xref: /dragonfly/sys/dev/netif/msk/if_msk.c (revision cc93b0eb)
1 /******************************************************************************
2  *
3  * Name   : sky2.c
4  * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x
5  * Version: $Revision: 1.23 $
6  * Date   : $Date: 2005/12/22 09:04:11 $
7  * Purpose: Main driver source file
8  *
9  *****************************************************************************/
10 
11 /******************************************************************************
12  *
13  *	LICENSE:
14  *	Copyright (C) Marvell International Ltd. and/or its affiliates
15  *
16  *	The computer program files contained in this folder ("Files")
17  *	are provided to you under the BSD-type license terms provided
18  *	below, and any use of such Files and any derivative works
19  *	thereof created by you shall be governed by the following terms
20  *	and conditions:
21  *
22  *	- Redistributions of source code must retain the above copyright
23  *	  notice, this list of conditions and the following disclaimer.
24  *	- Redistributions in binary form must reproduce the above
25  *	  copyright notice, this list of conditions and the following
26  *	  disclaimer in the documentation and/or other materials provided
27  *	  with the distribution.
28  *	- Neither the name of Marvell nor the names of its contributors
29  *	  may be used to endorse or promote products derived from this
30  *	  software without specific prior written permission.
31  *
32  *	THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33  *	"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34  *	LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35  *	FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36  *	COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
37  *	INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
38  *	BUT NOT LIMITED TO, PROCUREMENT OF  SUBSTITUTE GOODS OR SERVICES;
39  *	LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  *	HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41  *	STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42  *	ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43  *	OF THE POSSIBILITY OF SUCH DAMAGE.
44  *	/LICENSE
45  *
46  *****************************************************************************/
47 
48 /*-
49  * Copyright (c) 1997, 1998, 1999, 2000
50  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
51  *
52  * Redistribution and use in source and binary forms, with or without
53  * modification, are permitted provided that the following conditions
54  * are met:
55  * 1. Redistributions of source code must retain the above copyright
56  *    notice, this list of conditions and the following disclaimer.
57  * 2. Redistributions in binary form must reproduce the above copyright
58  *    notice, this list of conditions and the following disclaimer in the
59  *    documentation and/or other materials provided with the distribution.
60  * 3. All advertising materials mentioning features or use of this software
61  *    must display the following acknowledgement:
62  *	This product includes software developed by Bill Paul.
63  * 4. Neither the name of the author nor the names of any co-contributors
64  *    may be used to endorse or promote products derived from this software
65  *    without specific prior written permission.
66  *
67  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
68  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
69  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
70  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
71  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
72  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
73  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
74  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
75  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
76  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
77  * THE POSSIBILITY OF SUCH DAMAGE.
78  */
79 /*-
80  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
81  *
82  * Permission to use, copy, modify, and distribute this software for any
83  * purpose with or without fee is hereby granted, provided that the above
84  * copyright notice and this permission notice appear in all copies.
85  *
86  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
87  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
88  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
89  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
90  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
91  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
92  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
93  */
94 
95 /* $FreeBSD: src/sys/dev/msk/if_msk.c,v 1.26 2007/12/05 09:41:58 remko Exp $ */
96 /* $DragonFly: src/sys/dev/netif/msk/if_msk.c,v 1.5 2008/06/26 13:08:55 sephe Exp $ */
97 
98 /*
99  * Device driver for the Marvell Yukon II Ethernet controller.
100  * Due to lack of documentation, this driver is based on the code from
101  * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x.
102  */
103 #include "opt_ethernet.h"
104 
105 #include <sys/param.h>
106 #include <sys/endian.h>
107 #include <sys/kernel.h>
108 #include <sys/bus.h>
109 #include <sys/in_cksum.h>
110 #include <sys/interrupt.h>
111 #include <sys/malloc.h>
112 #include <sys/proc.h>
113 #include <sys/rman.h>
114 #include <sys/serialize.h>
115 #include <sys/socket.h>
116 #include <sys/sockio.h>
117 #include <sys/sysctl.h>
118 
119 #include <net/ethernet.h>
120 #include <net/if.h>
121 #include <net/bpf.h>
122 #include <net/if_arp.h>
123 #include <net/if_dl.h>
124 #include <net/if_media.h>
125 #include <net/ifq_var.h>
126 #include <net/vlan/if_vlan_var.h>
127 
128 #include <netinet/ip.h>
129 #include <netinet/ip_var.h>
130 
131 #include <dev/netif/mii_layer/miivar.h>
132 
133 #include <bus/pci/pcireg.h>
134 #include <bus/pci/pcivar.h>
135 
136 #include "if_mskreg.h"
137 
138 /* "device miibus" required.  See GENERIC if you get errors here. */
139 #include "miibus_if.h"
140 
141 #define MSK_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
142 
143 /*
144  * Devices supported by this driver.
145  */
146 static const struct msk_product {
147 	uint16_t	msk_vendorid;
148 	uint16_t	msk_deviceid;
149 	const char	*msk_name;
150 } msk_products[] = {
151 	{ VENDORID_SK, DEVICEID_SK_YUKON2,
152 	    "SK-9Sxx Gigabit Ethernet" },
153 	{ VENDORID_SK, DEVICEID_SK_YUKON2_EXPR,
154 	    "SK-9Exx Gigabit Ethernet"},
155 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021CU,
156 	    "Marvell Yukon 88E8021CU Gigabit Ethernet" },
157 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021X,
158 	    "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" },
159 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022CU,
160 	    "Marvell Yukon 88E8022CU Gigabit Ethernet" },
161 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022X,
162 	    "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" },
163 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061CU,
164 	    "Marvell Yukon 88E8061CU Gigabit Ethernet" },
165 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061X,
166 	    "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" },
167 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062CU,
168 	    "Marvell Yukon 88E8062CU Gigabit Ethernet" },
169 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062X,
170 	    "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" },
171 	{ VENDORID_MARVELL, DEVICEID_MRVL_8035,
172 	    "Marvell Yukon 88E8035 Gigabit Ethernet" },
173 	{ VENDORID_MARVELL, DEVICEID_MRVL_8036,
174 	    "Marvell Yukon 88E8036 Gigabit Ethernet" },
175 	{ VENDORID_MARVELL, DEVICEID_MRVL_8038,
176 	    "Marvell Yukon 88E8038 Gigabit Ethernet" },
177 	{ VENDORID_MARVELL, DEVICEID_MRVL_8039,
178 	    "Marvell Yukon 88E8039 Gigabit Ethernet" },
179 	{ VENDORID_MARVELL, DEVICEID_MRVL_4361,
180 	    "Marvell Yukon 88E8050 Gigabit Ethernet" },
181 	{ VENDORID_MARVELL, DEVICEID_MRVL_4360,
182 	    "Marvell Yukon 88E8052 Gigabit Ethernet" },
183 	{ VENDORID_MARVELL, DEVICEID_MRVL_4362,
184 	    "Marvell Yukon 88E8053 Gigabit Ethernet" },
185 	{ VENDORID_MARVELL, DEVICEID_MRVL_4363,
186 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
187 	{ VENDORID_MARVELL, DEVICEID_MRVL_4364,
188 	    "Marvell Yukon 88E8056 Gigabit Ethernet" },
189 	{ VENDORID_MARVELL, DEVICEID_MRVL_436A,
190 	    "Marvell Yukon 88E8058 Gigabit Ethernet" },
191 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE550SX,
192 	    "D-Link 550SX Gigabit Ethernet" },
193 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560T,
194 	    "D-Link 560T Gigabit Ethernet" },
195 	{ 0, 0, NULL }
196 };
197 
198 static const char *model_name[] = {
199 	"Yukon XL",
200         "Yukon EC Ultra",
201         "Yukon Unknown",
202         "Yukon EC",
203         "Yukon FE"
204 };
205 
206 static int	mskc_probe(device_t);
207 static int	mskc_attach(device_t);
208 static int	mskc_detach(device_t);
209 static int	mskc_shutdown(device_t);
210 static int	mskc_suspend(device_t);
211 static int	mskc_resume(device_t);
212 static void	mskc_intr(void *);
213 
214 static void	mskc_reset(struct msk_softc *);
215 static void	mskc_set_imtimer(struct msk_softc *);
216 static void	mskc_intr_hwerr(struct msk_softc *);
217 static int	mskc_handle_events(struct msk_softc *);
218 static void	mskc_phy_power(struct msk_softc *, int);
219 static int	mskc_setup_rambuffer(struct msk_softc *);
220 static int	mskc_status_dma_alloc(struct msk_softc *);
221 static void	mskc_status_dma_free(struct msk_softc *);
222 static int	mskc_sysctl_proc_limit(SYSCTL_HANDLER_ARGS);
223 static int	mskc_sysctl_intr_rate(SYSCTL_HANDLER_ARGS);
224 
225 static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
226 
227 static int	msk_probe(device_t);
228 static int	msk_attach(device_t);
229 static int	msk_detach(device_t);
230 static int	msk_miibus_readreg(device_t, int, int);
231 static int	msk_miibus_writereg(device_t, int, int, int);
232 static void	msk_miibus_statchg(device_t);
233 
234 static void	msk_init(void *);
235 static int	msk_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
236 static void	msk_start(struct ifnet *);
237 static void	msk_watchdog(struct ifnet *);
238 static int	msk_mediachange(struct ifnet *);
239 static void	msk_mediastatus(struct ifnet *, struct ifmediareq *);
240 
241 static void	msk_tick(void *);
242 static void	msk_intr_phy(struct msk_if_softc *);
243 static void	msk_intr_gmac(struct msk_if_softc *);
244 static __inline void
245 		msk_rxput(struct msk_if_softc *);
246 static void	msk_handle_hwerr(struct msk_if_softc *, uint32_t);
247 static void	msk_rxeof(struct msk_if_softc *, uint32_t, int,
248 			  struct mbuf_chain *);
249 static void	msk_txeof(struct msk_if_softc *, int);
250 static void	msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t);
251 static void	msk_set_rambuffer(struct msk_if_softc *);
252 static void	msk_stop(struct msk_if_softc *);
253 
254 static void	msk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
255 static void	msk_dmamap_mbuf_cb(void *, bus_dma_segment_t *, int,
256 				   bus_size_t, int);
257 static int	msk_txrx_dma_alloc(struct msk_if_softc *);
258 static void	msk_txrx_dma_free(struct msk_if_softc *);
259 static int	msk_init_rx_ring(struct msk_if_softc *);
260 static void	msk_init_tx_ring(struct msk_if_softc *);
261 static __inline void
262 		msk_discard_rxbuf(struct msk_if_softc *, int);
263 static int	msk_newbuf(struct msk_if_softc *, int);
264 static struct mbuf *
265 		msk_defrag(struct mbuf *, int, int);
266 static int	msk_encap(struct msk_if_softc *, struct mbuf **);
267 
268 #ifdef MSK_JUMBO
269 static int msk_init_jumbo_rx_ring(struct msk_if_softc *);
270 static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int);
271 static int msk_jumbo_newbuf(struct msk_if_softc *, int);
272 static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, int);
273 static void *msk_jalloc(struct msk_if_softc *);
274 static void msk_jfree(void *, void *);
275 #endif
276 
277 static int	msk_phy_readreg(struct msk_if_softc *, int, int);
278 static int	msk_phy_writereg(struct msk_if_softc *, int, int, int);
279 
280 static void	msk_setmulti(struct msk_if_softc *);
281 static void	msk_setvlan(struct msk_if_softc *, struct ifnet *);
282 static void	msk_setpromisc(struct msk_if_softc *);
283 
284 static int	msk_dmamem_create(device_t, bus_size_t, bus_dma_tag_t *,
285 				  void **, bus_addr_t *, bus_dmamap_t *);
286 static void	msk_dmamem_destroy(bus_dma_tag_t, void *, bus_dmamap_t);
287 
288 static device_method_t mskc_methods[] = {
289 	/* Device interface */
290 	DEVMETHOD(device_probe,		mskc_probe),
291 	DEVMETHOD(device_attach,	mskc_attach),
292 	DEVMETHOD(device_detach,	mskc_detach),
293 	DEVMETHOD(device_suspend,	mskc_suspend),
294 	DEVMETHOD(device_resume,	mskc_resume),
295 	DEVMETHOD(device_shutdown,	mskc_shutdown),
296 
297 	/* bus interface */
298 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
299 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
300 
301 	{ NULL, NULL }
302 };
303 
304 static DEFINE_CLASS_0(mskc, mskc_driver, mskc_methods, sizeof(struct msk_softc));
305 static devclass_t mskc_devclass;
306 
307 static device_method_t msk_methods[] = {
308 	/* Device interface */
309 	DEVMETHOD(device_probe,		msk_probe),
310 	DEVMETHOD(device_attach,	msk_attach),
311 	DEVMETHOD(device_detach,	msk_detach),
312 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
313 
314 	/* bus interface */
315 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
316 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
317 
318 	/* MII interface */
319 	DEVMETHOD(miibus_readreg,	msk_miibus_readreg),
320 	DEVMETHOD(miibus_writereg,	msk_miibus_writereg),
321 	DEVMETHOD(miibus_statchg,	msk_miibus_statchg),
322 
323 	{ NULL, NULL }
324 };
325 
326 static DEFINE_CLASS_0(msk, msk_driver, msk_methods, sizeof(struct msk_if_softc));
327 static devclass_t msk_devclass;
328 
329 DECLARE_DUMMY_MODULE(if_msk);
330 DRIVER_MODULE(if_msk, pci, mskc_driver, mskc_devclass, 0, 0);
331 DRIVER_MODULE(if_msk, mskc, msk_driver, msk_devclass, 0, 0);
332 DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, 0, 0);
333 
334 static int	mskc_intr_rate = 0;
335 static int	mskc_process_limit = MSK_PROC_DEFAULT;
336 
337 TUNABLE_INT("hw.mskc.intr_rate", &mskc_intr_rate);
338 TUNABLE_INT("hw.mskc.process_limit", &mskc_process_limit);
339 
340 static int
341 msk_miibus_readreg(device_t dev, int phy, int reg)
342 {
343 	struct msk_if_softc *sc_if;
344 
345 	if (phy != PHY_ADDR_MARV)
346 		return (0);
347 
348 	sc_if = device_get_softc(dev);
349 
350 	return (msk_phy_readreg(sc_if, phy, reg));
351 }
352 
353 static int
354 msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg)
355 {
356 	struct msk_softc *sc;
357 	int i, val;
358 
359 	sc = sc_if->msk_softc;
360 
361         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
362 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
363 
364 	for (i = 0; i < MSK_TIMEOUT; i++) {
365 		DELAY(1);
366 		val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL);
367 		if ((val & GM_SMI_CT_RD_VAL) != 0) {
368 			val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA);
369 			break;
370 		}
371 	}
372 
373 	if (i == MSK_TIMEOUT) {
374 		if_printf(sc_if->msk_ifp, "phy failed to come ready\n");
375 		val = 0;
376 	}
377 
378 	return (val);
379 }
380 
381 static int
382 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
383 {
384 	struct msk_if_softc *sc_if;
385 
386 	if (phy != PHY_ADDR_MARV)
387 		return (0);
388 
389 	sc_if = device_get_softc(dev);
390 
391 	return (msk_phy_writereg(sc_if, phy, reg, val));
392 }
393 
394 static int
395 msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val)
396 {
397 	struct msk_softc *sc;
398 	int i;
399 
400 	sc = sc_if->msk_softc;
401 
402 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val);
403         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
404 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
405 	for (i = 0; i < MSK_TIMEOUT; i++) {
406 		DELAY(1);
407 		if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) &
408 		    GM_SMI_CT_BUSY) == 0)
409 			break;
410 	}
411 	if (i == MSK_TIMEOUT)
412 		if_printf(sc_if->msk_ifp, "phy write timeout\n");
413 
414 	return (0);
415 }
416 
417 static void
418 msk_miibus_statchg(device_t dev)
419 {
420 	struct msk_if_softc *sc_if;
421 	struct msk_softc *sc;
422 	struct mii_data *mii;
423 	struct ifnet *ifp;
424 	uint32_t gmac;
425 
426 	sc_if = device_get_softc(dev);
427 	sc = sc_if->msk_softc;
428 
429 	mii = device_get_softc(sc_if->msk_miibus);
430 	ifp = sc_if->msk_ifp;
431 
432 	if (mii->mii_media_status & IFM_ACTIVE) {
433 		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
434 			sc_if->msk_link = 1;
435 	} else
436 		sc_if->msk_link = 0;
437 
438 	if (sc_if->msk_link != 0) {
439 		/* Enable Tx FIFO Underrun. */
440 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK),
441 		    GM_IS_TX_FF_UR | GM_IS_RX_FF_OR);
442 		/*
443 		 * Because mii(4) notify msk(4) that it detected link status
444 		 * change, there is no need to enable automatic
445 		 * speed/flow-control/duplex updates.
446 		 */
447 		gmac = GM_GPCR_AU_ALL_DIS;
448 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
449 		case IFM_1000_SX:
450 		case IFM_1000_T:
451 			gmac |= GM_GPCR_SPEED_1000;
452 			break;
453 		case IFM_100_TX:
454 			gmac |= GM_GPCR_SPEED_100;
455 			break;
456 		case IFM_10_T:
457 			break;
458 		}
459 
460 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
461 			gmac |= GM_GPCR_DUP_FULL;
462 		/* Disable Rx flow control. */
463 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) == 0)
464 			gmac |= GM_GPCR_FC_RX_DIS;
465 		/* Disable Tx flow control. */
466 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG1) == 0)
467 			gmac |= GM_GPCR_FC_TX_DIS;
468 		gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
469 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
470 		/* Read again to ensure writing. */
471 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
472 
473 		gmac = GMC_PAUSE_ON;
474 		if (((mii->mii_media_active & IFM_GMASK) &
475 		    (IFM_FLAG0 | IFM_FLAG1)) == 0)
476 			gmac = GMC_PAUSE_OFF;
477 		/* Diable pause for 10/100 Mbps in half-duplex mode. */
478 		if ((((mii->mii_media_active & IFM_GMASK) & IFM_FDX) == 0) &&
479 		    (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX ||
480 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T))
481 			gmac = GMC_PAUSE_OFF;
482 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac);
483 
484 		/* Enable PHY interrupt for FIFO underrun/overflow. */
485 		msk_phy_writereg(sc_if, PHY_ADDR_MARV,
486 		    PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR);
487 	} else {
488 		/*
489 		 * Link state changed to down.
490 		 * Disable PHY interrupts.
491 		 */
492 		msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
493 		/* Disable Rx/Tx MAC. */
494 		gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
495 		gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
496 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
497 		/* Read again to ensure writing. */
498 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
499 	}
500 }
501 
502 static void
503 msk_setmulti(struct msk_if_softc *sc_if)
504 {
505 	struct msk_softc *sc;
506 	struct ifnet *ifp;
507 	struct ifmultiaddr *ifma;
508 	uint32_t mchash[2];
509 	uint32_t crc;
510 	uint16_t mode;
511 
512 	sc = sc_if->msk_softc;
513 	ifp = sc_if->msk_ifp;
514 
515 	bzero(mchash, sizeof(mchash));
516 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
517 	mode |= GM_RXCR_UCF_ENA;
518 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
519 		if ((ifp->if_flags & IFF_PROMISC) != 0)
520 			mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
521 		else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
522 			mchash[0] = 0xffff;
523 			mchash[1] = 0xffff;
524 		}
525 	} else {
526 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
527 			if (ifma->ifma_addr->sa_family != AF_LINK)
528 				continue;
529 			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
530 			    ifma->ifma_addr), ETHER_ADDR_LEN);
531 			/* Just want the 6 least significant bits. */
532 			crc &= 0x3f;
533 			/* Set the corresponding bit in the hash table. */
534 			mchash[crc >> 5] |= 1 << (crc & 0x1f);
535 		}
536 		mode |= GM_RXCR_MCF_ENA;
537 	}
538 
539 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1,
540 	    mchash[0] & 0xffff);
541 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2,
542 	    (mchash[0] >> 16) & 0xffff);
543 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3,
544 	    mchash[1] & 0xffff);
545 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4,
546 	    (mchash[1] >> 16) & 0xffff);
547 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
548 }
549 
550 static void
551 msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp)
552 {
553 	struct msk_softc *sc;
554 
555 	sc = sc_if->msk_softc;
556 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
557 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
558 		    RX_VLAN_STRIP_ON);
559 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
560 		    TX_VLAN_TAG_ON);
561 	} else {
562 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
563 		    RX_VLAN_STRIP_OFF);
564 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
565 		    TX_VLAN_TAG_OFF);
566 	}
567 }
568 
569 static void
570 msk_setpromisc(struct msk_if_softc *sc_if)
571 {
572 	struct msk_softc *sc;
573 	struct ifnet *ifp;
574 	uint16_t mode;
575 
576 	sc = sc_if->msk_softc;
577 	ifp = sc_if->msk_ifp;
578 
579 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
580 	if (ifp->if_flags & IFF_PROMISC)
581 		mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
582 	else
583 		mode |= (GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
584 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
585 }
586 
587 static int
588 msk_init_rx_ring(struct msk_if_softc *sc_if)
589 {
590 	struct msk_ring_data *rd;
591 	struct msk_rxdesc *rxd;
592 	int i, prod;
593 
594 	sc_if->msk_cdata.msk_rx_cons = 0;
595 	sc_if->msk_cdata.msk_rx_prod = 0;
596 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
597 
598 	rd = &sc_if->msk_rdata;
599 	bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
600 	prod = sc_if->msk_cdata.msk_rx_prod;
601 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
602 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
603 		rxd->rx_m = NULL;
604 		rxd->rx_le = &rd->msk_rx_ring[prod];
605 		if (msk_newbuf(sc_if, prod) != 0)
606 			return (ENOBUFS);
607 		MSK_INC(prod, MSK_RX_RING_CNT);
608 	}
609 
610 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
611 	    sc_if->msk_cdata.msk_rx_ring_map, BUS_DMASYNC_PREWRITE);
612 
613 	/* Update prefetch unit. */
614 	sc_if->msk_cdata.msk_rx_prod = MSK_RX_RING_CNT - 1;
615 	CSR_WRITE_2(sc_if->msk_softc,
616 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
617 	    sc_if->msk_cdata.msk_rx_prod);
618 
619 	return (0);
620 }
621 
622 #ifdef MSK_JUMBO
623 static int
624 msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if)
625 {
626 	struct msk_ring_data *rd;
627 	struct msk_rxdesc *rxd;
628 	int i, prod;
629 
630 	MSK_IF_LOCK_ASSERT(sc_if);
631 
632 	sc_if->msk_cdata.msk_rx_cons = 0;
633 	sc_if->msk_cdata.msk_rx_prod = 0;
634 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
635 
636 	rd = &sc_if->msk_rdata;
637 	bzero(rd->msk_jumbo_rx_ring,
638 	    sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT);
639 	prod = sc_if->msk_cdata.msk_rx_prod;
640 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
641 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
642 		rxd->rx_m = NULL;
643 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
644 		if (msk_jumbo_newbuf(sc_if, prod) != 0)
645 			return (ENOBUFS);
646 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
647 	}
648 
649 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
650 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
651 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
652 
653 	sc_if->msk_cdata.msk_rx_prod = MSK_JUMBO_RX_RING_CNT - 1;
654 	CSR_WRITE_2(sc_if->msk_softc,
655 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
656 	    sc_if->msk_cdata.msk_rx_prod);
657 
658 	return (0);
659 }
660 #endif
661 
662 static void
663 msk_init_tx_ring(struct msk_if_softc *sc_if)
664 {
665 	struct msk_ring_data *rd;
666 	struct msk_txdesc *txd;
667 	int i;
668 
669 	sc_if->msk_cdata.msk_tx_prod = 0;
670 	sc_if->msk_cdata.msk_tx_cons = 0;
671 	sc_if->msk_cdata.msk_tx_cnt = 0;
672 
673 	rd = &sc_if->msk_rdata;
674 	bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
675 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
676 		txd = &sc_if->msk_cdata.msk_txdesc[i];
677 		txd->tx_m = NULL;
678 		txd->tx_le = &rd->msk_tx_ring[i];
679 	}
680 
681 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
682 	    sc_if->msk_cdata.msk_tx_ring_map, BUS_DMASYNC_PREWRITE);
683 }
684 
685 static __inline void
686 msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx)
687 {
688 	struct msk_rx_desc *rx_le;
689 	struct msk_rxdesc *rxd;
690 	struct mbuf *m;
691 
692 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
693 	m = rxd->rx_m;
694 	rx_le = rxd->rx_le;
695 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
696 }
697 
698 #ifdef MSK_JUMBO
699 static __inline void
700 msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int	idx)
701 {
702 	struct msk_rx_desc *rx_le;
703 	struct msk_rxdesc *rxd;
704 	struct mbuf *m;
705 
706 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
707 	m = rxd->rx_m;
708 	rx_le = rxd->rx_le;
709 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
710 }
711 #endif
712 
713 static int
714 msk_newbuf(struct msk_if_softc *sc_if, int idx)
715 {
716 	struct msk_rx_desc *rx_le;
717 	struct msk_rxdesc *rxd;
718 	struct mbuf *m;
719 	struct msk_dmamap_arg ctx;
720 	bus_dma_segment_t seg;
721 	bus_dmamap_t map;
722 
723 	m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
724 	if (m == NULL)
725 		return (ENOBUFS);
726 
727 	m->m_len = m->m_pkthdr.len = MCLBYTES;
728 	m_adj(m, ETHER_ALIGN);
729 
730 	bzero(&ctx, sizeof(ctx));
731 	ctx.nseg = 1;
732 	ctx.segs = &seg;
733 	if (bus_dmamap_load_mbuf(sc_if->msk_cdata.msk_rx_tag,
734 	    sc_if->msk_cdata.msk_rx_sparemap, m, msk_dmamap_mbuf_cb, &ctx,
735 	    BUS_DMA_NOWAIT) != 0) {
736 		m_freem(m);
737 		return (ENOBUFS);
738 	}
739 	KASSERT(ctx.nseg == 1,
740 		("%s: %d segments returned!", __func__, ctx.nseg));
741 
742 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
743 	if (rxd->rx_m != NULL) {
744 		bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
745 		    BUS_DMASYNC_POSTREAD);
746 		bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap);
747 	}
748 	map = rxd->rx_dmamap;
749 	rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap;
750 	sc_if->msk_cdata.msk_rx_sparemap = map;
751 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
752 	    BUS_DMASYNC_PREREAD);
753 	rxd->rx_m = m;
754 	rx_le = rxd->rx_le;
755 	rx_le->msk_addr = htole32(MSK_ADDR_LO(seg.ds_addr));
756 	rx_le->msk_control =
757 	    htole32(seg.ds_len | OP_PACKET | HW_OWNER);
758 
759 	return (0);
760 }
761 
762 #ifdef MSK_JUMBO
763 static int
764 msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx)
765 {
766 	struct msk_rx_desc *rx_le;
767 	struct msk_rxdesc *rxd;
768 	struct mbuf *m;
769 	bus_dma_segment_t segs[1];
770 	bus_dmamap_t map;
771 	int nsegs;
772 	void *buf;
773 
774 	MGETHDR(m, M_DONTWAIT, MT_DATA);
775 	if (m == NULL)
776 		return (ENOBUFS);
777 	buf = msk_jalloc(sc_if);
778 	if (buf == NULL) {
779 		m_freem(m);
780 		return (ENOBUFS);
781 	}
782 	/* Attach the buffer to the mbuf. */
783 	MEXTADD(m, buf, MSK_JLEN, msk_jfree, (struct msk_if_softc *)sc_if, 0,
784 	    EXT_NET_DRV);
785 	if ((m->m_flags & M_EXT) == 0) {
786 		m_freem(m);
787 		return (ENOBUFS);
788 	}
789 	m->m_pkthdr.len = m->m_len = MSK_JLEN;
790 	m_adj(m, ETHER_ALIGN);
791 
792 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag,
793 	    sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs,
794 	    BUS_DMA_NOWAIT) != 0) {
795 		m_freem(m);
796 		return (ENOBUFS);
797 	}
798 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
799 
800 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
801 	if (rxd->rx_m != NULL) {
802 		bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
803 		    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
804 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
805 		    rxd->rx_dmamap);
806 	}
807 	map = rxd->rx_dmamap;
808 	rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap;
809 	sc_if->msk_cdata.msk_jumbo_rx_sparemap = map;
810 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap,
811 	    BUS_DMASYNC_PREREAD);
812 	rxd->rx_m = m;
813 	rx_le = rxd->rx_le;
814 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
815 	rx_le->msk_control =
816 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
817 
818 	return (0);
819 }
820 #endif
821 
822 /*
823  * Set media options.
824  */
825 static int
826 msk_mediachange(struct ifnet *ifp)
827 {
828 	struct msk_if_softc *sc_if = ifp->if_softc;
829 	struct mii_data	*mii;
830 
831 	mii = device_get_softc(sc_if->msk_miibus);
832 	mii_mediachg(mii);
833 
834 	return (0);
835 }
836 
837 /*
838  * Report current media status.
839  */
840 static void
841 msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
842 {
843 	struct msk_if_softc *sc_if = ifp->if_softc;
844 	struct mii_data	*mii;
845 
846 	mii = device_get_softc(sc_if->msk_miibus);
847 	mii_pollstat(mii);
848 
849 	ifmr->ifm_active = mii->mii_media_active;
850 	ifmr->ifm_status = mii->mii_media_status;
851 }
852 
853 static int
854 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
855 {
856 	struct msk_if_softc *sc_if;
857 	struct ifreq *ifr;
858 	struct mii_data	*mii;
859 	int error, mask;
860 
861 	sc_if = ifp->if_softc;
862 	ifr = (struct ifreq *)data;
863 	error = 0;
864 
865 	switch(command) {
866 	case SIOCSIFMTU:
867 #ifdef MSK_JUMBO
868 		if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN) {
869 			error = EINVAL;
870 			break;
871 		}
872 		if (sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_FE &&
873 		    ifr->ifr_mtu > MSK_MAX_FRAMELEN) {
874 			error = EINVAL;
875 			break;
876 		}
877 		ifp->if_mtu = ifr->ifr_mtu;
878 		if ((ifp->if_flags & IFF_RUNNING) != 0)
879 			msk_init(sc_if);
880 #else
881 		error = EOPNOTSUPP;
882 #endif
883 		break;
884 
885 	case SIOCSIFFLAGS:
886 		if (ifp->if_flags & IFF_UP) {
887 			if (ifp->if_flags & IFF_RUNNING) {
888 				if (((ifp->if_flags ^ sc_if->msk_if_flags)
889 				    & IFF_PROMISC) != 0) {
890 					msk_setpromisc(sc_if);
891 					msk_setmulti(sc_if);
892 				}
893 			} else {
894 				if (sc_if->msk_detach == 0)
895 					msk_init(sc_if);
896 			}
897 		} else {
898 			if (ifp->if_flags & IFF_RUNNING)
899 				msk_stop(sc_if);
900 		}
901 		sc_if->msk_if_flags = ifp->if_flags;
902 		break;
903 
904 	case SIOCADDMULTI:
905 	case SIOCDELMULTI:
906 		if (ifp->if_flags & IFF_RUNNING)
907 			msk_setmulti(sc_if);
908 		break;
909 
910 	case SIOCGIFMEDIA:
911 	case SIOCSIFMEDIA:
912 		mii = device_get_softc(sc_if->msk_miibus);
913 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
914 		break;
915 
916 	case SIOCSIFCAP:
917 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
918 		if ((mask & IFCAP_TXCSUM) != 0) {
919 			ifp->if_capenable ^= IFCAP_TXCSUM;
920 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0 &&
921 			    (IFCAP_TXCSUM & ifp->if_capabilities) != 0)
922 				ifp->if_hwassist |= MSK_CSUM_FEATURES;
923 			else
924 				ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
925 		}
926 #ifdef notyet
927 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
928 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
929 			msk_setvlan(sc_if, ifp);
930 		}
931 #endif
932 
933 		if (sc_if->msk_framesize > MSK_MAX_FRAMELEN &&
934 		    sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
935 			/*
936 			 * In Yukon EC Ultra, TSO & checksum offload is not
937 			 * supported for jumbo frame.
938 			 */
939 			ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
940 			ifp->if_capenable &= ~IFCAP_TXCSUM;
941 		}
942 		break;
943 
944 	default:
945 		error = ether_ioctl(ifp, command, data);
946 		break;
947 	}
948 
949 	return (error);
950 }
951 
952 static int
953 mskc_probe(device_t dev)
954 {
955 	const struct msk_product *mp;
956 	uint16_t vendor, devid;
957 
958 	vendor = pci_get_vendor(dev);
959 	devid = pci_get_device(dev);
960 	for (mp = msk_products; mp->msk_name != NULL; ++mp) {
961 		if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) {
962 			device_set_desc(dev, mp->msk_name);
963 			return (0);
964 		}
965 	}
966 	return (ENXIO);
967 }
968 
969 static int
970 mskc_setup_rambuffer(struct msk_softc *sc)
971 {
972 	int next;
973 	int i;
974 	uint8_t val;
975 
976 	/* Get adapter SRAM size. */
977 	val = CSR_READ_1(sc, B2_E_0);
978 	sc->msk_ramsize = (val == 0) ? 128 : val * 4;
979 	if (bootverbose) {
980 		device_printf(sc->msk_dev,
981 		    "RAM buffer size : %dKB\n", sc->msk_ramsize);
982 	}
983 	/*
984 	 * Give receiver 2/3 of memory and round down to the multiple
985 	 * of 1024. Tx/Rx RAM buffer size of Yukon II shoud be multiple
986 	 * of 1024.
987 	 */
988 	sc->msk_rxqsize = rounddown((sc->msk_ramsize * 1024 * 2) / 3, 1024);
989 	sc->msk_txqsize = (sc->msk_ramsize * 1024) - sc->msk_rxqsize;
990 	for (i = 0, next = 0; i < sc->msk_num_port; i++) {
991 		sc->msk_rxqstart[i] = next;
992 		sc->msk_rxqend[i] = next + sc->msk_rxqsize - 1;
993 		next = sc->msk_rxqend[i] + 1;
994 		sc->msk_txqstart[i] = next;
995 		sc->msk_txqend[i] = next + sc->msk_txqsize - 1;
996 		next = sc->msk_txqend[i] + 1;
997 		if (bootverbose) {
998 			device_printf(sc->msk_dev,
999 			    "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i,
1000 			    sc->msk_rxqsize / 1024, sc->msk_rxqstart[i],
1001 			    sc->msk_rxqend[i]);
1002 			device_printf(sc->msk_dev,
1003 			    "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i,
1004 			    sc->msk_txqsize / 1024, sc->msk_txqstart[i],
1005 			    sc->msk_txqend[i]);
1006 		}
1007 	}
1008 
1009 	return (0);
1010 }
1011 
1012 static void
1013 mskc_phy_power(struct msk_softc *sc, int mode)
1014 {
1015 	uint32_t val;
1016 	int i;
1017 
1018 	switch (mode) {
1019 	case MSK_PHY_POWERUP:
1020 		/* Switch power to VCC (WA for VAUX problem). */
1021 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1022 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
1023 		/* Disable Core Clock Division, set Clock Select to 0. */
1024 		CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
1025 
1026 		val = 0;
1027 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1028 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1029 			/* Enable bits are inverted. */
1030 			val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1031 			      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1032 			      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1033 		}
1034 		/*
1035 		 * Enable PCI & Core Clock, enable clock gating for both Links.
1036 		 */
1037 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1038 
1039 		val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1040 		val &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
1041 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1042 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1043 			/* Deassert Low Power for 1st PHY. */
1044 			val |= PCI_Y2_PHY1_COMA;
1045 			if (sc->msk_num_port > 1)
1046 				val |= PCI_Y2_PHY2_COMA;
1047 		} else if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
1048 			uint32_t our;
1049 
1050 			CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_ON);
1051 
1052 			/* Enable all clocks. */
1053 			pci_write_config(sc->msk_dev, PCI_OUR_REG_3, 0, 4);
1054 			our = pci_read_config(sc->msk_dev, PCI_OUR_REG_4, 4);
1055 			our &= (PCI_FORCE_ASPM_REQUEST|PCI_ASPM_GPHY_LINK_DOWN|
1056 			    PCI_ASPM_INT_FIFO_EMPTY|PCI_ASPM_CLKRUN_REQUEST);
1057 			/* Set all bits to 0 except bits 15..12. */
1058 			pci_write_config(sc->msk_dev, PCI_OUR_REG_4, our, 4);
1059 			/* Set to default value. */
1060 			pci_write_config(sc->msk_dev, PCI_OUR_REG_5, 0, 4);
1061 		}
1062 		/* Release PHY from PowerDown/COMA mode. */
1063 		pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1064 		for (i = 0; i < sc->msk_num_port; i++) {
1065 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1066 			    GMLC_RST_SET);
1067 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1068 			    GMLC_RST_CLR);
1069 		}
1070 		break;
1071 	case MSK_PHY_POWERDOWN:
1072 		val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1073 		val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD;
1074 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1075 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1076 			val &= ~PCI_Y2_PHY1_COMA;
1077 			if (sc->msk_num_port > 1)
1078 				val &= ~PCI_Y2_PHY2_COMA;
1079 		}
1080 		pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1081 
1082 		val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1083 		      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1084 		      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1085 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1086 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1087 			/* Enable bits are inverted. */
1088 			val = 0;
1089 		}
1090 		/*
1091 		 * Disable PCI & Core Clock, disable clock gating for
1092 		 * both Links.
1093 		 */
1094 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1095 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1096 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
1097 		break;
1098 	default:
1099 		break;
1100 	}
1101 }
1102 
1103 static void
1104 mskc_reset(struct msk_softc *sc)
1105 {
1106 	bus_addr_t addr;
1107 	uint16_t status;
1108 	uint32_t val;
1109 	int i;
1110 
1111 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1112 
1113 	/* Disable ASF. */
1114 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL) {
1115 		CSR_WRITE_4(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
1116 		CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE);
1117 	}
1118 	/*
1119 	 * Since we disabled ASF, S/W reset is required for Power Management.
1120 	 */
1121 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1122 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1123 
1124 	/* Clear all error bits in the PCI status register. */
1125 	status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
1126 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1127 
1128 	pci_write_config(sc->msk_dev, PCIR_STATUS, status |
1129 	    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
1130 	    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
1131 	CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR);
1132 
1133 	switch (sc->msk_bustype) {
1134 	case MSK_PEX_BUS:
1135 		/* Clear all PEX errors. */
1136 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
1137 		val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
1138 		if ((val & PEX_RX_OV) != 0) {
1139 			sc->msk_intrmask &= ~Y2_IS_HW_ERR;
1140 			sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
1141 		}
1142 		break;
1143 	case MSK_PCI_BUS:
1144 	case MSK_PCIX_BUS:
1145 		/* Set Cache Line Size to 2(8bytes) if configured to 0. */
1146 		val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1);
1147 		if (val == 0)
1148 			pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1);
1149 		if (sc->msk_bustype == MSK_PCIX_BUS) {
1150 			/* Set Cache Line Size opt. */
1151 			val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1152 			val |= PCI_CLS_OPT;
1153 			pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1154 		}
1155 		break;
1156 	}
1157 	/* Set PHY power state. */
1158 	mskc_phy_power(sc, MSK_PHY_POWERUP);
1159 
1160 	/* Reset GPHY/GMAC Control */
1161 	for (i = 0; i < sc->msk_num_port; i++) {
1162 		/* GPHY Control reset. */
1163 		CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
1164 		CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
1165 		/* GMAC Control reset. */
1166 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
1167 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
1168 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
1169 	}
1170 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1171 
1172 	/* LED On. */
1173 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON);
1174 
1175 	/* Clear TWSI IRQ. */
1176 	CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ);
1177 
1178 	/* Turn off hardware timer. */
1179 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP);
1180 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ);
1181 
1182 	/* Turn off descriptor polling. */
1183 	CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP);
1184 
1185 	/* Turn off time stamps. */
1186 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP);
1187 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
1188 
1189 	/* Configure timeout values. */
1190 	for (i = 0; i < sc->msk_num_port; i++) {
1191 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET);
1192 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
1193 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1),
1194 		    MSK_RI_TO_53);
1195 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1),
1196 		    MSK_RI_TO_53);
1197 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1),
1198 		    MSK_RI_TO_53);
1199 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1),
1200 		    MSK_RI_TO_53);
1201 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1),
1202 		    MSK_RI_TO_53);
1203 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1),
1204 		    MSK_RI_TO_53);
1205 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2),
1206 		    MSK_RI_TO_53);
1207 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2),
1208 		    MSK_RI_TO_53);
1209 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2),
1210 		    MSK_RI_TO_53);
1211 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2),
1212 		    MSK_RI_TO_53);
1213 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2),
1214 		    MSK_RI_TO_53);
1215 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2),
1216 		    MSK_RI_TO_53);
1217 	}
1218 
1219 	/* Disable all interrupts. */
1220 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1221 	CSR_READ_4(sc, B0_HWE_IMSK);
1222 	CSR_WRITE_4(sc, B0_IMSK, 0);
1223 	CSR_READ_4(sc, B0_IMSK);
1224 
1225         /*
1226          * On dual port PCI-X card, there is an problem where status
1227          * can be received out of order due to split transactions.
1228          */
1229 	if (sc->msk_bustype == MSK_PCIX_BUS && sc->msk_num_port > 1) {
1230 		uint16_t pcix_cmd;
1231 		uint8_t pcix;
1232 
1233 		pcix = pci_get_pcixcap_ptr(sc->msk_dev);
1234 
1235 		pcix_cmd = pci_read_config(sc->msk_dev, pcix + 2, 2);
1236 		/* Clear Max Outstanding Split Transactions. */
1237 		pcix_cmd &= ~0x70;
1238 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1239 		pci_write_config(sc->msk_dev, pcix + 2, pcix_cmd, 2);
1240 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1241         }
1242 	if (sc->msk_bustype == MSK_PEX_BUS) {
1243 		uint16_t v, width;
1244 
1245 		v = pci_read_config(sc->msk_dev, PEX_DEV_CTRL, 2);
1246 		/* Change Max. Read Request Size to 4096 bytes. */
1247 		v &= ~PEX_DC_MAX_RRS_MSK;
1248 		v |= PEX_DC_MAX_RD_RQ_SIZE(5);
1249 		pci_write_config(sc->msk_dev, PEX_DEV_CTRL, v, 2);
1250 		width = pci_read_config(sc->msk_dev, PEX_LNK_STAT, 2);
1251 		width = (width & PEX_LS_LINK_WI_MSK) >> 4;
1252 		v = pci_read_config(sc->msk_dev, PEX_LNK_CAP, 2);
1253 		v = (v & PEX_LS_LINK_WI_MSK) >> 4;
1254 		if (v != width) {
1255 			device_printf(sc->msk_dev,
1256 			    "negotiated width of link(x%d) != "
1257 			    "max. width of link(x%d)\n", width, v);
1258 		}
1259 	}
1260 
1261 	/* Clear status list. */
1262 	bzero(sc->msk_stat_ring,
1263 	    sizeof(struct msk_stat_desc) * MSK_STAT_RING_CNT);
1264 	sc->msk_stat_cons = 0;
1265 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
1266 			BUS_DMASYNC_PREWRITE);
1267 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET);
1268 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR);
1269 	/* Set the status list base address. */
1270 	addr = sc->msk_stat_ring_paddr;
1271 	CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr));
1272 	CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr));
1273 	/* Set the status list last index. */
1274 	CSR_WRITE_2(sc, STAT_LAST_IDX, MSK_STAT_RING_CNT - 1);
1275 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC &&
1276 	    sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
1277 		/* WA for dev. #4.3 */
1278 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
1279 		/* WA for dev. #4.18 */
1280 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21);
1281 		CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07);
1282 	} else {
1283 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a);
1284 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10);
1285 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1286 		    sc->msk_hw_rev == CHIP_REV_YU_XL_A0)
1287 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x04);
1288 		else
1289 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x10);
1290 		CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190);
1291 	}
1292 	/*
1293 	 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
1294 	 */
1295 	CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000));
1296 
1297 	/* Enable status unit. */
1298 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON);
1299 
1300 	CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START);
1301 	CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START);
1302 	CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START);
1303 }
1304 
1305 static int
1306 msk_probe(device_t dev)
1307 {
1308 	struct msk_softc *sc = device_get_softc(device_get_parent(dev));
1309 	char desc[100];
1310 
1311 	/*
1312 	 * Not much to do here. We always know there will be
1313 	 * at least one GMAC present, and if there are two,
1314 	 * mskc_attach() will create a second device instance
1315 	 * for us.
1316 	 */
1317 	ksnprintf(desc, sizeof(desc),
1318 	    "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x",
1319 	    model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id,
1320 	    sc->msk_hw_rev);
1321 	device_set_desc_copy(dev, desc);
1322 
1323 	return (0);
1324 }
1325 
1326 static int
1327 msk_attach(device_t dev)
1328 {
1329 	struct msk_softc *sc = device_get_softc(device_get_parent(dev));
1330 	struct msk_if_softc *sc_if = device_get_softc(dev);
1331 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
1332 	int i, port, error;
1333 	uint8_t eaddr[ETHER_ADDR_LEN];
1334 
1335 	port = *(int *)device_get_ivars(dev);
1336 	KKASSERT(port == MSK_PORT_A || port == MSK_PORT_B);
1337 
1338 	kfree(device_get_ivars(dev), M_DEVBUF);
1339 	device_set_ivars(dev, NULL);
1340 
1341 	callout_init(&sc_if->msk_tick_ch);
1342 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1343 
1344 	sc_if->msk_if_dev = dev;
1345 	sc_if->msk_port = port;
1346 	sc_if->msk_softc = sc;
1347 	sc_if->msk_ifp = ifp;
1348 	sc->msk_if[port] = sc_if;
1349 
1350 	/* Setup Tx/Rx queue register offsets. */
1351 	if (port == MSK_PORT_A) {
1352 		sc_if->msk_txq = Q_XA1;
1353 		sc_if->msk_txsq = Q_XS1;
1354 		sc_if->msk_rxq = Q_R1;
1355 	} else {
1356 		sc_if->msk_txq = Q_XA2;
1357 		sc_if->msk_txsq = Q_XS2;
1358 		sc_if->msk_rxq = Q_R2;
1359 	}
1360 
1361 	error = msk_txrx_dma_alloc(sc_if);
1362 	if (error)
1363 		goto fail;
1364 
1365 	ifp->if_softc = sc_if;
1366 	ifp->if_mtu = ETHERMTU;
1367 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1368 	ifp->if_init = msk_init;
1369 	ifp->if_ioctl = msk_ioctl;
1370 	ifp->if_start = msk_start;
1371 	ifp->if_watchdog = msk_watchdog;
1372 	ifq_set_maxlen(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1373 	ifq_set_ready(&ifp->if_snd);
1374 
1375 #ifdef notyet
1376 	/*
1377 	 * IFCAP_RXCSUM capability is intentionally disabled as the hardware
1378 	 * has serious bug in Rx checksum offload for all Yukon II family
1379 	 * hardware. It seems there is a workaround to make it work somtimes.
1380 	 * However, the workaround also have to check OP code sequences to
1381 	 * verify whether the OP code is correct. Sometimes it should compute
1382 	 * IP/TCP/UDP checksum in driver in order to verify correctness of
1383 	 * checksum computed by hardware. If you have to compute checksum
1384 	 * with software to verify the hardware's checksum why have hardware
1385 	 * compute the checksum? I think there is no reason to spend time to
1386 	 * make Rx checksum offload work on Yukon II hardware.
1387 	 */
1388 	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_VLAN_MTU |
1389 			       IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
1390 	ifp->if_hwassist = MSK_CSUM_FEATURES;
1391 	ifp->if_capenable = ifp->if_capabilities;
1392 #endif
1393 
1394 	/*
1395 	 * Get station address for this interface. Note that
1396 	 * dual port cards actually come with three station
1397 	 * addresses: one for each port, plus an extra. The
1398 	 * extra one is used by the SysKonnect driver software
1399 	 * as a 'virtual' station address for when both ports
1400 	 * are operating in failover mode. Currently we don't
1401 	 * use this extra address.
1402 	 */
1403 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1404 		eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i);
1405 
1406 	sc_if->msk_framesize = ifp->if_mtu + ETHER_HDR_LEN + EVL_ENCAPLEN;
1407 
1408 	/*
1409 	 * Do miibus setup.
1410 	 */
1411 	error = mii_phy_probe(dev, &sc_if->msk_miibus,
1412 			      msk_mediachange, msk_mediastatus);
1413 	if (error) {
1414 		device_printf(sc_if->msk_if_dev, "no PHY found!\n");
1415 		goto fail;
1416 	}
1417 
1418 	/*
1419 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1420 	 */
1421 	ether_ifattach(ifp, eaddr, &sc->msk_serializer);
1422 #if 0
1423 	/*
1424 	 * Tell the upper layer(s) we support long frames.
1425 	 * Must appear after the call to ether_ifattach() because
1426 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1427 	 */
1428         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1429 #endif
1430 
1431 	return 0;
1432 fail:
1433 	msk_detach(dev);
1434 	sc->msk_if[port] = NULL;
1435 	return (error);
1436 }
1437 
1438 /*
1439  * Attach the interface. Allocate softc structures, do ifmedia
1440  * setup and ethernet/BPF attach.
1441  */
1442 static int
1443 mskc_attach(device_t dev)
1444 {
1445 	struct msk_softc *sc;
1446 	int error, *port, cpuid;
1447 
1448 	sc = device_get_softc(dev);
1449 	sc->msk_dev = dev;
1450 	lwkt_serialize_init(&sc->msk_serializer);
1451 
1452 	/*
1453 	 * Initailize sysctl variables
1454 	 */
1455 	sc->msk_process_limit = mskc_process_limit;
1456 	sc->msk_intr_rate = mskc_intr_rate;
1457 
1458 #ifndef BURN_BRIDGES
1459 	/*
1460 	 * Handle power management nonsense.
1461 	 */
1462 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1463 		uint32_t irq, bar0, bar1;
1464 
1465 		/* Save important PCI config data. */
1466 		bar0 = pci_read_config(dev, PCIR_BAR(0), 4);
1467 		bar1 = pci_read_config(dev, PCIR_BAR(1), 4);
1468 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
1469 
1470 		/* Reset the power state. */
1471 		device_printf(dev, "chip is in D%d power mode "
1472 			      "-- setting to D0\n", pci_get_powerstate(dev));
1473 
1474 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1475 
1476 		/* Restore PCI config data. */
1477 		pci_write_config(dev, PCIR_BAR(0), bar0, 4);
1478 		pci_write_config(dev, PCIR_BAR(1), bar1, 4);
1479 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
1480 	}
1481 #endif	/* BURN_BRIDGES */
1482 
1483 	/*
1484 	 * Map control/status registers.
1485 	 */
1486 	pci_enable_busmaster(dev);
1487 
1488 	/*
1489 	 * Allocate I/O resource
1490 	 */
1491 #ifdef MSK_USEIOSPACE
1492 	sc->msk_res_type = SYS_RES_IOPORT;
1493 	sc->msk_res_rid = PCIR_BAR(1);
1494 #else
1495 	sc->msk_res_type = SYS_RES_MEMORY;
1496 	sc->msk_res_rid = PCIR_BAR(0);
1497 #endif
1498 	sc->msk_res = bus_alloc_resource_any(dev, sc->msk_res_type,
1499 					     &sc->msk_res_rid, RF_ACTIVE);
1500 	if (sc->msk_res == NULL) {
1501 		if (sc->msk_res_type == SYS_RES_MEMORY) {
1502 			sc->msk_res_type = SYS_RES_IOPORT;
1503 			sc->msk_res_rid = PCIR_BAR(1);
1504 		} else {
1505 			sc->msk_res_type = SYS_RES_MEMORY;
1506 			sc->msk_res_rid = PCIR_BAR(0);
1507 		}
1508 		sc->msk_res = bus_alloc_resource_any(dev, sc->msk_res_type,
1509 						     &sc->msk_res_rid,
1510 						     RF_ACTIVE);
1511 		if (sc->msk_res == NULL) {
1512 			device_printf(dev, "couldn't allocate %s resources\n",
1513 			sc->msk_res_type == SYS_RES_MEMORY ? "memory" : "I/O");
1514 			return (ENXIO);
1515 		}
1516 	}
1517 	sc->msk_res_bt = rman_get_bustag(sc->msk_res);
1518 	sc->msk_res_bh = rman_get_bushandle(sc->msk_res);
1519 
1520 	/*
1521 	 * Allocate IRQ
1522 	 */
1523 	sc->msk_irq_rid = 0;
1524 	sc->msk_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
1525 					     &sc->msk_irq_rid,
1526 					     RF_SHAREABLE | RF_ACTIVE);
1527 	if (sc->msk_irq == NULL) {
1528 		device_printf(dev, "couldn't allocate IRQ resources\n");
1529 		error = ENXIO;
1530 		goto fail;
1531 	}
1532 
1533 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1534 	sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID);
1535 	sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f;
1536 	/* Bail out if chip is not recognized. */
1537 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL ||
1538 	    sc->msk_hw_id > CHIP_ID_YUKON_FE) {
1539 		device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n",
1540 		    sc->msk_hw_id, sc->msk_hw_rev);
1541 		error = ENXIO;
1542 		goto fail;
1543 	}
1544 
1545 	/*
1546 	 * Create sysctl tree
1547 	 */
1548 	sysctl_ctx_init(&sc->msk_sysctl_ctx);
1549 	sc->msk_sysctl_tree = SYSCTL_ADD_NODE(&sc->msk_sysctl_ctx,
1550 					      SYSCTL_STATIC_CHILDREN(_hw),
1551 					      OID_AUTO,
1552 					      device_get_nameunit(dev),
1553 					      CTLFLAG_RD, 0, "");
1554 	if (sc->msk_sysctl_tree == NULL) {
1555 		device_printf(dev, "can't add sysctl node\n");
1556 		error = ENXIO;
1557 		goto fail;
1558 	}
1559 
1560 	SYSCTL_ADD_PROC(&sc->msk_sysctl_ctx,
1561 			SYSCTL_CHILDREN(sc->msk_sysctl_tree),
1562 			OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
1563 			&sc->msk_process_limit, 0, mskc_sysctl_proc_limit,
1564 			"I", "max number of Rx events to process");
1565 	SYSCTL_ADD_PROC(&sc->msk_sysctl_ctx,
1566 			SYSCTL_CHILDREN(sc->msk_sysctl_tree),
1567 			OID_AUTO, "intr_rate", CTLTYPE_INT | CTLFLAG_RW,
1568 			sc, 0, mskc_sysctl_intr_rate,
1569 			"I", "max number of interrupt per second");
1570 
1571 	/* Soft reset. */
1572 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1573 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1574 	sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP);
1575 	if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
1576 		sc->msk_coppertype = 0;
1577 	else
1578 		sc->msk_coppertype = 1;
1579 	/* Check number of MACs. */
1580 	sc->msk_num_port = 1;
1581 	if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
1582 	    CFG_DUAL_MAC_MSK) {
1583 		if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
1584 			sc->msk_num_port++;
1585 	}
1586 
1587 	/* Check bus type. */
1588 	if (pci_is_pcie(sc->msk_dev) == 0)
1589 		sc->msk_bustype = MSK_PEX_BUS;
1590 	else if (pci_is_pcix(sc->msk_dev) == 0)
1591 		sc->msk_bustype = MSK_PCIX_BUS;
1592 	else
1593 		sc->msk_bustype = MSK_PCI_BUS;
1594 
1595 	switch (sc->msk_hw_id) {
1596 	case CHIP_ID_YUKON_EC:
1597 	case CHIP_ID_YUKON_EC_U:
1598 		sc->msk_clock = 125;	/* 125 Mhz */
1599 		break;
1600 	case CHIP_ID_YUKON_FE:
1601 		sc->msk_clock = 100;	/* 100 Mhz */
1602 		break;
1603 	case CHIP_ID_YUKON_XL:
1604 		sc->msk_clock = 156;	/* 156 Mhz */
1605 		break;
1606 	default:
1607 		sc->msk_clock = 156;	/* 156 Mhz */
1608 		break;
1609 	}
1610 
1611 	error = mskc_status_dma_alloc(sc);
1612 	if (error)
1613 		goto fail;
1614 
1615 	/* Set base interrupt mask. */
1616 	sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
1617 	sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1618 	    Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
1619 
1620 	/* Reset the adapter. */
1621 	mskc_reset(sc);
1622 
1623 	error = mskc_setup_rambuffer(sc);
1624 	if (error)
1625 		goto fail;
1626 
1627 	sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1);
1628 	if (sc->msk_devs[MSK_PORT_A] == NULL) {
1629 		device_printf(dev, "failed to add child for PORT_A\n");
1630 		error = ENXIO;
1631 		goto fail;
1632 	}
1633 	port = kmalloc(sizeof(*port), M_DEVBUF, M_WAITOK);
1634 	*port = MSK_PORT_A;
1635 	device_set_ivars(sc->msk_devs[MSK_PORT_A], port);
1636 
1637 	if (sc->msk_num_port > 1) {
1638 		sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1);
1639 		if (sc->msk_devs[MSK_PORT_B] == NULL) {
1640 			device_printf(dev, "failed to add child for PORT_B\n");
1641 			error = ENXIO;
1642 			goto fail;
1643 		}
1644 		port = kmalloc(sizeof(*port), M_DEVBUF, M_WAITOK);
1645 		*port = MSK_PORT_B;
1646 		device_set_ivars(sc->msk_devs[MSK_PORT_B], port);
1647 	}
1648 
1649 	bus_generic_attach(dev);
1650 
1651 	error = bus_setup_intr(dev, sc->msk_irq, INTR_MPSAFE,
1652 			       mskc_intr, sc, &sc->msk_intrhand,
1653 			       &sc->msk_serializer);
1654 	if (error) {
1655 		device_printf(dev, "couldn't set up interrupt handler\n");
1656 		goto fail;
1657 	}
1658 
1659 	cpuid = ithread_cpuid(rman_get_start(sc->msk_irq));
1660 	KKASSERT(cpuid >= 0 && cpuid < ncpus);
1661 
1662 	if (sc->msk_if[0] != NULL)
1663 		sc->msk_if[0]->msk_ifp->if_cpuid = cpuid;
1664 	if (sc->msk_if[1] != NULL)
1665 		sc->msk_if[1]->msk_ifp->if_cpuid = cpuid;
1666 	return 0;
1667 fail:
1668 	mskc_detach(dev);
1669 	return (error);
1670 }
1671 
1672 /*
1673  * Shutdown hardware and free up resources. This can be called any
1674  * time after the mutex has been initialized. It is called in both
1675  * the error case in attach and the normal detach case so it needs
1676  * to be careful about only freeing resources that have actually been
1677  * allocated.
1678  */
1679 static int
1680 msk_detach(device_t dev)
1681 {
1682 	struct msk_if_softc *sc_if = device_get_softc(dev);
1683 
1684 	if (device_is_attached(dev)) {
1685 		struct msk_softc *sc = sc_if->msk_softc;
1686 		struct ifnet *ifp = &sc_if->arpcom.ac_if;
1687 
1688 		lwkt_serialize_enter(ifp->if_serializer);
1689 
1690 		if (sc->msk_intrhand != NULL) {
1691 			if (sc->msk_if[MSK_PORT_A] != NULL)
1692 				msk_stop(sc->msk_if[MSK_PORT_A]);
1693 			if (sc->msk_if[MSK_PORT_B] != NULL)
1694 				msk_stop(sc->msk_if[MSK_PORT_B]);
1695 
1696 			bus_teardown_intr(sc->msk_dev, sc->msk_irq,
1697 					  sc->msk_intrhand);
1698 			sc->msk_intrhand = NULL;
1699 		}
1700 
1701 		lwkt_serialize_exit(ifp->if_serializer);
1702 
1703 		ether_ifdetach(ifp);
1704 	}
1705 
1706 	if (sc_if->msk_miibus != NULL)
1707 		device_delete_child(dev, sc_if->msk_miibus);
1708 
1709 	msk_txrx_dma_free(sc_if);
1710 	return (0);
1711 }
1712 
1713 static int
1714 mskc_detach(device_t dev)
1715 {
1716 	struct msk_softc *sc = device_get_softc(dev);
1717 	int *port, i;
1718 
1719 #ifdef INVARIANTS
1720 	if (device_is_attached(dev)) {
1721 		KASSERT(sc->msk_intrhand == NULL,
1722 			("intr is not torn down yet\n"));
1723 	}
1724 #endif
1725 
1726 	for (i = 0; i < sc->msk_num_port; ++i) {
1727 		if (sc->msk_devs[i] != NULL) {
1728 			port = device_get_ivars(sc->msk_devs[i]);
1729 			if (port != NULL) {
1730 				kfree(port, M_DEVBUF);
1731 				device_set_ivars(sc->msk_devs[i], NULL);
1732 			}
1733 			device_delete_child(dev, sc->msk_devs[i]);
1734 		}
1735 	}
1736 
1737 	/* Disable all interrupts. */
1738 	CSR_WRITE_4(sc, B0_IMSK, 0);
1739 	CSR_READ_4(sc, B0_IMSK);
1740 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1741 	CSR_READ_4(sc, B0_HWE_IMSK);
1742 
1743 	/* LED Off. */
1744 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF);
1745 
1746 	/* Put hardware reset. */
1747 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1748 
1749 	mskc_status_dma_free(sc);
1750 
1751 	if (sc->msk_irq != NULL) {
1752 		bus_release_resource(dev, SYS_RES_IRQ, sc->msk_irq_rid,
1753 				     sc->msk_irq);
1754 	}
1755 	if (sc->msk_res != NULL) {
1756 		bus_release_resource(dev, sc->msk_res_type, sc->msk_res_rid,
1757 				     sc->msk_res);
1758 	}
1759 
1760 	if (sc->msk_sysctl_tree != NULL)
1761 		sysctl_ctx_free(&sc->msk_sysctl_ctx);
1762 
1763 	return (0);
1764 }
1765 
1766 static void
1767 msk_dmamap_mbuf_cb(void *arg, bus_dma_segment_t *segs, int nseg,
1768 		   bus_size_t mapsz __unused, int error)
1769 {
1770 	struct msk_dmamap_arg *ctx = arg;
1771 	int i;
1772 
1773 	if (error)
1774 		return;
1775 
1776 	if (ctx->nseg < nseg) {
1777 		ctx->nseg = 0;
1778 		return;
1779 	}
1780 
1781 	ctx->nseg = nseg;
1782 	for (i = 0; i < ctx->nseg; ++i)
1783 		ctx->segs[i] = segs[i];
1784 }
1785 
1786 static void
1787 msk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1788 {
1789 	struct msk_dmamap_arg *ctx = arg;
1790 	int i;
1791 
1792 	if (error)
1793 		return;
1794 
1795 	KKASSERT(nseg <= ctx->nseg);
1796 
1797 	ctx->nseg = nseg;
1798 	for (i = 0; i < ctx->nseg; ++i)
1799 		ctx->segs[i] = segs[i];
1800 }
1801 
1802 /* Create status DMA region. */
1803 static int
1804 mskc_status_dma_alloc(struct msk_softc *sc)
1805 {
1806 	struct msk_dmamap_arg ctx;
1807 	bus_dma_segment_t seg;
1808 	int error;
1809 
1810 	error = bus_dma_tag_create(
1811 		    NULL,			/* XXX parent */
1812 		    MSK_STAT_ALIGN, 0,		/* alignment, boundary */
1813 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1814 		    BUS_SPACE_MAXADDR,		/* highaddr */
1815 		    NULL, NULL,			/* filter, filterarg */
1816 		    MSK_STAT_RING_SZ,		/* maxsize */
1817 		    1,				/* nsegments */
1818 		    MSK_STAT_RING_SZ,		/* maxsegsize */
1819 		    0,				/* flags */
1820 		    &sc->msk_stat_tag);
1821 	if (error) {
1822 		device_printf(sc->msk_dev,
1823 		    "failed to create status DMA tag\n");
1824 		return (error);
1825 	}
1826 
1827 	/* Allocate DMA'able memory and load the DMA map for status ring. */
1828 	error = bus_dmamem_alloc(sc->msk_stat_tag,
1829 				 (void **)&sc->msk_stat_ring,
1830 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
1831 				 &sc->msk_stat_map);
1832 	if (error) {
1833 		device_printf(sc->msk_dev,
1834 		    "failed to allocate DMA'able memory for status ring\n");
1835 		bus_dma_tag_destroy(sc->msk_stat_tag);
1836 		sc->msk_stat_tag = NULL;
1837 		return (error);
1838 	}
1839 
1840 	bzero(&ctx, sizeof(ctx));
1841 	ctx.nseg = 1;
1842 	ctx.segs = &seg;
1843 	error = bus_dmamap_load(sc->msk_stat_tag, sc->msk_stat_map,
1844 				sc->msk_stat_ring, MSK_STAT_RING_SZ,
1845 				msk_dmamap_cb, &ctx, 0);
1846 	if (error) {
1847 		device_printf(sc->msk_dev,
1848 		    "failed to load DMA'able memory for status ring\n");
1849 		bus_dmamem_free(sc->msk_stat_tag, sc->msk_stat_ring,
1850 				sc->msk_stat_map);
1851 		bus_dma_tag_destroy(sc->msk_stat_tag);
1852 		sc->msk_stat_tag = NULL;
1853 		return (error);
1854 	}
1855 	sc->msk_stat_ring_paddr = seg.ds_addr;
1856 
1857 	return (0);
1858 }
1859 
1860 static void
1861 mskc_status_dma_free(struct msk_softc *sc)
1862 {
1863 	/* Destroy status block. */
1864 	if (sc->msk_stat_tag) {
1865 		bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map);
1866 		bus_dmamem_free(sc->msk_stat_tag, sc->msk_stat_ring,
1867 				sc->msk_stat_map);
1868 		bus_dma_tag_destroy(sc->msk_stat_tag);
1869 		sc->msk_stat_tag = NULL;
1870 	}
1871 }
1872 
1873 static int
1874 msk_txrx_dma_alloc(struct msk_if_softc *sc_if)
1875 {
1876 	int error, i, j;
1877 #ifdef MSK_JUMBO
1878 	struct msk_rxdesc *jrxd;
1879 	struct msk_jpool_entry *entry;
1880 	uint8_t *ptr;
1881 #endif
1882 
1883 	/* Create parent DMA tag. */
1884 	/*
1885 	 * XXX
1886 	 * It seems that Yukon II supports full 64bits DMA operations. But
1887 	 * it needs two descriptors(list elements) for 64bits DMA operations.
1888 	 * Since we don't know what DMA address mappings(32bits or 64bits)
1889 	 * would be used in advance for each mbufs, we limits its DMA space
1890 	 * to be in range of 32bits address space. Otherwise, we should check
1891 	 * what DMA address is used and chain another descriptor for the
1892 	 * 64bits DMA operation. This also means descriptor ring size is
1893 	 * variable. Limiting DMA address to be in 32bit address space greatly
1894 	 * simplyfies descriptor handling and possibly would increase
1895 	 * performance a bit due to efficient handling of descriptors.
1896 	 * Apart from harassing checksum offloading mechanisms, it seems
1897 	 * it's really bad idea to use a seperate descriptor for 64bit
1898 	 * DMA operation to save small descriptor memory. Anyway, I've
1899 	 * never seen these exotic scheme on ethernet interface hardware.
1900 	 */
1901 	error = bus_dma_tag_create(
1902 		    NULL,			/* parent */
1903 		    1, 0,			/* alignment, boundary */
1904 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1905 		    BUS_SPACE_MAXADDR,		/* highaddr */
1906 		    NULL, NULL,			/* filter, filterarg */
1907 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1908 		    0,				/* nsegments */
1909 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1910 		    0,				/* flags */
1911 		    &sc_if->msk_cdata.msk_parent_tag);
1912 	if (error) {
1913 		device_printf(sc_if->msk_if_dev,
1914 			      "failed to create parent DMA tag\n");
1915 		return error;
1916 	}
1917 
1918 	/* Create DMA stuffs for Tx ring. */
1919 	error = msk_dmamem_create(sc_if->msk_if_dev, MSK_TX_RING_SZ,
1920 				  &sc_if->msk_cdata.msk_tx_ring_tag,
1921 				  (void **)&sc_if->msk_rdata.msk_tx_ring,
1922 				  &sc_if->msk_rdata.msk_tx_ring_paddr,
1923 				  &sc_if->msk_cdata.msk_tx_ring_map);
1924 	if (error) {
1925 		device_printf(sc_if->msk_if_dev,
1926 			      "failed to create TX ring DMA stuffs\n");
1927 		return error;
1928 	}
1929 
1930 	/* Create DMA stuffs for Rx ring. */
1931 	error = msk_dmamem_create(sc_if->msk_if_dev, MSK_RX_RING_SZ,
1932 				  &sc_if->msk_cdata.msk_rx_ring_tag,
1933 				  (void **)&sc_if->msk_rdata.msk_rx_ring,
1934 				  &sc_if->msk_rdata.msk_rx_ring_paddr,
1935 				  &sc_if->msk_cdata.msk_rx_ring_map);
1936 	if (error) {
1937 		device_printf(sc_if->msk_if_dev,
1938 			      "failed to create RX ring DMA stuffs\n");
1939 		return error;
1940 	}
1941 
1942 	/* Create tag for Tx buffers. */
1943 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
1944 		    1, 0,			/* alignment, boundary */
1945 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1946 		    BUS_SPACE_MAXADDR,		/* highaddr */
1947 		    NULL, NULL,			/* filter, filterarg */
1948 		    MSK_TSO_MAXSIZE,		/* maxsize */
1949 		    MSK_MAXTXSEGS,		/* nsegments */
1950 		    MSK_TSO_MAXSGSIZE,		/* maxsegsize */
1951 		    0,				/* flags */
1952 		    &sc_if->msk_cdata.msk_tx_tag);
1953 	if (error) {
1954 		device_printf(sc_if->msk_if_dev,
1955 			      "failed to create Tx DMA tag\n");
1956 		return error;
1957 	}
1958 
1959 	/* Create DMA maps for Tx buffers. */
1960 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
1961 		struct msk_txdesc *txd = &sc_if->msk_cdata.msk_txdesc[i];
1962 
1963 		error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag, 0,
1964 		    &txd->tx_dmamap);
1965 		if (error) {
1966 			device_printf(sc_if->msk_if_dev,
1967 				      "failed to create %dth Tx dmamap\n", i);
1968 
1969 			for (j = 0; j < i; ++j) {
1970 				txd = &sc_if->msk_cdata.msk_txdesc[j];
1971 				bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
1972 						   txd->tx_dmamap);
1973 			}
1974 			bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
1975 			sc_if->msk_cdata.msk_tx_tag = NULL;
1976 
1977 			return error;
1978 		}
1979 	}
1980 
1981 	/* Create tag for Rx buffers. */
1982 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
1983 		    1, 0,			/* alignment, boundary */
1984 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1985 		    BUS_SPACE_MAXADDR,		/* highaddr */
1986 		    NULL, NULL,			/* filter, filterarg */
1987 		    MCLBYTES,			/* maxsize */
1988 		    1,				/* nsegments */
1989 		    MCLBYTES,			/* maxsegsize */
1990 		    0,				/* flags */
1991 		    &sc_if->msk_cdata.msk_rx_tag);
1992 	if (error) {
1993 		device_printf(sc_if->msk_if_dev,
1994 			      "failed to create Rx DMA tag\n");
1995 		return error;
1996 	}
1997 
1998 	/* Create DMA maps for Rx buffers. */
1999 	error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2000 				  &sc_if->msk_cdata.msk_rx_sparemap);
2001 	if (error) {
2002 		device_printf(sc_if->msk_if_dev,
2003 			      "failed to create spare Rx dmamap\n");
2004 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2005 		sc_if->msk_cdata.msk_rx_tag = NULL;
2006 		return error;
2007 	}
2008 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2009 		struct msk_rxdesc *rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2010 
2011 		error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2012 					  &rxd->rx_dmamap);
2013 		if (error) {
2014 			device_printf(sc_if->msk_if_dev,
2015 				      "failed to create %dth Rx dmamap\n", i);
2016 
2017 			for (j = 0; j < i; ++j) {
2018 				rxd = &sc_if->msk_cdata.msk_rxdesc[j];
2019 				bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2020 						   rxd->rx_dmamap);
2021 			}
2022 			bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2023 			sc_if->msk_cdata.msk_rx_tag = NULL;
2024 
2025 			return error;
2026 		}
2027 	}
2028 
2029 #ifdef MSK_JUMBO
2030 	SLIST_INIT(&sc_if->msk_jfree_listhead);
2031 	SLIST_INIT(&sc_if->msk_jinuse_listhead);
2032 
2033 	/* Create tag for jumbo Rx ring. */
2034 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2035 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2036 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2037 		    BUS_SPACE_MAXADDR,		/* highaddr */
2038 		    NULL, NULL,			/* filter, filterarg */
2039 		    MSK_JUMBO_RX_RING_SZ,	/* maxsize */
2040 		    1,				/* nsegments */
2041 		    MSK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2042 		    0,				/* flags */
2043 		    NULL, NULL,			/* lockfunc, lockarg */
2044 		    &sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2045 	if (error != 0) {
2046 		device_printf(sc_if->msk_if_dev,
2047 		    "failed to create jumbo Rx ring DMA tag\n");
2048 		goto fail;
2049 	}
2050 
2051 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
2052 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2053 	    (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring,
2054 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2055 	    &sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2056 	if (error != 0) {
2057 		device_printf(sc_if->msk_if_dev,
2058 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2059 		goto fail;
2060 	}
2061 
2062 	ctx.msk_busaddr = 0;
2063 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2064 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
2065 	    sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ,
2066 	    msk_dmamap_cb, &ctx, 0);
2067 	if (error != 0) {
2068 		device_printf(sc_if->msk_if_dev,
2069 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2070 		goto fail;
2071 	}
2072 	sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr;
2073 
2074 	/* Create tag for jumbo buffer blocks. */
2075 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2076 		    PAGE_SIZE, 0,		/* alignment, boundary */
2077 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2078 		    BUS_SPACE_MAXADDR,		/* highaddr */
2079 		    NULL, NULL,			/* filter, filterarg */
2080 		    MSK_JMEM,			/* maxsize */
2081 		    1,				/* nsegments */
2082 		    MSK_JMEM,			/* maxsegsize */
2083 		    0,				/* flags */
2084 		    NULL, NULL,			/* lockfunc, lockarg */
2085 		    &sc_if->msk_cdata.msk_jumbo_tag);
2086 	if (error != 0) {
2087 		device_printf(sc_if->msk_if_dev,
2088 		    "failed to create jumbo Rx buffer block DMA tag\n");
2089 		goto fail;
2090 	}
2091 
2092 	/* Create tag for jumbo Rx buffers. */
2093 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2094 		    PAGE_SIZE, 0,		/* alignment, boundary */
2095 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2096 		    BUS_SPACE_MAXADDR,		/* highaddr */
2097 		    NULL, NULL,			/* filter, filterarg */
2098 		    MCLBYTES * MSK_MAXRXSEGS,	/* maxsize */
2099 		    MSK_MAXRXSEGS,		/* nsegments */
2100 		    MSK_JLEN,			/* maxsegsize */
2101 		    0,				/* flags */
2102 		    NULL, NULL,			/* lockfunc, lockarg */
2103 		    &sc_if->msk_cdata.msk_jumbo_rx_tag);
2104 	if (error != 0) {
2105 		device_printf(sc_if->msk_if_dev,
2106 		    "failed to create jumbo Rx DMA tag\n");
2107 		goto fail;
2108 	}
2109 
2110 	/* Create DMA maps for jumbo Rx buffers. */
2111 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2112 	    &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) {
2113 		device_printf(sc_if->msk_if_dev,
2114 		    "failed to create spare jumbo Rx dmamap\n");
2115 		goto fail;
2116 	}
2117 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2118 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2119 		jrxd->rx_m = NULL;
2120 		jrxd->rx_dmamap = NULL;
2121 		error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2122 		    &jrxd->rx_dmamap);
2123 		if (error != 0) {
2124 			device_printf(sc_if->msk_if_dev,
2125 			    "failed to create jumbo Rx dmamap\n");
2126 			goto fail;
2127 		}
2128 	}
2129 
2130 	/* Allocate DMA'able memory and load the DMA map for jumbo buf. */
2131 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_tag,
2132 	    (void **)&sc_if->msk_rdata.msk_jumbo_buf,
2133 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2134 	    &sc_if->msk_cdata.msk_jumbo_map);
2135 	if (error != 0) {
2136 		device_printf(sc_if->msk_if_dev,
2137 		    "failed to allocate DMA'able memory for jumbo buf\n");
2138 		goto fail;
2139 	}
2140 
2141 	ctx.msk_busaddr = 0;
2142 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_tag,
2143 	    sc_if->msk_cdata.msk_jumbo_map, sc_if->msk_rdata.msk_jumbo_buf,
2144 	    MSK_JMEM, msk_dmamap_cb, &ctx, 0);
2145 	if (error != 0) {
2146 		device_printf(sc_if->msk_if_dev,
2147 		    "failed to load DMA'able memory for jumbobuf\n");
2148 		goto fail;
2149 	}
2150 	sc_if->msk_rdata.msk_jumbo_buf_paddr = ctx.msk_busaddr;
2151 
2152 	/*
2153 	 * Now divide it up into 9K pieces and save the addresses
2154 	 * in an array.
2155 	 */
2156 	ptr = sc_if->msk_rdata.msk_jumbo_buf;
2157 	for (i = 0; i < MSK_JSLOTS; i++) {
2158 		sc_if->msk_cdata.msk_jslots[i] = ptr;
2159 		ptr += MSK_JLEN;
2160 		entry = malloc(sizeof(struct msk_jpool_entry),
2161 		    M_DEVBUF, M_WAITOK);
2162 		if (entry == NULL) {
2163 			device_printf(sc_if->msk_if_dev,
2164 			    "no memory for jumbo buffers!\n");
2165 			error = ENOMEM;
2166 			goto fail;
2167 		}
2168 		entry->slot = i;
2169 		SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry,
2170 		    jpool_entries);
2171 	}
2172 #endif
2173 	return 0;
2174 }
2175 
2176 static void
2177 msk_txrx_dma_free(struct msk_if_softc *sc_if)
2178 {
2179 	struct msk_txdesc *txd;
2180 	struct msk_rxdesc *rxd;
2181 #ifdef MSK_JUMBO
2182 	struct msk_rxdesc *jrxd;
2183 	struct msk_jpool_entry *entry;
2184 #endif
2185 	int i;
2186 
2187 #ifdef MSK_JUMBO
2188 	MSK_JLIST_LOCK(sc_if);
2189 	while ((entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead))) {
2190 		device_printf(sc_if->msk_if_dev,
2191 		    "asked to free buffer that is in use!\n");
2192 		SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries);
2193 		SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry,
2194 		    jpool_entries);
2195 	}
2196 
2197 	while (!SLIST_EMPTY(&sc_if->msk_jfree_listhead)) {
2198 		entry = SLIST_FIRST(&sc_if->msk_jfree_listhead);
2199 		SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries);
2200 		free(entry, M_DEVBUF);
2201 	}
2202 	MSK_JLIST_UNLOCK(sc_if);
2203 
2204 	/* Destroy jumbo buffer block. */
2205 	if (sc_if->msk_cdata.msk_jumbo_map)
2206 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_tag,
2207 		    sc_if->msk_cdata.msk_jumbo_map);
2208 
2209 	if (sc_if->msk_rdata.msk_jumbo_buf) {
2210 		bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_tag,
2211 		    sc_if->msk_rdata.msk_jumbo_buf,
2212 		    sc_if->msk_cdata.msk_jumbo_map);
2213 		sc_if->msk_rdata.msk_jumbo_buf = NULL;
2214 		sc_if->msk_cdata.msk_jumbo_map = NULL;
2215 	}
2216 
2217 	/* Jumbo Rx ring. */
2218 	if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) {
2219 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map)
2220 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2221 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2222 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map &&
2223 		    sc_if->msk_rdata.msk_jumbo_rx_ring)
2224 			bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2225 			    sc_if->msk_rdata.msk_jumbo_rx_ring,
2226 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2227 		sc_if->msk_rdata.msk_jumbo_rx_ring = NULL;
2228 		sc_if->msk_cdata.msk_jumbo_rx_ring_map = NULL;
2229 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2230 		sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL;
2231 	}
2232 
2233 	/* Jumbo Rx buffers. */
2234 	if (sc_if->msk_cdata.msk_jumbo_rx_tag) {
2235 		for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2236 			jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2237 			if (jrxd->rx_dmamap) {
2238 				bus_dmamap_destroy(
2239 				    sc_if->msk_cdata.msk_jumbo_rx_tag,
2240 				    jrxd->rx_dmamap);
2241 				jrxd->rx_dmamap = NULL;
2242 			}
2243 		}
2244 		if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) {
2245 			bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag,
2246 			    sc_if->msk_cdata.msk_jumbo_rx_sparemap);
2247 			sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0;
2248 		}
2249 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag);
2250 		sc_if->msk_cdata.msk_jumbo_rx_tag = NULL;
2251 	}
2252 #endif
2253 
2254 	/* Tx ring. */
2255 	msk_dmamem_destroy(sc_if->msk_cdata.msk_tx_ring_tag,
2256 			   sc_if->msk_rdata.msk_tx_ring,
2257 			   sc_if->msk_cdata.msk_tx_ring_map);
2258 
2259 	/* Rx ring. */
2260 	msk_dmamem_destroy(sc_if->msk_cdata.msk_rx_ring_tag,
2261 			   sc_if->msk_rdata.msk_rx_ring,
2262 			   sc_if->msk_cdata.msk_rx_ring_map);
2263 
2264 	/* Tx buffers. */
2265 	if (sc_if->msk_cdata.msk_tx_tag) {
2266 		for (i = 0; i < MSK_TX_RING_CNT; i++) {
2267 			txd = &sc_if->msk_cdata.msk_txdesc[i];
2268 			bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
2269 					   txd->tx_dmamap);
2270 		}
2271 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
2272 		sc_if->msk_cdata.msk_tx_tag = NULL;
2273 	}
2274 
2275 	/* Rx buffers. */
2276 	if (sc_if->msk_cdata.msk_rx_tag) {
2277 		for (i = 0; i < MSK_RX_RING_CNT; i++) {
2278 			rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2279 			bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2280 					   rxd->rx_dmamap);
2281 		}
2282 		bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2283 				   sc_if->msk_cdata.msk_rx_sparemap);
2284 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2285 		sc_if->msk_cdata.msk_rx_tag = NULL;
2286 	}
2287 
2288 	if (sc_if->msk_cdata.msk_parent_tag) {
2289 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag);
2290 		sc_if->msk_cdata.msk_parent_tag = NULL;
2291 	}
2292 }
2293 
2294 #ifdef MSK_JUMBO
2295 /*
2296  * Allocate a jumbo buffer.
2297  */
2298 static void *
2299 msk_jalloc(struct msk_if_softc *sc_if)
2300 {
2301 	struct msk_jpool_entry *entry;
2302 
2303 	MSK_JLIST_LOCK(sc_if);
2304 
2305 	entry = SLIST_FIRST(&sc_if->msk_jfree_listhead);
2306 
2307 	if (entry == NULL) {
2308 		MSK_JLIST_UNLOCK(sc_if);
2309 		return (NULL);
2310 	}
2311 
2312 	SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries);
2313 	SLIST_INSERT_HEAD(&sc_if->msk_jinuse_listhead, entry, jpool_entries);
2314 
2315 	MSK_JLIST_UNLOCK(sc_if);
2316 
2317 	return (sc_if->msk_cdata.msk_jslots[entry->slot]);
2318 }
2319 
2320 /*
2321  * Release a jumbo buffer.
2322  */
2323 static void
2324 msk_jfree(void *buf, void *args)
2325 {
2326 	struct msk_if_softc *sc_if;
2327 	struct msk_jpool_entry *entry;
2328 	int i;
2329 
2330 	/* Extract the softc struct pointer. */
2331 	sc_if = (struct msk_if_softc *)args;
2332 	KASSERT(sc_if != NULL, ("%s: can't find softc pointer!", __func__));
2333 
2334 	MSK_JLIST_LOCK(sc_if);
2335 	/* Calculate the slot this buffer belongs to. */
2336 	i = ((vm_offset_t)buf
2337 	     - (vm_offset_t)sc_if->msk_rdata.msk_jumbo_buf) / MSK_JLEN;
2338 	KASSERT(i >= 0 && i < MSK_JSLOTS,
2339 	    ("%s: asked to free buffer that we don't manage!", __func__));
2340 
2341 	entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead);
2342 	KASSERT(entry != NULL, ("%s: buffer not in use!", __func__));
2343 	entry->slot = i;
2344 	SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries);
2345 	SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry, jpool_entries);
2346 	if (SLIST_EMPTY(&sc_if->msk_jinuse_listhead))
2347 		wakeup(sc_if);
2348 
2349 	MSK_JLIST_UNLOCK(sc_if);
2350 }
2351 #endif
2352 
2353 /*
2354  * It's copy of ath_defrag(ath(4)).
2355  *
2356  * Defragment an mbuf chain, returning at most maxfrags separate
2357  * mbufs+clusters.  If this is not possible NULL is returned and
2358  * the original mbuf chain is left in it's present (potentially
2359  * modified) state.  We use two techniques: collapsing consecutive
2360  * mbufs and replacing consecutive mbufs by a cluster.
2361  */
2362 static struct mbuf *
2363 msk_defrag(struct mbuf *m0, int how, int maxfrags)
2364 {
2365 	struct mbuf *m, *n, *n2, **prev;
2366 	u_int curfrags;
2367 
2368 	/*
2369 	 * Calculate the current number of frags.
2370 	 */
2371 	curfrags = 0;
2372 	for (m = m0; m != NULL; m = m->m_next)
2373 		curfrags++;
2374 	/*
2375 	 * First, try to collapse mbufs.  Note that we always collapse
2376 	 * towards the front so we don't need to deal with moving the
2377 	 * pkthdr.  This may be suboptimal if the first mbuf has much
2378 	 * less data than the following.
2379 	 */
2380 	m = m0;
2381 again:
2382 	for (;;) {
2383 		n = m->m_next;
2384 		if (n == NULL)
2385 			break;
2386 		if (n->m_len < M_TRAILINGSPACE(m)) {
2387 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
2388 				n->m_len);
2389 			m->m_len += n->m_len;
2390 			m->m_next = n->m_next;
2391 			m_free(n);
2392 			if (--curfrags <= maxfrags)
2393 				return (m0);
2394 		} else
2395 			m = n;
2396 	}
2397 	KASSERT(maxfrags > 1,
2398 		("maxfrags %u, but normal collapse failed", maxfrags));
2399 	/*
2400 	 * Collapse consecutive mbufs to a cluster.
2401 	 */
2402 	prev = &m0->m_next;		/* NB: not the first mbuf */
2403 	while ((n = *prev) != NULL) {
2404 		if ((n2 = n->m_next) != NULL &&
2405 		    n->m_len + n2->m_len < MCLBYTES) {
2406 			m = m_getcl(how, MT_DATA, 0);
2407 			if (m == NULL)
2408 				goto bad;
2409 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
2410 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
2411 				n2->m_len);
2412 			m->m_len = n->m_len + n2->m_len;
2413 			m->m_next = n2->m_next;
2414 			*prev = m;
2415 			m_free(n);
2416 			m_free(n2);
2417 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
2418 				return m0;
2419 			/*
2420 			 * Still not there, try the normal collapse
2421 			 * again before we allocate another cluster.
2422 			 */
2423 			goto again;
2424 		}
2425 		prev = &n->m_next;
2426 	}
2427 	/*
2428 	 * No place where we can collapse to a cluster; punt.
2429 	 * This can occur if, for example, you request 2 frags
2430 	 * but the packet requires that both be clusters (we
2431 	 * never reallocate the first mbuf to avoid moving the
2432 	 * packet header).
2433 	 */
2434 bad:
2435 	return (NULL);
2436 }
2437 
2438 static int
2439 msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head)
2440 {
2441 	struct msk_txdesc *txd, *txd_last;
2442 	struct msk_tx_desc *tx_le;
2443 	struct mbuf *m;
2444 	bus_dmamap_t map;
2445 	struct msk_dmamap_arg ctx;
2446 	bus_dma_segment_t txsegs[MSK_MAXTXSEGS];
2447 	uint32_t control, prod, si;
2448 	uint16_t offset, tcp_offset;
2449 	int error, i;
2450 
2451 	tcp_offset = offset = 0;
2452 	m = *m_head;
2453 	if (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) {
2454 		/*
2455 		 * Since mbuf has no protocol specific structure information
2456 		 * in it we have to inspect protocol information here to
2457 		 * setup TSO and checksum offload. I don't know why Marvell
2458 		 * made a such decision in chip design because other GigE
2459 		 * hardwares normally takes care of all these chores in
2460 		 * hardware. However, TSO performance of Yukon II is very
2461 		 * good such that it's worth to implement it.
2462 		 */
2463 		struct ether_header *eh;
2464 		struct ip *ip;
2465 
2466 		/* TODO check for M_WRITABLE(m) */
2467 
2468 		offset = sizeof(struct ether_header);
2469 		m = m_pullup(m, offset);
2470 		if (m == NULL) {
2471 			*m_head = NULL;
2472 			return (ENOBUFS);
2473 		}
2474 		eh = mtod(m, struct ether_header *);
2475 		/* Check if hardware VLAN insertion is off. */
2476 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2477 			offset = sizeof(struct ether_vlan_header);
2478 			m = m_pullup(m, offset);
2479 			if (m == NULL) {
2480 				*m_head = NULL;
2481 				return (ENOBUFS);
2482 			}
2483 		}
2484 		m = m_pullup(m, offset + sizeof(struct ip));
2485 		if (m == NULL) {
2486 			*m_head = NULL;
2487 			return (ENOBUFS);
2488 		}
2489 		ip = (struct ip *)(mtod(m, char *) + offset);
2490 		offset += (ip->ip_hl << 2);
2491 		tcp_offset = offset;
2492 		/*
2493 		 * It seems that Yukon II has Tx checksum offload bug for
2494 		 * small TCP packets that's less than 60 bytes in size
2495 		 * (e.g. TCP window probe packet, pure ACK packet).
2496 		 * Common work around like padding with zeros to make the
2497 		 * frame minimum ethernet frame size didn't work at all.
2498 		 * Instead of disabling checksum offload completely we
2499 		 * resort to S/W checksum routine when we encounter short
2500 		 * TCP frames.
2501 		 * Short UDP packets appear to be handled correctly by
2502 		 * Yukon II.
2503 		 */
2504 		if (m->m_pkthdr.len < MSK_MIN_FRAMELEN &&
2505 		    (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) {
2506 			uint16_t csum;
2507 
2508 			csum = in_cksum_skip(m, ntohs(ip->ip_len) + offset -
2509 			    (ip->ip_hl << 2), offset);
2510 			*(uint16_t *)(m->m_data + offset +
2511 			    m->m_pkthdr.csum_data) = csum;
2512 			m->m_pkthdr.csum_flags &= ~CSUM_TCP;
2513 		}
2514 		*m_head = m;
2515 	}
2516 
2517 	prod = sc_if->msk_cdata.msk_tx_prod;
2518 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2519 	txd_last = txd;
2520 	map = txd->tx_dmamap;
2521 	bzero(&ctx, sizeof(ctx));
2522 	ctx.nseg = MSK_MAXTXSEGS;
2523 	ctx.segs = txsegs;
2524 	error = bus_dmamap_load_mbuf(sc_if->msk_cdata.msk_tx_tag, map,
2525 	    *m_head, msk_dmamap_mbuf_cb, &ctx, BUS_DMA_NOWAIT);
2526 	if (error == 0 && ctx.nseg == 0) {
2527 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
2528 		error = EFBIG;
2529 	}
2530 	if (error == EFBIG) {
2531 		m = msk_defrag(*m_head, MB_DONTWAIT, MSK_MAXTXSEGS);
2532 		if (m == NULL) {
2533 			m_freem(*m_head);
2534 			*m_head = NULL;
2535 			return (ENOBUFS);
2536 		}
2537 		*m_head = m;
2538 
2539 		bzero(&ctx, sizeof(ctx));
2540 		ctx.nseg = MSK_MAXTXSEGS;
2541 		ctx.segs = txsegs;
2542 		error = bus_dmamap_load_mbuf(sc_if->msk_cdata.msk_tx_tag,
2543 		    map, *m_head, msk_dmamap_mbuf_cb, &ctx, BUS_DMA_NOWAIT);
2544 		if (error == 0 && ctx.nseg == 0) {
2545 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
2546 			error = EFBIG;
2547 		}
2548 		if (error != 0) {
2549 			m_freem(*m_head);
2550 			*m_head = NULL;
2551 			return (error);
2552 		}
2553 	} else if (error != 0) {
2554 		return (error);
2555 	}
2556 
2557 	/* Check number of available descriptors. */
2558 	if (sc_if->msk_cdata.msk_tx_cnt + ctx.nseg >=
2559 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT)) {
2560 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
2561 		return (ENOBUFS);
2562 	}
2563 
2564 	control = 0;
2565 	tx_le = NULL;
2566 
2567 #ifdef notyet
2568 	/* Check if we have a VLAN tag to insert. */
2569 	if ((m->m_flags & M_VLANTAG) != 0) {
2570 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2571 		tx_le->msk_addr = htole32(0);
2572 		tx_le->msk_control = htole32(OP_VLAN | HW_OWNER |
2573 		    htons(m->m_pkthdr.ether_vtag));
2574 		sc_if->msk_cdata.msk_tx_cnt++;
2575 		MSK_INC(prod, MSK_TX_RING_CNT);
2576 		control |= INS_VLAN;
2577 	}
2578 #endif
2579 	/* Check if we have to handle checksum offload. */
2580 	if (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) {
2581 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2582 		tx_le->msk_addr = htole32(((tcp_offset + m->m_pkthdr.csum_data)
2583 		    & 0xffff) | ((uint32_t)tcp_offset << 16));
2584 		tx_le->msk_control = htole32(1 << 16 | (OP_TCPLISW | HW_OWNER));
2585 		control = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
2586 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2587 			control |= UDPTCP;
2588 		sc_if->msk_cdata.msk_tx_cnt++;
2589 		MSK_INC(prod, MSK_TX_RING_CNT);
2590 	}
2591 
2592 	si = prod;
2593 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2594 	tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr));
2595 	tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2596 	    OP_PACKET);
2597 	sc_if->msk_cdata.msk_tx_cnt++;
2598 	MSK_INC(prod, MSK_TX_RING_CNT);
2599 
2600 	for (i = 1; i < ctx.nseg; i++) {
2601 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2602 		tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr));
2603 		tx_le->msk_control = htole32(txsegs[i].ds_len | control |
2604 		    OP_BUFFER | HW_OWNER);
2605 		sc_if->msk_cdata.msk_tx_cnt++;
2606 		MSK_INC(prod, MSK_TX_RING_CNT);
2607 	}
2608 	/* Update producer index. */
2609 	sc_if->msk_cdata.msk_tx_prod = prod;
2610 
2611 	/* Set EOP on the last desciptor. */
2612 	prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT;
2613 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2614 	tx_le->msk_control |= htole32(EOP);
2615 
2616 	/* Turn the first descriptor ownership to hardware. */
2617 	tx_le = &sc_if->msk_rdata.msk_tx_ring[si];
2618 	tx_le->msk_control |= htole32(HW_OWNER);
2619 
2620 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2621 	map = txd_last->tx_dmamap;
2622 	txd_last->tx_dmamap = txd->tx_dmamap;
2623 	txd->tx_dmamap = map;
2624 	txd->tx_m = m;
2625 
2626 	/* Sync descriptors. */
2627 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE);
2628 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
2629 	    sc_if->msk_cdata.msk_tx_ring_map, BUS_DMASYNC_PREWRITE);
2630 
2631 	return (0);
2632 }
2633 
2634 static void
2635 msk_start(struct ifnet *ifp)
2636 {
2637         struct msk_if_softc *sc_if;
2638         struct mbuf *m_head;
2639 	int enq;
2640 
2641 	sc_if = ifp->if_softc;
2642 
2643 	ASSERT_SERIALIZED(ifp->if_serializer);
2644 
2645 	if (!sc_if->msk_link) {
2646 		ifq_purge(&ifp->if_snd);
2647 		return;
2648 	}
2649 
2650 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2651 		return;
2652 
2653 	for (enq = 0; !ifq_is_empty(&ifp->if_snd) &&
2654 	    sc_if->msk_cdata.msk_tx_cnt <
2655 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT); ) {
2656 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
2657 		if (m_head == NULL)
2658 			break;
2659 
2660 		/*
2661 		 * Pack the data into the transmit ring. If we
2662 		 * don't have room, set the OACTIVE flag and wait
2663 		 * for the NIC to drain the ring.
2664 		 */
2665 		if (msk_encap(sc_if, &m_head) != 0) {
2666 			if (m_head == NULL)
2667 				break;
2668 			m_freem(m_head);
2669 			ifp->if_flags |= IFF_OACTIVE;
2670 			break;
2671 		}
2672 
2673 		enq++;
2674 		/*
2675 		 * If there's a BPF listener, bounce a copy of this frame
2676 		 * to him.
2677 		 */
2678 		BPF_MTAP(ifp, m_head);
2679 	}
2680 
2681 	if (enq > 0) {
2682 		/* Transmit */
2683 		CSR_WRITE_2(sc_if->msk_softc,
2684 		    Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG),
2685 		    sc_if->msk_cdata.msk_tx_prod);
2686 
2687 		/* Set a timeout in case the chip goes out to lunch. */
2688 		ifp->if_timer = MSK_TX_TIMEOUT;
2689 	}
2690 }
2691 
2692 static void
2693 msk_watchdog(struct ifnet *ifp)
2694 {
2695 	struct msk_if_softc *sc_if = ifp->if_softc;
2696 	uint32_t ridx;
2697 	int idx;
2698 
2699 	ASSERT_SERIALIZED(ifp->if_serializer);
2700 
2701 	if (sc_if->msk_link == 0) {
2702 		if (bootverbose)
2703 			if_printf(sc_if->msk_ifp, "watchdog timeout "
2704 			   "(missed link)\n");
2705 		ifp->if_oerrors++;
2706 		msk_init(sc_if);
2707 		return;
2708 	}
2709 
2710 	/*
2711 	 * Reclaim first as there is a possibility of losing Tx completion
2712 	 * interrupts.
2713 	 */
2714 	ridx = sc_if->msk_port == MSK_PORT_A ? STAT_TXA1_RIDX : STAT_TXA2_RIDX;
2715 	idx = CSR_READ_2(sc_if->msk_softc, ridx);
2716 	if (sc_if->msk_cdata.msk_tx_cons != idx) {
2717 		msk_txeof(sc_if, idx);
2718 		if (sc_if->msk_cdata.msk_tx_cnt == 0) {
2719 			if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
2720 			    "-- recovering\n");
2721 			if (!ifq_is_empty(&ifp->if_snd))
2722 				if_devstart(ifp);
2723 			return;
2724 		}
2725 	}
2726 
2727 	if_printf(ifp, "watchdog timeout\n");
2728 	ifp->if_oerrors++;
2729 	msk_init(sc_if);
2730 	if (!ifq_is_empty(&ifp->if_snd))
2731 		if_devstart(ifp);
2732 }
2733 
2734 static int
2735 mskc_shutdown(device_t dev)
2736 {
2737 	struct msk_softc *sc = device_get_softc(dev);
2738 	int i;
2739 
2740 	lwkt_serialize_enter(&sc->msk_serializer);
2741 
2742 	for (i = 0; i < sc->msk_num_port; i++) {
2743 		if (sc->msk_if[i] != NULL)
2744 			msk_stop(sc->msk_if[i]);
2745 	}
2746 
2747 	/* Disable all interrupts. */
2748 	CSR_WRITE_4(sc, B0_IMSK, 0);
2749 	CSR_READ_4(sc, B0_IMSK);
2750 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2751 	CSR_READ_4(sc, B0_HWE_IMSK);
2752 
2753 	/* Put hardware reset. */
2754 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2755 
2756 	lwkt_serialize_exit(&sc->msk_serializer);
2757 	return (0);
2758 }
2759 
2760 static int
2761 mskc_suspend(device_t dev)
2762 {
2763 	struct msk_softc *sc = device_get_softc(dev);
2764 	int i;
2765 
2766 	lwkt_serialize_enter(&sc->msk_serializer);
2767 
2768 	for (i = 0; i < sc->msk_num_port; i++) {
2769 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2770 		    ((sc->msk_if[i]->msk_ifp->if_flags & IFF_RUNNING) != 0))
2771 			msk_stop(sc->msk_if[i]);
2772 	}
2773 
2774 	/* Disable all interrupts. */
2775 	CSR_WRITE_4(sc, B0_IMSK, 0);
2776 	CSR_READ_4(sc, B0_IMSK);
2777 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2778 	CSR_READ_4(sc, B0_HWE_IMSK);
2779 
2780 	mskc_phy_power(sc, MSK_PHY_POWERDOWN);
2781 
2782 	/* Put hardware reset. */
2783 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2784 	sc->msk_suspended = 1;
2785 
2786 	lwkt_serialize_exit(&sc->msk_serializer);
2787 
2788 	return (0);
2789 }
2790 
2791 static int
2792 mskc_resume(device_t dev)
2793 {
2794 	struct msk_softc *sc = device_get_softc(dev);
2795 	int i;
2796 
2797 	lwkt_serialize_enter(&sc->msk_serializer);
2798 
2799 	mskc_reset(sc);
2800 	for (i = 0; i < sc->msk_num_port; i++) {
2801 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2802 		    ((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0))
2803 			msk_init(sc->msk_if[i]);
2804 	}
2805 	sc->msk_suspended = 0;
2806 
2807 	lwkt_serialize_exit(&sc->msk_serializer);
2808 
2809 	return (0);
2810 }
2811 
2812 static void
2813 msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len,
2814 	  struct mbuf_chain *chain)
2815 {
2816 	struct mbuf *m;
2817 	struct ifnet *ifp;
2818 	struct msk_rxdesc *rxd;
2819 	int cons, rxlen;
2820 
2821 	ifp = sc_if->msk_ifp;
2822 
2823 	cons = sc_if->msk_cdata.msk_rx_cons;
2824 	do {
2825 		rxlen = status >> 16;
2826 		if ((status & GMR_FS_VLAN) != 0 &&
2827 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2828 			rxlen -= EVL_ENCAPLEN;
2829 		if (len > sc_if->msk_framesize ||
2830 		    ((status & GMR_FS_ANY_ERR) != 0) ||
2831 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
2832 			/* Don't count flow-control packet as errors. */
2833 			if ((status & GMR_FS_GOOD_FC) == 0)
2834 				ifp->if_ierrors++;
2835 			msk_discard_rxbuf(sc_if, cons);
2836 			break;
2837 		}
2838 		rxd = &sc_if->msk_cdata.msk_rxdesc[cons];
2839 		m = rxd->rx_m;
2840 		if (msk_newbuf(sc_if, cons) != 0) {
2841 			ifp->if_iqdrops++;
2842 			/* Reuse old buffer. */
2843 			msk_discard_rxbuf(sc_if, cons);
2844 			break;
2845 		}
2846 		m->m_pkthdr.rcvif = ifp;
2847 		m->m_pkthdr.len = m->m_len = len;
2848 		ifp->if_ipackets++;
2849 #ifdef notyet
2850 		/* Check for VLAN tagged packets. */
2851 		if ((status & GMR_FS_VLAN) != 0 &&
2852 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2853 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
2854 			m->m_flags |= M_VLANTAG;
2855 		}
2856 #endif
2857 
2858 #ifdef ETHER_INPUT_CHAIN
2859 #ifdef ETHER_INPUT2
2860 		ether_input_chain2(ifp, m, chain);
2861 #else
2862 		ether_input_chain(ifp, m, chain);
2863 #endif
2864 #else
2865 		ifp->if_input(ifp, m);
2866 #endif
2867 	} while (0);
2868 
2869 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
2870 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT);
2871 }
2872 
2873 #ifdef MSK_JUMBO
2874 static void
2875 msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
2876 {
2877 	struct mbuf *m;
2878 	struct ifnet *ifp;
2879 	struct msk_rxdesc *jrxd;
2880 	int cons, rxlen;
2881 
2882 	ifp = sc_if->msk_ifp;
2883 
2884 	MSK_IF_LOCK_ASSERT(sc_if);
2885 
2886 	cons = sc_if->msk_cdata.msk_rx_cons;
2887 	do {
2888 		rxlen = status >> 16;
2889 		if ((status & GMR_FS_VLAN) != 0 &&
2890 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2891 			rxlen -= ETHER_VLAN_ENCAP_LEN;
2892 		if (len > sc_if->msk_framesize ||
2893 		    ((status & GMR_FS_ANY_ERR) != 0) ||
2894 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
2895 			/* Don't count flow-control packet as errors. */
2896 			if ((status & GMR_FS_GOOD_FC) == 0)
2897 				ifp->if_ierrors++;
2898 			msk_discard_jumbo_rxbuf(sc_if, cons);
2899 			break;
2900 		}
2901 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons];
2902 		m = jrxd->rx_m;
2903 		if (msk_jumbo_newbuf(sc_if, cons) != 0) {
2904 			ifp->if_iqdrops++;
2905 			/* Reuse old buffer. */
2906 			msk_discard_jumbo_rxbuf(sc_if, cons);
2907 			break;
2908 		}
2909 		m->m_pkthdr.rcvif = ifp;
2910 		m->m_pkthdr.len = m->m_len = len;
2911 		ifp->if_ipackets++;
2912 		/* Check for VLAN tagged packets. */
2913 		if ((status & GMR_FS_VLAN) != 0 &&
2914 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2915 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
2916 			m->m_flags |= M_VLANTAG;
2917 		}
2918 		MSK_IF_UNLOCK(sc_if);
2919 		(*ifp->if_input)(ifp, m);
2920 		MSK_IF_LOCK(sc_if);
2921 	} while (0);
2922 
2923 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
2924 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT);
2925 }
2926 #endif
2927 
2928 static void
2929 msk_txeof(struct msk_if_softc *sc_if, int idx)
2930 {
2931 	struct msk_txdesc *txd;
2932 	struct msk_tx_desc *cur_tx;
2933 	struct ifnet *ifp;
2934 	uint32_t control;
2935 	int cons, prog;
2936 
2937 	ifp = sc_if->msk_ifp;
2938 
2939 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
2940 	    sc_if->msk_cdata.msk_tx_ring_map, BUS_DMASYNC_POSTREAD);
2941 
2942 	/*
2943 	 * Go through our tx ring and free mbufs for those
2944 	 * frames that have been sent.
2945 	 */
2946 	cons = sc_if->msk_cdata.msk_tx_cons;
2947 	prog = 0;
2948 	for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) {
2949 		if (sc_if->msk_cdata.msk_tx_cnt <= 0)
2950 			break;
2951 		prog++;
2952 		cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons];
2953 		control = le32toh(cur_tx->msk_control);
2954 		sc_if->msk_cdata.msk_tx_cnt--;
2955 		ifp->if_flags &= ~IFF_OACTIVE;
2956 		if ((control & EOP) == 0)
2957 			continue;
2958 		txd = &sc_if->msk_cdata.msk_txdesc[cons];
2959 		bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap,
2960 		    BUS_DMASYNC_POSTWRITE);
2961 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap);
2962 
2963 		ifp->if_opackets++;
2964 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!",
2965 		    __func__));
2966 		m_freem(txd->tx_m);
2967 		txd->tx_m = NULL;
2968 	}
2969 
2970 	if (prog > 0) {
2971 		sc_if->msk_cdata.msk_tx_cons = cons;
2972 		if (sc_if->msk_cdata.msk_tx_cnt == 0)
2973 			ifp->if_timer = 0;
2974 		/* No need to sync LEs as we didn't update LEs. */
2975 	}
2976 }
2977 
2978 static void
2979 msk_tick(void *xsc_if)
2980 {
2981 	struct msk_if_softc *sc_if = xsc_if;
2982 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2983 	struct mii_data *mii;
2984 
2985 	lwkt_serialize_enter(ifp->if_serializer);
2986 
2987 	mii = device_get_softc(sc_if->msk_miibus);
2988 
2989 	mii_tick(mii);
2990 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
2991 
2992 	lwkt_serialize_exit(ifp->if_serializer);
2993 }
2994 
2995 static void
2996 msk_intr_phy(struct msk_if_softc *sc_if)
2997 {
2998 	uint16_t status;
2999 
3000 	msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3001 	status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3002 	/* Handle FIFO Underrun/Overflow? */
3003 	if (status & PHY_M_IS_FIFO_ERROR) {
3004 		device_printf(sc_if->msk_if_dev,
3005 		    "PHY FIFO underrun/overflow.\n");
3006 	}
3007 }
3008 
3009 static void
3010 msk_intr_gmac(struct msk_if_softc *sc_if)
3011 {
3012 	struct msk_softc *sc;
3013 	uint8_t status;
3014 
3015 	sc = sc_if->msk_softc;
3016 	status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3017 
3018 	/* GMAC Rx FIFO overrun. */
3019 	if ((status & GM_IS_RX_FF_OR) != 0) {
3020 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3021 		    GMF_CLI_RX_FO);
3022 		device_printf(sc_if->msk_if_dev, "Rx FIFO overrun!\n");
3023 	}
3024 	/* GMAC Tx FIFO underrun. */
3025 	if ((status & GM_IS_TX_FF_UR) != 0) {
3026 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3027 		    GMF_CLI_TX_FU);
3028 		device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n");
3029 		/*
3030 		 * XXX
3031 		 * In case of Tx underrun, we may need to flush/reset
3032 		 * Tx MAC but that would also require resynchronization
3033 		 * with status LEs. Reintializing status LEs would
3034 		 * affect other port in dual MAC configuration so it
3035 		 * should be avoided as possible as we can.
3036 		 * Due to lack of documentation it's all vague guess but
3037 		 * it needs more investigation.
3038 		 */
3039 	}
3040 }
3041 
3042 static void
3043 msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status)
3044 {
3045 	struct msk_softc *sc;
3046 
3047 	sc = sc_if->msk_softc;
3048 	if ((status & Y2_IS_PAR_RD1) != 0) {
3049 		device_printf(sc_if->msk_if_dev,
3050 		    "RAM buffer read parity error\n");
3051 		/* Clear IRQ. */
3052 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3053 		    RI_CLR_RD_PERR);
3054 	}
3055 	if ((status & Y2_IS_PAR_WR1) != 0) {
3056 		device_printf(sc_if->msk_if_dev,
3057 		    "RAM buffer write parity error\n");
3058 		/* Clear IRQ. */
3059 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3060 		    RI_CLR_WR_PERR);
3061 	}
3062 	if ((status & Y2_IS_PAR_MAC1) != 0) {
3063 		device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n");
3064 		/* Clear IRQ. */
3065 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3066 		    GMF_CLI_TX_PE);
3067 	}
3068 	if ((status & Y2_IS_PAR_RX1) != 0) {
3069 		device_printf(sc_if->msk_if_dev, "Rx parity error\n");
3070 		/* Clear IRQ. */
3071 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
3072 	}
3073 	if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
3074 		device_printf(sc_if->msk_if_dev, "TCP segmentation error\n");
3075 		/* Clear IRQ. */
3076 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP);
3077 	}
3078 }
3079 
3080 static void
3081 mskc_intr_hwerr(struct msk_softc *sc)
3082 {
3083 	uint32_t status;
3084 	uint32_t tlphead[4];
3085 
3086 	status = CSR_READ_4(sc, B0_HWE_ISRC);
3087 	/* Time Stamp timer overflow. */
3088 	if ((status & Y2_IS_TIST_OV) != 0)
3089 		CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3090 	if ((status & Y2_IS_PCI_NEXP) != 0) {
3091 		/*
3092 		 * PCI Express Error occured which is not described in PEX
3093 		 * spec.
3094 		 * This error is also mapped either to Master Abort(
3095 		 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
3096 		 * can only be cleared there.
3097                  */
3098 		device_printf(sc->msk_dev,
3099 		    "PCI Express protocol violation error\n");
3100 	}
3101 
3102 	if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
3103 		uint16_t v16;
3104 
3105 		if ((status & Y2_IS_MST_ERR) != 0)
3106 			device_printf(sc->msk_dev,
3107 			    "unexpected IRQ Status error\n");
3108 		else
3109 			device_printf(sc->msk_dev,
3110 			    "unexpected IRQ Master error\n");
3111 		/* Reset all bits in the PCI status register. */
3112 		v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
3113 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3114 		pci_write_config(sc->msk_dev, PCIR_STATUS, v16 |
3115 		    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
3116 		    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
3117 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3118 	}
3119 
3120 	/* Check for PCI Express Uncorrectable Error. */
3121 	if ((status & Y2_IS_PCI_EXP) != 0) {
3122 		uint32_t v32;
3123 
3124 		/*
3125 		 * On PCI Express bus bridges are called root complexes (RC).
3126 		 * PCI Express errors are recognized by the root complex too,
3127 		 * which requests the system to handle the problem. After
3128 		 * error occurence it may be that no access to the adapter
3129 		 * may be performed any longer.
3130 		 */
3131 
3132 		v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
3133 		if ((v32 & PEX_UNSUP_REQ) != 0) {
3134 			/* Ignore unsupported request error. */
3135 			if (bootverbose) {
3136 				device_printf(sc->msk_dev,
3137 				    "Uncorrectable PCI Express error\n");
3138 			}
3139 		}
3140 		if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
3141 			int i;
3142 
3143 			/* Get TLP header form Log Registers. */
3144 			for (i = 0; i < 4; i++)
3145 				tlphead[i] = CSR_PCI_READ_4(sc,
3146 				    PEX_HEADER_LOG + i * 4);
3147 			/* Check for vendor defined broadcast message. */
3148 			if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
3149 				sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
3150 				CSR_WRITE_4(sc, B0_HWE_IMSK,
3151 				    sc->msk_intrhwemask);
3152 				CSR_READ_4(sc, B0_HWE_IMSK);
3153 			}
3154 		}
3155 		/* Clear the interrupt. */
3156 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3157 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
3158 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3159 	}
3160 
3161 	if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL)
3162 		msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status);
3163 	if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL)
3164 		msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8);
3165 }
3166 
3167 static __inline void
3168 msk_rxput(struct msk_if_softc *sc_if)
3169 {
3170 	struct msk_softc *sc;
3171 
3172 	sc = sc_if->msk_softc;
3173 #ifdef MSK_JUMBO
3174 	if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN)) {
3175 		bus_dmamap_sync(
3176 		    sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
3177 		    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
3178 		    BUS_DMASYNC_PREWRITE);
3179 	} else
3180 #endif
3181 	{
3182 		bus_dmamap_sync(
3183 		    sc_if->msk_cdata.msk_rx_ring_tag,
3184 		    sc_if->msk_cdata.msk_rx_ring_map,
3185 		    BUS_DMASYNC_PREWRITE);
3186 	}
3187 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq,
3188 	    PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod);
3189 }
3190 
3191 static int
3192 mskc_handle_events(struct msk_softc *sc)
3193 {
3194 	struct msk_if_softc *sc_if;
3195 	int rxput[2];
3196 	struct msk_stat_desc *sd;
3197 	uint32_t control, status;
3198 	int cons, idx, len, port, rxprog;
3199 #ifdef ETHER_INPUT_CHAIN
3200 	struct mbuf_chain chain0[MAXCPU];
3201 #endif
3202 	struct mbuf_chain *chain;
3203 
3204 	idx = CSR_READ_2(sc, STAT_PUT_IDX);
3205 	if (idx == sc->msk_stat_cons)
3206 		return (0);
3207 
3208 #ifdef ETHER_INPUT_CHAIN
3209 	chain = chain0;
3210 	ether_input_chain_init(chain);
3211 #else
3212 	chain = NULL;
3213 #endif
3214 
3215 	/* Sync status LEs. */
3216 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3217 			BUS_DMASYNC_POSTREAD);
3218 	/* XXX Sync Rx LEs here. */
3219 
3220 	rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0;
3221 
3222 	rxprog = 0;
3223 	for (cons = sc->msk_stat_cons; cons != idx;) {
3224 		sd = &sc->msk_stat_ring[cons];
3225 		control = le32toh(sd->msk_control);
3226 		if ((control & HW_OWNER) == 0)
3227 			break;
3228 		/*
3229 		 * Marvell's FreeBSD driver updates status LE after clearing
3230 		 * HW_OWNER. However we don't have a way to sync single LE
3231 		 * with bus_dma(9) API. bus_dma(9) provides a way to sync
3232 		 * an entire DMA map. So don't sync LE until we have a better
3233 		 * way to sync LEs.
3234 		 */
3235 		control &= ~HW_OWNER;
3236 		sd->msk_control = htole32(control);
3237 		status = le32toh(sd->msk_status);
3238 		len = control & STLE_LEN_MASK;
3239 		port = (control >> 16) & 0x01;
3240 		sc_if = sc->msk_if[port];
3241 		if (sc_if == NULL) {
3242 			device_printf(sc->msk_dev, "invalid port opcode "
3243 			    "0x%08x\n", control & STLE_OP_MASK);
3244 			continue;
3245 		}
3246 
3247 		switch (control & STLE_OP_MASK) {
3248 		case OP_RXVLAN:
3249 			sc_if->msk_vtag = ntohs(len);
3250 			break;
3251 		case OP_RXCHKSVLAN:
3252 			sc_if->msk_vtag = ntohs(len);
3253 			break;
3254 		case OP_RXSTAT:
3255 #ifdef MSK_JUMBO
3256 			if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN))
3257 				msk_jumbo_rxeof(sc_if, status, len);
3258 			else
3259 #endif
3260 				msk_rxeof(sc_if, status, len, chain);
3261 			rxprog++;
3262 			/*
3263 			 * Because there is no way to sync single Rx LE
3264 			 * put the DMA sync operation off until the end of
3265 			 * event processing.
3266 			 */
3267 			rxput[port]++;
3268 			/* Update prefetch unit if we've passed water mark. */
3269 			if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) {
3270 				msk_rxput(sc_if);
3271 				rxput[port] = 0;
3272 			}
3273 			break;
3274 		case OP_TXINDEXLE:
3275 			if (sc->msk_if[MSK_PORT_A] != NULL) {
3276 				msk_txeof(sc->msk_if[MSK_PORT_A],
3277 				    status & STLE_TXA1_MSKL);
3278 			}
3279 			if (sc->msk_if[MSK_PORT_B] != NULL) {
3280 				msk_txeof(sc->msk_if[MSK_PORT_B],
3281 				    ((status & STLE_TXA2_MSKL) >>
3282 				    STLE_TXA2_SHIFTL) |
3283 				    ((len & STLE_TXA2_MSKH) <<
3284 				    STLE_TXA2_SHIFTH));
3285 			}
3286 			break;
3287 		default:
3288 			device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n",
3289 			    control & STLE_OP_MASK);
3290 			break;
3291 		}
3292 		MSK_INC(cons, MSK_STAT_RING_CNT);
3293 		if (rxprog > sc->msk_process_limit)
3294 			break;
3295 	}
3296 
3297 #ifdef ETHER_INPUT_CHAIN
3298 	if (rxprog > 0)
3299 		ether_input_dispatch(chain);
3300 #endif
3301 
3302 	sc->msk_stat_cons = cons;
3303 	/* XXX We should sync status LEs here. See above notes. */
3304 
3305 	if (rxput[MSK_PORT_A] > 0)
3306 		msk_rxput(sc->msk_if[MSK_PORT_A]);
3307 	if (rxput[MSK_PORT_B] > 0)
3308 		msk_rxput(sc->msk_if[MSK_PORT_B]);
3309 
3310 	return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX));
3311 }
3312 
3313 /* Legacy interrupt handler for shared interrupt. */
3314 static void
3315 mskc_intr(void *xsc)
3316 {
3317 	struct msk_softc *sc;
3318 	struct msk_if_softc *sc_if0, *sc_if1;
3319 	struct ifnet *ifp0, *ifp1;
3320 	uint32_t status;
3321 
3322 	sc = xsc;
3323 	ASSERT_SERIALIZED(&sc->msk_serializer);
3324 
3325 	/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3326 	status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3327 	if (status == 0 || status == 0xffffffff || sc->msk_suspended != 0 ||
3328 	    (status & sc->msk_intrmask) == 0) {
3329 		CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3330 		return;
3331 	}
3332 
3333 	sc_if0 = sc->msk_if[MSK_PORT_A];
3334 	sc_if1 = sc->msk_if[MSK_PORT_B];
3335 	ifp0 = ifp1 = NULL;
3336 	if (sc_if0 != NULL)
3337 		ifp0 = sc_if0->msk_ifp;
3338 	if (sc_if1 != NULL)
3339 		ifp1 = sc_if1->msk_ifp;
3340 
3341 	if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3342 		msk_intr_phy(sc_if0);
3343 	if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3344 		msk_intr_phy(sc_if1);
3345 	if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3346 		msk_intr_gmac(sc_if0);
3347 	if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3348 		msk_intr_gmac(sc_if1);
3349 	if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3350 		device_printf(sc->msk_dev, "Rx descriptor error\n");
3351 		sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3352 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3353 		CSR_READ_4(sc, B0_IMSK);
3354 	}
3355         if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3356 		device_printf(sc->msk_dev, "Tx descriptor error\n");
3357 		sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3358 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3359 		CSR_READ_4(sc, B0_IMSK);
3360 	}
3361 	if ((status & Y2_IS_HW_ERR) != 0)
3362 		mskc_intr_hwerr(sc);
3363 
3364 	while (mskc_handle_events(sc) != 0)
3365 		;
3366 	if ((status & Y2_IS_STAT_BMU) != 0)
3367 		CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3368 
3369 	/* Reenable interrupts. */
3370 	CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3371 
3372 	if (ifp0 != NULL && (ifp0->if_flags & IFF_RUNNING) != 0 &&
3373 	    !ifq_is_empty(&ifp0->if_snd))
3374 		if_devstart(ifp0);
3375 	if (ifp1 != NULL && (ifp1->if_flags & IFF_RUNNING) != 0 &&
3376 	    !ifq_is_empty(&ifp1->if_snd))
3377 		if_devstart(ifp1);
3378 }
3379 
3380 static void
3381 msk_init(void *xsc)
3382 {
3383 	struct msk_if_softc *sc_if = xsc;
3384 	struct msk_softc *sc = sc_if->msk_softc;
3385 	struct ifnet *ifp = sc_if->msk_ifp;
3386 	struct mii_data	 *mii;
3387 	uint16_t eaddr[ETHER_ADDR_LEN / 2];
3388 	uint16_t gmac;
3389 	int error, i;
3390 
3391 	ASSERT_SERIALIZED(ifp->if_serializer);
3392 
3393 	mii = device_get_softc(sc_if->msk_miibus);
3394 
3395 	error = 0;
3396 	/* Cancel pending I/O and free all Rx/Tx buffers. */
3397 	msk_stop(sc_if);
3398 
3399 	sc_if->msk_framesize = ifp->if_mtu + ETHER_HDR_LEN + EVL_ENCAPLEN;
3400 	if (sc_if->msk_framesize > MSK_MAX_FRAMELEN &&
3401 	    sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
3402 		/*
3403 		 * In Yukon EC Ultra, TSO & checksum offload is not
3404 		 * supported for jumbo frame.
3405 		 */
3406 		ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
3407 		ifp->if_capenable &= ~IFCAP_TXCSUM;
3408 	}
3409 
3410 	/*
3411 	 * Initialize GMAC first.
3412 	 * Without this initialization, Rx MAC did not work as expected
3413 	 * and Rx MAC garbled status LEs and it resulted in out-of-order
3414 	 * or duplicated frame delivery which in turn showed very poor
3415 	 * Rx performance.(I had to write a packet analysis code that
3416 	 * could be embeded in driver to diagnose this issue.)
3417 	 * I've spent almost 2 months to fix this issue. If I have had
3418 	 * datasheet for Yukon II I wouldn't have encountered this. :-(
3419 	 */
3420 	gmac = GM_GPCR_SPEED_100 | GM_GPCR_SPEED_1000 | GM_GPCR_DUP_FULL;
3421 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
3422 
3423 	/* Dummy read the Interrupt Source Register. */
3424 	CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3425 
3426 	/* Set MIB Clear Counter Mode. */
3427 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
3428 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
3429 	/* Read all MIB Counters with Clear Mode set. */
3430 	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
3431 		GMAC_READ_2(sc, sc_if->msk_port, GM_MIB_CNT_BASE + 8 * i);
3432 	/* Clear MIB Clear Counter Mode. */
3433 	gmac &= ~GM_PAR_MIB_CLR;
3434 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
3435 
3436 	/* Disable FCS. */
3437 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS);
3438 
3439 	/* Setup Transmit Control Register. */
3440 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
3441 
3442 	/* Setup Transmit Flow Control Register. */
3443 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff);
3444 
3445 	/* Setup Transmit Parameter Register. */
3446 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM,
3447 	    TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
3448 	    TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
3449 
3450 	gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
3451 	    GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
3452 
3453 	if (sc_if->msk_framesize > MSK_MAX_FRAMELEN)
3454 		gmac |= GM_SMOD_JUMBO_ENA;
3455 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac);
3456 
3457 	/* Set station address. */
3458         bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
3459         for (i = 0; i < ETHER_ADDR_LEN /2; i++)
3460 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L + i * 4,
3461 		    eaddr[i]);
3462         for (i = 0; i < ETHER_ADDR_LEN /2; i++)
3463 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L + i * 4,
3464 		    eaddr[i]);
3465 
3466 	/* Disable interrupts for counter overflows. */
3467 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0);
3468 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0);
3469 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0);
3470 
3471 	/* Configure Rx MAC FIFO. */
3472 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3473 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR);
3474 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3475 	    GMF_OPER_ON | GMF_RX_F_FL_ON);
3476 
3477 	/* Set promiscuous mode. */
3478 	msk_setpromisc(sc_if);
3479 
3480 	/* Set multicast filter. */
3481 	msk_setmulti(sc_if);
3482 
3483 	/* Flush Rx MAC FIFO on any flow control or error. */
3484 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK),
3485 	    GMR_FS_ANY_ERR);
3486 
3487 	/* Set Rx FIFO flush threshold to 64 bytes. */
3488 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR),
3489 	    RX_GMF_FL_THR_DEF);
3490 
3491 	/* Configure Tx MAC FIFO. */
3492 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3493 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR);
3494 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON);
3495 
3496 	/* Configure hardware VLAN tag insertion/stripping. */
3497 	msk_setvlan(sc_if, ifp);
3498 
3499 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
3500 		/* Set Rx Pause threshould. */
3501 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR),
3502 		    MSK_ECU_LLPP);
3503 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR),
3504 		    MSK_ECU_ULPP);
3505 		if (sc_if->msk_framesize > MSK_MAX_FRAMELEN) {
3506 			/*
3507 			 * Set Tx GMAC FIFO Almost Empty Threshold.
3508 			 */
3509 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR),
3510 			    MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR);
3511 			/* Disable Store & Forward mode for Tx. */
3512 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3513 			    TX_JUMBO_ENA | TX_STFW_DIS);
3514 		} else {
3515 			/* Enable Store & Forward mode for Tx. */
3516 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3517 			    TX_JUMBO_DIS | TX_STFW_ENA);
3518 		}
3519 	}
3520 
3521 	/*
3522 	 * Disable Force Sync bit and Alloc bit in Tx RAM interface
3523 	 * arbiter as we don't use Sync Tx queue.
3524 	 */
3525 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL),
3526 	    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
3527 	/* Enable the RAM Interface Arbiter. */
3528 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB);
3529 
3530 	/* Setup RAM buffer. */
3531 	msk_set_rambuffer(sc_if);
3532 
3533 	/* Disable Tx sync Queue. */
3534 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET);
3535 
3536 	/* Setup Tx Queue Bus Memory Interface. */
3537 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET);
3538 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT);
3539 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON);
3540 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM);
3541 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3542 	    sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
3543 		/* Fix for Yukon-EC Ultra: set BMU FIFO level */
3544 		CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL), MSK_ECU_TXFF_LEV);
3545 	}
3546 
3547 	/* Setup Rx Queue Bus Memory Interface. */
3548 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET);
3549 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT);
3550 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON);
3551 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM);
3552         if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3553 	    sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) {
3554 		/* MAC Rx RAM Read is controlled by hardware. */
3555                 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS);
3556 	}
3557 
3558 	msk_set_prefetch(sc, sc_if->msk_txq,
3559 	    sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1);
3560 	msk_init_tx_ring(sc_if);
3561 
3562 	/* Disable Rx checksum offload and RSS hash. */
3563 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3564 	    BMU_DIS_RX_CHKSUM | BMU_DIS_RX_RSS_HASH);
3565 #ifdef MSK_JUMBO
3566 	if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN)) {
3567 		msk_set_prefetch(sc, sc_if->msk_rxq,
3568 		    sc_if->msk_rdata.msk_jumbo_rx_ring_paddr,
3569 		    MSK_JUMBO_RX_RING_CNT - 1);
3570 		error = msk_init_jumbo_rx_ring(sc_if);
3571 	} else
3572 #endif
3573 	{
3574 		msk_set_prefetch(sc, sc_if->msk_rxq,
3575 		    sc_if->msk_rdata.msk_rx_ring_paddr,
3576 		    MSK_RX_RING_CNT - 1);
3577 		error = msk_init_rx_ring(sc_if);
3578 	}
3579 	if (error != 0) {
3580 		device_printf(sc_if->msk_if_dev,
3581 		    "initialization failed: no memory for Rx buffers\n");
3582 		msk_stop(sc_if);
3583 		return;
3584 	}
3585 
3586 	/* Configure interrupt handling. */
3587 	if (sc_if->msk_port == MSK_PORT_A) {
3588 		sc->msk_intrmask |= Y2_IS_PORT_A;
3589 		sc->msk_intrhwemask |= Y2_HWE_L1_MASK;
3590 	} else {
3591 		sc->msk_intrmask |= Y2_IS_PORT_B;
3592 		sc->msk_intrhwemask |= Y2_HWE_L2_MASK;
3593 	}
3594 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3595 	CSR_READ_4(sc, B0_HWE_IMSK);
3596 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3597 	CSR_READ_4(sc, B0_IMSK);
3598 
3599 	sc_if->msk_link = 0;
3600 	mii_mediachg(mii);
3601 
3602 	mskc_set_imtimer(sc);
3603 
3604 	ifp->if_flags |= IFF_RUNNING;
3605 	ifp->if_flags &= ~IFF_OACTIVE;
3606 
3607 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3608 }
3609 
3610 static void
3611 msk_set_rambuffer(struct msk_if_softc *sc_if)
3612 {
3613 	struct msk_softc *sc;
3614 	int ltpp, utpp;
3615 
3616 	sc = sc_if->msk_softc;
3617 
3618 	/* Setup Rx Queue. */
3619 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR);
3620 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START),
3621 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3622 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END),
3623 	    sc->msk_rxqend[sc_if->msk_port] / 8);
3624 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP),
3625 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3626 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP),
3627 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3628 
3629 	utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3630 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8;
3631 	ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3632 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8;
3633 	if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE)
3634 		ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8;
3635 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp);
3636 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp);
3637 	/* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
3638 
3639 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD);
3640 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL));
3641 
3642 	/* Setup Tx Queue. */
3643 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR);
3644 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START),
3645 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3646 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END),
3647 	    sc->msk_txqend[sc_if->msk_port] / 8);
3648 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP),
3649 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3650 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP),
3651 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3652 	/* Enable Store & Forward for Tx side. */
3653 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD);
3654 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD);
3655 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL));
3656 }
3657 
3658 static void
3659 msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr,
3660     uint32_t count)
3661 {
3662 
3663 	/* Reset the prefetch unit. */
3664 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3665 	    PREF_UNIT_RST_SET);
3666 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3667 	    PREF_UNIT_RST_CLR);
3668 	/* Set LE base address. */
3669 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
3670 	    MSK_ADDR_LO(addr));
3671 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
3672 	    MSK_ADDR_HI(addr));
3673 	/* Set the list last index. */
3674 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
3675 	    count);
3676 	/* Turn on prefetch unit. */
3677 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3678 	    PREF_UNIT_OP_ON);
3679 	/* Dummy read to ensure write. */
3680 	CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
3681 }
3682 
3683 static void
3684 msk_stop(struct msk_if_softc *sc_if)
3685 {
3686 	struct msk_softc *sc = sc_if->msk_softc;
3687 	struct ifnet *ifp = sc_if->msk_ifp;
3688 	struct msk_txdesc *txd;
3689 	struct msk_rxdesc *rxd;
3690 #ifdef MSK_JUMBO
3691 	struct msk_rxdesc *jrxd;
3692 #endif
3693 	uint32_t val;
3694 	int i;
3695 
3696 	ASSERT_SERIALIZED(ifp->if_serializer);
3697 
3698 	callout_stop(&sc_if->msk_tick_ch);
3699 	ifp->if_timer = 0;
3700 
3701 	/* Disable interrupts. */
3702 	if (sc_if->msk_port == MSK_PORT_A) {
3703 		sc->msk_intrmask &= ~Y2_IS_PORT_A;
3704 		sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK;
3705 	} else {
3706 		sc->msk_intrmask &= ~Y2_IS_PORT_B;
3707 		sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK;
3708 	}
3709 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3710 	CSR_READ_4(sc, B0_HWE_IMSK);
3711 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3712 	CSR_READ_4(sc, B0_IMSK);
3713 
3714 	/* Disable Tx/Rx MAC. */
3715 	val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
3716 	val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
3717 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val);
3718 	/* Read again to ensure writing. */
3719 	GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
3720 
3721 	/* Stop Tx BMU. */
3722 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP);
3723 	val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
3724 	for (i = 0; i < MSK_TIMEOUT; i++) {
3725 		if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
3726 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3727 			    BMU_STOP);
3728 			CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
3729 		} else
3730 			break;
3731 		DELAY(1);
3732 	}
3733 	if (i == MSK_TIMEOUT)
3734 		device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n");
3735 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL),
3736 	    RB_RST_SET | RB_DIS_OP_MD);
3737 
3738 	/* Disable all GMAC interrupt. */
3739 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0);
3740 	/* Disable PHY interrupt. */
3741 	msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
3742 
3743 	/* Disable the RAM Interface Arbiter. */
3744 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB);
3745 
3746 	/* Reset the PCI FIFO of the async Tx queue */
3747 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3748 	    BMU_RST_SET | BMU_FIFO_RST);
3749 
3750 	/* Reset the Tx prefetch units. */
3751 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG),
3752 	    PREF_UNIT_RST_SET);
3753 
3754 	/* Reset the RAM Buffer async Tx queue. */
3755 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET);
3756 
3757 	/* Reset Tx MAC FIFO. */
3758 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3759 	/* Set Pause Off. */
3760 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF);
3761 
3762 	/*
3763 	 * The Rx Stop command will not work for Yukon-2 if the BMU does not
3764 	 * reach the end of packet and since we can't make sure that we have
3765 	 * incoming data, we must reset the BMU while it is not during a DMA
3766 	 * transfer. Since it is possible that the Rx path is still active,
3767 	 * the Rx RAM buffer will be stopped first, so any possible incoming
3768 	 * data will not trigger a DMA. After the RAM buffer is stopped, the
3769 	 * BMU is polled until any DMA in progress is ended and only then it
3770 	 * will be reset.
3771 	 */
3772 
3773 	/* Disable the RAM Buffer receive queue. */
3774 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD);
3775 	for (i = 0; i < MSK_TIMEOUT; i++) {
3776 		if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) ==
3777 		    CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL)))
3778 			break;
3779 		DELAY(1);
3780 	}
3781 	if (i == MSK_TIMEOUT)
3782 		device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n");
3783 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3784 	    BMU_RST_SET | BMU_FIFO_RST);
3785 	/* Reset the Rx prefetch unit. */
3786 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG),
3787 	    PREF_UNIT_RST_SET);
3788 	/* Reset the RAM Buffer receive queue. */
3789 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET);
3790 	/* Reset Rx MAC FIFO. */
3791 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3792 
3793 	/* Free Rx and Tx mbufs still in the queues. */
3794 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
3795 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
3796 		if (rxd->rx_m != NULL) {
3797 			bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag,
3798 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3799 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag,
3800 			    rxd->rx_dmamap);
3801 			m_freem(rxd->rx_m);
3802 			rxd->rx_m = NULL;
3803 		}
3804 	}
3805 #ifdef MSK_JUMBO
3806 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
3807 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
3808 		if (jrxd->rx_m != NULL) {
3809 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
3810 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3811 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
3812 			    jrxd->rx_dmamap);
3813 			m_freem(jrxd->rx_m);
3814 			jrxd->rx_m = NULL;
3815 		}
3816 	}
3817 #endif
3818 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
3819 		txd = &sc_if->msk_cdata.msk_txdesc[i];
3820 		if (txd->tx_m != NULL) {
3821 			bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag,
3822 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3823 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag,
3824 			    txd->tx_dmamap);
3825 			m_freem(txd->tx_m);
3826 			txd->tx_m = NULL;
3827 		}
3828 	}
3829 
3830 	/*
3831 	 * Mark the interface down.
3832 	 */
3833 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3834 	sc_if->msk_link = 0;
3835 }
3836 
3837 static int
3838 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3839 {
3840 	int error, value;
3841 
3842 	if (!arg1)
3843 		return (EINVAL);
3844 	value = *(int *)arg1;
3845 	error = sysctl_handle_int(oidp, &value, 0, req);
3846 	if (error || !req->newptr)
3847 		return (error);
3848 	if (value < low || value > high)
3849 		return (EINVAL);
3850 	*(int *)arg1 = value;
3851 
3852 	return (0);
3853 }
3854 
3855 static int
3856 mskc_sysctl_proc_limit(SYSCTL_HANDLER_ARGS)
3857 {
3858 	return sysctl_int_range(oidp, arg1, arg2, req,
3859 				MSK_PROC_MIN, MSK_PROC_MAX);
3860 }
3861 
3862 static int
3863 mskc_sysctl_intr_rate(SYSCTL_HANDLER_ARGS)
3864 {
3865 	struct msk_softc *sc = arg1;
3866 	struct lwkt_serialize *serializer = &sc->msk_serializer;
3867 	int error = 0, v;
3868 
3869 	lwkt_serialize_enter(serializer);
3870 
3871 	v = sc->msk_intr_rate;
3872 	error = sysctl_handle_int(oidp, &v, 0, req);
3873 	if (error || req->newptr == NULL)
3874 		goto back;
3875 	if (v < 0) {
3876 		error = EINVAL;
3877 		goto back;
3878 	}
3879 
3880 	if (sc->msk_intr_rate != v) {
3881 		int flag = 0, i;
3882 
3883 		sc->msk_intr_rate = v;
3884 		for (i = 0; i < 2; ++i) {
3885 			if (sc->msk_if[i] != NULL) {
3886 				flag |= sc->msk_if[i]->
3887 					arpcom.ac_if.if_flags & IFF_RUNNING;
3888 			}
3889 		}
3890 		if (flag)
3891 			mskc_set_imtimer(sc);
3892 	}
3893 back:
3894 	lwkt_serialize_exit(serializer);
3895 	return error;
3896 }
3897 
3898 static int
3899 msk_dmamem_create(device_t dev, bus_size_t size, bus_dma_tag_t *dtag,
3900 		  void **addr, bus_addr_t *paddr, bus_dmamap_t *dmap)
3901 {
3902 	struct msk_if_softc *sc_if = device_get_softc(dev);
3903 	struct msk_dmamap_arg ctx;
3904 	bus_dma_segment_t seg;
3905 	int error;
3906 
3907 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,
3908 				   MSK_RING_ALIGN, 0,
3909 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3910 				   NULL, NULL,
3911 				   size, 1, BUS_SPACE_MAXSIZE_32BIT,
3912 				   0, dtag);
3913 	if (error) {
3914 		device_printf(dev, "can't create DMA tag\n");
3915 		return error;
3916 	}
3917 
3918 	error = bus_dmamem_alloc(*dtag, addr, BUS_DMA_WAITOK | BUS_DMA_ZERO,
3919 				 dmap);
3920 	if (error) {
3921 		device_printf(dev, "can't allocate DMA mem\n");
3922 		bus_dma_tag_destroy(*dtag);
3923 		*dtag = NULL;
3924 		return error;
3925 	}
3926 
3927 	bzero(&ctx, sizeof(ctx));
3928 	ctx.nseg = 1;
3929 	ctx.segs = &seg;
3930 	error = bus_dmamap_load(*dtag, *dmap, *addr, size,
3931 				msk_dmamap_cb, &ctx, BUS_DMA_WAITOK);
3932 	if (error) {
3933 		device_printf(dev, "can't load DMA mem\n");
3934 		bus_dmamem_free(*dtag, *addr, *dmap);
3935 		bus_dma_tag_destroy(*dtag);
3936 		*dtag = NULL;
3937 		return error;
3938 	}
3939 	*paddr = seg.ds_addr;
3940 	return 0;
3941 }
3942 
3943 static void
3944 msk_dmamem_destroy(bus_dma_tag_t dtag, void *addr, bus_dmamap_t dmap)
3945 {
3946 	if (dtag != NULL) {
3947 		bus_dmamap_unload(dtag, dmap);
3948 		bus_dmamem_free(dtag, addr, dmap);
3949 		bus_dma_tag_destroy(dtag);
3950 	}
3951 }
3952 
3953 static void
3954 mskc_set_imtimer(struct msk_softc *sc)
3955 {
3956 	if (sc->msk_intr_rate > 0) {
3957 		/*
3958 		 * XXX myk(4) seems to use 125MHz for EC/FE/XL
3959 		 *     and 78.125MHz for rest of chip types
3960 		 */
3961 		CSR_WRITE_4(sc, B2_IRQM_INI,
3962 			    MSK_USECS(sc, 1000000 / sc->msk_intr_rate));
3963 		CSR_WRITE_4(sc, B2_IRQM_MSK, sc->msk_intrmask);
3964 		CSR_WRITE_4(sc, B2_IRQM_CTRL, TIM_START);
3965 	} else {
3966 		CSR_WRITE_4(sc, B2_IRQM_CTRL, TIM_STOP);
3967 	}
3968 }
3969