xref: /dragonfly/sys/dev/netif/nge/if_nge.c (revision 4e7eb5cc)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/nge/if_nge.c,v 1.13.2.13 2003/02/05 22:03:57 mbr Exp $
34  * $DragonFly: src/sys/dev/netif/nge/if_nge.c,v 1.6 2004/01/06 01:40:48 dillon Exp $
35  *
36  * $FreeBSD: src/sys/dev/nge/if_nge.c,v 1.13.2.13 2003/02/05 22:03:57 mbr Exp $
37  */
38 
39 /*
40  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
41  * for FreeBSD. Datasheets are available from:
42  *
43  * http://www.national.com/ds/DP/DP83820.pdf
44  * http://www.national.com/ds/DP/DP83821.pdf
45  *
46  * These chips are used on several low cost gigabit ethernet NICs
47  * sold by D-Link, Addtron, SMC and Asante. Both parts are
48  * virtually the same, except the 83820 is a 64-bit/32-bit part,
49  * while the 83821 is 32-bit only.
50  *
51  * Many cards also use National gigE transceivers, such as the
52  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
53  * contains a full register description that applies to all of these
54  * components:
55  *
56  * http://www.national.com/ds/DP/DP83861.pdf
57  *
58  * Written by Bill Paul <wpaul@bsdi.com>
59  * BSDi Open Source Solutions
60  */
61 
62 /*
63  * The NatSemi DP83820 and 83821 controllers are enhanced versions
64  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
65  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
66  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
67  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
68  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
69  * matching buffers, one perfect address filter buffer and interrupt
70  * moderation. The 83820 supports both 64-bit and 32-bit addressing
71  * and data transfers: the 64-bit support can be toggled on or off
72  * via software. This affects the size of certain fields in the DMA
73  * descriptors.
74  *
75  * There are two bugs/misfeatures in the 83820/83821 that I have
76  * discovered so far:
77  *
78  * - Receive buffers must be aligned on 64-bit boundaries, which means
79  *   you must resort to copying data in order to fix up the payload
80  *   alignment.
81  *
82  * - In order to transmit jumbo frames larger than 8170 bytes, you have
83  *   to turn off transmit checksum offloading, because the chip can't
84  *   compute the checksum on an outgoing frame unless it fits entirely
85  *   within the TX FIFO, which is only 8192 bytes in size. If you have
86  *   TX checksum offload enabled and you transmit attempt to transmit a
87  *   frame larger than 8170 bytes, the transmitter will wedge.
88  *
89  * To work around the latter problem, TX checksum offload is disabled
90  * if the user selects an MTU larger than 8152 (8170 - 18).
91  */
92 
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/sockio.h>
96 #include <sys/mbuf.h>
97 #include <sys/malloc.h>
98 #include <sys/kernel.h>
99 #include <sys/socket.h>
100 
101 #include <net/if.h>
102 #include <net/if_arp.h>
103 #include <net/ethernet.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 #include <net/if_types.h>
107 #include <net/vlan/if_vlan_var.h>
108 
109 #include <net/bpf.h>
110 
111 #include <vm/vm.h>              /* for vtophys */
112 #include <vm/pmap.h>            /* for vtophys */
113 #include <machine/clock.h>      /* for DELAY */
114 #include <machine/bus_pio.h>
115 #include <machine/bus_memio.h>
116 #include <machine/bus.h>
117 #include <machine/resource.h>
118 #include <sys/bus.h>
119 #include <sys/rman.h>
120 
121 #include "../mii_layer/mii.h"
122 #include "../mii_layer/miivar.h"
123 
124 #include <bus/pci/pcireg.h>
125 #include <bus/pci/pcivar.h>
126 
127 #define NGE_USEIOSPACE
128 
129 #include "if_ngereg.h"
130 
131 
132 /* "controller miibus0" required.  See GENERIC if you get errors here. */
133 #include "miibus_if.h"
134 
135 #define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
136 
137 /*
138  * Various supported device vendors/types and their names.
139  */
140 static struct nge_type nge_devs[] = {
141 	{ NGE_VENDORID, NGE_DEVICEID,
142 	    "National Semiconductor Gigabit Ethernet" },
143 	{ 0, 0, NULL }
144 };
145 
146 static int nge_probe		(device_t);
147 static int nge_attach		(device_t);
148 static int nge_detach		(device_t);
149 
150 static int nge_alloc_jumbo_mem	(struct nge_softc *);
151 static void nge_free_jumbo_mem	(struct nge_softc *);
152 static void *nge_jalloc		(struct nge_softc *);
153 static void nge_jfree		(caddr_t, u_int);
154 static void nge_jref		(caddr_t, u_int);
155 
156 static int nge_newbuf		(struct nge_softc *,
157 					struct nge_desc *, struct mbuf *);
158 static int nge_encap		(struct nge_softc *,
159 					struct mbuf *, u_int32_t *);
160 static void nge_rxeof		(struct nge_softc *);
161 static void nge_txeof		(struct nge_softc *);
162 static void nge_intr		(void *);
163 static void nge_tick		(void *);
164 static void nge_start		(struct ifnet *);
165 static int nge_ioctl		(struct ifnet *, u_long, caddr_t);
166 static void nge_init		(void *);
167 static void nge_stop		(struct nge_softc *);
168 static void nge_watchdog		(struct ifnet *);
169 static void nge_shutdown		(device_t);
170 static int nge_ifmedia_upd	(struct ifnet *);
171 static void nge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
172 
173 static void nge_delay		(struct nge_softc *);
174 static void nge_eeprom_idle	(struct nge_softc *);
175 static void nge_eeprom_putbyte	(struct nge_softc *, int);
176 static void nge_eeprom_getword	(struct nge_softc *, int, u_int16_t *);
177 static void nge_read_eeprom	(struct nge_softc *, caddr_t, int, int, int);
178 
179 static void nge_mii_sync	(struct nge_softc *);
180 static void nge_mii_send	(struct nge_softc *, u_int32_t, int);
181 static int nge_mii_readreg	(struct nge_softc *, struct nge_mii_frame *);
182 static int nge_mii_writereg	(struct nge_softc *, struct nge_mii_frame *);
183 
184 static int nge_miibus_readreg	(device_t, int, int);
185 static int nge_miibus_writereg	(device_t, int, int, int);
186 static void nge_miibus_statchg	(device_t);
187 
188 static void nge_setmulti	(struct nge_softc *);
189 static u_int32_t nge_crc	(struct nge_softc *, caddr_t);
190 static void nge_reset		(struct nge_softc *);
191 static int nge_list_rx_init	(struct nge_softc *);
192 static int nge_list_tx_init	(struct nge_softc *);
193 
194 #ifdef NGE_USEIOSPACE
195 #define NGE_RES			SYS_RES_IOPORT
196 #define NGE_RID			NGE_PCI_LOIO
197 #else
198 #define NGE_RES			SYS_RES_MEMORY
199 #define NGE_RID			NGE_PCI_LOMEM
200 #endif
201 
202 static device_method_t nge_methods[] = {
203 	/* Device interface */
204 	DEVMETHOD(device_probe,		nge_probe),
205 	DEVMETHOD(device_attach,	nge_attach),
206 	DEVMETHOD(device_detach,	nge_detach),
207 	DEVMETHOD(device_shutdown,	nge_shutdown),
208 
209 	/* bus interface */
210 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
211 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
212 
213 	/* MII interface */
214 	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
215 	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
216 	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
217 
218 	{ 0, 0 }
219 };
220 
221 static driver_t nge_driver = {
222 	"nge",
223 	nge_methods,
224 	sizeof(struct nge_softc)
225 };
226 
227 static devclass_t nge_devclass;
228 
229 DECLARE_DUMMY_MODULE(if_nge);
230 MODULE_DEPEND(if_nge, miibus, 1, 1, 1);
231 DRIVER_MODULE(if_nge, pci, nge_driver, nge_devclass, 0, 0);
232 DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
233 
234 #define NGE_SETBIT(sc, reg, x)				\
235 	CSR_WRITE_4(sc, reg,				\
236 		CSR_READ_4(sc, reg) | (x))
237 
238 #define NGE_CLRBIT(sc, reg, x)				\
239 	CSR_WRITE_4(sc, reg,				\
240 		CSR_READ_4(sc, reg) & ~(x))
241 
242 #define SIO_SET(x)					\
243 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | x)
244 
245 #define SIO_CLR(x)					\
246 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~x)
247 
248 static void nge_delay(sc)
249 	struct nge_softc	*sc;
250 {
251 	int			idx;
252 
253 	for (idx = (300 / 33) + 1; idx > 0; idx--)
254 		CSR_READ_4(sc, NGE_CSR);
255 
256 	return;
257 }
258 
259 static void nge_eeprom_idle(sc)
260 	struct nge_softc	*sc;
261 {
262 	int		i;
263 
264 	SIO_SET(NGE_MEAR_EE_CSEL);
265 	nge_delay(sc);
266 	SIO_SET(NGE_MEAR_EE_CLK);
267 	nge_delay(sc);
268 
269 	for (i = 0; i < 25; i++) {
270 		SIO_CLR(NGE_MEAR_EE_CLK);
271 		nge_delay(sc);
272 		SIO_SET(NGE_MEAR_EE_CLK);
273 		nge_delay(sc);
274 	}
275 
276 	SIO_CLR(NGE_MEAR_EE_CLK);
277 	nge_delay(sc);
278 	SIO_CLR(NGE_MEAR_EE_CSEL);
279 	nge_delay(sc);
280 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
281 
282 	return;
283 }
284 
285 /*
286  * Send a read command and address to the EEPROM, check for ACK.
287  */
288 static void nge_eeprom_putbyte(sc, addr)
289 	struct nge_softc	*sc;
290 	int			addr;
291 {
292 	int		d, i;
293 
294 	d = addr | NGE_EECMD_READ;
295 
296 	/*
297 	 * Feed in each bit and stobe the clock.
298 	 */
299 	for (i = 0x400; i; i >>= 1) {
300 		if (d & i) {
301 			SIO_SET(NGE_MEAR_EE_DIN);
302 		} else {
303 			SIO_CLR(NGE_MEAR_EE_DIN);
304 		}
305 		nge_delay(sc);
306 		SIO_SET(NGE_MEAR_EE_CLK);
307 		nge_delay(sc);
308 		SIO_CLR(NGE_MEAR_EE_CLK);
309 		nge_delay(sc);
310 	}
311 
312 	return;
313 }
314 
315 /*
316  * Read a word of data stored in the EEPROM at address 'addr.'
317  */
318 static void nge_eeprom_getword(sc, addr, dest)
319 	struct nge_softc	*sc;
320 	int			addr;
321 	u_int16_t		*dest;
322 {
323 	int		i;
324 	u_int16_t		word = 0;
325 
326 	/* Force EEPROM to idle state. */
327 	nge_eeprom_idle(sc);
328 
329 	/* Enter EEPROM access mode. */
330 	nge_delay(sc);
331 	SIO_CLR(NGE_MEAR_EE_CLK);
332 	nge_delay(sc);
333 	SIO_SET(NGE_MEAR_EE_CSEL);
334 	nge_delay(sc);
335 
336 	/*
337 	 * Send address of word we want to read.
338 	 */
339 	nge_eeprom_putbyte(sc, addr);
340 
341 	/*
342 	 * Start reading bits from EEPROM.
343 	 */
344 	for (i = 0x8000; i; i >>= 1) {
345 		SIO_SET(NGE_MEAR_EE_CLK);
346 		nge_delay(sc);
347 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
348 			word |= i;
349 		nge_delay(sc);
350 		SIO_CLR(NGE_MEAR_EE_CLK);
351 		nge_delay(sc);
352 	}
353 
354 	/* Turn off EEPROM access mode. */
355 	nge_eeprom_idle(sc);
356 
357 	*dest = word;
358 
359 	return;
360 }
361 
362 /*
363  * Read a sequence of words from the EEPROM.
364  */
365 static void nge_read_eeprom(sc, dest, off, cnt, swap)
366 	struct nge_softc	*sc;
367 	caddr_t			dest;
368 	int			off;
369 	int			cnt;
370 	int			swap;
371 {
372 	int			i;
373 	u_int16_t		word = 0, *ptr;
374 
375 	for (i = 0; i < cnt; i++) {
376 		nge_eeprom_getword(sc, off + i, &word);
377 		ptr = (u_int16_t *)(dest + (i * 2));
378 		if (swap)
379 			*ptr = ntohs(word);
380 		else
381 			*ptr = word;
382 	}
383 
384 	return;
385 }
386 
387 /*
388  * Sync the PHYs by setting data bit and strobing the clock 32 times.
389  */
390 static void nge_mii_sync(sc)
391 	struct nge_softc		*sc;
392 {
393 	int		i;
394 
395 	SIO_SET(NGE_MEAR_MII_DIR|NGE_MEAR_MII_DATA);
396 
397 	for (i = 0; i < 32; i++) {
398 		SIO_SET(NGE_MEAR_MII_CLK);
399 		DELAY(1);
400 		SIO_CLR(NGE_MEAR_MII_CLK);
401 		DELAY(1);
402 	}
403 
404 	return;
405 }
406 
407 /*
408  * Clock a series of bits through the MII.
409  */
410 static void nge_mii_send(sc, bits, cnt)
411 	struct nge_softc		*sc;
412 	u_int32_t		bits;
413 	int			cnt;
414 {
415 	int			i;
416 
417 	SIO_CLR(NGE_MEAR_MII_CLK);
418 
419 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
420                 if (bits & i) {
421 			SIO_SET(NGE_MEAR_MII_DATA);
422                 } else {
423 			SIO_CLR(NGE_MEAR_MII_DATA);
424                 }
425 		DELAY(1);
426 		SIO_CLR(NGE_MEAR_MII_CLK);
427 		DELAY(1);
428 		SIO_SET(NGE_MEAR_MII_CLK);
429 	}
430 }
431 
432 /*
433  * Read an PHY register through the MII.
434  */
435 static int nge_mii_readreg(sc, frame)
436 	struct nge_softc		*sc;
437 	struct nge_mii_frame	*frame;
438 
439 {
440 	int			i, ack, s;
441 
442 	s = splimp();
443 
444 	/*
445 	 * Set up frame for RX.
446 	 */
447 	frame->mii_stdelim = NGE_MII_STARTDELIM;
448 	frame->mii_opcode = NGE_MII_READOP;
449 	frame->mii_turnaround = 0;
450 	frame->mii_data = 0;
451 
452 	CSR_WRITE_4(sc, NGE_MEAR, 0);
453 
454 	/*
455  	 * Turn on data xmit.
456 	 */
457 	SIO_SET(NGE_MEAR_MII_DIR);
458 
459 	nge_mii_sync(sc);
460 
461 	/*
462 	 * Send command/address info.
463 	 */
464 	nge_mii_send(sc, frame->mii_stdelim, 2);
465 	nge_mii_send(sc, frame->mii_opcode, 2);
466 	nge_mii_send(sc, frame->mii_phyaddr, 5);
467 	nge_mii_send(sc, frame->mii_regaddr, 5);
468 
469 	/* Idle bit */
470 	SIO_CLR((NGE_MEAR_MII_CLK|NGE_MEAR_MII_DATA));
471 	DELAY(1);
472 	SIO_SET(NGE_MEAR_MII_CLK);
473 	DELAY(1);
474 
475 	/* Turn off xmit. */
476 	SIO_CLR(NGE_MEAR_MII_DIR);
477 	/* Check for ack */
478 	SIO_CLR(NGE_MEAR_MII_CLK);
479 	DELAY(1);
480 	ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
481 	SIO_SET(NGE_MEAR_MII_CLK);
482 	DELAY(1);
483 
484 	/*
485 	 * Now try reading data bits. If the ack failed, we still
486 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
487 	 */
488 	if (ack) {
489 		for(i = 0; i < 16; i++) {
490 			SIO_CLR(NGE_MEAR_MII_CLK);
491 			DELAY(1);
492 			SIO_SET(NGE_MEAR_MII_CLK);
493 			DELAY(1);
494 		}
495 		goto fail;
496 	}
497 
498 	for (i = 0x8000; i; i >>= 1) {
499 		SIO_CLR(NGE_MEAR_MII_CLK);
500 		DELAY(1);
501 		if (!ack) {
502 			if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
503 				frame->mii_data |= i;
504 			DELAY(1);
505 		}
506 		SIO_SET(NGE_MEAR_MII_CLK);
507 		DELAY(1);
508 	}
509 
510 fail:
511 
512 	SIO_CLR(NGE_MEAR_MII_CLK);
513 	DELAY(1);
514 	SIO_SET(NGE_MEAR_MII_CLK);
515 	DELAY(1);
516 
517 	splx(s);
518 
519 	if (ack)
520 		return(1);
521 	return(0);
522 }
523 
524 /*
525  * Write to a PHY register through the MII.
526  */
527 static int nge_mii_writereg(sc, frame)
528 	struct nge_softc		*sc;
529 	struct nge_mii_frame	*frame;
530 
531 {
532 	int			s;
533 
534 	s = splimp();
535 	/*
536 	 * Set up frame for TX.
537 	 */
538 
539 	frame->mii_stdelim = NGE_MII_STARTDELIM;
540 	frame->mii_opcode = NGE_MII_WRITEOP;
541 	frame->mii_turnaround = NGE_MII_TURNAROUND;
542 
543 	/*
544  	 * Turn on data output.
545 	 */
546 	SIO_SET(NGE_MEAR_MII_DIR);
547 
548 	nge_mii_sync(sc);
549 
550 	nge_mii_send(sc, frame->mii_stdelim, 2);
551 	nge_mii_send(sc, frame->mii_opcode, 2);
552 	nge_mii_send(sc, frame->mii_phyaddr, 5);
553 	nge_mii_send(sc, frame->mii_regaddr, 5);
554 	nge_mii_send(sc, frame->mii_turnaround, 2);
555 	nge_mii_send(sc, frame->mii_data, 16);
556 
557 	/* Idle bit. */
558 	SIO_SET(NGE_MEAR_MII_CLK);
559 	DELAY(1);
560 	SIO_CLR(NGE_MEAR_MII_CLK);
561 	DELAY(1);
562 
563 	/*
564 	 * Turn off xmit.
565 	 */
566 	SIO_CLR(NGE_MEAR_MII_DIR);
567 
568 	splx(s);
569 
570 	return(0);
571 }
572 
573 static int nge_miibus_readreg(dev, phy, reg)
574 	device_t		dev;
575 	int			phy, reg;
576 {
577 	struct nge_softc	*sc;
578 	struct nge_mii_frame	frame;
579 
580 	sc = device_get_softc(dev);
581 
582 	bzero((char *)&frame, sizeof(frame));
583 
584 	frame.mii_phyaddr = phy;
585 	frame.mii_regaddr = reg;
586 	nge_mii_readreg(sc, &frame);
587 
588 	return(frame.mii_data);
589 }
590 
591 static int nge_miibus_writereg(dev, phy, reg, data)
592 	device_t		dev;
593 	int			phy, reg, data;
594 {
595 	struct nge_softc	*sc;
596 	struct nge_mii_frame	frame;
597 
598 	sc = device_get_softc(dev);
599 
600 	bzero((char *)&frame, sizeof(frame));
601 
602 	frame.mii_phyaddr = phy;
603 	frame.mii_regaddr = reg;
604 	frame.mii_data = data;
605 	nge_mii_writereg(sc, &frame);
606 
607 	return(0);
608 }
609 
610 static void nge_miibus_statchg(dev)
611 	device_t		dev;
612 {
613 	int			status;
614 	struct nge_softc	*sc;
615 	struct mii_data		*mii;
616 
617 	sc = device_get_softc(dev);
618 	if (sc->nge_tbi) {
619 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
620 		    == IFM_AUTO) {
621 			status = CSR_READ_4(sc, NGE_TBI_ANLPAR);
622 			if (status == 0 || status & NGE_TBIANAR_FDX) {
623 				NGE_SETBIT(sc, NGE_TX_CFG,
624 				    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
625 				NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
626 			} else {
627 				NGE_CLRBIT(sc, NGE_TX_CFG,
628 				    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
629 				NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
630 			}
631 
632 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
633 			!= IFM_FDX) {
634 			NGE_CLRBIT(sc, NGE_TX_CFG,
635 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
636 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
637 		} else {
638 			NGE_SETBIT(sc, NGE_TX_CFG,
639 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
640 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
641 		}
642 	} else {
643 		mii = device_get_softc(sc->nge_miibus);
644 
645 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
646 		        NGE_SETBIT(sc, NGE_TX_CFG,
647 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
648 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
649 		} else {
650 			NGE_CLRBIT(sc, NGE_TX_CFG,
651 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
652 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
653 		}
654 
655 		/* If we have a 1000Mbps link, set the mode_1000 bit. */
656 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_TX ||
657 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
658 			NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
659 		} else {
660 			NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
661 		}
662 	}
663 	return;
664 }
665 
666 static u_int32_t nge_crc(sc, addr)
667 	struct nge_softc	*sc;
668 	caddr_t			addr;
669 {
670 	u_int32_t		crc, carry;
671 	int			i, j;
672 	u_int8_t		c;
673 
674 	/* Compute CRC for the address value. */
675 	crc = 0xFFFFFFFF; /* initial value */
676 
677 	for (i = 0; i < 6; i++) {
678 		c = *(addr + i);
679 		for (j = 0; j < 8; j++) {
680 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
681 			crc <<= 1;
682 			c >>= 1;
683 			if (carry)
684 				crc = (crc ^ 0x04c11db6) | carry;
685 		}
686 	}
687 
688 	/*
689 	 * return the filter bit position
690 	 */
691 
692 	return((crc >> 21) & 0x00000FFF);
693 }
694 
695 static void nge_setmulti(sc)
696 	struct nge_softc	*sc;
697 {
698 	struct ifnet		*ifp;
699 	struct ifmultiaddr	*ifma;
700 	u_int32_t		h = 0, i, filtsave;
701 	int			bit, index;
702 
703 	ifp = &sc->arpcom.ac_if;
704 
705 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
706 		NGE_CLRBIT(sc, NGE_RXFILT_CTL,
707 		    NGE_RXFILTCTL_MCHASH|NGE_RXFILTCTL_UCHASH);
708 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI);
709 		return;
710 	}
711 
712 	/*
713 	 * We have to explicitly enable the multicast hash table
714 	 * on the NatSemi chip if we want to use it, which we do.
715 	 * We also have to tell it that we don't want to use the
716 	 * hash table for matching unicast addresses.
717 	 */
718 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH);
719 	NGE_CLRBIT(sc, NGE_RXFILT_CTL,
720 	    NGE_RXFILTCTL_ALLMULTI|NGE_RXFILTCTL_UCHASH);
721 
722 	filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL);
723 
724 	/* first, zot all the existing hash bits */
725 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
726 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
727 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
728 	}
729 
730 	/*
731 	 * From the 11 bits returned by the crc routine, the top 7
732 	 * bits represent the 16-bit word in the mcast hash table
733 	 * that needs to be updated, and the lower 4 bits represent
734 	 * which bit within that byte needs to be set.
735 	 */
736 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
737 		if (ifma->ifma_addr->sa_family != AF_LINK)
738 			continue;
739 		h = nge_crc(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
740 		index = (h >> 4) & 0x7F;
741 		bit = h & 0xF;
742 		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
743 		    NGE_FILTADDR_MCAST_LO + (index * 2));
744 		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
745 	}
746 
747 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave);
748 
749 	return;
750 }
751 
752 static void nge_reset(sc)
753 	struct nge_softc	*sc;
754 {
755 	int		i;
756 
757 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
758 
759 	for (i = 0; i < NGE_TIMEOUT; i++) {
760 		if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
761 			break;
762 	}
763 
764 	if (i == NGE_TIMEOUT)
765 		printf("nge%d: reset never completed\n", sc->nge_unit);
766 
767 	/* Wait a little while for the chip to get its brains in order. */
768 	DELAY(1000);
769 
770 	/*
771 	 * If this is a NetSemi chip, make sure to clear
772 	 * PME mode.
773 	 */
774 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
775 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
776 
777         return;
778 }
779 
780 /*
781  * Probe for an NatSemi chip. Check the PCI vendor and device
782  * IDs against our list and return a device name if we find a match.
783  */
784 static int nge_probe(dev)
785 	device_t		dev;
786 {
787 	struct nge_type		*t;
788 
789 	t = nge_devs;
790 
791 	while(t->nge_name != NULL) {
792 		if ((pci_get_vendor(dev) == t->nge_vid) &&
793 		    (pci_get_device(dev) == t->nge_did)) {
794 			device_set_desc(dev, t->nge_name);
795 			return(0);
796 		}
797 		t++;
798 	}
799 
800 	return(ENXIO);
801 }
802 
803 /*
804  * Attach the interface. Allocate softc structures, do ifmedia
805  * setup and ethernet/BPF attach.
806  */
807 static int nge_attach(dev)
808 	device_t		dev;
809 {
810 	int			s;
811 	u_char			eaddr[ETHER_ADDR_LEN];
812 	u_int32_t		command;
813 	struct nge_softc	*sc;
814 	struct ifnet		*ifp;
815 	int			unit, error = 0, rid;
816 	const char		*sep = "";
817 
818 	s = splimp();
819 
820 	sc = device_get_softc(dev);
821 	unit = device_get_unit(dev);
822 	bzero(sc, sizeof(struct nge_softc));
823 
824 	/*
825 	 * Handle power management nonsense.
826 	 */
827 
828 
829 	command = pci_read_config(dev, NGE_PCI_CAPID, 4) & 0x000000FF;
830 	if (command == 0x01) {
831 
832 		command = pci_read_config(dev, NGE_PCI_PWRMGMTCTRL, 4);
833 		if (command & NGE_PSTATE_MASK) {
834 			u_int32_t		iobase, membase, irq;
835 
836 			/* Save important PCI config data. */
837 			iobase = pci_read_config(dev, NGE_PCI_LOIO, 4);
838 			membase = pci_read_config(dev, NGE_PCI_LOMEM, 4);
839 			irq = pci_read_config(dev, NGE_PCI_INTLINE, 4);
840 
841 			/* Reset the power state. */
842 			printf("nge%d: chip is in D%d power mode "
843 			"-- setting to D0\n", unit, command & NGE_PSTATE_MASK);
844 			command &= 0xFFFFFFFC;
845 			pci_write_config(dev, NGE_PCI_PWRMGMTCTRL, command, 4);
846 
847 			/* Restore PCI config data. */
848 			pci_write_config(dev, NGE_PCI_LOIO, iobase, 4);
849 			pci_write_config(dev, NGE_PCI_LOMEM, membase, 4);
850 			pci_write_config(dev, NGE_PCI_INTLINE, irq, 4);
851 		}
852 	}
853 
854 	/*
855 	 * Map control/status registers.
856 	 */
857 	command = pci_read_config(dev, PCIR_COMMAND, 4);
858 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
859 	pci_write_config(dev, PCIR_COMMAND, command, 4);
860 	command = pci_read_config(dev, PCIR_COMMAND, 4);
861 
862 #ifdef NGE_USEIOSPACE
863 	if (!(command & PCIM_CMD_PORTEN)) {
864 		printf("nge%d: failed to enable I/O ports!\n", unit);
865 		error = ENXIO;;
866 		goto fail;
867 	}
868 #else
869 	if (!(command & PCIM_CMD_MEMEN)) {
870 		printf("nge%d: failed to enable memory mapping!\n", unit);
871 		error = ENXIO;;
872 		goto fail;
873 	}
874 #endif
875 
876 	rid = NGE_RID;
877 	sc->nge_res = bus_alloc_resource(dev, NGE_RES, &rid,
878 	    0, ~0, 1, RF_ACTIVE);
879 
880 	if (sc->nge_res == NULL) {
881 		printf("nge%d: couldn't map ports/memory\n", unit);
882 		error = ENXIO;
883 		goto fail;
884 	}
885 
886 	sc->nge_btag = rman_get_bustag(sc->nge_res);
887 	sc->nge_bhandle = rman_get_bushandle(sc->nge_res);
888 
889 	/* Allocate interrupt */
890 	rid = 0;
891 	sc->nge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
892 	    RF_SHAREABLE | RF_ACTIVE);
893 
894 	if (sc->nge_irq == NULL) {
895 		printf("nge%d: couldn't map interrupt\n", unit);
896 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
897 		error = ENXIO;
898 		goto fail;
899 	}
900 
901 	error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET,
902 	    nge_intr, sc, &sc->nge_intrhand);
903 
904 	if (error) {
905 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
906 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
907 		printf("nge%d: couldn't set up irq\n", unit);
908 		goto fail;
909 	}
910 
911 	/* Reset the adapter. */
912 	nge_reset(sc);
913 
914 	/*
915 	 * Get station address from the EEPROM.
916 	 */
917 	nge_read_eeprom(sc, (caddr_t)&eaddr[4], NGE_EE_NODEADDR, 1, 0);
918 	nge_read_eeprom(sc, (caddr_t)&eaddr[2], NGE_EE_NODEADDR + 1, 1, 0);
919 	nge_read_eeprom(sc, (caddr_t)&eaddr[0], NGE_EE_NODEADDR + 2, 1, 0);
920 
921 	/*
922 	 * A NatSemi chip was detected. Inform the world.
923 	 */
924 	printf("nge%d: Ethernet address: %6D\n", unit, eaddr, ":");
925 
926 	sc->nge_unit = unit;
927 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
928 
929 	sc->nge_ldata = contigmalloc(sizeof(struct nge_list_data), M_DEVBUF,
930 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
931 
932 	if (sc->nge_ldata == NULL) {
933 		printf("nge%d: no memory for list buffers!\n", unit);
934 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
935 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
936 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
937 		error = ENXIO;
938 		goto fail;
939 	}
940 	bzero(sc->nge_ldata, sizeof(struct nge_list_data));
941 
942 	/* Try to allocate memory for jumbo buffers. */
943 	if (nge_alloc_jumbo_mem(sc)) {
944 		printf("nge%d: jumbo buffer allocation failed\n",
945                     sc->nge_unit);
946 		contigfree(sc->nge_ldata,
947 		    sizeof(struct nge_list_data), M_DEVBUF);
948 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
949 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
950 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
951 		error = ENXIO;
952 		goto fail;
953 	}
954 
955 	ifp = &sc->arpcom.ac_if;
956 	ifp->if_softc = sc;
957 	if_initname(ifp, "nge", unit);
958 	ifp->if_mtu = ETHERMTU;
959 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
960 	ifp->if_ioctl = nge_ioctl;
961 	ifp->if_output = ether_output;
962 	ifp->if_start = nge_start;
963 	ifp->if_watchdog = nge_watchdog;
964 	ifp->if_init = nge_init;
965 	ifp->if_baudrate = 1000000000;
966 	ifp->if_snd.ifq_maxlen = NGE_TX_LIST_CNT - 1;
967 	ifp->if_hwassist = NGE_CSUM_FEATURES;
968 	ifp->if_capabilities = IFCAP_HWCSUM;
969 	ifp->if_capenable = ifp->if_capabilities;
970 
971 	/*
972 	 * Do MII setup.
973 	 */
974 	if (mii_phy_probe(dev, &sc->nge_miibus,
975 			  nge_ifmedia_upd, nge_ifmedia_sts)) {
976 		if (CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) {
977 			sc->nge_tbi = 1;
978 			device_printf(dev, "Using TBI\n");
979 
980 			sc->nge_miibus = dev;
981 
982 			ifmedia_init(&sc->nge_ifmedia, 0, nge_ifmedia_upd,
983 				nge_ifmedia_sts);
984 #define	ADD(m, c)	ifmedia_add(&sc->nge_ifmedia, (m), (c), NULL)
985 #define PRINT(s)	printf("%s%s", sep, s); sep = ", "
986 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_NONE, 0, 0), 0);
987 			device_printf(dev, " ");
988 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, 0, 0), 0);
989 			PRINT("1000baseSX");
990 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, IFM_FDX, 0),0);
991 			PRINT("1000baseSX-FDX");
992 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0), 0);
993 			PRINT("auto");
994 
995 			printf("\n");
996 #undef ADD
997 #undef PRINT
998 			ifmedia_set(&sc->nge_ifmedia,
999 				IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0));
1000 
1001 			CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1002 				| NGE_GPIO_GP4_OUT
1003 				| NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
1004 				| NGE_GPIO_GP3_OUTENB
1005 				| NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
1006 
1007 		} else {
1008 			printf("nge%d: MII without any PHY!\n", sc->nge_unit);
1009 			nge_free_jumbo_mem(sc);
1010 			bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
1011 			bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
1012 			bus_release_resource(dev, NGE_RES, NGE_RID,
1013 					 sc->nge_res);
1014 			error = ENXIO;
1015 			goto fail;
1016 		}
1017 	}
1018 
1019 	/*
1020 	 * Call MI attach routine.
1021 	 */
1022 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
1023 	callout_handle_init(&sc->nge_stat_ch);
1024 
1025 fail:
1026 
1027 	splx(s);
1028 	return(error);
1029 }
1030 
1031 static int nge_detach(dev)
1032 	device_t		dev;
1033 {
1034 	struct nge_softc	*sc;
1035 	struct ifnet		*ifp;
1036 	int			s;
1037 
1038 	s = splimp();
1039 
1040 	sc = device_get_softc(dev);
1041 	ifp = &sc->arpcom.ac_if;
1042 
1043 	nge_reset(sc);
1044 	nge_stop(sc);
1045 	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
1046 
1047 	bus_generic_detach(dev);
1048 	if (!sc->nge_tbi) {
1049 		device_delete_child(dev, sc->nge_miibus);
1050 	}
1051 	bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
1052 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
1053 	bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
1054 
1055 	contigfree(sc->nge_ldata, sizeof(struct nge_list_data), M_DEVBUF);
1056 	nge_free_jumbo_mem(sc);
1057 
1058 	splx(s);
1059 
1060 	return(0);
1061 }
1062 
1063 /*
1064  * Initialize the transmit descriptors.
1065  */
1066 static int nge_list_tx_init(sc)
1067 	struct nge_softc	*sc;
1068 {
1069 	struct nge_list_data	*ld;
1070 	struct nge_ring_data	*cd;
1071 	int			i;
1072 
1073 	cd = &sc->nge_cdata;
1074 	ld = sc->nge_ldata;
1075 
1076 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
1077 		if (i == (NGE_TX_LIST_CNT - 1)) {
1078 			ld->nge_tx_list[i].nge_nextdesc =
1079 			    &ld->nge_tx_list[0];
1080 			ld->nge_tx_list[i].nge_next =
1081 			    vtophys(&ld->nge_tx_list[0]);
1082 		} else {
1083 			ld->nge_tx_list[i].nge_nextdesc =
1084 			    &ld->nge_tx_list[i + 1];
1085 			ld->nge_tx_list[i].nge_next =
1086 			    vtophys(&ld->nge_tx_list[i + 1]);
1087 		}
1088 		ld->nge_tx_list[i].nge_mbuf = NULL;
1089 		ld->nge_tx_list[i].nge_ptr = 0;
1090 		ld->nge_tx_list[i].nge_ctl = 0;
1091 	}
1092 
1093 	cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0;
1094 
1095 	return(0);
1096 }
1097 
1098 
1099 /*
1100  * Initialize the RX descriptors and allocate mbufs for them. Note that
1101  * we arrange the descriptors in a closed ring, so that the last descriptor
1102  * points back to the first.
1103  */
1104 static int nge_list_rx_init(sc)
1105 	struct nge_softc	*sc;
1106 {
1107 	struct nge_list_data	*ld;
1108 	struct nge_ring_data	*cd;
1109 	int			i;
1110 
1111 	ld = sc->nge_ldata;
1112 	cd = &sc->nge_cdata;
1113 
1114 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
1115 		if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS)
1116 			return(ENOBUFS);
1117 		if (i == (NGE_RX_LIST_CNT - 1)) {
1118 			ld->nge_rx_list[i].nge_nextdesc =
1119 			    &ld->nge_rx_list[0];
1120 			ld->nge_rx_list[i].nge_next =
1121 			    vtophys(&ld->nge_rx_list[0]);
1122 		} else {
1123 			ld->nge_rx_list[i].nge_nextdesc =
1124 			    &ld->nge_rx_list[i + 1];
1125 			ld->nge_rx_list[i].nge_next =
1126 			    vtophys(&ld->nge_rx_list[i + 1]);
1127 		}
1128 	}
1129 
1130 	cd->nge_rx_prod = 0;
1131 
1132 	return(0);
1133 }
1134 
1135 /*
1136  * Initialize an RX descriptor and attach an MBUF cluster.
1137  */
1138 static int nge_newbuf(sc, c, m)
1139 	struct nge_softc	*sc;
1140 	struct nge_desc		*c;
1141 	struct mbuf		*m;
1142 {
1143 	struct mbuf		*m_new = NULL;
1144 	caddr_t			*buf = NULL;
1145 
1146 	if (m == NULL) {
1147 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1148 		if (m_new == NULL) {
1149 			printf("nge%d: no memory for rx list "
1150 			    "-- packet dropped!\n", sc->nge_unit);
1151 			return(ENOBUFS);
1152 		}
1153 
1154 		/* Allocate the jumbo buffer */
1155 		buf = nge_jalloc(sc);
1156 		if (buf == NULL) {
1157 #ifdef NGE_VERBOSE
1158 			printf("nge%d: jumbo allocation failed "
1159 			    "-- packet dropped!\n", sc->nge_unit);
1160 #endif
1161 			m_freem(m_new);
1162 			return(ENOBUFS);
1163 		}
1164 		/* Attach the buffer to the mbuf */
1165 		m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
1166 		m_new->m_flags |= M_EXT;
1167 		m_new->m_ext.ext_size = m_new->m_pkthdr.len =
1168 		    m_new->m_len = NGE_MCLBYTES;
1169 		m_new->m_ext.ext_free = nge_jfree;
1170 		m_new->m_ext.ext_ref = nge_jref;
1171 	} else {
1172 		m_new = m;
1173 		m_new->m_len = m_new->m_pkthdr.len = NGE_MCLBYTES;
1174 		m_new->m_data = m_new->m_ext.ext_buf;
1175 	}
1176 
1177 	m_adj(m_new, sizeof(u_int64_t));
1178 
1179 	c->nge_mbuf = m_new;
1180 	c->nge_ptr = vtophys(mtod(m_new, caddr_t));
1181 	c->nge_ctl = m_new->m_len;
1182 	c->nge_extsts = 0;
1183 
1184 	return(0);
1185 }
1186 
1187 static int nge_alloc_jumbo_mem(sc)
1188 	struct nge_softc	*sc;
1189 {
1190 	caddr_t			ptr;
1191 	int		i;
1192 	struct nge_jpool_entry   *entry;
1193 
1194 	/* Grab a big chunk o' storage. */
1195 	sc->nge_cdata.nge_jumbo_buf = contigmalloc(NGE_JMEM, M_DEVBUF,
1196 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1197 
1198 	if (sc->nge_cdata.nge_jumbo_buf == NULL) {
1199 		printf("nge%d: no memory for jumbo buffers!\n", sc->nge_unit);
1200 		return(ENOBUFS);
1201 	}
1202 
1203 	SLIST_INIT(&sc->nge_jfree_listhead);
1204 	SLIST_INIT(&sc->nge_jinuse_listhead);
1205 
1206 	/*
1207 	 * Now divide it up into 9K pieces and save the addresses
1208 	 * in an array.
1209 	 */
1210 	ptr = sc->nge_cdata.nge_jumbo_buf;
1211 	for (i = 0; i < NGE_JSLOTS; i++) {
1212 		u_int64_t		**aptr;
1213 		aptr = (u_int64_t **)ptr;
1214 		aptr[0] = (u_int64_t *)sc;
1215 		ptr += sizeof(u_int64_t);
1216 		sc->nge_cdata.nge_jslots[i].nge_buf = ptr;
1217 		sc->nge_cdata.nge_jslots[i].nge_inuse = 0;
1218 		ptr += NGE_MCLBYTES;
1219 		entry = malloc(sizeof(struct nge_jpool_entry),
1220 		    M_DEVBUF, M_NOWAIT);
1221 		if (entry == NULL) {
1222 			printf("nge%d: no memory for jumbo "
1223 			    "buffer queue!\n", sc->nge_unit);
1224 			return(ENOBUFS);
1225 		}
1226 		entry->slot = i;
1227 		SLIST_INSERT_HEAD(&sc->nge_jfree_listhead,
1228 		    entry, jpool_entries);
1229 	}
1230 
1231 	return(0);
1232 }
1233 
1234 static void nge_free_jumbo_mem(sc)
1235 	struct nge_softc	*sc;
1236 {
1237 	int		i;
1238 	struct nge_jpool_entry   *entry;
1239 
1240 	for (i = 0; i < NGE_JSLOTS; i++) {
1241 		entry = SLIST_FIRST(&sc->nge_jfree_listhead);
1242 		SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jpool_entries);
1243 		free(entry, M_DEVBUF);
1244 	}
1245 
1246 	contigfree(sc->nge_cdata.nge_jumbo_buf, NGE_JMEM, M_DEVBUF);
1247 
1248 	return;
1249 }
1250 
1251 /*
1252  * Allocate a jumbo buffer.
1253  */
1254 static void *nge_jalloc(sc)
1255 	struct nge_softc	*sc;
1256 {
1257 	struct nge_jpool_entry   *entry;
1258 
1259 	entry = SLIST_FIRST(&sc->nge_jfree_listhead);
1260 
1261 	if (entry == NULL) {
1262 #ifdef NGE_VERBOSE
1263 		printf("nge%d: no free jumbo buffers\n", sc->nge_unit);
1264 #endif
1265 		return(NULL);
1266 	}
1267 
1268 	SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jpool_entries);
1269 	SLIST_INSERT_HEAD(&sc->nge_jinuse_listhead, entry, jpool_entries);
1270 	sc->nge_cdata.nge_jslots[entry->slot].nge_inuse = 1;
1271 	return(sc->nge_cdata.nge_jslots[entry->slot].nge_buf);
1272 }
1273 
1274 /*
1275  * Adjust usage count on a jumbo buffer. In general this doesn't
1276  * get used much because our jumbo buffers don't get passed around
1277  * a lot, but it's implemented for correctness.
1278  */
1279 static void nge_jref(buf, size)
1280 	caddr_t			buf;
1281 	u_int			size;
1282 {
1283 	struct nge_softc	*sc;
1284 	u_int64_t		**aptr;
1285 	int		i;
1286 
1287 	/* Extract the softc struct pointer. */
1288 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
1289 	sc = (struct nge_softc *)(aptr[0]);
1290 
1291 	if (sc == NULL)
1292 		panic("nge_jref: can't find softc pointer!");
1293 
1294 	if (size != NGE_MCLBYTES)
1295 		panic("nge_jref: adjusting refcount of buf of wrong size!");
1296 
1297 	/* calculate the slot this buffer belongs to */
1298 
1299 	i = ((vm_offset_t)aptr
1300 	     - (vm_offset_t)sc->nge_cdata.nge_jumbo_buf) / NGE_JLEN;
1301 
1302 	if ((i < 0) || (i >= NGE_JSLOTS))
1303 		panic("nge_jref: asked to reference buffer "
1304 		    "that we don't manage!");
1305 	else if (sc->nge_cdata.nge_jslots[i].nge_inuse == 0)
1306 		panic("nge_jref: buffer already free!");
1307 	else
1308 		sc->nge_cdata.nge_jslots[i].nge_inuse++;
1309 
1310 	return;
1311 }
1312 
1313 /*
1314  * Release a jumbo buffer.
1315  */
1316 static void nge_jfree(buf, size)
1317 	caddr_t			buf;
1318 	u_int			size;
1319 {
1320 	struct nge_softc	*sc;
1321 	u_int64_t		**aptr;
1322 	int		        i;
1323 	struct nge_jpool_entry   *entry;
1324 
1325 	/* Extract the softc struct pointer. */
1326 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
1327 	sc = (struct nge_softc *)(aptr[0]);
1328 
1329 	if (sc == NULL)
1330 		panic("nge_jfree: can't find softc pointer!");
1331 
1332 	if (size != NGE_MCLBYTES)
1333 		panic("nge_jfree: freeing buffer of wrong size!");
1334 
1335 	/* calculate the slot this buffer belongs to */
1336 
1337 	i = ((vm_offset_t)aptr
1338 	     - (vm_offset_t)sc->nge_cdata.nge_jumbo_buf) / NGE_JLEN;
1339 
1340 	if ((i < 0) || (i >= NGE_JSLOTS))
1341 		panic("nge_jfree: asked to free buffer that we don't manage!");
1342 	else if (sc->nge_cdata.nge_jslots[i].nge_inuse == 0)
1343 		panic("nge_jfree: buffer already free!");
1344 	else {
1345 		sc->nge_cdata.nge_jslots[i].nge_inuse--;
1346 		if(sc->nge_cdata.nge_jslots[i].nge_inuse == 0) {
1347 			entry = SLIST_FIRST(&sc->nge_jinuse_listhead);
1348 			if (entry == NULL)
1349 				panic("nge_jfree: buffer not in use!");
1350 			entry->slot = i;
1351 			SLIST_REMOVE_HEAD(&sc->nge_jinuse_listhead,
1352 					  jpool_entries);
1353 			SLIST_INSERT_HEAD(&sc->nge_jfree_listhead,
1354 					  entry, jpool_entries);
1355 		}
1356 	}
1357 
1358 	return;
1359 }
1360 /*
1361  * A frame has been uploaded: pass the resulting mbuf chain up to
1362  * the higher level protocols.
1363  */
1364 static void nge_rxeof(sc)
1365 	struct nge_softc	*sc;
1366 {
1367         struct ether_header	*eh;
1368         struct mbuf		*m;
1369         struct ifnet		*ifp;
1370 	struct nge_desc		*cur_rx;
1371 	int			i, total_len = 0;
1372 	u_int32_t		rxstat;
1373 
1374 	ifp = &sc->arpcom.ac_if;
1375 	i = sc->nge_cdata.nge_rx_prod;
1376 
1377 	while(NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) {
1378 		struct mbuf		*m0 = NULL;
1379 		u_int32_t		extsts;
1380 
1381 #ifdef DEVICE_POLLING
1382 		if (ifp->if_ipending & IFF_POLLING) {
1383 			if (sc->rxcycles <= 0)
1384 				break;
1385 			sc->rxcycles--;
1386 		}
1387 #endif /* DEVICE_POLLING */
1388 
1389 		cur_rx = &sc->nge_ldata->nge_rx_list[i];
1390 		rxstat = cur_rx->nge_rxstat;
1391 		extsts = cur_rx->nge_extsts;
1392 		m = cur_rx->nge_mbuf;
1393 		cur_rx->nge_mbuf = NULL;
1394 		total_len = NGE_RXBYTES(cur_rx);
1395 		NGE_INC(i, NGE_RX_LIST_CNT);
1396 		/*
1397 		 * If an error occurs, update stats, clear the
1398 		 * status word and leave the mbuf cluster in place:
1399 		 * it should simply get re-used next time this descriptor
1400 	 	 * comes up in the ring.
1401 		 */
1402 		if (!(rxstat & NGE_CMDSTS_PKT_OK)) {
1403 			ifp->if_ierrors++;
1404 			nge_newbuf(sc, cur_rx, m);
1405 			continue;
1406 		}
1407 
1408 		/*
1409 		 * Ok. NatSemi really screwed up here. This is the
1410 		 * only gigE chip I know of with alignment constraints
1411 		 * on receive buffers. RX buffers must be 64-bit aligned.
1412 		 */
1413 #ifdef __i386__
1414 		/*
1415 		 * By popular demand, ignore the alignment problems
1416 		 * on the Intel x86 platform. The performance hit
1417 		 * incurred due to unaligned accesses is much smaller
1418 		 * than the hit produced by forcing buffer copies all
1419 		 * the time, especially with jumbo frames. We still
1420 		 * need to fix up the alignment everywhere else though.
1421 		 */
1422 		if (nge_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
1423 #endif
1424 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1425 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
1426 			nge_newbuf(sc, cur_rx, m);
1427 			if (m0 == NULL) {
1428 				printf("nge%d: no receive buffers "
1429 				    "available -- packet dropped!\n",
1430 				    sc->nge_unit);
1431 				ifp->if_ierrors++;
1432 				continue;
1433 			}
1434 			m_adj(m0, ETHER_ALIGN);
1435 			m = m0;
1436 #ifdef __i386__
1437 		} else {
1438 			m->m_pkthdr.rcvif = ifp;
1439 			m->m_pkthdr.len = m->m_len = total_len;
1440 		}
1441 #endif
1442 
1443 		ifp->if_ipackets++;
1444 		eh = mtod(m, struct ether_header *);
1445 
1446 		/* Remove header from mbuf and pass it on. */
1447 		m_adj(m, sizeof(struct ether_header));
1448 
1449 		/* Do IP checksum checking. */
1450 		if (extsts & NGE_RXEXTSTS_IPPKT)
1451 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1452 		if (!(extsts & NGE_RXEXTSTS_IPCSUMERR))
1453 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1454 		if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1455 		    !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) ||
1456 		    (extsts & NGE_RXEXTSTS_UDPPKT &&
1457 		    !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) {
1458 			m->m_pkthdr.csum_flags |=
1459 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1460 			m->m_pkthdr.csum_data = 0xffff;
1461 		}
1462 
1463 		/*
1464 		 * If we received a packet with a vlan tag, pass it
1465 		 * to vlan_input() instead of ether_input().
1466 		 */
1467 		if (extsts & NGE_RXEXTSTS_VLANPKT) {
1468 			VLAN_INPUT_TAG(eh, m, extsts & NGE_RXEXTSTS_VTCI);
1469                         continue;
1470                 }
1471 
1472 		ether_input(ifp, eh, m);
1473 	}
1474 
1475 	sc->nge_cdata.nge_rx_prod = i;
1476 
1477 	return;
1478 }
1479 
1480 /*
1481  * A frame was downloaded to the chip. It's safe for us to clean up
1482  * the list buffers.
1483  */
1484 
1485 static void nge_txeof(sc)
1486 	struct nge_softc	*sc;
1487 {
1488 	struct nge_desc		*cur_tx = NULL;
1489 	struct ifnet		*ifp;
1490 	u_int32_t		idx;
1491 
1492 	ifp = &sc->arpcom.ac_if;
1493 
1494 	/* Clear the timeout timer. */
1495 	ifp->if_timer = 0;
1496 
1497 	/*
1498 	 * Go through our tx list and free mbufs for those
1499 	 * frames that have been transmitted.
1500 	 */
1501 	idx = sc->nge_cdata.nge_tx_cons;
1502 	while (idx != sc->nge_cdata.nge_tx_prod) {
1503 		cur_tx = &sc->nge_ldata->nge_tx_list[idx];
1504 
1505 		if (NGE_OWNDESC(cur_tx))
1506 			break;
1507 
1508 		if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) {
1509 			sc->nge_cdata.nge_tx_cnt--;
1510 			NGE_INC(idx, NGE_TX_LIST_CNT);
1511 			continue;
1512 		}
1513 
1514 		if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) {
1515 			ifp->if_oerrors++;
1516 			if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS)
1517 				ifp->if_collisions++;
1518 			if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL)
1519 				ifp->if_collisions++;
1520 		}
1521 
1522 		ifp->if_collisions +=
1523 		    (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16;
1524 
1525 		ifp->if_opackets++;
1526 		if (cur_tx->nge_mbuf != NULL) {
1527 			m_freem(cur_tx->nge_mbuf);
1528 			cur_tx->nge_mbuf = NULL;
1529 		}
1530 
1531 		sc->nge_cdata.nge_tx_cnt--;
1532 		NGE_INC(idx, NGE_TX_LIST_CNT);
1533 		ifp->if_timer = 0;
1534 	}
1535 
1536 	sc->nge_cdata.nge_tx_cons = idx;
1537 
1538 	if (cur_tx != NULL)
1539 		ifp->if_flags &= ~IFF_OACTIVE;
1540 
1541 	return;
1542 }
1543 
1544 static void nge_tick(xsc)
1545 	void			*xsc;
1546 {
1547 	struct nge_softc	*sc;
1548 	struct mii_data		*mii;
1549 	struct ifnet		*ifp;
1550 	int			s;
1551 
1552 	s = splimp();
1553 
1554 	sc = xsc;
1555 	ifp = &sc->arpcom.ac_if;
1556 
1557 	if (sc->nge_tbi) {
1558 		if (!sc->nge_link) {
1559 			if (CSR_READ_4(sc, NGE_TBI_BMSR)
1560 			    & NGE_TBIBMSR_ANEG_DONE) {
1561 				printf("nge%d: gigabit link up\n",
1562 				    sc->nge_unit);
1563 				nge_miibus_statchg(sc->nge_miibus);
1564 				sc->nge_link++;
1565 				if (ifp->if_snd.ifq_head != NULL)
1566 					nge_start(ifp);
1567 			}
1568 		}
1569 	} else {
1570 		mii = device_get_softc(sc->nge_miibus);
1571 		mii_tick(mii);
1572 
1573 		if (!sc->nge_link) {
1574 			if (mii->mii_media_status & IFM_ACTIVE &&
1575 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1576 				sc->nge_link++;
1577 				if (IFM_SUBTYPE(mii->mii_media_active)
1578 				    == IFM_1000_TX)
1579 					printf("nge%d: gigabit link up\n",
1580 					    sc->nge_unit);
1581 				if (ifp->if_snd.ifq_head != NULL)
1582 					nge_start(ifp);
1583 			}
1584 		}
1585 	}
1586 	sc->nge_stat_ch = timeout(nge_tick, sc, hz);
1587 
1588 	splx(s);
1589 
1590 	return;
1591 }
1592 
1593 #ifdef DEVICE_POLLING
1594 static poll_handler_t nge_poll;
1595 
1596 static void
1597 nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1598 {
1599 	struct  nge_softc *sc = ifp->if_softc;
1600 
1601 	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1602 		CSR_WRITE_4(sc, NGE_IER, 1);
1603 		return;
1604 	}
1605 
1606 	/*
1607 	 * On the nge, reading the status register also clears it.
1608 	 * So before returning to intr mode we must make sure that all
1609 	 * possible pending sources of interrupts have been served.
1610 	 * In practice this means run to completion the *eof routines,
1611 	 * and then call the interrupt routine
1612 	 */
1613 	sc->rxcycles = count;
1614 	nge_rxeof(sc);
1615 	nge_txeof(sc);
1616 	if (ifp->if_snd.ifq_head != NULL)
1617 		nge_start(ifp);
1618 
1619 	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1620 		u_int32_t	status;
1621 
1622 		/* Reading the ISR register clears all interrupts. */
1623 		status = CSR_READ_4(sc, NGE_ISR);
1624 
1625 		if (status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW))
1626 			nge_rxeof(sc);
1627 
1628 		if (status & (NGE_ISR_RX_IDLE))
1629 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1630 
1631 		if (status & NGE_ISR_SYSERR) {
1632 			nge_reset(sc);
1633 			nge_init(sc);
1634 		}
1635 	}
1636 }
1637 #endif /* DEVICE_POLLING */
1638 
1639 static void nge_intr(arg)
1640 	void			*arg;
1641 {
1642 	struct nge_softc	*sc;
1643 	struct ifnet		*ifp;
1644 	u_int32_t		status;
1645 
1646 	sc = arg;
1647 	ifp = &sc->arpcom.ac_if;
1648 
1649 #ifdef DEVICE_POLLING
1650 	if (ifp->if_ipending & IFF_POLLING)
1651 		return;
1652 	if (ether_poll_register(nge_poll, ifp)) { /* ok, disable interrupts */
1653 		CSR_WRITE_4(sc, NGE_IER, 0);
1654 		nge_poll(ifp, 0, 1);
1655 		return;
1656 	}
1657 #endif /* DEVICE_POLLING */
1658 
1659 	/* Supress unwanted interrupts */
1660 	if (!(ifp->if_flags & IFF_UP)) {
1661 		nge_stop(sc);
1662 		return;
1663 	}
1664 
1665 	/* Disable interrupts. */
1666 	CSR_WRITE_4(sc, NGE_IER, 0);
1667 
1668 	/* Data LED on for TBI mode */
1669 	if(sc->nge_tbi)
1670 		 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1671 			     | NGE_GPIO_GP3_OUT);
1672 
1673 	for (;;) {
1674 		/* Reading the ISR register clears all interrupts. */
1675 		status = CSR_READ_4(sc, NGE_ISR);
1676 
1677 		if ((status & NGE_INTRS) == 0)
1678 			break;
1679 
1680 		if ((status & NGE_ISR_TX_DESC_OK) ||
1681 		    (status & NGE_ISR_TX_ERR) ||
1682 		    (status & NGE_ISR_TX_OK) ||
1683 		    (status & NGE_ISR_TX_IDLE))
1684 			nge_txeof(sc);
1685 
1686 		if ((status & NGE_ISR_RX_DESC_OK) ||
1687 		    (status & NGE_ISR_RX_ERR) ||
1688 		    (status & NGE_ISR_RX_OFLOW) ||
1689 		    (status & NGE_ISR_RX_FIFO_OFLOW) ||
1690 		    (status & NGE_ISR_RX_IDLE) ||
1691 		    (status & NGE_ISR_RX_OK))
1692 			nge_rxeof(sc);
1693 
1694 		if ((status & NGE_ISR_RX_IDLE))
1695 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1696 
1697 		if (status & NGE_ISR_SYSERR) {
1698 			nge_reset(sc);
1699 			ifp->if_flags &= ~IFF_RUNNING;
1700 			nge_init(sc);
1701 		}
1702 
1703 #ifdef notyet
1704 		/* mii_tick should only be called once per second */
1705 		if (status & NGE_ISR_PHY_INTR) {
1706 			sc->nge_link = 0;
1707 			nge_tick(sc);
1708 		}
1709 #endif
1710 	}
1711 
1712 	/* Re-enable interrupts. */
1713 	CSR_WRITE_4(sc, NGE_IER, 1);
1714 
1715 	if (ifp->if_snd.ifq_head != NULL)
1716 		nge_start(ifp);
1717 
1718 	/* Data LED off for TBI mode */
1719 
1720 	if(sc->nge_tbi)
1721 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1722 			    & ~NGE_GPIO_GP3_OUT);
1723 
1724 	return;
1725 }
1726 
1727 /*
1728  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1729  * pointers to the fragment pointers.
1730  */
1731 static int nge_encap(sc, m_head, txidx)
1732 	struct nge_softc	*sc;
1733 	struct mbuf		*m_head;
1734 	u_int32_t		*txidx;
1735 {
1736 	struct nge_desc		*f = NULL;
1737 	struct mbuf		*m;
1738 	int			frag, cur, cnt = 0;
1739 	struct ifvlan		*ifv = NULL;
1740 
1741 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1742 	    m_head->m_pkthdr.rcvif != NULL &&
1743 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
1744 		ifv = m_head->m_pkthdr.rcvif->if_softc;
1745 
1746 	/*
1747  	 * Start packing the mbufs in this chain into
1748 	 * the fragment pointers. Stop when we run out
1749  	 * of fragments or hit the end of the mbuf chain.
1750 	 */
1751 	m = m_head;
1752 	cur = frag = *txidx;
1753 
1754 	for (m = m_head; m != NULL; m = m->m_next) {
1755 		if (m->m_len != 0) {
1756 			if ((NGE_TX_LIST_CNT -
1757 			    (sc->nge_cdata.nge_tx_cnt + cnt)) < 2)
1758 				return(ENOBUFS);
1759 			f = &sc->nge_ldata->nge_tx_list[frag];
1760 			f->nge_ctl = NGE_CMDSTS_MORE | m->m_len;
1761 			f->nge_ptr = vtophys(mtod(m, vm_offset_t));
1762 			if (cnt != 0)
1763 				f->nge_ctl |= NGE_CMDSTS_OWN;
1764 			cur = frag;
1765 			NGE_INC(frag, NGE_TX_LIST_CNT);
1766 			cnt++;
1767 		}
1768 	}
1769 
1770 	if (m != NULL)
1771 		return(ENOBUFS);
1772 
1773 	sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0;
1774 	if (m_head->m_pkthdr.csum_flags) {
1775 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1776 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1777 			    NGE_TXEXTSTS_IPCSUM;
1778 		if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1779 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1780 			    NGE_TXEXTSTS_TCPCSUM;
1781 		if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1782 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1783 			    NGE_TXEXTSTS_UDPCSUM;
1784 	}
1785 
1786 	if (ifv != NULL) {
1787 		sc->nge_ldata->nge_tx_list[cur].nge_extsts |=
1788 			(NGE_TXEXTSTS_VLANPKT|ifv->ifv_tag);
1789 	}
1790 
1791 	sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head;
1792 	sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE;
1793 	sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN;
1794 	sc->nge_cdata.nge_tx_cnt += cnt;
1795 	*txidx = frag;
1796 
1797 	return(0);
1798 }
1799 
1800 /*
1801  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1802  * to the mbuf data regions directly in the transmit lists. We also save a
1803  * copy of the pointers since the transmit list fragment pointers are
1804  * physical addresses.
1805  */
1806 
1807 static void nge_start(ifp)
1808 	struct ifnet		*ifp;
1809 {
1810 	struct nge_softc	*sc;
1811 	struct mbuf		*m_head = NULL;
1812 	u_int32_t		idx;
1813 
1814 	sc = ifp->if_softc;
1815 
1816 	if (!sc->nge_link)
1817 		return;
1818 
1819 	idx = sc->nge_cdata.nge_tx_prod;
1820 
1821 	if (ifp->if_flags & IFF_OACTIVE)
1822 		return;
1823 
1824 	while(sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) {
1825 		IF_DEQUEUE(&ifp->if_snd, m_head);
1826 		if (m_head == NULL)
1827 			break;
1828 
1829 		if (nge_encap(sc, m_head, &idx)) {
1830 			IF_PREPEND(&ifp->if_snd, m_head);
1831 			ifp->if_flags |= IFF_OACTIVE;
1832 			break;
1833 		}
1834 
1835 		/*
1836 		 * If there's a BPF listener, bounce a copy of this frame
1837 		 * to him.
1838 		 */
1839 		if (ifp->if_bpf)
1840 			bpf_mtap(ifp, m_head);
1841 
1842 	}
1843 
1844 	/* Transmit */
1845 	sc->nge_cdata.nge_tx_prod = idx;
1846 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
1847 
1848 	/*
1849 	 * Set a timeout in case the chip goes out to lunch.
1850 	 */
1851 	ifp->if_timer = 5;
1852 
1853 	return;
1854 }
1855 
1856 static void nge_init(xsc)
1857 	void			*xsc;
1858 {
1859 	struct nge_softc	*sc = xsc;
1860 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1861 	struct mii_data		*mii;
1862 	int			s;
1863 
1864 	if (ifp->if_flags & IFF_RUNNING)
1865 		return;
1866 
1867 	s = splimp();
1868 
1869 	/*
1870 	 * Cancel pending I/O and free all RX/TX buffers.
1871 	 */
1872 	nge_stop(sc);
1873 	sc->nge_stat_ch = timeout(nge_tick, sc, hz);
1874 
1875 	if (sc->nge_tbi) {
1876 		mii = NULL;
1877 	} else {
1878 		mii = device_get_softc(sc->nge_miibus);
1879 	}
1880 
1881 	/* Set MAC address */
1882 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
1883 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1884 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1885 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
1886 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1887 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1888 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
1889 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1890 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1891 
1892 	/* Init circular RX list. */
1893 	if (nge_list_rx_init(sc) == ENOBUFS) {
1894 		printf("nge%d: initialization failed: no "
1895 			"memory for rx buffers\n", sc->nge_unit);
1896 		nge_stop(sc);
1897 		(void)splx(s);
1898 		return;
1899 	}
1900 
1901 	/*
1902 	 * Init tx descriptors.
1903 	 */
1904 	nge_list_tx_init(sc);
1905 
1906 	/*
1907 	 * For the NatSemi chip, we have to explicitly enable the
1908 	 * reception of ARP frames, as well as turn on the 'perfect
1909 	 * match' filter where we store the station address, otherwise
1910 	 * we won't receive unicasts meant for this host.
1911 	 */
1912 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
1913 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
1914 
1915 	 /* If we want promiscuous mode, set the allframes bit. */
1916 	if (ifp->if_flags & IFF_PROMISC) {
1917 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1918 	} else {
1919 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1920 	}
1921 
1922 	/*
1923 	 * Set the capture broadcast bit to capture broadcast frames.
1924 	 */
1925 	if (ifp->if_flags & IFF_BROADCAST) {
1926 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1927 	} else {
1928 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1929 	}
1930 
1931 	/*
1932 	 * Load the multicast filter.
1933 	 */
1934 	nge_setmulti(sc);
1935 
1936 	/* Turn the receive filter on */
1937 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
1938 
1939 	/*
1940 	 * Load the address of the RX and TX lists.
1941 	 */
1942 	CSR_WRITE_4(sc, NGE_RX_LISTPTR,
1943 	    vtophys(&sc->nge_ldata->nge_rx_list[0]));
1944 	CSR_WRITE_4(sc, NGE_TX_LISTPTR,
1945 	    vtophys(&sc->nge_ldata->nge_tx_list[0]));
1946 
1947 	/* Set RX configuration */
1948 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
1949 	/*
1950 	 * Enable hardware checksum validation for all IPv4
1951 	 * packets, do not reject packets with bad checksums.
1952 	 */
1953 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
1954 
1955 	/*
1956 	 * Tell the chip to detect and strip VLAN tag info from
1957 	 * received frames. The tag will be provided in the extsts
1958 	 * field in the RX descriptors.
1959 	 */
1960 	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL,
1961 	    NGE_VIPRXCTL_TAG_DETECT_ENB|NGE_VIPRXCTL_TAG_STRIP_ENB);
1962 
1963 	/* Set TX configuration */
1964 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
1965 
1966 	/*
1967 	 * Enable TX IPv4 checksumming on a per-packet basis.
1968 	 */
1969 	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
1970 
1971 	/*
1972 	 * Tell the chip to insert VLAN tags on a per-packet basis as
1973 	 * dictated by the code in the frame encapsulation routine.
1974 	 */
1975 	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
1976 
1977 	/* Set full/half duplex mode. */
1978 	if (sc->nge_tbi) {
1979 		if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1980 		    == IFM_FDX) {
1981 			NGE_SETBIT(sc, NGE_TX_CFG,
1982 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1983 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1984 		} else {
1985 			NGE_CLRBIT(sc, NGE_TX_CFG,
1986 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1987 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1988 		}
1989 	} else {
1990 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1991 			NGE_SETBIT(sc, NGE_TX_CFG,
1992 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1993 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1994 		} else {
1995 			NGE_CLRBIT(sc, NGE_TX_CFG,
1996 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1997 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1998 		}
1999 	}
2000 
2001 	/*
2002 	 * Enable the delivery of PHY interrupts based on
2003 	 * link/speed/duplex status changes. Also enable the
2004 	 * extsts field in the DMA descriptors (needed for
2005 	 * TCP/IP checksum offload on transmit).
2006 	 */
2007 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD|
2008 	    NGE_CFG_PHYINTR_LNK|NGE_CFG_PHYINTR_DUP|NGE_CFG_EXTSTS_ENB);
2009 
2010 	/*
2011 	 * Configure interrupt holdoff (moderation). We can
2012 	 * have the chip delay interrupt delivery for a certain
2013 	 * period. Units are in 100us, and the max setting
2014 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
2015 	 */
2016 	CSR_WRITE_4(sc, NGE_IHR, 0x01);
2017 
2018 	/*
2019 	 * Enable interrupts.
2020 	 */
2021 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
2022 #ifdef DEVICE_POLLING
2023 	/*
2024 	 * ... only enable interrupts if we are not polling, make sure
2025 	 * they are off otherwise.
2026 	 */
2027 	if (ifp->if_ipending & IFF_POLLING)
2028 		CSR_WRITE_4(sc, NGE_IER, 0);
2029 	else
2030 #endif /* DEVICE_POLLING */
2031 	CSR_WRITE_4(sc, NGE_IER, 1);
2032 
2033 	/* Enable receiver and transmitter. */
2034 	NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
2035 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
2036 
2037 	nge_ifmedia_upd(ifp);
2038 
2039 	ifp->if_flags |= IFF_RUNNING;
2040 	ifp->if_flags &= ~IFF_OACTIVE;
2041 
2042 	(void)splx(s);
2043 
2044 	return;
2045 }
2046 
2047 /*
2048  * Set media options.
2049  */
2050 static int nge_ifmedia_upd(ifp)
2051 	struct ifnet		*ifp;
2052 {
2053 	struct nge_softc	*sc;
2054 	struct mii_data		*mii;
2055 
2056 	sc = ifp->if_softc;
2057 
2058 	if (sc->nge_tbi) {
2059 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
2060 		     == IFM_AUTO) {
2061 			CSR_WRITE_4(sc, NGE_TBI_ANAR,
2062 				CSR_READ_4(sc, NGE_TBI_ANAR)
2063 					| NGE_TBIANAR_HDX | NGE_TBIANAR_FDX
2064 					| NGE_TBIANAR_PS1 | NGE_TBIANAR_PS2);
2065 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG
2066 				| NGE_TBIBMCR_RESTART_ANEG);
2067 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG);
2068 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media
2069 			    & IFM_GMASK) == IFM_FDX) {
2070 			NGE_SETBIT(sc, NGE_TX_CFG,
2071 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
2072 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
2073 
2074 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
2075 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
2076 		} else {
2077 			NGE_CLRBIT(sc, NGE_TX_CFG,
2078 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
2079 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
2080 
2081 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
2082 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
2083 		}
2084 
2085 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
2086 			    & ~NGE_GPIO_GP3_OUT);
2087 	} else {
2088 		mii = device_get_softc(sc->nge_miibus);
2089 		sc->nge_link = 0;
2090 		if (mii->mii_instance) {
2091 			struct mii_softc	*miisc;
2092 			for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
2093 			    miisc = LIST_NEXT(miisc, mii_list))
2094 				mii_phy_reset(miisc);
2095 		}
2096 		mii_mediachg(mii);
2097 	}
2098 
2099 	return(0);
2100 }
2101 
2102 /*
2103  * Report current media status.
2104  */
2105 static void nge_ifmedia_sts(ifp, ifmr)
2106 	struct ifnet		*ifp;
2107 	struct ifmediareq	*ifmr;
2108 {
2109 	struct nge_softc	*sc;
2110 	struct mii_data		*mii;
2111 
2112 	sc = ifp->if_softc;
2113 
2114 	if (sc->nge_tbi) {
2115 		ifmr->ifm_status = IFM_AVALID;
2116 		ifmr->ifm_active = IFM_ETHER;
2117 
2118 		if (CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) {
2119 			ifmr->ifm_status |= IFM_ACTIVE;
2120 		}
2121 		if (CSR_READ_4(sc, NGE_TBI_BMCR) & NGE_TBIBMCR_LOOPBACK)
2122 			ifmr->ifm_active |= IFM_LOOP;
2123 		if (!CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) {
2124 			ifmr->ifm_active |= IFM_NONE;
2125 			ifmr->ifm_status = 0;
2126 			return;
2127 		}
2128 		ifmr->ifm_active |= IFM_1000_SX;
2129 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
2130 		    == IFM_AUTO) {
2131 			ifmr->ifm_active |= IFM_AUTO;
2132 			if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
2133 			    & NGE_TBIANAR_FDX) {
2134 				ifmr->ifm_active |= IFM_FDX;
2135 			}else if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
2136 				  & NGE_TBIANAR_HDX) {
2137 				ifmr->ifm_active |= IFM_HDX;
2138 			}
2139 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
2140 			== IFM_FDX)
2141 			ifmr->ifm_active |= IFM_FDX;
2142 		else
2143 			ifmr->ifm_active |= IFM_HDX;
2144 
2145 	} else {
2146 		mii = device_get_softc(sc->nge_miibus);
2147 		mii_pollstat(mii);
2148 		ifmr->ifm_active = mii->mii_media_active;
2149 		ifmr->ifm_status = mii->mii_media_status;
2150 	}
2151 
2152 	return;
2153 }
2154 
2155 static int nge_ioctl(ifp, command, data)
2156 	struct ifnet		*ifp;
2157 	u_long			command;
2158 	caddr_t			data;
2159 {
2160 	struct nge_softc	*sc = ifp->if_softc;
2161 	struct ifreq		*ifr = (struct ifreq *) data;
2162 	struct mii_data		*mii;
2163 	int			s, error = 0;
2164 
2165 	s = splimp();
2166 
2167 	switch(command) {
2168 	case SIOCSIFADDR:
2169 	case SIOCGIFADDR:
2170 		error = ether_ioctl(ifp, command, data);
2171 		break;
2172 	case SIOCSIFMTU:
2173 		if (ifr->ifr_mtu > NGE_JUMBO_MTU)
2174 			error = EINVAL;
2175 		else {
2176 			ifp->if_mtu = ifr->ifr_mtu;
2177 			/*
2178 			 * Workaround: if the MTU is larger than
2179 			 * 8152 (TX FIFO size minus 64 minus 18), turn off
2180 			 * TX checksum offloading.
2181 			 */
2182 			if (ifr->ifr_mtu >= 8152)
2183 				ifp->if_hwassist = 0;
2184 			else
2185 				ifp->if_hwassist = NGE_CSUM_FEATURES;
2186 		}
2187 		break;
2188 	case SIOCSIFFLAGS:
2189 		if (ifp->if_flags & IFF_UP) {
2190 			if (ifp->if_flags & IFF_RUNNING &&
2191 			    ifp->if_flags & IFF_PROMISC &&
2192 			    !(sc->nge_if_flags & IFF_PROMISC)) {
2193 				NGE_SETBIT(sc, NGE_RXFILT_CTL,
2194 				    NGE_RXFILTCTL_ALLPHYS|
2195 				    NGE_RXFILTCTL_ALLMULTI);
2196 			} else if (ifp->if_flags & IFF_RUNNING &&
2197 			    !(ifp->if_flags & IFF_PROMISC) &&
2198 			    sc->nge_if_flags & IFF_PROMISC) {
2199 				NGE_CLRBIT(sc, NGE_RXFILT_CTL,
2200 				    NGE_RXFILTCTL_ALLPHYS);
2201 				if (!(ifp->if_flags & IFF_ALLMULTI))
2202 					NGE_CLRBIT(sc, NGE_RXFILT_CTL,
2203 					    NGE_RXFILTCTL_ALLMULTI);
2204 			} else {
2205 				ifp->if_flags &= ~IFF_RUNNING;
2206 				nge_init(sc);
2207 			}
2208 		} else {
2209 			if (ifp->if_flags & IFF_RUNNING)
2210 				nge_stop(sc);
2211 		}
2212 		sc->nge_if_flags = ifp->if_flags;
2213 		error = 0;
2214 		break;
2215 	case SIOCADDMULTI:
2216 	case SIOCDELMULTI:
2217 		nge_setmulti(sc);
2218 		error = 0;
2219 		break;
2220 	case SIOCGIFMEDIA:
2221 	case SIOCSIFMEDIA:
2222 		if (sc->nge_tbi) {
2223 			error = ifmedia_ioctl(ifp, ifr, &sc->nge_ifmedia,
2224 					      command);
2225 		} else {
2226 			mii = device_get_softc(sc->nge_miibus);
2227 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
2228 					      command);
2229 		}
2230 		break;
2231 	default:
2232 		error = EINVAL;
2233 		break;
2234 	}
2235 
2236 	(void)splx(s);
2237 
2238 	return(error);
2239 }
2240 
2241 static void nge_watchdog(ifp)
2242 	struct ifnet		*ifp;
2243 {
2244 	struct nge_softc	*sc;
2245 
2246 	sc = ifp->if_softc;
2247 
2248 	ifp->if_oerrors++;
2249 	printf("nge%d: watchdog timeout\n", sc->nge_unit);
2250 
2251 	nge_stop(sc);
2252 	nge_reset(sc);
2253 	ifp->if_flags &= ~IFF_RUNNING;
2254 	nge_init(sc);
2255 
2256 	if (ifp->if_snd.ifq_head != NULL)
2257 		nge_start(ifp);
2258 
2259 	return;
2260 }
2261 
2262 /*
2263  * Stop the adapter and free any mbufs allocated to the
2264  * RX and TX lists.
2265  */
2266 static void nge_stop(sc)
2267 	struct nge_softc	*sc;
2268 {
2269 	int		i;
2270 	struct ifnet		*ifp;
2271 	struct ifmedia_entry	*ifm;
2272 	struct mii_data		*mii;
2273 	int			mtmp, itmp;
2274 
2275 	ifp = &sc->arpcom.ac_if;
2276 	ifp->if_timer = 0;
2277 	if (sc->nge_tbi) {
2278 		mii = NULL;
2279 	} else {
2280 		mii = device_get_softc(sc->nge_miibus);
2281 	}
2282 
2283 	untimeout(nge_tick, sc, sc->nge_stat_ch);
2284 #ifdef DEVICE_POLLING
2285 	ether_poll_deregister(ifp);
2286 #endif
2287 	CSR_WRITE_4(sc, NGE_IER, 0);
2288 	CSR_WRITE_4(sc, NGE_IMR, 0);
2289 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
2290 	DELAY(1000);
2291 	CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0);
2292 	CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0);
2293 
2294 	/*
2295 	 * Isolate/power down the PHY, but leave the media selection
2296 	 * unchanged so that things will be put back to normal when
2297 	 * we bring the interface back up.
2298 	 */
2299 	itmp = ifp->if_flags;
2300 	ifp->if_flags |= IFF_UP;
2301 
2302 	if (sc->nge_tbi)
2303 		ifm = sc->nge_ifmedia.ifm_cur;
2304 	else
2305 		ifm = mii->mii_media.ifm_cur;
2306 
2307 	mtmp = ifm->ifm_media;
2308 	ifm->ifm_media = IFM_ETHER|IFM_NONE;
2309 
2310 	if (!sc->nge_tbi)
2311 		mii_mediachg(mii);
2312 	ifm->ifm_media = mtmp;
2313 	ifp->if_flags = itmp;
2314 
2315 	sc->nge_link = 0;
2316 
2317 	/*
2318 	 * Free data in the RX lists.
2319 	 */
2320 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
2321 		if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) {
2322 			m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf);
2323 			sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL;
2324 		}
2325 	}
2326 	bzero((char *)&sc->nge_ldata->nge_rx_list,
2327 		sizeof(sc->nge_ldata->nge_rx_list));
2328 
2329 	/*
2330 	 * Free the TX list buffers.
2331 	 */
2332 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
2333 		if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) {
2334 			m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf);
2335 			sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL;
2336 		}
2337 	}
2338 
2339 	bzero((char *)&sc->nge_ldata->nge_tx_list,
2340 		sizeof(sc->nge_ldata->nge_tx_list));
2341 
2342 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2343 
2344 	return;
2345 }
2346 
2347 /*
2348  * Stop all chip I/O so that the kernel's probe routines don't
2349  * get confused by errant DMAs when rebooting.
2350  */
2351 static void nge_shutdown(dev)
2352 	device_t		dev;
2353 {
2354 	struct nge_softc	*sc;
2355 
2356 	sc = device_get_softc(dev);
2357 
2358 	nge_reset(sc);
2359 	nge_stop(sc);
2360 
2361 	return;
2362 }
2363