xref: /dragonfly/sys/dev/netif/nge/if_nge.c (revision 2020c8fe)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/nge/if_nge.c,v 1.13.2.13 2003/02/05 22:03:57 mbr Exp $
34  */
35 
36 /*
37  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
38  * for FreeBSD. Datasheets are available from:
39  *
40  * http://www.national.com/ds/DP/DP83820.pdf
41  * http://www.national.com/ds/DP/DP83821.pdf
42  *
43  * These chips are used on several low cost gigabit ethernet NICs
44  * sold by D-Link, Addtron, SMC and Asante. Both parts are
45  * virtually the same, except the 83820 is a 64-bit/32-bit part,
46  * while the 83821 is 32-bit only.
47  *
48  * Many cards also use National gigE transceivers, such as the
49  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
50  * contains a full register description that applies to all of these
51  * components:
52  *
53  * http://www.national.com/ds/DP/DP83861.pdf
54  *
55  * Written by Bill Paul <wpaul@bsdi.com>
56  * BSDi Open Source Solutions
57  */
58 
59 /*
60  * The NatSemi DP83820 and 83821 controllers are enhanced versions
61  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
62  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
63  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
64  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
65  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
66  * matching buffers, one perfect address filter buffer and interrupt
67  * moderation. The 83820 supports both 64-bit and 32-bit addressing
68  * and data transfers: the 64-bit support can be toggled on or off
69  * via software. This affects the size of certain fields in the DMA
70  * descriptors.
71  *
72  * There are two bugs/misfeatures in the 83820/83821 that I have
73  * discovered so far:
74  *
75  * - Receive buffers must be aligned on 64-bit boundaries, which means
76  *   you must resort to copying data in order to fix up the payload
77  *   alignment.
78  *
79  * - In order to transmit jumbo frames larger than 8170 bytes, you have
80  *   to turn off transmit checksum offloading, because the chip can't
81  *   compute the checksum on an outgoing frame unless it fits entirely
82  *   within the TX FIFO, which is only 8192 bytes in size. If you have
83  *   TX checksum offload enabled and you transmit attempt to transmit a
84  *   frame larger than 8170 bytes, the transmitter will wedge.
85  *
86  * To work around the latter problem, TX checksum offload is disabled
87  * if the user selects an MTU larger than 8152 (8170 - 18).
88  */
89 
90 #include "opt_polling.h"
91 
92 #include <sys/param.h>
93 #include <sys/systm.h>
94 #include <sys/sockio.h>
95 #include <sys/mbuf.h>
96 #include <sys/malloc.h>
97 #include <sys/kernel.h>
98 #include <sys/interrupt.h>
99 #include <sys/socket.h>
100 #include <sys/serialize.h>
101 #include <sys/bus.h>
102 #include <sys/rman.h>
103 #include <sys/thread2.h>
104 
105 #include <net/if.h>
106 #include <net/ifq_var.h>
107 #include <net/if_arp.h>
108 #include <net/ethernet.h>
109 #include <net/if_dl.h>
110 #include <net/if_media.h>
111 #include <net/if_types.h>
112 #include <net/vlan/if_vlan_var.h>
113 #include <net/vlan/if_vlan_ether.h>
114 
115 #include <net/bpf.h>
116 
117 #include <vm/vm.h>              /* for vtophys */
118 #include <vm/pmap.h>            /* for vtophys */
119 
120 #include <dev/netif/mii_layer/mii.h>
121 #include <dev/netif/mii_layer/miivar.h>
122 
123 #include <bus/pci/pcidevs.h>
124 #include <bus/pci/pcireg.h>
125 #include <bus/pci/pcivar.h>
126 
127 #define NGE_USEIOSPACE
128 
129 #include "if_ngereg.h"
130 
131 
132 /* "controller miibus0" required.  See GENERIC if you get errors here. */
133 #include "miibus_if.h"
134 
135 #define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
136 
137 /*
138  * Various supported device vendors/types and their names.
139  */
140 static struct nge_type nge_devs[] = {
141 	{ PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
142 	    "National Semiconductor Gigabit Ethernet" },
143 	{ 0, 0, NULL }
144 };
145 
146 static int	nge_probe(device_t);
147 static int	nge_attach(device_t);
148 static int	nge_detach(device_t);
149 
150 static int	nge_alloc_jumbo_mem(struct nge_softc *);
151 static struct nge_jslot
152 		*nge_jalloc(struct nge_softc *);
153 static void	nge_jfree(void *);
154 static void	nge_jref(void *);
155 
156 static int	nge_newbuf(struct nge_softc *, struct nge_desc *,
157 			   struct mbuf *);
158 static int	nge_encap(struct nge_softc *, struct mbuf *, uint32_t *);
159 static void	nge_rxeof(struct nge_softc *);
160 static void	nge_txeof(struct nge_softc *);
161 static void	nge_intr(void *);
162 static void	nge_tick(void *);
163 static void	nge_start(struct ifnet *);
164 static int	nge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
165 static void	nge_init(void *);
166 static void	nge_stop(struct nge_softc *);
167 static void	nge_watchdog(struct ifnet *);
168 static void	nge_shutdown(device_t);
169 static int	nge_ifmedia_upd(struct ifnet *);
170 static void	nge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
171 
172 static void	nge_delay(struct nge_softc *);
173 static void	nge_eeprom_idle(struct nge_softc *);
174 static void	nge_eeprom_putbyte(struct nge_softc *, int);
175 static void	nge_eeprom_getword(struct nge_softc *, int, uint16_t *);
176 static void	nge_read_eeprom(struct nge_softc *, void *, int, int);
177 
178 static void	nge_mii_sync(struct nge_softc *);
179 static void	nge_mii_send(struct nge_softc *, uint32_t, int);
180 static int	nge_mii_readreg(struct nge_softc *, struct nge_mii_frame *);
181 static int	nge_mii_writereg(struct nge_softc *, struct nge_mii_frame *);
182 
183 static int	nge_miibus_readreg(device_t, int, int);
184 static int	nge_miibus_writereg(device_t, int, int, int);
185 static void	nge_miibus_statchg(device_t);
186 
187 static void	nge_setmulti(struct nge_softc *);
188 static void	nge_reset(struct nge_softc *);
189 static int	nge_list_rx_init(struct nge_softc *);
190 static int	nge_list_tx_init(struct nge_softc *);
191 #ifdef DEVICE_POLLING
192 static void	nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
193 #endif
194 
195 #ifdef NGE_USEIOSPACE
196 #define NGE_RES			SYS_RES_IOPORT
197 #define NGE_RID			NGE_PCI_LOIO
198 #else
199 #define NGE_RES			SYS_RES_MEMORY
200 #define NGE_RID			NGE_PCI_LOMEM
201 #endif
202 
203 static device_method_t nge_methods[] = {
204 	/* Device interface */
205 	DEVMETHOD(device_probe,		nge_probe),
206 	DEVMETHOD(device_attach,	nge_attach),
207 	DEVMETHOD(device_detach,	nge_detach),
208 	DEVMETHOD(device_shutdown,	nge_shutdown),
209 
210 	/* bus interface */
211 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
212 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
213 
214 	/* MII interface */
215 	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
216 	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
217 	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
218 
219 	{ 0, 0 }
220 };
221 
222 static DEFINE_CLASS_0(nge, nge_driver, nge_methods, sizeof(struct nge_softc));
223 static devclass_t nge_devclass;
224 
225 DECLARE_DUMMY_MODULE(if_nge);
226 MODULE_DEPEND(if_nge, miibus, 1, 1, 1);
227 DRIVER_MODULE(if_nge, pci, nge_driver, nge_devclass, NULL, NULL);
228 DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, NULL, NULL);
229 
230 #define NGE_SETBIT(sc, reg, x)				\
231 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
232 
233 #define NGE_CLRBIT(sc, reg, x)				\
234 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
235 
236 #define SIO_SET(x)					\
237 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
238 
239 #define SIO_CLR(x)					\
240 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
241 
242 static void
243 nge_delay(struct nge_softc *sc)
244 {
245 	int idx;
246 
247 	for (idx = (300 / 33) + 1; idx > 0; idx--)
248 		CSR_READ_4(sc, NGE_CSR);
249 }
250 
251 static void
252 nge_eeprom_idle(struct nge_softc *sc)
253 {
254 	int i;
255 
256 	SIO_SET(NGE_MEAR_EE_CSEL);
257 	nge_delay(sc);
258 	SIO_SET(NGE_MEAR_EE_CLK);
259 	nge_delay(sc);
260 
261 	for (i = 0; i < 25; i++) {
262 		SIO_CLR(NGE_MEAR_EE_CLK);
263 		nge_delay(sc);
264 		SIO_SET(NGE_MEAR_EE_CLK);
265 		nge_delay(sc);
266 	}
267 
268 	SIO_CLR(NGE_MEAR_EE_CLK);
269 	nge_delay(sc);
270 	SIO_CLR(NGE_MEAR_EE_CSEL);
271 	nge_delay(sc);
272 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
273 }
274 
275 /*
276  * Send a read command and address to the EEPROM, check for ACK.
277  */
278 static void
279 nge_eeprom_putbyte(struct nge_softc *sc, int addr)
280 {
281 	int d, i;
282 
283 	d = addr | NGE_EECMD_READ;
284 
285 	/*
286 	 * Feed in each bit and stobe the clock.
287 	 */
288 	for (i = 0x400; i; i >>= 1) {
289 		if (d & i)
290 			SIO_SET(NGE_MEAR_EE_DIN);
291 		else
292 			SIO_CLR(NGE_MEAR_EE_DIN);
293 		nge_delay(sc);
294 		SIO_SET(NGE_MEAR_EE_CLK);
295 		nge_delay(sc);
296 		SIO_CLR(NGE_MEAR_EE_CLK);
297 		nge_delay(sc);
298 	}
299 }
300 
301 /*
302  * Read a word of data stored in the EEPROM at address 'addr.'
303  */
304 static void
305 nge_eeprom_getword(struct nge_softc *sc, int addr, uint16_t *dest)
306 {
307 	int i;
308 	uint16_t word = 0;
309 
310 	/* Force EEPROM to idle state. */
311 	nge_eeprom_idle(sc);
312 
313 	/* Enter EEPROM access mode. */
314 	nge_delay(sc);
315 	SIO_CLR(NGE_MEAR_EE_CLK);
316 	nge_delay(sc);
317 	SIO_SET(NGE_MEAR_EE_CSEL);
318 	nge_delay(sc);
319 
320 	/*
321 	 * Send address of word we want to read.
322 	 */
323 	nge_eeprom_putbyte(sc, addr);
324 
325 	/*
326 	 * Start reading bits from EEPROM.
327 	 */
328 	for (i = 0x8000; i; i >>= 1) {
329 		SIO_SET(NGE_MEAR_EE_CLK);
330 		nge_delay(sc);
331 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
332 			word |= i;
333 		nge_delay(sc);
334 		SIO_CLR(NGE_MEAR_EE_CLK);
335 		nge_delay(sc);
336 	}
337 
338 	/* Turn off EEPROM access mode. */
339 	nge_eeprom_idle(sc);
340 
341 	*dest = word;
342 }
343 
344 /*
345  * Read a sequence of words from the EEPROM.
346  */
347 static void
348 nge_read_eeprom(struct nge_softc *sc, void *dest, int off, int cnt)
349 {
350 	int i;
351 	uint16_t word = 0, *ptr;
352 
353 	for (i = 0; i < cnt; i++) {
354 		nge_eeprom_getword(sc, off + i, &word);
355 		ptr = (uint16_t *)((uint8_t *)dest + (i * 2));
356 		*ptr = word;
357 	}
358 }
359 
360 /*
361  * Sync the PHYs by setting data bit and strobing the clock 32 times.
362  */
363 static void
364 nge_mii_sync(struct nge_softc *sc)
365 {
366 	int i;
367 
368 	SIO_SET(NGE_MEAR_MII_DIR | NGE_MEAR_MII_DATA);
369 
370 	for (i = 0; i < 32; i++) {
371 		SIO_SET(NGE_MEAR_MII_CLK);
372 		DELAY(1);
373 		SIO_CLR(NGE_MEAR_MII_CLK);
374 		DELAY(1);
375 	}
376 }
377 
378 /*
379  * Clock a series of bits through the MII.
380  */
381 static void
382 nge_mii_send(struct nge_softc *sc, uint32_t bits, int cnt)
383 {
384 	int i;
385 
386 	SIO_CLR(NGE_MEAR_MII_CLK);
387 
388 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
389                 if (bits & i)
390 			SIO_SET(NGE_MEAR_MII_DATA);
391                 else
392 			SIO_CLR(NGE_MEAR_MII_DATA);
393 		DELAY(1);
394 		SIO_CLR(NGE_MEAR_MII_CLK);
395 		DELAY(1);
396 		SIO_SET(NGE_MEAR_MII_CLK);
397 	}
398 }
399 
400 /*
401  * Read an PHY register through the MII.
402  */
403 static int
404 nge_mii_readreg(struct nge_softc *sc, struct nge_mii_frame *frame)
405 {
406 	int ack, i;
407 
408 	/*
409 	 * Set up frame for RX.
410 	 */
411 	frame->mii_stdelim = NGE_MII_STARTDELIM;
412 	frame->mii_opcode = NGE_MII_READOP;
413 	frame->mii_turnaround = 0;
414 	frame->mii_data = 0;
415 
416 	CSR_WRITE_4(sc, NGE_MEAR, 0);
417 
418 	/*
419  	 * Turn on data xmit.
420 	 */
421 	SIO_SET(NGE_MEAR_MII_DIR);
422 
423 	nge_mii_sync(sc);
424 
425 	/*
426 	 * Send command/address info.
427 	 */
428 	nge_mii_send(sc, frame->mii_stdelim, 2);
429 	nge_mii_send(sc, frame->mii_opcode, 2);
430 	nge_mii_send(sc, frame->mii_phyaddr, 5);
431 	nge_mii_send(sc, frame->mii_regaddr, 5);
432 
433 	/* Idle bit */
434 	SIO_CLR((NGE_MEAR_MII_CLK | NGE_MEAR_MII_DATA));
435 	DELAY(1);
436 	SIO_SET(NGE_MEAR_MII_CLK);
437 	DELAY(1);
438 
439 	/* Turn off xmit. */
440 	SIO_CLR(NGE_MEAR_MII_DIR);
441 	/* Check for ack */
442 	SIO_CLR(NGE_MEAR_MII_CLK);
443 	DELAY(1);
444 	ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
445 	SIO_SET(NGE_MEAR_MII_CLK);
446 	DELAY(1);
447 
448 	/*
449 	 * Now try reading data bits. If the ack failed, we still
450 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
451 	 */
452 	if (ack) {
453 		for(i = 0; i < 16; i++) {
454 			SIO_CLR(NGE_MEAR_MII_CLK);
455 			DELAY(1);
456 			SIO_SET(NGE_MEAR_MII_CLK);
457 			DELAY(1);
458 		}
459 		goto fail;
460 	}
461 
462 	for (i = 0x8000; i; i >>= 1) {
463 		SIO_CLR(NGE_MEAR_MII_CLK);
464 		DELAY(1);
465 		if (!ack) {
466 			if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
467 				frame->mii_data |= i;
468 			DELAY(1);
469 		}
470 		SIO_SET(NGE_MEAR_MII_CLK);
471 		DELAY(1);
472 	}
473 
474 fail:
475 	SIO_CLR(NGE_MEAR_MII_CLK);
476 	DELAY(1);
477 	SIO_SET(NGE_MEAR_MII_CLK);
478 	DELAY(1);
479 
480 	if (ack)
481 		return(1);
482 	return(0);
483 }
484 
485 /*
486  * Write to a PHY register through the MII.
487  */
488 static int
489 nge_mii_writereg(struct nge_softc *sc, struct nge_mii_frame *frame)
490 {
491 	/*
492 	 * Set up frame for TX.
493 	 */
494 
495 	frame->mii_stdelim = NGE_MII_STARTDELIM;
496 	frame->mii_opcode = NGE_MII_WRITEOP;
497 	frame->mii_turnaround = NGE_MII_TURNAROUND;
498 
499 	/*
500  	 * Turn on data output.
501 	 */
502 	SIO_SET(NGE_MEAR_MII_DIR);
503 
504 	nge_mii_sync(sc);
505 
506 	nge_mii_send(sc, frame->mii_stdelim, 2);
507 	nge_mii_send(sc, frame->mii_opcode, 2);
508 	nge_mii_send(sc, frame->mii_phyaddr, 5);
509 	nge_mii_send(sc, frame->mii_regaddr, 5);
510 	nge_mii_send(sc, frame->mii_turnaround, 2);
511 	nge_mii_send(sc, frame->mii_data, 16);
512 
513 	/* Idle bit. */
514 	SIO_SET(NGE_MEAR_MII_CLK);
515 	DELAY(1);
516 	SIO_CLR(NGE_MEAR_MII_CLK);
517 	DELAY(1);
518 
519 	/*
520 	 * Turn off xmit.
521 	 */
522 	SIO_CLR(NGE_MEAR_MII_DIR);
523 
524 	return(0);
525 }
526 
527 static int
528 nge_miibus_readreg(device_t dev, int phy, int reg)
529 {
530 	struct nge_softc *sc = device_get_softc(dev);
531 	struct nge_mii_frame frame;
532 
533 	bzero((char *)&frame, sizeof(frame));
534 
535 	frame.mii_phyaddr = phy;
536 	frame.mii_regaddr = reg;
537 	nge_mii_readreg(sc, &frame);
538 
539 	return(frame.mii_data);
540 }
541 
542 static int
543 nge_miibus_writereg(device_t dev, int phy, int reg, int data)
544 {
545 	struct nge_softc *sc = device_get_softc(dev);
546 	struct nge_mii_frame frame;
547 
548 	bzero((char *)&frame, sizeof(frame));
549 
550 	frame.mii_phyaddr = phy;
551 	frame.mii_regaddr = reg;
552 	frame.mii_data = data;
553 	nge_mii_writereg(sc, &frame);
554 
555 	return(0);
556 }
557 
558 static void
559 nge_miibus_statchg(device_t dev)
560 {
561 	struct nge_softc *sc = device_get_softc(dev);
562 	struct mii_data *mii;
563 	int status;
564 
565 	if (sc->nge_tbi) {
566 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
567 		    == IFM_AUTO) {
568 			status = CSR_READ_4(sc, NGE_TBI_ANLPAR);
569 			if (status == 0 || status & NGE_TBIANAR_FDX) {
570 				NGE_SETBIT(sc, NGE_TX_CFG,
571 				    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
572 				NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
573 			} else {
574 				NGE_CLRBIT(sc, NGE_TX_CFG,
575 				    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
576 				NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
577 			}
578 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
579 			!= IFM_FDX) {
580 			NGE_CLRBIT(sc, NGE_TX_CFG,
581 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
582 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
583 		} else {
584 			NGE_SETBIT(sc, NGE_TX_CFG,
585 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
586 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
587 		}
588 	} else {
589 		mii = device_get_softc(sc->nge_miibus);
590 
591 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
592 		        NGE_SETBIT(sc, NGE_TX_CFG,
593 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
594 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
595 		} else {
596 			NGE_CLRBIT(sc, NGE_TX_CFG,
597 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
598 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
599 		}
600 
601 		/* If we have a 1000Mbps link, set the mode_1000 bit. */
602 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
603 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
604 			NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
605 		} else {
606 			NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
607 		}
608 	}
609 }
610 
611 static void
612 nge_setmulti(struct nge_softc *sc)
613 {
614 	struct ifnet *ifp = &sc->arpcom.ac_if;
615 	struct ifmultiaddr *ifma;
616 	uint32_t filtsave, h = 0, i;
617 	int bit, index;
618 
619 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
620 		NGE_CLRBIT(sc, NGE_RXFILT_CTL,
621 		    NGE_RXFILTCTL_MCHASH | NGE_RXFILTCTL_UCHASH);
622 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI);
623 		return;
624 	}
625 
626 	/*
627 	 * We have to explicitly enable the multicast hash table
628 	 * on the NatSemi chip if we want to use it, which we do.
629 	 * We also have to tell it that we don't want to use the
630 	 * hash table for matching unicast addresses.
631 	 */
632 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH);
633 	NGE_CLRBIT(sc, NGE_RXFILT_CTL,
634 	    NGE_RXFILTCTL_ALLMULTI | NGE_RXFILTCTL_UCHASH);
635 
636 	filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL);
637 
638 	/* first, zot all the existing hash bits */
639 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
640 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
641 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
642 	}
643 
644 	/*
645 	 * From the 11 bits returned by the crc routine, the top 7
646 	 * bits represent the 16-bit word in the mcast hash table
647 	 * that needs to be updated, and the lower 4 bits represent
648 	 * which bit within that byte needs to be set.
649 	 */
650 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
651 		if (ifma->ifma_addr->sa_family != AF_LINK)
652 			continue;
653 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
654 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 21;
655 		index = (h >> 4) & 0x7F;
656 		bit = h & 0xF;
657 		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
658 		    NGE_FILTADDR_MCAST_LO + (index * 2));
659 		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
660 	}
661 
662 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave);
663 }
664 
665 static void
666 nge_reset(struct nge_softc *sc)
667 {
668 	int i;
669 
670 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
671 
672 	for (i = 0; i < NGE_TIMEOUT; i++) {
673 		if ((CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET) == 0)
674 			break;
675 	}
676 
677 	if (i == NGE_TIMEOUT)
678 		kprintf("nge%d: reset never completed\n", sc->nge_unit);
679 
680 	/* Wait a little while for the chip to get its brains in order. */
681 	DELAY(1000);
682 
683 	/*
684 	 * If this is a NetSemi chip, make sure to clear
685 	 * PME mode.
686 	 */
687 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
688 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
689 }
690 
691 /*
692  * Probe for an NatSemi chip. Check the PCI vendor and device
693  * IDs against our list and return a device name if we find a match.
694  */
695 static int
696 nge_probe(device_t dev)
697 {
698 	struct nge_type	*t;
699 	uint16_t vendor, product;
700 
701 	vendor = pci_get_vendor(dev);
702 	product = pci_get_device(dev);
703 
704 	for (t = nge_devs; t->nge_name != NULL; t++) {
705 		if (vendor == t->nge_vid && product == t->nge_did) {
706 			device_set_desc(dev, t->nge_name);
707 			return(0);
708 		}
709 	}
710 
711 	return(ENXIO);
712 }
713 
714 /*
715  * Attach the interface. Allocate softc structures, do ifmedia
716  * setup and ethernet/BPF attach.
717  */
718 static int
719 nge_attach(device_t dev)
720 {
721 	struct nge_softc *sc;
722 	struct ifnet *ifp;
723 	uint8_t eaddr[ETHER_ADDR_LEN];
724 	uint32_t		command;
725 	int error = 0, rid, unit;
726 	const char		*sep = "";
727 
728 	sc = device_get_softc(dev);
729 	unit = device_get_unit(dev);
730 	callout_init(&sc->nge_stat_timer);
731 	lwkt_serialize_init(&sc->nge_jslot_serializer);
732 
733 	/*
734 	 * Handle power management nonsense.
735 	 */
736 	command = pci_read_config(dev, NGE_PCI_CAPID, 4) & 0x000000FF;
737 	if (command == 0x01) {
738 		command = pci_read_config(dev, NGE_PCI_PWRMGMTCTRL, 4);
739 		if (command & NGE_PSTATE_MASK) {
740 			uint32_t		iobase, membase, irq;
741 
742 			/* Save important PCI config data. */
743 			iobase = pci_read_config(dev, NGE_PCI_LOIO, 4);
744 			membase = pci_read_config(dev, NGE_PCI_LOMEM, 4);
745 			irq = pci_read_config(dev, NGE_PCI_INTLINE, 4);
746 
747 			/* Reset the power state. */
748 			kprintf("nge%d: chip is in D%d power mode "
749 			"-- setting to D0\n", unit, command & NGE_PSTATE_MASK);
750 			command &= 0xFFFFFFFC;
751 			pci_write_config(dev, NGE_PCI_PWRMGMTCTRL, command, 4);
752 
753 			/* Restore PCI config data. */
754 			pci_write_config(dev, NGE_PCI_LOIO, iobase, 4);
755 			pci_write_config(dev, NGE_PCI_LOMEM, membase, 4);
756 			pci_write_config(dev, NGE_PCI_INTLINE, irq, 4);
757 		}
758 	}
759 
760 	/*
761 	 * Map control/status registers.
762 	 */
763 	command = pci_read_config(dev, PCIR_COMMAND, 4);
764 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
765 	pci_write_config(dev, PCIR_COMMAND, command, 4);
766 	command = pci_read_config(dev, PCIR_COMMAND, 4);
767 
768 #ifdef NGE_USEIOSPACE
769 	if (!(command & PCIM_CMD_PORTEN)) {
770 		kprintf("nge%d: failed to enable I/O ports!\n", unit);
771 		error = ENXIO;
772 		return(error);
773 	}
774 #else
775 	if (!(command & PCIM_CMD_MEMEN)) {
776 		kprintf("nge%d: failed to enable memory mapping!\n", unit);
777 		error = ENXIO;
778 		return(error);
779 	}
780 #endif
781 
782 	rid = NGE_RID;
783 	sc->nge_res = bus_alloc_resource_any(dev, NGE_RES, &rid, RF_ACTIVE);
784 
785 	if (sc->nge_res == NULL) {
786 		kprintf("nge%d: couldn't map ports/memory\n", unit);
787 		error = ENXIO;
788 		return(error);
789 	}
790 
791 	sc->nge_btag = rman_get_bustag(sc->nge_res);
792 	sc->nge_bhandle = rman_get_bushandle(sc->nge_res);
793 
794 	/* Allocate interrupt */
795 	rid = 0;
796 	sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
797 	    RF_SHAREABLE | RF_ACTIVE);
798 
799 	if (sc->nge_irq == NULL) {
800 		kprintf("nge%d: couldn't map interrupt\n", unit);
801 		error = ENXIO;
802 		goto fail;
803 	}
804 
805 	/* Reset the adapter. */
806 	nge_reset(sc);
807 
808 	/*
809 	 * Get station address from the EEPROM.
810 	 */
811 	nge_read_eeprom(sc, &eaddr[4], NGE_EE_NODEADDR, 1);
812 	nge_read_eeprom(sc, &eaddr[2], NGE_EE_NODEADDR + 1, 1);
813 	nge_read_eeprom(sc, &eaddr[0], NGE_EE_NODEADDR + 2, 1);
814 
815 	sc->nge_unit = unit;
816 
817 	sc->nge_ldata = contigmalloc(sizeof(struct nge_list_data), M_DEVBUF,
818 	    M_WAITOK | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
819 
820 	if (sc->nge_ldata == NULL) {
821 		kprintf("nge%d: no memory for list buffers!\n", unit);
822 		error = ENXIO;
823 		goto fail;
824 	}
825 
826 	/* Try to allocate memory for jumbo buffers. */
827 	if (nge_alloc_jumbo_mem(sc)) {
828 		kprintf("nge%d: jumbo buffer allocation failed\n",
829                     sc->nge_unit);
830 		error = ENXIO;
831 		goto fail;
832 	}
833 
834 	ifp = &sc->arpcom.ac_if;
835 	ifp->if_softc = sc;
836 	if_initname(ifp, "nge", unit);
837 	ifp->if_mtu = ETHERMTU;
838 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
839 	ifp->if_ioctl = nge_ioctl;
840 	ifp->if_start = nge_start;
841 #ifdef DEVICE_POLLING
842 	ifp->if_poll = nge_poll;
843 #endif
844 	ifp->if_watchdog = nge_watchdog;
845 	ifp->if_init = nge_init;
846 	ifp->if_baudrate = 1000000000;
847 	ifq_set_maxlen(&ifp->if_snd, NGE_TX_LIST_CNT - 1);
848 	ifq_set_ready(&ifp->if_snd);
849 	ifp->if_hwassist = NGE_CSUM_FEATURES;
850 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING;
851 	ifp->if_capenable = ifp->if_capabilities;
852 
853 	/*
854 	 * Do MII setup.
855 	 */
856 	if (mii_phy_probe(dev, &sc->nge_miibus,
857 			  nge_ifmedia_upd, nge_ifmedia_sts)) {
858 		if (CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) {
859 			sc->nge_tbi = 1;
860 			device_printf(dev, "Using TBI\n");
861 
862 			sc->nge_miibus = dev;
863 
864 			ifmedia_init(&sc->nge_ifmedia, 0, nge_ifmedia_upd,
865 				nge_ifmedia_sts);
866 #define	ADD(m, c)	ifmedia_add(&sc->nge_ifmedia, (m), (c), NULL)
867 #define PRINT(s)	kprintf("%s%s", sep, s); sep = ", "
868 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_NONE, 0, 0), 0);
869 			device_printf(dev, " ");
870 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, 0, 0), 0);
871 			PRINT("1000baseSX");
872 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, IFM_FDX, 0),0);
873 			PRINT("1000baseSX-FDX");
874 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0), 0);
875 			PRINT("auto");
876 
877 			kprintf("\n");
878 #undef ADD
879 #undef PRINT
880 			ifmedia_set(&sc->nge_ifmedia,
881 				IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0));
882 
883 			CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
884 				| NGE_GPIO_GP4_OUT
885 				| NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
886 				| NGE_GPIO_GP3_OUTENB
887 				| NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
888 
889 		} else {
890 			kprintf("nge%d: MII without any PHY!\n", sc->nge_unit);
891 			error = ENXIO;
892 			goto fail;
893 		}
894 	}
895 
896 	/*
897 	 * Call MI attach routine.
898 	 */
899 	ether_ifattach(ifp, eaddr, NULL);
900 
901 	error = bus_setup_intr(dev, sc->nge_irq, INTR_MPSAFE,
902 			       nge_intr, sc, &sc->nge_intrhand,
903 			       ifp->if_serializer);
904 	if (error) {
905 		ether_ifdetach(ifp);
906 		device_printf(dev, "couldn't set up irq\n");
907 		goto fail;
908 	}
909 
910 	ifp->if_cpuid = rman_get_cpuid(sc->nge_irq);
911 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
912 
913 	return(0);
914 fail:
915 	nge_detach(dev);
916 	return(error);
917 }
918 
919 static int
920 nge_detach(device_t dev)
921 {
922 	struct nge_softc *sc = device_get_softc(dev);
923 	struct ifnet *ifp = &sc->arpcom.ac_if;
924 
925 	if (device_is_attached(dev)) {
926 		lwkt_serialize_enter(ifp->if_serializer);
927 		nge_reset(sc);
928 		nge_stop(sc);
929 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
930 		lwkt_serialize_exit(ifp->if_serializer);
931 
932 		ether_ifdetach(ifp);
933 	}
934 
935 	if (sc->nge_miibus)
936 		device_delete_child(dev, sc->nge_miibus);
937 	bus_generic_detach(dev);
938 
939 	if (sc->nge_irq)
940 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
941 	if (sc->nge_res)
942 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
943 	if (sc->nge_ldata) {
944 		contigfree(sc->nge_ldata, sizeof(struct nge_list_data),
945 			   M_DEVBUF);
946 	}
947 	if (sc->nge_cdata.nge_jumbo_buf)
948 		contigfree(sc->nge_cdata.nge_jumbo_buf, NGE_JMEM, M_DEVBUF);
949 
950 	return(0);
951 }
952 
953 /*
954  * Initialize the transmit descriptors.
955  */
956 static int
957 nge_list_tx_init(struct nge_softc *sc)
958 {
959 	struct nge_list_data *ld;
960 	struct nge_ring_data *cd;
961 	int i;
962 
963 	cd = &sc->nge_cdata;
964 	ld = sc->nge_ldata;
965 
966 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
967 		if (i == (NGE_TX_LIST_CNT - 1)) {
968 			ld->nge_tx_list[i].nge_nextdesc =
969 			    &ld->nge_tx_list[0];
970 			ld->nge_tx_list[i].nge_next =
971 			    vtophys(&ld->nge_tx_list[0]);
972 		} else {
973 			ld->nge_tx_list[i].nge_nextdesc =
974 			    &ld->nge_tx_list[i + 1];
975 			ld->nge_tx_list[i].nge_next =
976 			    vtophys(&ld->nge_tx_list[i + 1]);
977 		}
978 		ld->nge_tx_list[i].nge_mbuf = NULL;
979 		ld->nge_tx_list[i].nge_ptr = 0;
980 		ld->nge_tx_list[i].nge_ctl = 0;
981 	}
982 
983 	cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0;
984 
985 	return(0);
986 }
987 
988 
989 /*
990  * Initialize the RX descriptors and allocate mbufs for them. Note that
991  * we arrange the descriptors in a closed ring, so that the last descriptor
992  * points back to the first.
993  */
994 static int
995 nge_list_rx_init(struct nge_softc *sc)
996 {
997 	struct nge_list_data *ld;
998 	struct nge_ring_data *cd;
999 	int i;
1000 
1001 	ld = sc->nge_ldata;
1002 	cd = &sc->nge_cdata;
1003 
1004 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
1005 		if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS)
1006 			return(ENOBUFS);
1007 		if (i == (NGE_RX_LIST_CNT - 1)) {
1008 			ld->nge_rx_list[i].nge_nextdesc =
1009 			    &ld->nge_rx_list[0];
1010 			ld->nge_rx_list[i].nge_next =
1011 			    vtophys(&ld->nge_rx_list[0]);
1012 		} else {
1013 			ld->nge_rx_list[i].nge_nextdesc =
1014 			    &ld->nge_rx_list[i + 1];
1015 			ld->nge_rx_list[i].nge_next =
1016 			    vtophys(&ld->nge_rx_list[i + 1]);
1017 		}
1018 	}
1019 
1020 	cd->nge_rx_prod = 0;
1021 
1022 	return(0);
1023 }
1024 
1025 /*
1026  * Initialize an RX descriptor and attach an MBUF cluster.
1027  */
1028 static int
1029 nge_newbuf(struct nge_softc *sc, struct nge_desc *c, struct mbuf *m)
1030 {
1031 	struct mbuf *m_new = NULL;
1032 	struct nge_jslot *buf;
1033 
1034 	if (m == NULL) {
1035 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1036 		if (m_new == NULL) {
1037 			kprintf("nge%d: no memory for rx list "
1038 			    "-- packet dropped!\n", sc->nge_unit);
1039 			return(ENOBUFS);
1040 		}
1041 
1042 		/* Allocate the jumbo buffer */
1043 		buf = nge_jalloc(sc);
1044 		if (buf == NULL) {
1045 #ifdef NGE_VERBOSE
1046 			kprintf("nge%d: jumbo allocation failed "
1047 			    "-- packet dropped!\n", sc->nge_unit);
1048 #endif
1049 			m_freem(m_new);
1050 			return(ENOBUFS);
1051 		}
1052 		/* Attach the buffer to the mbuf */
1053 		m_new->m_ext.ext_arg = buf;
1054 		m_new->m_ext.ext_buf = buf->nge_buf;
1055 		m_new->m_ext.ext_free = nge_jfree;
1056 		m_new->m_ext.ext_ref = nge_jref;
1057 		m_new->m_ext.ext_size = NGE_JUMBO_FRAMELEN;
1058 
1059 		m_new->m_data = m_new->m_ext.ext_buf;
1060 		m_new->m_flags |= M_EXT;
1061 		m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
1062 	} else {
1063 		m_new = m;
1064 		m_new->m_len = m_new->m_pkthdr.len = NGE_JLEN;
1065 		m_new->m_data = m_new->m_ext.ext_buf;
1066 	}
1067 
1068 	m_adj(m_new, sizeof(uint64_t));
1069 
1070 	c->nge_mbuf = m_new;
1071 	c->nge_ptr = vtophys(mtod(m_new, caddr_t));
1072 	c->nge_ctl = m_new->m_len;
1073 	c->nge_extsts = 0;
1074 
1075 	return(0);
1076 }
1077 
1078 static int
1079 nge_alloc_jumbo_mem(struct nge_softc *sc)
1080 {
1081 	caddr_t ptr;
1082 	int i;
1083 	struct nge_jslot *entry;
1084 
1085 	/* Grab a big chunk o' storage. */
1086 	sc->nge_cdata.nge_jumbo_buf = contigmalloc(NGE_JMEM, M_DEVBUF,
1087 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
1088 
1089 	if (sc->nge_cdata.nge_jumbo_buf == NULL) {
1090 		kprintf("nge%d: no memory for jumbo buffers!\n", sc->nge_unit);
1091 		return(ENOBUFS);
1092 	}
1093 
1094 	SLIST_INIT(&sc->nge_jfree_listhead);
1095 
1096 	/*
1097 	 * Now divide it up into 9K pieces and save the addresses
1098 	 * in an array.
1099 	 */
1100 	ptr = sc->nge_cdata.nge_jumbo_buf;
1101 	for (i = 0; i < NGE_JSLOTS; i++) {
1102 		entry = &sc->nge_cdata.nge_jslots[i];
1103 		entry->nge_sc = sc;
1104 		entry->nge_buf = ptr;
1105 		entry->nge_inuse = 0;
1106 		entry->nge_slot = i;
1107 		SLIST_INSERT_HEAD(&sc->nge_jfree_listhead, entry, jslot_link);
1108 		ptr += NGE_JLEN;
1109 	}
1110 
1111 	return(0);
1112 }
1113 
1114 
1115 /*
1116  * Allocate a jumbo buffer.
1117  */
1118 static struct nge_jslot *
1119 nge_jalloc(struct nge_softc *sc)
1120 {
1121 	struct nge_jslot *entry;
1122 
1123 	lwkt_serialize_enter(&sc->nge_jslot_serializer);
1124 	entry = SLIST_FIRST(&sc->nge_jfree_listhead);
1125 	if (entry) {
1126 		SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jslot_link);
1127 		entry->nge_inuse = 1;
1128 	} else {
1129 #ifdef NGE_VERBOSE
1130 		kprintf("nge%d: no free jumbo buffers\n", sc->nge_unit);
1131 #endif
1132 	}
1133 	lwkt_serialize_exit(&sc->nge_jslot_serializer);
1134 	return(entry);
1135 }
1136 
1137 /*
1138  * Adjust usage count on a jumbo buffer. In general this doesn't
1139  * get used much because our jumbo buffers don't get passed around
1140  * a lot, but it's implemented for correctness.
1141  */
1142 static void
1143 nge_jref(void *arg)
1144 {
1145 	struct nge_jslot *entry = (struct nge_jslot *)arg;
1146 	struct nge_softc *sc = entry->nge_sc;
1147 
1148 	if (sc == NULL)
1149 		panic("nge_jref: can't find softc pointer!");
1150 
1151 	if (&sc->nge_cdata.nge_jslots[entry->nge_slot] != entry)
1152 		panic("nge_jref: asked to reference buffer "
1153 		    "that we don't manage!");
1154 	else if (entry->nge_inuse == 0)
1155 		panic("nge_jref: buffer already free!");
1156 	else
1157 		atomic_add_int(&entry->nge_inuse, 1);
1158 }
1159 
1160 /*
1161  * Release a jumbo buffer.
1162  */
1163 static void
1164 nge_jfree(void *arg)
1165 {
1166 	struct nge_jslot *entry = (struct nge_jslot *)arg;
1167 	struct nge_softc *sc = entry->nge_sc;
1168 
1169 	if (sc == NULL)
1170 		panic("nge_jref: can't find softc pointer!");
1171 
1172 	if (&sc->nge_cdata.nge_jslots[entry->nge_slot] != entry) {
1173 		panic("nge_jref: asked to reference buffer "
1174 		    "that we don't manage!");
1175 	} else if (entry->nge_inuse == 0) {
1176 		panic("nge_jref: buffer already free!");
1177 	} else {
1178 		lwkt_serialize_enter(&sc->nge_jslot_serializer);
1179 		atomic_subtract_int(&entry->nge_inuse, 1);
1180 		if (entry->nge_inuse == 0) {
1181 			SLIST_INSERT_HEAD(&sc->nge_jfree_listhead,
1182 					  entry, jslot_link);
1183 		}
1184 		lwkt_serialize_exit(&sc->nge_jslot_serializer);
1185 	}
1186 }
1187 /*
1188  * A frame has been uploaded: pass the resulting mbuf chain up to
1189  * the higher level protocols.
1190  */
1191 static void
1192 nge_rxeof(struct nge_softc *sc)
1193 {
1194         struct mbuf *m;
1195         struct ifnet *ifp = &sc->arpcom.ac_if;
1196 	struct nge_desc *cur_rx;
1197 	int i, total_len = 0;
1198 	uint32_t rxstat;
1199 
1200 	i = sc->nge_cdata.nge_rx_prod;
1201 
1202 	while(NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) {
1203 		struct mbuf *m0 = NULL;
1204 		uint32_t extsts;
1205 
1206 #ifdef DEVICE_POLLING
1207 		if (ifp->if_flags & IFF_POLLING) {
1208 			if (sc->rxcycles <= 0)
1209 				break;
1210 			sc->rxcycles--;
1211 		}
1212 #endif /* DEVICE_POLLING */
1213 
1214 		cur_rx = &sc->nge_ldata->nge_rx_list[i];
1215 		rxstat = cur_rx->nge_rxstat;
1216 		extsts = cur_rx->nge_extsts;
1217 		m = cur_rx->nge_mbuf;
1218 		cur_rx->nge_mbuf = NULL;
1219 		total_len = NGE_RXBYTES(cur_rx);
1220 		NGE_INC(i, NGE_RX_LIST_CNT);
1221 		/*
1222 		 * If an error occurs, update stats, clear the
1223 		 * status word and leave the mbuf cluster in place:
1224 		 * it should simply get re-used next time this descriptor
1225 	 	 * comes up in the ring.
1226 		 */
1227 		if ((rxstat & NGE_CMDSTS_PKT_OK) == 0) {
1228 			ifp->if_ierrors++;
1229 			nge_newbuf(sc, cur_rx, m);
1230 			continue;
1231 		}
1232 
1233 		/*
1234 		 * Ok. NatSemi really screwed up here. This is the
1235 		 * only gigE chip I know of with alignment constraints
1236 		 * on receive buffers. RX buffers must be 64-bit aligned.
1237 		 */
1238 #ifdef __i386__
1239 		/*
1240 		 * By popular demand, ignore the alignment problems
1241 		 * on the Intel x86 platform. The performance hit
1242 		 * incurred due to unaligned accesses is much smaller
1243 		 * than the hit produced by forcing buffer copies all
1244 		 * the time, especially with jumbo frames. We still
1245 		 * need to fix up the alignment everywhere else though.
1246 		 */
1247 		if (nge_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
1248 #endif
1249 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1250 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
1251 			nge_newbuf(sc, cur_rx, m);
1252 			if (m0 == NULL) {
1253 				kprintf("nge%d: no receive buffers "
1254 				    "available -- packet dropped!\n",
1255 				    sc->nge_unit);
1256 				ifp->if_ierrors++;
1257 				continue;
1258 			}
1259 			m_adj(m0, ETHER_ALIGN);
1260 			m = m0;
1261 #ifdef __i386__
1262 		} else {
1263 			m->m_pkthdr.rcvif = ifp;
1264 			m->m_pkthdr.len = m->m_len = total_len;
1265 		}
1266 #endif
1267 
1268 		ifp->if_ipackets++;
1269 
1270 		/* Do IP checksum checking. */
1271 		if (extsts & NGE_RXEXTSTS_IPPKT)
1272 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1273 		if (!(extsts & NGE_RXEXTSTS_IPCSUMERR))
1274 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1275 		if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1276 		    (extsts & NGE_RXEXTSTS_TCPCSUMERR) == 0) ||
1277 		    (extsts & NGE_RXEXTSTS_UDPPKT &&
1278 		    (extsts & NGE_RXEXTSTS_UDPCSUMERR) == 0)) {
1279 			m->m_pkthdr.csum_flags |=
1280 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
1281 			    CSUM_FRAG_NOT_CHECKED;
1282 			m->m_pkthdr.csum_data = 0xffff;
1283 		}
1284 
1285 		/*
1286 		 * If we received a packet with a vlan tag, pass it
1287 		 * to vlan_input() instead of ether_input().
1288 		 */
1289 		if (extsts & NGE_RXEXTSTS_VLANPKT) {
1290 			m->m_flags |= M_VLANTAG;
1291 			m->m_pkthdr.ether_vlantag =
1292 				(extsts & NGE_RXEXTSTS_VTCI);
1293 		}
1294 		ifp->if_input(ifp, m);
1295 	}
1296 
1297 	sc->nge_cdata.nge_rx_prod = i;
1298 }
1299 
1300 /*
1301  * A frame was downloaded to the chip. It's safe for us to clean up
1302  * the list buffers.
1303  */
1304 static void
1305 nge_txeof(struct nge_softc *sc)
1306 {
1307 	struct ifnet *ifp = &sc->arpcom.ac_if;
1308 	struct nge_desc *cur_tx = NULL;
1309 	uint32_t idx;
1310 
1311 	/* Clear the timeout timer. */
1312 	ifp->if_timer = 0;
1313 
1314 	/*
1315 	 * Go through our tx list and free mbufs for those
1316 	 * frames that have been transmitted.
1317 	 */
1318 	idx = sc->nge_cdata.nge_tx_cons;
1319 	while (idx != sc->nge_cdata.nge_tx_prod) {
1320 		cur_tx = &sc->nge_ldata->nge_tx_list[idx];
1321 
1322 		if (NGE_OWNDESC(cur_tx))
1323 			break;
1324 
1325 		if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) {
1326 			sc->nge_cdata.nge_tx_cnt--;
1327 			NGE_INC(idx, NGE_TX_LIST_CNT);
1328 			continue;
1329 		}
1330 
1331 		if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) {
1332 			ifp->if_oerrors++;
1333 			if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS)
1334 				ifp->if_collisions++;
1335 			if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL)
1336 				ifp->if_collisions++;
1337 		}
1338 
1339 		ifp->if_collisions +=
1340 		    (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16;
1341 
1342 		ifp->if_opackets++;
1343 		if (cur_tx->nge_mbuf != NULL) {
1344 			m_freem(cur_tx->nge_mbuf);
1345 			cur_tx->nge_mbuf = NULL;
1346 		}
1347 
1348 		sc->nge_cdata.nge_tx_cnt--;
1349 		NGE_INC(idx, NGE_TX_LIST_CNT);
1350 		ifp->if_timer = 0;
1351 	}
1352 
1353 	sc->nge_cdata.nge_tx_cons = idx;
1354 
1355 	if (cur_tx != NULL)
1356 		ifp->if_flags &= ~IFF_OACTIVE;
1357 }
1358 
1359 static void
1360 nge_tick(void *xsc)
1361 {
1362 	struct nge_softc *sc = xsc;
1363 	struct ifnet *ifp = &sc->arpcom.ac_if;
1364 	struct mii_data *mii;
1365 
1366 	lwkt_serialize_enter(ifp->if_serializer);
1367 
1368 	if (sc->nge_tbi) {
1369 		if (sc->nge_link == 0) {
1370 			if (CSR_READ_4(sc, NGE_TBI_BMSR)
1371 			    & NGE_TBIBMSR_ANEG_DONE) {
1372 				kprintf("nge%d: gigabit link up\n",
1373 				    sc->nge_unit);
1374 				nge_miibus_statchg(sc->nge_miibus);
1375 				sc->nge_link++;
1376 				if (!ifq_is_empty(&ifp->if_snd))
1377 					if_devstart(ifp);
1378 			}
1379 		}
1380 	} else {
1381 		mii = device_get_softc(sc->nge_miibus);
1382 		mii_tick(mii);
1383 
1384 		if (sc->nge_link == 0) {
1385 			if (mii->mii_media_status & IFM_ACTIVE &&
1386 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1387 				sc->nge_link++;
1388 				if (IFM_SUBTYPE(mii->mii_media_active)
1389 				    == IFM_1000_T)
1390 					kprintf("nge%d: gigabit link up\n",
1391 					    sc->nge_unit);
1392 				if (!ifq_is_empty(&ifp->if_snd))
1393 					if_devstart(ifp);
1394 			}
1395 		}
1396 	}
1397 	callout_reset(&sc->nge_stat_timer, hz, nge_tick, sc);
1398 
1399 	lwkt_serialize_exit(ifp->if_serializer);
1400 }
1401 
1402 #ifdef DEVICE_POLLING
1403 
1404 static void
1405 nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1406 {
1407 	struct nge_softc *sc = ifp->if_softc;
1408 
1409 	switch(cmd) {
1410 	case POLL_REGISTER:
1411 		/* disable interrupts */
1412 		CSR_WRITE_4(sc, NGE_IER, 0);
1413 		break;
1414 	case POLL_DEREGISTER:
1415 		/* enable interrupts */
1416 		CSR_WRITE_4(sc, NGE_IER, 1);
1417 		break;
1418 	default:
1419 		/*
1420 		 * On the nge, reading the status register also clears it.
1421 		 * So before returning to intr mode we must make sure that all
1422 		 * possible pending sources of interrupts have been served.
1423 		 * In practice this means run to completion the *eof routines,
1424 		 * and then call the interrupt routine
1425 		 */
1426 		sc->rxcycles = count;
1427 		nge_rxeof(sc);
1428 		nge_txeof(sc);
1429 		if (!ifq_is_empty(&ifp->if_snd))
1430 			if_devstart(ifp);
1431 
1432 		if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1433 			uint32_t status;
1434 
1435 			/* Reading the ISR register clears all interrupts. */
1436 			status = CSR_READ_4(sc, NGE_ISR);
1437 
1438 			if (status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW))
1439 				nge_rxeof(sc);
1440 
1441 			if (status & (NGE_ISR_RX_IDLE))
1442 				NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1443 
1444 			if (status & NGE_ISR_SYSERR) {
1445 				nge_reset(sc);
1446 				nge_init(sc);
1447 			}
1448 		}
1449 		break;
1450 	}
1451 }
1452 
1453 #endif /* DEVICE_POLLING */
1454 
1455 static void
1456 nge_intr(void *arg)
1457 {
1458 	struct nge_softc *sc = arg;
1459 	struct ifnet *ifp = &sc->arpcom.ac_if;
1460 	uint32_t status;
1461 
1462 	/* Supress unwanted interrupts */
1463 	if (!(ifp->if_flags & IFF_UP)) {
1464 		nge_stop(sc);
1465 		return;
1466 	}
1467 
1468 	/* Disable interrupts. */
1469 	CSR_WRITE_4(sc, NGE_IER, 0);
1470 
1471 	/* Data LED on for TBI mode */
1472 	if(sc->nge_tbi)
1473 		 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1474 			     | NGE_GPIO_GP3_OUT);
1475 
1476 	for (;;) {
1477 		/* Reading the ISR register clears all interrupts. */
1478 		status = CSR_READ_4(sc, NGE_ISR);
1479 
1480 		if ((status & NGE_INTRS) == 0)
1481 			break;
1482 
1483 		if ((status & NGE_ISR_TX_DESC_OK) ||
1484 		    (status & NGE_ISR_TX_ERR) ||
1485 		    (status & NGE_ISR_TX_OK) ||
1486 		    (status & NGE_ISR_TX_IDLE))
1487 			nge_txeof(sc);
1488 
1489 		if ((status & NGE_ISR_RX_DESC_OK) ||
1490 		    (status & NGE_ISR_RX_ERR) ||
1491 		    (status & NGE_ISR_RX_OFLOW) ||
1492 		    (status & NGE_ISR_RX_FIFO_OFLOW) ||
1493 		    (status & NGE_ISR_RX_IDLE) ||
1494 		    (status & NGE_ISR_RX_OK))
1495 			nge_rxeof(sc);
1496 
1497 		if ((status & NGE_ISR_RX_IDLE))
1498 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1499 
1500 		if (status & NGE_ISR_SYSERR) {
1501 			nge_reset(sc);
1502 			ifp->if_flags &= ~IFF_RUNNING;
1503 			nge_init(sc);
1504 		}
1505 
1506 #ifdef notyet
1507 		/* mii_tick should only be called once per second */
1508 		if (status & NGE_ISR_PHY_INTR) {
1509 			sc->nge_link = 0;
1510 			nge_tick_serialized(sc);
1511 		}
1512 #endif
1513 	}
1514 
1515 	/* Re-enable interrupts. */
1516 	CSR_WRITE_4(sc, NGE_IER, 1);
1517 
1518 	if (!ifq_is_empty(&ifp->if_snd))
1519 		if_devstart(ifp);
1520 
1521 	/* Data LED off for TBI mode */
1522 
1523 	if(sc->nge_tbi)
1524 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1525 			    & ~NGE_GPIO_GP3_OUT);
1526 }
1527 
1528 /*
1529  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1530  * pointers to the fragment pointers.
1531  */
1532 static int
1533 nge_encap(struct nge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
1534 {
1535 	struct nge_desc *f = NULL;
1536 	struct mbuf *m;
1537 	int frag, cur, cnt = 0;
1538 
1539 	/*
1540  	 * Start packing the mbufs in this chain into
1541 	 * the fragment pointers. Stop when we run out
1542  	 * of fragments or hit the end of the mbuf chain.
1543 	 */
1544 	cur = frag = *txidx;
1545 
1546 	for (m = m_head; m != NULL; m = m->m_next) {
1547 		if (m->m_len != 0) {
1548 			if ((NGE_TX_LIST_CNT -
1549 			    (sc->nge_cdata.nge_tx_cnt + cnt)) < 2)
1550 				break;
1551 			f = &sc->nge_ldata->nge_tx_list[frag];
1552 			f->nge_ctl = NGE_CMDSTS_MORE | m->m_len;
1553 			f->nge_ptr = vtophys(mtod(m, vm_offset_t));
1554 			if (cnt != 0)
1555 				f->nge_ctl |= NGE_CMDSTS_OWN;
1556 			cur = frag;
1557 			NGE_INC(frag, NGE_TX_LIST_CNT);
1558 			cnt++;
1559 		}
1560 	}
1561 	/* Caller should make sure that 'm_head' is not excessive fragmented */
1562 	KASSERT(m == NULL, ("too many fragments\n"));
1563 
1564 	sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0;
1565 	if (m_head->m_pkthdr.csum_flags) {
1566 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1567 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1568 			    NGE_TXEXTSTS_IPCSUM;
1569 		if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1570 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1571 			    NGE_TXEXTSTS_TCPCSUM;
1572 		if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1573 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1574 			    NGE_TXEXTSTS_UDPCSUM;
1575 	}
1576 
1577 	if (m_head->m_flags & M_VLANTAG) {
1578 		sc->nge_ldata->nge_tx_list[cur].nge_extsts |=
1579 			(NGE_TXEXTSTS_VLANPKT|m_head->m_pkthdr.ether_vlantag);
1580 	}
1581 
1582 	sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head;
1583 	sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE;
1584 	sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN;
1585 	sc->nge_cdata.nge_tx_cnt += cnt;
1586 	*txidx = frag;
1587 
1588 	return(0);
1589 }
1590 
1591 /*
1592  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1593  * to the mbuf data regions directly in the transmit lists. We also save a
1594  * copy of the pointers since the transmit list fragment pointers are
1595  * physical addresses.
1596  */
1597 
1598 static void
1599 nge_start(struct ifnet *ifp)
1600 {
1601 	struct nge_softc *sc = ifp->if_softc;
1602 	struct mbuf *m_head = NULL, *m_defragged;
1603 	uint32_t idx;
1604 	int need_trans;
1605 
1606 	if (!sc->nge_link) {
1607 		ifq_purge(&ifp->if_snd);
1608 		return;
1609 	}
1610 
1611 	idx = sc->nge_cdata.nge_tx_prod;
1612 
1613 	if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
1614 		return;
1615 
1616 	need_trans = 0;
1617 	while (sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) {
1618 		struct mbuf *m;
1619 		int cnt;
1620 
1621 		m_defragged = NULL;
1622 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1623 		if (m_head == NULL)
1624 			break;
1625 
1626 again:
1627 		cnt = 0;
1628 		for (m = m_head; m != NULL; m = m->m_next)
1629 			++cnt;
1630 		if ((NGE_TX_LIST_CNT -
1631 		    (sc->nge_cdata.nge_tx_cnt + cnt)) < 2) {
1632 			if (m_defragged != NULL) {
1633 				/*
1634 				 * Even after defragmentation, there
1635 				 * are still too many fragments, so
1636 				 * drop this packet.
1637 				 */
1638 				m_freem(m_head);
1639 				ifp->if_flags |= IFF_OACTIVE;
1640 				break;
1641 			}
1642 
1643 			m_defragged = m_defrag(m_head, MB_DONTWAIT);
1644 			if (m_defragged == NULL) {
1645 				m_freem(m_head);
1646 				continue;
1647 			}
1648 			m_head = m_defragged;
1649 
1650 			/* Recount # of fragments */
1651 			goto again;
1652 		}
1653 
1654 		nge_encap(sc, m_head, &idx);
1655 		need_trans = 1;
1656 
1657 		ETHER_BPF_MTAP(ifp, m_head);
1658 	}
1659 
1660 	if (!need_trans)
1661 		return;
1662 
1663 	/* Transmit */
1664 	sc->nge_cdata.nge_tx_prod = idx;
1665 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
1666 
1667 	/*
1668 	 * Set a timeout in case the chip goes out to lunch.
1669 	 */
1670 	ifp->if_timer = 5;
1671 }
1672 
1673 static void
1674 nge_init(void *xsc)
1675 {
1676 	struct nge_softc *sc = xsc;
1677 	struct ifnet *ifp = &sc->arpcom.ac_if;
1678 	struct mii_data *mii;
1679 
1680 	if (ifp->if_flags & IFF_RUNNING) {
1681 		return;
1682 	}
1683 
1684 	/*
1685 	 * Cancel pending I/O and free all RX/TX buffers.
1686 	 */
1687 	nge_stop(sc);
1688 	callout_reset(&sc->nge_stat_timer, hz, nge_tick, sc);
1689 
1690 	if (sc->nge_tbi)
1691 		mii = NULL;
1692 	else
1693 		mii = device_get_softc(sc->nge_miibus);
1694 
1695 	/* Set MAC address */
1696 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
1697 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1698 	    ((uint16_t *)sc->arpcom.ac_enaddr)[0]);
1699 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
1700 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1701 	    ((uint16_t *)sc->arpcom.ac_enaddr)[1]);
1702 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
1703 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1704 	    ((uint16_t *)sc->arpcom.ac_enaddr)[2]);
1705 
1706 	/* Init circular RX list. */
1707 	if (nge_list_rx_init(sc) == ENOBUFS) {
1708 		kprintf("nge%d: initialization failed: no "
1709 			"memory for rx buffers\n", sc->nge_unit);
1710 		nge_stop(sc);
1711 		return;
1712 	}
1713 
1714 	/*
1715 	 * Init tx descriptors.
1716 	 */
1717 	nge_list_tx_init(sc);
1718 
1719 	/*
1720 	 * For the NatSemi chip, we have to explicitly enable the
1721 	 * reception of ARP frames, as well as turn on the 'perfect
1722 	 * match' filter where we store the station address, otherwise
1723 	 * we won't receive unicasts meant for this host.
1724 	 */
1725 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
1726 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
1727 
1728 	 /* If we want promiscuous mode, set the allframes bit. */
1729 	if (ifp->if_flags & IFF_PROMISC)
1730 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1731 	else
1732 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1733 
1734 	/*
1735 	 * Set the capture broadcast bit to capture broadcast frames.
1736 	 */
1737 	if (ifp->if_flags & IFF_BROADCAST)
1738 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1739 	else
1740 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1741 
1742 	/*
1743 	 * Load the multicast filter.
1744 	 */
1745 	nge_setmulti(sc);
1746 
1747 	/* Turn the receive filter on */
1748 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
1749 
1750 	/*
1751 	 * Load the address of the RX and TX lists.
1752 	 */
1753 	CSR_WRITE_4(sc, NGE_RX_LISTPTR,
1754 	    vtophys(&sc->nge_ldata->nge_rx_list[0]));
1755 	CSR_WRITE_4(sc, NGE_TX_LISTPTR,
1756 	    vtophys(&sc->nge_ldata->nge_tx_list[0]));
1757 
1758 	/* Set RX configuration */
1759 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
1760 	/*
1761 	 * Enable hardware checksum validation for all IPv4
1762 	 * packets, do not reject packets with bad checksums.
1763 	 */
1764 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
1765 
1766 	/*
1767 	 * Tell the chip to detect and strip VLAN tag info from
1768 	 * received frames. The tag will be provided in the extsts
1769 	 * field in the RX descriptors.
1770 	 */
1771 	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL,
1772 	    NGE_VIPRXCTL_TAG_DETECT_ENB|NGE_VIPRXCTL_TAG_STRIP_ENB);
1773 
1774 	/* Set TX configuration */
1775 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
1776 
1777 	/*
1778 	 * Enable TX IPv4 checksumming on a per-packet basis.
1779 	 */
1780 	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
1781 
1782 	/*
1783 	 * Tell the chip to insert VLAN tags on a per-packet basis as
1784 	 * dictated by the code in the frame encapsulation routine.
1785 	 */
1786 	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
1787 
1788 	/* Set full/half duplex mode. */
1789 	if (sc->nge_tbi) {
1790 		if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1791 		    == IFM_FDX) {
1792 			NGE_SETBIT(sc, NGE_TX_CFG,
1793 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1794 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1795 		} else {
1796 			NGE_CLRBIT(sc, NGE_TX_CFG,
1797 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1798 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1799 		}
1800 	} else {
1801 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1802 			NGE_SETBIT(sc, NGE_TX_CFG,
1803 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1804 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1805 		} else {
1806 			NGE_CLRBIT(sc, NGE_TX_CFG,
1807 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1808 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1809 		}
1810 	}
1811 
1812 	/*
1813 	 * Enable the delivery of PHY interrupts based on
1814 	 * link/speed/duplex status changes. Also enable the
1815 	 * extsts field in the DMA descriptors (needed for
1816 	 * TCP/IP checksum offload on transmit).
1817 	 */
1818 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD |
1819 	    NGE_CFG_PHYINTR_LNK | NGE_CFG_PHYINTR_DUP | NGE_CFG_EXTSTS_ENB);
1820 
1821 	/*
1822 	 * Configure interrupt holdoff (moderation). We can
1823 	 * have the chip delay interrupt delivery for a certain
1824 	 * period. Units are in 100us, and the max setting
1825 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
1826 	 */
1827 	CSR_WRITE_4(sc, NGE_IHR, 0x01);
1828 
1829 	/*
1830 	 * Enable interrupts.
1831 	 */
1832 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
1833 #ifdef DEVICE_POLLING
1834 	/*
1835 	 * ... only enable interrupts if we are not polling, make sure
1836 	 * they are off otherwise.
1837 	 */
1838 	if (ifp->if_flags & IFF_POLLING)
1839 		CSR_WRITE_4(sc, NGE_IER, 0);
1840 	else
1841 #endif /* DEVICE_POLLING */
1842 	CSR_WRITE_4(sc, NGE_IER, 1);
1843 
1844 	/* Enable receiver and transmitter. */
1845 	NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE | NGE_CSR_RX_DISABLE);
1846 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1847 
1848 	nge_ifmedia_upd(ifp);
1849 
1850 	ifp->if_flags |= IFF_RUNNING;
1851 	ifp->if_flags &= ~IFF_OACTIVE;
1852 }
1853 
1854 /*
1855  * Set media options.
1856  */
1857 static int
1858 nge_ifmedia_upd(struct ifnet *ifp)
1859 {
1860 	struct nge_softc *sc = ifp->if_softc;
1861 	struct mii_data *mii;
1862 
1863 	if (sc->nge_tbi) {
1864 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1865 		     == IFM_AUTO) {
1866 			CSR_WRITE_4(sc, NGE_TBI_ANAR,
1867 				CSR_READ_4(sc, NGE_TBI_ANAR)
1868 					| NGE_TBIANAR_HDX | NGE_TBIANAR_FDX
1869 					| NGE_TBIANAR_PS1 | NGE_TBIANAR_PS2);
1870 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG
1871 				| NGE_TBIBMCR_RESTART_ANEG);
1872 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG);
1873 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media
1874 			    & IFM_GMASK) == IFM_FDX) {
1875 			NGE_SETBIT(sc, NGE_TX_CFG,
1876 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1877 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1878 
1879 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
1880 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1881 		} else {
1882 			NGE_CLRBIT(sc, NGE_TX_CFG,
1883 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1884 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1885 
1886 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
1887 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1888 		}
1889 
1890 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1891 			    & ~NGE_GPIO_GP3_OUT);
1892 	} else {
1893 		mii = device_get_softc(sc->nge_miibus);
1894 		sc->nge_link = 0;
1895 		if (mii->mii_instance) {
1896 			struct mii_softc	*miisc;
1897 			for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1898 			    miisc = LIST_NEXT(miisc, mii_list))
1899 				mii_phy_reset(miisc);
1900 		}
1901 		mii_mediachg(mii);
1902 	}
1903 
1904 	return(0);
1905 }
1906 
1907 /*
1908  * Report current media status.
1909  */
1910 static void
1911 nge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1912 {
1913 	struct nge_softc *sc = ifp->if_softc;
1914 	struct mii_data *mii;
1915 
1916 	if (sc->nge_tbi) {
1917 		ifmr->ifm_status = IFM_AVALID;
1918 		ifmr->ifm_active = IFM_ETHER;
1919 
1920 		if (CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE)
1921 			ifmr->ifm_status |= IFM_ACTIVE;
1922 		if (CSR_READ_4(sc, NGE_TBI_BMCR) & NGE_TBIBMCR_LOOPBACK)
1923 			ifmr->ifm_active |= IFM_LOOP;
1924 		if (!(CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE)) {
1925 			ifmr->ifm_active |= IFM_NONE;
1926 			ifmr->ifm_status = 0;
1927 			return;
1928 		}
1929 		ifmr->ifm_active |= IFM_1000_SX;
1930 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1931 		    == IFM_AUTO) {
1932 			ifmr->ifm_active |= IFM_AUTO;
1933 			if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
1934 			    & NGE_TBIANAR_FDX) {
1935 				ifmr->ifm_active |= IFM_FDX;
1936 			}else if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
1937 				  & NGE_TBIANAR_HDX) {
1938 				ifmr->ifm_active |= IFM_HDX;
1939 			}
1940 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1941 			== IFM_FDX)
1942 			ifmr->ifm_active |= IFM_FDX;
1943 		else
1944 			ifmr->ifm_active |= IFM_HDX;
1945 
1946 	} else {
1947 		mii = device_get_softc(sc->nge_miibus);
1948 		mii_pollstat(mii);
1949 		ifmr->ifm_active = mii->mii_media_active;
1950 		ifmr->ifm_status = mii->mii_media_status;
1951 	}
1952 }
1953 
1954 static int
1955 nge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1956 {
1957 	struct nge_softc *sc = ifp->if_softc;
1958 	struct ifreq *ifr = (struct ifreq *) data;
1959 	struct mii_data *mii;
1960 	int error = 0;
1961 
1962 	switch(command) {
1963 	case SIOCSIFMTU:
1964 		if (ifr->ifr_mtu > NGE_JUMBO_MTU) {
1965 			error = EINVAL;
1966 		} else {
1967 			ifp->if_mtu = ifr->ifr_mtu;
1968 			/*
1969 			 * Workaround: if the MTU is larger than
1970 			 * 8152 (TX FIFO size minus 64 minus 18), turn off
1971 			 * TX checksum offloading.
1972 			 */
1973 			if (ifr->ifr_mtu >= 8152)
1974 				ifp->if_hwassist = 0;
1975 			else
1976 				ifp->if_hwassist = NGE_CSUM_FEATURES;
1977 		}
1978 		break;
1979 	case SIOCSIFFLAGS:
1980 		if (ifp->if_flags & IFF_UP) {
1981 			if (ifp->if_flags & IFF_RUNNING &&
1982 			    ifp->if_flags & IFF_PROMISC &&
1983 			    !(sc->nge_if_flags & IFF_PROMISC)) {
1984 				NGE_SETBIT(sc, NGE_RXFILT_CTL,
1985 				    NGE_RXFILTCTL_ALLPHYS|
1986 				    NGE_RXFILTCTL_ALLMULTI);
1987 			} else if (ifp->if_flags & IFF_RUNNING &&
1988 			    !(ifp->if_flags & IFF_PROMISC) &&
1989 			    sc->nge_if_flags & IFF_PROMISC) {
1990 				NGE_CLRBIT(sc, NGE_RXFILT_CTL,
1991 				    NGE_RXFILTCTL_ALLPHYS);
1992 				if (!(ifp->if_flags & IFF_ALLMULTI))
1993 					NGE_CLRBIT(sc, NGE_RXFILT_CTL,
1994 					    NGE_RXFILTCTL_ALLMULTI);
1995 			} else {
1996 				ifp->if_flags &= ~IFF_RUNNING;
1997 				nge_init(sc);
1998 			}
1999 		} else {
2000 			if (ifp->if_flags & IFF_RUNNING)
2001 				nge_stop(sc);
2002 		}
2003 		sc->nge_if_flags = ifp->if_flags;
2004 		error = 0;
2005 		break;
2006 	case SIOCADDMULTI:
2007 	case SIOCDELMULTI:
2008 		nge_setmulti(sc);
2009 		error = 0;
2010 		break;
2011 	case SIOCGIFMEDIA:
2012 	case SIOCSIFMEDIA:
2013 		if (sc->nge_tbi) {
2014 			error = ifmedia_ioctl(ifp, ifr, &sc->nge_ifmedia,
2015 					      command);
2016 		} else {
2017 			mii = device_get_softc(sc->nge_miibus);
2018 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
2019 					      command);
2020 		}
2021 		break;
2022 	default:
2023 		error = ether_ioctl(ifp, command, data);
2024 		break;
2025 	}
2026 	return(error);
2027 }
2028 
2029 static void
2030 nge_watchdog(struct ifnet *ifp)
2031 {
2032 	struct nge_softc *sc = ifp->if_softc;
2033 
2034 	ifp->if_oerrors++;
2035 	kprintf("nge%d: watchdog timeout\n", sc->nge_unit);
2036 
2037 	nge_stop(sc);
2038 	nge_reset(sc);
2039 	ifp->if_flags &= ~IFF_RUNNING;
2040 	nge_init(sc);
2041 
2042 	if (!ifq_is_empty(&ifp->if_snd))
2043 		if_devstart(ifp);
2044 }
2045 
2046 /*
2047  * Stop the adapter and free any mbufs allocated to the
2048  * RX and TX lists.
2049  */
2050 static void
2051 nge_stop(struct nge_softc *sc)
2052 {
2053 	struct ifnet *ifp = &sc->arpcom.ac_if;
2054 	struct ifmedia_entry *ifm;
2055 	struct mii_data *mii;
2056 	int i, itmp, mtmp, dtmp;
2057 
2058 	ifp->if_timer = 0;
2059 	if (sc->nge_tbi)
2060 		mii = NULL;
2061 	else
2062 		mii = device_get_softc(sc->nge_miibus);
2063 
2064 	callout_stop(&sc->nge_stat_timer);
2065 	CSR_WRITE_4(sc, NGE_IER, 0);
2066 	CSR_WRITE_4(sc, NGE_IMR, 0);
2067 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
2068 	DELAY(1000);
2069 	CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0);
2070 	CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0);
2071 
2072 	/*
2073 	 * Isolate/power down the PHY, but leave the media selection
2074 	 * unchanged so that things will be put back to normal when
2075 	 * we bring the interface back up.
2076 	 */
2077 	itmp = ifp->if_flags;
2078 	ifp->if_flags |= IFF_UP;
2079 
2080 	if (sc->nge_tbi)
2081 		ifm = sc->nge_ifmedia.ifm_cur;
2082 	else
2083 		ifm = mii->mii_media.ifm_cur;
2084 
2085 	mtmp = ifm->ifm_media;
2086 	dtmp = ifm->ifm_data;
2087 	ifm->ifm_media = IFM_ETHER|IFM_NONE;
2088 	ifm->ifm_data = MII_MEDIA_NONE;
2089 
2090 	if (!sc->nge_tbi)
2091 		mii_mediachg(mii);
2092 	ifm->ifm_media = mtmp;
2093 	ifm->ifm_data = dtmp;
2094 	ifp->if_flags = itmp;
2095 
2096 	sc->nge_link = 0;
2097 
2098 	/*
2099 	 * Free data in the RX lists.
2100 	 */
2101 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
2102 		if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) {
2103 			m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf);
2104 			sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL;
2105 		}
2106 	}
2107 	bzero(&sc->nge_ldata->nge_rx_list,
2108 		sizeof(sc->nge_ldata->nge_rx_list));
2109 
2110 	/*
2111 	 * Free the TX list buffers.
2112 	 */
2113 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
2114 		if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) {
2115 			m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf);
2116 			sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL;
2117 		}
2118 	}
2119 
2120 	bzero(&sc->nge_ldata->nge_tx_list,
2121 		sizeof(sc->nge_ldata->nge_tx_list));
2122 
2123 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2124 }
2125 
2126 /*
2127  * Stop all chip I/O so that the kernel's probe routines don't
2128  * get confused by errant DMAs when rebooting.
2129  */
2130 static void
2131 nge_shutdown(device_t dev)
2132 {
2133 	struct nge_softc *sc = device_get_softc(dev);
2134 	struct ifnet *ifp = &sc->arpcom.ac_if;
2135 
2136 	lwkt_serialize_enter(ifp->if_serializer);
2137 	nge_reset(sc);
2138 	nge_stop(sc);
2139 	lwkt_serialize_exit(ifp->if_serializer);
2140 }
2141 
2142