xref: /dragonfly/sys/dev/netif/lge/if_lge.c (revision 86fe9e07)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <william.paul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/lge/if_lge.c,v 1.5.2.2 2001/12/14 19:49:23 jlemon Exp $
34  * $DragonFly: src/sys/dev/netif/lge/if_lge.c,v 1.14 2004/07/29 08:46:22 dillon Exp $
35  *
36  * $FreeBSD: src/sys/dev/lge/if_lge.c,v 1.5.2.2 2001/12/14 19:49:23 jlemon Exp $
37  */
38 
39 /*
40  * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public
41  * documentation not available, but ask me nicely.
42  *
43  * Written by Bill Paul <william.paul@windriver.com>
44  * Wind River Systems
45  */
46 
47 /*
48  * The Level 1 chip is used on some D-Link, SMC and Addtron NICs.
49  * It's a 64-bit PCI part that supports TCP/IP checksum offload,
50  * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There
51  * are three supported methods for data transfer between host and
52  * NIC: programmed I/O, traditional scatter/gather DMA and Packet
53  * Propulsion Technology (tm) DMA. The latter mechanism is a form
54  * of double buffer DMA where the packet data is copied to a
55  * pre-allocated DMA buffer who's physical address has been loaded
56  * into a table at device initialization time. The rationale is that
57  * the virtual to physical address translation needed for normal
58  * scatter/gather DMA is more expensive than the data copy needed
59  * for double buffering. This may be true in Windows NT and the like,
60  * but it isn't true for us, at least on the x86 arch. This driver
61  * uses the scatter/gather I/O method for both TX and RX.
62  *
63  * The LXT1001 only supports TCP/IP checksum offload on receive.
64  * Also, the VLAN tagging is done using a 16-entry table which allows
65  * the chip to perform hardware filtering based on VLAN tags. Sadly,
66  * our vlan support doesn't currently play well with this kind of
67  * hardware support.
68  *
69  * Special thanks to:
70  * - Jeff James at Intel, for arranging to have the LXT1001 manual
71  *   released (at long last)
72  * - Beny Chen at D-Link, for actually sending it to me
73  * - Brad Short and Keith Alexis at SMC, for sending me sample
74  *   SMC9462SX and SMC9462TX adapters for testing
75  * - Paul Saab at Y!, for not killing me (though it remains to be seen
76  *   if in fact he did me much of a favor)
77  */
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/sockio.h>
82 #include <sys/mbuf.h>
83 #include <sys/malloc.h>
84 #include <sys/kernel.h>
85 #include <sys/socket.h>
86 
87 #include <net/if.h>
88 #include <net/if_arp.h>
89 #include <net/ethernet.h>
90 #include <net/if_dl.h>
91 #include <net/if_media.h>
92 
93 #include <net/bpf.h>
94 
95 #include <vm/vm.h>              /* for vtophys */
96 #include <vm/pmap.h>            /* for vtophys */
97 #include <machine/clock.h>      /* for DELAY */
98 #include <machine/bus_pio.h>
99 #include <machine/bus_memio.h>
100 #include <machine/bus.h>
101 #include <machine/resource.h>
102 #include <sys/bus.h>
103 #include <sys/rman.h>
104 
105 #include "../mii_layer/mii.h"
106 #include "../mii_layer/miivar.h"
107 
108 #include <bus/pci/pcireg.h>
109 #include <bus/pci/pcivar.h>
110 
111 #define LGE_USEIOSPACE
112 
113 #include "if_lgereg.h"
114 
115 /* "controller miibus0" required.  See GENERIC if you get errors here. */
116 #include "miibus_if.h"
117 
118 /*
119  * Various supported device vendors/types and their names.
120  */
121 static struct lge_type lge_devs[] = {
122 	{ LGE_VENDORID, LGE_DEVICEID, "Level 1 Gigabit Ethernet" },
123 	{ 0, 0, NULL }
124 };
125 
126 static int lge_probe		(device_t);
127 static int lge_attach		(device_t);
128 static int lge_detach		(device_t);
129 
130 static int lge_alloc_jumbo_mem	(struct lge_softc *);
131 static void lge_free_jumbo_mem	(struct lge_softc *);
132 static void *lge_jalloc		(struct lge_softc *);
133 static void lge_jfree		(caddr_t, u_int);
134 static void lge_jref		(caddr_t, u_int);
135 
136 static int lge_newbuf		(struct lge_softc *,
137 					struct lge_rx_desc *,
138 					struct mbuf *);
139 static int lge_encap		(struct lge_softc *,
140 					struct mbuf *, u_int32_t *);
141 static void lge_rxeof		(struct lge_softc *, int);
142 static void lge_rxeoc		(struct lge_softc *);
143 static void lge_txeof		(struct lge_softc *);
144 static void lge_intr		(void *);
145 static void lge_tick		(void *);
146 static void lge_start		(struct ifnet *);
147 static int lge_ioctl		(struct ifnet *, u_long, caddr_t,
148 					struct ucred *);
149 static void lge_init		(void *);
150 static void lge_stop		(struct lge_softc *);
151 static void lge_watchdog		(struct ifnet *);
152 static void lge_shutdown		(device_t);
153 static int lge_ifmedia_upd	(struct ifnet *);
154 static void lge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
155 
156 static void lge_eeprom_getword	(struct lge_softc *, int, u_int16_t *);
157 static void lge_read_eeprom	(struct lge_softc *, caddr_t, int,
158 							int, int);
159 
160 static int lge_miibus_readreg	(device_t, int, int);
161 static int lge_miibus_writereg	(device_t, int, int, int);
162 static void lge_miibus_statchg	(device_t);
163 
164 static void lge_setmulti	(struct lge_softc *);
165 static u_int32_t lge_crc	(struct lge_softc *, caddr_t);
166 static void lge_reset		(struct lge_softc *);
167 static int lge_list_rx_init	(struct lge_softc *);
168 static int lge_list_tx_init	(struct lge_softc *);
169 
170 #ifdef LGE_USEIOSPACE
171 #define LGE_RES			SYS_RES_IOPORT
172 #define LGE_RID			LGE_PCI_LOIO
173 #else
174 #define LGE_RES			SYS_RES_MEMORY
175 #define LGE_RID			LGE_PCI_LOMEM
176 #endif
177 
178 static device_method_t lge_methods[] = {
179 	/* Device interface */
180 	DEVMETHOD(device_probe,		lge_probe),
181 	DEVMETHOD(device_attach,	lge_attach),
182 	DEVMETHOD(device_detach,	lge_detach),
183 	DEVMETHOD(device_shutdown,	lge_shutdown),
184 
185 	/* bus interface */
186 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
187 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
188 
189 	/* MII interface */
190 	DEVMETHOD(miibus_readreg,	lge_miibus_readreg),
191 	DEVMETHOD(miibus_writereg,	lge_miibus_writereg),
192 	DEVMETHOD(miibus_statchg,	lge_miibus_statchg),
193 
194 	{ 0, 0 }
195 };
196 
197 static driver_t lge_driver = {
198 	"lge",
199 	lge_methods,
200 	sizeof(struct lge_softc)
201 };
202 
203 static devclass_t lge_devclass;
204 
205 DECLARE_DUMMY_MODULE(if_lge);
206 DRIVER_MODULE(if_lge, pci, lge_driver, lge_devclass, 0, 0);
207 DRIVER_MODULE(miibus, lge, miibus_driver, miibus_devclass, 0, 0);
208 
209 #define LGE_SETBIT(sc, reg, x)				\
210 	CSR_WRITE_4(sc, reg,				\
211 		CSR_READ_4(sc, reg) | (x))
212 
213 #define LGE_CLRBIT(sc, reg, x)				\
214 	CSR_WRITE_4(sc, reg,				\
215 		CSR_READ_4(sc, reg) & ~(x))
216 
217 #define SIO_SET(x)					\
218 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | x)
219 
220 #define SIO_CLR(x)					\
221 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~x)
222 
223 /*
224  * Read a word of data stored in the EEPROM at address 'addr.'
225  */
226 static void lge_eeprom_getword(sc, addr, dest)
227 	struct lge_softc	*sc;
228 	int			addr;
229 	u_int16_t		*dest;
230 {
231 	int		i;
232 	u_int32_t		val;
233 
234 	CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ|
235 	    LGE_EECTL_SINGLEACCESS|((addr >> 1) << 8));
236 
237 	for (i = 0; i < LGE_TIMEOUT; i++)
238 		if (!(CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ))
239 			break;
240 
241 	if (i == LGE_TIMEOUT) {
242 		printf("lge%d: EEPROM read timed out\n", sc->lge_unit);
243 		return;
244 	}
245 
246 	val = CSR_READ_4(sc, LGE_EEDATA);
247 
248 	if (addr & 1)
249 		*dest = (val >> 16) & 0xFFFF;
250 	else
251 		*dest = val & 0xFFFF;
252 
253 	return;
254 }
255 
256 /*
257  * Read a sequence of words from the EEPROM.
258  */
259 static void lge_read_eeprom(sc, dest, off, cnt, swap)
260 	struct lge_softc	*sc;
261 	caddr_t			dest;
262 	int			off;
263 	int			cnt;
264 	int			swap;
265 {
266 	int			i;
267 	u_int16_t		word = 0, *ptr;
268 
269 	for (i = 0; i < cnt; i++) {
270 		lge_eeprom_getword(sc, off + i, &word);
271 		ptr = (u_int16_t *)(dest + (i * 2));
272 		if (swap)
273 			*ptr = ntohs(word);
274 		else
275 			*ptr = word;
276 	}
277 
278 	return;
279 }
280 
281 static int lge_miibus_readreg(dev, phy, reg)
282 	device_t		dev;
283 	int			phy, reg;
284 {
285 	struct lge_softc	*sc;
286 	int			i;
287 
288 	sc = device_get_softc(dev);
289 
290 	/*
291 	 * If we have a non-PCS PHY, pretend that the internal
292 	 * autoneg stuff at PHY address 0 isn't there so that
293 	 * the miibus code will find only the GMII PHY.
294 	 */
295 	if (sc->lge_pcs == 0 && phy == 0)
296 		return(0);
297 
298 	CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ);
299 
300 	for (i = 0; i < LGE_TIMEOUT; i++)
301 		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
302 			break;
303 
304 	if (i == LGE_TIMEOUT) {
305 		printf("lge%d: PHY read timed out\n", sc->lge_unit);
306 		return(0);
307 	}
308 
309 	return(CSR_READ_4(sc, LGE_GMIICTL) >> 16);
310 }
311 
312 static int lge_miibus_writereg(dev, phy, reg, data)
313 	device_t		dev;
314 	int			phy, reg, data;
315 {
316 	struct lge_softc	*sc;
317 	int			i;
318 
319 	sc = device_get_softc(dev);
320 
321 	CSR_WRITE_4(sc, LGE_GMIICTL,
322 	    (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE);
323 
324 	for (i = 0; i < LGE_TIMEOUT; i++)
325 		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
326 			break;
327 
328 	if (i == LGE_TIMEOUT) {
329 		printf("lge%d: PHY write timed out\n", sc->lge_unit);
330 		return(0);
331 	}
332 
333 	return(0);
334 }
335 
336 static void lge_miibus_statchg(dev)
337 	device_t		dev;
338 {
339 	struct lge_softc	*sc;
340 	struct mii_data		*mii;
341 
342 	sc = device_get_softc(dev);
343 	mii = device_get_softc(sc->lge_miibus);
344 
345 	LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED);
346 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
347 	case IFM_1000_TX:
348 	case IFM_1000_SX:
349 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
350 		break;
351 	case IFM_100_TX:
352 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100);
353 		break;
354 	case IFM_10_T:
355 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10);
356 		break;
357 	default:
358 		/*
359 		 * Choose something, even if it's wrong. Clearing
360 		 * all the bits will hose autoneg on the internal
361 		 * PHY.
362 		 */
363 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
364 		break;
365 	}
366 
367 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
368 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
369 	} else {
370 		LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
371 	}
372 
373 	return;
374 }
375 
376 static u_int32_t lge_crc(sc, addr)
377 	struct lge_softc	*sc;
378 	caddr_t			addr;
379 {
380 	u_int32_t		crc, carry;
381 	int			i, j;
382 	u_int8_t		c;
383 
384 	/* Compute CRC for the address value. */
385 	crc = 0xFFFFFFFF; /* initial value */
386 
387 	for (i = 0; i < 6; i++) {
388 		c = *(addr + i);
389 		for (j = 0; j < 8; j++) {
390 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
391 			crc <<= 1;
392 			c >>= 1;
393 			if (carry)
394 				crc = (crc ^ 0x04c11db6) | carry;
395 		}
396 	}
397 
398 	/*
399 	 * return the filter bit position
400 	 */
401 	return((crc >> 26) & 0x0000003F);
402 }
403 
404 static void lge_setmulti(sc)
405 	struct lge_softc	*sc;
406 {
407 	struct ifnet		*ifp;
408 	struct ifmultiaddr	*ifma;
409 	u_int32_t		h = 0, hashes[2] = { 0, 0 };
410 
411 	ifp = &sc->arpcom.ac_if;
412 
413 	/* Make sure multicast hash table is enabled. */
414 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_MCAST);
415 
416 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
417 		CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF);
418 		CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF);
419 		return;
420 	}
421 
422 	/* first, zot all the existing hash bits */
423 	CSR_WRITE_4(sc, LGE_MAR0, 0);
424 	CSR_WRITE_4(sc, LGE_MAR1, 0);
425 
426 	/* now program new ones */
427 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
428 	    ifma = ifma->ifma_link.le_next) {
429 		if (ifma->ifma_addr->sa_family != AF_LINK)
430 			continue;
431 		h = lge_crc(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
432 		if (h < 32)
433 			hashes[0] |= (1 << h);
434 		else
435 			hashes[1] |= (1 << (h - 32));
436 	}
437 
438 	CSR_WRITE_4(sc, LGE_MAR0, hashes[0]);
439 	CSR_WRITE_4(sc, LGE_MAR1, hashes[1]);
440 
441 	return;
442 }
443 
444 static void lge_reset(sc)
445 	struct lge_softc	*sc;
446 {
447 	int		i;
448 
449 	LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_SOFTRST);
450 
451 	for (i = 0; i < LGE_TIMEOUT; i++) {
452 		if (!(CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST))
453 			break;
454 	}
455 
456 	if (i == LGE_TIMEOUT)
457 		printf("lge%d: reset never completed\n", sc->lge_unit);
458 
459 	/* Wait a little while for the chip to get its brains in order. */
460 	DELAY(1000);
461 
462         return;
463 }
464 
465 /*
466  * Probe for a Level 1 chip. Check the PCI vendor and device
467  * IDs against our list and return a device name if we find a match.
468  */
469 static int lge_probe(dev)
470 	device_t		dev;
471 {
472 	struct lge_type		*t;
473 
474 	t = lge_devs;
475 
476 	while(t->lge_name != NULL) {
477 		if ((pci_get_vendor(dev) == t->lge_vid) &&
478 		    (pci_get_device(dev) == t->lge_did)) {
479 			device_set_desc(dev, t->lge_name);
480 			return(0);
481 		}
482 		t++;
483 	}
484 
485 	return(ENXIO);
486 }
487 
488 /*
489  * Attach the interface. Allocate softc structures, do ifmedia
490  * setup and ethernet/BPF attach.
491  */
492 static int lge_attach(dev)
493 	device_t		dev;
494 {
495 	int			s;
496 	u_char			eaddr[ETHER_ADDR_LEN];
497 	u_int32_t		command;
498 	struct lge_softc	*sc;
499 	struct ifnet		*ifp;
500 	int			unit, error = 0, rid;
501 
502 	s = splimp();
503 
504 	sc = device_get_softc(dev);
505 	unit = device_get_unit(dev);
506 	bzero(sc, sizeof(struct lge_softc));
507 
508 	/*
509 	 * Handle power management nonsense.
510 	 */
511 	command = pci_read_config(dev, LGE_PCI_CAPID, 4) & 0x000000FF;
512 	if (command == 0x01) {
513 
514 		command = pci_read_config(dev, LGE_PCI_PWRMGMTCTRL, 4);
515 		if (command & LGE_PSTATE_MASK) {
516 			u_int32_t		iobase, membase, irq;
517 
518 			/* Save important PCI config data. */
519 			iobase = pci_read_config(dev, LGE_PCI_LOIO, 4);
520 			membase = pci_read_config(dev, LGE_PCI_LOMEM, 4);
521 			irq = pci_read_config(dev, LGE_PCI_INTLINE, 4);
522 
523 			/* Reset the power state. */
524 			printf("lge%d: chip is in D%d power mode "
525 			"-- setting to D0\n", unit, command & LGE_PSTATE_MASK);
526 			command &= 0xFFFFFFFC;
527 			pci_write_config(dev, LGE_PCI_PWRMGMTCTRL, command, 4);
528 
529 			/* Restore PCI config data. */
530 			pci_write_config(dev, LGE_PCI_LOIO, iobase, 4);
531 			pci_write_config(dev, LGE_PCI_LOMEM, membase, 4);
532 			pci_write_config(dev, LGE_PCI_INTLINE, irq, 4);
533 		}
534 	}
535 
536 	/*
537 	 * Map control/status registers.
538 	 */
539 	command = pci_read_config(dev, PCIR_COMMAND, 4);
540 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
541 	pci_write_config(dev, PCIR_COMMAND, command, 4);
542 	command = pci_read_config(dev, PCIR_COMMAND, 4);
543 
544 #ifdef LGE_USEIOSPACE
545 	if (!(command & PCIM_CMD_PORTEN)) {
546 		printf("lge%d: failed to enable I/O ports!\n", unit);
547 		error = ENXIO;;
548 		goto fail;
549 	}
550 #else
551 	if (!(command & PCIM_CMD_MEMEN)) {
552 		printf("lge%d: failed to enable memory mapping!\n", unit);
553 		error = ENXIO;;
554 		goto fail;
555 	}
556 #endif
557 
558 	rid = LGE_RID;
559 	sc->lge_res = bus_alloc_resource(dev, LGE_RES, &rid,
560 	    0, ~0, 1, RF_ACTIVE);
561 
562 	if (sc->lge_res == NULL) {
563 		printf("lge%d: couldn't map ports/memory\n", unit);
564 		error = ENXIO;
565 		goto fail;
566 	}
567 
568 	sc->lge_btag = rman_get_bustag(sc->lge_res);
569 	sc->lge_bhandle = rman_get_bushandle(sc->lge_res);
570 
571 	/* Allocate interrupt */
572 	rid = 0;
573 	sc->lge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
574 	    RF_SHAREABLE | RF_ACTIVE);
575 
576 	if (sc->lge_irq == NULL) {
577 		printf("lge%d: couldn't map interrupt\n", unit);
578 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
579 		error = ENXIO;
580 		goto fail;
581 	}
582 
583 	error = bus_setup_intr(dev, sc->lge_irq, INTR_TYPE_NET,
584 	    lge_intr, sc, &sc->lge_intrhand);
585 
586 	if (error) {
587 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
588 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
589 		printf("lge%d: couldn't set up irq\n", unit);
590 		goto fail;
591 	}
592 
593 	/* Reset the adapter. */
594 	lge_reset(sc);
595 
596 	/*
597 	 * Get station address from the EEPROM.
598 	 */
599 	lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1, 0);
600 	lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1, 0);
601 	lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1, 0);
602 
603 	sc->lge_unit = unit;
604 	callout_handle_init(&sc->lge_stat_ch);
605 
606 	sc->lge_ldata = contigmalloc(sizeof(struct lge_list_data), M_DEVBUF,
607 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
608 
609 	if (sc->lge_ldata == NULL) {
610 		printf("lge%d: no memory for list buffers!\n", unit);
611 		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
612 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
613 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
614 		error = ENXIO;
615 		goto fail;
616 	}
617 	bzero(sc->lge_ldata, sizeof(struct lge_list_data));
618 
619 	/* Try to allocate memory for jumbo buffers. */
620 	if (lge_alloc_jumbo_mem(sc)) {
621 		printf("lge%d: jumbo buffer allocation failed\n",
622                     sc->lge_unit);
623 		contigfree(sc->lge_ldata,
624 		    sizeof(struct lge_list_data), M_DEVBUF);
625 		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
626 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
627 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
628 		error = ENXIO;
629 		goto fail;
630 	}
631 
632 	ifp = &sc->arpcom.ac_if;
633 	ifp->if_softc = sc;
634 	if_initname(ifp, "lge", unit);
635 	ifp->if_mtu = ETHERMTU;
636 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
637 	ifp->if_ioctl = lge_ioctl;
638 	ifp->if_start = lge_start;
639 	ifp->if_watchdog = lge_watchdog;
640 	ifp->if_init = lge_init;
641 	ifp->if_baudrate = 1000000000;
642 	ifp->if_snd.ifq_maxlen = LGE_TX_LIST_CNT - 1;
643 	ifp->if_capabilities = IFCAP_RXCSUM;
644 	ifp->if_capenable = ifp->if_capabilities;
645 
646 	if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH)
647 		sc->lge_pcs = 1;
648 	else
649 		sc->lge_pcs = 0;
650 
651 	/*
652 	 * Do MII setup.
653 	 */
654 	if (mii_phy_probe(dev, &sc->lge_miibus,
655 	    lge_ifmedia_upd, lge_ifmedia_sts)) {
656 		printf("lge%d: MII without any PHY!\n", sc->lge_unit);
657 		contigfree(sc->lge_ldata,
658 		    sizeof(struct lge_list_data), M_DEVBUF);
659 		lge_free_jumbo_mem(sc);
660 		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
661 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
662 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
663 		error = ENXIO;
664 		goto fail;
665 	}
666 
667 	/*
668 	 * Call MI attach routine.
669 	 */
670 	ether_ifattach(ifp, eaddr);
671 	callout_handle_init(&sc->lge_stat_ch);
672 
673 fail:
674 	splx(s);
675 	return(error);
676 }
677 
678 static int lge_detach(dev)
679 	device_t		dev;
680 {
681 	struct lge_softc	*sc;
682 	struct ifnet		*ifp;
683 	int			s;
684 
685 	s = splimp();
686 
687 	sc = device_get_softc(dev);
688 	ifp = &sc->arpcom.ac_if;
689 
690 	lge_reset(sc);
691 	lge_stop(sc);
692 	ether_ifdetach(ifp);
693 
694 	bus_generic_detach(dev);
695 	device_delete_child(dev, sc->lge_miibus);
696 
697 	bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
698 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
699 	bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
700 
701 	contigfree(sc->lge_ldata, sizeof(struct lge_list_data), M_DEVBUF);
702 	lge_free_jumbo_mem(sc);
703 
704 	splx(s);
705 
706 	return(0);
707 }
708 
709 /*
710  * Initialize the transmit descriptors.
711  */
712 static int lge_list_tx_init(sc)
713 	struct lge_softc	*sc;
714 {
715 	struct lge_list_data	*ld;
716 	struct lge_ring_data	*cd;
717 	int			i;
718 
719 	cd = &sc->lge_cdata;
720 	ld = sc->lge_ldata;
721 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
722 		ld->lge_tx_list[i].lge_mbuf = NULL;
723 		ld->lge_tx_list[i].lge_ctl = 0;
724 	}
725 
726 	cd->lge_tx_prod = cd->lge_tx_cons = 0;
727 
728 	return(0);
729 }
730 
731 
732 /*
733  * Initialize the RX descriptors and allocate mbufs for them. Note that
734  * we arralge the descriptors in a closed ring, so that the last descriptor
735  * points back to the first.
736  */
737 static int lge_list_rx_init(sc)
738 	struct lge_softc	*sc;
739 {
740 	struct lge_list_data	*ld;
741 	struct lge_ring_data	*cd;
742 	int			i;
743 
744 	ld = sc->lge_ldata;
745 	cd = &sc->lge_cdata;
746 
747 	cd->lge_rx_prod = cd->lge_rx_cons = 0;
748 
749 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
750 
751 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
752 		if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0)
753 			break;
754 		if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS)
755 			return(ENOBUFS);
756 	}
757 
758 	/* Clear possible 'rx command queue empty' interrupt. */
759 	CSR_READ_4(sc, LGE_ISR);
760 
761 	return(0);
762 }
763 
764 /*
765  * Initialize an RX descriptor and attach an MBUF cluster.
766  */
767 static int lge_newbuf(sc, c, m)
768 	struct lge_softc	*sc;
769 	struct lge_rx_desc	*c;
770 	struct mbuf		*m;
771 {
772 	struct mbuf		*m_new = NULL;
773 	caddr_t			*buf = NULL;
774 
775 	if (m == NULL) {
776 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
777 		if (m_new == NULL) {
778 			printf("lge%d: no memory for rx list "
779 			    "-- packet dropped!\n", sc->lge_unit);
780 			return(ENOBUFS);
781 		}
782 
783 		/* Allocate the jumbo buffer */
784 		buf = lge_jalloc(sc);
785 		if (buf == NULL) {
786 #ifdef LGE_VERBOSE
787 			printf("lge%d: jumbo allocation failed "
788 			    "-- packet dropped!\n", sc->lge_unit);
789 #endif
790 			m_freem(m_new);
791 			return(ENOBUFS);
792 		}
793 		/* Attach the buffer to the mbuf */
794 		m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
795 		m_new->m_flags |= M_EXT | M_EXT_OLD;
796 		m_new->m_ext.ext_size = m_new->m_pkthdr.len =
797 		    m_new->m_len = LGE_MCLBYTES;
798 		m_new->m_ext.ext_nfree.old = lge_jfree;
799 		m_new->m_ext.ext_nref.old = lge_jref;
800 	} else {
801 		m_new = m;
802 		m_new->m_len = m_new->m_pkthdr.len = LGE_MCLBYTES;
803 		m_new->m_data = m_new->m_ext.ext_buf;
804 	}
805 
806 	/*
807 	 * Adjust alignment so packet payload begins on a
808 	 * longword boundary. Mandatory for Alpha, useful on
809 	 * x86 too.
810 	*/
811 	m_adj(m_new, ETHER_ALIGN);
812 
813 	c->lge_mbuf = m_new;
814 	c->lge_fragptr_hi = 0;
815 	c->lge_fragptr_lo = vtophys(mtod(m_new, caddr_t));
816 	c->lge_fraglen = m_new->m_len;
817 	c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1);
818 	c->lge_sts = 0;
819 
820 	/*
821 	 * Put this buffer in the RX command FIFO. To do this,
822 	 * we just write the physical address of the descriptor
823 	 * into the RX descriptor address registers. Note that
824 	 * there are two registers, one high DWORD and one low
825 	 * DWORD, which lets us specify a 64-bit address if
826 	 * desired. We only use a 32-bit address for now.
827 	 * Writing to the low DWORD register is what actually
828 	 * causes the command to be issued, so we do that
829 	 * last.
830 	 */
831 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, vtophys(c));
832 	LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT);
833 
834 	return(0);
835 }
836 
837 static int lge_alloc_jumbo_mem(sc)
838 	struct lge_softc	*sc;
839 {
840 	caddr_t			ptr;
841 	int		i;
842 	struct lge_jpool_entry   *entry;
843 
844 	/* Grab a big chunk o' storage. */
845 	sc->lge_cdata.lge_jumbo_buf = contigmalloc(LGE_JMEM, M_DEVBUF,
846 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
847 
848 	if (sc->lge_cdata.lge_jumbo_buf == NULL) {
849 		printf("lge%d: no memory for jumbo buffers!\n", sc->lge_unit);
850 		return(ENOBUFS);
851 	}
852 
853 	SLIST_INIT(&sc->lge_jfree_listhead);
854 	SLIST_INIT(&sc->lge_jinuse_listhead);
855 
856 	/*
857 	 * Now divide it up into 9K pieces and save the addresses
858 	 * in an array.
859 	 */
860 	ptr = sc->lge_cdata.lge_jumbo_buf;
861 	for (i = 0; i < LGE_JSLOTS; i++) {
862 		u_int64_t		**aptr;
863 		aptr = (u_int64_t **)ptr;
864 		aptr[0] = (u_int64_t *)sc;
865 		ptr += sizeof(u_int64_t);
866 		sc->lge_cdata.lge_jslots[i].lge_buf = ptr;
867 		sc->lge_cdata.lge_jslots[i].lge_inuse = 0;
868 		ptr += LGE_MCLBYTES;
869 		entry = malloc(sizeof(struct lge_jpool_entry),
870 		    M_DEVBUF, M_WAITOK);
871 		entry->slot = i;
872 		SLIST_INSERT_HEAD(&sc->lge_jfree_listhead,
873 		    entry, jpool_entries);
874 	}
875 
876 	return(0);
877 }
878 
879 static void lge_free_jumbo_mem(sc)
880 	struct lge_softc	*sc;
881 {
882 	int			i;
883 	struct lge_jpool_entry	*entry;
884 
885 	for (i = 0; i < LGE_JSLOTS; i++) {
886 		entry = SLIST_FIRST(&sc->lge_jfree_listhead);
887 		SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
888 		free(entry, M_DEVBUF);
889 	}
890 
891 	contigfree(sc->lge_cdata.lge_jumbo_buf, LGE_JMEM, M_DEVBUF);
892 
893 	return;
894 }
895 
896 /*
897  * Allocate a jumbo buffer.
898  */
899 static void *lge_jalloc(sc)
900 	struct lge_softc	*sc;
901 {
902 	struct lge_jpool_entry   *entry;
903 
904 	entry = SLIST_FIRST(&sc->lge_jfree_listhead);
905 
906 	if (entry == NULL) {
907 #ifdef LGE_VERBOSE
908 		printf("lge%d: no free jumbo buffers\n", sc->lge_unit);
909 #endif
910 		return(NULL);
911 	}
912 
913 	SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
914 	SLIST_INSERT_HEAD(&sc->lge_jinuse_listhead, entry, jpool_entries);
915 	sc->lge_cdata.lge_jslots[entry->slot].lge_inuse = 1;
916 	return(sc->lge_cdata.lge_jslots[entry->slot].lge_buf);
917 }
918 
919 /*
920  * Adjust usage count on a jumbo buffer. In general this doesn't
921  * get used much because our jumbo buffers don't get passed around
922  * a lot, but it's implemented for correctness.
923  */
924 static void lge_jref(buf, size)
925 	caddr_t			buf;
926 	u_int			size;
927 {
928 	struct lge_softc	*sc;
929 	u_int64_t		**aptr;
930 	int		i;
931 
932 	/* Extract the softc struct pointer. */
933 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
934 	sc = (struct lge_softc *)(aptr[0]);
935 
936 	if (sc == NULL)
937 		panic("lge_jref: can't find softc pointer!");
938 
939 	if (size != LGE_MCLBYTES)
940 		panic("lge_jref: adjusting refcount of buf of wrong size!");
941 
942 	/* calculate the slot this buffer belongs to */
943 
944 	i = ((vm_offset_t)aptr
945 	     - (vm_offset_t)sc->lge_cdata.lge_jumbo_buf) / LGE_JLEN;
946 
947 	if ((i < 0) || (i >= LGE_JSLOTS))
948 		panic("lge_jref: asked to reference buffer "
949 		    "that we don't manage!");
950 	else if (sc->lge_cdata.lge_jslots[i].lge_inuse == 0)
951 		panic("lge_jref: buffer already free!");
952 	else
953 		sc->lge_cdata.lge_jslots[i].lge_inuse++;
954 
955 	return;
956 }
957 
958 /*
959  * Release a jumbo buffer.
960  */
961 static void lge_jfree(buf, size)
962 	caddr_t			buf;
963 	u_int			size;
964 {
965 	struct lge_softc	*sc;
966 	u_int64_t		**aptr;
967 	int		        i;
968 	struct lge_jpool_entry   *entry;
969 
970 	/* Extract the softc struct pointer. */
971 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
972 	sc = (struct lge_softc *)(aptr[0]);
973 
974 	if (sc == NULL)
975 		panic("lge_jfree: can't find softc pointer!");
976 
977 	if (size != LGE_MCLBYTES)
978 		panic("lge_jfree: freeing buffer of wrong size!");
979 
980 	/* calculate the slot this buffer belongs to */
981 	i = ((vm_offset_t)aptr
982 	     - (vm_offset_t)sc->lge_cdata.lge_jumbo_buf) / LGE_JLEN;
983 
984 	if ((i < 0) || (i >= LGE_JSLOTS))
985 		panic("lge_jfree: asked to free buffer that we don't manage!");
986 	else if (sc->lge_cdata.lge_jslots[i].lge_inuse == 0)
987 		panic("lge_jfree: buffer already free!");
988 	else {
989 		sc->lge_cdata.lge_jslots[i].lge_inuse--;
990 		if(sc->lge_cdata.lge_jslots[i].lge_inuse == 0) {
991 			entry = SLIST_FIRST(&sc->lge_jinuse_listhead);
992 			if (entry == NULL)
993 				panic("lge_jfree: buffer not in use!");
994 			entry->slot = i;
995 			SLIST_REMOVE_HEAD(&sc->lge_jinuse_listhead,
996 			    jpool_entries);
997 			SLIST_INSERT_HEAD(&sc->lge_jfree_listhead,
998 			    entry, jpool_entries);
999 		}
1000 	}
1001 
1002 	return;
1003 }
1004 
1005 /*
1006  * A frame has been uploaded: pass the resulting mbuf chain up to
1007  * the higher level protocols.
1008  */
1009 static void lge_rxeof(sc, cnt)
1010 	struct lge_softc	*sc;
1011 	int			cnt;
1012 {
1013         struct mbuf		*m;
1014         struct ifnet		*ifp;
1015 	struct lge_rx_desc	*cur_rx;
1016 	int			c, i, total_len = 0;
1017 	u_int32_t		rxsts, rxctl;
1018 
1019 	ifp = &sc->arpcom.ac_if;
1020 
1021 	/* Find out how many frames were processed. */
1022 	c = cnt;
1023 	i = sc->lge_cdata.lge_rx_cons;
1024 
1025 	/* Suck them in. */
1026 	while(c) {
1027 		struct mbuf		*m0 = NULL;
1028 
1029 		cur_rx = &sc->lge_ldata->lge_rx_list[i];
1030 		rxctl = cur_rx->lge_ctl;
1031 		rxsts = cur_rx->lge_sts;
1032 		m = cur_rx->lge_mbuf;
1033 		cur_rx->lge_mbuf = NULL;
1034 		total_len = LGE_RXBYTES(cur_rx);
1035 		LGE_INC(i, LGE_RX_LIST_CNT);
1036 		c--;
1037 
1038 		/*
1039 		 * If an error occurs, update stats, clear the
1040 		 * status word and leave the mbuf cluster in place:
1041 		 * it should simply get re-used next time this descriptor
1042 	 	 * comes up in the ring.
1043 		 */
1044 		if (rxctl & LGE_RXCTL_ERRMASK) {
1045 			ifp->if_ierrors++;
1046 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
1047 			continue;
1048 		}
1049 
1050 		if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) {
1051 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1052 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
1053 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
1054 			if (m0 == NULL) {
1055 				printf("lge%d: no receive buffers "
1056 				    "available -- packet dropped!\n",
1057 				    sc->lge_unit);
1058 				ifp->if_ierrors++;
1059 				continue;
1060 			}
1061 			m_adj(m0, ETHER_ALIGN);
1062 			m = m0;
1063 		} else {
1064 			m->m_pkthdr.rcvif = ifp;
1065 			m->m_pkthdr.len = m->m_len = total_len;
1066 		}
1067 
1068 		ifp->if_ipackets++;
1069 
1070 		/* Do IP checksum checking. */
1071 		if (rxsts & LGE_RXSTS_ISIP)
1072 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1073 		if (!(rxsts & LGE_RXSTS_IPCSUMERR))
1074 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1075 		if ((rxsts & LGE_RXSTS_ISTCP &&
1076 		    !(rxsts & LGE_RXSTS_TCPCSUMERR)) ||
1077 		    (rxsts & LGE_RXSTS_ISUDP &&
1078 		    !(rxsts & LGE_RXSTS_UDPCSUMERR))) {
1079 			m->m_pkthdr.csum_flags |=
1080 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1081 			m->m_pkthdr.csum_data = 0xffff;
1082 		}
1083 
1084 		(*ifp->if_input)(ifp, m);
1085 	}
1086 
1087 	sc->lge_cdata.lge_rx_cons = i;
1088 
1089 	return;
1090 }
1091 
1092 void lge_rxeoc(sc)
1093 	struct lge_softc	*sc;
1094 {
1095 	struct ifnet		*ifp;
1096 
1097 	ifp = &sc->arpcom.ac_if;
1098 	ifp->if_flags &= ~IFF_RUNNING;
1099 	lge_init(sc);
1100 	return;
1101 }
1102 
1103 /*
1104  * A frame was downloaded to the chip. It's safe for us to clean up
1105  * the list buffers.
1106  */
1107 
1108 static void lge_txeof(sc)
1109 	struct lge_softc	*sc;
1110 {
1111 	struct lge_tx_desc	*cur_tx = NULL;
1112 	struct ifnet		*ifp;
1113 	u_int32_t		idx, txdone;
1114 
1115 	ifp = &sc->arpcom.ac_if;
1116 
1117 	/* Clear the timeout timer. */
1118 	ifp->if_timer = 0;
1119 
1120 	/*
1121 	 * Go through our tx list and free mbufs for those
1122 	 * frames that have been transmitted.
1123 	 */
1124 	idx = sc->lge_cdata.lge_tx_cons;
1125 	txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT);
1126 
1127 	while (idx != sc->lge_cdata.lge_tx_prod && txdone) {
1128 		cur_tx = &sc->lge_ldata->lge_tx_list[idx];
1129 
1130 		ifp->if_opackets++;
1131 		if (cur_tx->lge_mbuf != NULL) {
1132 			m_freem(cur_tx->lge_mbuf);
1133 			cur_tx->lge_mbuf = NULL;
1134 		}
1135 		cur_tx->lge_ctl = 0;
1136 
1137 		txdone--;
1138 		LGE_INC(idx, LGE_TX_LIST_CNT);
1139 		ifp->if_timer = 0;
1140 	}
1141 
1142 	sc->lge_cdata.lge_tx_cons = idx;
1143 
1144 	if (cur_tx != NULL)
1145 		ifp->if_flags &= ~IFF_OACTIVE;
1146 
1147 	return;
1148 }
1149 
1150 static void lge_tick(xsc)
1151 	void			*xsc;
1152 {
1153 	struct lge_softc	*sc;
1154 	struct mii_data		*mii;
1155 	struct ifnet		*ifp;
1156 	int			s;
1157 
1158 	s = splimp();
1159 
1160 	sc = xsc;
1161 	ifp = &sc->arpcom.ac_if;
1162 
1163 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS);
1164 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1165 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS);
1166 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1167 
1168 	if (!sc->lge_link) {
1169 		mii = device_get_softc(sc->lge_miibus);
1170 		mii_tick(mii);
1171 		mii_pollstat(mii);
1172 		if (mii->mii_media_status & IFM_ACTIVE &&
1173 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1174 			sc->lge_link++;
1175 			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX||
1176 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_TX)
1177 				printf("lge%d: gigabit link up\n",
1178 				    sc->lge_unit);
1179 			if (ifp->if_snd.ifq_head != NULL)
1180 				lge_start(ifp);
1181 		}
1182 	}
1183 
1184 	sc->lge_stat_ch = timeout(lge_tick, sc, hz);
1185 
1186 	splx(s);
1187 
1188 	return;
1189 }
1190 
1191 static void lge_intr(arg)
1192 	void			*arg;
1193 {
1194 	struct lge_softc	*sc;
1195 	struct ifnet		*ifp;
1196 	u_int32_t		status;
1197 
1198 	sc = arg;
1199 	ifp = &sc->arpcom.ac_if;
1200 
1201 	/* Supress unwanted interrupts */
1202 	if (!(ifp->if_flags & IFF_UP)) {
1203 		lge_stop(sc);
1204 		return;
1205 	}
1206 
1207 	for (;;) {
1208 		/*
1209 		 * Reading the ISR register clears all interrupts, and
1210 		 * clears the 'interrupts enabled' bit in the IMR
1211 		 * register.
1212 		 */
1213 		status = CSR_READ_4(sc, LGE_ISR);
1214 
1215 		if ((status & LGE_INTRS) == 0)
1216 			break;
1217 
1218 		if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE)))
1219 			lge_txeof(sc);
1220 
1221 		if (status & LGE_ISR_RXDMA_DONE)
1222 			lge_rxeof(sc, LGE_RX_DMACNT(status));
1223 
1224 		if (status & LGE_ISR_RXCMDFIFO_EMPTY)
1225 			lge_rxeoc(sc);
1226 
1227 		if (status & LGE_ISR_PHY_INTR) {
1228 			sc->lge_link = 0;
1229 			untimeout(lge_tick, sc, sc->lge_stat_ch);
1230 			lge_tick(sc);
1231 		}
1232 	}
1233 
1234 	/* Re-enable interrupts. */
1235 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB);
1236 
1237 	if (ifp->if_snd.ifq_head != NULL)
1238 		lge_start(ifp);
1239 
1240 	return;
1241 }
1242 
1243 /*
1244  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1245  * pointers to the fragment pointers.
1246  */
1247 static int lge_encap(sc, m_head, txidx)
1248 	struct lge_softc	*sc;
1249 	struct mbuf		*m_head;
1250 	u_int32_t		*txidx;
1251 {
1252 	struct lge_frag		*f = NULL;
1253 	struct lge_tx_desc	*cur_tx;
1254 	struct mbuf		*m;
1255 	int			frag = 0, tot_len = 0;
1256 
1257 	/*
1258  	 * Start packing the mbufs in this chain into
1259 	 * the fragment pointers. Stop when we run out
1260  	 * of fragments or hit the end of the mbuf chain.
1261 	 */
1262 	m = m_head;
1263 	cur_tx = &sc->lge_ldata->lge_tx_list[*txidx];
1264 	frag = 0;
1265 
1266 	for (m = m_head; m != NULL; m = m->m_next) {
1267 		if (m->m_len != 0) {
1268 			tot_len += m->m_len;
1269 			f = &cur_tx->lge_frags[frag];
1270 			f->lge_fraglen = m->m_len;
1271 			f->lge_fragptr_lo = vtophys(mtod(m, vm_offset_t));
1272 			f->lge_fragptr_hi = 0;
1273 			frag++;
1274 		}
1275 	}
1276 
1277 	if (m != NULL)
1278 		return(ENOBUFS);
1279 
1280 	cur_tx->lge_mbuf = m_head;
1281 	cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len;
1282 	LGE_INC((*txidx), LGE_TX_LIST_CNT);
1283 
1284 	/* Queue for transmit */
1285 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, vtophys(cur_tx));
1286 
1287 	return(0);
1288 }
1289 
1290 /*
1291  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1292  * to the mbuf data regions directly in the transmit lists. We also save a
1293  * copy of the pointers since the transmit list fragment pointers are
1294  * physical addresses.
1295  */
1296 
1297 static void lge_start(ifp)
1298 	struct ifnet		*ifp;
1299 {
1300 	struct lge_softc	*sc;
1301 	struct mbuf		*m_head = NULL;
1302 	u_int32_t		idx;
1303 
1304 	sc = ifp->if_softc;
1305 
1306 	if (!sc->lge_link)
1307 		return;
1308 
1309 	idx = sc->lge_cdata.lge_tx_prod;
1310 
1311 	if (ifp->if_flags & IFF_OACTIVE)
1312 		return;
1313 
1314 	while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) {
1315 		if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0)
1316 			break;
1317 
1318 		IF_DEQUEUE(&ifp->if_snd, m_head);
1319 		if (m_head == NULL)
1320 			break;
1321 
1322 		if (lge_encap(sc, m_head, &idx)) {
1323 			IF_PREPEND(&ifp->if_snd, m_head);
1324 			ifp->if_flags |= IFF_OACTIVE;
1325 			break;
1326 		}
1327 
1328 		/*
1329 		 * If there's a BPF listener, bounce a copy of this frame
1330 		 * to him.
1331 		 */
1332 		if (ifp->if_bpf)
1333 			bpf_mtap(ifp, m_head);
1334 	}
1335 
1336 	sc->lge_cdata.lge_tx_prod = idx;
1337 
1338 	/*
1339 	 * Set a timeout in case the chip goes out to lunch.
1340 	 */
1341 	ifp->if_timer = 5;
1342 
1343 	return;
1344 }
1345 
1346 static void lge_init(xsc)
1347 	void			*xsc;
1348 {
1349 	struct lge_softc	*sc = xsc;
1350 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1351 	struct mii_data		*mii;
1352 	int			s;
1353 
1354 	if (ifp->if_flags & IFF_RUNNING)
1355 		return;
1356 
1357 	s = splimp();
1358 
1359 	/*
1360 	 * Cancel pending I/O and free all RX/TX buffers.
1361 	 */
1362 	lge_stop(sc);
1363 	lge_reset(sc);
1364 
1365 	mii = device_get_softc(sc->lge_miibus);
1366 
1367 	/* Set MAC address */
1368 	CSR_WRITE_4(sc, LGE_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1369 	CSR_WRITE_4(sc, LGE_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1370 
1371 	/* Init circular RX list. */
1372 	if (lge_list_rx_init(sc) == ENOBUFS) {
1373 		printf("lge%d: initialization failed: no "
1374 		    "memory for rx buffers\n", sc->lge_unit);
1375 		lge_stop(sc);
1376 		(void)splx(s);
1377 		return;
1378 	}
1379 
1380 	/*
1381 	 * Init tx descriptors.
1382 	 */
1383 	lge_list_tx_init(sc);
1384 
1385 	/* Set initial value for MODE1 register. */
1386 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST|
1387 	    LGE_MODE1_TX_CRC|LGE_MODE1_TXPAD|
1388 	    LGE_MODE1_RX_FLOWCTL|LGE_MODE1_SETRST_CTL0|
1389 	    LGE_MODE1_SETRST_CTL1|LGE_MODE1_SETRST_CTL2);
1390 
1391 	 /* If we want promiscuous mode, set the allframes bit. */
1392 	if (ifp->if_flags & IFF_PROMISC) {
1393 		CSR_WRITE_4(sc, LGE_MODE1,
1394 		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_PROMISC);
1395 	} else {
1396 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC);
1397 	}
1398 
1399 	/*
1400 	 * Set the capture broadcast bit to capture broadcast frames.
1401 	 */
1402 	if (ifp->if_flags & IFF_BROADCAST) {
1403 		CSR_WRITE_4(sc, LGE_MODE1,
1404 		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_BCAST);
1405 	} else {
1406 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST);
1407 	}
1408 
1409 	/* Packet padding workaround? */
1410 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD);
1411 
1412 	/* No error frames */
1413 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS);
1414 
1415 	/* Receive large frames */
1416 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_GIANTS);
1417 
1418 	/* Workaround: disable RX/TX flow control */
1419 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL);
1420 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL);
1421 
1422 	/* Make sure to strip CRC from received frames */
1423 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC);
1424 
1425 	/* Turn off magic packet mode */
1426 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB);
1427 
1428 	/* Turn off all VLAN stuff */
1429 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX|LGE_MODE1_VLAN_TX|
1430 	    LGE_MODE1_VLAN_STRIP|LGE_MODE1_VLAN_INSERT);
1431 
1432 	/* Workarond: FIFO overflow */
1433 	CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF);
1434 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT);
1435 
1436 	/*
1437 	 * Load the multicast filter.
1438 	 */
1439 	lge_setmulti(sc);
1440 
1441 	/*
1442 	 * Enable hardware checksum validation for all received IPv4
1443 	 * packets, do not reject packets with bad checksums.
1444 	 */
1445 	CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM|
1446 	    LGE_MODE2_RX_TCPCSUM|LGE_MODE2_RX_UDPCSUM|
1447 	    LGE_MODE2_RX_ERRCSUM);
1448 
1449 	/*
1450 	 * Enable the delivery of PHY interrupts based on
1451 	 * link/speed/duplex status chalges.
1452 	 */
1453 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_GMIIPOLL);
1454 
1455 	/* Enable receiver and transmitter. */
1456 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
1457 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_ENB);
1458 
1459 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0);
1460 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_TX_ENB);
1461 
1462 	/*
1463 	 * Enable interrupts.
1464 	 */
1465 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|
1466 	    LGE_IMR_SETRST_CTL1|LGE_IMR_INTR_ENB|LGE_INTRS);
1467 
1468 	lge_ifmedia_upd(ifp);
1469 
1470 	ifp->if_flags |= IFF_RUNNING;
1471 	ifp->if_flags &= ~IFF_OACTIVE;
1472 
1473 	(void)splx(s);
1474 
1475 	sc->lge_stat_ch = timeout(lge_tick, sc, hz);
1476 
1477 	return;
1478 }
1479 
1480 /*
1481  * Set media options.
1482  */
1483 static int lge_ifmedia_upd(ifp)
1484 	struct ifnet		*ifp;
1485 {
1486 	struct lge_softc	*sc;
1487 	struct mii_data		*mii;
1488 
1489 	sc = ifp->if_softc;
1490 
1491 	mii = device_get_softc(sc->lge_miibus);
1492 	sc->lge_link = 0;
1493 	if (mii->mii_instance) {
1494 		struct mii_softc	*miisc;
1495 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1496 		    miisc = LIST_NEXT(miisc, mii_list))
1497 			mii_phy_reset(miisc);
1498 	}
1499 	mii_mediachg(mii);
1500 
1501 	return(0);
1502 }
1503 
1504 /*
1505  * Report current media status.
1506  */
1507 static void lge_ifmedia_sts(ifp, ifmr)
1508 	struct ifnet		*ifp;
1509 	struct ifmediareq	*ifmr;
1510 {
1511 	struct lge_softc	*sc;
1512 	struct mii_data		*mii;
1513 
1514 	sc = ifp->if_softc;
1515 
1516 	mii = device_get_softc(sc->lge_miibus);
1517 	mii_pollstat(mii);
1518 	ifmr->ifm_active = mii->mii_media_active;
1519 	ifmr->ifm_status = mii->mii_media_status;
1520 
1521 	return;
1522 }
1523 
1524 static int lge_ioctl(ifp, command, data, cr)
1525 	struct ifnet		*ifp;
1526 	u_long			command;
1527 	caddr_t			data;
1528 	struct ucred		*cr;
1529 {
1530 	struct lge_softc	*sc = ifp->if_softc;
1531 	struct ifreq		*ifr = (struct ifreq *) data;
1532 	struct mii_data		*mii;
1533 	int			s, error = 0;
1534 
1535 	s = splimp();
1536 
1537 	switch(command) {
1538 	case SIOCSIFADDR:
1539 	case SIOCGIFADDR:
1540 		error = ether_ioctl(ifp, command, data);
1541 		break;
1542 	case SIOCSIFMTU:
1543 		if (ifr->ifr_mtu > LGE_JUMBO_MTU)
1544 			error = EINVAL;
1545 		else
1546 			ifp->if_mtu = ifr->ifr_mtu;
1547 		break;
1548 	case SIOCSIFFLAGS:
1549 		if (ifp->if_flags & IFF_UP) {
1550 			if (ifp->if_flags & IFF_RUNNING &&
1551 			    ifp->if_flags & IFF_PROMISC &&
1552 			    !(sc->lge_if_flags & IFF_PROMISC)) {
1553 				CSR_WRITE_4(sc, LGE_MODE1,
1554 				    LGE_MODE1_SETRST_CTL1|
1555 				    LGE_MODE1_RX_PROMISC);
1556 			} else if (ifp->if_flags & IFF_RUNNING &&
1557 			    !(ifp->if_flags & IFF_PROMISC) &&
1558 			    sc->lge_if_flags & IFF_PROMISC) {
1559 				CSR_WRITE_4(sc, LGE_MODE1,
1560 				    LGE_MODE1_RX_PROMISC);
1561 			} else {
1562 				ifp->if_flags &= ~IFF_RUNNING;
1563 				lge_init(sc);
1564 			}
1565 		} else {
1566 			if (ifp->if_flags & IFF_RUNNING)
1567 				lge_stop(sc);
1568 		}
1569 		sc->lge_if_flags = ifp->if_flags;
1570 		error = 0;
1571 		break;
1572 	case SIOCADDMULTI:
1573 	case SIOCDELMULTI:
1574 		lge_setmulti(sc);
1575 		error = 0;
1576 		break;
1577 	case SIOCGIFMEDIA:
1578 	case SIOCSIFMEDIA:
1579 		mii = device_get_softc(sc->lge_miibus);
1580 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1581 		break;
1582 	default:
1583 		error = EINVAL;
1584 		break;
1585 	}
1586 
1587 	(void)splx(s);
1588 
1589 	return(error);
1590 }
1591 
1592 static void lge_watchdog(ifp)
1593 	struct ifnet		*ifp;
1594 {
1595 	struct lge_softc	*sc;
1596 
1597 	sc = ifp->if_softc;
1598 
1599 	ifp->if_oerrors++;
1600 	printf("lge%d: watchdog timeout\n", sc->lge_unit);
1601 
1602 	lge_stop(sc);
1603 	lge_reset(sc);
1604 	ifp->if_flags &= ~IFF_RUNNING;
1605 	lge_init(sc);
1606 
1607 	if (ifp->if_snd.ifq_head != NULL)
1608 		lge_start(ifp);
1609 
1610 	return;
1611 }
1612 
1613 /*
1614  * Stop the adapter and free any mbufs allocated to the
1615  * RX and TX lists.
1616  */
1617 static void lge_stop(sc)
1618 	struct lge_softc	*sc;
1619 {
1620 	int		i;
1621 	struct ifnet		*ifp;
1622 
1623 	ifp = &sc->arpcom.ac_if;
1624 	ifp->if_timer = 0;
1625 	untimeout(lge_tick, sc, sc->lge_stat_ch);
1626 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB);
1627 
1628 	/* Disable receiver and transmitter. */
1629 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB);
1630 	sc->lge_link = 0;
1631 
1632 	/*
1633 	 * Free data in the RX lists.
1634 	 */
1635 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
1636 		if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) {
1637 			m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf);
1638 			sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL;
1639 		}
1640 	}
1641 	bzero((char *)&sc->lge_ldata->lge_rx_list,
1642 		sizeof(sc->lge_ldata->lge_rx_list));
1643 
1644 	/*
1645 	 * Free the TX list buffers.
1646 	 */
1647 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
1648 		if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) {
1649 			m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf);
1650 			sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL;
1651 		}
1652 	}
1653 
1654 	bzero((char *)&sc->lge_ldata->lge_tx_list,
1655 		sizeof(sc->lge_ldata->lge_tx_list));
1656 
1657 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1658 
1659 	return;
1660 }
1661 
1662 /*
1663  * Stop all chip I/O so that the kernel's probe routines don't
1664  * get confused by errant DMAs when rebooting.
1665  */
1666 static void lge_shutdown(dev)
1667 	device_t		dev;
1668 {
1669 	struct lge_softc	*sc;
1670 
1671 	sc = device_get_softc(dev);
1672 
1673 	lge_reset(sc);
1674 	lge_stop(sc);
1675 
1676 	return;
1677 }
1678