffic is seen
2390 		 * any attempt to transmit is returned immediately with status
2391 		 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
2392 		 * happen on first authenticate after scanning.  To workaround
2393 		 * this we ignore a failure of this sort in AUTH state so the
2394 		 * 802.11 layer will fall back to using a timeout to wait for
2395 		 * the AUTH reply.  This allows the firmware time to see
2396 		 * traffic so a subsequent retry of AUTH succeeds.  It's
2397 		 * unclear why the firmware does not maintain state for
2398 		 * channels recently visited as this would allow immediate
2399 		 * use of the channel after a scan (where we see traffic).
2400 		 */
2401 		if (status == IWN_TX_FAIL_TX_LOCKED &&
2402 		    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
2403 			ieee80211_process_callback(ni, m, 0);
2404 		else
2405 			ieee80211_process_callback(ni, m,
2406 			    (status & IWN_TX_FAIL) != 0);
2407 	}
2408 
2409 	/*
2410 	 * Update rate control statistics for the node.
2411 	 */
2412 	if (status & 0x80) {
2413 		ifp->if_oerrors++;
2414 		ieee80211_ratectl_tx_complete(vap, ni,
2415 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2416 	} else {
2417 		ieee80211_ratectl_tx_complete(vap, ni,
2418 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2419 	}
2420 	m_freem(m);
2421 	ieee80211_free_node(ni);
2422 
2423 	sc->sc_tx_timer = 0;
2424 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2425 		sc->qfullmsk &= ~(1 << ring->qid);
2426 		if (sc->qfullmsk == 0 &&
2427 		    (ifp->if_flags & IFF_OACTIVE)) {
2428 			ifp->if_flags &= ~IFF_OACTIVE;
2429 			iwn_start_locked(ifp);
2430 		}
2431 	}
2432 }
2433 
2434 /*
2435  * Process a "command done" firmware notification.  This is where we wakeup
2436  * processes waiting for a synchronous command completion.
2437  */
2438 static void
2439 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2440 {
2441 	struct iwn_tx_ring *ring = &sc->txq[4];
2442 	struct iwn_tx_data *data;
2443 
2444 	if ((desc->qid & 0xf) != 4)
2445 		return;	/* Not a command ack. */
2446 
2447 	data = &ring->data[desc->idx];
2448 
2449 	/* If the command was mapped in an mbuf, free it. */
2450 	if (data->m != NULL) {
2451 		bus_dmamap_unload(ring->data_dmat, data->map);
2452 		m_freem(data->m);
2453 		data->m = NULL;
2454 	}
2455 	wakeup(&ring->desc[desc->idx]);
2456 }
2457 
2458 /*
2459  * Process an INT_FH_RX or INT_SW_RX interrupt.
2460  */
2461 static void
2462 iwn_notif_intr(struct iwn_softc *sc)
2463 {
2464 	struct ifnet *ifp = sc->sc_ifp;
2465 	struct ieee80211com *ic = ifp->if_l2com;
2466 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2467 	uint16_t hw;
2468 
2469 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
2470 	    BUS_DMASYNC_POSTREAD);
2471 
2472 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2473 	while (sc->rxq.cur != hw) {
2474 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2475 		struct iwn_rx_desc *desc;
2476 
2477 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2478 		    BUS_DMASYNC_POSTREAD);
2479 		desc = mtod(data->m, struct iwn_rx_desc *);
2480 
2481 		DPRINTF(sc, IWN_DEBUG_RECV,
2482 		    "%s: qid %x idx %d flags %x type %d(%s) len %d\n",
2483 		    __func__, desc->qid & 0xf, desc->idx, desc->flags,
2484 		    desc->type, iwn_intr_str(desc->type),
2485 		    le16toh(desc->len));
2486 
2487 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2488 			iwn_cmd_done(sc, desc);
2489 
2490 		switch (desc->type) {
2491 		case IWN_RX_PHY:
2492 			iwn_rx_phy(sc, desc, data);
2493 			break;
2494 
2495 		case IWN_RX_DONE:		/* 4965AGN only. */
2496 		case IWN_MPDU_RX_DONE:
2497 			/* An 802.11 frame has been received. */
2498 			iwn_rx_done(sc, desc, data);
2499 			break;
2500 
2501 #if 0	/* HT */
2502 		case IWN_RX_COMPRESSED_BA:
2503 			/* A Compressed BlockAck has been received. */
2504 			iwn_rx_compressed_ba(sc, desc, data);
2505 			break;
2506 #endif
2507 
2508 		case IWN_TX_DONE:
2509 			/* An 802.11 frame has been transmitted. */
2510 			sc->sc_hal->tx_done(sc, desc, data);
2511 			break;
2512 
2513 		case IWN_RX_STATISTICS:
2514 		case IWN_BEACON_STATISTICS:
2515 			iwn_rx_statistics(sc, desc, data);
2516 			break;
2517 
2518 		case IWN_BEACON_MISSED:
2519 		{
2520 			struct iwn_beacon_missed *miss =
2521 			    (struct iwn_beacon_missed *)(desc + 1);
2522 			int misses;
2523 
2524 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2525 			    BUS_DMASYNC_POSTREAD);
2526 			misses = le32toh(miss->consecutive);
2527 
2528 			/* XXX not sure why we're notified w/ zero */
2529 			if (misses == 0)
2530 				break;
2531 			DPRINTF(sc, IWN_DEBUG_STATE,
2532 			    "%s: beacons missed %d/%d\n", __func__,
2533 			    misses, le32toh(miss->total));
2534 
2535 			/*
2536 			 * If more than 5 consecutive beacons are missed,
2537 			 * reinitialize the sensitivity state machine.
2538 			 */
2539 			if (vap->iv_state == IEEE80211_S_RUN && misses > 5)
2540 				(void) iwn_init_sensitivity(sc);
2541 			if (misses >= vap->iv_bmissthreshold)
2542 				ieee80211_beacon_miss(ic);
2543 			break;
2544 		}
2545 		case IWN_UC_READY:
2546 		{
2547 			struct iwn_ucode_info *uc =
2548 			    (struct iwn_ucode_info *)(desc + 1);
2549 
2550 			/* The microcontroller is ready. */
2551 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2552 			    BUS_DMASYNC_POSTREAD);
2553 			DPRINTF(sc, IWN_DEBUG_RESET,
2554 			    "microcode alive notification version=%d.%d "
2555 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2556 			    uc->subtype, le32toh(uc->valid));
2557 
2558 			if (le32toh(uc->valid) != 1) {
2559 				device_printf(sc->sc_dev,
2560 				    "microcontroller initialization failed");
2561 				break;
2562 			}
2563 			if (uc->subtype == IWN_UCODE_INIT) {
2564 				/* Save microcontroller report. */
2565 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
2566 			}
2567 			/* Save the address of the error log in SRAM. */
2568 			sc->errptr = le32toh(uc->errptr);
2569 			break;
2570 		}
2571 		case IWN_STATE_CHANGED:
2572 		{
2573 			uint32_t *status = (uint32_t *)(desc + 1);
2574 
2575 			/*
2576 			 * State change allows hardware switch change to be
2577 			 * noted. However, we handle this in iwn_intr as we
2578 			 * get both the enable/disble intr.
2579 			 */
2580 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2581 			    BUS_DMASYNC_POSTREAD);
2582 			DPRINTF(sc, IWN_DEBUG_INTR, "state changed to %x\n",
2583 			    le32toh(*status));
2584 			break;
2585 		}
2586 		case IWN_START_SCAN:
2587 		{
2588 			struct iwn_start_scan *scan =
2589 			    (struct iwn_start_scan *)(desc + 1);
2590 
2591 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2592 			    BUS_DMASYNC_POSTREAD);
2593 			DPRINTF(sc, IWN_DEBUG_ANY,
2594 			    "%s: scanning channel %d status %x\n",
2595 			    __func__, scan->chan, le32toh(scan->status));
2596 			break;
2597 		}
2598 		case IWN_STOP_SCAN:
2599 		{
2600 			struct iwn_stop_scan *scan =
2601 			    (struct iwn_stop_scan *)(desc + 1);
2602 
2603 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2604 			    BUS_DMASYNC_POSTREAD);
2605 			DPRINTF(sc, IWN_DEBUG_STATE,
2606 			    "scan finished nchan=%d status=%d chan=%d\n",
2607 			    scan->nchan, scan->status, scan->chan);
2608 
2609 			ieee80211_scan_next(vap);
2610 			break;
2611 		}
2612 		case IWN5000_CALIBRATION_RESULT:
2613 			iwn5000_rx_calib_results(sc, desc, data);
2614 			break;
2615 
2616 		case IWN5000_CALIBRATION_DONE:
2617 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2618 			wakeup(sc);
2619 			break;
2620 		}
2621 
2622 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2623 	}
2624 
2625 	/* Tell the firmware what we have processed. */
2626 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2627 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2628 }
2629 
2630 /*
2631  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2632  * from power-down sleep mode.
2633  */
2634 static void
2635 iwn_wakeup_intr(struct iwn_softc *sc)
2636 {
2637 	int qid;
2638 
2639 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
2640 	    __func__);
2641 
2642 	/* Wakeup RX and TX rings. */
2643 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2644 	for (qid = 0; qid < sc->sc_hal->ntxqs; qid++) {
2645 		struct iwn_tx_ring *ring = &sc->txq[qid];
2646 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2647 	}
2648 }
2649 
2650 static void
2651 iwn_rftoggle_intr(struct iwn_softc *sc)
2652 {
2653 	struct ifnet *ifp = sc->sc_ifp;
2654 	struct ieee80211com *ic = ifp->if_l2com;
2655 	uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
2656 
2657 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
2658 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2659 	if (tmp & IWN_GP_CNTRL_RFKILL)
2660 		ieee80211_runtask(ic, &sc->sc_radioon_task);
2661 	else
2662 		ieee80211_runtask(ic, &sc->sc_radiooff_task);
2663 }
2664 
2665 /*
2666  * Dump the error log of the firmware when a firmware panic occurs.  Although
2667  * we can't debug the firmware because it is neither open source nor free, it
2668  * can help us to identify certain classes of problems.
2669  */
2670 static void
2671 iwn_fatal_intr(struct iwn_softc *sc)
2672 {
2673 	const struct iwn_hal *hal = sc->sc_hal;
2674 	struct iwn_fw_dump dump;
2675 	int i;
2676 
2677 	/* Force a complete recalibration on next init. */
2678 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2679 
2680 	/* Check that the error log address is valid. */
2681 	if (sc->errptr < IWN_FW_DATA_BASE ||
2682 	    sc->errptr + sizeof (dump) >
2683 	    IWN_FW_DATA_BASE + hal->fw_data_maxsz) {
2684 		kprintf("%s: bad firmware error log address 0x%08x\n",
2685 		    __func__, sc->errptr);
2686 		return;
2687 	}
2688 	if (iwn_nic_lock(sc) != 0) {
2689 		kprintf("%s: could not read firmware error log\n",
2690 		    __func__);
2691 		return;
2692 	}
2693 	/* Read firmware error log from SRAM. */
2694 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2695 	    sizeof (dump) / sizeof (uint32_t));
2696 	iwn_nic_unlock(sc);
2697 
2698 	if (dump.valid == 0) {
2699 		kprintf("%s: firmware error log is empty\n",
2700 		    __func__);
2701 		return;
2702 	}
2703 	kprintf("firmware error log:\n");
2704 	kprintf("  error type      = \"%s\" (0x%08X)\n",
2705 	    (dump.id < nitems(iwn_fw_errmsg)) ?
2706 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
2707 	    dump.id);
2708 	kprintf("  program counter = 0x%08X\n", dump.pc);
2709 	kprintf("  source line     = 0x%08X\n", dump.src_line);
2710 	kprintf("  error data      = 0x%08X%08X\n",
2711 	    dump.error_data[0], dump.error_data[1]);
2712 	kprintf("  branch link     = 0x%08X%08X\n",
2713 	    dump.branch_link[0], dump.branch_link[1]);
2714 	kprintf("  interrupt link  = 0x%08X%08X\n",
2715 	    dump.interrupt_link[0], dump.interrupt_link[1]);
2716 	kprintf("  time            = %u\n", dump.time[0]);
2717 
2718 	/* Dump driver status (TX and RX rings) while we're here. */
2719 	kprintf("driver status:\n");
2720 	for (i = 0; i < hal->ntxqs; i++) {
2721 		struct iwn_tx_ring *ring = &sc->txq[i];
2722 		kprintf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2723 		    i, ring->qid, ring->cur, ring->queued);
2724 	}
2725 	kprintf("  rx ring: cur=%d\n", sc->rxq.cur);
2726 }
2727 
2728 static void
2729 iwn_intr(void *arg)
2730 {
2731 	struct iwn_softc *sc = arg;
2732 	struct ifnet *ifp = sc->sc_ifp;
2733 	uint32_t r1, r2, tmp;
2734 
2735 	/* Disable interrupts. */
2736 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2737 
2738 	/* Read interrupts from ICT (fast) or from registers (slow). */
2739 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2740 		tmp = 0;
2741 		while (sc->ict[sc->ict_cur] != 0) {
2742 			tmp |= sc->ict[sc->ict_cur];
2743 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
2744 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2745 		}
2746 		tmp = le32toh(tmp);
2747 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
2748 			tmp = 0;
2749 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
2750 			tmp |= 0x8000;
2751 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2752 		r2 = 0;	/* Unused. */
2753 	} else {
2754 		r1 = IWN_READ(sc, IWN_INT);
2755 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2756 			return;	/* Hardware gone! */
2757 		r2 = IWN_READ(sc, IWN_FH_INT);
2758 	}
2759 
2760 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=%x reg2=%x\n", r1, r2);
2761 
2762 	if (r1 == 0 && r2 == 0)
2763 		goto done;	/* Interrupt not for us. */
2764 
2765 	/* Acknowledge interrupts. */
2766 	IWN_WRITE(sc, IWN_INT, r1);
2767 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2768 		IWN_WRITE(sc, IWN_FH_INT, r2);
2769 
2770 	if (r1 & IWN_INT_RF_TOGGLED) {
2771 		iwn_rftoggle_intr(sc);
2772 		goto done;
2773 	}
2774 	if (r1 & IWN_INT_CT_REACHED) {
2775 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
2776 		    __func__);
2777 	}
2778 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2779 		iwn_fatal_intr(sc);
2780 		ifp->if_flags &= ~IFF_UP;
2781 		iwn_stop_locked(sc);
2782 		goto done;
2783 	}
2784 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2785 	    (r2 & IWN_FH_INT_RX)) {
2786 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2787 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2788 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2789 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2790 			    IWN_INT_PERIODIC_DIS);
2791 			iwn_notif_intr(sc);
2792 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2793 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2794 				    IWN_INT_PERIODIC_ENA);
2795 			}
2796 		} else
2797 			iwn_notif_intr(sc);
2798 	}
2799 
2800 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2801 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
2802 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2803 		wakeup(sc);	/* FH DMA transfer completed. */
2804 	}
2805 
2806 	if (r1 & IWN_INT_ALIVE)
2807 		wakeup(sc);	/* Firmware is alive. */
2808 
2809 	if (r1 & IWN_INT_WAKEUP)
2810 		iwn_wakeup_intr(sc);
2811 
2812 done:
2813 	/* Re-enable interrupts. */
2814 	if (ifp->if_flags & IFF_UP)
2815 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2816 }
2817 
2818 /*
2819  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2820  * 5000 adapters use a slightly different format.)
2821  */
2822 static void
2823 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2824     uint16_t len)
2825 {
2826 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2827 
2828 	*w = htole16(len + 8);
2829 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2830 	    BUS_DMASYNC_PREWRITE);
2831 	if (idx < IWN_SCHED_WINSZ) {
2832 		*(w + IWN_TX_RING_COUNT) = *w;
2833 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2834 		    BUS_DMASYNC_PREWRITE);
2835 	}
2836 }
2837 
2838 static void
2839 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2840     uint16_t len)
2841 {
2842 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2843 
2844 	*w = htole16(id << 12 | (len + 8));
2845 
2846 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2847 	    BUS_DMASYNC_PREWRITE);
2848 	if (idx < IWN_SCHED_WINSZ) {
2849 		*(w + IWN_TX_RING_COUNT) = *w;
2850 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2851 		    BUS_DMASYNC_PREWRITE);
2852 	}
2853 }
2854 
2855 #ifdef notyet
2856 static void
2857 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2858 {
2859 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2860 
2861 	*w = (*w & htole16(0xf000)) | htole16(1);
2862 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2863 	    BUS_DMASYNC_PREWRITE);
2864 	if (idx < IWN_SCHED_WINSZ) {
2865 		*(w + IWN_TX_RING_COUNT) = *w;
2866 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2867 		    BUS_DMASYNC_PREWRITE);
2868 	}
2869 }
2870 #endif
2871 
2872 static uint8_t
2873 iwn_plcp_signal(int rate) {
2874 	int i;
2875 
2876 	for (i = 0; i < IWN_RIDX_MAX + 1; i++) {
2877 		if (rate == iwn_rates[i].rate)
2878 			return i;
2879 	}
2880 
2881 	return 0;
2882 }
2883 
2884 static int
2885 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
2886     struct iwn_tx_ring *ring)
2887 {
2888 	const struct iwn_hal *hal = sc->sc_hal;
2889 	const struct ieee80211_txparam *tp;
2890 	const struct iwn_rate *rinfo;
2891 	struct ieee80211vap *vap = ni->ni_vap;
2892 	struct ieee80211com *ic = ni->ni_ic;
2893 	struct iwn_node *wn = (void *)ni;
2894 	struct iwn_tx_desc *desc;
2895 	struct iwn_tx_data *data;
2896 	struct iwn_tx_cmd *cmd;
2897 	struct iwn_cmd_data *tx;
2898 	struct ieee80211_frame *wh;
2899 	struct ieee80211_key *k = NULL;
2900 	struct mbuf *mnew;
2901 	bus_dma_segment_t segs[IWN_MAX_SCATTER];
2902 	uint32_t flags;
2903 	u_int hdrlen;
2904 	int totlen, error, pad, nsegs = 0, i, rate;
2905 	uint8_t ridx, type, txant;
2906 
2907 	wh = mtod(m, struct ieee80211_frame *);
2908 	hdrlen = ieee80211_anyhdrsize(wh);
2909 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2910 
2911 	desc = &ring->desc[ring->cur];
2912 	data = &ring->data[ring->cur];
2913 
2914 	/* Choose a TX rate index. */
2915 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
2916 	if (type == IEEE80211_FC0_TYPE_MGT)
2917 		rate = tp->mgmtrate;
2918 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
2919 		rate = tp->mcastrate;
2920 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2921 		rate = tp->ucastrate;
2922 	else {
2923 		/* XXX pass pktlen */
2924 		ieee80211_ratectl_rate(ni, NULL, 0);
2925 
2926 		rate = ni->ni_txrate;
2927 	}
2928 	ridx = iwn_plcp_signal(rate);
2929 	rinfo = &iwn_rates[ridx];
2930 
2931 	/* Encrypt the frame if need be. */
2932 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2933 		k = ieee80211_crypto_encap(ni, m);
2934 		if (k == NULL) {
2935 			m_freem(m);
2936 			return ENOBUFS;
2937 		}
2938 		/* Packet header may have moved, reset our local pointer. */
2939 		wh = mtod(m, struct ieee80211_frame *);
2940 	}
2941 	totlen = m->m_pkthdr.len;
2942 
2943 	if (ieee80211_radiotap_active_vap(vap)) {
2944 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2945 
2946 		tap->wt_flags = 0;
2947 		tap->wt_rate = rinfo->rate;
2948 		if (k != NULL)
2949 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2950 
2951 		ieee80211_radiotap_tx(vap, m);
2952 	}
2953 
2954 	/* Prepare TX firmware command. */
2955 	cmd = &ring->cmd[ring->cur];
2956 	cmd->code = IWN_CMD_TX_DATA;
2957 	cmd->flags = 0;
2958 	cmd->qid = ring->qid;
2959 	cmd->idx = ring->cur;
2960 
2961 	tx = (struct iwn_cmd_data *)cmd->data;
2962 	/* NB: No need to clear tx, all fields are reinitialized here. */
2963 	tx->scratch = 0;	/* clear "scratch" area */
2964 
2965 	flags = 0;
2966 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1))
2967 		flags |= IWN_TX_NEED_ACK;
2968 	if ((wh->i_fc[0] &
2969 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2970 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
2971 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
2972 
2973 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2974 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
2975 
2976 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2977 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2978 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2979 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2980 			flags |= IWN_TX_NEED_RTS;
2981 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2982 		    ridx >= IWN_RIDX_OFDM6) {
2983 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2984 				flags |= IWN_TX_NEED_CTS;
2985 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2986 				flags |= IWN_TX_NEED_RTS;
2987 		}
2988 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
2989 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
2990 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
2991 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
2992 				flags |= IWN_TX_NEED_PROTECTION;
2993 			} else
2994 				flags |= IWN_TX_FULL_TXOP;
2995 		}
2996 	}
2997 
2998 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2999 	    type != IEEE80211_FC0_TYPE_DATA)
3000 		tx->id = hal->broadcast_id;
3001 	else
3002 		tx->id = wn->id;
3003 
3004 	if (type == IEEE80211_FC0_TYPE_MGT) {
3005 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3006 
3007 		/* Tell HW to set timestamp in probe responses. */
3008 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3009 			flags |= IWN_TX_INSERT_TSTAMP;
3010 
3011 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3012 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3013 			tx->timeout = htole16(3);
3014 		else
3015 			tx->timeout = htole16(2);
3016 	} else
3017 		tx->timeout = htole16(0);
3018 
3019 	if (hdrlen & 3) {
3020 		/* First segment length must be a multiple of 4. */
3021 		flags |= IWN_TX_NEED_PADDING;
3022 		pad = 4 - (hdrlen & 3);
3023 	} else
3024 		pad = 0;
3025 
3026 	tx->len = htole16(totlen);
3027 	tx->tid = 0;
3028 	tx->rts_ntries = 60;
3029 	tx->data_ntries = 15;
3030 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3031 	tx->plcp = rinfo->plcp;
3032 	tx->rflags = rinfo->flags;
3033 	if (tx->id == hal->broadcast_id) {
3034 		/* Group or management frame. */
3035 		tx->linkq = 0;
3036 		/* XXX Alternate between antenna A and B? */
3037 		txant = IWN_LSB(sc->txchainmask);
3038 		tx->rflags |= IWN_RFLAG_ANT(txant);
3039 	} else {
3040 		tx->linkq = IWN_RIDX_OFDM54 - ridx;
3041 		flags |= IWN_TX_LINKQ;	/* enable MRR */
3042 	}
3043 
3044 	/* Set physical address of "scratch area". */
3045 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3046 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3047 
3048 	/* Copy 802.11 header in TX command. */
3049 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
3050 
3051 	/* Trim 802.11 header. */
3052 	m_adj(m, hdrlen);
3053 	tx->security = 0;
3054 	tx->flags = htole32(flags);
3055 
3056 	if (m->m_len > 0) {
3057 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
3058 		    m, segs, IWN_MAX_SCATTER - 1, &nsegs, BUS_DMA_NOWAIT);
3059 		if (error == EFBIG) {
3060 			/* too many fragments, linearize */
3061 			mnew = m_defrag(m, MB_DONTWAIT);
3062 			if (mnew == NULL) {
3063 				device_printf(sc->sc_dev,
3064 				    "%s: could not defrag mbuf\n", __func__);
3065 				m_freem(m);
3066 				return ENOBUFS;
3067 			}
3068 			m = mnew;
3069 			error = bus_dmamap_load_mbuf_segment(ring->data_dmat,
3070 			    data->map, m, segs, IWN_MAX_SCATTER - 1, &nsegs, BUS_DMA_NOWAIT);
3071 		}
3072 		if (error != 0) {
3073 			device_printf(sc->sc_dev,
3074 			    "%s: bus_dmamap_load_mbuf_segment failed, error %d\n",
3075 			    __func__, error);
3076 			m_freem(m);
3077 			return error;
3078 		}
3079 	}
3080 
3081 	data->m = m;
3082 	data->ni = ni;
3083 
3084 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
3085 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
3086 
3087 	/* Fill TX descriptor. */
3088 	desc->nsegs = 1 + nsegs;
3089 	/* First DMA segment is used by the TX command. */
3090 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3091 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3092 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3093 	/* Other DMA segments are for data payload. */
3094 	for (i = 1; i <= nsegs; i++) {
3095 		desc->segs[i].addr = htole32(IWN_LOADDR(segs[i - 1].ds_addr));
3096 		desc->segs[i].len  = htole16(IWN_HIADDR(segs[i - 1].ds_addr) |
3097 		    segs[i - 1].ds_len << 4);
3098 	}
3099 
3100 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
3101 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3102 	    BUS_DMASYNC_PREWRITE);
3103 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3104 	    BUS_DMASYNC_PREWRITE);
3105 
3106 #ifdef notyet
3107 	/* Update TX scheduler. */
3108 	hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3109 #endif
3110 
3111 	/* Kick TX ring. */
3112 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3113 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3114 
3115 	/* Mark TX ring as full if we reach a certain threshold. */
3116 	if (++ring->queued > IWN_TX_RING_HIMARK)
3117 		sc->qfullmsk |= 1 << ring->qid;
3118 
3119 	return 0;
3120 }
3121 
3122 static int
3123 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
3124     struct ieee80211_node *ni, struct iwn_tx_ring *ring,
3125     const struct ieee80211_bpf_params *params)
3126 {
3127 	const struct iwn_hal *hal = sc->sc_hal;
3128 	const struct iwn_rate *rinfo;
3129 	struct ifnet *ifp = sc->sc_ifp;
3130 	struct ieee80211vap *vap = ni->ni_vap;
3131 	struct ieee80211com *ic = ifp->if_l2com;
3132 	struct iwn_tx_cmd *cmd;
3133 	struct iwn_cmd_data *tx;
3134 	struct ieee80211_frame *wh;
3135 	struct iwn_tx_desc *desc;
3136 	struct iwn_tx_data *data;
3137 	struct mbuf *mnew;
3138 	bus_addr_t paddr;
3139 	bus_dma_segment_t segs[IWN_MAX_SCATTER];
3140 	uint32_t flags;
3141 	u_int hdrlen;
3142 	int totlen, error, pad, nsegs = 0, i, rate;
3143 	uint8_t ridx, type, txant;
3144 
3145 	wh = mtod(m, struct ieee80211_frame *);
3146 	hdrlen = ieee80211_anyhdrsize(wh);
3147 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3148 
3149 	desc = &ring->desc[ring->cur];
3150 	data = &ring->data[ring->cur];
3151 
3152 	/* Choose a TX rate index. */
3153 	rate = params->ibp_rate0;
3154 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3155 		/* XXX fall back to mcast/mgmt rate? */
3156 		m_freem(m);
3157 		return EINVAL;
3158 	}
3159 	ridx = iwn_plcp_signal(rate);
3160 	rinfo = &iwn_rates[ridx];
3161 
3162 	totlen = m->m_pkthdr.len;
3163 
3164 	/* Prepare TX firmware command. */
3165 	cmd = &ring->cmd[ring->cur];
3166 	cmd->code = IWN_CMD_TX_DATA;
3167 	cmd->flags = 0;
3168 	cmd->qid = ring->qid;
3169 	cmd->idx = ring->cur;
3170 
3171 	tx = (struct iwn_cmd_data *)cmd->data;
3172 	/* NB: No need to clear tx, all fields are reinitialized here. */
3173 	tx->scratch = 0;	/* clear "scratch" area */
3174 
3175 	flags = 0;
3176 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
3177 		flags |= IWN_TX_NEED_ACK;
3178 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
3179 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3180 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
3181 			flags &= ~IWN_TX_NEED_RTS;
3182 			flags |= IWN_TX_NEED_PROTECTION;
3183 		} else
3184 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
3185 	}
3186 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
3187 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3188 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
3189 			flags &= ~IWN_TX_NEED_CTS;
3190 			flags |= IWN_TX_NEED_PROTECTION;
3191 		} else
3192 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
3193 	}
3194 	if (type == IEEE80211_FC0_TYPE_MGT) {
3195 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3196 
3197 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3198 			flags |= IWN_TX_INSERT_TSTAMP;
3199 
3200 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3201 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3202 			tx->timeout = htole16(3);
3203 		else
3204 			tx->timeout = htole16(2);
3205 	} else
3206 		tx->timeout = htole16(0);
3207 
3208 	if (hdrlen & 3) {
3209 		/* First segment length must be a multiple of 4. */
3210 		flags |= IWN_TX_NEED_PADDING;
3211 		pad = 4 - (hdrlen & 3);
3212 	} else
3213 		pad = 0;
3214 
3215 	if (ieee80211_radiotap_active_vap(vap)) {
3216 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
3217 
3218 		tap->wt_flags = 0;
3219 		tap->wt_rate = rate;
3220 
3221 		ieee80211_radiotap_tx(vap, m);
3222 	}
3223 
3224 	tx->len = htole16(totlen);
3225 	tx->tid = 0;
3226 	tx->id = hal->broadcast_id;
3227 	tx->rts_ntries = params->ibp_try1;
3228 	tx->data_ntries = params->ibp_try0;
3229 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3230 	tx->plcp = rinfo->plcp;
3231 	tx->rflags = rinfo->flags;
3232 	/* Group or management frame. */
3233 	tx->linkq = 0;
3234 	txant = IWN_LSB(sc->txchainmask);
3235 	tx->rflags |= IWN_RFLAG_ANT(txant);
3236 	/* Set physical address of "scratch area". */
3237 	paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
3238 	tx->loaddr = htole32(IWN_LOADDR(paddr));
3239 	tx->hiaddr = IWN_HIADDR(paddr);
3240 
3241 	/* Copy 802.11 header in TX command. */
3242 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
3243 
3244 	/* Trim 802.11 header. */
3245 	m_adj(m, hdrlen);
3246 	tx->security = 0;
3247 	tx->flags = htole32(flags);
3248 
3249 	if (m->m_len > 0) {
3250 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
3251 		    m, segs, IWN_MAX_SCATTER - 1, &nsegs, BUS_DMA_NOWAIT);
3252 		if (error == EFBIG) {
3253 			/* Too many fragments, linearize. */
3254 			mnew = m_defrag(m, MB_DONTWAIT);
3255 			if (mnew == NULL) {
3256 				device_printf(sc->sc_dev,
3257 				    "%s: could not defrag mbuf\n", __func__);
3258 				m_freem(m);
3259 				return ENOBUFS;
3260 			}
3261 			m = mnew;
3262 			error = bus_dmamap_load_mbuf_segment(ring->data_dmat,
3263 			    data->map, m, segs, IWN_MAX_SCATTER - 1, &nsegs, BUS_DMA_NOWAIT);
3264 		}
3265 		if (error != 0) {
3266 			device_printf(sc->sc_dev,
3267 			    "%s: bus_dmamap_load_mbuf_segment failed, error %d\n",
3268 			    __func__, error);
3269 			m_freem(m);
3270 			return error;
3271 		}
3272 	}
3273 
3274 	data->m = m;
3275 	data->ni = ni;
3276 
3277 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
3278 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
3279 
3280 	/* Fill TX descriptor. */
3281 	desc->nsegs = 1 + nsegs;
3282 	/* First DMA segment is used by the TX command. */
3283 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3284 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3285 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3286 	/* Other DMA segments are for data payload. */
3287 	for (i = 1; i <= nsegs; i++) {
3288 		desc->segs[i].addr = htole32(IWN_LOADDR(segs[i - 1].ds_addr));
3289 		desc->segs[i].len  = htole16(IWN_HIADDR(segs[i - 1].ds_addr) |
3290 		    segs[i - 1].ds_len << 4);
3291 	}
3292 
3293 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
3294 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3295 	    BUS_DMASYNC_PREWRITE);
3296 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3297 	    BUS_DMASYNC_PREWRITE);
3298 
3299 #ifdef notyet
3300 	/* Update TX scheduler. */
3301 	hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3302 #endif
3303 
3304 	/* Kick TX ring. */
3305 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3306 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3307 
3308 	/* Mark TX ring as full if we reach a certain threshold. */
3309 	if (++ring->queued > IWN_TX_RING_HIMARK)
3310 		sc->qfullmsk |= 1 << ring->qid;
3311 
3312 	return 0;
3313 }
3314 
3315 static int
3316 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3317 	const struct ieee80211_bpf_params *params)
3318 {
3319 	struct ieee80211com *ic = ni->ni_ic;
3320 	struct ifnet *ifp = ic->ic_ifp;
3321 	struct iwn_softc *sc = ifp->if_softc;
3322 	struct iwn_tx_ring *txq;
3323 	int error = 0;
3324 
3325 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
3326 		ieee80211_free_node(ni);
3327 		m_freem(m);
3328 		return ENETDOWN;
3329 	}
3330 
3331 	if (params == NULL)
3332 		txq = &sc->txq[M_WME_GETAC(m)];
3333 	else
3334 		txq = &sc->txq[params->ibp_pri & 3];
3335 
3336 	if (params == NULL) {
3337 		/*
3338 		 * Legacy path; interpret frame contents to decide
3339 		 * precisely how to send the frame.
3340 		 */
3341 		error = iwn_tx_data(sc, m, ni, txq);
3342 	} else {
3343 		/*
3344 		 * Caller supplied explicit parameters to use in
3345 		 * sending the frame.
3346 		 */
3347 		error = iwn_tx_data_raw(sc, m, ni, txq, params);
3348 	}
3349 	if (error != 0) {
3350 		/* NB: m is reclaimed on tx failure */
3351 		ieee80211_free_node(ni);
3352 		ifp->if_oerrors++;
3353 	}
3354 	return error;
3355 }
3356 
3357 static void
3358 iwn_start(struct ifnet *ifp)
3359 {
3360 	struct iwn_softc *sc;
3361 
3362 	sc = ifp->if_softc;
3363 
3364 	iwn_start_locked(ifp);
3365 }
3366 
3367 static void
3368 iwn_start_locked(struct ifnet *ifp)
3369 {
3370 	struct iwn_softc *sc = ifp->if_softc;
3371 	struct ieee80211_node *ni;
3372 	struct iwn_tx_ring *txq;
3373 	struct mbuf *m;
3374 	int pri;
3375 
3376 	for (;;) {
3377 		if (sc->qfullmsk != 0) {
3378 			ifp->if_flags |= IFF_OACTIVE;
3379 			break;
3380 		}
3381 		m = ifq_dequeue(&ifp->if_snd, NULL);
3382 		if (m == NULL)
3383 			break;
3384 		KKASSERT(M_TRAILINGSPACE(m) >= 0);
3385 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3386 		pri = M_WME_GETAC(m);
3387 		txq = &sc->txq[pri];
3388 		if (iwn_tx_data(sc, m, ni, txq) != 0) {
3389 			ifp->if_oerrors++;
3390 			ieee80211_free_node(ni);
3391 			break;
3392 		}
3393 		sc->sc_tx_timer = 5;
3394 	}
3395 }
3396 
3397 static void
3398 iwn_watchdog(struct iwn_softc *sc)
3399 {
3400 	if (sc->sc_tx_timer > 0 && --sc->sc_tx_timer == 0) {
3401 		struct ifnet *ifp = sc->sc_ifp;
3402 		struct ieee80211com *ic = ifp->if_l2com;
3403 
3404 		if_printf(ifp, "device timeout\n");
3405 		ieee80211_runtask(ic, &sc->sc_reinit_task);
3406 	}
3407 }
3408 
3409 static int
3410 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *ucred)
3411 {
3412 	struct iwn_softc *sc = ifp->if_softc;
3413 	struct ieee80211com *ic = ifp->if_l2com;
3414 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3415 	struct ifreq *ifr = (struct ifreq *) data;
3416 	int error = 0, startall = 0, stop = 0;
3417 
3418 	switch (cmd) {
3419 	case SIOCSIFFLAGS:
3420 		if (ifp->if_flags & IFF_UP) {
3421 			if (!(ifp->if_flags & IFF_RUNNING)) {
3422 				iwn_init_locked(sc);
3423 				if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)
3424 					startall = 1;
3425 				else
3426 					stop = 1;
3427 			}
3428 		} else {
3429 			if (ifp->if_flags & IFF_RUNNING)
3430 				iwn_stop_locked(sc);
3431 		}
3432 		if (startall)
3433 			ieee80211_start_all(ic);
3434 		else if (vap != NULL && stop)
3435 			ieee80211_stop(vap);
3436 		break;
3437 	case SIOCGIFMEDIA:
3438 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
3439 		break;
3440 	case SIOCGIFADDR:
3441 		error = ether_ioctl(ifp, cmd, data);
3442 		break;
3443 	default:
3444 		error = EINVAL;
3445 		break;
3446 	}
3447 	return error;
3448 }
3449 
3450 /*
3451  * Send a command to the firmware.
3452  */
3453 static int
3454 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3455 {
3456 	struct iwn_tx_ring *ring = &sc->txq[4];
3457 	struct iwn_tx_desc *desc;
3458 	struct iwn_tx_data *data;
3459 	struct iwn_tx_cmd *cmd;
3460 	struct mbuf *m;
3461 	bus_addr_t paddr;
3462 	int totlen, error;
3463 
3464 	desc = &ring->desc[ring->cur];
3465 	data = &ring->data[ring->cur];
3466 	totlen = 4 + size;
3467 
3468 	if (size > sizeof cmd->data) {
3469 		/* Command is too large to fit in a descriptor. */
3470 		if (totlen > MCLBYTES)
3471 			return EINVAL;
3472 		m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
3473 		if (m == NULL)
3474 			return ENOMEM;
3475 		cmd = mtod(m, struct iwn_tx_cmd *);
3476 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
3477 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3478 		if (error != 0) {
3479 			m_freem(m);
3480 			return error;
3481 		}
3482 		data->m = m;
3483 	} else {
3484 		cmd = &ring->cmd[ring->cur];
3485 		paddr = data->cmd_paddr;
3486 	}
3487 
3488 	cmd->code = code;
3489 	cmd->flags = 0;
3490 	cmd->qid = ring->qid;
3491 	cmd->idx = ring->cur;
3492 	memcpy(cmd->data, buf, size);
3493 
3494 	desc->nsegs = 1;
3495 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3496 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
3497 
3498 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
3499 	    __func__, iwn_intr_str(cmd->code), cmd->code,
3500 	    cmd->flags, cmd->qid, cmd->idx);
3501 
3502 	if (size > sizeof cmd->data) {
3503 		bus_dmamap_sync(ring->data_dmat, data->map,
3504 		    BUS_DMASYNC_PREWRITE);
3505 	} else {
3506 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3507 		    BUS_DMASYNC_PREWRITE);
3508 	}
3509 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3510 	    BUS_DMASYNC_PREWRITE);
3511 
3512 #ifdef notyet
3513 	/* Update TX scheduler. */
3514 	sc->sc_hal->update_sched(sc, ring->qid, ring->cur, 0, 0);
3515 #endif
3516 
3517 	/* Kick command ring. */
3518 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3519 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3520 
3521 	if (async)
3522 		error = 0;
3523 	else
3524 		error = zsleep(desc, &wlan_global_serializer, 0, "iwncmd", hz);
3525 	return error;
3526 }
3527 
3528 static int
3529 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3530 {
3531 	struct iwn4965_node_info hnode;
3532 	caddr_t src, dst;
3533 
3534 	/*
3535 	 * We use the node structure for 5000 Series internally (it is
3536 	 * a superset of the one for 4965AGN). We thus copy the common
3537 	 * fields before sending the command.
3538 	 */
3539 	src = (caddr_t)node;
3540 	dst = (caddr_t)&hnode;
3541 	memcpy(dst, src, 48);
3542 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3543 	memcpy(dst + 48, src + 72, 20);
3544 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3545 }
3546 
3547 static int
3548 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3549 {
3550 	/* Direct mapping. */
3551 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3552 }
3553 
3554 #if 0	/* HT */
3555 static const uint8_t iwn_ridx_to_plcp[] = {
3556 	10, 20, 55, 110, /* CCK */
3557 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 0x3 /* OFDM R1-R4 */
3558 };
3559 static const uint8_t iwn_siso_mcs_to_plcp[] = {
3560 	0, 0, 0, 0, 			/* CCK */
3561 	0, 0, 1, 2, 3, 4, 5, 6, 7	/* HT */
3562 };
3563 static const uint8_t iwn_mimo_mcs_to_plcp[] = {
3564 	0, 0, 0, 0, 			/* CCK */
3565 	8, 8, 9, 10, 11, 12, 13, 14, 15	/* HT */
3566 };
3567 #endif
3568 static const uint8_t iwn_prev_ridx[] = {
3569 	/* NB: allow fallback from CCK11 to OFDM9 and from OFDM6 to CCK5 */
3570 	0, 0, 1, 5,			/* CCK */
3571 	2, 4, 3, 6, 7, 8, 9, 10, 10	/* OFDM */
3572 };
3573 
3574 /*
3575  * Configure hardware link parameters for the specified
3576  * node operating on the specified channel.
3577  */
3578 static int
3579 iwn_set_link_quality(struct iwn_softc *sc, uint8_t id, int async)
3580 {
3581 	struct ifnet *ifp = sc->sc_ifp;
3582 	struct ieee80211com *ic = ifp->if_l2com;
3583 	struct iwn_cmd_link_quality linkq;
3584 	const struct iwn_rate *rinfo;
3585 	int i;
3586 	uint8_t txant, ridx;
3587 
3588 	/* Use the first valid TX antenna. */
3589 	txant = IWN_LSB(sc->txchainmask);
3590 
3591 	memset(&linkq, 0, sizeof linkq);
3592 	linkq.id = id;
3593 	linkq.antmsk_1stream = txant;
3594 	linkq.antmsk_2stream = IWN_ANT_AB;
3595 	linkq.ampdu_max = 31;
3596 	linkq.ampdu_threshold = 3;
3597 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3598 
3599 #if 0	/* HT */
3600 	if (IEEE80211_IS_CHAN_HT(c))
3601 		linkq.mimo = 1;
3602 #endif
3603 
3604 	if (id == IWN_ID_BSS)
3605 		ridx = IWN_RIDX_OFDM54;
3606 	else if (IEEE80211_IS_CHAN_A(ic->ic_curchan))
3607 		ridx = IWN_RIDX_OFDM6;
3608 	else
3609 		ridx = IWN_RIDX_CCK1;
3610 
3611 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3612 		rinfo = &iwn_rates[ridx];
3613 #if 0	/* HT */
3614 		if (IEEE80211_IS_CHAN_HT40(c)) {
3615 			linkq.retry[i].plcp = iwn_mimo_mcs_to_plcp[ridx]
3616 					 | IWN_RIDX_MCS;
3617 			linkq.retry[i].rflags = IWN_RFLAG_HT
3618 					 | IWN_RFLAG_HT40;
3619 			/* XXX shortGI */
3620 		} else if (IEEE80211_IS_CHAN_HT(c)) {
3621 			linkq.retry[i].plcp = iwn_siso_mcs_to_plcp[ridx]
3622 					 | IWN_RIDX_MCS;
3623 			linkq.retry[i].rflags = IWN_RFLAG_HT;
3624 			/* XXX shortGI */
3625 		} else
3626 #endif
3627 		{
3628 			linkq.retry[i].plcp = rinfo->plcp;
3629 			linkq.retry[i].rflags = rinfo->flags;
3630 		}
3631 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3632 		ridx = iwn_prev_ridx[ridx];
3633 	}
3634 #ifdef IWN_DEBUG
3635 	if (sc->sc_debug & IWN_DEBUG_STATE) {
3636 		kprintf("%s: set link quality for node %d, mimo %d ssmask %d\n",
3637 		    __func__, id, linkq.mimo, linkq.antmsk_1stream);
3638 		kprintf("%s:", __func__);
3639 		for (i = 0; i < IWN_MAX_TX_RETRIES; i++)
3640 			kprintf(" %d:%x", linkq.retry[i].plcp,
3641 			    linkq.retry[i].rflags);
3642 		kprintf("\n");
3643 	}
3644 #endif
3645 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3646 }
3647 
3648 /*
3649  * Broadcast node is used to send group-addressed and management frames.
3650  */
3651 static int
3652 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3653 {
3654 	const struct iwn_hal *hal = sc->sc_hal;
3655 	struct ifnet *ifp = sc->sc_ifp;
3656 	struct iwn_node_info node;
3657 	int error;
3658 
3659 	memset(&node, 0, sizeof node);
3660 	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
3661 	node.id = hal->broadcast_id;
3662 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
3663 	error = hal->add_node(sc, &node, async);
3664 	if (error != 0)
3665 		return error;
3666 
3667 	error = iwn_set_link_quality(sc, hal->broadcast_id, async);
3668 	return error;
3669 }
3670 
3671 static int
3672 iwn_wme_update(struct ieee80211com *ic)
3673 {
3674 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3675 #define	IWN_TXOP_TO_US(v)		(v<<5)
3676 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
3677 	struct iwn_edca_params cmd;
3678 	int i;
3679 
3680 	memset(&cmd, 0, sizeof cmd);
3681 	cmd.flags = htole32(IWN_EDCA_UPDATE);
3682 	for (i = 0; i < WME_NUM_AC; i++) {
3683 		const struct wmeParams *wmep =
3684 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[i];
3685 		cmd.ac[i].aifsn = wmep->wmep_aifsn;
3686 		cmd.ac[i].cwmin = htole16(IWN_EXP2(wmep->wmep_logcwmin));
3687 		cmd.ac[i].cwmax = htole16(IWN_EXP2(wmep->wmep_logcwmax));
3688 		cmd.ac[i].txoplimit =
3689 		    htole16(IWN_TXOP_TO_US(wmep->wmep_txopLimit));
3690 	}
3691 	(void) iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1 /*async*/);
3692 	return 0;
3693 #undef IWN_TXOP_TO_US
3694 #undef IWN_EXP2
3695 }
3696 
3697 static void
3698 iwn_update_mcast(struct ifnet *ifp)
3699 {
3700 	/* Ignore */
3701 }
3702 
3703 static void
3704 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3705 {
3706 	struct iwn_cmd_led led;
3707 
3708 	/* Clear microcode LED ownership. */
3709 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3710 
3711 	led.which = which;
3712 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
3713 	led.off = off;
3714 	led.on = on;
3715 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3716 }
3717 
3718 /*
3719  * Set the critical temperature at which the firmware will stop the radio
3720  * and notify us.
3721  */
3722 static int
3723 iwn_set_critical_temp(struct iwn_softc *sc)
3724 {
3725 	struct iwn_critical_temp crit;
3726 	int32_t temp;
3727 
3728 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3729 
3730 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3731 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3732 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3733 		temp = IWN_CTOK(110);
3734 	else
3735 		temp = 110;
3736 	memset(&crit, 0, sizeof crit);
3737 	crit.tempR = htole32(temp);
3738 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n",
3739 	    temp);
3740 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3741 }
3742 
3743 static int
3744 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3745 {
3746 	struct iwn_cmd_timing cmd;
3747 	uint64_t val, mod;
3748 
3749 	memset(&cmd, 0, sizeof cmd);
3750 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3751 	cmd.bintval = htole16(ni->ni_intval);
3752 	cmd.lintval = htole16(10);
3753 
3754 	/* Compute remaining time until next beacon. */
3755 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
3756 	mod = le64toh(cmd.tstamp) % val;
3757 	cmd.binitval = htole32((uint32_t)(val - mod));
3758 
3759 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3760 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3761 
3762 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3763 }
3764 
3765 static void
3766 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3767 {
3768 	struct ifnet *ifp = sc->sc_ifp;
3769 	struct ieee80211com *ic = ifp->if_l2com;
3770 
3771 	/* Adjust TX power if need be (delta >= 3 degC.) */
3772 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
3773 	    __func__, sc->temp, temp);
3774 	if (abs(temp - sc->temp) >= 3) {
3775 		/* Record temperature of last calibration. */
3776 		sc->temp = temp;
3777 		(void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1);
3778 	}
3779 }
3780 
3781 /*
3782  * Set TX power for current channel (each rate has its own power settings).
3783  * This function takes into account the regulatory information from EEPROM,
3784  * the current temperature and the current voltage.
3785  */
3786 static int
3787 iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
3788     int async)
3789 {
3790 /* Fixed-point arithmetic division using a n-bit fractional part. */
3791 #define fdivround(a, b, n)	\
3792 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3793 /* Linear interpolation. */
3794 #define interpolate(x, x1, y1, x2, y2, n)	\
3795 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3796 
3797 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3798 	struct ifnet *ifp = sc->sc_ifp;
3799 	struct ieee80211com *ic = ifp->if_l2com;
3800 	struct iwn_ucode_info *uc = &sc->ucode_info;
3801 	struct iwn4965_cmd_txpower cmd;
3802 	struct iwn4965_eeprom_chan_samples *chans;
3803 	int32_t vdiff, tdiff;
3804 	int i, c, grp, maxpwr;
3805 	const uint8_t *rf_gain, *dsp_gain;
3806 	uint8_t chan;
3807 
3808 	/* Retrieve channel number. */
3809 	chan = ieee80211_chan2ieee(ic, ch);
3810 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
3811 	    chan);
3812 
3813 	memset(&cmd, 0, sizeof cmd);
3814 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3815 	cmd.chan = chan;
3816 
3817 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3818 		maxpwr   = sc->maxpwr5GHz;
3819 		rf_gain  = iwn4965_rf_gain_5ghz;
3820 		dsp_gain = iwn4965_dsp_gain_5ghz;
3821 	} else {
3822 		maxpwr   = sc->maxpwr2GHz;
3823 		rf_gain  = iwn4965_rf_gain_2ghz;
3824 		dsp_gain = iwn4965_dsp_gain_2ghz;
3825 	}
3826 
3827 	/* Compute voltage compensation. */
3828 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3829 	if (vdiff > 0)
3830 		vdiff *= 2;
3831 	if (abs(vdiff) > 2)
3832 		vdiff = 0;
3833 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3834 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3835 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
3836 
3837 	/* Get channel attenuation group. */
3838 	if (chan <= 20)		/* 1-20 */
3839 		grp = 4;
3840 	else if (chan <= 43)	/* 34-43 */
3841 		grp = 0;
3842 	else if (chan <= 70)	/* 44-70 */
3843 		grp = 1;
3844 	else if (chan <= 124)	/* 71-124 */
3845 		grp = 2;
3846 	else			/* 125-200 */
3847 		grp = 3;
3848 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3849 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
3850 
3851 	/* Get channel sub-band. */
3852 	for (i = 0; i < IWN_NBANDS; i++)
3853 		if (sc->bands[i].lo != 0 &&
3854 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3855 			break;
3856 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
3857 		return EINVAL;
3858 	chans = sc->bands[i].chans;
3859 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3860 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
3861 
3862 	for (c = 0; c < 2; c++) {
3863 		uint8_t power, gain, temp;
3864 		int maxchpwr, pwr, ridx, idx;
3865 
3866 		power = interpolate(chan,
3867 		    chans[0].num, chans[0].samples[c][1].power,
3868 		    chans[1].num, chans[1].samples[c][1].power, 1);
3869 		gain  = interpolate(chan,
3870 		    chans[0].num, chans[0].samples[c][1].gain,
3871 		    chans[1].num, chans[1].samples[c][1].gain, 1);
3872 		temp  = interpolate(chan,
3873 		    chans[0].num, chans[0].samples[c][1].temp,
3874 		    chans[1].num, chans[1].samples[c][1].temp, 1);
3875 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3876 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
3877 		    __func__, c, power, gain, temp);
3878 
3879 		/* Compute temperature compensation. */
3880 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3881 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3882 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
3883 		    __func__, tdiff, sc->temp, temp);
3884 
3885 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3886 			/* Convert dBm to half-dBm. */
3887 			maxchpwr = sc->maxpwr[chan] * 2;
3888 			if ((ridx / 8) & 1)
3889 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
3890 
3891 			pwr = maxpwr;
3892 
3893 			/* Adjust TX power based on rate. */
3894 			if ((ridx % 8) == 5)
3895 				pwr -= 15;	/* OFDM48: -7.5dB */
3896 			else if ((ridx % 8) == 6)
3897 				pwr -= 17;	/* OFDM54: -8.5dB */
3898 			else if ((ridx % 8) == 7)
3899 				pwr -= 20;	/* OFDM60: -10dB */
3900 			else
3901 				pwr -= 10;	/* Others: -5dB */
3902 
3903 			/* Do not exceed channel max TX power. */
3904 			if (pwr > maxchpwr)
3905 				pwr = maxchpwr;
3906 
3907 			idx = gain - (pwr - power) - tdiff - vdiff;
3908 			if ((ridx / 8) & 1)	/* MIMO */
3909 				idx += (int32_t)le32toh(uc->atten[grp][c]);
3910 
3911 			if (cmd.band == 0)
3912 				idx += 9;	/* 5GHz */
3913 			if (ridx == IWN_RIDX_MAX)
3914 				idx += 5;	/* CCK */
3915 
3916 			/* Make sure idx stays in a valid range. */
3917 			if (idx < 0)
3918 				idx = 0;
3919 			else if (idx > IWN4965_MAX_PWR_INDEX)
3920 				idx = IWN4965_MAX_PWR_INDEX;
3921 
3922 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3923 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
3924 			    __func__, c, ridx, idx);
3925 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3926 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3927 		}
3928 	}
3929 
3930 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3931 	    "%s: set tx power for chan %d\n", __func__, chan);
3932 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3933 
3934 #undef interpolate
3935 #undef fdivround
3936 }
3937 
3938 static int
3939 iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
3940     int async)
3941 {
3942 	struct iwn5000_cmd_txpower cmd;
3943 
3944 	/*
3945 	 * TX power calibration is handled automatically by the firmware
3946 	 * for 5000 Series.
3947 	 */
3948 	memset(&cmd, 0, sizeof cmd);
3949 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
3950 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3951 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3952 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: setting TX power\n", __func__);
3953 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
3954 }
3955 
3956 /*
3957  * Retrieve the maximum RSSI (in dBm) among receivers.
3958  */
3959 static int
3960 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
3961 {
3962 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
3963 	uint8_t mask, agc;
3964 	int rssi;
3965 
3966 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3967 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
3968 
3969 	rssi = 0;
3970 #if 0
3971 	if (mask & IWN_ANT_A)	/* Ant A */
3972 		rssi = max(rssi, phy->rssi[0]);
3973 	if (mask & IWN_ATH_B)	/* Ant B */
3974 		rssi = max(rssi, phy->rssi[2]);
3975 	if (mask & IWN_ANT_C)	/* Ant C */
3976 		rssi = max(rssi, phy->rssi[4]);
3977 #else
3978 	rssi = max(rssi, phy->rssi[0]);
3979 	rssi = max(rssi, phy->rssi[2]);
3980 	rssi = max(rssi, phy->rssi[4]);
3981 #endif
3982 
3983 	DPRINTF(sc, IWN_DEBUG_RECV, "%s: agc %d mask 0x%x rssi %d %d %d "
3984 	    "result %d\n", __func__, agc, mask,
3985 	    phy->rssi[0], phy->rssi[2], phy->rssi[4],
3986 	    rssi - agc - IWN_RSSI_TO_DBM);
3987 	return rssi - agc - IWN_RSSI_TO_DBM;
3988 }
3989 
3990 static int
3991 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
3992 {
3993 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
3994 	int rssi;
3995 	uint8_t agc;
3996 
3997 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
3998 
3999 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
4000 		   le16toh(phy->rssi[1]) & 0xff);
4001 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
4002 
4003 	DPRINTF(sc, IWN_DEBUG_RECV, "%s: agc %d rssi %d %d %d "
4004 	    "result %d\n", __func__, agc,
4005 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
4006 	    rssi - agc - IWN_RSSI_TO_DBM);
4007 	return rssi - agc - IWN_RSSI_TO_DBM;
4008 }
4009 
4010 /*
4011  * Retrieve the average noise (in dBm) among receivers.
4012  */
4013 static int
4014 iwn_get_noise(const struct iwn_rx_general_stats *stats)
4015 {
4016 	int i, total, nbant, noise;
4017 
4018 	total = nbant = 0;
4019 	for (i = 0; i < 3; i++) {
4020 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
4021 			continue;
4022 		total += noise;
4023 		nbant++;
4024 	}
4025 	/* There should be at least one antenna but check anyway. */
4026 	return (nbant == 0) ? -127 : (total / nbant) - 107;
4027 }
4028 
4029 /*
4030  * Compute temperature (in degC) from last received statistics.
4031  */
4032 static int
4033 iwn4965_get_temperature(struct iwn_softc *sc)
4034 {
4035 	struct iwn_ucode_info *uc = &sc->ucode_info;
4036 	int32_t r1, r2, r3, r4, temp;
4037 
4038 	r1 = le32toh(uc->temp[0].chan20MHz);
4039 	r2 = le32toh(uc->temp[1].chan20MHz);
4040 	r3 = le32toh(uc->temp[2].chan20MHz);
4041 	r4 = le32toh(sc->rawtemp);
4042 
4043 	if (r1 == r3)	/* Prevents division by 0 (should not happen.) */
4044 		return 0;
4045 
4046 	/* Sign-extend 23-bit R4 value to 32-bit. */
4047 	r4 = (r4 << 8) >> 8;
4048 	/* Compute temperature in Kelvin. */
4049 	temp = (259 * (r4 - r2)) / (r3 - r1);
4050 	temp = (temp * 97) / 100 + 8;
4051 
4052 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
4053 	    IWN_KTOC(temp));
4054 	return IWN_KTOC(temp);
4055 }
4056 
4057 static int
4058 iwn5000_get_temperature(struct iwn_softc *sc)
4059 {
4060 	int32_t temp;
4061 
4062 	/*
4063 	 * Temperature is not used by the driver for 5000 Series because
4064 	 * TX power calibration is handled by firmware.  We export it to
4065 	 * users through the sensor framework though.
4066 	 */
4067 	temp = le32toh(sc->rawtemp);
4068 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
4069 		temp = (temp / -5) + sc->temp_off;
4070 		temp = IWN_KTOC(temp);
4071 	}
4072 	return temp;
4073 }
4074 
4075 /*
4076  * Initialize sensitivity calibration state machine.
4077  */
4078 static int
4079 iwn_init_sensitivity(struct iwn_softc *sc)
4080 {
4081 	const struct iwn_hal *hal = sc->sc_hal;
4082 	struct iwn_calib_state *calib = &sc->calib;
4083 	uint32_t flags;
4084 	int error;
4085 
4086 	/* Reset calibration state machine. */
4087 	memset(calib, 0, sizeof (*calib));
4088 	calib->state = IWN_CALIB_STATE_INIT;
4089 	calib->cck_state = IWN_CCK_STATE_HIFA;
4090 	/* Set initial correlation values. */
4091 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
4092 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
4093 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
4094 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
4095 	calib->cck_x4      = 125;
4096 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
4097 	calib->energy_cck  = sc->limits->energy_cck;
4098 
4099 	/* Write initial sensitivity. */
4100 	error = iwn_send_sensitivity(sc);
4101 	if (error != 0)
4102 		return error;
4103 
4104 	/* Write initial gains. */
4105 	error = hal->init_gains(sc);
4106 	if (error != 0)
4107 		return error;
4108 
4109 	/* Request statistics at each beacon interval. */
4110 	flags = 0;
4111 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: calibrate phy\n", __func__);
4112 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
4113 }
4114 
4115 /*
4116  * Collect noise and RSSI statistics for the first 20 beacons received
4117  * after association and use them to determine connected antennas and
4118  * to set differential gains.
4119  */
4120 static void
4121 iwn_collect_noise(struct iwn_softc *sc,
4122     const struct iwn_rx_general_stats *stats)
4123 {
4124 	const struct iwn_hal *hal = sc->sc_hal;
4125 	struct iwn_calib_state *calib = &sc->calib;
4126 	uint32_t val;
4127 	int i;
4128 
4129 	/* Accumulate RSSI and noise for all 3 antennas. */
4130 	for (i = 0; i < 3; i++) {
4131 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
4132 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
4133 	}
4134 	/* NB: We update differential gains only once after 20 beacons. */
4135 	if (++calib->nbeacons < 20)
4136 		return;
4137 
4138 	/* Determine highest average RSSI. */
4139 	val = MAX(calib->rssi[0], calib->rssi[1]);
4140 	val = MAX(calib->rssi[2], val);
4141 
4142 	/* Determine which antennas are connected. */
4143 	sc->chainmask = sc->rxchainmask;
4144 	for (i = 0; i < 3; i++)
4145 		if (val - calib->rssi[i] > 15 * 20)
4146 			sc->chainmask &= ~(1 << i);
4147 
4148 	/* If none of the TX antennas are connected, keep at least one. */
4149 	if ((sc->chainmask & sc->txchainmask) == 0)
4150 		sc->chainmask |= IWN_LSB(sc->txchainmask);
4151 
4152 	(void)hal->set_gains(sc);
4153 	calib->state = IWN_CALIB_STATE_RUN;
4154 
4155 #ifdef notyet
4156 	/* XXX Disable RX chains with no antennas connected. */
4157 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
4158 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4159 #endif
4160 
4161 #if 0
4162 	/* XXX: not yet */
4163 	/* Enable power-saving mode if requested by user. */
4164 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
4165 		(void)iwn_set_pslevel(sc, 0, 3, 1);
4166 #endif
4167 }
4168 
4169 static int
4170 iwn4965_init_gains(struct iwn_softc *sc)
4171 {
4172 	struct iwn_phy_calib_gain cmd;
4173 
4174 	memset(&cmd, 0, sizeof cmd);
4175 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4176 	/* Differential gains initially set to 0 for all 3 antennas. */
4177 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4178 	    "%s: setting initial differential gains\n", __func__);
4179 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4180 }
4181 
4182 static int
4183 iwn5000_init_gains(struct iwn_softc *sc)
4184 {
4185 	struct iwn_phy_calib cmd;
4186 
4187 	memset(&cmd, 0, sizeof cmd);
4188 	cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
4189 	cmd.ngroups = 1;
4190 	cmd.isvalid = 1;
4191 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4192 	    "%s: setting initial differential gains\n", __func__);
4193 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4194 }
4195 
4196 static int
4197 iwn4965_set_gains(struct iwn_softc *sc)
4198 {
4199 	struct iwn_calib_state *calib = &sc->calib;
4200 	struct iwn_phy_calib_gain cmd;
4201 	int i, delta, noise;
4202 
4203 	/* Get minimal noise among connected antennas. */
4204 	noise = INT_MAX;	/* NB: There's at least one antenna. */
4205 	for (i = 0; i < 3; i++)
4206 		if (sc->chainmask & (1 << i))
4207 			noise = MIN(calib->noise[i], noise);
4208 
4209 	memset(&cmd, 0, sizeof cmd);
4210 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4211 	/* Set differential gains for connected antennas. */
4212 	for (i = 0; i < 3; i++) {
4213 		if (sc->chainmask & (1 << i)) {
4214 			/* Compute attenuation (in unit of 1.5dB). */
4215 			delta = (noise - (int32_t)calib->noise[i]) / 30;
4216 			/* NB: delta <= 0 */
4217 			/* Limit to [-4.5dB,0]. */
4218 			cmd.gain[i] = MIN(abs(delta), 3);
4219 			if (delta < 0)
4220 				cmd.gain[i] |= 1 << 2;	/* sign bit */
4221 		}
4222 	}
4223 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4224 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
4225 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
4226 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4227 }
4228 
4229 static int
4230 iwn5000_set_gains(struct iwn_softc *sc)
4231 {
4232 	struct iwn_calib_state *calib = &sc->calib;
4233 	struct iwn_phy_calib_gain cmd;
4234 	int i, ant, delta, div;
4235 
4236 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
4237 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
4238 
4239 	memset(&cmd, 0, sizeof cmd);
4240 	cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
4241 	cmd.ngroups = 1;
4242 	cmd.isvalid = 1;
4243 	/* Get first available RX antenna as referential. */
4244 	ant = IWN_LSB(sc->rxchainmask);
4245 	/* Set differential gains for other antennas. */
4246 	for (i = ant + 1; i < 3; i++) {
4247 		if (sc->chainmask & (1 << i)) {
4248 			/* The delta is relative to antenna "ant". */
4249 			delta = ((int32_t)calib->noise[ant] -
4250 			    (int32_t)calib->noise[i]) / div;
4251 			/* Limit to [-4.5dB,+4.5dB]. */
4252 			cmd.gain[i - 1] = MIN(abs(delta), 3);
4253 			if (delta < 0)
4254 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
4255 		}
4256 	}
4257 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4258 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
4259 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
4260 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4261 }
4262 
4263 /*
4264  * Tune RF RX sensitivity based on the number of false alarms detected
4265  * during the last beacon period.
4266  */
4267 static void
4268 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
4269 {
4270 #define inc(val, inc, max)			\
4271 	if ((val) < (max)) {			\
4272 		if ((val) < (max) - (inc))	\
4273 			(val) += (inc);		\
4274 		else				\
4275 			(val) = (max);		\
4276 		needs_update = 1;		\
4277 	}
4278 #define dec(val, dec, min)			\
4279 	if ((val) > (min)) {			\
4280 		if ((val) > (min) + (dec))	\
4281 			(val) -= (dec);		\
4282 		else				\
4283 			(val) = (min);		\
4284 		needs_update = 1;		\
4285 	}
4286 
4287 	const struct iwn_sensitivity_limits *limits = sc->limits;
4288 	struct iwn_calib_state *calib = &sc->calib;
4289 	uint32_t val, rxena, fa;
4290 	uint32_t energy[3], energy_min;
4291 	uint8_t noise[3], noise_ref;
4292 	int i, needs_update = 0;
4293 
4294 	/* Check that we've been enabled long enough. */
4295 	rxena = le32toh(stats->general.load);
4296 	if (rxena == 0)
4297 		return;
4298 
4299 	/* Compute number of false alarms since last call for OFDM. */
4300 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
4301 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
4302 	fa *= 200 * 1024;	/* 200TU */
4303 
4304 	/* Save counters values for next call. */
4305 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
4306 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
4307 
4308 	if (fa > 50 * rxena) {
4309 		/* High false alarm count, decrease sensitivity. */
4310 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4311 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
4312 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
4313 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
4314 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
4315 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
4316 
4317 	} else if (fa < 5 * rxena) {
4318 		/* Low false alarm count, increase sensitivity. */
4319 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4320 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
4321 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
4322 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4323 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
4324 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4325 	}
4326 
4327 	/* Compute maximum noise among 3 receivers. */
4328 	for (i = 0; i < 3; i++)
4329 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
4330 	val = MAX(noise[0], noise[1]);
4331 	val = MAX(noise[2], val);
4332 	/* Insert it into our samples table. */
4333 	calib->noise_samples[calib->cur_noise_sample] = val;
4334 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4335 
4336 	/* Compute maximum noise among last 20 samples. */
4337 	noise_ref = calib->noise_samples[0];
4338 	for (i = 1; i < 20; i++)
4339 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4340 
4341 	/* Compute maximum energy among 3 receivers. */
4342 	for (i = 0; i < 3; i++)
4343 		energy[i] = le32toh(stats->general.energy[i]);
4344 	val = MIN(energy[0], energy[1]);
4345 	val = MIN(energy[2], val);
4346 	/* Insert it into our samples table. */
4347 	calib->energy_samples[calib->cur_energy_sample] = val;
4348 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4349 
4350 	/* Compute minimum energy among last 10 samples. */
4351 	energy_min = calib->energy_samples[0];
4352 	for (i = 1; i < 10; i++)
4353 		energy_min = MAX(energy_min, calib->energy_samples[i]);
4354 	energy_min += 6;
4355 
4356 	/* Compute number of false alarms since last call for CCK. */
4357 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4358 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
4359 	fa *= 200 * 1024;	/* 200TU */
4360 
4361 	/* Save counters values for next call. */
4362 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4363 	calib->fa_cck = le32toh(stats->cck.fa);
4364 
4365 	if (fa > 50 * rxena) {
4366 		/* High false alarm count, decrease sensitivity. */
4367 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4368 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
4369 		calib->cck_state = IWN_CCK_STATE_HIFA;
4370 		calib->low_fa = 0;
4371 
4372 		if (calib->cck_x4 > 160) {
4373 			calib->noise_ref = noise_ref;
4374 			if (calib->energy_cck > 2)
4375 				dec(calib->energy_cck, 2, energy_min);
4376 		}
4377 		if (calib->cck_x4 < 160) {
4378 			calib->cck_x4 = 161;
4379 			needs_update = 1;
4380 		} else
4381 			inc(calib->cck_x4, 3, limits->max_cck_x4);
4382 
4383 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4384 
4385 	} else if (fa < 5 * rxena) {
4386 		/* Low false alarm count, increase sensitivity. */
4387 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4388 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
4389 		calib->cck_state = IWN_CCK_STATE_LOFA;
4390 		calib->low_fa++;
4391 
4392 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4393 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4394 		    calib->low_fa > 100)) {
4395 			inc(calib->energy_cck, 2, limits->min_energy_cck);
4396 			dec(calib->cck_x4,     3, limits->min_cck_x4);
4397 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4398 		}
4399 	} else {
4400 		/* Not worth to increase or decrease sensitivity. */
4401 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4402 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
4403 		calib->low_fa = 0;
4404 		calib->noise_ref = noise_ref;
4405 
4406 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4407 			/* Previous interval had many false alarms. */
4408 			dec(calib->energy_cck, 8, energy_min);
4409 		}
4410 		calib->cck_state = IWN_CCK_STATE_INIT;
4411 	}
4412 
4413 	if (needs_update)
4414 		(void)iwn_send_sensitivity(sc);
4415 #undef dec
4416 #undef inc
4417 }
4418 
4419 static int
4420 iwn_send_sensitivity(struct iwn_softc *sc)
4421 {
4422 	struct iwn_calib_state *calib = &sc->calib;
4423 	struct iwn_sensitivity_cmd cmd;
4424 
4425 	memset(&cmd, 0, sizeof cmd);
4426 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4427 	/* OFDM modulation. */
4428 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
4429 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4430 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
4431 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4432 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
4433 	cmd.energy_ofdm_th   = htole16(62);
4434 	/* CCK modulation. */
4435 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
4436 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
4437 	cmd.energy_cck       = htole16(calib->energy_cck);
4438 	/* Barker modulation: use default values. */
4439 	cmd.corr_barker      = htole16(190);
4440 	cmd.corr_barker_mrc  = htole16(390);
4441 
4442 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4443 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
4444 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4445 	    calib->ofdm_mrc_x4, calib->cck_x4,
4446 	    calib->cck_mrc_x4, calib->energy_cck);
4447 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
4448 }
4449 
4450 /*
4451  * Set STA mode power saving level (between 0 and 5).
4452  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4453  */
4454 static int
4455 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4456 {
4457 	const struct iwn_pmgt *pmgt;
4458 	struct iwn_pmgt_cmd cmd;
4459 	uint32_t max, skip_dtim;
4460 	uint32_t tmp;
4461 	int i;
4462 
4463 	/* Select which PS parameters to use. */
4464 	if (dtim <= 2)
4465 		pmgt = &iwn_pmgt[0][level];
4466 	else if (dtim <= 10)
4467 		pmgt = &iwn_pmgt[1][level];
4468 	else
4469 		pmgt = &iwn_pmgt[2][level];
4470 
4471 	memset(&cmd, 0, sizeof cmd);
4472 	if (level != 0)	/* not CAM */
4473 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4474 	if (level == 5)
4475 		cmd.flags |= htole16(IWN_PS_FAST_PD);
4476 	/* Retrieve PCIe Active State Power Management (ASPM). */
4477 	tmp = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
4478 	if (!(tmp & 0x1))	/* L0s Entry disabled. */
4479 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4480 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4481 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4482 
4483 	if (dtim == 0) {
4484 		dtim = 1;
4485 		skip_dtim = 0;
4486 	} else
4487 		skip_dtim = pmgt->skip_dtim;
4488 	if (skip_dtim != 0) {
4489 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4490 		max = pmgt->intval[4];
4491 		if (max == (uint32_t)-1)
4492 			max = dtim * (skip_dtim + 1);
4493 		else if (max > dtim)
4494 			max = (max / dtim) * dtim;
4495 	} else
4496 		max = dtim;
4497 	for (i = 0; i < 5; i++)
4498 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
4499 
4500 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
4501 	    level);
4502 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4503 }
4504 
4505 static int
4506 iwn_config(struct iwn_softc *sc)
4507 {
4508 	const struct iwn_hal *hal = sc->sc_hal;
4509 	struct ifnet *ifp = sc->sc_ifp;
4510 	struct ieee80211com *ic = ifp->if_l2com;
4511 	struct iwn_bluetooth bluetooth;
4512 	uint32_t txmask;
4513 	int error;
4514 	uint16_t rxchain;
4515 
4516 	/* Configure valid TX chains for 5000 Series. */
4517 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4518 		txmask = htole32(sc->txchainmask);
4519 		DPRINTF(sc, IWN_DEBUG_RESET,
4520 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
4521 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4522 		    sizeof txmask, 0);
4523 		if (error != 0) {
4524 			device_printf(sc->sc_dev,
4525 			    "%s: could not configure valid TX chains, "
4526 			    "error %d\n", __func__, error);
4527 			return error;
4528 		}
4529 	}
4530 
4531 	/* Configure bluetooth coexistence. */
4532 	memset(&bluetooth, 0, sizeof bluetooth);
4533 	bluetooth.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
4534 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4535 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4536 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: config bluetooth coexistence\n",
4537 	    __func__);
4538 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4539 	if (error != 0) {
4540 		device_printf(sc->sc_dev,
4541 		    "%s: could not configure bluetooth coexistence, error %d\n",
4542 		    __func__, error);
4543 		return error;
4544 	}
4545 
4546 	/* Set mode, channel, RX filter and enable RX. */
4547 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4548 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, IF_LLADDR(ifp));
4549 	IEEE80211_ADDR_COPY(sc->rxon.wlap, IF_LLADDR(ifp));
4550 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
4551 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4552 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
4553 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4554 	switch (ic->ic_opmode) {
4555 	case IEEE80211_M_STA:
4556 		sc->rxon.mode = IWN_MODE_STA;
4557 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4558 		break;
4559 	case IEEE80211_M_MONITOR:
4560 		sc->rxon.mode = IWN_MODE_MONITOR;
4561 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4562 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4563 		break;
4564 	default:
4565 		/* Should not get there. */
4566 		break;
4567 	}
4568 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
4569 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
4570 	sc->rxon.ht_single_mask = 0xff;
4571 	sc->rxon.ht_dual_mask = 0xff;
4572 	sc->rxon.ht_triple_mask = 0xff;
4573 	rxchain =
4574 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4575 	    IWN_RXCHAIN_MIMO_COUNT(2) |
4576 	    IWN_RXCHAIN_IDLE_COUNT(2);
4577 	sc->rxon.rxchain = htole16(rxchain);
4578 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: setting configuration\n", __func__);
4579 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 0);
4580 	if (error != 0) {
4581 		device_printf(sc->sc_dev,
4582 		    "%s: RXON command failed\n", __func__);
4583 		return error;
4584 	}
4585 
4586 	error = iwn_add_broadcast_node(sc, 0);
4587 	if (error != 0) {
4588 		device_printf(sc->sc_dev,
4589 		    "%s: could not add broadcast node\n", __func__);
4590 		return error;
4591 	}
4592 
4593 	/* Configuration has changed, set TX power accordingly. */
4594 	error = hal->set_txpower(sc, ic->ic_curchan, 0);
4595 	if (error != 0) {
4596 		device_printf(sc->sc_dev,
4597 		    "%s: could not set TX power\n", __func__);
4598 		return error;
4599 	}
4600 
4601 	error = iwn_set_critical_temp(sc);
4602 	if (error != 0) {
4603 		device_printf(sc->sc_dev,
4604 		    "%s: ccould not set critical temperature\n", __func__);
4605 		return error;
4606 	}
4607 
4608 	/* Set power saving level to CAM during initialization. */
4609 	error = iwn_set_pslevel(sc, 0, 0, 0);
4610 	if (error != 0) {
4611 		device_printf(sc->sc_dev,
4612 		    "%s: could not set power saving level\n", __func__);
4613 		return error;
4614 	}
4615 	return 0;
4616 }
4617 
4618 static int
4619 iwn_scan(struct iwn_softc *sc)
4620 {
4621 	struct ifnet *ifp = sc->sc_ifp;
4622 	struct ieee80211com *ic = ifp->if_l2com;
4623 	struct ieee80211_scan_state *ss = ic->ic_scan;	/*XXX*/
4624 	struct iwn_scan_hdr *hdr;
4625 	struct iwn_cmd_data *tx;
4626 	struct iwn_scan_essid *essid;
4627 	struct iwn_scan_chan *chan;
4628 	struct ieee80211_frame *wh;
4629 	struct ieee80211_rateset *rs;
4630 	struct ieee80211_channel *c;
4631 	int buflen, error, nrates;
4632 	uint16_t rxchain;
4633 	uint8_t *buf, *frm, txant;
4634 
4635 	buf = kmalloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_INTWAIT | M_ZERO);
4636 	if (buf == NULL) {
4637 		device_printf(sc->sc_dev,
4638 		    "%s: could not allocate buffer for scan command\n",
4639 		    __func__);
4640 		return ENOMEM;
4641 	}
4642 	hdr = (struct iwn_scan_hdr *)buf;
4643 
4644 	/*
4645 	 * Move to the next channel if no frames are received within 10ms
4646 	 * after sending the probe request.
4647 	 */
4648 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
4649 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
4650 
4651 	/* Select antennas for scanning. */
4652 	rxchain =
4653 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4654 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4655 	    IWN_RXCHAIN_DRIVER_FORCE;
4656 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) &&
4657 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
4658 		/* Ant A must be avoided in 5GHz because of an HW bug. */
4659 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4660 	} else	/* Use all available RX antennas. */
4661 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4662 	hdr->rxchain = htole16(rxchain);
4663 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4664 
4665 	tx = (struct iwn_cmd_data *)(hdr + 1);
4666 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
4667 	tx->id = sc->sc_hal->broadcast_id;
4668 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4669 
4670 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
4671 		/* Send probe requests at 6Mbps. */
4672 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4673 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4674 	} else {
4675 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4676 		/* Send probe requests at 1Mbps. */
4677 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4678 		tx->rflags = IWN_RFLAG_CCK;
4679 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4680 	}
4681 	/* Use the first valid TX antenna. */
4682 	txant = IWN_LSB(sc->txchainmask);
4683 	tx->rflags |= IWN_RFLAG_ANT(txant);
4684 
4685 	essid = (struct iwn_scan_essid *)(tx + 1);
4686 	if (ss->ss_ssid[0].len != 0) {
4687 		essid[0].id = IEEE80211_ELEMID_SSID;
4688 		essid[0].len = ss->ss_ssid[0].len;
4689 		memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
4690 	}
4691 
4692 	/*
4693 	 * Build a probe request frame.  Most of the following code is a
4694 	 * copy & paste of what is done in net80211.
4695 	 */
4696 	wh = (struct ieee80211_frame *)(essid + 20);
4697 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4698 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4699 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4700 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
4701 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
4702 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
4703 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
4704 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
4705 
4706 	frm = (uint8_t *)(wh + 1);
4707 
4708 	/* Add SSID IE. */
4709 	*frm++ = IEEE80211_ELEMID_SSID;
4710 	*frm++ = ss->ss_ssid[0].len;
4711 	memcpy(frm, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
4712 	frm += ss->ss_ssid[0].len;
4713 
4714 	/* Add supported rates IE. */
4715 	*frm++ = IEEE80211_ELEMID_RATES;
4716 	nrates = rs->rs_nrates;
4717 	if (nrates > IEEE80211_RATE_SIZE)
4718 		nrates = IEEE80211_RATE_SIZE;
4719 	*frm++ = nrates;
4720 	memcpy(frm, rs->rs_rates, nrates);
4721 	frm += nrates;
4722 
4723 	/* Add supported xrates IE. */
4724 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
4725 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
4726 		*frm++ = IEEE80211_ELEMID_XRATES;
4727 		*frm++ = (uint8_t)nrates;
4728 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
4729 		frm += nrates;
4730 	}
4731 
4732 	/* Set length of probe request. */
4733 	tx->len = htole16(frm - (uint8_t *)wh);
4734 
4735 	c = ic->ic_curchan;
4736 	chan = (struct iwn_scan_chan *)frm;
4737 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4738 	chan->flags = 0;
4739 	if (ss->ss_nssid > 0)
4740 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4741 	chan->dsp_gain = 0x6e;
4742 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
4743 	    !(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
4744 		chan->rf_gain = 0x3b;
4745 		chan->active  = htole16(24);
4746 		chan->passive = htole16(110);
4747 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
4748 	} else if (IEEE80211_IS_CHAN_5GHZ(c)) {
4749 		chan->rf_gain = 0x3b;
4750 		chan->active  = htole16(24);
4751 		if (sc->rxon.associd)
4752 			chan->passive = htole16(78);
4753 		else
4754 			chan->passive = htole16(110);
4755 		hdr->crc_threshold = 0xffff;
4756 	} else if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
4757 		chan->rf_gain = 0x28;
4758 		chan->active  = htole16(36);
4759 		chan->passive = htole16(120);
4760 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
4761 	} else {
4762 		chan->rf_gain = 0x28;
4763 		chan->active  = htole16(36);
4764 		if (sc->rxon.associd)
4765 			chan->passive = htole16(88);
4766 		else
4767 			chan->passive = htole16(120);
4768 		hdr->crc_threshold = 0xffff;
4769 	}
4770 
4771 	DPRINTF(sc, IWN_DEBUG_STATE,
4772 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
4773 	    "dsp_gain 0x%x active 0x%x passive 0x%x\n", __func__,
4774 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
4775 	    chan->active, chan->passive);
4776 
4777 	hdr->nchan++;
4778 	chan++;
4779 	buflen = (uint8_t *)chan - buf;
4780 	hdr->len = htole16(buflen);
4781 
4782 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
4783 	    hdr->nchan);
4784 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4785 	kfree(buf, M_DEVBUF);
4786 	return error;
4787 }
4788 
4789 static int
4790 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
4791 {
4792 	const struct iwn_hal *hal = sc->sc_hal;
4793 	struct ifnet *ifp = sc->sc_ifp;
4794 	struct ieee80211com *ic = ifp->if_l2com;
4795 	struct ieee80211_node *ni = vap->iv_bss;
4796 	int error;
4797 
4798 	sc->calib.state = IWN_CALIB_STATE_INIT;
4799 
4800 	/* Update adapter configuration. */
4801 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4802 	sc->rxon.chan = htole16(ieee80211_chan2ieee(ic, ni->ni_chan));
4803 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4804 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4805 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4806 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4807 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4808 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4809 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4810 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
4811 		sc->rxon.cck_mask  = 0;
4812 		sc->rxon.ofdm_mask = 0x15;
4813 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
4814 		sc->rxon.cck_mask  = 0x03;
4815 		sc->rxon.ofdm_mask = 0;
4816 	} else {
4817 		/* XXX assume 802.11b/g */
4818 		sc->rxon.cck_mask  = 0x0f;
4819 		sc->rxon.ofdm_mask = 0x15;
4820 	}
4821 	DPRINTF(sc, IWN_DEBUG_STATE,
4822 	    "%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x "
4823 	    "ht_single 0x%x ht_dual 0x%x rxchain 0x%x "
4824 	    "myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n",
4825 	    __func__,
4826 	    le16toh(sc->rxon.chan), sc->rxon.mode, le32toh(sc->rxon.flags),
4827 	    sc->rxon.cck_mask, sc->rxon.ofdm_mask,
4828 	    sc->rxon.ht_single_mask, sc->rxon.ht_dual_mask,
4829 	    le16toh(sc->rxon.rxchain),
4830 	    sc->rxon.myaddr, ":", sc->rxon.wlap, ":", sc->rxon.bssid, ":",
4831 	    le16toh(sc->rxon.associd), le32toh(sc->rxon.filter));
4832 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4833 	if (error != 0) {
4834 		device_printf(sc->sc_dev,
4835 		    "%s: RXON command failed, error %d\n", __func__, error);
4836 		return error;
4837 	}
4838 
4839 	/* Configuration has changed, set TX power accordingly. */
4840 	error = hal->set_txpower(sc, ni->ni_chan, 1);
4841 	if (error != 0) {
4842 		device_printf(sc->sc_dev,
4843 		    "%s: could not set Tx power, error %d\n", __func__, error);
4844 		return error;
4845 	}
4846 	/*
4847 	 * Reconfiguring RXON clears the firmware nodes table so we must
4848 	 * add the broadcast node again.
4849 	 */
4850 	error = iwn_add_broadcast_node(sc, 1);
4851 	if (error != 0) {
4852 		device_printf(sc->sc_dev,
4853 		    "%s: could not add broadcast node, error %d\n",
4854 		    __func__, error);
4855 		return error;
4856 	}
4857 	return 0;
4858 }
4859 
4860 /*
4861  * Configure the adapter for associated state.
4862  */
4863 static int
4864 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
4865 {
4866 #define	MS(v,x)	(((v) & x) >> x##_S)
4867 	const struct iwn_hal *hal = sc->sc_hal;
4868 	struct ifnet *ifp = sc->sc_ifp;
4869 	struct ieee80211com *ic = ifp->if_l2com;
4870 	struct ieee80211_node *ni = vap->iv_bss;
4871 	struct iwn_node_info node;
4872 	int error;
4873 
4874 	sc->calib.state = IWN_CALIB_STATE_INIT;
4875 
4876 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4877 		/* Link LED blinks while monitoring. */
4878 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4879 		return 0;
4880 	}
4881 	error = iwn_set_timing(sc, ni);
4882 	if (error != 0) {
4883 		device_printf(sc->sc_dev,
4884 		    "%s: could not set timing, error %d\n", __func__, error);
4885 		return error;
4886 	}
4887 
4888 	/* Update adapter configuration. */
4889 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4890 	sc->rxon.chan = htole16(ieee80211_chan2ieee(ic, ni->ni_chan));
4891 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4892 	/* Short preamble and slot time are negotiated when associating. */
4893 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4894 	sc->rxon.flags |= htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4895 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4896 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4897 	else
4898 		sc->rxon.flags &= ~htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4899 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4900 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4901 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4902 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4903 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
4904 		sc->rxon.cck_mask  = 0;
4905 		sc->rxon.ofdm_mask = 0x15;
4906 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
4907 		sc->rxon.cck_mask  = 0x03;
4908 		sc->rxon.ofdm_mask = 0;
4909 	} else {
4910 		/* XXX assume 802.11b/g */
4911 		sc->rxon.cck_mask  = 0x0f;
4912 		sc->rxon.ofdm_mask = 0x15;
4913 	}
4914 #if 0	/* HT */
4915 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
4916 		sc->rxon.flags &= ~htole32(IWN_RXON_HT);
4917 		if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
4918 			sc->rxon.flags |= htole32(IWN_RXON_HT40U);
4919 		else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
4920 			sc->rxon.flags |= htole32(IWN_RXON_HT40D);
4921 		else
4922 			sc->rxon.flags |= htole32(IWN_RXON_HT20);
4923 		sc->rxon.rxchain = htole16(
4924 			  IWN_RXCHAIN_VALID(3)
4925 			| IWN_RXCHAIN_MIMO_COUNT(3)
4926 			| IWN_RXCHAIN_IDLE_COUNT(1)
4927 			| IWN_RXCHAIN_MIMO_FORCE);
4928 
4929 		maxrxampdu = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU);
4930 		ampdudensity = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY);
4931 	} else
4932 		maxrxampdu = ampdudensity = 0;
4933 #endif
4934 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4935 
4936 	DPRINTF(sc, IWN_DEBUG_STATE,
4937 	    "%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x "
4938 	    "ht_single 0x%x ht_dual 0x%x rxchain 0x%x "
4939 	    "myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n",
4940 	    __func__,
4941 	    le16toh(sc->rxon.chan), sc->rxon.mode, le32toh(sc->rxon.flags),
4942 	    sc->rxon.cck_mask, sc->rxon.ofdm_mask,
4943 	    sc->rxon.ht_single_mask, sc->rxon.ht_dual_mask,
4944 	    le16toh(sc->rxon.rxchain),
4945 	    sc->rxon.myaddr, ":", sc->rxon.wlap, ":", sc->rxon.bssid, ":",
4946 	    le16toh(sc->rxon.associd), le32toh(sc->rxon.filter));
4947 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4948 	if (error != 0) {
4949 		device_printf(sc->sc_dev,
4950 		    "%s: could not update configuration, error %d\n",
4951 		    __func__, error);
4952 		return error;
4953 	}
4954 
4955 	/* Configuration has changed, set TX power accordingly. */
4956 	error = hal->set_txpower(sc, ni->ni_chan, 1);
4957 	if (error != 0) {
4958 		device_printf(sc->sc_dev,
4959 		    "%s: could not set Tx power, error %d\n", __func__, error);
4960 		return error;
4961 	}
4962 
4963 	/* Add BSS node. */
4964 	memset(&node, 0, sizeof node);
4965 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4966 	node.id = IWN_ID_BSS;
4967 #ifdef notyet
4968 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4969 	    IWN_AMDPU_DENSITY(5));	/* 2us */
4970 #endif
4971 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: add BSS node, id %d htflags 0x%x\n",
4972 	    __func__, node.id, le32toh(node.htflags));
4973 	error = hal->add_node(sc, &node, 1);
4974 	if (error != 0) {
4975 		device_printf(sc->sc_dev, "could not add BSS node\n");
4976 		return error;
4977 	}
4978 	DPRINTF(sc, IWN_DEBUG_STATE, "setting link quality for node %d\n",
4979 	    node.id);
4980 	error = iwn_set_link_quality(sc, node.id, 1);
4981 	if (error != 0) {
4982 		device_printf(sc->sc_dev,
4983 		    "%s: could not setup MRR for node %d, error %d\n",
4984 		    __func__, node.id, error);
4985 		return error;
4986 	}
4987 
4988 	error = iwn_init_sensitivity(sc);
4989 	if (error != 0) {
4990 		device_printf(sc->sc_dev,
4991 		    "%s: could not set sensitivity, error %d\n",
4992 		    __func__, error);
4993 		return error;
4994 	}
4995 
4996 	/* Start periodic calibration timer. */
4997 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
4998 	iwn_calib_reset(sc);
4999 
5000 	/* Link LED always on while associated. */
5001 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
5002 
5003 	return 0;
5004 #undef MS
5005 }
5006 
5007 #if 0	/* HT */
5008 /*
5009  * This function is called by upper layer when an ADDBA request is received
5010  * from another STA and before the ADDBA response is sent.
5011  */
5012 static int
5013 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5014     uint8_t tid)
5015 {
5016 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
5017 	struct iwn_softc *sc = ic->ic_softc;
5018 	struct iwn_node *wn = (void *)ni;
5019 	struct iwn_node_info node;
5020 
5021 	memset(&node, 0, sizeof node);
5022 	node.id = wn->id;
5023 	node.control = IWN_NODE_UPDATE;
5024 	node.flags = IWN_FLAG_SET_ADDBA;
5025 	node.addba_tid = tid;
5026 	node.addba_ssn = htole16(ba->ba_winstart);
5027 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
5028 	    wn->id, tid, ba->ba_winstart));
5029 	return sc->sc_hal->add_node(sc, &node, 1);
5030 }
5031 
5032 /*
5033  * This function is called by upper layer on teardown of an HT-immediate
5034  * Block Ack agreement (eg. uppon receipt of a DELBA frame.)
5035  */
5036 static void
5037 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5038     uint8_t tid)
5039 {
5040 	struct iwn_softc *sc = ic->ic_softc;
5041 	struct iwn_node *wn = (void *)ni;
5042 	struct iwn_node_info node;
5043 
5044 	memset(&node, 0, sizeof node);
5045 	node.id = wn->id;
5046 	node.control = IWN_NODE_UPDATE;
5047 	node.flags = IWN_FLAG_SET_DELBA;
5048 	node.delba_tid = tid;
5049 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
5050 	(void)sc->sc_hal->add_node(sc, &node, 1);
5051 }
5052 
5053 /*
5054  * This function is called by upper layer when an ADDBA response is received
5055  * from another STA.
5056  */
5057 static int
5058 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5059     uint8_t tid)
5060 {
5061 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5062 	struct iwn_softc *sc = ic->ic_softc;
5063 	const struct iwn_hal *hal = sc->sc_hal;
5064 	struct iwn_node *wn = (void *)ni;
5065 	struct iwn_node_info node;
5066 	int error;
5067 
5068 	/* Enable TX for the specified RA/TID. */
5069 	wn->disable_tid &= ~(1 << tid);
5070 	memset(&node, 0, sizeof node);
5071 	node.id = wn->id;
5072 	node.control = IWN_NODE_UPDATE;
5073 	node.flags = IWN_FLAG_SET_DISABLE_TID;
5074 	node.disable_tid = htole16(wn->disable_tid);
5075 	error = hal->add_node(sc, &node, 1);
5076 	if (error != 0)
5077 		return error;
5078 
5079 	if ((error = iwn_nic_lock(sc)) != 0)
5080 		return error;
5081 	hal->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
5082 	iwn_nic_unlock(sc);
5083 	return 0;
5084 }
5085 
5086 static void
5087 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5088     uint8_t tid)
5089 {
5090 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5091 	struct iwn_softc *sc = ic->ic_softc;
5092 	int error;
5093 
5094 	error = iwn_nic_lock(sc);
5095 	if (error != 0)
5096 		return;
5097 	sc->sc_hal->ampdu_tx_stop(sc, tid, ba->ba_winstart);
5098 	iwn_nic_unlock(sc);
5099 }
5100 
5101 static void
5102 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5103     uint8_t tid, uint16_t ssn)
5104 {
5105 	struct iwn_node *wn = (void *)ni;
5106 	int qid = 7 + tid;
5107 
5108 	/* Stop TX scheduler while we're changing its configuration. */
5109 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5110 	    IWN4965_TXQ_STATUS_CHGACT);
5111 
5112 	/* Assign RA/TID translation to the queue. */
5113 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5114 	    wn->id << 4 | tid);
5115 
5116 	/* Enable chain-building mode for the queue. */
5117 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5118 
5119 	/* Set starting sequence number from the ADDBA request. */
5120 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5121 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5122 
5123 	/* Set scheduler window size. */
5124 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
5125 	    IWN_SCHED_WINSZ);
5126 	/* Set scheduler frame limit. */
5127 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5128 	    IWN_SCHED_LIMIT << 16);
5129 
5130 	/* Enable interrupts for the queue. */
5131 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5132 
5133 	/* Mark the queue as active. */
5134 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5135 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
5136 	    iwn_tid2fifo[tid] << 1);
5137 }
5138 
5139 static void
5140 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5141 {
5142 	int qid = 7 + tid;
5143 
5144 	/* Stop TX scheduler while we're changing its configuration. */
5145 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5146 	    IWN4965_TXQ_STATUS_CHGACT);
5147 
5148 	/* Set starting sequence number from the ADDBA request. */
5149 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5150 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5151 
5152 	/* Disable interrupts for the queue. */
5153 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5154 
5155 	/* Mark the queue as inactive. */
5156 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5157 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
5158 }
5159 
5160 static void
5161 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5162     uint8_t tid, uint16_t ssn)
5163 {
5164 	struct iwn_node *wn = (void *)ni;
5165 	int qid = 10 + tid;
5166 
5167 	/* Stop TX scheduler while we're changing its configuration. */
5168 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5169 	    IWN5000_TXQ_STATUS_CHGACT);
5170 
5171 	/* Assign RA/TID translation to the queue. */
5172 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
5173 	    wn->id << 4 | tid);
5174 
5175 	/* Enable chain-building mode for the queue. */
5176 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
5177 
5178 	/* Enable aggregation for the queue. */
5179 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5180 
5181 	/* Set starting sequence number from the ADDBA request. */
5182 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5183 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5184 
5185 	/* Set scheduler window size and frame limit. */
5186 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5187 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5188 
5189 	/* Enable interrupts for the queue. */
5190 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5191 
5192 	/* Mark the queue as active. */
5193 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5194 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
5195 }
5196 
5197 static void
5198 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5199 {
5200 	int qid = 10 + tid;
5201 
5202 	/* Stop TX scheduler while we're changing its configuration. */
5203 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5204 	    IWN5000_TXQ_STATUS_CHGACT);
5205 
5206 	/* Disable aggregation for the queue. */
5207 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5208 
5209 	/* Set starting sequence number from the ADDBA request. */
5210 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5211 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5212 
5213 	/* Disable interrupts for the queue. */
5214 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5215 
5216 	/* Mark the queue as inactive. */
5217 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5218 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
5219 }
5220 #endif
5221 
5222 /*
5223  * Query calibration tables from the initialization firmware.  We do this
5224  * only once at first boot.  Called from a process context.
5225  */
5226 static int
5227 iwn5000_query_calibration(struct iwn_softc *sc)
5228 {
5229 	struct iwn5000_calib_config cmd;
5230 	int error;
5231 
5232 	memset(&cmd, 0, sizeof cmd);
5233 	cmd.ucode.once.enable = 0xffffffff;
5234 	cmd.ucode.once.start  = 0xffffffff;
5235 	cmd.ucode.once.send   = 0xffffffff;
5236 	cmd.ucode.flags       = 0xffffffff;
5237 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
5238 	    __func__);
5239 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
5240 	if (error != 0)
5241 		return error;
5242 
5243 	/* Wait at most two seconds for calibration to complete. */
5244 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5245 		error = zsleep(sc, &wlan_global_serializer,
5246 			       0, "iwninit", 2 * hz);
5247 	}
5248 	return error;
5249 }
5250 
5251 /*
5252  * Send calibration results to the runtime firmware.  These results were
5253  * obtained on first boot from the initialization firmware.
5254  */
5255 static int
5256 iwn5000_send_calibration(struct iwn_softc *sc)
5257 {
5258 	int idx, error;
5259 
5260 	for (idx = 0; idx < 5; idx++) {
5261 		if (sc->calibcmd[idx].buf == NULL)
5262 			continue;	/* No results available. */
5263 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5264 		    "send calibration result idx=%d len=%d\n",
5265 		    idx, sc->calibcmd[idx].len);
5266 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
5267 		    sc->calibcmd[idx].len, 0);
5268 		if (error != 0) {
5269 			device_printf(sc->sc_dev,
5270 			    "%s: could not send calibration result, error %d\n",
5271 			    __func__, error);
5272 			return error;
5273 		}
5274 	}
5275 	return 0;
5276 }
5277 
5278 static int
5279 iwn5000_send_wimax_coex(struct iwn_softc *sc)
5280 {
5281 	struct iwn5000_wimax_coex wimax;
5282 
5283 #ifdef notyet
5284 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5285 		/* Enable WiMAX coexistence for combo adapters. */
5286 		wimax.flags =
5287 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
5288 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
5289 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
5290 		    IWN_WIMAX_COEX_ENABLE;
5291 		memcpy(wimax.events, iwn6050_wimax_events,
5292 		    sizeof iwn6050_wimax_events);
5293 	} else
5294 #endif
5295 	{
5296 		/* Disable WiMAX coexistence. */
5297 		wimax.flags = 0;
5298 		memset(wimax.events, 0, sizeof wimax.events);
5299 	}
5300 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
5301 	    __func__);
5302 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
5303 }
5304 
5305 /*
5306  * This function is called after the runtime firmware notifies us of its
5307  * readiness (called in a process context.)
5308  */
5309 static int
5310 iwn4965_post_alive(struct iwn_softc *sc)
5311 {
5312 	int error, qid;
5313 
5314 	if ((error = iwn_nic_lock(sc)) != 0)
5315 		return error;
5316 
5317 	/* Clear TX scheduler state in SRAM. */
5318 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5319 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5320 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5321 
5322 	/* Set physical address of TX scheduler rings (1KB aligned.) */
5323 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5324 
5325 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5326 
5327 	/* Disable chain mode for all our 16 queues. */
5328 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5329 
5330 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5331 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5332 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5333 
5334 		/* Set scheduler window size. */
5335 		iwn_mem_write(sc, sc->sched_base +
5336 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5337 		/* Set scheduler frame limit. */
5338 		iwn_mem_write(sc, sc->sched_base +
5339 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5340 		    IWN_SCHED_LIMIT << 16);
5341 	}
5342 
5343 	/* Enable interrupts for all our 16 queues. */
5344 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5345 	/* Identify TX FIFO rings (0-7). */
5346 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5347 
5348 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5349 	for (qid = 0; qid < 7; qid++) {
5350 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5351 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5352 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5353 	}
5354 	iwn_nic_unlock(sc);
5355 	return 0;
5356 }
5357 
5358 /*
5359  * This function is called after the initialization or runtime firmware
5360  * notifies us of its readiness (called in a process context.)
5361  */
5362 static int
5363 iwn5000_post_alive(struct iwn_softc *sc)
5364 {
5365 	int error, qid;
5366 
5367 	/* Switch to using ICT interrupt mode. */
5368 	iwn5000_ict_reset(sc);
5369 
5370 	error = iwn_nic_lock(sc);
5371 	if (error != 0)
5372 		return error;
5373 
5374 	/* Clear TX scheduler state in SRAM. */
5375 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5376 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5377 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5378 
5379 	/* Set physical address of TX scheduler rings (1KB aligned.) */
5380 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5381 
5382 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5383 
5384 	/* Enable chain mode for all queues, except command queue. */
5385 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5386 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5387 
5388 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5389 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5390 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5391 
5392 		iwn_mem_write(sc, sc->sched_base +
5393 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5394 		/* Set scheduler window size and frame limit. */
5395 		iwn_mem_write(sc, sc->sched_base +
5396 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5397 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5398 	}
5399 
5400 	/* Enable interrupts for all our 20 queues. */
5401 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5402 	/* Identify TX FIFO rings (0-7). */
5403 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5404 
5405 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5406 	for (qid = 0; qid < 7; qid++) {
5407 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5408 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5409 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5410 	}
5411 	iwn_nic_unlock(sc);
5412 
5413 	/* Configure WiMAX coexistence for combo adapters. */
5414 	error = iwn5000_send_wimax_coex(sc);
5415 	if (error != 0) {
5416 		device_printf(sc->sc_dev,
5417 		    "%s: could not configure WiMAX coexistence, error %d\n",
5418 		    __func__, error);
5419 		return error;
5420 	}
5421 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5422 		struct iwn5000_phy_calib_crystal cmd;
5423 
5424 		/* Perform crystal calibration. */
5425 		memset(&cmd, 0, sizeof cmd);
5426 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5427 		cmd.ngroups = 1;
5428 		cmd.isvalid = 1;
5429 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5430 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5431 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5432 		    "sending crystal calibration %d, %d\n",
5433 		    cmd.cap_pin[0], cmd.cap_pin[1]);
5434 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5435 		if (error != 0) {
5436 			device_printf(sc->sc_dev,
5437 			    "%s: crystal calibration failed, error %d\n",
5438 			    __func__, error);
5439 			return error;
5440 		}
5441 	}
5442 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5443 		/* Query calibration from the initialization firmware. */
5444 		error = iwn5000_query_calibration(sc);
5445 		if (error != 0) {
5446 			device_printf(sc->sc_dev,
5447 			    "%s: could not query calibration, error %d\n",
5448 			    __func__, error);
5449 			return error;
5450 		}
5451 		/*
5452 		 * We have the calibration results now, reboot with the
5453 		 * runtime firmware (call ourselves recursively!)
5454 		 */
5455 		iwn_hw_stop(sc);
5456 		error = iwn_hw_init(sc);
5457 	} else {
5458 		/* Send calibration results to runtime firmware. */
5459 		error = iwn5000_send_calibration(sc);
5460 	}
5461 	return error;
5462 }
5463 
5464 /*
5465  * The firmware boot code is small and is intended to be copied directly into
5466  * the NIC internal memory (no DMA transfer.)
5467  */
5468 static int
5469 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5470 {
5471 	int error, ntries;
5472 
5473 	size /= sizeof (uint32_t);
5474 
5475 	error = iwn_nic_lock(sc);
5476 	if (error != 0)
5477 		return error;
5478 
5479 	/* Copy microcode image into NIC memory. */
5480 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5481 	    (const uint32_t *)ucode, size);
5482 
5483 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5484 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5485 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5486 
5487 	/* Start boot load now. */
5488 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5489 
5490 	/* Wait for transfer to complete. */
5491 	for (ntries = 0; ntries < 1000; ntries++) {
5492 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5493 		    IWN_BSM_WR_CTRL_START))
5494 			break;
5495 		DELAY(10);
5496 	}
5497 	if (ntries == 1000) {
5498 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
5499 		    __func__);
5500 		iwn_nic_unlock(sc);
5501 		return ETIMEDOUT;
5502 	}
5503 
5504 	/* Enable boot after power up. */
5505 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5506 
5507 	iwn_nic_unlock(sc);
5508 	return 0;
5509 }
5510 
5511 static int
5512 iwn4965_load_firmware(struct iwn_softc *sc)
5513 {
5514 	struct iwn_fw_info *fw = &sc->fw;
5515 	struct iwn_dma_info *dma = &sc->fw_dma;
5516 	int error;
5517 
5518 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
5519 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5520 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5521 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5522 	    fw->init.text, fw->init.textsz);
5523 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5524 
5525 	/* Tell adapter where to find initialization sections. */
5526 	error = iwn_nic_lock(sc);
5527 	if (error != 0)
5528 		return error;
5529 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5530 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5531 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5532 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5533 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5534 	iwn_nic_unlock(sc);
5535 
5536 	/* Load firmware boot code. */
5537 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5538 	if (error != 0) {
5539 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
5540 		    __func__);
5541 		return error;
5542 	}
5543 	/* Now press "execute". */
5544 	IWN_WRITE(sc, IWN_RESET, 0);
5545 
5546 	/* Wait at most one second for first alive notification. */
5547 	error = zsleep(sc, &wlan_global_serializer, 0, "iwninit", hz);
5548 	if (error) {
5549 		device_printf(sc->sc_dev,
5550 		    "%s: timeout waiting for adapter to initialize, error %d\n",
5551 		    __func__, error);
5552 		return error;
5553 	}
5554 
5555 	/* Retrieve current temperature for initial TX power calibration. */
5556 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5557 	sc->temp = iwn4965_get_temperature(sc);
5558 
5559 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
5560 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5561 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5562 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5563 	    fw->main.text, fw->main.textsz);
5564 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5565 
5566 	/* Tell adapter where to find runtime sections. */
5567 	error = iwn_nic_lock(sc);
5568 	if (error != 0)
5569 		return error;
5570 
5571 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5572 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5573 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5574 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5575 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5576 	    IWN_FW_UPDATED | fw->main.textsz);
5577 	iwn_nic_unlock(sc);
5578 
5579 	return 0;
5580 }
5581 
5582 static int
5583 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5584     const uint8_t *section, int size)
5585 {
5586 	struct iwn_dma_info *dma = &sc->fw_dma;
5587 	int error;
5588 
5589 	/* Copy firmware section into pre-allocated DMA-safe memory. */
5590 	memcpy(dma->vaddr, section, size);
5591 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5592 
5593 	error = iwn_nic_lock(sc);
5594 	if (error != 0)
5595 		return error;
5596 
5597 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5598 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
5599 
5600 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5601 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5602 	    IWN_LOADDR(dma->paddr));
5603 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5604 	    IWN_HIADDR(dma->paddr) << 28 | size);
5605 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5606 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
5607 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
5608 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
5609 
5610 	/* Kick Flow Handler to start DMA transfer. */
5611 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5612 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5613 
5614 	iwn_nic_unlock(sc);
5615 
5616 	/*
5617 	 * Wait at most five seconds for FH DMA transfer to complete.
5618 	 */
5619 	error = zsleep(sc, &wlan_global_serializer, 0, "iwninit", hz);
5620 	return (error);
5621 }
5622 
5623 static int
5624 iwn5000_load_firmware(struct iwn_softc *sc)
5625 {
5626 	struct iwn_fw_part *fw;
5627 	int error;
5628 
5629 	/* Load the initialization firmware on first boot only. */
5630 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5631 	    &sc->fw.main : &sc->fw.init;
5632 
5633 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5634 	    fw->text, fw->textsz);
5635 	if (error != 0) {
5636 		device_printf(sc->sc_dev,
5637 		    "%s: could not load firmware %s section, error %d\n",
5638 		    __func__, ".text", error);
5639 		return error;
5640 	}
5641 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5642 	    fw->data, fw->datasz);
5643 	if (error != 0) {
5644 		device_printf(sc->sc_dev,
5645 		    "%s: could not load firmware %s section, error %d\n",
5646 		    __func__, ".data", error);
5647 		return error;
5648 	}
5649 
5650 	/* Now press "execute". */
5651 	IWN_WRITE(sc, IWN_RESET, 0);
5652 	return 0;
5653 }
5654 
5655 static int
5656 iwn_read_firmware(struct iwn_softc *sc)
5657 {
5658 	const struct iwn_hal *hal = sc->sc_hal;
5659 	struct iwn_fw_info *fw = &sc->fw;
5660 	const uint32_t *ptr;
5661 	uint32_t rev;
5662 	size_t size;
5663 
5664 	/*
5665 	 * Read firmware image from filesystem.  The firmware can block
5666 	 * in a taskq and deadlock against our serializer so unlock
5667 	 * while we do tihs.
5668 	 */
5669 	wlan_assert_serialized();
5670 	wlan_serialize_exit();
5671 	sc->fw_fp = firmware_get(sc->fwname);
5672 	wlan_serialize_enter();
5673 	if (sc->fw_fp == NULL) {
5674 		device_printf(sc->sc_dev,
5675 		    "%s: could not load firmare image \"%s\"\n", __func__,
5676 		    sc->fwname);
5677 		return EINVAL;
5678 	}
5679 
5680 	size = sc->fw_fp->datasize;
5681 	if (size < 28) {
5682 		device_printf(sc->sc_dev,
5683 		    "%s: truncated firmware header: %zu bytes\n",
5684 		    __func__, size);
5685 		return EINVAL;
5686 	}
5687 
5688 	/* Process firmware header. */
5689 	ptr = (const uint32_t *)sc->fw_fp->data;
5690 	rev = le32toh(*ptr++);
5691 	/* Check firmware API version. */
5692 	if (IWN_FW_API(rev) <= 1) {
5693 		device_printf(sc->sc_dev,
5694 		    "%s: bad firmware, need API version >=2\n", __func__);
5695 		return EINVAL;
5696 	}
5697 	if (IWN_FW_API(rev) >= 3) {
5698 		/* Skip build number (version 2 header). */
5699 		size -= 4;
5700 		ptr++;
5701 	}
5702 	fw->main.textsz = le32toh(*ptr++);
5703 	fw->main.datasz = le32toh(*ptr++);
5704 	fw->init.textsz = le32toh(*ptr++);
5705 	fw->init.datasz = le32toh(*ptr++);
5706 	fw->boot.textsz = le32toh(*ptr++);
5707 	size -= 24;
5708 
5709 	/* Sanity-check firmware header. */
5710 	if (fw->main.textsz > hal->fw_text_maxsz ||
5711 	    fw->main.datasz > hal->fw_data_maxsz ||
5712 	    fw->init.textsz > hal->fw_text_maxsz ||
5713 	    fw->init.datasz > hal->fw_data_maxsz ||
5714 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5715 	    (fw->boot.textsz & 3) != 0) {
5716 		device_printf(sc->sc_dev, "%s: invalid firmware header\n",
5717 		    __func__);
5718 		return EINVAL;
5719 	}
5720 
5721 	/* Check that all firmware sections fit. */
5722 	if (fw->main.textsz + fw->main.datasz + fw->init.textsz +
5723 	    fw->init.datasz + fw->boot.textsz > size) {
5724 		device_printf(sc->sc_dev,
5725 		    "%s: firmware file too short: %zu bytes\n",
5726 		    __func__, size);
5727 		return EINVAL;
5728 	}
5729 
5730 	/* Get pointers to firmware sections. */
5731 	fw->main.text = (const uint8_t *)ptr;
5732 	fw->main.data = fw->main.text + fw->main.textsz;
5733 	fw->init.text = fw->main.data + fw->main.datasz;
5734 	fw->init.data = fw->init.text + fw->init.textsz;
5735 	fw->boot.text = fw->init.data + fw->init.datasz;
5736 
5737 	return 0;
5738 }
5739 
5740 static int
5741 iwn_clock_wait(struct iwn_softc *sc)
5742 {
5743 	int ntries;
5744 
5745 	/* Set "initialization complete" bit. */
5746 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5747 
5748 	/* Wait for clock stabilization. */
5749 	for (ntries = 0; ntries < 2500; ntries++) {
5750 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5751 			return 0;
5752 		DELAY(10);
5753 	}
5754 	device_printf(sc->sc_dev,
5755 	    "%s: timeout waiting for clock stabilization\n", __func__);
5756 	return ETIMEDOUT;
5757 }
5758 
5759 static int
5760 iwn_apm_init(struct iwn_softc *sc)
5761 {
5762 	uint32_t tmp;
5763 	int error;
5764 
5765 	/* Disable L0s exit timer (NMI bug workaround.) */
5766 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
5767 	/* Don't wait for ICH L0s (ICH bug workaround.) */
5768 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
5769 
5770 	/* Set FH wait threshold to max (HW bug under stress workaround.) */
5771 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
5772 
5773 	/* Enable HAP INTA to move adapter from L1a to L0s. */
5774 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
5775 
5776 	/* Retrieve PCIe Active State Power Management (ASPM). */
5777 	tmp = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
5778 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5779 	if (tmp & 0x02)	/* L1 Entry enabled. */
5780 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5781 	else
5782 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5783 
5784 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
5785 	    sc->hw_type != IWN_HW_REV_TYPE_6000 &&
5786 	    sc->hw_type != IWN_HW_REV_TYPE_6050)
5787 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
5788 
5789 	/* Wait for clock stabilization before accessing prph. */
5790 	error = iwn_clock_wait(sc);
5791 	if (error != 0)
5792 		return error;
5793 
5794 	error = iwn_nic_lock(sc);
5795 	if (error != 0)
5796 		return error;
5797 
5798 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
5799 		/* Enable DMA and BSM (Bootstrap State Machine.) */
5800 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5801 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
5802 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
5803 	} else {
5804 		/* Enable DMA. */
5805 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5806 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5807 	}
5808 	DELAY(20);
5809 
5810 	/* Disable L1-Active. */
5811 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
5812 	iwn_nic_unlock(sc);
5813 
5814 	return 0;
5815 }
5816 
5817 static void
5818 iwn_apm_stop_master(struct iwn_softc *sc)
5819 {
5820 	int ntries;
5821 
5822 	/* Stop busmaster DMA activity. */
5823 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
5824 	for (ntries = 0; ntries < 100; ntries++) {
5825 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
5826 			return;
5827 		DELAY(10);
5828 	}
5829 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n",
5830 	    __func__);
5831 }
5832 
5833 static void
5834 iwn_apm_stop(struct iwn_softc *sc)
5835 {
5836 	iwn_apm_stop_master(sc);
5837 
5838 	/* Reset the entire device. */
5839 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
5840 	DELAY(10);
5841 	/* Clear "initialization complete" bit. */
5842 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5843 }
5844 
5845 static int
5846 iwn4965_nic_config(struct iwn_softc *sc)
5847 {
5848 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
5849 		/*
5850 		 * I don't believe this to be correct but this is what the
5851 		 * vendor driver is doing. Probably the bits should not be
5852 		 * shifted in IWN_RFCFG_*.
5853 		 */
5854 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5855 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5856 		    IWN_RFCFG_STEP(sc->rfcfg) |
5857 		    IWN_RFCFG_DASH(sc->rfcfg));
5858 	}
5859 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5860 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5861 	return 0;
5862 }
5863 
5864 static int
5865 iwn5000_nic_config(struct iwn_softc *sc)
5866 {
5867 	uint32_t tmp;
5868 	int error;
5869 
5870 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
5871 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5872 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5873 		    IWN_RFCFG_STEP(sc->rfcfg) |
5874 		    IWN_RFCFG_DASH(sc->rfcfg));
5875 	}
5876 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5877 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5878 
5879 	error = iwn_nic_lock(sc);
5880 	if (error != 0)
5881 		return error;
5882 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
5883 
5884 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
5885 		/*
5886 		 * Select first Switching Voltage Regulator (1.32V) to
5887 		 * solve a stability issue related to noisy DC2DC line
5888 		 * in the silicon of 1000 Series.
5889 		 */
5890 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
5891 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
5892 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
5893 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
5894 	}
5895 	iwn_nic_unlock(sc);
5896 
5897 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
5898 		/* Use internal power amplifier only. */
5899 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
5900 	}
5901 	 if (sc->hw_type == IWN_HW_REV_TYPE_6050 && sc->calib_ver >= 6) {
5902 		 /* Indicate that ROM calibration version is >=6. */
5903 		 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
5904 	}
5905 	return 0;
5906 }
5907 
5908 /*
5909  * Take NIC ownership over Intel Active Management Technology (AMT).
5910  */
5911 static int
5912 iwn_hw_prepare(struct iwn_softc *sc)
5913 {
5914 	int ntries;
5915 
5916 	/* Check if hardware is ready. */
5917 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5918 	for (ntries = 0; ntries < 5; ntries++) {
5919 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5920 		    IWN_HW_IF_CONFIG_NIC_READY)
5921 			return 0;
5922 		DELAY(10);
5923 	}
5924 
5925 	/* Hardware not ready, force into ready state. */
5926 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
5927 	for (ntries = 0; ntries < 15000; ntries++) {
5928 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
5929 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
5930 			break;
5931 		DELAY(10);
5932 	}
5933 	if (ntries == 15000)
5934 		return ETIMEDOUT;
5935 
5936 	/* Hardware should be ready now. */
5937 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5938 	for (ntries = 0; ntries < 5; ntries++) {
5939 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5940 		    IWN_HW_IF_CONFIG_NIC_READY)
5941 			return 0;
5942 		DELAY(10);
5943 	}
5944 	return ETIMEDOUT;
5945 }
5946 
5947 static int
5948 iwn_hw_init(struct iwn_softc *sc)
5949 {
5950 	const struct iwn_hal *hal = sc->sc_hal;
5951 	int error, chnl, qid;
5952 
5953 	/* Clear pending interrupts. */
5954 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5955 
5956 	error = iwn_apm_init(sc);
5957 	if (error != 0) {
5958 		device_printf(sc->sc_dev,
5959 		    "%s: could not power ON adapter, error %d\n",
5960 		    __func__, error);
5961 		return error;
5962 	}
5963 
5964 	/* Select VMAIN power source. */
5965 	error = iwn_nic_lock(sc);
5966 	if (error != 0)
5967 		return error;
5968 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
5969 	iwn_nic_unlock(sc);
5970 
5971 	/* Perform adapter-specific initialization. */
5972 	error = hal->nic_config(sc);
5973 	if (error != 0)
5974 		return error;
5975 
5976 	/* Initialize RX ring. */
5977 	error = iwn_nic_lock(sc);
5978 	if (error != 0)
5979 		return error;
5980 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
5981 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
5982 	/* Set physical address of RX ring (256-byte aligned.) */
5983 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
5984 	/* Set physical address of RX status (16-byte aligned.) */
5985 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
5986 	/* Enable RX. */
5987 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
5988 	    IWN_FH_RX_CONFIG_ENA           |
5989 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
5990 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
5991 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
5992 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
5993 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
5994 	iwn_nic_unlock(sc);
5995 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
5996 
5997 	error = iwn_nic_lock(sc);
5998 	if (error != 0)
5999 		return error;
6000 
6001 	/* Initialize TX scheduler. */
6002 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
6003 
6004 	/* Set physical address of "keep warm" page (16-byte aligned.) */
6005 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
6006 
6007 	/* Initialize TX rings. */
6008 	for (qid = 0; qid < hal->ntxqs; qid++) {
6009 		struct iwn_tx_ring *txq = &sc->txq[qid];
6010 
6011 		/* Set physical address of TX ring (256-byte aligned.) */
6012 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
6013 		    txq->desc_dma.paddr >> 8);
6014 	}
6015 	iwn_nic_unlock(sc);
6016 
6017 	/* Enable DMA channels. */
6018 	for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
6019 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
6020 		    IWN_FH_TX_CONFIG_DMA_ENA |
6021 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
6022 	}
6023 
6024 	/* Clear "radio off" and "commands blocked" bits. */
6025 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6026 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
6027 
6028 	/* Clear pending interrupts. */
6029 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6030 	/* Enable interrupt coalescing. */
6031 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
6032 	/* Enable interrupts. */
6033 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6034 
6035 	/* _Really_ make sure "radio off" bit is cleared! */
6036 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6037 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6038 
6039 	error = hal->load_firmware(sc);
6040 	if (error != 0) {
6041 		device_printf(sc->sc_dev,
6042 		    "%s: could not load firmware, error %d\n",
6043 		    __func__, error);
6044 		return error;
6045 	}
6046 	/* Wait at most one second for firmware alive notification. */
6047 	error = zsleep(sc, &wlan_global_serializer, 0, "iwninit", hz);
6048 	if (error != 0) {
6049 		device_printf(sc->sc_dev,
6050 		    "%s: timeout waiting for adapter to initialize, error %d\n",
6051 		    __func__, error);
6052 		return error;
6053 	}
6054 	/* Do post-firmware initialization. */
6055 	return hal->post_alive(sc);
6056 }
6057 
6058 static void
6059 iwn_hw_stop(struct iwn_softc *sc)
6060 {
6061 	const struct iwn_hal *hal = sc->sc_hal;
6062 	uint32_t tmp;
6063 	int chnl, qid, ntries;
6064 
6065 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
6066 
6067 	/* Disable interrupts. */
6068 	IWN_WRITE(sc, IWN_INT_MASK, 0);
6069 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6070 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
6071 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6072 
6073 	/* Make sure we no longer hold the NIC lock. */
6074 	iwn_nic_unlock(sc);
6075 
6076 	/* Stop TX scheduler. */
6077 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
6078 
6079 	/* Stop all DMA channels. */
6080 	if (iwn_nic_lock(sc) == 0) {
6081 		for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
6082 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
6083 			for (ntries = 0; ntries < 200; ntries++) {
6084 				tmp = IWN_READ(sc, IWN_FH_TX_STATUS);
6085 				if ((tmp & IWN_FH_TX_STATUS_IDLE(chnl)) ==
6086 				    IWN_FH_TX_STATUS_IDLE(chnl))
6087 					break;
6088 				DELAY(10);
6089 			}
6090 		}
6091 		iwn_nic_unlock(sc);
6092 	}
6093 
6094 	/* Stop RX ring. */
6095 	iwn_reset_rx_ring(sc, &sc->rxq);
6096 
6097 	/* Reset all TX rings. */
6098 	for (qid = 0; qid < hal->ntxqs; qid++)
6099 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
6100 
6101 	if (iwn_nic_lock(sc) == 0) {
6102 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
6103 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6104 		iwn_nic_unlock(sc);
6105 	}
6106 	DELAY(5);
6107 
6108 	/* Power OFF adapter. */
6109 	iwn_apm_stop(sc);
6110 }
6111 
6112 static void
6113 iwn_init_locked(struct iwn_softc *sc)
6114 {
6115 	struct ifnet *ifp = sc->sc_ifp;
6116 	int error;
6117 
6118 	error = iwn_hw_prepare(sc);
6119 	if (error != 0) {
6120 		device_printf(sc->sc_dev, "%s: hardware not ready, eror %d\n",
6121 		    __func__, error);
6122 		goto fail;
6123 	}
6124 
6125 	/* Initialize interrupt mask to default value. */
6126 	sc->int_mask = IWN_INT_MASK_DEF;
6127 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6128 
6129 	/* Check that the radio is not disabled by hardware switch. */
6130 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
6131 		device_printf(sc->sc_dev,
6132 		    "radio is disabled by hardware switch\n");
6133 
6134 		/* Enable interrupts to get RF toggle notifications. */
6135 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
6136 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6137 		return;
6138 	}
6139 
6140 	/* Read firmware images from the filesystem. */
6141 	error = iwn_read_firmware(sc);
6142 	if (error != 0) {
6143 		device_printf(sc->sc_dev,
6144 		    "%s: could not read firmware, error %d\n",
6145 		    __func__, error);
6146 		goto fail;
6147 	}
6148 
6149 	/* Initialize hardware and upload firmware. */
6150 	error = iwn_hw_init(sc);
6151 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
6152 	sc->fw_fp = NULL;
6153 	if (error != 0) {
6154 		device_printf(sc->sc_dev,
6155 		    "%s: could not initialize hardware, error %d\n",
6156 		    __func__, error);
6157 		goto fail;
6158 	}
6159 
6160 	/* Configure adapter now that it is ready. */
6161 	error = iwn_config(sc);
6162 	if (error != 0) {
6163 		device_printf(sc->sc_dev,
6164 		    "%s: could not configure device, error %d\n",
6165 		    __func__, error);
6166 		goto fail;
6167 	}
6168 
6169 	ifp->if_flags &= ~IFF_OACTIVE;
6170 	ifp->if_flags |= IFF_RUNNING;
6171 
6172 	return;
6173 
6174 fail:
6175 	iwn_stop_locked(sc);
6176 }
6177 
6178 static void
6179 iwn_init(void *arg)
6180 {
6181 	struct iwn_softc *sc = arg;
6182 	struct ifnet *ifp = sc->sc_ifp;
6183 	struct ieee80211com *ic = ifp->if_l2com;
6184 
6185 	iwn_init_locked(sc);
6186 
6187 	if (ifp->if_flags & IFF_RUNNING)
6188 		ieee80211_start_all(ic);
6189 }
6190 
6191 static void
6192 iwn_stop_locked(struct iwn_softc *sc)
6193 {
6194 	struct ifnet *ifp = sc->sc_ifp;
6195 
6196 	sc->sc_tx_timer = 0;
6197 	callout_stop(&sc->sc_timer_to);
6198 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6199 
6200 	/* Power OFF hardware. */
6201 	iwn_hw_stop(sc);
6202 }
6203 
6204 static void
6205 iwn_stop(struct iwn_softc *sc)
6206 {
6207 	iwn_stop_locked(sc);
6208 }
6209 
6210 /*
6211  * Callback from net80211 to start a scan.
6212  */
6213 static void
6214 iwn_scan_start(struct ieee80211com *ic)
6215 {
6216 	struct ifnet *ifp = ic->ic_ifp;
6217 	struct iwn_softc *sc = ifp->if_softc;
6218 
6219 	/* make the link LED blink while we're scanning */
6220 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
6221 }
6222 
6223 /*
6224  * Callback from net80211 to terminate a scan.
6225  */
6226 static void
6227 iwn_scan_end(struct ieee80211com *ic)
6228 {
6229 	struct ifnet *ifp = ic->ic_ifp;
6230 	struct iwn_softc *sc = ifp->if_softc;
6231 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6232 
6233 	if (vap->iv_state == IEEE80211_S_RUN) {
6234 		/* Set link LED to ON status if we are associated */
6235 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
6236 	}
6237 }
6238 
6239 /*
6240  * Callback from net80211 to force a channel change.
6241  */
6242 static void
6243 iwn_set_channel(struct ieee80211com *ic)
6244 {
6245 	const struct ieee80211_channel *c = ic->ic_curchan;
6246 	struct ifnet *ifp = ic->ic_ifp;
6247 	struct iwn_softc *sc = ifp->if_softc;
6248 
6249 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
6250 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
6251 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
6252 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
6253 }
6254 
6255 /*
6256  * Callback from net80211 to start scanning of the current channel.
6257  */
6258 static void
6259 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
6260 {
6261 	struct ieee80211vap *vap = ss->ss_vap;
6262 	struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6263 	int error;
6264 
6265 	error = iwn_scan(sc);
6266 	if (error != 0)
6267 		ieee80211_cancel_scan(vap);
6268 }
6269 
6270 /*
6271  * Callback from net80211 to handle the minimum dwell time being met.
6272  * The intent is to terminate the scan but we just let the firmware
6273  * notify us when it's finished as we have no safe way to abort it.
6274  */
6275 static void
6276 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
6277 {
6278 	/* NB: don't try to abort scan; wait for firmware to finish */
6279 }
6280 
6281 static struct iwn_eeprom_chan *
6282 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
6283 {
6284 	int i, j;
6285 
6286 	for (j = 0; j < 7; j++) {
6287 		for (i = 0; i < iwn_bands[j].nchan; i++) {
6288 			if (iwn_bands[j].chan[i] == c->ic_ieee)
6289 				return &sc->eeprom_channels[j][i];
6290 		}
6291 	}
6292 
6293 	return NULL;
6294 }
6295 
6296 /*
6297  * Enforce flags read from EEPROM.
6298  */
6299 static int
6300 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
6301     int nchan, struct ieee80211_channel chans[])
6302 {
6303 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
6304 	int i;
6305 
6306 	for (i = 0; i < nchan; i++) {
6307 		struct ieee80211_channel *c = &chans[i];
6308 		struct iwn_eeprom_chan *channel;
6309 
6310 		channel = iwn_find_eeprom_channel(sc, c);
6311 		if (channel == NULL) {
6312 			if_printf(ic->ic_ifp,
6313 			    "%s: invalid channel %u freq %u/0x%x\n",
6314 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
6315 			return EINVAL;
6316 		}
6317 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
6318 	}
6319 
6320 	return 0;
6321 }
6322 
6323 static void
6324 iwn_hw_reset_task(void *arg0, int pending)
6325 {
6326 	struct iwn_softc *sc = arg0;
6327 	struct ifnet *ifp;
6328 	struct ieee80211com *ic;
6329 
6330 	wlan_serialize_enter();
6331 	ifp = sc->sc_ifp;
6332 	ic = ifp->if_l2com;
6333 	iwn_stop(sc);
6334 	iwn_init(sc);
6335 	ieee80211_notify_radio(ic, 1);
6336 	wlan_serialize_exit();
6337 }
6338 
6339 static void
6340 iwn_radio_on_task(void *arg0, int pending)
6341 {
6342 	struct iwn_softc *sc = arg0;
6343 	struct ifnet *ifp;
6344 	struct ieee80211com *ic;
6345 	struct ieee80211vap *vap;
6346 
6347 	wlan_serialize_enter();
6348 	ifp = sc->sc_ifp;
6349 	ic = ifp->if_l2com;
6350 	vap = TAILQ_FIRST(&ic->ic_vaps);
6351 	if (vap != NULL) {
6352 		iwn_init(sc);
6353 		ieee80211_init(vap);
6354 	}
6355 	wlan_serialize_exit();
6356 }
6357 
6358 static void
6359 iwn_radio_off_task(void *arg0, int pending)
6360 {
6361 	struct iwn_softc *sc = arg0;
6362 	struct ifnet *ifp;
6363 	struct ieee80211com *ic;
6364 	struct ieee80211vap *vap;
6365 
6366 	wlan_serialize_enter();
6367 	ifp = sc->sc_ifp;
6368 	ic = ifp->if_l2com;
6369 	vap = TAILQ_FIRST(&ic->ic_vaps);
6370 	iwn_stop(sc);
6371 	if (vap != NULL)
6372 		ieee80211_stop(vap);
6373 
6374 	/* Enable interrupts to get RF toggle notification. */
6375 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6376 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6377 	wlan_serialize_exit();
6378 }
6379 
6380 static void
6381 iwn_sysctlattach(struct iwn_softc *sc)
6382 {
6383 	struct sysctl_ctx_list *ctx;
6384 	struct sysctl_oid *tree;
6385 
6386 	ctx = &sc->sc_sysctl_ctx;
6387 	tree = sc->sc_sysctl_tree;
6388 	if (tree == NULL) {
6389 		device_printf(sc->sc_dev, "can't add sysctl node\n");
6390 		return;
6391 	}
6392 
6393 #ifdef IWN_DEBUG
6394 	sc->sc_debug = 0;
6395 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6396 	    "debug", CTLFLAG_RW, &sc->sc_debug, 0, "control debugging printfs");
6397 #endif
6398 }
6399 
6400 static int
6401 iwn_pci_shutdown(device_t dev)
6402 {
6403 	struct iwn_softc *sc = device_get_softc(dev);
6404 
6405 	wlan_serialize_enter();
6406 	iwn_stop(sc);
6407 	wlan_serialize_exit();
6408 
6409 	return 0;
6410 }
6411 
6412 static int
6413 iwn_pci_suspend(device_t dev)
6414 {
6415 	struct iwn_softc *sc = device_get_softc(dev);
6416 	struct ifnet *ifp = sc->sc_ifp;
6417 	struct ieee80211com *ic = ifp->if_l2com;
6418 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6419 
6420 	wlan_serialize_enter();
6421 	iwn_stop(sc);
6422 	if (vap != NULL)
6423 		ieee80211_stop(vap);
6424 	wlan_serialize_exit();
6425 
6426 	return 0;
6427 }
6428 
6429 static int
6430 iwn_pci_resume(device_t dev)
6431 {
6432 	struct iwn_softc *sc = device_get_softc(dev);
6433 	struct ifnet *ifp;
6434 	struct ieee80211com *ic;
6435 	struct ieee80211vap *vap;
6436 
6437 	wlan_serialize_enter();
6438 	ifp = sc->sc_ifp;
6439 	ic = ifp->if_l2com;
6440 	vap = TAILQ_FIRST(&ic->ic_vaps);
6441 	/* Clear device-specific "PCI retry timeout" register (41h). */
6442 	pci_write_config(dev, 0x41, 0, 1);
6443 
6444 	if (ifp->if_flags & IFF_UP) {
6445 		iwn_init(sc);
6446 		if (vap != NULL)
6447 			ieee80211_init(vap);
6448 		if (ifp->if_flags & IFF_RUNNING)
6449 			iwn_start(ifp);
6450 	}
6451 	wlan_serialize_exit();
6452 
6453 	return 0;
6454 }
6455 
6456 #ifdef IWN_DEBUG
6457 static const char *
6458 iwn_intr_str(uint8_t cmd)
6459 {
6460 	switch (cmd) {
6461 	/* Notifications */
6462 	case IWN_UC_READY:		return "UC_READY";
6463 	case IWN_ADD_NODE_DONE:		return "ADD_NODE_DONE";
6464 	case IWN_TX_DONE:		return "TX_DONE";
6465 	case IWN_START_SCAN:		return "START_SCAN";
6466 	case IWN_STOP_SCAN:		return "STOP_SCAN";
6467 	case IWN_RX_STATISTICS:		return "RX_STATS";
6468 	case IWN_BEACON_STATISTICS:	return "BEACON_STATS";
6469 	case IWN_STATE_CHANGED:		return "STATE_CHANGED";
6470 	case IWN_BEACON_MISSED:		return "BEACON_MISSED";
6471 	case IWN_RX_PHY:		return "RX_PHY";
6472 	case IWN_MPDU_RX_DONE:		return "MPDU_RX_DONE";
6473 	case IWN_RX_DONE:		return "RX_DONE";
6474 
6475 	/* Command Notifications */
6476 	case IWN_CMD_RXON:		return "IWN_CMD_RXON";
6477 	case IWN_CMD_RXON_ASSOC:	return "IWN_CMD_RXON_ASSOC";
6478 	case IWN_CMD_EDCA_PARAMS:	return "IWN_CMD_EDCA_PARAMS";
6479 	case IWN_CMD_TIMING:		return "IWN_CMD_TIMING";
6480 	case IWN_CMD_LINK_QUALITY:	return "IWN_CMD_LINK_QUALITY";
6481 	case IWN_CMD_SET_LED:		return "IWN_CMD_SET_LED";
6482 	case IWN5000_CMD_WIMAX_COEX:	return "IWN5000_CMD_WIMAX_COEX";
6483 	case IWN5000_CMD_CALIB_CONFIG:	return "IWN5000_CMD_CALIB_CONFIG";
6484 	case IWN5000_CMD_CALIB_RESULT:	return "IWN5000_CMD_CALIB_RESULT";
6485 	case IWN5000_CMD_CALIB_COMPLETE: return "IWN5000_CMD_CALIB_COMPLETE";
6486 	case IWN_CMD_SET_POWER_MODE:	return "IWN_CMD_SET_POWER_MODE";
6487 	case IWN_CMD_SCAN:		return "IWN_CMD_SCAN";
6488 	case IWN_CMD_SCAN_RESULTS:	return "IWN_CMD_SCAN_RESULTS";
6489 	case IWN_CMD_TXPOWER:		return "IWN_CMD_TXPOWER";
6490 	case IWN_CMD_TXPOWER_DBM:	return "IWN_CMD_TXPOWER_DBM";
6491 	case IWN5000_CMD_TX_ANT_CONFIG:	return "IWN5000_CMD_TX_ANT_CONFIG";
6492 	case IWN_CMD_BT_COEX:		return "IWN_CMD_BT_COEX";
6493 	case IWN_CMD_SET_CRITICAL_TEMP:	return "IWN_CMD_SET_CRITICAL_TEMP";
6494 	case IWN_CMD_SET_SENSITIVITY:	return "IWN_CMD_SET_SENSITIVITY";
6495 	case IWN_CMD_PHY_CALIB:		return "IWN_CMD_PHY_CALIB";
6496 	}
6497 	return "UNKNOWN INTR NOTIF/CMD";
6498 }
6499 #endif /* IWN_DEBUG */
6500 
6501 static device_method_t iwn_methods[] = {
6502 	/* Device interface */
6503 	DEVMETHOD(device_probe,		iwn_pci_probe),
6504 	DEVMETHOD(device_attach,	iwn_pci_attach),
6505 	DEVMETHOD(device_detach,	iwn_pci_detach),
6506 	DEVMETHOD(device_shutdown,	iwn_pci_shutdown),
6507 	DEVMETHOD(device_suspend,	iwn_pci_suspend),
6508 	DEVMETHOD(device_resume,	iwn_pci_resume),
6509 	{ 0, 0 }
6510 };
6511 
6512 static driver_t iwn_driver = {
6513 	"iwn",
6514 	iwn_methods,
6515 	sizeof (struct iwn_softc)
6516 };
6517 static devclass_t iwn_devclass;
6518 
6519 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, 0, 0);
6520 MODULE_DEPEND(iwn, pci, 1, 1, 1);
6521 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
6522 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
6523 MODULE_DEPEND(iwn, wlan_amrr, 1, 1, 1);
6524