xref: /dragonfly/sys/dev/netif/my/if_my.c (revision 333227be)
1 /*
2  * Copyright (c) 2002 Myson Technology Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions, and the following disclaimer,
10  *    without modification, immediately at the beginning of the file.
11  * 2. The name of the author may not be used to endorse or promote products
12  *    derived from this software without specific prior written permission.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
18  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * Written by: yen_cw@myson.com.tw  available at: http://www.myson.com.tw/
27  *
28  * $FreeBSD: src/sys/dev/my/if_my.c,v 1.2.2.4 2002/04/17 02:05:27 julian Exp $
29  * $DragonFly: src/sys/dev/netif/my/if_my.c,v 1.13 2004/09/18 19:43:22 dillon Exp $
30  *
31  * Myson fast ethernet PCI NIC driver
32  *
33  * $Id: if_my.c,v 1.40 2001/11/30 03:55:00 <yen_cw@myson.com.tw> wpaul Exp $
34  */
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/sockio.h>
38 #include <sys/mbuf.h>
39 #include <sys/malloc.h>
40 #include <sys/kernel.h>
41 #include <sys/socket.h>
42 #include <sys/queue.h>
43 #include <sys/types.h>
44 #include <sys/bus.h>
45 #include <sys/module.h>
46 
47 #define NBPFILTER	1
48 
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_media.h>
53 #include <net/if_dl.h>
54 #include <net/bpf.h>
55 
56 #include <vm/vm.h>		/* for vtophys */
57 #include <vm/pmap.h>		/* for vtophys */
58 #include <machine/clock.h>	/* for DELAY */
59 #include <machine/bus_memio.h>
60 #include <machine/bus_pio.h>
61 #include <machine/bus.h>
62 #include <machine/resource.h>
63 #include <sys/bus.h>
64 #include <sys/rman.h>
65 
66 #include <bus/pci/pcireg.h>
67 #include <bus/pci/pcivar.h>
68 
69 #include "../mii_layer/mii.h"
70 #include "../mii_layer/miivar.h"
71 
72 #include "miibus_if.h"
73 
74 /*
75  * #define MY_USEIOSPACE
76  */
77 
78 static int      MY_USEIOSPACE = 1;
79 
80 #if (MY_USEIOSPACE)
81 #define MY_RES                  SYS_RES_IOPORT
82 #define MY_RID                  MY_PCI_LOIO
83 #else
84 #define MY_RES                  SYS_RES_MEMORY
85 #define MY_RID                  MY_PCI_LOMEM
86 #endif
87 
88 
89 #include "if_myreg.h"
90 
91 /*
92  * Various supported device vendors/types and their names.
93  */
94 struct my_type *my_info_tmp;
95 static struct my_type my_devs[] = {
96 	{MYSONVENDORID, MTD800ID, "Myson MTD80X Based Fast Ethernet Card"},
97 	{MYSONVENDORID, MTD803ID, "Myson MTD80X Based Fast Ethernet Card"},
98 	{MYSONVENDORID, MTD891ID, "Myson MTD89X Based Giga Ethernet Card"},
99 	{0, 0, NULL}
100 };
101 
102 /*
103  * Various supported PHY vendors/types and their names. Note that this driver
104  * will work with pretty much any MII-compliant PHY, so failure to positively
105  * identify the chip is not a fatal error.
106  */
107 static struct my_type my_phys[] = {
108 	{MysonPHYID0, MysonPHYID0, "<MYSON MTD981>"},
109 	{SeeqPHYID0, SeeqPHYID0, "<SEEQ 80225>"},
110 	{AhdocPHYID0, AhdocPHYID0, "<AHDOC 101>"},
111 	{MarvellPHYID0, MarvellPHYID0, "<MARVELL 88E1000>"},
112 	{LevelOnePHYID0, LevelOnePHYID0, "<LevelOne LXT1000>"},
113 	{0, 0, "<MII-compliant physical interface>"}
114 };
115 
116 static int      my_probe(device_t);
117 static int      my_attach(device_t);
118 static int      my_detach(device_t);
119 static int      my_newbuf(struct my_softc *, struct my_chain_onefrag *);
120 static int      my_encap(struct my_softc *, struct my_chain *, struct mbuf *);
121 static void     my_rxeof(struct my_softc *);
122 static void     my_txeof(struct my_softc *);
123 static void     my_txeoc(struct my_softc *);
124 static void     my_intr(void *);
125 static void     my_start(struct ifnet *);
126 static int      my_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
127 static void     my_init(void *);
128 static void     my_stop(struct my_softc *);
129 static void     my_watchdog(struct ifnet *);
130 static void     my_shutdown(device_t);
131 static int      my_ifmedia_upd(struct ifnet *);
132 static void     my_ifmedia_sts(struct ifnet *, struct ifmediareq *);
133 static u_int16_t my_phy_readreg(struct my_softc *, int);
134 static void     my_phy_writereg(struct my_softc *, int, int);
135 static void     my_autoneg_xmit(struct my_softc *);
136 static void     my_autoneg_mii(struct my_softc *, int, int);
137 static void     my_setmode_mii(struct my_softc *, int);
138 static void     my_getmode_mii(struct my_softc *);
139 static void     my_setcfg(struct my_softc *, int);
140 static u_int8_t my_calchash(caddr_t);
141 static void     my_setmulti(struct my_softc *);
142 static void     my_reset(struct my_softc *);
143 static int      my_list_rx_init(struct my_softc *);
144 static int      my_list_tx_init(struct my_softc *);
145 static long     my_send_cmd_to_phy(struct my_softc *, int, int);
146 
147 #define MY_SETBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
148 #define MY_CLRBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
149 
150 static device_method_t my_methods[] = {
151 	/* Device interface */
152 	DEVMETHOD(device_probe, my_probe),
153 	DEVMETHOD(device_attach, my_attach),
154 	DEVMETHOD(device_detach, my_detach),
155 	DEVMETHOD(device_shutdown, my_shutdown),
156 
157 	{0, 0}
158 };
159 
160 static driver_t my_driver = {
161 	"my",
162 	my_methods,
163 	sizeof(struct my_softc)
164 };
165 
166 static devclass_t my_devclass;
167 
168 DECLARE_DUMMY_MODULE(if_my);
169 DRIVER_MODULE(if_my, pci, my_driver, my_devclass, 0, 0);
170 
171 static long
172 my_send_cmd_to_phy(struct my_softc * sc, int opcode, int regad)
173 {
174 	long            miir;
175 	int             i;
176 	int             mask, data;
177 
178 	MY_LOCK(sc);
179 
180 	/* enable MII output */
181 	miir = CSR_READ_4(sc, MY_MANAGEMENT);
182 	miir &= 0xfffffff0;
183 
184 	miir |= MY_MASK_MIIR_MII_WRITE + MY_MASK_MIIR_MII_MDO;
185 
186 	/* send 32 1's preamble */
187 	for (i = 0; i < 32; i++) {
188 		/* low MDC; MDO is already high (miir) */
189 		miir &= ~MY_MASK_MIIR_MII_MDC;
190 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
191 
192 		/* high MDC */
193 		miir |= MY_MASK_MIIR_MII_MDC;
194 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
195 	}
196 
197 	/* calculate ST+OP+PHYAD+REGAD+TA */
198 	data = opcode | (sc->my_phy_addr << 7) | (regad << 2);
199 
200 	/* sent out */
201 	mask = 0x8000;
202 	while (mask) {
203 		/* low MDC, prepare MDO */
204 		miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO);
205 		if (mask & data)
206 			miir |= MY_MASK_MIIR_MII_MDO;
207 
208 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
209 		/* high MDC */
210 		miir |= MY_MASK_MIIR_MII_MDC;
211 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
212 		DELAY(30);
213 
214 		/* next */
215 		mask >>= 1;
216 		if (mask == 0x2 && opcode == MY_OP_READ)
217 			miir &= ~MY_MASK_MIIR_MII_WRITE;
218 	}
219 
220 	MY_UNLOCK(sc);
221 	return miir;
222 }
223 
224 
225 static          u_int16_t
226 my_phy_readreg(struct my_softc * sc, int reg)
227 {
228 	long            miir;
229 	int             mask, data;
230 
231 	MY_LOCK(sc);
232 
233 	if (sc->my_info->my_did == MTD803ID)
234 		data = CSR_READ_2(sc, MY_PHYBASE + reg * 2);
235 	else {
236 		miir = my_send_cmd_to_phy(sc, MY_OP_READ, reg);
237 
238 		/* read data */
239 		mask = 0x8000;
240 		data = 0;
241 		while (mask) {
242 			/* low MDC */
243 			miir &= ~MY_MASK_MIIR_MII_MDC;
244 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
245 
246 			/* read MDI */
247 			miir = CSR_READ_4(sc, MY_MANAGEMENT);
248 			if (miir & MY_MASK_MIIR_MII_MDI)
249 				data |= mask;
250 
251 			/* high MDC, and wait */
252 			miir |= MY_MASK_MIIR_MII_MDC;
253 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
254 			DELAY(30);
255 
256 			/* next */
257 			mask >>= 1;
258 		}
259 
260 		/* low MDC */
261 		miir &= ~MY_MASK_MIIR_MII_MDC;
262 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
263 	}
264 
265 	MY_UNLOCK(sc);
266 	return (u_int16_t) data;
267 }
268 
269 
270 static void
271 my_phy_writereg(struct my_softc * sc, int reg, int data)
272 {
273 	long            miir;
274 	int             mask;
275 
276 	MY_LOCK(sc);
277 
278 	if (sc->my_info->my_did == MTD803ID)
279 		CSR_WRITE_2(sc, MY_PHYBASE + reg * 2, data);
280 	else {
281 		miir = my_send_cmd_to_phy(sc, MY_OP_WRITE, reg);
282 
283 		/* write data */
284 		mask = 0x8000;
285 		while (mask) {
286 			/* low MDC, prepare MDO */
287 			miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO);
288 			if (mask & data)
289 				miir |= MY_MASK_MIIR_MII_MDO;
290 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
291 			DELAY(1);
292 
293 			/* high MDC */
294 			miir |= MY_MASK_MIIR_MII_MDC;
295 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
296 			DELAY(1);
297 
298 			/* next */
299 			mask >>= 1;
300 		}
301 
302 		/* low MDC */
303 		miir &= ~MY_MASK_MIIR_MII_MDC;
304 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
305 	}
306 	MY_UNLOCK(sc);
307 	return;
308 }
309 
310 static          u_int8_t
311 my_calchash(caddr_t addr)
312 {
313 	u_int32_t       crc, carry;
314 	int             i, j;
315 	u_int8_t        c;
316 
317 	/* Compute CRC for the address value. */
318 	crc = 0xFFFFFFFF;	/* initial value */
319 
320 	for (i = 0; i < 6; i++) {
321 		c = *(addr + i);
322 		for (j = 0; j < 8; j++) {
323 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
324 			crc <<= 1;
325 			c >>= 1;
326 			if (carry)
327 				crc = (crc ^ 0x04c11db6) | carry;
328 		}
329 	}
330 
331 	/*
332 	 * return the filter bit position Note: I arrived at the following
333 	 * nonsense through experimentation. It's not the usual way to
334 	 * generate the bit position but it's the only thing I could come up
335 	 * with that works.
336 	 */
337 	return (~(crc >> 26) & 0x0000003F);
338 }
339 
340 
341 /*
342  * Program the 64-bit multicast hash filter.
343  */
344 static void
345 my_setmulti(struct my_softc * sc)
346 {
347 	struct ifnet   *ifp;
348 	int             h = 0;
349 	u_int32_t       hashes[2] = {0, 0};
350 	struct ifmultiaddr *ifma;
351 	u_int32_t       rxfilt;
352 	int             mcnt = 0;
353 
354 	MY_LOCK(sc);
355 
356 	ifp = &sc->arpcom.ac_if;
357 
358 	rxfilt = CSR_READ_4(sc, MY_TCRRCR);
359 
360 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
361 		rxfilt |= MY_AM;
362 		CSR_WRITE_4(sc, MY_TCRRCR, rxfilt);
363 		CSR_WRITE_4(sc, MY_MAR0, 0xFFFFFFFF);
364 		CSR_WRITE_4(sc, MY_MAR1, 0xFFFFFFFF);
365 
366 		MY_UNLOCK(sc);
367 
368 		return;
369 	}
370 	/* first, zot all the existing hash bits */
371 	CSR_WRITE_4(sc, MY_MAR0, 0);
372 	CSR_WRITE_4(sc, MY_MAR1, 0);
373 
374 	/* now program new ones */
375 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
376 		if (ifma->ifma_addr->sa_family != AF_LINK)
377 			continue;
378 		h = my_calchash(LLADDR((struct sockaddr_dl *) ifma->ifma_addr));
379 		if (h < 32)
380 			hashes[0] |= (1 << h);
381 		else
382 			hashes[1] |= (1 << (h - 32));
383 		mcnt++;
384 	}
385 
386 	if (mcnt)
387 		rxfilt |= MY_AM;
388 	else
389 		rxfilt &= ~MY_AM;
390 	CSR_WRITE_4(sc, MY_MAR0, hashes[0]);
391 	CSR_WRITE_4(sc, MY_MAR1, hashes[1]);
392 	CSR_WRITE_4(sc, MY_TCRRCR, rxfilt);
393 	MY_UNLOCK(sc);
394 	return;
395 }
396 
397 /*
398  * Initiate an autonegotiation session.
399  */
400 static void
401 my_autoneg_xmit(struct my_softc * sc)
402 {
403 	u_int16_t       phy_sts = 0;
404 
405 	MY_LOCK(sc);
406 
407 	my_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
408 	DELAY(500);
409 	while (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_RESET);
410 
411 	phy_sts = my_phy_readreg(sc, PHY_BMCR);
412 	phy_sts |= PHY_BMCR_AUTONEGENBL | PHY_BMCR_AUTONEGRSTR;
413 	my_phy_writereg(sc, PHY_BMCR, phy_sts);
414 
415 	MY_UNLOCK(sc);
416 	return;
417 }
418 
419 
420 /*
421  * Invoke autonegotiation on a PHY.
422  */
423 static void
424 my_autoneg_mii(struct my_softc * sc, int flag, int verbose)
425 {
426 	u_int16_t       phy_sts = 0, media, advert, ability;
427 	u_int16_t       ability2 = 0;
428 	struct ifnet   *ifp;
429 	struct ifmedia *ifm;
430 
431 	MY_LOCK(sc);
432 
433 	ifm = &sc->ifmedia;
434 	ifp = &sc->arpcom.ac_if;
435 
436 	ifm->ifm_media = IFM_ETHER | IFM_AUTO;
437 
438 #ifndef FORCE_AUTONEG_TFOUR
439 	/*
440 	 * First, see if autoneg is supported. If not, there's no point in
441 	 * continuing.
442 	 */
443 	phy_sts = my_phy_readreg(sc, PHY_BMSR);
444 	if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
445 		if (verbose)
446 			printf("my%d: autonegotiation not supported\n",
447 			    sc->my_unit);
448 		ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
449 		MY_UNLOCK(sc);
450 		return;
451 	}
452 #endif
453 	switch (flag) {
454 	case MY_FLAG_FORCEDELAY:
455 		/*
456 		 * XXX Never use this option anywhere but in the probe
457 		 * routine: making the kernel stop dead in its tracks for
458 		 * three whole seconds after we've gone multi-user is really
459 		 * bad manners.
460 		 */
461 		my_autoneg_xmit(sc);
462 		DELAY(5000000);
463 		break;
464 	case MY_FLAG_SCHEDDELAY:
465 		/*
466 		 * Wait for the transmitter to go idle before starting an
467 		 * autoneg session, otherwise my_start() may clobber our
468 		 * timeout, and we don't want to allow transmission during an
469 		 * autoneg session since that can screw it up.
470 		 */
471 		if (sc->my_cdata.my_tx_head != NULL) {
472 			sc->my_want_auto = 1;
473 			MY_UNLOCK(sc);
474 			return;
475 		}
476 		my_autoneg_xmit(sc);
477 		ifp->if_timer = 5;
478 		sc->my_autoneg = 1;
479 		sc->my_want_auto = 0;
480 		MY_UNLOCK(sc);
481 		return;
482 	case MY_FLAG_DELAYTIMEO:
483 		ifp->if_timer = 0;
484 		sc->my_autoneg = 0;
485 		break;
486 	default:
487 		printf("my%d: invalid autoneg flag: %d\n", sc->my_unit, flag);
488 		MY_UNLOCK(sc);
489 		return;
490 	}
491 
492 	if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) {
493 		if (verbose)
494 			printf("my%d: autoneg complete, ", sc->my_unit);
495 		phy_sts = my_phy_readreg(sc, PHY_BMSR);
496 	} else {
497 		if (verbose)
498 			printf("my%d: autoneg not complete, ", sc->my_unit);
499 	}
500 
501 	media = my_phy_readreg(sc, PHY_BMCR);
502 
503 	/* Link is good. Report modes and set duplex mode. */
504 	if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) {
505 		if (verbose)
506 			printf("my%d: link status good. ", sc->my_unit);
507 		advert = my_phy_readreg(sc, PHY_ANAR);
508 		ability = my_phy_readreg(sc, PHY_LPAR);
509 		if ((sc->my_pinfo->my_vid == MarvellPHYID0) ||
510 		    (sc->my_pinfo->my_vid == LevelOnePHYID0)) {
511 			ability2 = my_phy_readreg(sc, PHY_1000SR);
512 			if (ability2 & PHY_1000SR_1000BTXFULL) {
513 				advert = 0;
514 				ability = 0;
515 				/*
516 				 * this version did not support 1000M,
517 				 * ifm->ifm_media =
518 				 * IFM_ETHER|IFM_1000_TX|IFM_FDX;
519 				 */
520 				ifm->ifm_media =
521 				    IFM_ETHER | IFM_100_TX | IFM_FDX;
522 				media &= ~PHY_BMCR_SPEEDSEL;
523 				media |= PHY_BMCR_1000;
524 				media |= PHY_BMCR_DUPLEX;
525 				printf("(full-duplex, 1000Mbps)\n");
526 			} else if (ability2 & PHY_1000SR_1000BTXHALF) {
527 				advert = 0;
528 				ability = 0;
529 				/*
530 				 * this version did not support 1000M,
531 				 * ifm->ifm_media = IFM_ETHER|IFM_1000_TX;
532 				 */
533 				ifm->ifm_media = IFM_ETHER | IFM_100_TX;
534 				media &= ~PHY_BMCR_SPEEDSEL;
535 				media &= ~PHY_BMCR_DUPLEX;
536 				media |= PHY_BMCR_1000;
537 				printf("(half-duplex, 1000Mbps)\n");
538 			}
539 		}
540 		if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) {
541 			ifm->ifm_media = IFM_ETHER | IFM_100_T4;
542 			media |= PHY_BMCR_SPEEDSEL;
543 			media &= ~PHY_BMCR_DUPLEX;
544 			printf("(100baseT4)\n");
545 		} else if (advert & PHY_ANAR_100BTXFULL &&
546 			   ability & PHY_ANAR_100BTXFULL) {
547 			ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX;
548 			media |= PHY_BMCR_SPEEDSEL;
549 			media |= PHY_BMCR_DUPLEX;
550 			printf("(full-duplex, 100Mbps)\n");
551 		} else if (advert & PHY_ANAR_100BTXHALF &&
552 			   ability & PHY_ANAR_100BTXHALF) {
553 			ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX;
554 			media |= PHY_BMCR_SPEEDSEL;
555 			media &= ~PHY_BMCR_DUPLEX;
556 			printf("(half-duplex, 100Mbps)\n");
557 		} else if (advert & PHY_ANAR_10BTFULL &&
558 			   ability & PHY_ANAR_10BTFULL) {
559 			ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX;
560 			media &= ~PHY_BMCR_SPEEDSEL;
561 			media |= PHY_BMCR_DUPLEX;
562 			printf("(full-duplex, 10Mbps)\n");
563 		} else if (advert) {
564 			ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
565 			media &= ~PHY_BMCR_SPEEDSEL;
566 			media &= ~PHY_BMCR_DUPLEX;
567 			printf("(half-duplex, 10Mbps)\n");
568 		}
569 		media &= ~PHY_BMCR_AUTONEGENBL;
570 
571 		/* Set ASIC's duplex mode to match the PHY. */
572 		my_phy_writereg(sc, PHY_BMCR, media);
573 		my_setcfg(sc, media);
574 	} else {
575 		if (verbose)
576 			printf("my%d: no carrier\n", sc->my_unit);
577 	}
578 
579 	my_init(sc);
580 	if (sc->my_tx_pend) {
581 		sc->my_autoneg = 0;
582 		sc->my_tx_pend = 0;
583 		my_start(ifp);
584 	}
585 	MY_UNLOCK(sc);
586 	return;
587 }
588 
589 /*
590  * To get PHY ability.
591  */
592 static void
593 my_getmode_mii(struct my_softc * sc)
594 {
595 	u_int16_t       bmsr;
596 	struct ifnet   *ifp;
597 
598 	MY_LOCK(sc);
599 	ifp = &sc->arpcom.ac_if;
600 	bmsr = my_phy_readreg(sc, PHY_BMSR);
601 	if (bootverbose)
602 		printf("my%d: PHY status word: %x\n", sc->my_unit, bmsr);
603 
604 	/* fallback */
605 	sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
606 
607 	if (bmsr & PHY_BMSR_10BTHALF) {
608 		if (bootverbose)
609 			printf("my%d: 10Mbps half-duplex mode supported\n",
610 			       sc->my_unit);
611 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_HDX,
612 		    0, NULL);
613 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
614 	}
615 	if (bmsr & PHY_BMSR_10BTFULL) {
616 		if (bootverbose)
617 			printf("my%d: 10Mbps full-duplex mode supported\n",
618 			    sc->my_unit);
619 
620 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX,
621 		    0, NULL);
622 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX;
623 	}
624 	if (bmsr & PHY_BMSR_100BTXHALF) {
625 		if (bootverbose)
626 			printf("my%d: 100Mbps half-duplex mode supported\n",
627 			       sc->my_unit);
628 		ifp->if_baudrate = 100000000;
629 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
630 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_HDX,
631 			    0, NULL);
632 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX;
633 	}
634 	if (bmsr & PHY_BMSR_100BTXFULL) {
635 		if (bootverbose)
636 			printf("my%d: 100Mbps full-duplex mode supported\n",
637 			    sc->my_unit);
638 		ifp->if_baudrate = 100000000;
639 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX,
640 		    0, NULL);
641 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX;
642 	}
643 	/* Some also support 100BaseT4. */
644 	if (bmsr & PHY_BMSR_100BT4) {
645 		if (bootverbose)
646 			printf("my%d: 100baseT4 mode supported\n", sc->my_unit);
647 		ifp->if_baudrate = 100000000;
648 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_T4, 0, NULL);
649 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_T4;
650 #ifdef FORCE_AUTONEG_TFOUR
651 		if (bootverbose)
652 			printf("my%d: forcing on autoneg support for BT4\n",
653 			    sc->my_unit);
654 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0 NULL):
655 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
656 #endif
657 	}
658 #if 0				/* this version did not support 1000M, */
659 	if (sc->my_pinfo->my_vid == MarvellPHYID0) {
660 		if (bootverbose)
661 			printf("my%d: 1000Mbps half-duplex mode supported\n",
662 			       sc->my_unit);
663 
664 		ifp->if_baudrate = 1000000000;
665 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_TX, 0, NULL);
666 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_TX | IFM_HDX,
667 		    0, NULL);
668 		if (bootverbose)
669 			printf("my%d: 1000Mbps full-duplex mode supported\n",
670 			   sc->my_unit);
671 		ifp->if_baudrate = 1000000000;
672 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_TX | IFM_FDX,
673 		    0, NULL);
674 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_1000_TX | IFM_FDX;
675 	}
676 #endif
677 	if (bmsr & PHY_BMSR_CANAUTONEG) {
678 		if (bootverbose)
679 			printf("my%d: autoneg supported\n", sc->my_unit);
680 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
681 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
682 	}
683 	MY_UNLOCK(sc);
684 	return;
685 }
686 
687 /*
688  * Set speed and duplex mode.
689  */
690 static void
691 my_setmode_mii(struct my_softc * sc, int media)
692 {
693 	u_int16_t       bmcr;
694 	struct ifnet   *ifp;
695 
696 	MY_LOCK(sc);
697 	ifp = &sc->arpcom.ac_if;
698 	/*
699 	 * If an autoneg session is in progress, stop it.
700 	 */
701 	if (sc->my_autoneg) {
702 		printf("my%d: canceling autoneg session\n", sc->my_unit);
703 		ifp->if_timer = sc->my_autoneg = sc->my_want_auto = 0;
704 		bmcr = my_phy_readreg(sc, PHY_BMCR);
705 		bmcr &= ~PHY_BMCR_AUTONEGENBL;
706 		my_phy_writereg(sc, PHY_BMCR, bmcr);
707 	}
708 	printf("my%d: selecting MII, ", sc->my_unit);
709 	bmcr = my_phy_readreg(sc, PHY_BMCR);
710 	bmcr &= ~(PHY_BMCR_AUTONEGENBL | PHY_BMCR_SPEEDSEL | PHY_BMCR_1000 |
711 		  PHY_BMCR_DUPLEX | PHY_BMCR_LOOPBK);
712 
713 #if 0				/* this version did not support 1000M, */
714 	if (IFM_SUBTYPE(media) == IFM_1000_TX) {
715 		printf("1000Mbps/T4, half-duplex\n");
716 		bmcr &= ~PHY_BMCR_SPEEDSEL;
717 		bmcr &= ~PHY_BMCR_DUPLEX;
718 		bmcr |= PHY_BMCR_1000;
719 	}
720 #endif
721 	if (IFM_SUBTYPE(media) == IFM_100_T4) {
722 		printf("100Mbps/T4, half-duplex\n");
723 		bmcr |= PHY_BMCR_SPEEDSEL;
724 		bmcr &= ~PHY_BMCR_DUPLEX;
725 	}
726 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
727 		printf("100Mbps, ");
728 		bmcr |= PHY_BMCR_SPEEDSEL;
729 	}
730 	if (IFM_SUBTYPE(media) == IFM_10_T) {
731 		printf("10Mbps, ");
732 		bmcr &= ~PHY_BMCR_SPEEDSEL;
733 	}
734 	if ((media & IFM_GMASK) == IFM_FDX) {
735 		printf("full duplex\n");
736 		bmcr |= PHY_BMCR_DUPLEX;
737 	} else {
738 		printf("half duplex\n");
739 		bmcr &= ~PHY_BMCR_DUPLEX;
740 	}
741 	my_phy_writereg(sc, PHY_BMCR, bmcr);
742 	my_setcfg(sc, bmcr);
743 	MY_UNLOCK(sc);
744 	return;
745 }
746 
747 /*
748  * The Myson manual states that in order to fiddle with the 'full-duplex' and
749  * '100Mbps' bits in the netconfig register, we first have to put the
750  * transmit and/or receive logic in the idle state.
751  */
752 static void
753 my_setcfg(struct my_softc * sc, int bmcr)
754 {
755 	int             i, restart = 0;
756 
757 	MY_LOCK(sc);
758 	if (CSR_READ_4(sc, MY_TCRRCR) & (MY_TE | MY_RE)) {
759 		restart = 1;
760 		MY_CLRBIT(sc, MY_TCRRCR, (MY_TE | MY_RE));
761 		for (i = 0; i < MY_TIMEOUT; i++) {
762 			DELAY(10);
763 			if (!(CSR_READ_4(sc, MY_TCRRCR) &
764 			    (MY_TXRUN | MY_RXRUN)))
765 				break;
766 		}
767 		if (i == MY_TIMEOUT)
768 			printf("my%d: failed to force tx and rx to idle \n",
769 			    sc->my_unit);
770 	}
771 	MY_CLRBIT(sc, MY_TCRRCR, MY_PS1000);
772 	MY_CLRBIT(sc, MY_TCRRCR, MY_PS10);
773 	if (bmcr & PHY_BMCR_1000)
774 		MY_SETBIT(sc, MY_TCRRCR, MY_PS1000);
775 	else if (!(bmcr & PHY_BMCR_SPEEDSEL))
776 		MY_SETBIT(sc, MY_TCRRCR, MY_PS10);
777 	if (bmcr & PHY_BMCR_DUPLEX)
778 		MY_SETBIT(sc, MY_TCRRCR, MY_FD);
779 	else
780 		MY_CLRBIT(sc, MY_TCRRCR, MY_FD);
781 	if (restart)
782 		MY_SETBIT(sc, MY_TCRRCR, MY_TE | MY_RE);
783 	MY_UNLOCK(sc);
784 	return;
785 }
786 
787 static void
788 my_reset(struct my_softc * sc)
789 {
790 	int    i;
791 
792 	MY_LOCK(sc);
793 	MY_SETBIT(sc, MY_BCR, MY_SWR);
794 	for (i = 0; i < MY_TIMEOUT; i++) {
795 		DELAY(10);
796 		if (!(CSR_READ_4(sc, MY_BCR) & MY_SWR))
797 			break;
798 	}
799 	if (i == MY_TIMEOUT)
800 		printf("m0x%d: reset never completed!\n", sc->my_unit);
801 
802 	/* Wait a little while for the chip to get its brains in order. */
803 	DELAY(1000);
804 	MY_UNLOCK(sc);
805 	return;
806 }
807 
808 /*
809  * Probe for a Myson chip. Check the PCI vendor and device IDs against our
810  * list and return a device name if we find a match.
811  */
812 static int
813 my_probe(device_t dev)
814 {
815 	struct my_type *t;
816 
817 	t = my_devs;
818 	while (t->my_name != NULL) {
819 		if ((pci_get_vendor(dev) == t->my_vid) &&
820 		    (pci_get_device(dev) == t->my_did)) {
821 			device_set_desc(dev, t->my_name);
822 			my_info_tmp = t;
823 			return (0);
824 		}
825 		t++;
826 	}
827 	return (ENXIO);
828 }
829 
830 /*
831  * Attach the interface. Allocate softc structures, do ifmedia setup and
832  * ethernet/BPF attach.
833  */
834 static int
835 my_attach(device_t dev)
836 {
837 	int             s, i;
838 	u_char          eaddr[ETHER_ADDR_LEN];
839 	u_int32_t       command, iobase;
840 	struct my_softc *sc;
841 	struct ifnet   *ifp;
842 	int             media = IFM_ETHER | IFM_100_TX | IFM_FDX;
843 	unsigned int    round;
844 	caddr_t         roundptr;
845 	struct my_type *p;
846 	u_int16_t       phy_vid, phy_did, phy_sts = 0;
847 	int             rid, unit, error = 0;
848 
849 	s = splimp();
850 	sc = device_get_softc(dev);
851 	unit = device_get_unit(dev);
852 	if (sc == NULL) {
853 		printf("my%d: no memory for softc struct!\n", unit);
854 		error = ENXIO;
855 		goto fail;
856 
857 	}
858 	bzero(sc, sizeof(struct my_softc));
859 	/*mtx_init(&sc->my_mtx, device_get_nameunit(dev), MTX_DEF | MTX_RECURSE);*/
860 	MY_LOCK(sc);
861 
862 	/*
863 	 * Map control/status registers.
864 	 */
865 #if 0
866 	command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
867 	command |= (PCIM_CMD_PORTEN | PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
868 	pci_write_config(dev, PCI_COMMAND_STATUS_REG, command & 0x000000ff, 4);
869 	command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
870 #endif
871 	command = pci_read_config(dev, PCIR_COMMAND, 4);
872 	command |= (PCIM_CMD_PORTEN | PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
873 	pci_write_config(dev, PCIR_COMMAND, command & 0x000000ff, 4);
874 	command = pci_read_config(dev, PCIR_COMMAND, 4);
875 
876 	if (my_info_tmp->my_did == MTD800ID) {
877 		iobase = pci_read_config(dev, MY_PCI_LOIO, 4);
878 		if (iobase & 0x300)
879 			MY_USEIOSPACE = 0;
880 	}
881 	if (MY_USEIOSPACE) {
882 		if (!(command & PCIM_CMD_PORTEN)) {
883 			printf("my%d: failed to enable I/O ports!\n", unit);
884 			free(sc, M_DEVBUF);
885 			error = ENXIO;
886 			goto fail;
887 		}
888 #if 0
889 		if (!pci_map_port(config_id, MY_PCI_LOIO, (u_int16_t *) & (sc->my_bhandle))) {
890 			printf("my%d: couldn't map ports\n", unit);
891 			error = ENXIO;
892 			goto fail;
893 		}
894 
895 		sc->my_btag = I386_BUS_SPACE_IO;
896 #endif
897 	} else {
898 		if (!(command & PCIM_CMD_MEMEN)) {
899 			printf("my%d: failed to enable memory mapping!\n",
900 			    unit);
901 			error = ENXIO;
902 			goto fail;
903 		}
904 #if 0
905 		 if (!pci_map_mem(config_id, MY_PCI_LOMEM, &vbase, &pbase)) {
906 			printf ("my%d: couldn't map memory\n", unit);
907 			error = ENXIO;
908 			goto fail;
909 		}
910 		sc->my_btag = I386_BUS_SPACE_MEM;
911 		sc->my_bhandle = vbase;
912 #endif
913 	}
914 
915 	rid = MY_RID;
916 	sc->my_res = bus_alloc_resource(dev, MY_RES, &rid,
917 					0, ~0, 1, RF_ACTIVE);
918 
919 	if (sc->my_res == NULL) {
920 		printf("my%d: couldn't map ports/memory\n", unit);
921 		error = ENXIO;
922 		goto fail;
923 	}
924 	sc->my_btag = rman_get_bustag(sc->my_res);
925 	sc->my_bhandle = rman_get_bushandle(sc->my_res);
926 
927 	rid = 0;
928 	sc->my_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
929 					RF_SHAREABLE | RF_ACTIVE);
930 
931 	if (sc->my_irq == NULL) {
932 		printf("my%d: couldn't map interrupt\n", unit);
933 		bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
934 		error = ENXIO;
935 		goto fail;
936 	}
937 	error = bus_setup_intr(dev, sc->my_irq, INTR_TYPE_NET,
938 			       my_intr, sc, &sc->my_intrhand);
939 
940 	if (error) {
941 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq);
942 		bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
943 		printf("my%d: couldn't set up irq\n", unit);
944 		goto fail;
945 	}
946 	callout_init(&sc->my_stat_ch);
947 
948 	sc->my_info = my_info_tmp;
949 
950 	/* Reset the adapter. */
951 	my_reset(sc);
952 
953 	/*
954 	 * Get station address
955 	 */
956 	for (i = 0; i < ETHER_ADDR_LEN; ++i)
957 		eaddr[i] = CSR_READ_1(sc, MY_PAR0 + i);
958 
959 	sc->my_unit = unit;
960 
961 	sc->my_ldata_ptr = malloc(sizeof(struct my_list_data) + 8,
962 				  M_DEVBUF, M_WAITOK);
963 	if (sc->my_ldata_ptr == NULL) {
964 		free(sc, M_DEVBUF);
965 		printf("my%d: no memory for list buffers!\n", unit);
966 		error = ENXIO;
967 		goto fail;
968 	}
969 	sc->my_ldata = (struct my_list_data *) sc->my_ldata_ptr;
970 	round = (unsigned int)sc->my_ldata_ptr & 0xF;
971 	roundptr = sc->my_ldata_ptr;
972 	for (i = 0; i < 8; i++) {
973 		if (round % 8) {
974 			round++;
975 			roundptr++;
976 		} else
977 			break;
978 	}
979 	sc->my_ldata = (struct my_list_data *) roundptr;
980 	bzero(sc->my_ldata, sizeof(struct my_list_data));
981 
982 	ifp = &sc->arpcom.ac_if;
983 	ifp->if_softc = sc;
984 	if_initname(ifp, "my", unit);
985 	ifp->if_mtu = ETHERMTU;
986 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
987 	ifp->if_ioctl = my_ioctl;
988 	ifp->if_start = my_start;
989 	ifp->if_watchdog = my_watchdog;
990 	ifp->if_init = my_init;
991 	ifp->if_baudrate = 10000000;
992 	ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
993 
994 	if (sc->my_info->my_did == MTD803ID)
995 		sc->my_pinfo = my_phys;
996 	else {
997 		if (bootverbose)
998 			printf("my%d: probing for a PHY\n", sc->my_unit);
999 		for (i = MY_PHYADDR_MIN; i < MY_PHYADDR_MAX + 1; i++) {
1000 			if (bootverbose)
1001 				printf("my%d: checking address: %d\n",
1002 				    sc->my_unit, i);
1003 			sc->my_phy_addr = i;
1004 			phy_sts = my_phy_readreg(sc, PHY_BMSR);
1005 			if ((phy_sts != 0) && (phy_sts != 0xffff))
1006 				break;
1007 			else
1008 				phy_sts = 0;
1009 		}
1010 		if (phy_sts) {
1011 			phy_vid = my_phy_readreg(sc, PHY_VENID);
1012 			phy_did = my_phy_readreg(sc, PHY_DEVID);
1013 			if (bootverbose) {
1014 				printf("my%d: found PHY at address %d, ",
1015 				    sc->my_unit, sc->my_phy_addr);
1016 				printf("vendor id: %x device id: %x\n",
1017 				    phy_vid, phy_did);
1018 			}
1019 			p = my_phys;
1020 			while (p->my_vid) {
1021 				if (phy_vid == p->my_vid) {
1022 					sc->my_pinfo = p;
1023 					break;
1024 				}
1025 				p++;
1026 			}
1027 			if (sc->my_pinfo == NULL)
1028 				sc->my_pinfo = &my_phys[PHY_UNKNOWN];
1029 			if (bootverbose)
1030 				printf("my%d: PHY type: %s\n",
1031 				       sc->my_unit, sc->my_pinfo->my_name);
1032 		} else {
1033 			printf("my%d: MII without any phy!\n", sc->my_unit);
1034 			error = ENXIO;
1035 			goto fail;
1036 		}
1037 	}
1038 
1039 	/* Do ifmedia setup. */
1040 	ifmedia_init(&sc->ifmedia, 0, my_ifmedia_upd, my_ifmedia_sts);
1041 	my_getmode_mii(sc);
1042 	my_autoneg_mii(sc, MY_FLAG_FORCEDELAY, 1);
1043 	media = sc->ifmedia.ifm_media;
1044 	my_stop(sc);
1045 	ifmedia_set(&sc->ifmedia, media);
1046 
1047 	ether_ifattach(ifp, eaddr);
1048 
1049 #if 0
1050 	at_shutdown(my_shutdown, sc, SHUTDOWN_POST_SYNC);
1051 	shutdownhook_establish(my_shutdown, sc);
1052 #endif
1053 
1054 	MY_UNLOCK(sc);
1055 	return (0);
1056 
1057 fail:
1058 	MY_UNLOCK(sc);
1059 	/*mtx_destroy(&sc->my_mtx);*/
1060 	splx(s);
1061 	return (error);
1062 }
1063 
1064 static int
1065 my_detach(device_t dev)
1066 {
1067 	struct my_softc *sc;
1068 	struct ifnet   *ifp;
1069 	int             s;
1070 
1071 	s = splimp();
1072 	sc = device_get_softc(dev);
1073 	MY_LOCK(sc);
1074 	ifp = &sc->arpcom.ac_if;
1075 	ether_ifdetach(ifp);
1076 	my_stop(sc);
1077 
1078 #if 0
1079 	bus_generic_detach(dev);
1080 	device_delete_child(dev, sc->rl_miibus);
1081 #endif
1082 
1083 	bus_teardown_intr(dev, sc->my_irq, sc->my_intrhand);
1084 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq);
1085 	bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
1086 #if 0
1087 	contigfree(sc->my_cdata.my_rx_buf, MY_RXBUFLEN + 32, M_DEVBUF);
1088 #endif
1089 	free(sc, M_DEVBUF);
1090 	MY_UNLOCK(sc);
1091 	splx(s);
1092 	/*mtx_destroy(&sc->my_mtx);*/
1093 	return (0);
1094 }
1095 
1096 
1097 /*
1098  * Initialize the transmit descriptors.
1099  */
1100 static int
1101 my_list_tx_init(struct my_softc * sc)
1102 {
1103 	struct my_chain_data *cd;
1104 	struct my_list_data *ld;
1105 	int             i;
1106 
1107 	MY_LOCK(sc);
1108 	cd = &sc->my_cdata;
1109 	ld = sc->my_ldata;
1110 	for (i = 0; i < MY_TX_LIST_CNT; i++) {
1111 		cd->my_tx_chain[i].my_ptr = &ld->my_tx_list[i];
1112 		if (i == (MY_TX_LIST_CNT - 1))
1113 			cd->my_tx_chain[i].my_nextdesc = &cd->my_tx_chain[0];
1114 		else
1115 			cd->my_tx_chain[i].my_nextdesc =
1116 			    &cd->my_tx_chain[i + 1];
1117 	}
1118 	cd->my_tx_free = &cd->my_tx_chain[0];
1119 	cd->my_tx_tail = cd->my_tx_head = NULL;
1120 	MY_UNLOCK(sc);
1121 	return (0);
1122 }
1123 
1124 /*
1125  * Initialize the RX descriptors and allocate mbufs for them. Note that we
1126  * arrange the descriptors in a closed ring, so that the last descriptor
1127  * points back to the first.
1128  */
1129 static int
1130 my_list_rx_init(struct my_softc * sc)
1131 {
1132 	struct my_chain_data *cd;
1133 	struct my_list_data *ld;
1134 	int             i;
1135 
1136 	MY_LOCK(sc);
1137 	cd = &sc->my_cdata;
1138 	ld = sc->my_ldata;
1139 	for (i = 0; i < MY_RX_LIST_CNT; i++) {
1140 		cd->my_rx_chain[i].my_ptr =
1141 		    (struct my_desc *) & ld->my_rx_list[i];
1142 		if (my_newbuf(sc, &cd->my_rx_chain[i]) == ENOBUFS)
1143 			return (ENOBUFS);
1144 		if (i == (MY_RX_LIST_CNT - 1)) {
1145 			cd->my_rx_chain[i].my_nextdesc = &cd->my_rx_chain[0];
1146 			ld->my_rx_list[i].my_next = vtophys(&ld->my_rx_list[0]);
1147 		} else {
1148 			cd->my_rx_chain[i].my_nextdesc =
1149 			    &cd->my_rx_chain[i + 1];
1150 			ld->my_rx_list[i].my_next =
1151 			    vtophys(&ld->my_rx_list[i + 1]);
1152 		}
1153 	}
1154 	cd->my_rx_head = &cd->my_rx_chain[0];
1155 	MY_UNLOCK(sc);
1156 	return (0);
1157 }
1158 
1159 /*
1160  * Initialize an RX descriptor and attach an MBUF cluster.
1161  */
1162 static int
1163 my_newbuf(struct my_softc * sc, struct my_chain_onefrag * c)
1164 {
1165 	struct mbuf    *m_new = NULL;
1166 
1167 	MY_LOCK(sc);
1168 	MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1169 	if (m_new == NULL) {
1170 		printf("my%d: no memory for rx list -- packet dropped!\n",
1171 		       sc->my_unit);
1172 		return (ENOBUFS);
1173 	}
1174 	MCLGET(m_new, MB_DONTWAIT);
1175 	if (!(m_new->m_flags & M_EXT)) {
1176 		printf("my%d: no memory for rx list -- packet dropped!\n",
1177 		       sc->my_unit);
1178 		m_freem(m_new);
1179 		return (ENOBUFS);
1180 	}
1181 	c->my_mbuf = m_new;
1182 	c->my_ptr->my_data = vtophys(mtod(m_new, caddr_t));
1183 	c->my_ptr->my_ctl = (MCLBYTES - 1) << MY_RBSShift;
1184 	c->my_ptr->my_status = MY_OWNByNIC;
1185 	MY_UNLOCK(sc);
1186 	return (0);
1187 }
1188 
1189 /*
1190  * A frame has been uploaded: pass the resulting mbuf chain up to the higher
1191  * level protocols.
1192  */
1193 static void
1194 my_rxeof(struct my_softc * sc)
1195 {
1196 	struct ether_header *eh;
1197 	struct mbuf    *m;
1198 	struct ifnet   *ifp;
1199 	struct my_chain_onefrag *cur_rx;
1200 	int             total_len = 0;
1201 	u_int32_t       rxstat;
1202 
1203 	MY_LOCK(sc);
1204 	ifp = &sc->arpcom.ac_if;
1205 	while (!((rxstat = sc->my_cdata.my_rx_head->my_ptr->my_status)
1206 	    & MY_OWNByNIC)) {
1207 		cur_rx = sc->my_cdata.my_rx_head;
1208 		sc->my_cdata.my_rx_head = cur_rx->my_nextdesc;
1209 
1210 		if (rxstat & MY_ES) {	/* error summary: give up this rx pkt */
1211 			ifp->if_ierrors++;
1212 			cur_rx->my_ptr->my_status = MY_OWNByNIC;
1213 			continue;
1214 		}
1215 		/* No errors; receive the packet. */
1216 		total_len = (rxstat & MY_FLNGMASK) >> MY_FLNGShift;
1217 		total_len -= ETHER_CRC_LEN;
1218 
1219 		if (total_len < MINCLSIZE) {
1220 			m = m_devget(mtod(cur_rx->my_mbuf, char *),
1221 			    total_len, 0, ifp, NULL);
1222 			cur_rx->my_ptr->my_status = MY_OWNByNIC;
1223 			if (m == NULL) {
1224 				ifp->if_ierrors++;
1225 				continue;
1226 			}
1227 		} else {
1228 			m = cur_rx->my_mbuf;
1229 			/*
1230 			 * Try to conjure up a new mbuf cluster. If that
1231 			 * fails, it means we have an out of memory condition
1232 			 * and should leave the buffer in place and continue.
1233 			 * This will result in a lost packet, but there's
1234 			 * little else we can do in this situation.
1235 			 */
1236 			if (my_newbuf(sc, cur_rx) == ENOBUFS) {
1237 				ifp->if_ierrors++;
1238 				cur_rx->my_ptr->my_status = MY_OWNByNIC;
1239 				continue;
1240 			}
1241 			m->m_pkthdr.rcvif = ifp;
1242 			m->m_pkthdr.len = m->m_len = total_len;
1243 		}
1244 		ifp->if_ipackets++;
1245 		eh = mtod(m, struct ether_header *);
1246 #if NBPFILTER > 0
1247 		/*
1248 		 * Handle BPF listeners. Let the BPF user see the packet, but
1249 		 * don't pass it up to the ether_input() layer unless it's a
1250 		 * broadcast packet, multicast packet, matches our ethernet
1251 		 * address or the interface is in promiscuous mode.
1252 		 */
1253 		if (ifp->if_bpf) {
1254 			bpf_mtap(ifp, m);
1255 			if (ifp->if_flags & IFF_PROMISC &&
1256 			    (bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
1257 				ETHER_ADDR_LEN) &&
1258 			     (eh->ether_dhost[0] & 1) == 0)) {
1259 				m_freem(m);
1260 				continue;
1261 			}
1262 		}
1263 #endif
1264 		(*ifp->if_input)(ifp, m);
1265 	}
1266 	MY_UNLOCK(sc);
1267 	return;
1268 }
1269 
1270 
1271 /*
1272  * A frame was downloaded to the chip. It's safe for us to clean up the list
1273  * buffers.
1274  */
1275 static void
1276 my_txeof(struct my_softc * sc)
1277 {
1278 	struct my_chain *cur_tx;
1279 	struct ifnet   *ifp;
1280 
1281 	MY_LOCK(sc);
1282 	ifp = &sc->arpcom.ac_if;
1283 	/* Clear the timeout timer. */
1284 	ifp->if_timer = 0;
1285 	if (sc->my_cdata.my_tx_head == NULL)
1286 		return;
1287 	/*
1288 	 * Go through our tx list and free mbufs for those frames that have
1289 	 * been transmitted.
1290 	 */
1291 	while (sc->my_cdata.my_tx_head->my_mbuf != NULL) {
1292 		u_int32_t       txstat;
1293 
1294 		cur_tx = sc->my_cdata.my_tx_head;
1295 		txstat = MY_TXSTATUS(cur_tx);
1296 		if ((txstat & MY_OWNByNIC) || txstat == MY_UNSENT)
1297 			break;
1298 		if (!(CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced)) {
1299 			if (txstat & MY_TXERR) {
1300 				ifp->if_oerrors++;
1301 				if (txstat & MY_EC) /* excessive collision */
1302 					ifp->if_collisions++;
1303 				if (txstat & MY_LC)	/* late collision */
1304 					ifp->if_collisions++;
1305 			}
1306 			ifp->if_collisions += (txstat & MY_NCRMASK) >>
1307 			    MY_NCRShift;
1308 		}
1309 		ifp->if_opackets++;
1310 		m_freem(cur_tx->my_mbuf);
1311 		cur_tx->my_mbuf = NULL;
1312 		if (sc->my_cdata.my_tx_head == sc->my_cdata.my_tx_tail) {
1313 			sc->my_cdata.my_tx_head = NULL;
1314 			sc->my_cdata.my_tx_tail = NULL;
1315 			break;
1316 		}
1317 		sc->my_cdata.my_tx_head = cur_tx->my_nextdesc;
1318 	}
1319 	if (CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced) {
1320 		ifp->if_collisions += (CSR_READ_4(sc, MY_TSR) & MY_NCRMask);
1321 	}
1322 	MY_UNLOCK(sc);
1323 	return;
1324 }
1325 
1326 /*
1327  * TX 'end of channel' interrupt handler.
1328  */
1329 static void
1330 my_txeoc(struct my_softc * sc)
1331 {
1332 	struct ifnet   *ifp;
1333 
1334 	MY_LOCK(sc);
1335 	ifp = &sc->arpcom.ac_if;
1336 	ifp->if_timer = 0;
1337 	if (sc->my_cdata.my_tx_head == NULL) {
1338 		ifp->if_flags &= ~IFF_OACTIVE;
1339 		sc->my_cdata.my_tx_tail = NULL;
1340 		if (sc->my_want_auto)
1341 			my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1);
1342 	} else {
1343 		if (MY_TXOWN(sc->my_cdata.my_tx_head) == MY_UNSENT) {
1344 			MY_TXOWN(sc->my_cdata.my_tx_head) = MY_OWNByNIC;
1345 			ifp->if_timer = 5;
1346 			CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF);
1347 		}
1348 	}
1349 	MY_UNLOCK(sc);
1350 	return;
1351 }
1352 
1353 static void
1354 my_intr(void *arg)
1355 {
1356 	struct my_softc *sc;
1357 	struct ifnet   *ifp;
1358 	u_int32_t       status;
1359 
1360 	sc = arg;
1361 	MY_LOCK(sc);
1362 	ifp = &sc->arpcom.ac_if;
1363 	if (!(ifp->if_flags & IFF_UP)) {
1364 		MY_UNLOCK(sc);
1365 		return;
1366 	}
1367 	/* Disable interrupts. */
1368 	CSR_WRITE_4(sc, MY_IMR, 0x00000000);
1369 
1370 	for (;;) {
1371 		status = CSR_READ_4(sc, MY_ISR);
1372 		status &= MY_INTRS;
1373 		if (status)
1374 			CSR_WRITE_4(sc, MY_ISR, status);
1375 		else
1376 			break;
1377 
1378 		if (status & MY_RI)	/* receive interrupt */
1379 			my_rxeof(sc);
1380 
1381 		if ((status & MY_RBU) || (status & MY_RxErr)) {
1382 			/* rx buffer unavailable or rx error */
1383 			ifp->if_ierrors++;
1384 #ifdef foo
1385 			my_stop(sc);
1386 			my_reset(sc);
1387 			my_init(sc);
1388 #endif
1389 		}
1390 		if (status & MY_TI)	/* tx interrupt */
1391 			my_txeof(sc);
1392 		if (status & MY_ETI)	/* tx early interrupt */
1393 			my_txeof(sc);
1394 		if (status & MY_TBU)	/* tx buffer unavailable */
1395 			my_txeoc(sc);
1396 
1397 #if 0				/* 90/1/18 delete */
1398 		if (status & MY_FBE) {
1399 			my_reset(sc);
1400 			my_init(sc);
1401 		}
1402 #endif
1403 
1404 	}
1405 
1406 	/* Re-enable interrupts. */
1407 	CSR_WRITE_4(sc, MY_IMR, MY_INTRS);
1408 	if (ifp->if_snd.ifq_head != NULL)
1409 		my_start(ifp);
1410 	MY_UNLOCK(sc);
1411 	return;
1412 }
1413 
1414 /*
1415  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1416  * pointers to the fragment pointers.
1417  */
1418 static int
1419 my_encap(struct my_softc * sc, struct my_chain * c, struct mbuf * m_head)
1420 {
1421 	struct my_desc *f = NULL;
1422 	int             total_len;
1423 	struct mbuf    *m, *m_new = NULL;
1424 
1425 	MY_LOCK(sc);
1426 	/* calculate the total tx pkt length */
1427 	total_len = 0;
1428 	for (m = m_head; m != NULL; m = m->m_next)
1429 		total_len += m->m_len;
1430 	/*
1431 	 * Start packing the mbufs in this chain into the fragment pointers.
1432 	 * Stop when we run out of fragments or hit the end of the mbuf
1433 	 * chain.
1434 	 */
1435 	m = m_head;
1436 	MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1437 	if (m_new == NULL) {
1438 		printf("my%d: no memory for tx list", sc->my_unit);
1439 		return (1);
1440 	}
1441 	if (m_head->m_pkthdr.len > MHLEN) {
1442 		MCLGET(m_new, MB_DONTWAIT);
1443 		if (!(m_new->m_flags & M_EXT)) {
1444 			m_freem(m_new);
1445 			printf("my%d: no memory for tx list", sc->my_unit);
1446 			return (1);
1447 		}
1448 	}
1449 	m_copydata(m_head, 0, m_head->m_pkthdr.len, mtod(m_new, caddr_t));
1450 	m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1451 	m_freem(m_head);
1452 	m_head = m_new;
1453 	f = &c->my_ptr->my_frag[0];
1454 	f->my_status = 0;
1455 	f->my_data = vtophys(mtod(m_new, caddr_t));
1456 	total_len = m_new->m_len;
1457 	f->my_ctl = MY_TXFD | MY_TXLD | MY_CRCEnable | MY_PADEnable;
1458 	f->my_ctl |= total_len << MY_PKTShift;	/* pkt size */
1459 	f->my_ctl |= total_len;	/* buffer size */
1460 	/* 89/12/29 add, for mtd891 *//* [ 89? ] */
1461 	if (sc->my_info->my_did == MTD891ID)
1462 		f->my_ctl |= MY_ETIControl | MY_RetryTxLC;
1463 	c->my_mbuf = m_head;
1464 	c->my_lastdesc = 0;
1465 	MY_TXNEXT(c) = vtophys(&c->my_nextdesc->my_ptr->my_frag[0]);
1466 	MY_UNLOCK(sc);
1467 	return (0);
1468 }
1469 
1470 /*
1471  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1472  * to the mbuf data regions directly in the transmit lists. We also save a
1473  * copy of the pointers since the transmit list fragment pointers are
1474  * physical addresses.
1475  */
1476 static void
1477 my_start(struct ifnet * ifp)
1478 {
1479 	struct my_softc *sc;
1480 	struct mbuf    *m_head = NULL;
1481 	struct my_chain *cur_tx = NULL, *start_tx;
1482 
1483 	sc = ifp->if_softc;
1484 	MY_LOCK(sc);
1485 	if (sc->my_autoneg) {
1486 		sc->my_tx_pend = 1;
1487 		MY_UNLOCK(sc);
1488 		return;
1489 	}
1490 	/*
1491 	 * Check for an available queue slot. If there are none, punt.
1492 	 */
1493 	if (sc->my_cdata.my_tx_free->my_mbuf != NULL) {
1494 		ifp->if_flags |= IFF_OACTIVE;
1495 		MY_UNLOCK(sc);
1496 		return;
1497 	}
1498 	start_tx = sc->my_cdata.my_tx_free;
1499 	while (sc->my_cdata.my_tx_free->my_mbuf == NULL) {
1500 		IF_DEQUEUE(&ifp->if_snd, m_head);
1501 		if (m_head == NULL)
1502 			break;
1503 
1504 		/* Pick a descriptor off the free list. */
1505 		cur_tx = sc->my_cdata.my_tx_free;
1506 		sc->my_cdata.my_tx_free = cur_tx->my_nextdesc;
1507 
1508 		/* Pack the data into the descriptor. */
1509 		my_encap(sc, cur_tx, m_head);
1510 
1511 		if (cur_tx != start_tx)
1512 			MY_TXOWN(cur_tx) = MY_OWNByNIC;
1513 #if NBPFILTER > 0
1514 		/*
1515 		 * If there's a BPF listener, bounce a copy of this frame to
1516 		 * him.
1517 		 */
1518 		if (ifp->if_bpf)
1519 			bpf_mtap(ifp, cur_tx->my_mbuf);
1520 #endif
1521 	}
1522 	/*
1523 	 * If there are no packets queued, bail.
1524 	 */
1525 	if (cur_tx == NULL) {
1526 		MY_UNLOCK(sc);
1527 		return;
1528 	}
1529 	/*
1530 	 * Place the request for the upload interrupt in the last descriptor
1531 	 * in the chain. This way, if we're chaining several packets at once,
1532 	 * we'll only get an interupt once for the whole chain rather than
1533 	 * once for each packet.
1534 	 */
1535 	MY_TXCTL(cur_tx) |= MY_TXIC;
1536 	cur_tx->my_ptr->my_frag[0].my_ctl |= MY_TXIC;
1537 	sc->my_cdata.my_tx_tail = cur_tx;
1538 	if (sc->my_cdata.my_tx_head == NULL)
1539 		sc->my_cdata.my_tx_head = start_tx;
1540 	MY_TXOWN(start_tx) = MY_OWNByNIC;
1541 	CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF);	/* tx polling demand */
1542 
1543 	/*
1544 	 * Set a timeout in case the chip goes out to lunch.
1545 	 */
1546 	ifp->if_timer = 5;
1547 	MY_UNLOCK(sc);
1548 	return;
1549 }
1550 
1551 static void
1552 my_init(void *xsc)
1553 {
1554 	struct my_softc *sc = xsc;
1555 	struct ifnet   *ifp = &sc->arpcom.ac_if;
1556 	int             s;
1557 	u_int16_t       phy_bmcr = 0;
1558 
1559 	MY_LOCK(sc);
1560 	if (sc->my_autoneg) {
1561 		MY_UNLOCK(sc);
1562 		return;
1563 	}
1564 	s = splimp();
1565 	if (sc->my_pinfo != NULL)
1566 		phy_bmcr = my_phy_readreg(sc, PHY_BMCR);
1567 	/*
1568 	 * Cancel pending I/O and free all RX/TX buffers.
1569 	 */
1570 	my_stop(sc);
1571 	my_reset(sc);
1572 
1573 	/*
1574 	 * Set cache alignment and burst length.
1575 	 */
1576 #if 0				/* 89/9/1 modify,  */
1577 	CSR_WRITE_4(sc, MY_BCR, MY_RPBLE512);
1578 	CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF);
1579 #endif
1580 	CSR_WRITE_4(sc, MY_BCR, MY_PBL8);
1581 	CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF | MY_RBLEN | MY_RPBLE512);
1582 	/*
1583 	 * 89/12/29 add, for mtd891,
1584 	 */
1585 	if (sc->my_info->my_did == MTD891ID) {
1586 		MY_SETBIT(sc, MY_BCR, MY_PROG);
1587 		MY_SETBIT(sc, MY_TCRRCR, MY_Enhanced);
1588 	}
1589 	my_setcfg(sc, phy_bmcr);
1590 	/* Init circular RX list. */
1591 	if (my_list_rx_init(sc) == ENOBUFS) {
1592 		printf("my%d: init failed: no memory for rx buffers\n",
1593 		    sc->my_unit);
1594 		my_stop(sc);
1595 		(void)splx(s);
1596 		MY_UNLOCK(sc);
1597 		return;
1598 	}
1599 	/* Init TX descriptors. */
1600 	my_list_tx_init(sc);
1601 
1602 	/* If we want promiscuous mode, set the allframes bit. */
1603 	if (ifp->if_flags & IFF_PROMISC)
1604 		MY_SETBIT(sc, MY_TCRRCR, MY_PROM);
1605 	else
1606 		MY_CLRBIT(sc, MY_TCRRCR, MY_PROM);
1607 
1608 	/*
1609 	 * Set capture broadcast bit to capture broadcast frames.
1610 	 */
1611 	if (ifp->if_flags & IFF_BROADCAST)
1612 		MY_SETBIT(sc, MY_TCRRCR, MY_AB);
1613 	else
1614 		MY_CLRBIT(sc, MY_TCRRCR, MY_AB);
1615 
1616 	/*
1617 	 * Program the multicast filter, if necessary.
1618 	 */
1619 	my_setmulti(sc);
1620 
1621 	/*
1622 	 * Load the address of the RX list.
1623 	 */
1624 	MY_CLRBIT(sc, MY_TCRRCR, MY_RE);
1625 	CSR_WRITE_4(sc, MY_RXLBA, vtophys(&sc->my_ldata->my_rx_list[0]));
1626 
1627 	/*
1628 	 * Enable interrupts.
1629 	 */
1630 	CSR_WRITE_4(sc, MY_IMR, MY_INTRS);
1631 	CSR_WRITE_4(sc, MY_ISR, 0xFFFFFFFF);
1632 
1633 	/* Enable receiver and transmitter. */
1634 	MY_SETBIT(sc, MY_TCRRCR, MY_RE);
1635 	MY_CLRBIT(sc, MY_TCRRCR, MY_TE);
1636 	CSR_WRITE_4(sc, MY_TXLBA, vtophys(&sc->my_ldata->my_tx_list[0]));
1637 	MY_SETBIT(sc, MY_TCRRCR, MY_TE);
1638 
1639 	/* Restore state of BMCR */
1640 	if (sc->my_pinfo != NULL)
1641 		my_phy_writereg(sc, PHY_BMCR, phy_bmcr);
1642 	ifp->if_flags |= IFF_RUNNING;
1643 	ifp->if_flags &= ~IFF_OACTIVE;
1644 	(void)splx(s);
1645 	MY_UNLOCK(sc);
1646 	return;
1647 }
1648 
1649 /*
1650  * Set media options.
1651  */
1652 
1653 static int
1654 my_ifmedia_upd(struct ifnet * ifp)
1655 {
1656 	struct my_softc *sc;
1657 	struct ifmedia *ifm;
1658 
1659 	sc = ifp->if_softc;
1660 	MY_LOCK(sc);
1661 	ifm = &sc->ifmedia;
1662 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
1663 		MY_UNLOCK(sc);
1664 		return (EINVAL);
1665 	}
1666 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO)
1667 		my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1);
1668 	else
1669 		my_setmode_mii(sc, ifm->ifm_media);
1670 	MY_UNLOCK(sc);
1671 	return (0);
1672 }
1673 
1674 /*
1675  * Report current media status.
1676  */
1677 
1678 static void
1679 my_ifmedia_sts(struct ifnet * ifp, struct ifmediareq * ifmr)
1680 {
1681 	struct my_softc *sc;
1682 	u_int16_t advert = 0, ability = 0;
1683 
1684 	sc = ifp->if_softc;
1685 	MY_LOCK(sc);
1686 	ifmr->ifm_active = IFM_ETHER;
1687 	if (!(my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) {
1688 #if 0				/* this version did not support 1000M, */
1689 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_1000)
1690 			ifmr->ifm_active = IFM_ETHER | IFM_1000TX;
1691 #endif
1692 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL)
1693 			ifmr->ifm_active = IFM_ETHER | IFM_100_TX;
1694 		else
1695 			ifmr->ifm_active = IFM_ETHER | IFM_10_T;
1696 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX)
1697 			ifmr->ifm_active |= IFM_FDX;
1698 		else
1699 			ifmr->ifm_active |= IFM_HDX;
1700 
1701 		MY_UNLOCK(sc);
1702 		return;
1703 	}
1704 	ability = my_phy_readreg(sc, PHY_LPAR);
1705 	advert = my_phy_readreg(sc, PHY_ANAR);
1706 
1707 #if 0				/* this version did not support 1000M, */
1708 	if (sc->my_pinfo->my_vid = MarvellPHYID0) {
1709 		ability2 = my_phy_readreg(sc, PHY_1000SR);
1710 		if (ability2 & PHY_1000SR_1000BTXFULL) {
1711 			advert = 0;
1712 			ability = 0;
1713 	  		ifmr->ifm_active = IFM_ETHER|IFM_1000_TX|IFM_FDX;
1714 	  	} else if (ability & PHY_1000SR_1000BTXHALF) {
1715 			advert = 0;
1716 			ability = 0;
1717 			ifmr->ifm_active = IFM_ETHER|IFM_1000_TX|IFM_HDX;
1718 		}
1719 	}
1720 #endif
1721 	if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4)
1722 		ifmr->ifm_active = IFM_ETHER | IFM_100_T4;
1723 	else if (advert & PHY_ANAR_100BTXFULL && ability & PHY_ANAR_100BTXFULL)
1724 		ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1725 	else if (advert & PHY_ANAR_100BTXHALF && ability & PHY_ANAR_100BTXHALF)
1726 		ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_HDX;
1727 	else if (advert & PHY_ANAR_10BTFULL && ability & PHY_ANAR_10BTFULL)
1728 		ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_FDX;
1729 	else if (advert & PHY_ANAR_10BTHALF && ability & PHY_ANAR_10BTHALF)
1730 		ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_HDX;
1731 	MY_UNLOCK(sc);
1732 	return;
1733 }
1734 
1735 static int
1736 my_ioctl(struct ifnet * ifp, u_long command, caddr_t data, struct ucred *cr)
1737 {
1738 	struct my_softc *sc = ifp->if_softc;
1739 	struct ifreq   *ifr = (struct ifreq *) data;
1740 	int             s, error = 0;
1741 
1742 	s = splimp();
1743 	MY_LOCK(sc);
1744 	switch (command) {
1745 	case SIOCSIFADDR:
1746 	case SIOCGIFADDR:
1747 	case SIOCSIFMTU:
1748 		error = ether_ioctl(ifp, command, data);
1749 		break;
1750 	case SIOCSIFFLAGS:
1751 		if (ifp->if_flags & IFF_UP)
1752 			my_init(sc);
1753 		else if (ifp->if_flags & IFF_RUNNING)
1754 			my_stop(sc);
1755 		error = 0;
1756 		break;
1757 	case SIOCADDMULTI:
1758 	case SIOCDELMULTI:
1759 		my_setmulti(sc);
1760 		error = 0;
1761 		break;
1762 	case SIOCGIFMEDIA:
1763 	case SIOCSIFMEDIA:
1764 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
1765 		break;
1766 	default:
1767 		error = EINVAL;
1768 		break;
1769 	}
1770 	MY_UNLOCK(sc);
1771 	(void)splx(s);
1772 	return (error);
1773 }
1774 
1775 static void
1776 my_watchdog(struct ifnet * ifp)
1777 {
1778 	struct my_softc *sc;
1779 
1780 	sc = ifp->if_softc;
1781 	MY_LOCK(sc);
1782 	if (sc->my_autoneg) {
1783 		my_autoneg_mii(sc, MY_FLAG_DELAYTIMEO, 1);
1784 		MY_UNLOCK(sc);
1785 		return;
1786 	}
1787 	ifp->if_oerrors++;
1788 	printf("my%d: watchdog timeout\n", sc->my_unit);
1789 	if (!(my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
1790 		printf("my%d: no carrier - transceiver cable problem?\n",
1791 		    sc->my_unit);
1792 	my_stop(sc);
1793 	my_reset(sc);
1794 	my_init(sc);
1795 	if (ifp->if_snd.ifq_head != NULL)
1796 		my_start(ifp);
1797 	MY_LOCK(sc);
1798 	return;
1799 }
1800 
1801 
1802 /*
1803  * Stop the adapter and free any mbufs allocated to the RX and TX lists.
1804  */
1805 static void
1806 my_stop(struct my_softc * sc)
1807 {
1808 	int    i;
1809 	struct ifnet   *ifp;
1810 
1811 	MY_LOCK(sc);
1812 	ifp = &sc->arpcom.ac_if;
1813 	ifp->if_timer = 0;
1814 
1815 	MY_CLRBIT(sc, MY_TCRRCR, (MY_RE | MY_TE));
1816 	CSR_WRITE_4(sc, MY_IMR, 0x00000000);
1817 	CSR_WRITE_4(sc, MY_TXLBA, 0x00000000);
1818 	CSR_WRITE_4(sc, MY_RXLBA, 0x00000000);
1819 
1820 	/*
1821 	 * Free data in the RX lists.
1822 	 */
1823 	for (i = 0; i < MY_RX_LIST_CNT; i++) {
1824 		if (sc->my_cdata.my_rx_chain[i].my_mbuf != NULL) {
1825 			m_freem(sc->my_cdata.my_rx_chain[i].my_mbuf);
1826 			sc->my_cdata.my_rx_chain[i].my_mbuf = NULL;
1827 		}
1828 	}
1829 	bzero((char *)&sc->my_ldata->my_rx_list,
1830 	    sizeof(sc->my_ldata->my_rx_list));
1831 	/*
1832 	 * Free the TX list buffers.
1833 	 */
1834 	for (i = 0; i < MY_TX_LIST_CNT; i++) {
1835 		if (sc->my_cdata.my_tx_chain[i].my_mbuf != NULL) {
1836 			m_freem(sc->my_cdata.my_tx_chain[i].my_mbuf);
1837 			sc->my_cdata.my_tx_chain[i].my_mbuf = NULL;
1838 		}
1839 	}
1840 	bzero((char *)&sc->my_ldata->my_tx_list,
1841 	    sizeof(sc->my_ldata->my_tx_list));
1842 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1843 	MY_UNLOCK(sc);
1844 	return;
1845 }
1846 
1847 /*
1848  * Stop all chip I/O so that the kernel's probe routines don't get confused
1849  * by errant DMAs when rebooting.
1850  */
1851 static void
1852 my_shutdown(device_t dev)
1853 {
1854 	struct my_softc *sc;
1855 
1856 	sc = device_get_softc(dev);
1857 	my_stop(sc);
1858 	return;
1859 }
1860