xref: /dragonfly/sys/dev/netif/lge/if_lge.c (revision 4e7eb5cc)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <william.paul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/lge/if_lge.c,v 1.5.2.2 2001/12/14 19:49:23 jlemon Exp $
34  * $DragonFly: src/sys/dev/netif/lge/if_lge.c,v 1.7 2004/01/06 01:40:48 dillon Exp $
35  *
36  * $FreeBSD: src/sys/dev/lge/if_lge.c,v 1.5.2.2 2001/12/14 19:49:23 jlemon Exp $
37  */
38 
39 /*
40  * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public
41  * documentation not available, but ask me nicely.
42  *
43  * Written by Bill Paul <william.paul@windriver.com>
44  * Wind River Systems
45  */
46 
47 /*
48  * The Level 1 chip is used on some D-Link, SMC and Addtron NICs.
49  * It's a 64-bit PCI part that supports TCP/IP checksum offload,
50  * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There
51  * are three supported methods for data transfer between host and
52  * NIC: programmed I/O, traditional scatter/gather DMA and Packet
53  * Propulsion Technology (tm) DMA. The latter mechanism is a form
54  * of double buffer DMA where the packet data is copied to a
55  * pre-allocated DMA buffer who's physical address has been loaded
56  * into a table at device initialization time. The rationale is that
57  * the virtual to physical address translation needed for normal
58  * scatter/gather DMA is more expensive than the data copy needed
59  * for double buffering. This may be true in Windows NT and the like,
60  * but it isn't true for us, at least on the x86 arch. This driver
61  * uses the scatter/gather I/O method for both TX and RX.
62  *
63  * The LXT1001 only supports TCP/IP checksum offload on receive.
64  * Also, the VLAN tagging is done using a 16-entry table which allows
65  * the chip to perform hardware filtering based on VLAN tags. Sadly,
66  * our vlan support doesn't currently play well with this kind of
67  * hardware support.
68  *
69  * Special thanks to:
70  * - Jeff James at Intel, for arranging to have the LXT1001 manual
71  *   released (at long last)
72  * - Beny Chen at D-Link, for actually sending it to me
73  * - Brad Short and Keith Alexis at SMC, for sending me sample
74  *   SMC9462SX and SMC9462TX adapters for testing
75  * - Paul Saab at Y!, for not killing me (though it remains to be seen
76  *   if in fact he did me much of a favor)
77  */
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/sockio.h>
82 #include <sys/mbuf.h>
83 #include <sys/malloc.h>
84 #include <sys/kernel.h>
85 #include <sys/socket.h>
86 
87 #include <net/if.h>
88 #include <net/if_arp.h>
89 #include <net/ethernet.h>
90 #include <net/if_dl.h>
91 #include <net/if_media.h>
92 
93 #include <net/bpf.h>
94 
95 #include <vm/vm.h>              /* for vtophys */
96 #include <vm/pmap.h>            /* for vtophys */
97 #include <machine/clock.h>      /* for DELAY */
98 #include <machine/bus_pio.h>
99 #include <machine/bus_memio.h>
100 #include <machine/bus.h>
101 #include <machine/resource.h>
102 #include <sys/bus.h>
103 #include <sys/rman.h>
104 
105 #include "../mii_layer/mii.h"
106 #include "../mii_layer/miivar.h"
107 
108 #include <bus/pci/pcireg.h>
109 #include <bus/pci/pcivar.h>
110 
111 #define LGE_USEIOSPACE
112 
113 #include "if_lgereg.h"
114 
115 /* "controller miibus0" required.  See GENERIC if you get errors here. */
116 #include "miibus_if.h"
117 
118 /*
119  * Various supported device vendors/types and their names.
120  */
121 static struct lge_type lge_devs[] = {
122 	{ LGE_VENDORID, LGE_DEVICEID, "Level 1 Gigabit Ethernet" },
123 	{ 0, 0, NULL }
124 };
125 
126 static int lge_probe		(device_t);
127 static int lge_attach		(device_t);
128 static int lge_detach		(device_t);
129 
130 static int lge_alloc_jumbo_mem	(struct lge_softc *);
131 static void lge_free_jumbo_mem	(struct lge_softc *);
132 static void *lge_jalloc		(struct lge_softc *);
133 static void lge_jfree		(caddr_t, u_int);
134 static void lge_jref		(caddr_t, u_int);
135 
136 static int lge_newbuf		(struct lge_softc *,
137 					struct lge_rx_desc *,
138 					struct mbuf *);
139 static int lge_encap		(struct lge_softc *,
140 					struct mbuf *, u_int32_t *);
141 static void lge_rxeof		(struct lge_softc *, int);
142 static void lge_rxeoc		(struct lge_softc *);
143 static void lge_txeof		(struct lge_softc *);
144 static void lge_intr		(void *);
145 static void lge_tick		(void *);
146 static void lge_start		(struct ifnet *);
147 static int lge_ioctl		(struct ifnet *, u_long, caddr_t);
148 static void lge_init		(void *);
149 static void lge_stop		(struct lge_softc *);
150 static void lge_watchdog		(struct ifnet *);
151 static void lge_shutdown		(device_t);
152 static int lge_ifmedia_upd	(struct ifnet *);
153 static void lge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
154 
155 static void lge_eeprom_getword	(struct lge_softc *, int, u_int16_t *);
156 static void lge_read_eeprom	(struct lge_softc *, caddr_t, int,
157 							int, int);
158 
159 static int lge_miibus_readreg	(device_t, int, int);
160 static int lge_miibus_writereg	(device_t, int, int, int);
161 static void lge_miibus_statchg	(device_t);
162 
163 static void lge_setmulti	(struct lge_softc *);
164 static u_int32_t lge_crc	(struct lge_softc *, caddr_t);
165 static void lge_reset		(struct lge_softc *);
166 static int lge_list_rx_init	(struct lge_softc *);
167 static int lge_list_tx_init	(struct lge_softc *);
168 
169 #ifdef LGE_USEIOSPACE
170 #define LGE_RES			SYS_RES_IOPORT
171 #define LGE_RID			LGE_PCI_LOIO
172 #else
173 #define LGE_RES			SYS_RES_MEMORY
174 #define LGE_RID			LGE_PCI_LOMEM
175 #endif
176 
177 static device_method_t lge_methods[] = {
178 	/* Device interface */
179 	DEVMETHOD(device_probe,		lge_probe),
180 	DEVMETHOD(device_attach,	lge_attach),
181 	DEVMETHOD(device_detach,	lge_detach),
182 	DEVMETHOD(device_shutdown,	lge_shutdown),
183 
184 	/* bus interface */
185 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
186 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
187 
188 	/* MII interface */
189 	DEVMETHOD(miibus_readreg,	lge_miibus_readreg),
190 	DEVMETHOD(miibus_writereg,	lge_miibus_writereg),
191 	DEVMETHOD(miibus_statchg,	lge_miibus_statchg),
192 
193 	{ 0, 0 }
194 };
195 
196 static driver_t lge_driver = {
197 	"lge",
198 	lge_methods,
199 	sizeof(struct lge_softc)
200 };
201 
202 static devclass_t lge_devclass;
203 
204 DECLARE_DUMMY_MODULE(if_lge);
205 DRIVER_MODULE(if_lge, pci, lge_driver, lge_devclass, 0, 0);
206 DRIVER_MODULE(miibus, lge, miibus_driver, miibus_devclass, 0, 0);
207 
208 #define LGE_SETBIT(sc, reg, x)				\
209 	CSR_WRITE_4(sc, reg,				\
210 		CSR_READ_4(sc, reg) | (x))
211 
212 #define LGE_CLRBIT(sc, reg, x)				\
213 	CSR_WRITE_4(sc, reg,				\
214 		CSR_READ_4(sc, reg) & ~(x))
215 
216 #define SIO_SET(x)					\
217 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | x)
218 
219 #define SIO_CLR(x)					\
220 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~x)
221 
222 /*
223  * Read a word of data stored in the EEPROM at address 'addr.'
224  */
225 static void lge_eeprom_getword(sc, addr, dest)
226 	struct lge_softc	*sc;
227 	int			addr;
228 	u_int16_t		*dest;
229 {
230 	int		i;
231 	u_int32_t		val;
232 
233 	CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ|
234 	    LGE_EECTL_SINGLEACCESS|((addr >> 1) << 8));
235 
236 	for (i = 0; i < LGE_TIMEOUT; i++)
237 		if (!(CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ))
238 			break;
239 
240 	if (i == LGE_TIMEOUT) {
241 		printf("lge%d: EEPROM read timed out\n", sc->lge_unit);
242 		return;
243 	}
244 
245 	val = CSR_READ_4(sc, LGE_EEDATA);
246 
247 	if (addr & 1)
248 		*dest = (val >> 16) & 0xFFFF;
249 	else
250 		*dest = val & 0xFFFF;
251 
252 	return;
253 }
254 
255 /*
256  * Read a sequence of words from the EEPROM.
257  */
258 static void lge_read_eeprom(sc, dest, off, cnt, swap)
259 	struct lge_softc	*sc;
260 	caddr_t			dest;
261 	int			off;
262 	int			cnt;
263 	int			swap;
264 {
265 	int			i;
266 	u_int16_t		word = 0, *ptr;
267 
268 	for (i = 0; i < cnt; i++) {
269 		lge_eeprom_getword(sc, off + i, &word);
270 		ptr = (u_int16_t *)(dest + (i * 2));
271 		if (swap)
272 			*ptr = ntohs(word);
273 		else
274 			*ptr = word;
275 	}
276 
277 	return;
278 }
279 
280 static int lge_miibus_readreg(dev, phy, reg)
281 	device_t		dev;
282 	int			phy, reg;
283 {
284 	struct lge_softc	*sc;
285 	int			i;
286 
287 	sc = device_get_softc(dev);
288 
289 	/*
290 	 * If we have a non-PCS PHY, pretend that the internal
291 	 * autoneg stuff at PHY address 0 isn't there so that
292 	 * the miibus code will find only the GMII PHY.
293 	 */
294 	if (sc->lge_pcs == 0 && phy == 0)
295 		return(0);
296 
297 	CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ);
298 
299 	for (i = 0; i < LGE_TIMEOUT; i++)
300 		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
301 			break;
302 
303 	if (i == LGE_TIMEOUT) {
304 		printf("lge%d: PHY read timed out\n", sc->lge_unit);
305 		return(0);
306 	}
307 
308 	return(CSR_READ_4(sc, LGE_GMIICTL) >> 16);
309 }
310 
311 static int lge_miibus_writereg(dev, phy, reg, data)
312 	device_t		dev;
313 	int			phy, reg, data;
314 {
315 	struct lge_softc	*sc;
316 	int			i;
317 
318 	sc = device_get_softc(dev);
319 
320 	CSR_WRITE_4(sc, LGE_GMIICTL,
321 	    (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE);
322 
323 	for (i = 0; i < LGE_TIMEOUT; i++)
324 		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
325 			break;
326 
327 	if (i == LGE_TIMEOUT) {
328 		printf("lge%d: PHY write timed out\n", sc->lge_unit);
329 		return(0);
330 	}
331 
332 	return(0);
333 }
334 
335 static void lge_miibus_statchg(dev)
336 	device_t		dev;
337 {
338 	struct lge_softc	*sc;
339 	struct mii_data		*mii;
340 
341 	sc = device_get_softc(dev);
342 	mii = device_get_softc(sc->lge_miibus);
343 
344 	LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED);
345 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
346 	case IFM_1000_TX:
347 	case IFM_1000_SX:
348 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
349 		break;
350 	case IFM_100_TX:
351 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100);
352 		break;
353 	case IFM_10_T:
354 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10);
355 		break;
356 	default:
357 		/*
358 		 * Choose something, even if it's wrong. Clearing
359 		 * all the bits will hose autoneg on the internal
360 		 * PHY.
361 		 */
362 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
363 		break;
364 	}
365 
366 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
367 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
368 	} else {
369 		LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
370 	}
371 
372 	return;
373 }
374 
375 static u_int32_t lge_crc(sc, addr)
376 	struct lge_softc	*sc;
377 	caddr_t			addr;
378 {
379 	u_int32_t		crc, carry;
380 	int			i, j;
381 	u_int8_t		c;
382 
383 	/* Compute CRC for the address value. */
384 	crc = 0xFFFFFFFF; /* initial value */
385 
386 	for (i = 0; i < 6; i++) {
387 		c = *(addr + i);
388 		for (j = 0; j < 8; j++) {
389 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
390 			crc <<= 1;
391 			c >>= 1;
392 			if (carry)
393 				crc = (crc ^ 0x04c11db6) | carry;
394 		}
395 	}
396 
397 	/*
398 	 * return the filter bit position
399 	 */
400 	return((crc >> 26) & 0x0000003F);
401 }
402 
403 static void lge_setmulti(sc)
404 	struct lge_softc	*sc;
405 {
406 	struct ifnet		*ifp;
407 	struct ifmultiaddr	*ifma;
408 	u_int32_t		h = 0, hashes[2] = { 0, 0 };
409 
410 	ifp = &sc->arpcom.ac_if;
411 
412 	/* Make sure multicast hash table is enabled. */
413 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_MCAST);
414 
415 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
416 		CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF);
417 		CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF);
418 		return;
419 	}
420 
421 	/* first, zot all the existing hash bits */
422 	CSR_WRITE_4(sc, LGE_MAR0, 0);
423 	CSR_WRITE_4(sc, LGE_MAR1, 0);
424 
425 	/* now program new ones */
426 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
427 	    ifma = ifma->ifma_link.le_next) {
428 		if (ifma->ifma_addr->sa_family != AF_LINK)
429 			continue;
430 		h = lge_crc(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
431 		if (h < 32)
432 			hashes[0] |= (1 << h);
433 		else
434 			hashes[1] |= (1 << (h - 32));
435 	}
436 
437 	CSR_WRITE_4(sc, LGE_MAR0, hashes[0]);
438 	CSR_WRITE_4(sc, LGE_MAR1, hashes[1]);
439 
440 	return;
441 }
442 
443 static void lge_reset(sc)
444 	struct lge_softc	*sc;
445 {
446 	int		i;
447 
448 	LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_SOFTRST);
449 
450 	for (i = 0; i < LGE_TIMEOUT; i++) {
451 		if (!(CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST))
452 			break;
453 	}
454 
455 	if (i == LGE_TIMEOUT)
456 		printf("lge%d: reset never completed\n", sc->lge_unit);
457 
458 	/* Wait a little while for the chip to get its brains in order. */
459 	DELAY(1000);
460 
461         return;
462 }
463 
464 /*
465  * Probe for a Level 1 chip. Check the PCI vendor and device
466  * IDs against our list and return a device name if we find a match.
467  */
468 static int lge_probe(dev)
469 	device_t		dev;
470 {
471 	struct lge_type		*t;
472 
473 	t = lge_devs;
474 
475 	while(t->lge_name != NULL) {
476 		if ((pci_get_vendor(dev) == t->lge_vid) &&
477 		    (pci_get_device(dev) == t->lge_did)) {
478 			device_set_desc(dev, t->lge_name);
479 			return(0);
480 		}
481 		t++;
482 	}
483 
484 	return(ENXIO);
485 }
486 
487 /*
488  * Attach the interface. Allocate softc structures, do ifmedia
489  * setup and ethernet/BPF attach.
490  */
491 static int lge_attach(dev)
492 	device_t		dev;
493 {
494 	int			s;
495 	u_char			eaddr[ETHER_ADDR_LEN];
496 	u_int32_t		command;
497 	struct lge_softc	*sc;
498 	struct ifnet		*ifp;
499 	int			unit, error = 0, rid;
500 
501 	s = splimp();
502 
503 	sc = device_get_softc(dev);
504 	unit = device_get_unit(dev);
505 	bzero(sc, sizeof(struct lge_softc));
506 
507 	/*
508 	 * Handle power management nonsense.
509 	 */
510 	command = pci_read_config(dev, LGE_PCI_CAPID, 4) & 0x000000FF;
511 	if (command == 0x01) {
512 
513 		command = pci_read_config(dev, LGE_PCI_PWRMGMTCTRL, 4);
514 		if (command & LGE_PSTATE_MASK) {
515 			u_int32_t		iobase, membase, irq;
516 
517 			/* Save important PCI config data. */
518 			iobase = pci_read_config(dev, LGE_PCI_LOIO, 4);
519 			membase = pci_read_config(dev, LGE_PCI_LOMEM, 4);
520 			irq = pci_read_config(dev, LGE_PCI_INTLINE, 4);
521 
522 			/* Reset the power state. */
523 			printf("lge%d: chip is in D%d power mode "
524 			"-- setting to D0\n", unit, command & LGE_PSTATE_MASK);
525 			command &= 0xFFFFFFFC;
526 			pci_write_config(dev, LGE_PCI_PWRMGMTCTRL, command, 4);
527 
528 			/* Restore PCI config data. */
529 			pci_write_config(dev, LGE_PCI_LOIO, iobase, 4);
530 			pci_write_config(dev, LGE_PCI_LOMEM, membase, 4);
531 			pci_write_config(dev, LGE_PCI_INTLINE, irq, 4);
532 		}
533 	}
534 
535 	/*
536 	 * Map control/status registers.
537 	 */
538 	command = pci_read_config(dev, PCIR_COMMAND, 4);
539 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
540 	pci_write_config(dev, PCIR_COMMAND, command, 4);
541 	command = pci_read_config(dev, PCIR_COMMAND, 4);
542 
543 #ifdef LGE_USEIOSPACE
544 	if (!(command & PCIM_CMD_PORTEN)) {
545 		printf("lge%d: failed to enable I/O ports!\n", unit);
546 		error = ENXIO;;
547 		goto fail;
548 	}
549 #else
550 	if (!(command & PCIM_CMD_MEMEN)) {
551 		printf("lge%d: failed to enable memory mapping!\n", unit);
552 		error = ENXIO;;
553 		goto fail;
554 	}
555 #endif
556 
557 	rid = LGE_RID;
558 	sc->lge_res = bus_alloc_resource(dev, LGE_RES, &rid,
559 	    0, ~0, 1, RF_ACTIVE);
560 
561 	if (sc->lge_res == NULL) {
562 		printf("lge%d: couldn't map ports/memory\n", unit);
563 		error = ENXIO;
564 		goto fail;
565 	}
566 
567 	sc->lge_btag = rman_get_bustag(sc->lge_res);
568 	sc->lge_bhandle = rman_get_bushandle(sc->lge_res);
569 
570 	/* Allocate interrupt */
571 	rid = 0;
572 	sc->lge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
573 	    RF_SHAREABLE | RF_ACTIVE);
574 
575 	if (sc->lge_irq == NULL) {
576 		printf("lge%d: couldn't map interrupt\n", unit);
577 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
578 		error = ENXIO;
579 		goto fail;
580 	}
581 
582 	error = bus_setup_intr(dev, sc->lge_irq, INTR_TYPE_NET,
583 	    lge_intr, sc, &sc->lge_intrhand);
584 
585 	if (error) {
586 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
587 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
588 		printf("lge%d: couldn't set up irq\n", unit);
589 		goto fail;
590 	}
591 
592 	/* Reset the adapter. */
593 	lge_reset(sc);
594 
595 	/*
596 	 * Get station address from the EEPROM.
597 	 */
598 	lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1, 0);
599 	lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1, 0);
600 	lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1, 0);
601 
602 	/*
603 	 * A Level 1 chip was detected. Inform the world.
604 	 */
605 	printf("lge%d: Ethernet address: %6D\n", unit, eaddr, ":");
606 
607 	sc->lge_unit = unit;
608 	callout_handle_init(&sc->lge_stat_ch);
609 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
610 
611 	sc->lge_ldata = contigmalloc(sizeof(struct lge_list_data), M_DEVBUF,
612 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
613 
614 	if (sc->lge_ldata == NULL) {
615 		printf("lge%d: no memory for list buffers!\n", unit);
616 		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
617 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
618 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
619 		error = ENXIO;
620 		goto fail;
621 	}
622 	bzero(sc->lge_ldata, sizeof(struct lge_list_data));
623 
624 	/* Try to allocate memory for jumbo buffers. */
625 	if (lge_alloc_jumbo_mem(sc)) {
626 		printf("lge%d: jumbo buffer allocation failed\n",
627                     sc->lge_unit);
628 		contigfree(sc->lge_ldata,
629 		    sizeof(struct lge_list_data), M_DEVBUF);
630 		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
631 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
632 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
633 		error = ENXIO;
634 		goto fail;
635 	}
636 
637 	ifp = &sc->arpcom.ac_if;
638 	ifp->if_softc = sc;
639 	if_initname(ifp, "lge", unit);
640 	ifp->if_mtu = ETHERMTU;
641 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
642 	ifp->if_ioctl = lge_ioctl;
643 	ifp->if_output = ether_output;
644 	ifp->if_start = lge_start;
645 	ifp->if_watchdog = lge_watchdog;
646 	ifp->if_init = lge_init;
647 	ifp->if_baudrate = 1000000000;
648 	ifp->if_snd.ifq_maxlen = LGE_TX_LIST_CNT - 1;
649 	ifp->if_capabilities = IFCAP_RXCSUM;
650 	ifp->if_capenable = ifp->if_capabilities;
651 
652 	if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH)
653 		sc->lge_pcs = 1;
654 	else
655 		sc->lge_pcs = 0;
656 
657 	/*
658 	 * Do MII setup.
659 	 */
660 	if (mii_phy_probe(dev, &sc->lge_miibus,
661 	    lge_ifmedia_upd, lge_ifmedia_sts)) {
662 		printf("lge%d: MII without any PHY!\n", sc->lge_unit);
663 		contigfree(sc->lge_ldata,
664 		    sizeof(struct lge_list_data), M_DEVBUF);
665 		lge_free_jumbo_mem(sc);
666 		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
667 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
668 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
669 		error = ENXIO;
670 		goto fail;
671 	}
672 
673 	/*
674 	 * Call MI attach routine.
675 	 */
676 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
677 	callout_handle_init(&sc->lge_stat_ch);
678 
679 fail:
680 	splx(s);
681 	return(error);
682 }
683 
684 static int lge_detach(dev)
685 	device_t		dev;
686 {
687 	struct lge_softc	*sc;
688 	struct ifnet		*ifp;
689 	int			s;
690 
691 	s = splimp();
692 
693 	sc = device_get_softc(dev);
694 	ifp = &sc->arpcom.ac_if;
695 
696 	lge_reset(sc);
697 	lge_stop(sc);
698 	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
699 
700 	bus_generic_detach(dev);
701 	device_delete_child(dev, sc->lge_miibus);
702 
703 	bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
704 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
705 	bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
706 
707 	contigfree(sc->lge_ldata, sizeof(struct lge_list_data), M_DEVBUF);
708 	lge_free_jumbo_mem(sc);
709 
710 	splx(s);
711 
712 	return(0);
713 }
714 
715 /*
716  * Initialize the transmit descriptors.
717  */
718 static int lge_list_tx_init(sc)
719 	struct lge_softc	*sc;
720 {
721 	struct lge_list_data	*ld;
722 	struct lge_ring_data	*cd;
723 	int			i;
724 
725 	cd = &sc->lge_cdata;
726 	ld = sc->lge_ldata;
727 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
728 		ld->lge_tx_list[i].lge_mbuf = NULL;
729 		ld->lge_tx_list[i].lge_ctl = 0;
730 	}
731 
732 	cd->lge_tx_prod = cd->lge_tx_cons = 0;
733 
734 	return(0);
735 }
736 
737 
738 /*
739  * Initialize the RX descriptors and allocate mbufs for them. Note that
740  * we arralge the descriptors in a closed ring, so that the last descriptor
741  * points back to the first.
742  */
743 static int lge_list_rx_init(sc)
744 	struct lge_softc	*sc;
745 {
746 	struct lge_list_data	*ld;
747 	struct lge_ring_data	*cd;
748 	int			i;
749 
750 	ld = sc->lge_ldata;
751 	cd = &sc->lge_cdata;
752 
753 	cd->lge_rx_prod = cd->lge_rx_cons = 0;
754 
755 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
756 
757 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
758 		if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0)
759 			break;
760 		if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS)
761 			return(ENOBUFS);
762 	}
763 
764 	/* Clear possible 'rx command queue empty' interrupt. */
765 	CSR_READ_4(sc, LGE_ISR);
766 
767 	return(0);
768 }
769 
770 /*
771  * Initialize an RX descriptor and attach an MBUF cluster.
772  */
773 static int lge_newbuf(sc, c, m)
774 	struct lge_softc	*sc;
775 	struct lge_rx_desc	*c;
776 	struct mbuf		*m;
777 {
778 	struct mbuf		*m_new = NULL;
779 	caddr_t			*buf = NULL;
780 
781 	if (m == NULL) {
782 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
783 		if (m_new == NULL) {
784 			printf("lge%d: no memory for rx list "
785 			    "-- packet dropped!\n", sc->lge_unit);
786 			return(ENOBUFS);
787 		}
788 
789 		/* Allocate the jumbo buffer */
790 		buf = lge_jalloc(sc);
791 		if (buf == NULL) {
792 #ifdef LGE_VERBOSE
793 			printf("lge%d: jumbo allocation failed "
794 			    "-- packet dropped!\n", sc->lge_unit);
795 #endif
796 			m_freem(m_new);
797 			return(ENOBUFS);
798 		}
799 		/* Attach the buffer to the mbuf */
800 		m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
801 		m_new->m_flags |= M_EXT;
802 		m_new->m_ext.ext_size = m_new->m_pkthdr.len =
803 		    m_new->m_len = LGE_MCLBYTES;
804 		m_new->m_ext.ext_free = lge_jfree;
805 		m_new->m_ext.ext_ref = lge_jref;
806 	} else {
807 		m_new = m;
808 		m_new->m_len = m_new->m_pkthdr.len = LGE_MCLBYTES;
809 		m_new->m_data = m_new->m_ext.ext_buf;
810 	}
811 
812 	/*
813 	 * Adjust alignment so packet payload begins on a
814 	 * longword boundary. Mandatory for Alpha, useful on
815 	 * x86 too.
816 	*/
817 	m_adj(m_new, ETHER_ALIGN);
818 
819 	c->lge_mbuf = m_new;
820 	c->lge_fragptr_hi = 0;
821 	c->lge_fragptr_lo = vtophys(mtod(m_new, caddr_t));
822 	c->lge_fraglen = m_new->m_len;
823 	c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1);
824 	c->lge_sts = 0;
825 
826 	/*
827 	 * Put this buffer in the RX command FIFO. To do this,
828 	 * we just write the physical address of the descriptor
829 	 * into the RX descriptor address registers. Note that
830 	 * there are two registers, one high DWORD and one low
831 	 * DWORD, which lets us specify a 64-bit address if
832 	 * desired. We only use a 32-bit address for now.
833 	 * Writing to the low DWORD register is what actually
834 	 * causes the command to be issued, so we do that
835 	 * last.
836 	 */
837 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, vtophys(c));
838 	LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT);
839 
840 	return(0);
841 }
842 
843 static int lge_alloc_jumbo_mem(sc)
844 	struct lge_softc	*sc;
845 {
846 	caddr_t			ptr;
847 	int		i;
848 	struct lge_jpool_entry   *entry;
849 
850 	/* Grab a big chunk o' storage. */
851 	sc->lge_cdata.lge_jumbo_buf = contigmalloc(LGE_JMEM, M_DEVBUF,
852 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
853 
854 	if (sc->lge_cdata.lge_jumbo_buf == NULL) {
855 		printf("lge%d: no memory for jumbo buffers!\n", sc->lge_unit);
856 		return(ENOBUFS);
857 	}
858 
859 	SLIST_INIT(&sc->lge_jfree_listhead);
860 	SLIST_INIT(&sc->lge_jinuse_listhead);
861 
862 	/*
863 	 * Now divide it up into 9K pieces and save the addresses
864 	 * in an array.
865 	 */
866 	ptr = sc->lge_cdata.lge_jumbo_buf;
867 	for (i = 0; i < LGE_JSLOTS; i++) {
868 		u_int64_t		**aptr;
869 		aptr = (u_int64_t **)ptr;
870 		aptr[0] = (u_int64_t *)sc;
871 		ptr += sizeof(u_int64_t);
872 		sc->lge_cdata.lge_jslots[i].lge_buf = ptr;
873 		sc->lge_cdata.lge_jslots[i].lge_inuse = 0;
874 		ptr += LGE_MCLBYTES;
875 		entry = malloc(sizeof(struct lge_jpool_entry),
876 		    M_DEVBUF, M_NOWAIT);
877 		if (entry == NULL) {
878 			printf("lge%d: no memory for jumbo "
879 			    "buffer queue!\n", sc->lge_unit);
880 			return(ENOBUFS);
881 		}
882 		entry->slot = i;
883 		SLIST_INSERT_HEAD(&sc->lge_jfree_listhead,
884 		    entry, jpool_entries);
885 	}
886 
887 	return(0);
888 }
889 
890 static void lge_free_jumbo_mem(sc)
891 	struct lge_softc	*sc;
892 {
893 	int			i;
894 	struct lge_jpool_entry	*entry;
895 
896 	for (i = 0; i < LGE_JSLOTS; i++) {
897 		entry = SLIST_FIRST(&sc->lge_jfree_listhead);
898 		SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
899 		free(entry, M_DEVBUF);
900 	}
901 
902 	contigfree(sc->lge_cdata.lge_jumbo_buf, LGE_JMEM, M_DEVBUF);
903 
904 	return;
905 }
906 
907 /*
908  * Allocate a jumbo buffer.
909  */
910 static void *lge_jalloc(sc)
911 	struct lge_softc	*sc;
912 {
913 	struct lge_jpool_entry   *entry;
914 
915 	entry = SLIST_FIRST(&sc->lge_jfree_listhead);
916 
917 	if (entry == NULL) {
918 #ifdef LGE_VERBOSE
919 		printf("lge%d: no free jumbo buffers\n", sc->lge_unit);
920 #endif
921 		return(NULL);
922 	}
923 
924 	SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
925 	SLIST_INSERT_HEAD(&sc->lge_jinuse_listhead, entry, jpool_entries);
926 	sc->lge_cdata.lge_jslots[entry->slot].lge_inuse = 1;
927 	return(sc->lge_cdata.lge_jslots[entry->slot].lge_buf);
928 }
929 
930 /*
931  * Adjust usage count on a jumbo buffer. In general this doesn't
932  * get used much because our jumbo buffers don't get passed around
933  * a lot, but it's implemented for correctness.
934  */
935 static void lge_jref(buf, size)
936 	caddr_t			buf;
937 	u_int			size;
938 {
939 	struct lge_softc	*sc;
940 	u_int64_t		**aptr;
941 	int		i;
942 
943 	/* Extract the softc struct pointer. */
944 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
945 	sc = (struct lge_softc *)(aptr[0]);
946 
947 	if (sc == NULL)
948 		panic("lge_jref: can't find softc pointer!");
949 
950 	if (size != LGE_MCLBYTES)
951 		panic("lge_jref: adjusting refcount of buf of wrong size!");
952 
953 	/* calculate the slot this buffer belongs to */
954 
955 	i = ((vm_offset_t)aptr
956 	     - (vm_offset_t)sc->lge_cdata.lge_jumbo_buf) / LGE_JLEN;
957 
958 	if ((i < 0) || (i >= LGE_JSLOTS))
959 		panic("lge_jref: asked to reference buffer "
960 		    "that we don't manage!");
961 	else if (sc->lge_cdata.lge_jslots[i].lge_inuse == 0)
962 		panic("lge_jref: buffer already free!");
963 	else
964 		sc->lge_cdata.lge_jslots[i].lge_inuse++;
965 
966 	return;
967 }
968 
969 /*
970  * Release a jumbo buffer.
971  */
972 static void lge_jfree(buf, size)
973 	caddr_t			buf;
974 	u_int			size;
975 {
976 	struct lge_softc	*sc;
977 	u_int64_t		**aptr;
978 	int		        i;
979 	struct lge_jpool_entry   *entry;
980 
981 	/* Extract the softc struct pointer. */
982 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
983 	sc = (struct lge_softc *)(aptr[0]);
984 
985 	if (sc == NULL)
986 		panic("lge_jfree: can't find softc pointer!");
987 
988 	if (size != LGE_MCLBYTES)
989 		panic("lge_jfree: freeing buffer of wrong size!");
990 
991 	/* calculate the slot this buffer belongs to */
992 	i = ((vm_offset_t)aptr
993 	     - (vm_offset_t)sc->lge_cdata.lge_jumbo_buf) / LGE_JLEN;
994 
995 	if ((i < 0) || (i >= LGE_JSLOTS))
996 		panic("lge_jfree: asked to free buffer that we don't manage!");
997 	else if (sc->lge_cdata.lge_jslots[i].lge_inuse == 0)
998 		panic("lge_jfree: buffer already free!");
999 	else {
1000 		sc->lge_cdata.lge_jslots[i].lge_inuse--;
1001 		if(sc->lge_cdata.lge_jslots[i].lge_inuse == 0) {
1002 			entry = SLIST_FIRST(&sc->lge_jinuse_listhead);
1003 			if (entry == NULL)
1004 				panic("lge_jfree: buffer not in use!");
1005 			entry->slot = i;
1006 			SLIST_REMOVE_HEAD(&sc->lge_jinuse_listhead,
1007 			    jpool_entries);
1008 			SLIST_INSERT_HEAD(&sc->lge_jfree_listhead,
1009 			    entry, jpool_entries);
1010 		}
1011 	}
1012 
1013 	return;
1014 }
1015 
1016 /*
1017  * A frame has been uploaded: pass the resulting mbuf chain up to
1018  * the higher level protocols.
1019  */
1020 static void lge_rxeof(sc, cnt)
1021 	struct lge_softc	*sc;
1022 	int			cnt;
1023 {
1024         struct ether_header	*eh;
1025         struct mbuf		*m;
1026         struct ifnet		*ifp;
1027 	struct lge_rx_desc	*cur_rx;
1028 	int			c, i, total_len = 0;
1029 	u_int32_t		rxsts, rxctl;
1030 
1031 	ifp = &sc->arpcom.ac_if;
1032 
1033 	/* Find out how many frames were processed. */
1034 	c = cnt;
1035 	i = sc->lge_cdata.lge_rx_cons;
1036 
1037 	/* Suck them in. */
1038 	while(c) {
1039 		struct mbuf		*m0 = NULL;
1040 
1041 		cur_rx = &sc->lge_ldata->lge_rx_list[i];
1042 		rxctl = cur_rx->lge_ctl;
1043 		rxsts = cur_rx->lge_sts;
1044 		m = cur_rx->lge_mbuf;
1045 		cur_rx->lge_mbuf = NULL;
1046 		total_len = LGE_RXBYTES(cur_rx);
1047 		LGE_INC(i, LGE_RX_LIST_CNT);
1048 		c--;
1049 
1050 		/*
1051 		 * If an error occurs, update stats, clear the
1052 		 * status word and leave the mbuf cluster in place:
1053 		 * it should simply get re-used next time this descriptor
1054 	 	 * comes up in the ring.
1055 		 */
1056 		if (rxctl & LGE_RXCTL_ERRMASK) {
1057 			ifp->if_ierrors++;
1058 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
1059 			continue;
1060 		}
1061 
1062 		if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) {
1063 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1064 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
1065 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
1066 			if (m0 == NULL) {
1067 				printf("lge%d: no receive buffers "
1068 				    "available -- packet dropped!\n",
1069 				    sc->lge_unit);
1070 				ifp->if_ierrors++;
1071 				continue;
1072 			}
1073 			m_adj(m0, ETHER_ALIGN);
1074 			m = m0;
1075 		} else {
1076 			m->m_pkthdr.rcvif = ifp;
1077 			m->m_pkthdr.len = m->m_len = total_len;
1078 		}
1079 
1080 		ifp->if_ipackets++;
1081 		eh = mtod(m, struct ether_header *);
1082 
1083 		/* Remove header from mbuf and pass it on. */
1084 		m_adj(m, sizeof(struct ether_header));
1085 
1086 		/* Do IP checksum checking. */
1087 		if (rxsts & LGE_RXSTS_ISIP)
1088 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1089 		if (!(rxsts & LGE_RXSTS_IPCSUMERR))
1090 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1091 		if ((rxsts & LGE_RXSTS_ISTCP &&
1092 		    !(rxsts & LGE_RXSTS_TCPCSUMERR)) ||
1093 		    (rxsts & LGE_RXSTS_ISUDP &&
1094 		    !(rxsts & LGE_RXSTS_UDPCSUMERR))) {
1095 			m->m_pkthdr.csum_flags |=
1096 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1097 			m->m_pkthdr.csum_data = 0xffff;
1098 		}
1099 
1100 		ether_input(ifp, eh, m);
1101 	}
1102 
1103 	sc->lge_cdata.lge_rx_cons = i;
1104 
1105 	return;
1106 }
1107 
1108 void lge_rxeoc(sc)
1109 	struct lge_softc	*sc;
1110 {
1111 	struct ifnet		*ifp;
1112 
1113 	ifp = &sc->arpcom.ac_if;
1114 	ifp->if_flags &= ~IFF_RUNNING;
1115 	lge_init(sc);
1116 	return;
1117 }
1118 
1119 /*
1120  * A frame was downloaded to the chip. It's safe for us to clean up
1121  * the list buffers.
1122  */
1123 
1124 static void lge_txeof(sc)
1125 	struct lge_softc	*sc;
1126 {
1127 	struct lge_tx_desc	*cur_tx = NULL;
1128 	struct ifnet		*ifp;
1129 	u_int32_t		idx, txdone;
1130 
1131 	ifp = &sc->arpcom.ac_if;
1132 
1133 	/* Clear the timeout timer. */
1134 	ifp->if_timer = 0;
1135 
1136 	/*
1137 	 * Go through our tx list and free mbufs for those
1138 	 * frames that have been transmitted.
1139 	 */
1140 	idx = sc->lge_cdata.lge_tx_cons;
1141 	txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT);
1142 
1143 	while (idx != sc->lge_cdata.lge_tx_prod && txdone) {
1144 		cur_tx = &sc->lge_ldata->lge_tx_list[idx];
1145 
1146 		ifp->if_opackets++;
1147 		if (cur_tx->lge_mbuf != NULL) {
1148 			m_freem(cur_tx->lge_mbuf);
1149 			cur_tx->lge_mbuf = NULL;
1150 		}
1151 		cur_tx->lge_ctl = 0;
1152 
1153 		txdone--;
1154 		LGE_INC(idx, LGE_TX_LIST_CNT);
1155 		ifp->if_timer = 0;
1156 	}
1157 
1158 	sc->lge_cdata.lge_tx_cons = idx;
1159 
1160 	if (cur_tx != NULL)
1161 		ifp->if_flags &= ~IFF_OACTIVE;
1162 
1163 	return;
1164 }
1165 
1166 static void lge_tick(xsc)
1167 	void			*xsc;
1168 {
1169 	struct lge_softc	*sc;
1170 	struct mii_data		*mii;
1171 	struct ifnet		*ifp;
1172 	int			s;
1173 
1174 	s = splimp();
1175 
1176 	sc = xsc;
1177 	ifp = &sc->arpcom.ac_if;
1178 
1179 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS);
1180 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1181 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS);
1182 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1183 
1184 	if (!sc->lge_link) {
1185 		mii = device_get_softc(sc->lge_miibus);
1186 		mii_tick(mii);
1187 		mii_pollstat(mii);
1188 		if (mii->mii_media_status & IFM_ACTIVE &&
1189 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1190 			sc->lge_link++;
1191 			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX||
1192 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_TX)
1193 				printf("lge%d: gigabit link up\n",
1194 				    sc->lge_unit);
1195 			if (ifp->if_snd.ifq_head != NULL)
1196 				lge_start(ifp);
1197 		}
1198 	}
1199 
1200 	sc->lge_stat_ch = timeout(lge_tick, sc, hz);
1201 
1202 	splx(s);
1203 
1204 	return;
1205 }
1206 
1207 static void lge_intr(arg)
1208 	void			*arg;
1209 {
1210 	struct lge_softc	*sc;
1211 	struct ifnet		*ifp;
1212 	u_int32_t		status;
1213 
1214 	sc = arg;
1215 	ifp = &sc->arpcom.ac_if;
1216 
1217 	/* Supress unwanted interrupts */
1218 	if (!(ifp->if_flags & IFF_UP)) {
1219 		lge_stop(sc);
1220 		return;
1221 	}
1222 
1223 	for (;;) {
1224 		/*
1225 		 * Reading the ISR register clears all interrupts, and
1226 		 * clears the 'interrupts enabled' bit in the IMR
1227 		 * register.
1228 		 */
1229 		status = CSR_READ_4(sc, LGE_ISR);
1230 
1231 		if ((status & LGE_INTRS) == 0)
1232 			break;
1233 
1234 		if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE)))
1235 			lge_txeof(sc);
1236 
1237 		if (status & LGE_ISR_RXDMA_DONE)
1238 			lge_rxeof(sc, LGE_RX_DMACNT(status));
1239 
1240 		if (status & LGE_ISR_RXCMDFIFO_EMPTY)
1241 			lge_rxeoc(sc);
1242 
1243 		if (status & LGE_ISR_PHY_INTR) {
1244 			sc->lge_link = 0;
1245 			untimeout(lge_tick, sc, sc->lge_stat_ch);
1246 			lge_tick(sc);
1247 		}
1248 	}
1249 
1250 	/* Re-enable interrupts. */
1251 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB);
1252 
1253 	if (ifp->if_snd.ifq_head != NULL)
1254 		lge_start(ifp);
1255 
1256 	return;
1257 }
1258 
1259 /*
1260  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1261  * pointers to the fragment pointers.
1262  */
1263 static int lge_encap(sc, m_head, txidx)
1264 	struct lge_softc	*sc;
1265 	struct mbuf		*m_head;
1266 	u_int32_t		*txidx;
1267 {
1268 	struct lge_frag		*f = NULL;
1269 	struct lge_tx_desc	*cur_tx;
1270 	struct mbuf		*m;
1271 	int			frag = 0, tot_len = 0;
1272 
1273 	/*
1274  	 * Start packing the mbufs in this chain into
1275 	 * the fragment pointers. Stop when we run out
1276  	 * of fragments or hit the end of the mbuf chain.
1277 	 */
1278 	m = m_head;
1279 	cur_tx = &sc->lge_ldata->lge_tx_list[*txidx];
1280 	frag = 0;
1281 
1282 	for (m = m_head; m != NULL; m = m->m_next) {
1283 		if (m->m_len != 0) {
1284 			tot_len += m->m_len;
1285 			f = &cur_tx->lge_frags[frag];
1286 			f->lge_fraglen = m->m_len;
1287 			f->lge_fragptr_lo = vtophys(mtod(m, vm_offset_t));
1288 			f->lge_fragptr_hi = 0;
1289 			frag++;
1290 		}
1291 	}
1292 
1293 	if (m != NULL)
1294 		return(ENOBUFS);
1295 
1296 	cur_tx->lge_mbuf = m_head;
1297 	cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len;
1298 	LGE_INC((*txidx), LGE_TX_LIST_CNT);
1299 
1300 	/* Queue for transmit */
1301 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, vtophys(cur_tx));
1302 
1303 	return(0);
1304 }
1305 
1306 /*
1307  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1308  * to the mbuf data regions directly in the transmit lists. We also save a
1309  * copy of the pointers since the transmit list fragment pointers are
1310  * physical addresses.
1311  */
1312 
1313 static void lge_start(ifp)
1314 	struct ifnet		*ifp;
1315 {
1316 	struct lge_softc	*sc;
1317 	struct mbuf		*m_head = NULL;
1318 	u_int32_t		idx;
1319 
1320 	sc = ifp->if_softc;
1321 
1322 	if (!sc->lge_link)
1323 		return;
1324 
1325 	idx = sc->lge_cdata.lge_tx_prod;
1326 
1327 	if (ifp->if_flags & IFF_OACTIVE)
1328 		return;
1329 
1330 	while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) {
1331 		if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0)
1332 			break;
1333 
1334 		IF_DEQUEUE(&ifp->if_snd, m_head);
1335 		if (m_head == NULL)
1336 			break;
1337 
1338 		if (lge_encap(sc, m_head, &idx)) {
1339 			IF_PREPEND(&ifp->if_snd, m_head);
1340 			ifp->if_flags |= IFF_OACTIVE;
1341 			break;
1342 		}
1343 
1344 		/*
1345 		 * If there's a BPF listener, bounce a copy of this frame
1346 		 * to him.
1347 		 */
1348 		if (ifp->if_bpf)
1349 			bpf_mtap(ifp, m_head);
1350 	}
1351 
1352 	sc->lge_cdata.lge_tx_prod = idx;
1353 
1354 	/*
1355 	 * Set a timeout in case the chip goes out to lunch.
1356 	 */
1357 	ifp->if_timer = 5;
1358 
1359 	return;
1360 }
1361 
1362 static void lge_init(xsc)
1363 	void			*xsc;
1364 {
1365 	struct lge_softc	*sc = xsc;
1366 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1367 	struct mii_data		*mii;
1368 	int			s;
1369 
1370 	if (ifp->if_flags & IFF_RUNNING)
1371 		return;
1372 
1373 	s = splimp();
1374 
1375 	/*
1376 	 * Cancel pending I/O and free all RX/TX buffers.
1377 	 */
1378 	lge_stop(sc);
1379 	lge_reset(sc);
1380 
1381 	mii = device_get_softc(sc->lge_miibus);
1382 
1383 	/* Set MAC address */
1384 	CSR_WRITE_4(sc, LGE_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1385 	CSR_WRITE_4(sc, LGE_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1386 
1387 	/* Init circular RX list. */
1388 	if (lge_list_rx_init(sc) == ENOBUFS) {
1389 		printf("lge%d: initialization failed: no "
1390 		    "memory for rx buffers\n", sc->lge_unit);
1391 		lge_stop(sc);
1392 		(void)splx(s);
1393 		return;
1394 	}
1395 
1396 	/*
1397 	 * Init tx descriptors.
1398 	 */
1399 	lge_list_tx_init(sc);
1400 
1401 	/* Set initial value for MODE1 register. */
1402 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST|
1403 	    LGE_MODE1_TX_CRC|LGE_MODE1_TXPAD|
1404 	    LGE_MODE1_RX_FLOWCTL|LGE_MODE1_SETRST_CTL0|
1405 	    LGE_MODE1_SETRST_CTL1|LGE_MODE1_SETRST_CTL2);
1406 
1407 	 /* If we want promiscuous mode, set the allframes bit. */
1408 	if (ifp->if_flags & IFF_PROMISC) {
1409 		CSR_WRITE_4(sc, LGE_MODE1,
1410 		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_PROMISC);
1411 	} else {
1412 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC);
1413 	}
1414 
1415 	/*
1416 	 * Set the capture broadcast bit to capture broadcast frames.
1417 	 */
1418 	if (ifp->if_flags & IFF_BROADCAST) {
1419 		CSR_WRITE_4(sc, LGE_MODE1,
1420 		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_BCAST);
1421 	} else {
1422 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST);
1423 	}
1424 
1425 	/* Packet padding workaround? */
1426 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD);
1427 
1428 	/* No error frames */
1429 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS);
1430 
1431 	/* Receive large frames */
1432 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_GIANTS);
1433 
1434 	/* Workaround: disable RX/TX flow control */
1435 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL);
1436 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL);
1437 
1438 	/* Make sure to strip CRC from received frames */
1439 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC);
1440 
1441 	/* Turn off magic packet mode */
1442 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB);
1443 
1444 	/* Turn off all VLAN stuff */
1445 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX|LGE_MODE1_VLAN_TX|
1446 	    LGE_MODE1_VLAN_STRIP|LGE_MODE1_VLAN_INSERT);
1447 
1448 	/* Workarond: FIFO overflow */
1449 	CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF);
1450 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT);
1451 
1452 	/*
1453 	 * Load the multicast filter.
1454 	 */
1455 	lge_setmulti(sc);
1456 
1457 	/*
1458 	 * Enable hardware checksum validation for all received IPv4
1459 	 * packets, do not reject packets with bad checksums.
1460 	 */
1461 	CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM|
1462 	    LGE_MODE2_RX_TCPCSUM|LGE_MODE2_RX_UDPCSUM|
1463 	    LGE_MODE2_RX_ERRCSUM);
1464 
1465 	/*
1466 	 * Enable the delivery of PHY interrupts based on
1467 	 * link/speed/duplex status chalges.
1468 	 */
1469 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_GMIIPOLL);
1470 
1471 	/* Enable receiver and transmitter. */
1472 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
1473 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_ENB);
1474 
1475 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0);
1476 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_TX_ENB);
1477 
1478 	/*
1479 	 * Enable interrupts.
1480 	 */
1481 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|
1482 	    LGE_IMR_SETRST_CTL1|LGE_IMR_INTR_ENB|LGE_INTRS);
1483 
1484 	lge_ifmedia_upd(ifp);
1485 
1486 	ifp->if_flags |= IFF_RUNNING;
1487 	ifp->if_flags &= ~IFF_OACTIVE;
1488 
1489 	(void)splx(s);
1490 
1491 	sc->lge_stat_ch = timeout(lge_tick, sc, hz);
1492 
1493 	return;
1494 }
1495 
1496 /*
1497  * Set media options.
1498  */
1499 static int lge_ifmedia_upd(ifp)
1500 	struct ifnet		*ifp;
1501 {
1502 	struct lge_softc	*sc;
1503 	struct mii_data		*mii;
1504 
1505 	sc = ifp->if_softc;
1506 
1507 	mii = device_get_softc(sc->lge_miibus);
1508 	sc->lge_link = 0;
1509 	if (mii->mii_instance) {
1510 		struct mii_softc	*miisc;
1511 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1512 		    miisc = LIST_NEXT(miisc, mii_list))
1513 			mii_phy_reset(miisc);
1514 	}
1515 	mii_mediachg(mii);
1516 
1517 	return(0);
1518 }
1519 
1520 /*
1521  * Report current media status.
1522  */
1523 static void lge_ifmedia_sts(ifp, ifmr)
1524 	struct ifnet		*ifp;
1525 	struct ifmediareq	*ifmr;
1526 {
1527 	struct lge_softc	*sc;
1528 	struct mii_data		*mii;
1529 
1530 	sc = ifp->if_softc;
1531 
1532 	mii = device_get_softc(sc->lge_miibus);
1533 	mii_pollstat(mii);
1534 	ifmr->ifm_active = mii->mii_media_active;
1535 	ifmr->ifm_status = mii->mii_media_status;
1536 
1537 	return;
1538 }
1539 
1540 static int lge_ioctl(ifp, command, data)
1541 	struct ifnet		*ifp;
1542 	u_long			command;
1543 	caddr_t			data;
1544 {
1545 	struct lge_softc	*sc = ifp->if_softc;
1546 	struct ifreq		*ifr = (struct ifreq *) data;
1547 	struct mii_data		*mii;
1548 	int			s, error = 0;
1549 
1550 	s = splimp();
1551 
1552 	switch(command) {
1553 	case SIOCSIFADDR:
1554 	case SIOCGIFADDR:
1555 		error = ether_ioctl(ifp, command, data);
1556 		break;
1557 	case SIOCSIFMTU:
1558 		if (ifr->ifr_mtu > LGE_JUMBO_MTU)
1559 			error = EINVAL;
1560 		else
1561 			ifp->if_mtu = ifr->ifr_mtu;
1562 		break;
1563 	case SIOCSIFFLAGS:
1564 		if (ifp->if_flags & IFF_UP) {
1565 			if (ifp->if_flags & IFF_RUNNING &&
1566 			    ifp->if_flags & IFF_PROMISC &&
1567 			    !(sc->lge_if_flags & IFF_PROMISC)) {
1568 				CSR_WRITE_4(sc, LGE_MODE1,
1569 				    LGE_MODE1_SETRST_CTL1|
1570 				    LGE_MODE1_RX_PROMISC);
1571 			} else if (ifp->if_flags & IFF_RUNNING &&
1572 			    !(ifp->if_flags & IFF_PROMISC) &&
1573 			    sc->lge_if_flags & IFF_PROMISC) {
1574 				CSR_WRITE_4(sc, LGE_MODE1,
1575 				    LGE_MODE1_RX_PROMISC);
1576 			} else {
1577 				ifp->if_flags &= ~IFF_RUNNING;
1578 				lge_init(sc);
1579 			}
1580 		} else {
1581 			if (ifp->if_flags & IFF_RUNNING)
1582 				lge_stop(sc);
1583 		}
1584 		sc->lge_if_flags = ifp->if_flags;
1585 		error = 0;
1586 		break;
1587 	case SIOCADDMULTI:
1588 	case SIOCDELMULTI:
1589 		lge_setmulti(sc);
1590 		error = 0;
1591 		break;
1592 	case SIOCGIFMEDIA:
1593 	case SIOCSIFMEDIA:
1594 		mii = device_get_softc(sc->lge_miibus);
1595 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1596 		break;
1597 	default:
1598 		error = EINVAL;
1599 		break;
1600 	}
1601 
1602 	(void)splx(s);
1603 
1604 	return(error);
1605 }
1606 
1607 static void lge_watchdog(ifp)
1608 	struct ifnet		*ifp;
1609 {
1610 	struct lge_softc	*sc;
1611 
1612 	sc = ifp->if_softc;
1613 
1614 	ifp->if_oerrors++;
1615 	printf("lge%d: watchdog timeout\n", sc->lge_unit);
1616 
1617 	lge_stop(sc);
1618 	lge_reset(sc);
1619 	ifp->if_flags &= ~IFF_RUNNING;
1620 	lge_init(sc);
1621 
1622 	if (ifp->if_snd.ifq_head != NULL)
1623 		lge_start(ifp);
1624 
1625 	return;
1626 }
1627 
1628 /*
1629  * Stop the adapter and free any mbufs allocated to the
1630  * RX and TX lists.
1631  */
1632 static void lge_stop(sc)
1633 	struct lge_softc	*sc;
1634 {
1635 	int		i;
1636 	struct ifnet		*ifp;
1637 
1638 	ifp = &sc->arpcom.ac_if;
1639 	ifp->if_timer = 0;
1640 	untimeout(lge_tick, sc, sc->lge_stat_ch);
1641 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB);
1642 
1643 	/* Disable receiver and transmitter. */
1644 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB);
1645 	sc->lge_link = 0;
1646 
1647 	/*
1648 	 * Free data in the RX lists.
1649 	 */
1650 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
1651 		if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) {
1652 			m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf);
1653 			sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL;
1654 		}
1655 	}
1656 	bzero((char *)&sc->lge_ldata->lge_rx_list,
1657 		sizeof(sc->lge_ldata->lge_rx_list));
1658 
1659 	/*
1660 	 * Free the TX list buffers.
1661 	 */
1662 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
1663 		if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) {
1664 			m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf);
1665 			sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL;
1666 		}
1667 	}
1668 
1669 	bzero((char *)&sc->lge_ldata->lge_tx_list,
1670 		sizeof(sc->lge_ldata->lge_tx_list));
1671 
1672 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1673 
1674 	return;
1675 }
1676 
1677 /*
1678  * Stop all chip I/O so that the kernel's probe routines don't
1679  * get confused by errant DMAs when rebooting.
1680  */
1681 static void lge_shutdown(dev)
1682 	device_t		dev;
1683 {
1684 	struct lge_softc	*sc;
1685 
1686 	sc = device_get_softc(dev);
1687 
1688 	lge_reset(sc);
1689 	lge_stop(sc);
1690 
1691 	return;
1692 }
1693