xref: /dragonfly/sys/dev/netif/lge/if_lge.c (revision f9a239ec)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <william.paul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/lge/if_lge.c,v 1.5.2.2 2001/12/14 19:49:23 jlemon Exp $
34  * $DragonFly: src/sys/dev/netif/lge/if_lge.c,v 1.16 2005/01/23 20:21:31 joerg Exp $
35  *
36  * $FreeBSD: src/sys/dev/lge/if_lge.c,v 1.5.2.2 2001/12/14 19:49:23 jlemon Exp $
37  */
38 
39 /*
40  * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public
41  * documentation not available, but ask me nicely.
42  *
43  * Written by Bill Paul <william.paul@windriver.com>
44  * Wind River Systems
45  */
46 
47 /*
48  * The Level 1 chip is used on some D-Link, SMC and Addtron NICs.
49  * It's a 64-bit PCI part that supports TCP/IP checksum offload,
50  * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There
51  * are three supported methods for data transfer between host and
52  * NIC: programmed I/O, traditional scatter/gather DMA and Packet
53  * Propulsion Technology (tm) DMA. The latter mechanism is a form
54  * of double buffer DMA where the packet data is copied to a
55  * pre-allocated DMA buffer who's physical address has been loaded
56  * into a table at device initialization time. The rationale is that
57  * the virtual to physical address translation needed for normal
58  * scatter/gather DMA is more expensive than the data copy needed
59  * for double buffering. This may be true in Windows NT and the like,
60  * but it isn't true for us, at least on the x86 arch. This driver
61  * uses the scatter/gather I/O method for both TX and RX.
62  *
63  * The LXT1001 only supports TCP/IP checksum offload on receive.
64  * Also, the VLAN tagging is done using a 16-entry table which allows
65  * the chip to perform hardware filtering based on VLAN tags. Sadly,
66  * our vlan support doesn't currently play well with this kind of
67  * hardware support.
68  *
69  * Special thanks to:
70  * - Jeff James at Intel, for arranging to have the LXT1001 manual
71  *   released (at long last)
72  * - Beny Chen at D-Link, for actually sending it to me
73  * - Brad Short and Keith Alexis at SMC, for sending me sample
74  *   SMC9462SX and SMC9462TX adapters for testing
75  * - Paul Saab at Y!, for not killing me (though it remains to be seen
76  *   if in fact he did me much of a favor)
77  */
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/sockio.h>
82 #include <sys/mbuf.h>
83 #include <sys/malloc.h>
84 #include <sys/kernel.h>
85 #include <sys/socket.h>
86 
87 #include <net/if.h>
88 #include <net/if_arp.h>
89 #include <net/ethernet.h>
90 #include <net/if_dl.h>
91 #include <net/if_media.h>
92 
93 #include <net/bpf.h>
94 
95 #include <vm/vm.h>              /* for vtophys */
96 #include <vm/pmap.h>            /* for vtophys */
97 #include <machine/clock.h>      /* for DELAY */
98 #include <machine/bus_pio.h>
99 #include <machine/bus_memio.h>
100 #include <machine/bus.h>
101 #include <machine/resource.h>
102 #include <sys/bus.h>
103 #include <sys/rman.h>
104 
105 #include "../mii_layer/mii.h"
106 #include "../mii_layer/miivar.h"
107 
108 #include <bus/pci/pcireg.h>
109 #include <bus/pci/pcivar.h>
110 
111 #define LGE_USEIOSPACE
112 
113 #include "if_lgereg.h"
114 
115 /* "controller miibus0" required.  See GENERIC if you get errors here. */
116 #include "miibus_if.h"
117 
118 /*
119  * Various supported device vendors/types and their names.
120  */
121 static struct lge_type lge_devs[] = {
122 	{ LGE_VENDORID, LGE_DEVICEID, "Level 1 Gigabit Ethernet" },
123 	{ 0, 0, NULL }
124 };
125 
126 static int lge_probe		(device_t);
127 static int lge_attach		(device_t);
128 static int lge_detach		(device_t);
129 
130 static int lge_alloc_jumbo_mem	(struct lge_softc *);
131 static void lge_free_jumbo_mem	(struct lge_softc *);
132 static void *lge_jalloc		(struct lge_softc *);
133 static void lge_jfree		(caddr_t, u_int);
134 static void lge_jref		(caddr_t, u_int);
135 
136 static int lge_newbuf		(struct lge_softc *,
137 					struct lge_rx_desc *,
138 					struct mbuf *);
139 static int lge_encap		(struct lge_softc *,
140 					struct mbuf *, u_int32_t *);
141 static void lge_rxeof		(struct lge_softc *, int);
142 static void lge_rxeoc		(struct lge_softc *);
143 static void lge_txeof		(struct lge_softc *);
144 static void lge_intr		(void *);
145 static void lge_tick		(void *);
146 static void lge_start		(struct ifnet *);
147 static int lge_ioctl		(struct ifnet *, u_long, caddr_t,
148 					struct ucred *);
149 static void lge_init		(void *);
150 static void lge_stop		(struct lge_softc *);
151 static void lge_watchdog		(struct ifnet *);
152 static void lge_shutdown		(device_t);
153 static int lge_ifmedia_upd	(struct ifnet *);
154 static void lge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
155 
156 static void lge_eeprom_getword	(struct lge_softc *, int, u_int16_t *);
157 static void lge_read_eeprom	(struct lge_softc *, caddr_t, int,
158 							int, int);
159 
160 static int lge_miibus_readreg	(device_t, int, int);
161 static int lge_miibus_writereg	(device_t, int, int, int);
162 static void lge_miibus_statchg	(device_t);
163 
164 static void lge_setmulti	(struct lge_softc *);
165 static u_int32_t lge_crc	(struct lge_softc *, caddr_t);
166 static void lge_reset		(struct lge_softc *);
167 static int lge_list_rx_init	(struct lge_softc *);
168 static int lge_list_tx_init	(struct lge_softc *);
169 
170 #ifdef LGE_USEIOSPACE
171 #define LGE_RES			SYS_RES_IOPORT
172 #define LGE_RID			LGE_PCI_LOIO
173 #else
174 #define LGE_RES			SYS_RES_MEMORY
175 #define LGE_RID			LGE_PCI_LOMEM
176 #endif
177 
178 static device_method_t lge_methods[] = {
179 	/* Device interface */
180 	DEVMETHOD(device_probe,		lge_probe),
181 	DEVMETHOD(device_attach,	lge_attach),
182 	DEVMETHOD(device_detach,	lge_detach),
183 	DEVMETHOD(device_shutdown,	lge_shutdown),
184 
185 	/* bus interface */
186 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
187 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
188 
189 	/* MII interface */
190 	DEVMETHOD(miibus_readreg,	lge_miibus_readreg),
191 	DEVMETHOD(miibus_writereg,	lge_miibus_writereg),
192 	DEVMETHOD(miibus_statchg,	lge_miibus_statchg),
193 
194 	{ 0, 0 }
195 };
196 
197 static driver_t lge_driver = {
198 	"lge",
199 	lge_methods,
200 	sizeof(struct lge_softc)
201 };
202 
203 static devclass_t lge_devclass;
204 
205 DECLARE_DUMMY_MODULE(if_lge);
206 DRIVER_MODULE(if_lge, pci, lge_driver, lge_devclass, 0, 0);
207 DRIVER_MODULE(miibus, lge, miibus_driver, miibus_devclass, 0, 0);
208 
209 #define LGE_SETBIT(sc, reg, x)				\
210 	CSR_WRITE_4(sc, reg,				\
211 		CSR_READ_4(sc, reg) | (x))
212 
213 #define LGE_CLRBIT(sc, reg, x)				\
214 	CSR_WRITE_4(sc, reg,				\
215 		CSR_READ_4(sc, reg) & ~(x))
216 
217 #define SIO_SET(x)					\
218 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | x)
219 
220 #define SIO_CLR(x)					\
221 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~x)
222 
223 /*
224  * Read a word of data stored in the EEPROM at address 'addr.'
225  */
226 static void lge_eeprom_getword(sc, addr, dest)
227 	struct lge_softc	*sc;
228 	int			addr;
229 	u_int16_t		*dest;
230 {
231 	int		i;
232 	u_int32_t		val;
233 
234 	CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ|
235 	    LGE_EECTL_SINGLEACCESS|((addr >> 1) << 8));
236 
237 	for (i = 0; i < LGE_TIMEOUT; i++)
238 		if (!(CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ))
239 			break;
240 
241 	if (i == LGE_TIMEOUT) {
242 		printf("lge%d: EEPROM read timed out\n", sc->lge_unit);
243 		return;
244 	}
245 
246 	val = CSR_READ_4(sc, LGE_EEDATA);
247 
248 	if (addr & 1)
249 		*dest = (val >> 16) & 0xFFFF;
250 	else
251 		*dest = val & 0xFFFF;
252 
253 	return;
254 }
255 
256 /*
257  * Read a sequence of words from the EEPROM.
258  */
259 static void lge_read_eeprom(sc, dest, off, cnt, swap)
260 	struct lge_softc	*sc;
261 	caddr_t			dest;
262 	int			off;
263 	int			cnt;
264 	int			swap;
265 {
266 	int			i;
267 	u_int16_t		word = 0, *ptr;
268 
269 	for (i = 0; i < cnt; i++) {
270 		lge_eeprom_getword(sc, off + i, &word);
271 		ptr = (u_int16_t *)(dest + (i * 2));
272 		if (swap)
273 			*ptr = ntohs(word);
274 		else
275 			*ptr = word;
276 	}
277 
278 	return;
279 }
280 
281 static int lge_miibus_readreg(dev, phy, reg)
282 	device_t		dev;
283 	int			phy, reg;
284 {
285 	struct lge_softc	*sc;
286 	int			i;
287 
288 	sc = device_get_softc(dev);
289 
290 	/*
291 	 * If we have a non-PCS PHY, pretend that the internal
292 	 * autoneg stuff at PHY address 0 isn't there so that
293 	 * the miibus code will find only the GMII PHY.
294 	 */
295 	if (sc->lge_pcs == 0 && phy == 0)
296 		return(0);
297 
298 	CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ);
299 
300 	for (i = 0; i < LGE_TIMEOUT; i++)
301 		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
302 			break;
303 
304 	if (i == LGE_TIMEOUT) {
305 		printf("lge%d: PHY read timed out\n", sc->lge_unit);
306 		return(0);
307 	}
308 
309 	return(CSR_READ_4(sc, LGE_GMIICTL) >> 16);
310 }
311 
312 static int lge_miibus_writereg(dev, phy, reg, data)
313 	device_t		dev;
314 	int			phy, reg, data;
315 {
316 	struct lge_softc	*sc;
317 	int			i;
318 
319 	sc = device_get_softc(dev);
320 
321 	CSR_WRITE_4(sc, LGE_GMIICTL,
322 	    (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE);
323 
324 	for (i = 0; i < LGE_TIMEOUT; i++)
325 		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
326 			break;
327 
328 	if (i == LGE_TIMEOUT) {
329 		printf("lge%d: PHY write timed out\n", sc->lge_unit);
330 		return(0);
331 	}
332 
333 	return(0);
334 }
335 
336 static void lge_miibus_statchg(dev)
337 	device_t		dev;
338 {
339 	struct lge_softc	*sc;
340 	struct mii_data		*mii;
341 
342 	sc = device_get_softc(dev);
343 	mii = device_get_softc(sc->lge_miibus);
344 
345 	LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED);
346 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
347 	case IFM_1000_TX:
348 	case IFM_1000_SX:
349 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
350 		break;
351 	case IFM_100_TX:
352 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100);
353 		break;
354 	case IFM_10_T:
355 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10);
356 		break;
357 	default:
358 		/*
359 		 * Choose something, even if it's wrong. Clearing
360 		 * all the bits will hose autoneg on the internal
361 		 * PHY.
362 		 */
363 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
364 		break;
365 	}
366 
367 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
368 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
369 	} else {
370 		LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
371 	}
372 
373 	return;
374 }
375 
376 static u_int32_t lge_crc(sc, addr)
377 	struct lge_softc	*sc;
378 	caddr_t			addr;
379 {
380 	u_int32_t		crc, carry;
381 	int			i, j;
382 	u_int8_t		c;
383 
384 	/* Compute CRC for the address value. */
385 	crc = 0xFFFFFFFF; /* initial value */
386 
387 	for (i = 0; i < 6; i++) {
388 		c = *(addr + i);
389 		for (j = 0; j < 8; j++) {
390 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
391 			crc <<= 1;
392 			c >>= 1;
393 			if (carry)
394 				crc = (crc ^ 0x04c11db6) | carry;
395 		}
396 	}
397 
398 	/*
399 	 * return the filter bit position
400 	 */
401 	return((crc >> 26) & 0x0000003F);
402 }
403 
404 static void lge_setmulti(sc)
405 	struct lge_softc	*sc;
406 {
407 	struct ifnet		*ifp;
408 	struct ifmultiaddr	*ifma;
409 	u_int32_t		h = 0, hashes[2] = { 0, 0 };
410 
411 	ifp = &sc->arpcom.ac_if;
412 
413 	/* Make sure multicast hash table is enabled. */
414 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_MCAST);
415 
416 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
417 		CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF);
418 		CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF);
419 		return;
420 	}
421 
422 	/* first, zot all the existing hash bits */
423 	CSR_WRITE_4(sc, LGE_MAR0, 0);
424 	CSR_WRITE_4(sc, LGE_MAR1, 0);
425 
426 	/* now program new ones */
427 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
428 	    ifma = ifma->ifma_link.le_next) {
429 		if (ifma->ifma_addr->sa_family != AF_LINK)
430 			continue;
431 		h = lge_crc(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
432 		if (h < 32)
433 			hashes[0] |= (1 << h);
434 		else
435 			hashes[1] |= (1 << (h - 32));
436 	}
437 
438 	CSR_WRITE_4(sc, LGE_MAR0, hashes[0]);
439 	CSR_WRITE_4(sc, LGE_MAR1, hashes[1]);
440 
441 	return;
442 }
443 
444 static void lge_reset(sc)
445 	struct lge_softc	*sc;
446 {
447 	int		i;
448 
449 	LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_SOFTRST);
450 
451 	for (i = 0; i < LGE_TIMEOUT; i++) {
452 		if (!(CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST))
453 			break;
454 	}
455 
456 	if (i == LGE_TIMEOUT)
457 		printf("lge%d: reset never completed\n", sc->lge_unit);
458 
459 	/* Wait a little while for the chip to get its brains in order. */
460 	DELAY(1000);
461 
462         return;
463 }
464 
465 /*
466  * Probe for a Level 1 chip. Check the PCI vendor and device
467  * IDs against our list and return a device name if we find a match.
468  */
469 static int lge_probe(dev)
470 	device_t		dev;
471 {
472 	struct lge_type		*t;
473 
474 	t = lge_devs;
475 
476 	while(t->lge_name != NULL) {
477 		if ((pci_get_vendor(dev) == t->lge_vid) &&
478 		    (pci_get_device(dev) == t->lge_did)) {
479 			device_set_desc(dev, t->lge_name);
480 			return(0);
481 		}
482 		t++;
483 	}
484 
485 	return(ENXIO);
486 }
487 
488 /*
489  * Attach the interface. Allocate softc structures, do ifmedia
490  * setup and ethernet/BPF attach.
491  */
492 static int lge_attach(dev)
493 	device_t		dev;
494 {
495 	int			s;
496 	u_char			eaddr[ETHER_ADDR_LEN];
497 	u_int32_t		command;
498 	struct lge_softc	*sc;
499 	struct ifnet		*ifp;
500 	int			unit, error = 0, rid;
501 
502 	s = splimp();
503 
504 	sc = device_get_softc(dev);
505 	unit = device_get_unit(dev);
506 	bzero(sc, sizeof(struct lge_softc));
507 	callout_init(&sc->lge_stat_timer);
508 
509 	/*
510 	 * Handle power management nonsense.
511 	 */
512 	command = pci_read_config(dev, LGE_PCI_CAPID, 4) & 0x000000FF;
513 	if (command == 0x01) {
514 
515 		command = pci_read_config(dev, LGE_PCI_PWRMGMTCTRL, 4);
516 		if (command & LGE_PSTATE_MASK) {
517 			u_int32_t		iobase, membase, irq;
518 
519 			/* Save important PCI config data. */
520 			iobase = pci_read_config(dev, LGE_PCI_LOIO, 4);
521 			membase = pci_read_config(dev, LGE_PCI_LOMEM, 4);
522 			irq = pci_read_config(dev, LGE_PCI_INTLINE, 4);
523 
524 			/* Reset the power state. */
525 			printf("lge%d: chip is in D%d power mode "
526 			"-- setting to D0\n", unit, command & LGE_PSTATE_MASK);
527 			command &= 0xFFFFFFFC;
528 			pci_write_config(dev, LGE_PCI_PWRMGMTCTRL, command, 4);
529 
530 			/* Restore PCI config data. */
531 			pci_write_config(dev, LGE_PCI_LOIO, iobase, 4);
532 			pci_write_config(dev, LGE_PCI_LOMEM, membase, 4);
533 			pci_write_config(dev, LGE_PCI_INTLINE, irq, 4);
534 		}
535 	}
536 
537 	/*
538 	 * Map control/status registers.
539 	 */
540 	command = pci_read_config(dev, PCIR_COMMAND, 4);
541 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
542 	pci_write_config(dev, PCIR_COMMAND, command, 4);
543 	command = pci_read_config(dev, PCIR_COMMAND, 4);
544 
545 #ifdef LGE_USEIOSPACE
546 	if (!(command & PCIM_CMD_PORTEN)) {
547 		printf("lge%d: failed to enable I/O ports!\n", unit);
548 		error = ENXIO;;
549 		goto fail;
550 	}
551 #else
552 	if (!(command & PCIM_CMD_MEMEN)) {
553 		printf("lge%d: failed to enable memory mapping!\n", unit);
554 		error = ENXIO;;
555 		goto fail;
556 	}
557 #endif
558 
559 	rid = LGE_RID;
560 	sc->lge_res = bus_alloc_resource(dev, LGE_RES, &rid,
561 	    0, ~0, 1, RF_ACTIVE);
562 
563 	if (sc->lge_res == NULL) {
564 		printf("lge%d: couldn't map ports/memory\n", unit);
565 		error = ENXIO;
566 		goto fail;
567 	}
568 
569 	sc->lge_btag = rman_get_bustag(sc->lge_res);
570 	sc->lge_bhandle = rman_get_bushandle(sc->lge_res);
571 
572 	/* Allocate interrupt */
573 	rid = 0;
574 	sc->lge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
575 	    RF_SHAREABLE | RF_ACTIVE);
576 
577 	if (sc->lge_irq == NULL) {
578 		printf("lge%d: couldn't map interrupt\n", unit);
579 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
580 		error = ENXIO;
581 		goto fail;
582 	}
583 
584 	error = bus_setup_intr(dev, sc->lge_irq, INTR_TYPE_NET,
585 	    lge_intr, sc, &sc->lge_intrhand);
586 
587 	if (error) {
588 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
589 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
590 		printf("lge%d: couldn't set up irq\n", unit);
591 		goto fail;
592 	}
593 
594 	/* Reset the adapter. */
595 	lge_reset(sc);
596 
597 	/*
598 	 * Get station address from the EEPROM.
599 	 */
600 	lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1, 0);
601 	lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1, 0);
602 	lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1, 0);
603 
604 	sc->lge_unit = unit;
605 
606 	sc->lge_ldata = contigmalloc(sizeof(struct lge_list_data), M_DEVBUF,
607 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
608 
609 	if (sc->lge_ldata == NULL) {
610 		printf("lge%d: no memory for list buffers!\n", unit);
611 		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
612 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
613 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
614 		error = ENXIO;
615 		goto fail;
616 	}
617 	bzero(sc->lge_ldata, sizeof(struct lge_list_data));
618 
619 	/* Try to allocate memory for jumbo buffers. */
620 	if (lge_alloc_jumbo_mem(sc)) {
621 		printf("lge%d: jumbo buffer allocation failed\n",
622                     sc->lge_unit);
623 		contigfree(sc->lge_ldata,
624 		    sizeof(struct lge_list_data), M_DEVBUF);
625 		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
626 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
627 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
628 		error = ENXIO;
629 		goto fail;
630 	}
631 
632 	ifp = &sc->arpcom.ac_if;
633 	ifp->if_softc = sc;
634 	if_initname(ifp, "lge", unit);
635 	ifp->if_mtu = ETHERMTU;
636 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
637 	ifp->if_ioctl = lge_ioctl;
638 	ifp->if_start = lge_start;
639 	ifp->if_watchdog = lge_watchdog;
640 	ifp->if_init = lge_init;
641 	ifp->if_baudrate = 1000000000;
642 	ifp->if_snd.ifq_maxlen = LGE_TX_LIST_CNT - 1;
643 	ifp->if_capabilities = IFCAP_RXCSUM;
644 	ifp->if_capenable = ifp->if_capabilities;
645 
646 	if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH)
647 		sc->lge_pcs = 1;
648 	else
649 		sc->lge_pcs = 0;
650 
651 	/*
652 	 * Do MII setup.
653 	 */
654 	if (mii_phy_probe(dev, &sc->lge_miibus,
655 	    lge_ifmedia_upd, lge_ifmedia_sts)) {
656 		printf("lge%d: MII without any PHY!\n", sc->lge_unit);
657 		contigfree(sc->lge_ldata,
658 		    sizeof(struct lge_list_data), M_DEVBUF);
659 		lge_free_jumbo_mem(sc);
660 		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
661 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
662 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
663 		error = ENXIO;
664 		goto fail;
665 	}
666 
667 	/*
668 	 * Call MI attach routine.
669 	 */
670 	ether_ifattach(ifp, eaddr);
671 
672 fail:
673 	splx(s);
674 	return(error);
675 }
676 
677 static int lge_detach(dev)
678 	device_t		dev;
679 {
680 	struct lge_softc	*sc;
681 	struct ifnet		*ifp;
682 	int			s;
683 
684 	s = splimp();
685 
686 	sc = device_get_softc(dev);
687 	ifp = &sc->arpcom.ac_if;
688 
689 	lge_reset(sc);
690 	lge_stop(sc);
691 	ether_ifdetach(ifp);
692 
693 	bus_generic_detach(dev);
694 	device_delete_child(dev, sc->lge_miibus);
695 
696 	bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
697 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
698 	bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
699 
700 	contigfree(sc->lge_ldata, sizeof(struct lge_list_data), M_DEVBUF);
701 	lge_free_jumbo_mem(sc);
702 
703 	splx(s);
704 
705 	return(0);
706 }
707 
708 /*
709  * Initialize the transmit descriptors.
710  */
711 static int lge_list_tx_init(sc)
712 	struct lge_softc	*sc;
713 {
714 	struct lge_list_data	*ld;
715 	struct lge_ring_data	*cd;
716 	int			i;
717 
718 	cd = &sc->lge_cdata;
719 	ld = sc->lge_ldata;
720 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
721 		ld->lge_tx_list[i].lge_mbuf = NULL;
722 		ld->lge_tx_list[i].lge_ctl = 0;
723 	}
724 
725 	cd->lge_tx_prod = cd->lge_tx_cons = 0;
726 
727 	return(0);
728 }
729 
730 
731 /*
732  * Initialize the RX descriptors and allocate mbufs for them. Note that
733  * we arralge the descriptors in a closed ring, so that the last descriptor
734  * points back to the first.
735  */
736 static int lge_list_rx_init(sc)
737 	struct lge_softc	*sc;
738 {
739 	struct lge_list_data	*ld;
740 	struct lge_ring_data	*cd;
741 	int			i;
742 
743 	ld = sc->lge_ldata;
744 	cd = &sc->lge_cdata;
745 
746 	cd->lge_rx_prod = cd->lge_rx_cons = 0;
747 
748 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
749 
750 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
751 		if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0)
752 			break;
753 		if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS)
754 			return(ENOBUFS);
755 	}
756 
757 	/* Clear possible 'rx command queue empty' interrupt. */
758 	CSR_READ_4(sc, LGE_ISR);
759 
760 	return(0);
761 }
762 
763 /*
764  * Initialize an RX descriptor and attach an MBUF cluster.
765  */
766 static int lge_newbuf(sc, c, m)
767 	struct lge_softc	*sc;
768 	struct lge_rx_desc	*c;
769 	struct mbuf		*m;
770 {
771 	struct mbuf		*m_new = NULL;
772 	caddr_t			*buf = NULL;
773 
774 	if (m == NULL) {
775 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
776 		if (m_new == NULL) {
777 			printf("lge%d: no memory for rx list "
778 			    "-- packet dropped!\n", sc->lge_unit);
779 			return(ENOBUFS);
780 		}
781 
782 		/* Allocate the jumbo buffer */
783 		buf = lge_jalloc(sc);
784 		if (buf == NULL) {
785 #ifdef LGE_VERBOSE
786 			printf("lge%d: jumbo allocation failed "
787 			    "-- packet dropped!\n", sc->lge_unit);
788 #endif
789 			m_freem(m_new);
790 			return(ENOBUFS);
791 		}
792 		/* Attach the buffer to the mbuf */
793 		m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
794 		m_new->m_flags |= M_EXT | M_EXT_OLD;
795 		m_new->m_ext.ext_size = m_new->m_pkthdr.len =
796 		    m_new->m_len = LGE_MCLBYTES;
797 		m_new->m_ext.ext_nfree.old = lge_jfree;
798 		m_new->m_ext.ext_nref.old = lge_jref;
799 	} else {
800 		m_new = m;
801 		m_new->m_len = m_new->m_pkthdr.len = LGE_MCLBYTES;
802 		m_new->m_data = m_new->m_ext.ext_buf;
803 	}
804 
805 	/*
806 	 * Adjust alignment so packet payload begins on a
807 	 * longword boundary. Mandatory for Alpha, useful on
808 	 * x86 too.
809 	*/
810 	m_adj(m_new, ETHER_ALIGN);
811 
812 	c->lge_mbuf = m_new;
813 	c->lge_fragptr_hi = 0;
814 	c->lge_fragptr_lo = vtophys(mtod(m_new, caddr_t));
815 	c->lge_fraglen = m_new->m_len;
816 	c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1);
817 	c->lge_sts = 0;
818 
819 	/*
820 	 * Put this buffer in the RX command FIFO. To do this,
821 	 * we just write the physical address of the descriptor
822 	 * into the RX descriptor address registers. Note that
823 	 * there are two registers, one high DWORD and one low
824 	 * DWORD, which lets us specify a 64-bit address if
825 	 * desired. We only use a 32-bit address for now.
826 	 * Writing to the low DWORD register is what actually
827 	 * causes the command to be issued, so we do that
828 	 * last.
829 	 */
830 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, vtophys(c));
831 	LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT);
832 
833 	return(0);
834 }
835 
836 static int lge_alloc_jumbo_mem(sc)
837 	struct lge_softc	*sc;
838 {
839 	caddr_t			ptr;
840 	int		i;
841 	struct lge_jpool_entry   *entry;
842 
843 	/* Grab a big chunk o' storage. */
844 	sc->lge_cdata.lge_jumbo_buf = contigmalloc(LGE_JMEM, M_DEVBUF,
845 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
846 
847 	if (sc->lge_cdata.lge_jumbo_buf == NULL) {
848 		printf("lge%d: no memory for jumbo buffers!\n", sc->lge_unit);
849 		return(ENOBUFS);
850 	}
851 
852 	SLIST_INIT(&sc->lge_jfree_listhead);
853 	SLIST_INIT(&sc->lge_jinuse_listhead);
854 
855 	/*
856 	 * Now divide it up into 9K pieces and save the addresses
857 	 * in an array.
858 	 */
859 	ptr = sc->lge_cdata.lge_jumbo_buf;
860 	for (i = 0; i < LGE_JSLOTS; i++) {
861 		u_int64_t		**aptr;
862 		aptr = (u_int64_t **)ptr;
863 		aptr[0] = (u_int64_t *)sc;
864 		ptr += sizeof(u_int64_t);
865 		sc->lge_cdata.lge_jslots[i].lge_buf = ptr;
866 		sc->lge_cdata.lge_jslots[i].lge_inuse = 0;
867 		ptr += LGE_MCLBYTES;
868 		entry = malloc(sizeof(struct lge_jpool_entry),
869 		    M_DEVBUF, M_WAITOK);
870 		entry->slot = i;
871 		SLIST_INSERT_HEAD(&sc->lge_jfree_listhead,
872 		    entry, jpool_entries);
873 	}
874 
875 	return(0);
876 }
877 
878 static void lge_free_jumbo_mem(sc)
879 	struct lge_softc	*sc;
880 {
881 	int			i;
882 	struct lge_jpool_entry	*entry;
883 
884 	for (i = 0; i < LGE_JSLOTS; i++) {
885 		entry = SLIST_FIRST(&sc->lge_jfree_listhead);
886 		SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
887 		free(entry, M_DEVBUF);
888 	}
889 
890 	contigfree(sc->lge_cdata.lge_jumbo_buf, LGE_JMEM, M_DEVBUF);
891 
892 	return;
893 }
894 
895 /*
896  * Allocate a jumbo buffer.
897  */
898 static void *lge_jalloc(sc)
899 	struct lge_softc	*sc;
900 {
901 	struct lge_jpool_entry   *entry;
902 
903 	entry = SLIST_FIRST(&sc->lge_jfree_listhead);
904 
905 	if (entry == NULL) {
906 #ifdef LGE_VERBOSE
907 		printf("lge%d: no free jumbo buffers\n", sc->lge_unit);
908 #endif
909 		return(NULL);
910 	}
911 
912 	SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
913 	SLIST_INSERT_HEAD(&sc->lge_jinuse_listhead, entry, jpool_entries);
914 	sc->lge_cdata.lge_jslots[entry->slot].lge_inuse = 1;
915 	return(sc->lge_cdata.lge_jslots[entry->slot].lge_buf);
916 }
917 
918 /*
919  * Adjust usage count on a jumbo buffer. In general this doesn't
920  * get used much because our jumbo buffers don't get passed around
921  * a lot, but it's implemented for correctness.
922  */
923 static void lge_jref(buf, size)
924 	caddr_t			buf;
925 	u_int			size;
926 {
927 	struct lge_softc	*sc;
928 	u_int64_t		**aptr;
929 	int		i;
930 
931 	/* Extract the softc struct pointer. */
932 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
933 	sc = (struct lge_softc *)(aptr[0]);
934 
935 	if (sc == NULL)
936 		panic("lge_jref: can't find softc pointer!");
937 
938 	if (size != LGE_MCLBYTES)
939 		panic("lge_jref: adjusting refcount of buf of wrong size!");
940 
941 	/* calculate the slot this buffer belongs to */
942 
943 	i = ((vm_offset_t)aptr
944 	     - (vm_offset_t)sc->lge_cdata.lge_jumbo_buf) / LGE_JLEN;
945 
946 	if ((i < 0) || (i >= LGE_JSLOTS))
947 		panic("lge_jref: asked to reference buffer "
948 		    "that we don't manage!");
949 	else if (sc->lge_cdata.lge_jslots[i].lge_inuse == 0)
950 		panic("lge_jref: buffer already free!");
951 	else
952 		sc->lge_cdata.lge_jslots[i].lge_inuse++;
953 
954 	return;
955 }
956 
957 /*
958  * Release a jumbo buffer.
959  */
960 static void lge_jfree(buf, size)
961 	caddr_t			buf;
962 	u_int			size;
963 {
964 	struct lge_softc	*sc;
965 	u_int64_t		**aptr;
966 	int		        i;
967 	struct lge_jpool_entry   *entry;
968 
969 	/* Extract the softc struct pointer. */
970 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
971 	sc = (struct lge_softc *)(aptr[0]);
972 
973 	if (sc == NULL)
974 		panic("lge_jfree: can't find softc pointer!");
975 
976 	if (size != LGE_MCLBYTES)
977 		panic("lge_jfree: freeing buffer of wrong size!");
978 
979 	/* calculate the slot this buffer belongs to */
980 	i = ((vm_offset_t)aptr
981 	     - (vm_offset_t)sc->lge_cdata.lge_jumbo_buf) / LGE_JLEN;
982 
983 	if ((i < 0) || (i >= LGE_JSLOTS))
984 		panic("lge_jfree: asked to free buffer that we don't manage!");
985 	else if (sc->lge_cdata.lge_jslots[i].lge_inuse == 0)
986 		panic("lge_jfree: buffer already free!");
987 	else {
988 		sc->lge_cdata.lge_jslots[i].lge_inuse--;
989 		if(sc->lge_cdata.lge_jslots[i].lge_inuse == 0) {
990 			entry = SLIST_FIRST(&sc->lge_jinuse_listhead);
991 			if (entry == NULL)
992 				panic("lge_jfree: buffer not in use!");
993 			entry->slot = i;
994 			SLIST_REMOVE_HEAD(&sc->lge_jinuse_listhead,
995 			    jpool_entries);
996 			SLIST_INSERT_HEAD(&sc->lge_jfree_listhead,
997 			    entry, jpool_entries);
998 		}
999 	}
1000 
1001 	return;
1002 }
1003 
1004 /*
1005  * A frame has been uploaded: pass the resulting mbuf chain up to
1006  * the higher level protocols.
1007  */
1008 static void lge_rxeof(sc, cnt)
1009 	struct lge_softc	*sc;
1010 	int			cnt;
1011 {
1012         struct mbuf		*m;
1013         struct ifnet		*ifp;
1014 	struct lge_rx_desc	*cur_rx;
1015 	int			c, i, total_len = 0;
1016 	u_int32_t		rxsts, rxctl;
1017 
1018 	ifp = &sc->arpcom.ac_if;
1019 
1020 	/* Find out how many frames were processed. */
1021 	c = cnt;
1022 	i = sc->lge_cdata.lge_rx_cons;
1023 
1024 	/* Suck them in. */
1025 	while(c) {
1026 		struct mbuf		*m0 = NULL;
1027 
1028 		cur_rx = &sc->lge_ldata->lge_rx_list[i];
1029 		rxctl = cur_rx->lge_ctl;
1030 		rxsts = cur_rx->lge_sts;
1031 		m = cur_rx->lge_mbuf;
1032 		cur_rx->lge_mbuf = NULL;
1033 		total_len = LGE_RXBYTES(cur_rx);
1034 		LGE_INC(i, LGE_RX_LIST_CNT);
1035 		c--;
1036 
1037 		/*
1038 		 * If an error occurs, update stats, clear the
1039 		 * status word and leave the mbuf cluster in place:
1040 		 * it should simply get re-used next time this descriptor
1041 	 	 * comes up in the ring.
1042 		 */
1043 		if (rxctl & LGE_RXCTL_ERRMASK) {
1044 			ifp->if_ierrors++;
1045 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
1046 			continue;
1047 		}
1048 
1049 		if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) {
1050 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1051 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
1052 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
1053 			if (m0 == NULL) {
1054 				printf("lge%d: no receive buffers "
1055 				    "available -- packet dropped!\n",
1056 				    sc->lge_unit);
1057 				ifp->if_ierrors++;
1058 				continue;
1059 			}
1060 			m_adj(m0, ETHER_ALIGN);
1061 			m = m0;
1062 		} else {
1063 			m->m_pkthdr.rcvif = ifp;
1064 			m->m_pkthdr.len = m->m_len = total_len;
1065 		}
1066 
1067 		ifp->if_ipackets++;
1068 
1069 		/* Do IP checksum checking. */
1070 		if (rxsts & LGE_RXSTS_ISIP)
1071 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1072 		if (!(rxsts & LGE_RXSTS_IPCSUMERR))
1073 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1074 		if ((rxsts & LGE_RXSTS_ISTCP &&
1075 		    !(rxsts & LGE_RXSTS_TCPCSUMERR)) ||
1076 		    (rxsts & LGE_RXSTS_ISUDP &&
1077 		    !(rxsts & LGE_RXSTS_UDPCSUMERR))) {
1078 			m->m_pkthdr.csum_flags |=
1079 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1080 			m->m_pkthdr.csum_data = 0xffff;
1081 		}
1082 
1083 		(*ifp->if_input)(ifp, m);
1084 	}
1085 
1086 	sc->lge_cdata.lge_rx_cons = i;
1087 
1088 	return;
1089 }
1090 
1091 void lge_rxeoc(sc)
1092 	struct lge_softc	*sc;
1093 {
1094 	struct ifnet		*ifp;
1095 
1096 	ifp = &sc->arpcom.ac_if;
1097 	ifp->if_flags &= ~IFF_RUNNING;
1098 	lge_init(sc);
1099 	return;
1100 }
1101 
1102 /*
1103  * A frame was downloaded to the chip. It's safe for us to clean up
1104  * the list buffers.
1105  */
1106 
1107 static void lge_txeof(sc)
1108 	struct lge_softc	*sc;
1109 {
1110 	struct lge_tx_desc	*cur_tx = NULL;
1111 	struct ifnet		*ifp;
1112 	u_int32_t		idx, txdone;
1113 
1114 	ifp = &sc->arpcom.ac_if;
1115 
1116 	/* Clear the timeout timer. */
1117 	ifp->if_timer = 0;
1118 
1119 	/*
1120 	 * Go through our tx list and free mbufs for those
1121 	 * frames that have been transmitted.
1122 	 */
1123 	idx = sc->lge_cdata.lge_tx_cons;
1124 	txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT);
1125 
1126 	while (idx != sc->lge_cdata.lge_tx_prod && txdone) {
1127 		cur_tx = &sc->lge_ldata->lge_tx_list[idx];
1128 
1129 		ifp->if_opackets++;
1130 		if (cur_tx->lge_mbuf != NULL) {
1131 			m_freem(cur_tx->lge_mbuf);
1132 			cur_tx->lge_mbuf = NULL;
1133 		}
1134 		cur_tx->lge_ctl = 0;
1135 
1136 		txdone--;
1137 		LGE_INC(idx, LGE_TX_LIST_CNT);
1138 		ifp->if_timer = 0;
1139 	}
1140 
1141 	sc->lge_cdata.lge_tx_cons = idx;
1142 
1143 	if (cur_tx != NULL)
1144 		ifp->if_flags &= ~IFF_OACTIVE;
1145 
1146 	return;
1147 }
1148 
1149 static void lge_tick(xsc)
1150 	void			*xsc;
1151 {
1152 	struct lge_softc	*sc;
1153 	struct mii_data		*mii;
1154 	struct ifnet		*ifp;
1155 	int			s;
1156 
1157 	s = splimp();
1158 
1159 	sc = xsc;
1160 	ifp = &sc->arpcom.ac_if;
1161 
1162 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS);
1163 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1164 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS);
1165 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1166 
1167 	if (!sc->lge_link) {
1168 		mii = device_get_softc(sc->lge_miibus);
1169 		mii_tick(mii);
1170 		mii_pollstat(mii);
1171 		if (mii->mii_media_status & IFM_ACTIVE &&
1172 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1173 			sc->lge_link++;
1174 			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX||
1175 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_TX)
1176 				printf("lge%d: gigabit link up\n",
1177 				    sc->lge_unit);
1178 			if (ifp->if_snd.ifq_head != NULL)
1179 				lge_start(ifp);
1180 		}
1181 	}
1182 
1183 	callout_reset(&sc->lge_stat_timer, hz, lge_tick, sc);
1184 
1185 	splx(s);
1186 
1187 	return;
1188 }
1189 
1190 static void lge_intr(arg)
1191 	void			*arg;
1192 {
1193 	struct lge_softc	*sc;
1194 	struct ifnet		*ifp;
1195 	u_int32_t		status;
1196 
1197 	sc = arg;
1198 	ifp = &sc->arpcom.ac_if;
1199 
1200 	/* Supress unwanted interrupts */
1201 	if (!(ifp->if_flags & IFF_UP)) {
1202 		lge_stop(sc);
1203 		return;
1204 	}
1205 
1206 	for (;;) {
1207 		/*
1208 		 * Reading the ISR register clears all interrupts, and
1209 		 * clears the 'interrupts enabled' bit in the IMR
1210 		 * register.
1211 		 */
1212 		status = CSR_READ_4(sc, LGE_ISR);
1213 
1214 		if ((status & LGE_INTRS) == 0)
1215 			break;
1216 
1217 		if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE)))
1218 			lge_txeof(sc);
1219 
1220 		if (status & LGE_ISR_RXDMA_DONE)
1221 			lge_rxeof(sc, LGE_RX_DMACNT(status));
1222 
1223 		if (status & LGE_ISR_RXCMDFIFO_EMPTY)
1224 			lge_rxeoc(sc);
1225 
1226 		if (status & LGE_ISR_PHY_INTR) {
1227 			sc->lge_link = 0;
1228 			callout_stop(&sc->lge_stat_timer);
1229 			lge_tick(sc);
1230 		}
1231 	}
1232 
1233 	/* Re-enable interrupts. */
1234 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB);
1235 
1236 	if (ifp->if_snd.ifq_head != NULL)
1237 		lge_start(ifp);
1238 
1239 	return;
1240 }
1241 
1242 /*
1243  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1244  * pointers to the fragment pointers.
1245  */
1246 static int lge_encap(sc, m_head, txidx)
1247 	struct lge_softc	*sc;
1248 	struct mbuf		*m_head;
1249 	u_int32_t		*txidx;
1250 {
1251 	struct lge_frag		*f = NULL;
1252 	struct lge_tx_desc	*cur_tx;
1253 	struct mbuf		*m;
1254 	int			frag = 0, tot_len = 0;
1255 
1256 	/*
1257  	 * Start packing the mbufs in this chain into
1258 	 * the fragment pointers. Stop when we run out
1259  	 * of fragments or hit the end of the mbuf chain.
1260 	 */
1261 	m = m_head;
1262 	cur_tx = &sc->lge_ldata->lge_tx_list[*txidx];
1263 	frag = 0;
1264 
1265 	for (m = m_head; m != NULL; m = m->m_next) {
1266 		if (m->m_len != 0) {
1267 			tot_len += m->m_len;
1268 			f = &cur_tx->lge_frags[frag];
1269 			f->lge_fraglen = m->m_len;
1270 			f->lge_fragptr_lo = vtophys(mtod(m, vm_offset_t));
1271 			f->lge_fragptr_hi = 0;
1272 			frag++;
1273 		}
1274 	}
1275 
1276 	if (m != NULL)
1277 		return(ENOBUFS);
1278 
1279 	cur_tx->lge_mbuf = m_head;
1280 	cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len;
1281 	LGE_INC((*txidx), LGE_TX_LIST_CNT);
1282 
1283 	/* Queue for transmit */
1284 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, vtophys(cur_tx));
1285 
1286 	return(0);
1287 }
1288 
1289 /*
1290  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1291  * to the mbuf data regions directly in the transmit lists. We also save a
1292  * copy of the pointers since the transmit list fragment pointers are
1293  * physical addresses.
1294  */
1295 
1296 static void lge_start(ifp)
1297 	struct ifnet		*ifp;
1298 {
1299 	struct lge_softc	*sc;
1300 	struct mbuf		*m_head = NULL;
1301 	u_int32_t		idx;
1302 
1303 	sc = ifp->if_softc;
1304 
1305 	if (!sc->lge_link)
1306 		return;
1307 
1308 	idx = sc->lge_cdata.lge_tx_prod;
1309 
1310 	if (ifp->if_flags & IFF_OACTIVE)
1311 		return;
1312 
1313 	while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) {
1314 		if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0)
1315 			break;
1316 
1317 		IF_DEQUEUE(&ifp->if_snd, m_head);
1318 		if (m_head == NULL)
1319 			break;
1320 
1321 		if (lge_encap(sc, m_head, &idx)) {
1322 			IF_PREPEND(&ifp->if_snd, m_head);
1323 			ifp->if_flags |= IFF_OACTIVE;
1324 			break;
1325 		}
1326 
1327 		BPF_MTAP(ifp, m_head);
1328 	}
1329 
1330 	sc->lge_cdata.lge_tx_prod = idx;
1331 
1332 	/*
1333 	 * Set a timeout in case the chip goes out to lunch.
1334 	 */
1335 	ifp->if_timer = 5;
1336 
1337 	return;
1338 }
1339 
1340 static void lge_init(xsc)
1341 	void			*xsc;
1342 {
1343 	struct lge_softc	*sc = xsc;
1344 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1345 	struct mii_data		*mii;
1346 	int			s;
1347 
1348 	if (ifp->if_flags & IFF_RUNNING)
1349 		return;
1350 
1351 	s = splimp();
1352 
1353 	/*
1354 	 * Cancel pending I/O and free all RX/TX buffers.
1355 	 */
1356 	lge_stop(sc);
1357 	lge_reset(sc);
1358 
1359 	mii = device_get_softc(sc->lge_miibus);
1360 
1361 	/* Set MAC address */
1362 	CSR_WRITE_4(sc, LGE_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1363 	CSR_WRITE_4(sc, LGE_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1364 
1365 	/* Init circular RX list. */
1366 	if (lge_list_rx_init(sc) == ENOBUFS) {
1367 		printf("lge%d: initialization failed: no "
1368 		    "memory for rx buffers\n", sc->lge_unit);
1369 		lge_stop(sc);
1370 		(void)splx(s);
1371 		return;
1372 	}
1373 
1374 	/*
1375 	 * Init tx descriptors.
1376 	 */
1377 	lge_list_tx_init(sc);
1378 
1379 	/* Set initial value for MODE1 register. */
1380 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST|
1381 	    LGE_MODE1_TX_CRC|LGE_MODE1_TXPAD|
1382 	    LGE_MODE1_RX_FLOWCTL|LGE_MODE1_SETRST_CTL0|
1383 	    LGE_MODE1_SETRST_CTL1|LGE_MODE1_SETRST_CTL2);
1384 
1385 	 /* If we want promiscuous mode, set the allframes bit. */
1386 	if (ifp->if_flags & IFF_PROMISC) {
1387 		CSR_WRITE_4(sc, LGE_MODE1,
1388 		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_PROMISC);
1389 	} else {
1390 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC);
1391 	}
1392 
1393 	/*
1394 	 * Set the capture broadcast bit to capture broadcast frames.
1395 	 */
1396 	if (ifp->if_flags & IFF_BROADCAST) {
1397 		CSR_WRITE_4(sc, LGE_MODE1,
1398 		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_BCAST);
1399 	} else {
1400 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST);
1401 	}
1402 
1403 	/* Packet padding workaround? */
1404 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD);
1405 
1406 	/* No error frames */
1407 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS);
1408 
1409 	/* Receive large frames */
1410 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_GIANTS);
1411 
1412 	/* Workaround: disable RX/TX flow control */
1413 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL);
1414 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL);
1415 
1416 	/* Make sure to strip CRC from received frames */
1417 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC);
1418 
1419 	/* Turn off magic packet mode */
1420 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB);
1421 
1422 	/* Turn off all VLAN stuff */
1423 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX|LGE_MODE1_VLAN_TX|
1424 	    LGE_MODE1_VLAN_STRIP|LGE_MODE1_VLAN_INSERT);
1425 
1426 	/* Workarond: FIFO overflow */
1427 	CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF);
1428 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT);
1429 
1430 	/*
1431 	 * Load the multicast filter.
1432 	 */
1433 	lge_setmulti(sc);
1434 
1435 	/*
1436 	 * Enable hardware checksum validation for all received IPv4
1437 	 * packets, do not reject packets with bad checksums.
1438 	 */
1439 	CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM|
1440 	    LGE_MODE2_RX_TCPCSUM|LGE_MODE2_RX_UDPCSUM|
1441 	    LGE_MODE2_RX_ERRCSUM);
1442 
1443 	/*
1444 	 * Enable the delivery of PHY interrupts based on
1445 	 * link/speed/duplex status chalges.
1446 	 */
1447 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_GMIIPOLL);
1448 
1449 	/* Enable receiver and transmitter. */
1450 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
1451 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_ENB);
1452 
1453 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0);
1454 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_TX_ENB);
1455 
1456 	/*
1457 	 * Enable interrupts.
1458 	 */
1459 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|
1460 	    LGE_IMR_SETRST_CTL1|LGE_IMR_INTR_ENB|LGE_INTRS);
1461 
1462 	lge_ifmedia_upd(ifp);
1463 
1464 	ifp->if_flags |= IFF_RUNNING;
1465 	ifp->if_flags &= ~IFF_OACTIVE;
1466 
1467 	(void)splx(s);
1468 
1469 	callout_reset(&sc->lge_stat_timer, hz, lge_tick, sc);
1470 
1471 	return;
1472 }
1473 
1474 /*
1475  * Set media options.
1476  */
1477 static int lge_ifmedia_upd(ifp)
1478 	struct ifnet		*ifp;
1479 {
1480 	struct lge_softc	*sc;
1481 	struct mii_data		*mii;
1482 
1483 	sc = ifp->if_softc;
1484 
1485 	mii = device_get_softc(sc->lge_miibus);
1486 	sc->lge_link = 0;
1487 	if (mii->mii_instance) {
1488 		struct mii_softc	*miisc;
1489 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1490 		    miisc = LIST_NEXT(miisc, mii_list))
1491 			mii_phy_reset(miisc);
1492 	}
1493 	mii_mediachg(mii);
1494 
1495 	return(0);
1496 }
1497 
1498 /*
1499  * Report current media status.
1500  */
1501 static void lge_ifmedia_sts(ifp, ifmr)
1502 	struct ifnet		*ifp;
1503 	struct ifmediareq	*ifmr;
1504 {
1505 	struct lge_softc	*sc;
1506 	struct mii_data		*mii;
1507 
1508 	sc = ifp->if_softc;
1509 
1510 	mii = device_get_softc(sc->lge_miibus);
1511 	mii_pollstat(mii);
1512 	ifmr->ifm_active = mii->mii_media_active;
1513 	ifmr->ifm_status = mii->mii_media_status;
1514 
1515 	return;
1516 }
1517 
1518 static int lge_ioctl(ifp, command, data, cr)
1519 	struct ifnet		*ifp;
1520 	u_long			command;
1521 	caddr_t			data;
1522 	struct ucred		*cr;
1523 {
1524 	struct lge_softc	*sc = ifp->if_softc;
1525 	struct ifreq		*ifr = (struct ifreq *) data;
1526 	struct mii_data		*mii;
1527 	int			s, error = 0;
1528 
1529 	s = splimp();
1530 
1531 	switch(command) {
1532 	case SIOCSIFADDR:
1533 	case SIOCGIFADDR:
1534 		error = ether_ioctl(ifp, command, data);
1535 		break;
1536 	case SIOCSIFMTU:
1537 		if (ifr->ifr_mtu > LGE_JUMBO_MTU)
1538 			error = EINVAL;
1539 		else
1540 			ifp->if_mtu = ifr->ifr_mtu;
1541 		break;
1542 	case SIOCSIFFLAGS:
1543 		if (ifp->if_flags & IFF_UP) {
1544 			if (ifp->if_flags & IFF_RUNNING &&
1545 			    ifp->if_flags & IFF_PROMISC &&
1546 			    !(sc->lge_if_flags & IFF_PROMISC)) {
1547 				CSR_WRITE_4(sc, LGE_MODE1,
1548 				    LGE_MODE1_SETRST_CTL1|
1549 				    LGE_MODE1_RX_PROMISC);
1550 			} else if (ifp->if_flags & IFF_RUNNING &&
1551 			    !(ifp->if_flags & IFF_PROMISC) &&
1552 			    sc->lge_if_flags & IFF_PROMISC) {
1553 				CSR_WRITE_4(sc, LGE_MODE1,
1554 				    LGE_MODE1_RX_PROMISC);
1555 			} else {
1556 				ifp->if_flags &= ~IFF_RUNNING;
1557 				lge_init(sc);
1558 			}
1559 		} else {
1560 			if (ifp->if_flags & IFF_RUNNING)
1561 				lge_stop(sc);
1562 		}
1563 		sc->lge_if_flags = ifp->if_flags;
1564 		error = 0;
1565 		break;
1566 	case SIOCADDMULTI:
1567 	case SIOCDELMULTI:
1568 		lge_setmulti(sc);
1569 		error = 0;
1570 		break;
1571 	case SIOCGIFMEDIA:
1572 	case SIOCSIFMEDIA:
1573 		mii = device_get_softc(sc->lge_miibus);
1574 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1575 		break;
1576 	default:
1577 		error = EINVAL;
1578 		break;
1579 	}
1580 
1581 	(void)splx(s);
1582 
1583 	return(error);
1584 }
1585 
1586 static void lge_watchdog(ifp)
1587 	struct ifnet		*ifp;
1588 {
1589 	struct lge_softc	*sc;
1590 
1591 	sc = ifp->if_softc;
1592 
1593 	ifp->if_oerrors++;
1594 	printf("lge%d: watchdog timeout\n", sc->lge_unit);
1595 
1596 	lge_stop(sc);
1597 	lge_reset(sc);
1598 	ifp->if_flags &= ~IFF_RUNNING;
1599 	lge_init(sc);
1600 
1601 	if (ifp->if_snd.ifq_head != NULL)
1602 		lge_start(ifp);
1603 
1604 	return;
1605 }
1606 
1607 /*
1608  * Stop the adapter and free any mbufs allocated to the
1609  * RX and TX lists.
1610  */
1611 static void lge_stop(sc)
1612 	struct lge_softc	*sc;
1613 {
1614 	int		i;
1615 	struct ifnet		*ifp;
1616 
1617 	ifp = &sc->arpcom.ac_if;
1618 	ifp->if_timer = 0;
1619 	callout_stop(&sc->lge_stat_timer);
1620 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB);
1621 
1622 	/* Disable receiver and transmitter. */
1623 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB);
1624 	sc->lge_link = 0;
1625 
1626 	/*
1627 	 * Free data in the RX lists.
1628 	 */
1629 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
1630 		if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) {
1631 			m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf);
1632 			sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL;
1633 		}
1634 	}
1635 	bzero((char *)&sc->lge_ldata->lge_rx_list,
1636 		sizeof(sc->lge_ldata->lge_rx_list));
1637 
1638 	/*
1639 	 * Free the TX list buffers.
1640 	 */
1641 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
1642 		if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) {
1643 			m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf);
1644 			sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL;
1645 		}
1646 	}
1647 
1648 	bzero((char *)&sc->lge_ldata->lge_tx_list,
1649 		sizeof(sc->lge_ldata->lge_tx_list));
1650 
1651 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1652 
1653 	return;
1654 }
1655 
1656 /*
1657  * Stop all chip I/O so that the kernel's probe routines don't
1658  * get confused by errant DMAs when rebooting.
1659  */
1660 static void lge_shutdown(dev)
1661 	device_t		dev;
1662 {
1663 	struct lge_softc	*sc;
1664 
1665 	sc = device_get_softc(dev);
1666 
1667 	lge_reset(sc);
1668 	lge_stop(sc);
1669 
1670 	return;
1671 }
1672