1 /* 2 * Copyright (c) 2001 Wind River Systems 3 * Copyright (c) 1997, 1998, 1999, 2000, 2001 4 * Bill Paul <wpaul@bsdi.com>. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. All advertising materials mentioning features or use of this software 15 * must display the following acknowledgement: 16 * This product includes software developed by Bill Paul. 17 * 4. Neither the name of the author nor the names of any co-contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 31 * THE POSSIBILITY OF SUCH DAMAGE. 32 * 33 * $FreeBSD: src/sys/dev/nge/if_nge.c,v 1.13.2.13 2003/02/05 22:03:57 mbr Exp $ 34 * $DragonFly: src/sys/dev/netif/nge/if_nge.c,v 1.48 2008/05/16 13:19:12 sephe Exp $ 35 */ 36 37 /* 38 * National Semiconductor DP83820/DP83821 gigabit ethernet driver 39 * for FreeBSD. Datasheets are available from: 40 * 41 * http://www.national.com/ds/DP/DP83820.pdf 42 * http://www.national.com/ds/DP/DP83821.pdf 43 * 44 * These chips are used on several low cost gigabit ethernet NICs 45 * sold by D-Link, Addtron, SMC and Asante. Both parts are 46 * virtually the same, except the 83820 is a 64-bit/32-bit part, 47 * while the 83821 is 32-bit only. 48 * 49 * Many cards also use National gigE transceivers, such as the 50 * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet 51 * contains a full register description that applies to all of these 52 * components: 53 * 54 * http://www.national.com/ds/DP/DP83861.pdf 55 * 56 * Written by Bill Paul <wpaul@bsdi.com> 57 * BSDi Open Source Solutions 58 */ 59 60 /* 61 * The NatSemi DP83820 and 83821 controllers are enhanced versions 62 * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100 63 * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII 64 * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP 65 * hardware checksum offload (IPv4 only), VLAN tagging and filtering, 66 * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern 67 * matching buffers, one perfect address filter buffer and interrupt 68 * moderation. The 83820 supports both 64-bit and 32-bit addressing 69 * and data transfers: the 64-bit support can be toggled on or off 70 * via software. This affects the size of certain fields in the DMA 71 * descriptors. 72 * 73 * There are two bugs/misfeatures in the 83820/83821 that I have 74 * discovered so far: 75 * 76 * - Receive buffers must be aligned on 64-bit boundaries, which means 77 * you must resort to copying data in order to fix up the payload 78 * alignment. 79 * 80 * - In order to transmit jumbo frames larger than 8170 bytes, you have 81 * to turn off transmit checksum offloading, because the chip can't 82 * compute the checksum on an outgoing frame unless it fits entirely 83 * within the TX FIFO, which is only 8192 bytes in size. If you have 84 * TX checksum offload enabled and you transmit attempt to transmit a 85 * frame larger than 8170 bytes, the transmitter will wedge. 86 * 87 * To work around the latter problem, TX checksum offload is disabled 88 * if the user selects an MTU larger than 8152 (8170 - 18). 89 */ 90 91 #include "opt_polling.h" 92 93 #include <sys/param.h> 94 #include <sys/systm.h> 95 #include <sys/sockio.h> 96 #include <sys/mbuf.h> 97 #include <sys/malloc.h> 98 #include <sys/kernel.h> 99 #include <sys/interrupt.h> 100 #include <sys/socket.h> 101 #include <sys/serialize.h> 102 #include <sys/bus.h> 103 #include <sys/rman.h> 104 #include <sys/thread2.h> 105 106 #include <net/if.h> 107 #include <net/ifq_var.h> 108 #include <net/if_arp.h> 109 #include <net/ethernet.h> 110 #include <net/if_dl.h> 111 #include <net/if_media.h> 112 #include <net/if_types.h> 113 #include <net/vlan/if_vlan_var.h> 114 #include <net/vlan/if_vlan_ether.h> 115 116 #include <net/bpf.h> 117 118 #include <vm/vm.h> /* for vtophys */ 119 #include <vm/pmap.h> /* for vtophys */ 120 121 #include <dev/netif/mii_layer/mii.h> 122 #include <dev/netif/mii_layer/miivar.h> 123 124 #include <bus/pci/pcidevs.h> 125 #include <bus/pci/pcireg.h> 126 #include <bus/pci/pcivar.h> 127 128 #define NGE_USEIOSPACE 129 130 #include "if_ngereg.h" 131 132 133 /* "controller miibus0" required. See GENERIC if you get errors here. */ 134 #include "miibus_if.h" 135 136 #define NGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) 137 138 /* 139 * Various supported device vendors/types and their names. 140 */ 141 static struct nge_type nge_devs[] = { 142 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820, 143 "National Semiconductor Gigabit Ethernet" }, 144 { 0, 0, NULL } 145 }; 146 147 static int nge_probe(device_t); 148 static int nge_attach(device_t); 149 static int nge_detach(device_t); 150 151 static int nge_alloc_jumbo_mem(struct nge_softc *); 152 static struct nge_jslot 153 *nge_jalloc(struct nge_softc *); 154 static void nge_jfree(void *); 155 static void nge_jref(void *); 156 157 static int nge_newbuf(struct nge_softc *, struct nge_desc *, 158 struct mbuf *); 159 static int nge_encap(struct nge_softc *, struct mbuf *, uint32_t *); 160 static void nge_rxeof(struct nge_softc *); 161 static void nge_txeof(struct nge_softc *); 162 static void nge_intr(void *); 163 static void nge_tick(void *); 164 static void nge_start(struct ifnet *); 165 static int nge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *); 166 static void nge_init(void *); 167 static void nge_stop(struct nge_softc *); 168 static void nge_watchdog(struct ifnet *); 169 static void nge_shutdown(device_t); 170 static int nge_ifmedia_upd(struct ifnet *); 171 static void nge_ifmedia_sts(struct ifnet *, struct ifmediareq *); 172 173 static void nge_delay(struct nge_softc *); 174 static void nge_eeprom_idle(struct nge_softc *); 175 static void nge_eeprom_putbyte(struct nge_softc *, int); 176 static void nge_eeprom_getword(struct nge_softc *, int, uint16_t *); 177 static void nge_read_eeprom(struct nge_softc *, void *, int, int); 178 179 static void nge_mii_sync(struct nge_softc *); 180 static void nge_mii_send(struct nge_softc *, uint32_t, int); 181 static int nge_mii_readreg(struct nge_softc *, struct nge_mii_frame *); 182 static int nge_mii_writereg(struct nge_softc *, struct nge_mii_frame *); 183 184 static int nge_miibus_readreg(device_t, int, int); 185 static int nge_miibus_writereg(device_t, int, int, int); 186 static void nge_miibus_statchg(device_t); 187 188 static void nge_setmulti(struct nge_softc *); 189 static void nge_reset(struct nge_softc *); 190 static int nge_list_rx_init(struct nge_softc *); 191 static int nge_list_tx_init(struct nge_softc *); 192 #ifdef DEVICE_POLLING 193 static void nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count); 194 #endif 195 196 #ifdef NGE_USEIOSPACE 197 #define NGE_RES SYS_RES_IOPORT 198 #define NGE_RID NGE_PCI_LOIO 199 #else 200 #define NGE_RES SYS_RES_MEMORY 201 #define NGE_RID NGE_PCI_LOMEM 202 #endif 203 204 static device_method_t nge_methods[] = { 205 /* Device interface */ 206 DEVMETHOD(device_probe, nge_probe), 207 DEVMETHOD(device_attach, nge_attach), 208 DEVMETHOD(device_detach, nge_detach), 209 DEVMETHOD(device_shutdown, nge_shutdown), 210 211 /* bus interface */ 212 DEVMETHOD(bus_print_child, bus_generic_print_child), 213 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 214 215 /* MII interface */ 216 DEVMETHOD(miibus_readreg, nge_miibus_readreg), 217 DEVMETHOD(miibus_writereg, nge_miibus_writereg), 218 DEVMETHOD(miibus_statchg, nge_miibus_statchg), 219 220 { 0, 0 } 221 }; 222 223 static DEFINE_CLASS_0(nge, nge_driver, nge_methods, sizeof(struct nge_softc)); 224 static devclass_t nge_devclass; 225 226 DECLARE_DUMMY_MODULE(if_nge); 227 MODULE_DEPEND(if_nge, miibus, 1, 1, 1); 228 DRIVER_MODULE(if_nge, pci, nge_driver, nge_devclass, 0, 0); 229 DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0); 230 231 #define NGE_SETBIT(sc, reg, x) \ 232 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x)) 233 234 #define NGE_CLRBIT(sc, reg, x) \ 235 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x)) 236 237 #define SIO_SET(x) \ 238 CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x)) 239 240 #define SIO_CLR(x) \ 241 CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x)) 242 243 static void 244 nge_delay(struct nge_softc *sc) 245 { 246 int idx; 247 248 for (idx = (300 / 33) + 1; idx > 0; idx--) 249 CSR_READ_4(sc, NGE_CSR); 250 } 251 252 static void 253 nge_eeprom_idle(struct nge_softc *sc) 254 { 255 int i; 256 257 SIO_SET(NGE_MEAR_EE_CSEL); 258 nge_delay(sc); 259 SIO_SET(NGE_MEAR_EE_CLK); 260 nge_delay(sc); 261 262 for (i = 0; i < 25; i++) { 263 SIO_CLR(NGE_MEAR_EE_CLK); 264 nge_delay(sc); 265 SIO_SET(NGE_MEAR_EE_CLK); 266 nge_delay(sc); 267 } 268 269 SIO_CLR(NGE_MEAR_EE_CLK); 270 nge_delay(sc); 271 SIO_CLR(NGE_MEAR_EE_CSEL); 272 nge_delay(sc); 273 CSR_WRITE_4(sc, NGE_MEAR, 0x00000000); 274 } 275 276 /* 277 * Send a read command and address to the EEPROM, check for ACK. 278 */ 279 static void 280 nge_eeprom_putbyte(struct nge_softc *sc, int addr) 281 { 282 int d, i; 283 284 d = addr | NGE_EECMD_READ; 285 286 /* 287 * Feed in each bit and stobe the clock. 288 */ 289 for (i = 0x400; i; i >>= 1) { 290 if (d & i) 291 SIO_SET(NGE_MEAR_EE_DIN); 292 else 293 SIO_CLR(NGE_MEAR_EE_DIN); 294 nge_delay(sc); 295 SIO_SET(NGE_MEAR_EE_CLK); 296 nge_delay(sc); 297 SIO_CLR(NGE_MEAR_EE_CLK); 298 nge_delay(sc); 299 } 300 } 301 302 /* 303 * Read a word of data stored in the EEPROM at address 'addr.' 304 */ 305 static void 306 nge_eeprom_getword(struct nge_softc *sc, int addr, uint16_t *dest) 307 { 308 int i; 309 uint16_t word = 0; 310 311 /* Force EEPROM to idle state. */ 312 nge_eeprom_idle(sc); 313 314 /* Enter EEPROM access mode. */ 315 nge_delay(sc); 316 SIO_CLR(NGE_MEAR_EE_CLK); 317 nge_delay(sc); 318 SIO_SET(NGE_MEAR_EE_CSEL); 319 nge_delay(sc); 320 321 /* 322 * Send address of word we want to read. 323 */ 324 nge_eeprom_putbyte(sc, addr); 325 326 /* 327 * Start reading bits from EEPROM. 328 */ 329 for (i = 0x8000; i; i >>= 1) { 330 SIO_SET(NGE_MEAR_EE_CLK); 331 nge_delay(sc); 332 if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT) 333 word |= i; 334 nge_delay(sc); 335 SIO_CLR(NGE_MEAR_EE_CLK); 336 nge_delay(sc); 337 } 338 339 /* Turn off EEPROM access mode. */ 340 nge_eeprom_idle(sc); 341 342 *dest = word; 343 } 344 345 /* 346 * Read a sequence of words from the EEPROM. 347 */ 348 static void 349 nge_read_eeprom(struct nge_softc *sc, void *dest, int off, int cnt) 350 { 351 int i; 352 uint16_t word = 0, *ptr; 353 354 for (i = 0; i < cnt; i++) { 355 nge_eeprom_getword(sc, off + i, &word); 356 ptr = (uint16_t *)((uint8_t *)dest + (i * 2)); 357 *ptr = word; 358 } 359 } 360 361 /* 362 * Sync the PHYs by setting data bit and strobing the clock 32 times. 363 */ 364 static void 365 nge_mii_sync(struct nge_softc *sc) 366 { 367 int i; 368 369 SIO_SET(NGE_MEAR_MII_DIR | NGE_MEAR_MII_DATA); 370 371 for (i = 0; i < 32; i++) { 372 SIO_SET(NGE_MEAR_MII_CLK); 373 DELAY(1); 374 SIO_CLR(NGE_MEAR_MII_CLK); 375 DELAY(1); 376 } 377 } 378 379 /* 380 * Clock a series of bits through the MII. 381 */ 382 static void 383 nge_mii_send(struct nge_softc *sc, uint32_t bits, int cnt) 384 { 385 int i; 386 387 SIO_CLR(NGE_MEAR_MII_CLK); 388 389 for (i = (0x1 << (cnt - 1)); i; i >>= 1) { 390 if (bits & i) 391 SIO_SET(NGE_MEAR_MII_DATA); 392 else 393 SIO_CLR(NGE_MEAR_MII_DATA); 394 DELAY(1); 395 SIO_CLR(NGE_MEAR_MII_CLK); 396 DELAY(1); 397 SIO_SET(NGE_MEAR_MII_CLK); 398 } 399 } 400 401 /* 402 * Read an PHY register through the MII. 403 */ 404 static int 405 nge_mii_readreg(struct nge_softc *sc, struct nge_mii_frame *frame) 406 { 407 int ack, i; 408 409 /* 410 * Set up frame for RX. 411 */ 412 frame->mii_stdelim = NGE_MII_STARTDELIM; 413 frame->mii_opcode = NGE_MII_READOP; 414 frame->mii_turnaround = 0; 415 frame->mii_data = 0; 416 417 CSR_WRITE_4(sc, NGE_MEAR, 0); 418 419 /* 420 * Turn on data xmit. 421 */ 422 SIO_SET(NGE_MEAR_MII_DIR); 423 424 nge_mii_sync(sc); 425 426 /* 427 * Send command/address info. 428 */ 429 nge_mii_send(sc, frame->mii_stdelim, 2); 430 nge_mii_send(sc, frame->mii_opcode, 2); 431 nge_mii_send(sc, frame->mii_phyaddr, 5); 432 nge_mii_send(sc, frame->mii_regaddr, 5); 433 434 /* Idle bit */ 435 SIO_CLR((NGE_MEAR_MII_CLK | NGE_MEAR_MII_DATA)); 436 DELAY(1); 437 SIO_SET(NGE_MEAR_MII_CLK); 438 DELAY(1); 439 440 /* Turn off xmit. */ 441 SIO_CLR(NGE_MEAR_MII_DIR); 442 /* Check for ack */ 443 SIO_CLR(NGE_MEAR_MII_CLK); 444 DELAY(1); 445 ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA; 446 SIO_SET(NGE_MEAR_MII_CLK); 447 DELAY(1); 448 449 /* 450 * Now try reading data bits. If the ack failed, we still 451 * need to clock through 16 cycles to keep the PHY(s) in sync. 452 */ 453 if (ack) { 454 for(i = 0; i < 16; i++) { 455 SIO_CLR(NGE_MEAR_MII_CLK); 456 DELAY(1); 457 SIO_SET(NGE_MEAR_MII_CLK); 458 DELAY(1); 459 } 460 goto fail; 461 } 462 463 for (i = 0x8000; i; i >>= 1) { 464 SIO_CLR(NGE_MEAR_MII_CLK); 465 DELAY(1); 466 if (!ack) { 467 if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA) 468 frame->mii_data |= i; 469 DELAY(1); 470 } 471 SIO_SET(NGE_MEAR_MII_CLK); 472 DELAY(1); 473 } 474 475 fail: 476 SIO_CLR(NGE_MEAR_MII_CLK); 477 DELAY(1); 478 SIO_SET(NGE_MEAR_MII_CLK); 479 DELAY(1); 480 481 if (ack) 482 return(1); 483 return(0); 484 } 485 486 /* 487 * Write to a PHY register through the MII. 488 */ 489 static int 490 nge_mii_writereg(struct nge_softc *sc, struct nge_mii_frame *frame) 491 { 492 /* 493 * Set up frame for TX. 494 */ 495 496 frame->mii_stdelim = NGE_MII_STARTDELIM; 497 frame->mii_opcode = NGE_MII_WRITEOP; 498 frame->mii_turnaround = NGE_MII_TURNAROUND; 499 500 /* 501 * Turn on data output. 502 */ 503 SIO_SET(NGE_MEAR_MII_DIR); 504 505 nge_mii_sync(sc); 506 507 nge_mii_send(sc, frame->mii_stdelim, 2); 508 nge_mii_send(sc, frame->mii_opcode, 2); 509 nge_mii_send(sc, frame->mii_phyaddr, 5); 510 nge_mii_send(sc, frame->mii_regaddr, 5); 511 nge_mii_send(sc, frame->mii_turnaround, 2); 512 nge_mii_send(sc, frame->mii_data, 16); 513 514 /* Idle bit. */ 515 SIO_SET(NGE_MEAR_MII_CLK); 516 DELAY(1); 517 SIO_CLR(NGE_MEAR_MII_CLK); 518 DELAY(1); 519 520 /* 521 * Turn off xmit. 522 */ 523 SIO_CLR(NGE_MEAR_MII_DIR); 524 525 return(0); 526 } 527 528 static int 529 nge_miibus_readreg(device_t dev, int phy, int reg) 530 { 531 struct nge_softc *sc = device_get_softc(dev); 532 struct nge_mii_frame frame; 533 534 bzero((char *)&frame, sizeof(frame)); 535 536 frame.mii_phyaddr = phy; 537 frame.mii_regaddr = reg; 538 nge_mii_readreg(sc, &frame); 539 540 return(frame.mii_data); 541 } 542 543 static int 544 nge_miibus_writereg(device_t dev, int phy, int reg, int data) 545 { 546 struct nge_softc *sc = device_get_softc(dev); 547 struct nge_mii_frame frame; 548 549 bzero((char *)&frame, sizeof(frame)); 550 551 frame.mii_phyaddr = phy; 552 frame.mii_regaddr = reg; 553 frame.mii_data = data; 554 nge_mii_writereg(sc, &frame); 555 556 return(0); 557 } 558 559 static void 560 nge_miibus_statchg(device_t dev) 561 { 562 struct nge_softc *sc = device_get_softc(dev); 563 struct mii_data *mii; 564 int status; 565 566 if (sc->nge_tbi) { 567 if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media) 568 == IFM_AUTO) { 569 status = CSR_READ_4(sc, NGE_TBI_ANLPAR); 570 if (status == 0 || status & NGE_TBIANAR_FDX) { 571 NGE_SETBIT(sc, NGE_TX_CFG, 572 (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR)); 573 NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 574 } else { 575 NGE_CLRBIT(sc, NGE_TX_CFG, 576 (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR)); 577 NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 578 } 579 } else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK) 580 != IFM_FDX) { 581 NGE_CLRBIT(sc, NGE_TX_CFG, 582 (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR)); 583 NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 584 } else { 585 NGE_SETBIT(sc, NGE_TX_CFG, 586 (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR)); 587 NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 588 } 589 } else { 590 mii = device_get_softc(sc->nge_miibus); 591 592 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { 593 NGE_SETBIT(sc, NGE_TX_CFG, 594 (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR)); 595 NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 596 } else { 597 NGE_CLRBIT(sc, NGE_TX_CFG, 598 (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR)); 599 NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 600 } 601 602 /* If we have a 1000Mbps link, set the mode_1000 bit. */ 603 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 604 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) { 605 NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000); 606 } else { 607 NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000); 608 } 609 } 610 } 611 612 static void 613 nge_setmulti(struct nge_softc *sc) 614 { 615 struct ifnet *ifp = &sc->arpcom.ac_if; 616 struct ifmultiaddr *ifma; 617 uint32_t filtsave, h = 0, i; 618 int bit, index; 619 620 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 621 NGE_CLRBIT(sc, NGE_RXFILT_CTL, 622 NGE_RXFILTCTL_MCHASH | NGE_RXFILTCTL_UCHASH); 623 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI); 624 return; 625 } 626 627 /* 628 * We have to explicitly enable the multicast hash table 629 * on the NatSemi chip if we want to use it, which we do. 630 * We also have to tell it that we don't want to use the 631 * hash table for matching unicast addresses. 632 */ 633 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH); 634 NGE_CLRBIT(sc, NGE_RXFILT_CTL, 635 NGE_RXFILTCTL_ALLMULTI | NGE_RXFILTCTL_UCHASH); 636 637 filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL); 638 639 /* first, zot all the existing hash bits */ 640 for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) { 641 CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i); 642 CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0); 643 } 644 645 /* 646 * From the 11 bits returned by the crc routine, the top 7 647 * bits represent the 16-bit word in the mcast hash table 648 * that needs to be updated, and the lower 4 bits represent 649 * which bit within that byte needs to be set. 650 */ 651 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 652 if (ifma->ifma_addr->sa_family != AF_LINK) 653 continue; 654 h = ether_crc32_be(LLADDR((struct sockaddr_dl *) 655 ifma->ifma_addr), ETHER_ADDR_LEN) >> 21; 656 index = (h >> 4) & 0x7F; 657 bit = h & 0xF; 658 CSR_WRITE_4(sc, NGE_RXFILT_CTL, 659 NGE_FILTADDR_MCAST_LO + (index * 2)); 660 NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit)); 661 } 662 663 CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave); 664 } 665 666 static void 667 nge_reset(struct nge_softc *sc) 668 { 669 int i; 670 671 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET); 672 673 for (i = 0; i < NGE_TIMEOUT; i++) { 674 if ((CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET) == 0) 675 break; 676 } 677 678 if (i == NGE_TIMEOUT) 679 kprintf("nge%d: reset never completed\n", sc->nge_unit); 680 681 /* Wait a little while for the chip to get its brains in order. */ 682 DELAY(1000); 683 684 /* 685 * If this is a NetSemi chip, make sure to clear 686 * PME mode. 687 */ 688 CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS); 689 CSR_WRITE_4(sc, NGE_CLKRUN, 0); 690 } 691 692 /* 693 * Probe for an NatSemi chip. Check the PCI vendor and device 694 * IDs against our list and return a device name if we find a match. 695 */ 696 static int 697 nge_probe(device_t dev) 698 { 699 struct nge_type *t; 700 uint16_t vendor, product; 701 702 vendor = pci_get_vendor(dev); 703 product = pci_get_device(dev); 704 705 for (t = nge_devs; t->nge_name != NULL; t++) { 706 if (vendor == t->nge_vid && product == t->nge_did) { 707 device_set_desc(dev, t->nge_name); 708 return(0); 709 } 710 } 711 712 return(ENXIO); 713 } 714 715 /* 716 * Attach the interface. Allocate softc structures, do ifmedia 717 * setup and ethernet/BPF attach. 718 */ 719 static int 720 nge_attach(device_t dev) 721 { 722 struct nge_softc *sc; 723 struct ifnet *ifp; 724 uint8_t eaddr[ETHER_ADDR_LEN]; 725 uint32_t command; 726 int error = 0, rid, unit; 727 const char *sep = ""; 728 729 sc = device_get_softc(dev); 730 unit = device_get_unit(dev); 731 callout_init(&sc->nge_stat_timer); 732 lwkt_serialize_init(&sc->nge_jslot_serializer); 733 734 /* 735 * Handle power management nonsense. 736 */ 737 command = pci_read_config(dev, NGE_PCI_CAPID, 4) & 0x000000FF; 738 if (command == 0x01) { 739 command = pci_read_config(dev, NGE_PCI_PWRMGMTCTRL, 4); 740 if (command & NGE_PSTATE_MASK) { 741 uint32_t iobase, membase, irq; 742 743 /* Save important PCI config data. */ 744 iobase = pci_read_config(dev, NGE_PCI_LOIO, 4); 745 membase = pci_read_config(dev, NGE_PCI_LOMEM, 4); 746 irq = pci_read_config(dev, NGE_PCI_INTLINE, 4); 747 748 /* Reset the power state. */ 749 kprintf("nge%d: chip is in D%d power mode " 750 "-- setting to D0\n", unit, command & NGE_PSTATE_MASK); 751 command &= 0xFFFFFFFC; 752 pci_write_config(dev, NGE_PCI_PWRMGMTCTRL, command, 4); 753 754 /* Restore PCI config data. */ 755 pci_write_config(dev, NGE_PCI_LOIO, iobase, 4); 756 pci_write_config(dev, NGE_PCI_LOMEM, membase, 4); 757 pci_write_config(dev, NGE_PCI_INTLINE, irq, 4); 758 } 759 } 760 761 /* 762 * Map control/status registers. 763 */ 764 command = pci_read_config(dev, PCIR_COMMAND, 4); 765 command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN); 766 pci_write_config(dev, PCIR_COMMAND, command, 4); 767 command = pci_read_config(dev, PCIR_COMMAND, 4); 768 769 #ifdef NGE_USEIOSPACE 770 if (!(command & PCIM_CMD_PORTEN)) { 771 kprintf("nge%d: failed to enable I/O ports!\n", unit); 772 error = ENXIO; 773 return(error); 774 } 775 #else 776 if (!(command & PCIM_CMD_MEMEN)) { 777 kprintf("nge%d: failed to enable memory mapping!\n", unit); 778 error = ENXIO; 779 return(error); 780 } 781 #endif 782 783 rid = NGE_RID; 784 sc->nge_res = bus_alloc_resource_any(dev, NGE_RES, &rid, RF_ACTIVE); 785 786 if (sc->nge_res == NULL) { 787 kprintf("nge%d: couldn't map ports/memory\n", unit); 788 error = ENXIO; 789 return(error); 790 } 791 792 sc->nge_btag = rman_get_bustag(sc->nge_res); 793 sc->nge_bhandle = rman_get_bushandle(sc->nge_res); 794 795 /* Allocate interrupt */ 796 rid = 0; 797 sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 798 RF_SHAREABLE | RF_ACTIVE); 799 800 if (sc->nge_irq == NULL) { 801 kprintf("nge%d: couldn't map interrupt\n", unit); 802 error = ENXIO; 803 goto fail; 804 } 805 806 /* Reset the adapter. */ 807 nge_reset(sc); 808 809 /* 810 * Get station address from the EEPROM. 811 */ 812 nge_read_eeprom(sc, &eaddr[4], NGE_EE_NODEADDR, 1); 813 nge_read_eeprom(sc, &eaddr[2], NGE_EE_NODEADDR + 1, 1); 814 nge_read_eeprom(sc, &eaddr[0], NGE_EE_NODEADDR + 2, 1); 815 816 sc->nge_unit = unit; 817 818 sc->nge_ldata = contigmalloc(sizeof(struct nge_list_data), M_DEVBUF, 819 M_WAITOK | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0); 820 821 if (sc->nge_ldata == NULL) { 822 kprintf("nge%d: no memory for list buffers!\n", unit); 823 error = ENXIO; 824 goto fail; 825 } 826 827 /* Try to allocate memory for jumbo buffers. */ 828 if (nge_alloc_jumbo_mem(sc)) { 829 kprintf("nge%d: jumbo buffer allocation failed\n", 830 sc->nge_unit); 831 error = ENXIO; 832 goto fail; 833 } 834 835 ifp = &sc->arpcom.ac_if; 836 ifp->if_softc = sc; 837 if_initname(ifp, "nge", unit); 838 ifp->if_mtu = ETHERMTU; 839 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 840 ifp->if_ioctl = nge_ioctl; 841 ifp->if_start = nge_start; 842 #ifdef DEVICE_POLLING 843 ifp->if_poll = nge_poll; 844 #endif 845 ifp->if_watchdog = nge_watchdog; 846 ifp->if_init = nge_init; 847 ifp->if_baudrate = 1000000000; 848 ifq_set_maxlen(&ifp->if_snd, NGE_TX_LIST_CNT - 1); 849 ifq_set_ready(&ifp->if_snd); 850 ifp->if_hwassist = NGE_CSUM_FEATURES; 851 ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING; 852 ifp->if_capenable = ifp->if_capabilities; 853 854 /* 855 * Do MII setup. 856 */ 857 if (mii_phy_probe(dev, &sc->nge_miibus, 858 nge_ifmedia_upd, nge_ifmedia_sts)) { 859 if (CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) { 860 sc->nge_tbi = 1; 861 device_printf(dev, "Using TBI\n"); 862 863 sc->nge_miibus = dev; 864 865 ifmedia_init(&sc->nge_ifmedia, 0, nge_ifmedia_upd, 866 nge_ifmedia_sts); 867 #define ADD(m, c) ifmedia_add(&sc->nge_ifmedia, (m), (c), NULL) 868 #define PRINT(s) kprintf("%s%s", sep, s); sep = ", " 869 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_NONE, 0, 0), 0); 870 device_printf(dev, " "); 871 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, 0, 0), 0); 872 PRINT("1000baseSX"); 873 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, IFM_FDX, 0),0); 874 PRINT("1000baseSX-FDX"); 875 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0), 0); 876 PRINT("auto"); 877 878 kprintf("\n"); 879 #undef ADD 880 #undef PRINT 881 ifmedia_set(&sc->nge_ifmedia, 882 IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0)); 883 884 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO) 885 | NGE_GPIO_GP4_OUT 886 | NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB 887 | NGE_GPIO_GP3_OUTENB 888 | NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN); 889 890 } else { 891 kprintf("nge%d: MII without any PHY!\n", sc->nge_unit); 892 error = ENXIO; 893 goto fail; 894 } 895 } 896 897 /* 898 * Call MI attach routine. 899 */ 900 ether_ifattach(ifp, eaddr, NULL); 901 902 error = bus_setup_intr(dev, sc->nge_irq, INTR_NETSAFE, 903 nge_intr, sc, &sc->nge_intrhand, 904 ifp->if_serializer); 905 if (error) { 906 ether_ifdetach(ifp); 907 device_printf(dev, "couldn't set up irq\n"); 908 goto fail; 909 } 910 911 ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->nge_irq)); 912 KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus); 913 914 return(0); 915 fail: 916 nge_detach(dev); 917 return(error); 918 } 919 920 static int 921 nge_detach(device_t dev) 922 { 923 struct nge_softc *sc = device_get_softc(dev); 924 struct ifnet *ifp = &sc->arpcom.ac_if; 925 926 if (device_is_attached(dev)) { 927 lwkt_serialize_enter(ifp->if_serializer); 928 nge_reset(sc); 929 nge_stop(sc); 930 bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand); 931 lwkt_serialize_exit(ifp->if_serializer); 932 933 ether_ifdetach(ifp); 934 } 935 936 if (sc->nge_miibus) 937 device_delete_child(dev, sc->nge_miibus); 938 bus_generic_detach(dev); 939 940 if (sc->nge_irq) 941 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq); 942 if (sc->nge_res) 943 bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res); 944 if (sc->nge_ldata) { 945 contigfree(sc->nge_ldata, sizeof(struct nge_list_data), 946 M_DEVBUF); 947 } 948 if (sc->nge_cdata.nge_jumbo_buf) 949 contigfree(sc->nge_cdata.nge_jumbo_buf, NGE_JMEM, M_DEVBUF); 950 951 return(0); 952 } 953 954 /* 955 * Initialize the transmit descriptors. 956 */ 957 static int 958 nge_list_tx_init(struct nge_softc *sc) 959 { 960 struct nge_list_data *ld; 961 struct nge_ring_data *cd; 962 int i; 963 964 cd = &sc->nge_cdata; 965 ld = sc->nge_ldata; 966 967 for (i = 0; i < NGE_TX_LIST_CNT; i++) { 968 if (i == (NGE_TX_LIST_CNT - 1)) { 969 ld->nge_tx_list[i].nge_nextdesc = 970 &ld->nge_tx_list[0]; 971 ld->nge_tx_list[i].nge_next = 972 vtophys(&ld->nge_tx_list[0]); 973 } else { 974 ld->nge_tx_list[i].nge_nextdesc = 975 &ld->nge_tx_list[i + 1]; 976 ld->nge_tx_list[i].nge_next = 977 vtophys(&ld->nge_tx_list[i + 1]); 978 } 979 ld->nge_tx_list[i].nge_mbuf = NULL; 980 ld->nge_tx_list[i].nge_ptr = 0; 981 ld->nge_tx_list[i].nge_ctl = 0; 982 } 983 984 cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0; 985 986 return(0); 987 } 988 989 990 /* 991 * Initialize the RX descriptors and allocate mbufs for them. Note that 992 * we arrange the descriptors in a closed ring, so that the last descriptor 993 * points back to the first. 994 */ 995 static int 996 nge_list_rx_init(struct nge_softc *sc) 997 { 998 struct nge_list_data *ld; 999 struct nge_ring_data *cd; 1000 int i; 1001 1002 ld = sc->nge_ldata; 1003 cd = &sc->nge_cdata; 1004 1005 for (i = 0; i < NGE_RX_LIST_CNT; i++) { 1006 if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS) 1007 return(ENOBUFS); 1008 if (i == (NGE_RX_LIST_CNT - 1)) { 1009 ld->nge_rx_list[i].nge_nextdesc = 1010 &ld->nge_rx_list[0]; 1011 ld->nge_rx_list[i].nge_next = 1012 vtophys(&ld->nge_rx_list[0]); 1013 } else { 1014 ld->nge_rx_list[i].nge_nextdesc = 1015 &ld->nge_rx_list[i + 1]; 1016 ld->nge_rx_list[i].nge_next = 1017 vtophys(&ld->nge_rx_list[i + 1]); 1018 } 1019 } 1020 1021 cd->nge_rx_prod = 0; 1022 1023 return(0); 1024 } 1025 1026 /* 1027 * Initialize an RX descriptor and attach an MBUF cluster. 1028 */ 1029 static int 1030 nge_newbuf(struct nge_softc *sc, struct nge_desc *c, struct mbuf *m) 1031 { 1032 struct mbuf *m_new = NULL; 1033 struct nge_jslot *buf; 1034 1035 if (m == NULL) { 1036 MGETHDR(m_new, MB_DONTWAIT, MT_DATA); 1037 if (m_new == NULL) { 1038 kprintf("nge%d: no memory for rx list " 1039 "-- packet dropped!\n", sc->nge_unit); 1040 return(ENOBUFS); 1041 } 1042 1043 /* Allocate the jumbo buffer */ 1044 buf = nge_jalloc(sc); 1045 if (buf == NULL) { 1046 #ifdef NGE_VERBOSE 1047 kprintf("nge%d: jumbo allocation failed " 1048 "-- packet dropped!\n", sc->nge_unit); 1049 #endif 1050 m_freem(m_new); 1051 return(ENOBUFS); 1052 } 1053 /* Attach the buffer to the mbuf */ 1054 m_new->m_ext.ext_arg = buf; 1055 m_new->m_ext.ext_buf = buf->nge_buf; 1056 m_new->m_ext.ext_free = nge_jfree; 1057 m_new->m_ext.ext_ref = nge_jref; 1058 m_new->m_ext.ext_size = NGE_JUMBO_FRAMELEN; 1059 1060 m_new->m_data = m_new->m_ext.ext_buf; 1061 m_new->m_flags |= M_EXT; 1062 m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size; 1063 } else { 1064 m_new = m; 1065 m_new->m_len = m_new->m_pkthdr.len = NGE_JLEN; 1066 m_new->m_data = m_new->m_ext.ext_buf; 1067 } 1068 1069 m_adj(m_new, sizeof(uint64_t)); 1070 1071 c->nge_mbuf = m_new; 1072 c->nge_ptr = vtophys(mtod(m_new, caddr_t)); 1073 c->nge_ctl = m_new->m_len; 1074 c->nge_extsts = 0; 1075 1076 return(0); 1077 } 1078 1079 static int 1080 nge_alloc_jumbo_mem(struct nge_softc *sc) 1081 { 1082 caddr_t ptr; 1083 int i; 1084 struct nge_jslot *entry; 1085 1086 /* Grab a big chunk o' storage. */ 1087 sc->nge_cdata.nge_jumbo_buf = contigmalloc(NGE_JMEM, M_DEVBUF, 1088 M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0); 1089 1090 if (sc->nge_cdata.nge_jumbo_buf == NULL) { 1091 kprintf("nge%d: no memory for jumbo buffers!\n", sc->nge_unit); 1092 return(ENOBUFS); 1093 } 1094 1095 SLIST_INIT(&sc->nge_jfree_listhead); 1096 1097 /* 1098 * Now divide it up into 9K pieces and save the addresses 1099 * in an array. 1100 */ 1101 ptr = sc->nge_cdata.nge_jumbo_buf; 1102 for (i = 0; i < NGE_JSLOTS; i++) { 1103 entry = &sc->nge_cdata.nge_jslots[i]; 1104 entry->nge_sc = sc; 1105 entry->nge_buf = ptr; 1106 entry->nge_inuse = 0; 1107 entry->nge_slot = i; 1108 SLIST_INSERT_HEAD(&sc->nge_jfree_listhead, entry, jslot_link); 1109 ptr += NGE_JLEN; 1110 } 1111 1112 return(0); 1113 } 1114 1115 1116 /* 1117 * Allocate a jumbo buffer. 1118 */ 1119 static struct nge_jslot * 1120 nge_jalloc(struct nge_softc *sc) 1121 { 1122 struct nge_jslot *entry; 1123 1124 lwkt_serialize_enter(&sc->nge_jslot_serializer); 1125 entry = SLIST_FIRST(&sc->nge_jfree_listhead); 1126 if (entry) { 1127 SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jslot_link); 1128 entry->nge_inuse = 1; 1129 } else { 1130 #ifdef NGE_VERBOSE 1131 kprintf("nge%d: no free jumbo buffers\n", sc->nge_unit); 1132 #endif 1133 } 1134 lwkt_serialize_exit(&sc->nge_jslot_serializer); 1135 return(entry); 1136 } 1137 1138 /* 1139 * Adjust usage count on a jumbo buffer. In general this doesn't 1140 * get used much because our jumbo buffers don't get passed around 1141 * a lot, but it's implemented for correctness. 1142 */ 1143 static void 1144 nge_jref(void *arg) 1145 { 1146 struct nge_jslot *entry = (struct nge_jslot *)arg; 1147 struct nge_softc *sc = entry->nge_sc; 1148 1149 if (sc == NULL) 1150 panic("nge_jref: can't find softc pointer!"); 1151 1152 if (&sc->nge_cdata.nge_jslots[entry->nge_slot] != entry) 1153 panic("nge_jref: asked to reference buffer " 1154 "that we don't manage!"); 1155 else if (entry->nge_inuse == 0) 1156 panic("nge_jref: buffer already free!"); 1157 else 1158 atomic_add_int(&entry->nge_inuse, 1); 1159 } 1160 1161 /* 1162 * Release a jumbo buffer. 1163 */ 1164 static void 1165 nge_jfree(void *arg) 1166 { 1167 struct nge_jslot *entry = (struct nge_jslot *)arg; 1168 struct nge_softc *sc = entry->nge_sc; 1169 1170 if (sc == NULL) 1171 panic("nge_jref: can't find softc pointer!"); 1172 1173 if (&sc->nge_cdata.nge_jslots[entry->nge_slot] != entry) { 1174 panic("nge_jref: asked to reference buffer " 1175 "that we don't manage!"); 1176 } else if (entry->nge_inuse == 0) { 1177 panic("nge_jref: buffer already free!"); 1178 } else { 1179 lwkt_serialize_enter(&sc->nge_jslot_serializer); 1180 atomic_subtract_int(&entry->nge_inuse, 1); 1181 if (entry->nge_inuse == 0) { 1182 SLIST_INSERT_HEAD(&sc->nge_jfree_listhead, 1183 entry, jslot_link); 1184 } 1185 lwkt_serialize_exit(&sc->nge_jslot_serializer); 1186 } 1187 } 1188 /* 1189 * A frame has been uploaded: pass the resulting mbuf chain up to 1190 * the higher level protocols. 1191 */ 1192 static void 1193 nge_rxeof(struct nge_softc *sc) 1194 { 1195 struct mbuf *m; 1196 struct ifnet *ifp = &sc->arpcom.ac_if; 1197 struct nge_desc *cur_rx; 1198 int i, total_len = 0; 1199 uint32_t rxstat; 1200 1201 i = sc->nge_cdata.nge_rx_prod; 1202 1203 while(NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) { 1204 struct mbuf *m0 = NULL; 1205 uint32_t extsts; 1206 1207 #ifdef DEVICE_POLLING 1208 if (ifp->if_flags & IFF_POLLING) { 1209 if (sc->rxcycles <= 0) 1210 break; 1211 sc->rxcycles--; 1212 } 1213 #endif /* DEVICE_POLLING */ 1214 1215 cur_rx = &sc->nge_ldata->nge_rx_list[i]; 1216 rxstat = cur_rx->nge_rxstat; 1217 extsts = cur_rx->nge_extsts; 1218 m = cur_rx->nge_mbuf; 1219 cur_rx->nge_mbuf = NULL; 1220 total_len = NGE_RXBYTES(cur_rx); 1221 NGE_INC(i, NGE_RX_LIST_CNT); 1222 /* 1223 * If an error occurs, update stats, clear the 1224 * status word and leave the mbuf cluster in place: 1225 * it should simply get re-used next time this descriptor 1226 * comes up in the ring. 1227 */ 1228 if ((rxstat & NGE_CMDSTS_PKT_OK) == 0) { 1229 ifp->if_ierrors++; 1230 nge_newbuf(sc, cur_rx, m); 1231 continue; 1232 } 1233 1234 /* 1235 * Ok. NatSemi really screwed up here. This is the 1236 * only gigE chip I know of with alignment constraints 1237 * on receive buffers. RX buffers must be 64-bit aligned. 1238 */ 1239 #ifdef __i386__ 1240 /* 1241 * By popular demand, ignore the alignment problems 1242 * on the Intel x86 platform. The performance hit 1243 * incurred due to unaligned accesses is much smaller 1244 * than the hit produced by forcing buffer copies all 1245 * the time, especially with jumbo frames. We still 1246 * need to fix up the alignment everywhere else though. 1247 */ 1248 if (nge_newbuf(sc, cur_rx, NULL) == ENOBUFS) { 1249 #endif 1250 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN, 1251 total_len + ETHER_ALIGN, 0, ifp, NULL); 1252 nge_newbuf(sc, cur_rx, m); 1253 if (m0 == NULL) { 1254 kprintf("nge%d: no receive buffers " 1255 "available -- packet dropped!\n", 1256 sc->nge_unit); 1257 ifp->if_ierrors++; 1258 continue; 1259 } 1260 m_adj(m0, ETHER_ALIGN); 1261 m = m0; 1262 #ifdef __i386__ 1263 } else { 1264 m->m_pkthdr.rcvif = ifp; 1265 m->m_pkthdr.len = m->m_len = total_len; 1266 } 1267 #endif 1268 1269 ifp->if_ipackets++; 1270 1271 /* Do IP checksum checking. */ 1272 if (extsts & NGE_RXEXTSTS_IPPKT) 1273 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 1274 if (!(extsts & NGE_RXEXTSTS_IPCSUMERR)) 1275 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 1276 if ((extsts & NGE_RXEXTSTS_TCPPKT && 1277 (extsts & NGE_RXEXTSTS_TCPCSUMERR) == 0) || 1278 (extsts & NGE_RXEXTSTS_UDPPKT && 1279 (extsts & NGE_RXEXTSTS_UDPCSUMERR) == 0)) { 1280 m->m_pkthdr.csum_flags |= 1281 CSUM_DATA_VALID|CSUM_PSEUDO_HDR| 1282 CSUM_FRAG_NOT_CHECKED; 1283 m->m_pkthdr.csum_data = 0xffff; 1284 } 1285 1286 /* 1287 * If we received a packet with a vlan tag, pass it 1288 * to vlan_input() instead of ether_input(). 1289 */ 1290 if (extsts & NGE_RXEXTSTS_VLANPKT) { 1291 m->m_flags |= M_VLANTAG; 1292 m->m_pkthdr.ether_vlantag = 1293 (extsts & NGE_RXEXTSTS_VTCI); 1294 } 1295 ifp->if_input(ifp, m); 1296 } 1297 1298 sc->nge_cdata.nge_rx_prod = i; 1299 } 1300 1301 /* 1302 * A frame was downloaded to the chip. It's safe for us to clean up 1303 * the list buffers. 1304 */ 1305 static void 1306 nge_txeof(struct nge_softc *sc) 1307 { 1308 struct ifnet *ifp = &sc->arpcom.ac_if; 1309 struct nge_desc *cur_tx = NULL; 1310 uint32_t idx; 1311 1312 /* Clear the timeout timer. */ 1313 ifp->if_timer = 0; 1314 1315 /* 1316 * Go through our tx list and free mbufs for those 1317 * frames that have been transmitted. 1318 */ 1319 idx = sc->nge_cdata.nge_tx_cons; 1320 while (idx != sc->nge_cdata.nge_tx_prod) { 1321 cur_tx = &sc->nge_ldata->nge_tx_list[idx]; 1322 1323 if (NGE_OWNDESC(cur_tx)) 1324 break; 1325 1326 if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) { 1327 sc->nge_cdata.nge_tx_cnt--; 1328 NGE_INC(idx, NGE_TX_LIST_CNT); 1329 continue; 1330 } 1331 1332 if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) { 1333 ifp->if_oerrors++; 1334 if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS) 1335 ifp->if_collisions++; 1336 if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL) 1337 ifp->if_collisions++; 1338 } 1339 1340 ifp->if_collisions += 1341 (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16; 1342 1343 ifp->if_opackets++; 1344 if (cur_tx->nge_mbuf != NULL) { 1345 m_freem(cur_tx->nge_mbuf); 1346 cur_tx->nge_mbuf = NULL; 1347 } 1348 1349 sc->nge_cdata.nge_tx_cnt--; 1350 NGE_INC(idx, NGE_TX_LIST_CNT); 1351 ifp->if_timer = 0; 1352 } 1353 1354 sc->nge_cdata.nge_tx_cons = idx; 1355 1356 if (cur_tx != NULL) 1357 ifp->if_flags &= ~IFF_OACTIVE; 1358 } 1359 1360 static void 1361 nge_tick(void *xsc) 1362 { 1363 struct nge_softc *sc = xsc; 1364 struct ifnet *ifp = &sc->arpcom.ac_if; 1365 struct mii_data *mii; 1366 1367 lwkt_serialize_enter(ifp->if_serializer); 1368 1369 if (sc->nge_tbi) { 1370 if (sc->nge_link == 0) { 1371 if (CSR_READ_4(sc, NGE_TBI_BMSR) 1372 & NGE_TBIBMSR_ANEG_DONE) { 1373 kprintf("nge%d: gigabit link up\n", 1374 sc->nge_unit); 1375 nge_miibus_statchg(sc->nge_miibus); 1376 sc->nge_link++; 1377 if (!ifq_is_empty(&ifp->if_snd)) 1378 if_devstart(ifp); 1379 } 1380 } 1381 } else { 1382 mii = device_get_softc(sc->nge_miibus); 1383 mii_tick(mii); 1384 1385 if (sc->nge_link == 0) { 1386 if (mii->mii_media_status & IFM_ACTIVE && 1387 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 1388 sc->nge_link++; 1389 if (IFM_SUBTYPE(mii->mii_media_active) 1390 == IFM_1000_T) 1391 kprintf("nge%d: gigabit link up\n", 1392 sc->nge_unit); 1393 if (!ifq_is_empty(&ifp->if_snd)) 1394 if_devstart(ifp); 1395 } 1396 } 1397 } 1398 callout_reset(&sc->nge_stat_timer, hz, nge_tick, sc); 1399 1400 lwkt_serialize_exit(ifp->if_serializer); 1401 } 1402 1403 #ifdef DEVICE_POLLING 1404 1405 static void 1406 nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 1407 { 1408 struct nge_softc *sc = ifp->if_softc; 1409 1410 switch(cmd) { 1411 case POLL_REGISTER: 1412 /* disable interrupts */ 1413 CSR_WRITE_4(sc, NGE_IER, 0); 1414 break; 1415 case POLL_DEREGISTER: 1416 /* enable interrupts */ 1417 CSR_WRITE_4(sc, NGE_IER, 1); 1418 break; 1419 default: 1420 /* 1421 * On the nge, reading the status register also clears it. 1422 * So before returning to intr mode we must make sure that all 1423 * possible pending sources of interrupts have been served. 1424 * In practice this means run to completion the *eof routines, 1425 * and then call the interrupt routine 1426 */ 1427 sc->rxcycles = count; 1428 nge_rxeof(sc); 1429 nge_txeof(sc); 1430 if (!ifq_is_empty(&ifp->if_snd)) 1431 if_devstart(ifp); 1432 1433 if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) { 1434 uint32_t status; 1435 1436 /* Reading the ISR register clears all interrupts. */ 1437 status = CSR_READ_4(sc, NGE_ISR); 1438 1439 if (status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW)) 1440 nge_rxeof(sc); 1441 1442 if (status & (NGE_ISR_RX_IDLE)) 1443 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE); 1444 1445 if (status & NGE_ISR_SYSERR) { 1446 nge_reset(sc); 1447 nge_init(sc); 1448 } 1449 } 1450 break; 1451 } 1452 } 1453 1454 #endif /* DEVICE_POLLING */ 1455 1456 static void 1457 nge_intr(void *arg) 1458 { 1459 struct nge_softc *sc = arg; 1460 struct ifnet *ifp = &sc->arpcom.ac_if; 1461 uint32_t status; 1462 1463 /* Supress unwanted interrupts */ 1464 if (!(ifp->if_flags & IFF_UP)) { 1465 nge_stop(sc); 1466 return; 1467 } 1468 1469 /* Disable interrupts. */ 1470 CSR_WRITE_4(sc, NGE_IER, 0); 1471 1472 /* Data LED on for TBI mode */ 1473 if(sc->nge_tbi) 1474 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO) 1475 | NGE_GPIO_GP3_OUT); 1476 1477 for (;;) { 1478 /* Reading the ISR register clears all interrupts. */ 1479 status = CSR_READ_4(sc, NGE_ISR); 1480 1481 if ((status & NGE_INTRS) == 0) 1482 break; 1483 1484 if ((status & NGE_ISR_TX_DESC_OK) || 1485 (status & NGE_ISR_TX_ERR) || 1486 (status & NGE_ISR_TX_OK) || 1487 (status & NGE_ISR_TX_IDLE)) 1488 nge_txeof(sc); 1489 1490 if ((status & NGE_ISR_RX_DESC_OK) || 1491 (status & NGE_ISR_RX_ERR) || 1492 (status & NGE_ISR_RX_OFLOW) || 1493 (status & NGE_ISR_RX_FIFO_OFLOW) || 1494 (status & NGE_ISR_RX_IDLE) || 1495 (status & NGE_ISR_RX_OK)) 1496 nge_rxeof(sc); 1497 1498 if ((status & NGE_ISR_RX_IDLE)) 1499 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE); 1500 1501 if (status & NGE_ISR_SYSERR) { 1502 nge_reset(sc); 1503 ifp->if_flags &= ~IFF_RUNNING; 1504 nge_init(sc); 1505 } 1506 1507 #ifdef notyet 1508 /* mii_tick should only be called once per second */ 1509 if (status & NGE_ISR_PHY_INTR) { 1510 sc->nge_link = 0; 1511 nge_tick_serialized(sc); 1512 } 1513 #endif 1514 } 1515 1516 /* Re-enable interrupts. */ 1517 CSR_WRITE_4(sc, NGE_IER, 1); 1518 1519 if (!ifq_is_empty(&ifp->if_snd)) 1520 if_devstart(ifp); 1521 1522 /* Data LED off for TBI mode */ 1523 1524 if(sc->nge_tbi) 1525 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO) 1526 & ~NGE_GPIO_GP3_OUT); 1527 } 1528 1529 /* 1530 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data 1531 * pointers to the fragment pointers. 1532 */ 1533 static int 1534 nge_encap(struct nge_softc *sc, struct mbuf *m_head, uint32_t *txidx) 1535 { 1536 struct nge_desc *f = NULL; 1537 struct mbuf *m; 1538 int frag, cur, cnt = 0; 1539 1540 /* 1541 * Start packing the mbufs in this chain into 1542 * the fragment pointers. Stop when we run out 1543 * of fragments or hit the end of the mbuf chain. 1544 */ 1545 cur = frag = *txidx; 1546 1547 for (m = m_head; m != NULL; m = m->m_next) { 1548 if (m->m_len != 0) { 1549 if ((NGE_TX_LIST_CNT - 1550 (sc->nge_cdata.nge_tx_cnt + cnt)) < 2) 1551 break; 1552 f = &sc->nge_ldata->nge_tx_list[frag]; 1553 f->nge_ctl = NGE_CMDSTS_MORE | m->m_len; 1554 f->nge_ptr = vtophys(mtod(m, vm_offset_t)); 1555 if (cnt != 0) 1556 f->nge_ctl |= NGE_CMDSTS_OWN; 1557 cur = frag; 1558 NGE_INC(frag, NGE_TX_LIST_CNT); 1559 cnt++; 1560 } 1561 } 1562 /* Caller should make sure that 'm_head' is not excessive fragmented */ 1563 KASSERT(m == NULL, ("too many fragments\n")); 1564 1565 sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0; 1566 if (m_head->m_pkthdr.csum_flags) { 1567 if (m_head->m_pkthdr.csum_flags & CSUM_IP) 1568 sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |= 1569 NGE_TXEXTSTS_IPCSUM; 1570 if (m_head->m_pkthdr.csum_flags & CSUM_TCP) 1571 sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |= 1572 NGE_TXEXTSTS_TCPCSUM; 1573 if (m_head->m_pkthdr.csum_flags & CSUM_UDP) 1574 sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |= 1575 NGE_TXEXTSTS_UDPCSUM; 1576 } 1577 1578 if (m_head->m_flags & M_VLANTAG) { 1579 sc->nge_ldata->nge_tx_list[cur].nge_extsts |= 1580 (NGE_TXEXTSTS_VLANPKT|m_head->m_pkthdr.ether_vlantag); 1581 } 1582 1583 sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head; 1584 sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE; 1585 sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN; 1586 sc->nge_cdata.nge_tx_cnt += cnt; 1587 *txidx = frag; 1588 1589 return(0); 1590 } 1591 1592 /* 1593 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 1594 * to the mbuf data regions directly in the transmit lists. We also save a 1595 * copy of the pointers since the transmit list fragment pointers are 1596 * physical addresses. 1597 */ 1598 1599 static void 1600 nge_start(struct ifnet *ifp) 1601 { 1602 struct nge_softc *sc = ifp->if_softc; 1603 struct mbuf *m_head = NULL, *m_defragged; 1604 uint32_t idx; 1605 int need_trans; 1606 1607 if (!sc->nge_link) { 1608 ifq_purge(&ifp->if_snd); 1609 return; 1610 } 1611 1612 idx = sc->nge_cdata.nge_tx_prod; 1613 1614 if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING) 1615 return; 1616 1617 need_trans = 0; 1618 while (sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) { 1619 struct mbuf *m; 1620 int cnt; 1621 1622 m_defragged = NULL; 1623 m_head = ifq_dequeue(&ifp->if_snd, NULL); 1624 if (m_head == NULL) 1625 break; 1626 1627 again: 1628 cnt = 0; 1629 for (m = m_head; m != NULL; m = m->m_next) 1630 ++cnt; 1631 if ((NGE_TX_LIST_CNT - 1632 (sc->nge_cdata.nge_tx_cnt + cnt)) < 2) { 1633 if (m_defragged != NULL) { 1634 /* 1635 * Even after defragmentation, there 1636 * are still too many fragments, so 1637 * drop this packet. 1638 */ 1639 m_freem(m_head); 1640 ifp->if_flags |= IFF_OACTIVE; 1641 break; 1642 } 1643 1644 m_defragged = m_defrag(m_head, MB_DONTWAIT); 1645 if (m_defragged == NULL) { 1646 m_freem(m_head); 1647 continue; 1648 } 1649 m_head = m_defragged; 1650 1651 /* Recount # of fragments */ 1652 goto again; 1653 } 1654 1655 nge_encap(sc, m_head, &idx); 1656 need_trans = 1; 1657 1658 ETHER_BPF_MTAP(ifp, m_head); 1659 } 1660 1661 if (!need_trans) 1662 return; 1663 1664 /* Transmit */ 1665 sc->nge_cdata.nge_tx_prod = idx; 1666 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE); 1667 1668 /* 1669 * Set a timeout in case the chip goes out to lunch. 1670 */ 1671 ifp->if_timer = 5; 1672 } 1673 1674 static void 1675 nge_init(void *xsc) 1676 { 1677 struct nge_softc *sc = xsc; 1678 struct ifnet *ifp = &sc->arpcom.ac_if; 1679 struct mii_data *mii; 1680 1681 if (ifp->if_flags & IFF_RUNNING) { 1682 return; 1683 } 1684 1685 /* 1686 * Cancel pending I/O and free all RX/TX buffers. 1687 */ 1688 nge_stop(sc); 1689 callout_reset(&sc->nge_stat_timer, hz, nge_tick, sc); 1690 1691 if (sc->nge_tbi) 1692 mii = NULL; 1693 else 1694 mii = device_get_softc(sc->nge_miibus); 1695 1696 /* Set MAC address */ 1697 CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0); 1698 CSR_WRITE_4(sc, NGE_RXFILT_DATA, 1699 ((uint16_t *)sc->arpcom.ac_enaddr)[0]); 1700 CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1); 1701 CSR_WRITE_4(sc, NGE_RXFILT_DATA, 1702 ((uint16_t *)sc->arpcom.ac_enaddr)[1]); 1703 CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2); 1704 CSR_WRITE_4(sc, NGE_RXFILT_DATA, 1705 ((uint16_t *)sc->arpcom.ac_enaddr)[2]); 1706 1707 /* Init circular RX list. */ 1708 if (nge_list_rx_init(sc) == ENOBUFS) { 1709 kprintf("nge%d: initialization failed: no " 1710 "memory for rx buffers\n", sc->nge_unit); 1711 nge_stop(sc); 1712 return; 1713 } 1714 1715 /* 1716 * Init tx descriptors. 1717 */ 1718 nge_list_tx_init(sc); 1719 1720 /* 1721 * For the NatSemi chip, we have to explicitly enable the 1722 * reception of ARP frames, as well as turn on the 'perfect 1723 * match' filter where we store the station address, otherwise 1724 * we won't receive unicasts meant for this host. 1725 */ 1726 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP); 1727 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT); 1728 1729 /* If we want promiscuous mode, set the allframes bit. */ 1730 if (ifp->if_flags & IFF_PROMISC) 1731 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS); 1732 else 1733 NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS); 1734 1735 /* 1736 * Set the capture broadcast bit to capture broadcast frames. 1737 */ 1738 if (ifp->if_flags & IFF_BROADCAST) 1739 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD); 1740 else 1741 NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD); 1742 1743 /* 1744 * Load the multicast filter. 1745 */ 1746 nge_setmulti(sc); 1747 1748 /* Turn the receive filter on */ 1749 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE); 1750 1751 /* 1752 * Load the address of the RX and TX lists. 1753 */ 1754 CSR_WRITE_4(sc, NGE_RX_LISTPTR, 1755 vtophys(&sc->nge_ldata->nge_rx_list[0])); 1756 CSR_WRITE_4(sc, NGE_TX_LISTPTR, 1757 vtophys(&sc->nge_ldata->nge_tx_list[0])); 1758 1759 /* Set RX configuration */ 1760 CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG); 1761 /* 1762 * Enable hardware checksum validation for all IPv4 1763 * packets, do not reject packets with bad checksums. 1764 */ 1765 CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB); 1766 1767 /* 1768 * Tell the chip to detect and strip VLAN tag info from 1769 * received frames. The tag will be provided in the extsts 1770 * field in the RX descriptors. 1771 */ 1772 NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, 1773 NGE_VIPRXCTL_TAG_DETECT_ENB|NGE_VIPRXCTL_TAG_STRIP_ENB); 1774 1775 /* Set TX configuration */ 1776 CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG); 1777 1778 /* 1779 * Enable TX IPv4 checksumming on a per-packet basis. 1780 */ 1781 CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT); 1782 1783 /* 1784 * Tell the chip to insert VLAN tags on a per-packet basis as 1785 * dictated by the code in the frame encapsulation routine. 1786 */ 1787 NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT); 1788 1789 /* Set full/half duplex mode. */ 1790 if (sc->nge_tbi) { 1791 if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK) 1792 == IFM_FDX) { 1793 NGE_SETBIT(sc, NGE_TX_CFG, 1794 (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR)); 1795 NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 1796 } else { 1797 NGE_CLRBIT(sc, NGE_TX_CFG, 1798 (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR)); 1799 NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 1800 } 1801 } else { 1802 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { 1803 NGE_SETBIT(sc, NGE_TX_CFG, 1804 (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR)); 1805 NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 1806 } else { 1807 NGE_CLRBIT(sc, NGE_TX_CFG, 1808 (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR)); 1809 NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 1810 } 1811 } 1812 1813 /* 1814 * Enable the delivery of PHY interrupts based on 1815 * link/speed/duplex status changes. Also enable the 1816 * extsts field in the DMA descriptors (needed for 1817 * TCP/IP checksum offload on transmit). 1818 */ 1819 NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD | 1820 NGE_CFG_PHYINTR_LNK | NGE_CFG_PHYINTR_DUP | NGE_CFG_EXTSTS_ENB); 1821 1822 /* 1823 * Configure interrupt holdoff (moderation). We can 1824 * have the chip delay interrupt delivery for a certain 1825 * period. Units are in 100us, and the max setting 1826 * is 25500us (0xFF x 100us). Default is a 100us holdoff. 1827 */ 1828 CSR_WRITE_4(sc, NGE_IHR, 0x01); 1829 1830 /* 1831 * Enable interrupts. 1832 */ 1833 CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS); 1834 #ifdef DEVICE_POLLING 1835 /* 1836 * ... only enable interrupts if we are not polling, make sure 1837 * they are off otherwise. 1838 */ 1839 if (ifp->if_flags & IFF_POLLING) 1840 CSR_WRITE_4(sc, NGE_IER, 0); 1841 else 1842 #endif /* DEVICE_POLLING */ 1843 CSR_WRITE_4(sc, NGE_IER, 1); 1844 1845 /* Enable receiver and transmitter. */ 1846 NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE | NGE_CSR_RX_DISABLE); 1847 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE); 1848 1849 nge_ifmedia_upd(ifp); 1850 1851 ifp->if_flags |= IFF_RUNNING; 1852 ifp->if_flags &= ~IFF_OACTIVE; 1853 } 1854 1855 /* 1856 * Set media options. 1857 */ 1858 static int 1859 nge_ifmedia_upd(struct ifnet *ifp) 1860 { 1861 struct nge_softc *sc = ifp->if_softc; 1862 struct mii_data *mii; 1863 1864 if (sc->nge_tbi) { 1865 if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media) 1866 == IFM_AUTO) { 1867 CSR_WRITE_4(sc, NGE_TBI_ANAR, 1868 CSR_READ_4(sc, NGE_TBI_ANAR) 1869 | NGE_TBIANAR_HDX | NGE_TBIANAR_FDX 1870 | NGE_TBIANAR_PS1 | NGE_TBIANAR_PS2); 1871 CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG 1872 | NGE_TBIBMCR_RESTART_ANEG); 1873 CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG); 1874 } else if ((sc->nge_ifmedia.ifm_cur->ifm_media 1875 & IFM_GMASK) == IFM_FDX) { 1876 NGE_SETBIT(sc, NGE_TX_CFG, 1877 (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR)); 1878 NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 1879 1880 CSR_WRITE_4(sc, NGE_TBI_ANAR, 0); 1881 CSR_WRITE_4(sc, NGE_TBI_BMCR, 0); 1882 } else { 1883 NGE_CLRBIT(sc, NGE_TX_CFG, 1884 (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR)); 1885 NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 1886 1887 CSR_WRITE_4(sc, NGE_TBI_ANAR, 0); 1888 CSR_WRITE_4(sc, NGE_TBI_BMCR, 0); 1889 } 1890 1891 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO) 1892 & ~NGE_GPIO_GP3_OUT); 1893 } else { 1894 mii = device_get_softc(sc->nge_miibus); 1895 sc->nge_link = 0; 1896 if (mii->mii_instance) { 1897 struct mii_softc *miisc; 1898 for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL; 1899 miisc = LIST_NEXT(miisc, mii_list)) 1900 mii_phy_reset(miisc); 1901 } 1902 mii_mediachg(mii); 1903 } 1904 1905 return(0); 1906 } 1907 1908 /* 1909 * Report current media status. 1910 */ 1911 static void 1912 nge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 1913 { 1914 struct nge_softc *sc = ifp->if_softc; 1915 struct mii_data *mii; 1916 1917 if (sc->nge_tbi) { 1918 ifmr->ifm_status = IFM_AVALID; 1919 ifmr->ifm_active = IFM_ETHER; 1920 1921 if (CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) 1922 ifmr->ifm_status |= IFM_ACTIVE; 1923 if (CSR_READ_4(sc, NGE_TBI_BMCR) & NGE_TBIBMCR_LOOPBACK) 1924 ifmr->ifm_active |= IFM_LOOP; 1925 if (!CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) { 1926 ifmr->ifm_active |= IFM_NONE; 1927 ifmr->ifm_status = 0; 1928 return; 1929 } 1930 ifmr->ifm_active |= IFM_1000_SX; 1931 if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media) 1932 == IFM_AUTO) { 1933 ifmr->ifm_active |= IFM_AUTO; 1934 if (CSR_READ_4(sc, NGE_TBI_ANLPAR) 1935 & NGE_TBIANAR_FDX) { 1936 ifmr->ifm_active |= IFM_FDX; 1937 }else if (CSR_READ_4(sc, NGE_TBI_ANLPAR) 1938 & NGE_TBIANAR_HDX) { 1939 ifmr->ifm_active |= IFM_HDX; 1940 } 1941 } else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK) 1942 == IFM_FDX) 1943 ifmr->ifm_active |= IFM_FDX; 1944 else 1945 ifmr->ifm_active |= IFM_HDX; 1946 1947 } else { 1948 mii = device_get_softc(sc->nge_miibus); 1949 mii_pollstat(mii); 1950 ifmr->ifm_active = mii->mii_media_active; 1951 ifmr->ifm_status = mii->mii_media_status; 1952 } 1953 } 1954 1955 static int 1956 nge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr) 1957 { 1958 struct nge_softc *sc = ifp->if_softc; 1959 struct ifreq *ifr = (struct ifreq *) data; 1960 struct mii_data *mii; 1961 int error = 0; 1962 1963 switch(command) { 1964 case SIOCSIFMTU: 1965 if (ifr->ifr_mtu > NGE_JUMBO_MTU) { 1966 error = EINVAL; 1967 } else { 1968 ifp->if_mtu = ifr->ifr_mtu; 1969 /* 1970 * Workaround: if the MTU is larger than 1971 * 8152 (TX FIFO size minus 64 minus 18), turn off 1972 * TX checksum offloading. 1973 */ 1974 if (ifr->ifr_mtu >= 8152) 1975 ifp->if_hwassist = 0; 1976 else 1977 ifp->if_hwassist = NGE_CSUM_FEATURES; 1978 } 1979 break; 1980 case SIOCSIFFLAGS: 1981 if (ifp->if_flags & IFF_UP) { 1982 if (ifp->if_flags & IFF_RUNNING && 1983 ifp->if_flags & IFF_PROMISC && 1984 !(sc->nge_if_flags & IFF_PROMISC)) { 1985 NGE_SETBIT(sc, NGE_RXFILT_CTL, 1986 NGE_RXFILTCTL_ALLPHYS| 1987 NGE_RXFILTCTL_ALLMULTI); 1988 } else if (ifp->if_flags & IFF_RUNNING && 1989 !(ifp->if_flags & IFF_PROMISC) && 1990 sc->nge_if_flags & IFF_PROMISC) { 1991 NGE_CLRBIT(sc, NGE_RXFILT_CTL, 1992 NGE_RXFILTCTL_ALLPHYS); 1993 if (!(ifp->if_flags & IFF_ALLMULTI)) 1994 NGE_CLRBIT(sc, NGE_RXFILT_CTL, 1995 NGE_RXFILTCTL_ALLMULTI); 1996 } else { 1997 ifp->if_flags &= ~IFF_RUNNING; 1998 nge_init(sc); 1999 } 2000 } else { 2001 if (ifp->if_flags & IFF_RUNNING) 2002 nge_stop(sc); 2003 } 2004 sc->nge_if_flags = ifp->if_flags; 2005 error = 0; 2006 break; 2007 case SIOCADDMULTI: 2008 case SIOCDELMULTI: 2009 nge_setmulti(sc); 2010 error = 0; 2011 break; 2012 case SIOCGIFMEDIA: 2013 case SIOCSIFMEDIA: 2014 if (sc->nge_tbi) { 2015 error = ifmedia_ioctl(ifp, ifr, &sc->nge_ifmedia, 2016 command); 2017 } else { 2018 mii = device_get_softc(sc->nge_miibus); 2019 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, 2020 command); 2021 } 2022 break; 2023 default: 2024 error = ether_ioctl(ifp, command, data); 2025 break; 2026 } 2027 return(error); 2028 } 2029 2030 static void 2031 nge_watchdog(struct ifnet *ifp) 2032 { 2033 struct nge_softc *sc = ifp->if_softc; 2034 2035 ifp->if_oerrors++; 2036 kprintf("nge%d: watchdog timeout\n", sc->nge_unit); 2037 2038 nge_stop(sc); 2039 nge_reset(sc); 2040 ifp->if_flags &= ~IFF_RUNNING; 2041 nge_init(sc); 2042 2043 if (!ifq_is_empty(&ifp->if_snd)) 2044 if_devstart(ifp); 2045 } 2046 2047 /* 2048 * Stop the adapter and free any mbufs allocated to the 2049 * RX and TX lists. 2050 */ 2051 static void 2052 nge_stop(struct nge_softc *sc) 2053 { 2054 struct ifnet *ifp = &sc->arpcom.ac_if; 2055 struct ifmedia_entry *ifm; 2056 struct mii_data *mii; 2057 int i, itmp, mtmp, dtmp; 2058 2059 ifp->if_timer = 0; 2060 if (sc->nge_tbi) 2061 mii = NULL; 2062 else 2063 mii = device_get_softc(sc->nge_miibus); 2064 2065 callout_stop(&sc->nge_stat_timer); 2066 CSR_WRITE_4(sc, NGE_IER, 0); 2067 CSR_WRITE_4(sc, NGE_IMR, 0); 2068 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE); 2069 DELAY(1000); 2070 CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0); 2071 CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0); 2072 2073 /* 2074 * Isolate/power down the PHY, but leave the media selection 2075 * unchanged so that things will be put back to normal when 2076 * we bring the interface back up. 2077 */ 2078 itmp = ifp->if_flags; 2079 ifp->if_flags |= IFF_UP; 2080 2081 if (sc->nge_tbi) 2082 ifm = sc->nge_ifmedia.ifm_cur; 2083 else 2084 ifm = mii->mii_media.ifm_cur; 2085 2086 mtmp = ifm->ifm_media; 2087 dtmp = ifm->ifm_data; 2088 ifm->ifm_media = IFM_ETHER|IFM_NONE; 2089 ifm->ifm_data = MII_MEDIA_NONE; 2090 2091 if (!sc->nge_tbi) 2092 mii_mediachg(mii); 2093 ifm->ifm_media = mtmp; 2094 ifm->ifm_data = dtmp; 2095 ifp->if_flags = itmp; 2096 2097 sc->nge_link = 0; 2098 2099 /* 2100 * Free data in the RX lists. 2101 */ 2102 for (i = 0; i < NGE_RX_LIST_CNT; i++) { 2103 if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) { 2104 m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf); 2105 sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL; 2106 } 2107 } 2108 bzero(&sc->nge_ldata->nge_rx_list, 2109 sizeof(sc->nge_ldata->nge_rx_list)); 2110 2111 /* 2112 * Free the TX list buffers. 2113 */ 2114 for (i = 0; i < NGE_TX_LIST_CNT; i++) { 2115 if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) { 2116 m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf); 2117 sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL; 2118 } 2119 } 2120 2121 bzero(&sc->nge_ldata->nge_tx_list, 2122 sizeof(sc->nge_ldata->nge_tx_list)); 2123 2124 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2125 } 2126 2127 /* 2128 * Stop all chip I/O so that the kernel's probe routines don't 2129 * get confused by errant DMAs when rebooting. 2130 */ 2131 static void 2132 nge_shutdown(device_t dev) 2133 { 2134 struct nge_softc *sc = device_get_softc(dev); 2135 struct ifnet *ifp = &sc->arpcom.ac_if; 2136 2137 lwkt_serialize_enter(ifp->if_serializer); 2138 nge_reset(sc); 2139 nge_stop(sc); 2140 lwkt_serialize_exit(ifp->if_serializer); 2141 } 2142 2143