xref: /dragonfly/sys/dev/netif/nge/if_nge.c (revision 5de36205)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/nge/if_nge.c,v 1.13.2.13 2003/02/05 22:03:57 mbr Exp $
34  * $DragonFly: src/sys/dev/netif/nge/if_nge.c,v 1.29 2005/06/13 20:09:24 joerg Exp $
35  */
36 
37 /*
38  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
39  * for FreeBSD. Datasheets are available from:
40  *
41  * http://www.national.com/ds/DP/DP83820.pdf
42  * http://www.national.com/ds/DP/DP83821.pdf
43  *
44  * These chips are used on several low cost gigabit ethernet NICs
45  * sold by D-Link, Addtron, SMC and Asante. Both parts are
46  * virtually the same, except the 83820 is a 64-bit/32-bit part,
47  * while the 83821 is 32-bit only.
48  *
49  * Many cards also use National gigE transceivers, such as the
50  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
51  * contains a full register description that applies to all of these
52  * components:
53  *
54  * http://www.national.com/ds/DP/DP83861.pdf
55  *
56  * Written by Bill Paul <wpaul@bsdi.com>
57  * BSDi Open Source Solutions
58  */
59 
60 /*
61  * The NatSemi DP83820 and 83821 controllers are enhanced versions
62  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
63  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
64  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
65  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
66  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
67  * matching buffers, one perfect address filter buffer and interrupt
68  * moderation. The 83820 supports both 64-bit and 32-bit addressing
69  * and data transfers: the 64-bit support can be toggled on or off
70  * via software. This affects the size of certain fields in the DMA
71  * descriptors.
72  *
73  * There are two bugs/misfeatures in the 83820/83821 that I have
74  * discovered so far:
75  *
76  * - Receive buffers must be aligned on 64-bit boundaries, which means
77  *   you must resort to copying data in order to fix up the payload
78  *   alignment.
79  *
80  * - In order to transmit jumbo frames larger than 8170 bytes, you have
81  *   to turn off transmit checksum offloading, because the chip can't
82  *   compute the checksum on an outgoing frame unless it fits entirely
83  *   within the TX FIFO, which is only 8192 bytes in size. If you have
84  *   TX checksum offload enabled and you transmit attempt to transmit a
85  *   frame larger than 8170 bytes, the transmitter will wedge.
86  *
87  * To work around the latter problem, TX checksum offload is disabled
88  * if the user selects an MTU larger than 8152 (8170 - 18).
89  */
90 
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/sockio.h>
94 #include <sys/mbuf.h>
95 #include <sys/malloc.h>
96 #include <sys/kernel.h>
97 #include <sys/socket.h>
98 #include <sys/thread2.h>
99 
100 #include <net/if.h>
101 #include <net/ifq_var.h>
102 #include <net/if_arp.h>
103 #include <net/ethernet.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 #include <net/if_types.h>
107 #include <net/vlan/if_vlan_var.h>
108 
109 #include <net/bpf.h>
110 
111 #include <vm/vm.h>              /* for vtophys */
112 #include <vm/pmap.h>            /* for vtophys */
113 #include <machine/bus.h>
114 #include <machine/resource.h>
115 #include <sys/bus.h>
116 #include <sys/rman.h>
117 
118 #include <dev/netif/mii_layer/mii.h>
119 #include <dev/netif/mii_layer/miivar.h>
120 
121 #include <bus/pci/pcireg.h>
122 #include <bus/pci/pcivar.h>
123 
124 #define NGE_USEIOSPACE
125 
126 #include "if_ngereg.h"
127 
128 
129 /* "controller miibus0" required.  See GENERIC if you get errors here. */
130 #include "miibus_if.h"
131 
132 #define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
133 
134 /*
135  * Various supported device vendors/types and their names.
136  */
137 static struct nge_type nge_devs[] = {
138 	{ NGE_VENDORID, NGE_DEVICEID,
139 	    "National Semiconductor Gigabit Ethernet" },
140 	{ 0, 0, NULL }
141 };
142 
143 static int	nge_probe(device_t);
144 static int	nge_attach(device_t);
145 static int	nge_detach(device_t);
146 
147 static int	nge_alloc_jumbo_mem(struct nge_softc *);
148 static struct nge_jslot
149 		*nge_jalloc(struct nge_softc *);
150 static void	nge_jfree(void *);
151 static void	nge_jref(void *);
152 
153 static int	nge_newbuf(struct nge_softc *, struct nge_desc *,
154 			   struct mbuf *);
155 static int	nge_encap(struct nge_softc *, struct mbuf *, uint32_t *);
156 static void	nge_rxeof(struct nge_softc *);
157 static void	nge_txeof(struct nge_softc *);
158 static void	nge_intr(void *);
159 static void	nge_tick(void *);
160 static void	nge_start(struct ifnet *);
161 static int	nge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
162 static void	nge_init(void *);
163 static void	nge_stop(struct nge_softc *);
164 static void	nge_watchdog(struct ifnet *);
165 static void	nge_shutdown(device_t);
166 static int	nge_ifmedia_upd(struct ifnet *);
167 static void	nge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
168 
169 static void	nge_delay(struct nge_softc *);
170 static void	nge_eeprom_idle(struct nge_softc *);
171 static void	nge_eeprom_putbyte(struct nge_softc *, int);
172 static void	nge_eeprom_getword(struct nge_softc *, int, uint16_t *);
173 static void	nge_read_eeprom(struct nge_softc *, void *, int, int);
174 
175 static void	nge_mii_sync(struct nge_softc *);
176 static void	nge_mii_send(struct nge_softc *, uint32_t, int);
177 static int	nge_mii_readreg(struct nge_softc *, struct nge_mii_frame *);
178 static int	nge_mii_writereg(struct nge_softc *, struct nge_mii_frame *);
179 
180 static int	nge_miibus_readreg(device_t, int, int);
181 static int	nge_miibus_writereg(device_t, int, int, int);
182 static void	nge_miibus_statchg(device_t);
183 
184 static void	nge_setmulti(struct nge_softc *);
185 static void	nge_reset(struct nge_softc *);
186 static int	nge_list_rx_init(struct nge_softc *);
187 static int	nge_list_tx_init(struct nge_softc *);
188 #ifdef DEVICE_POLLING
189 static void	nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
190 #endif
191 
192 #ifdef NGE_USEIOSPACE
193 #define NGE_RES			SYS_RES_IOPORT
194 #define NGE_RID			NGE_PCI_LOIO
195 #else
196 #define NGE_RES			SYS_RES_MEMORY
197 #define NGE_RID			NGE_PCI_LOMEM
198 #endif
199 
200 static device_method_t nge_methods[] = {
201 	/* Device interface */
202 	DEVMETHOD(device_probe,		nge_probe),
203 	DEVMETHOD(device_attach,	nge_attach),
204 	DEVMETHOD(device_detach,	nge_detach),
205 	DEVMETHOD(device_shutdown,	nge_shutdown),
206 
207 	/* bus interface */
208 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
209 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
210 
211 	/* MII interface */
212 	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
213 	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
214 	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
215 
216 	{ 0, 0 }
217 };
218 
219 static DEFINE_CLASS_0(nge, nge_driver, nge_methods, sizeof(struct nge_softc));
220 static devclass_t nge_devclass;
221 
222 DECLARE_DUMMY_MODULE(if_nge);
223 MODULE_DEPEND(if_nge, miibus, 1, 1, 1);
224 DRIVER_MODULE(if_nge, pci, nge_driver, nge_devclass, 0, 0);
225 DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
226 
227 #define NGE_SETBIT(sc, reg, x)				\
228 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
229 
230 #define NGE_CLRBIT(sc, reg, x)				\
231 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
232 
233 #define SIO_SET(x)					\
234 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
235 
236 #define SIO_CLR(x)					\
237 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
238 
239 static void
240 nge_delay(struct nge_softc *sc)
241 {
242 	int idx;
243 
244 	for (idx = (300 / 33) + 1; idx > 0; idx--)
245 		CSR_READ_4(sc, NGE_CSR);
246 }
247 
248 static void
249 nge_eeprom_idle(struct nge_softc *sc)
250 {
251 	int i;
252 
253 	SIO_SET(NGE_MEAR_EE_CSEL);
254 	nge_delay(sc);
255 	SIO_SET(NGE_MEAR_EE_CLK);
256 	nge_delay(sc);
257 
258 	for (i = 0; i < 25; i++) {
259 		SIO_CLR(NGE_MEAR_EE_CLK);
260 		nge_delay(sc);
261 		SIO_SET(NGE_MEAR_EE_CLK);
262 		nge_delay(sc);
263 	}
264 
265 	SIO_CLR(NGE_MEAR_EE_CLK);
266 	nge_delay(sc);
267 	SIO_CLR(NGE_MEAR_EE_CSEL);
268 	nge_delay(sc);
269 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
270 }
271 
272 /*
273  * Send a read command and address to the EEPROM, check for ACK.
274  */
275 static void
276 nge_eeprom_putbyte(struct nge_softc *sc, int addr)
277 {
278 	int d, i;
279 
280 	d = addr | NGE_EECMD_READ;
281 
282 	/*
283 	 * Feed in each bit and stobe the clock.
284 	 */
285 	for (i = 0x400; i; i >>= 1) {
286 		if (d & i)
287 			SIO_SET(NGE_MEAR_EE_DIN);
288 		else
289 			SIO_CLR(NGE_MEAR_EE_DIN);
290 		nge_delay(sc);
291 		SIO_SET(NGE_MEAR_EE_CLK);
292 		nge_delay(sc);
293 		SIO_CLR(NGE_MEAR_EE_CLK);
294 		nge_delay(sc);
295 	}
296 }
297 
298 /*
299  * Read a word of data stored in the EEPROM at address 'addr.'
300  */
301 static void
302 nge_eeprom_getword(struct nge_softc *sc, int addr, uint16_t *dest)
303 {
304 	int i;
305 	uint16_t word = 0;
306 
307 	/* Force EEPROM to idle state. */
308 	nge_eeprom_idle(sc);
309 
310 	/* Enter EEPROM access mode. */
311 	nge_delay(sc);
312 	SIO_CLR(NGE_MEAR_EE_CLK);
313 	nge_delay(sc);
314 	SIO_SET(NGE_MEAR_EE_CSEL);
315 	nge_delay(sc);
316 
317 	/*
318 	 * Send address of word we want to read.
319 	 */
320 	nge_eeprom_putbyte(sc, addr);
321 
322 	/*
323 	 * Start reading bits from EEPROM.
324 	 */
325 	for (i = 0x8000; i; i >>= 1) {
326 		SIO_SET(NGE_MEAR_EE_CLK);
327 		nge_delay(sc);
328 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
329 			word |= i;
330 		nge_delay(sc);
331 		SIO_CLR(NGE_MEAR_EE_CLK);
332 		nge_delay(sc);
333 	}
334 
335 	/* Turn off EEPROM access mode. */
336 	nge_eeprom_idle(sc);
337 
338 	*dest = word;
339 }
340 
341 /*
342  * Read a sequence of words from the EEPROM.
343  */
344 static void
345 nge_read_eeprom(struct nge_softc *sc, void *dest, int off, int cnt)
346 {
347 	int i;
348 	uint16_t word = 0, *ptr;
349 
350 	for (i = 0; i < cnt; i++) {
351 		nge_eeprom_getword(sc, off + i, &word);
352 		ptr = (uint16_t *)((uint8_t *)dest + (i * 2));
353 		*ptr = word;
354 	}
355 }
356 
357 /*
358  * Sync the PHYs by setting data bit and strobing the clock 32 times.
359  */
360 static void
361 nge_mii_sync(struct nge_softc *sc)
362 {
363 	int i;
364 
365 	SIO_SET(NGE_MEAR_MII_DIR | NGE_MEAR_MII_DATA);
366 
367 	for (i = 0; i < 32; i++) {
368 		SIO_SET(NGE_MEAR_MII_CLK);
369 		DELAY(1);
370 		SIO_CLR(NGE_MEAR_MII_CLK);
371 		DELAY(1);
372 	}
373 }
374 
375 /*
376  * Clock a series of bits through the MII.
377  */
378 static void
379 nge_mii_send(struct nge_softc *sc, uint32_t bits, int cnt)
380 {
381 	int i;
382 
383 	SIO_CLR(NGE_MEAR_MII_CLK);
384 
385 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
386                 if (bits & i)
387 			SIO_SET(NGE_MEAR_MII_DATA);
388                 else
389 			SIO_CLR(NGE_MEAR_MII_DATA);
390 		DELAY(1);
391 		SIO_CLR(NGE_MEAR_MII_CLK);
392 		DELAY(1);
393 		SIO_SET(NGE_MEAR_MII_CLK);
394 	}
395 }
396 
397 /*
398  * Read an PHY register through the MII.
399  */
400 static int
401 nge_mii_readreg(struct nge_softc *sc, struct nge_mii_frame *frame)
402 {
403 	int ack, i;
404 
405 	crit_enter();
406 
407 	/*
408 	 * Set up frame for RX.
409 	 */
410 	frame->mii_stdelim = NGE_MII_STARTDELIM;
411 	frame->mii_opcode = NGE_MII_READOP;
412 	frame->mii_turnaround = 0;
413 	frame->mii_data = 0;
414 
415 	CSR_WRITE_4(sc, NGE_MEAR, 0);
416 
417 	/*
418  	 * Turn on data xmit.
419 	 */
420 	SIO_SET(NGE_MEAR_MII_DIR);
421 
422 	nge_mii_sync(sc);
423 
424 	/*
425 	 * Send command/address info.
426 	 */
427 	nge_mii_send(sc, frame->mii_stdelim, 2);
428 	nge_mii_send(sc, frame->mii_opcode, 2);
429 	nge_mii_send(sc, frame->mii_phyaddr, 5);
430 	nge_mii_send(sc, frame->mii_regaddr, 5);
431 
432 	/* Idle bit */
433 	SIO_CLR((NGE_MEAR_MII_CLK | NGE_MEAR_MII_DATA));
434 	DELAY(1);
435 	SIO_SET(NGE_MEAR_MII_CLK);
436 	DELAY(1);
437 
438 	/* Turn off xmit. */
439 	SIO_CLR(NGE_MEAR_MII_DIR);
440 	/* Check for ack */
441 	SIO_CLR(NGE_MEAR_MII_CLK);
442 	DELAY(1);
443 	ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
444 	SIO_SET(NGE_MEAR_MII_CLK);
445 	DELAY(1);
446 
447 	/*
448 	 * Now try reading data bits. If the ack failed, we still
449 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
450 	 */
451 	if (ack) {
452 		for(i = 0; i < 16; i++) {
453 			SIO_CLR(NGE_MEAR_MII_CLK);
454 			DELAY(1);
455 			SIO_SET(NGE_MEAR_MII_CLK);
456 			DELAY(1);
457 		}
458 		goto fail;
459 	}
460 
461 	for (i = 0x8000; i; i >>= 1) {
462 		SIO_CLR(NGE_MEAR_MII_CLK);
463 		DELAY(1);
464 		if (!ack) {
465 			if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
466 				frame->mii_data |= i;
467 			DELAY(1);
468 		}
469 		SIO_SET(NGE_MEAR_MII_CLK);
470 		DELAY(1);
471 	}
472 
473 fail:
474 	SIO_CLR(NGE_MEAR_MII_CLK);
475 	DELAY(1);
476 	SIO_SET(NGE_MEAR_MII_CLK);
477 	DELAY(1);
478 
479 	crit_exit();
480 
481 	if (ack)
482 		return(1);
483 	return(0);
484 }
485 
486 /*
487  * Write to a PHY register through the MII.
488  */
489 static int
490 nge_mii_writereg(struct nge_softc *sc, struct nge_mii_frame *frame)
491 {
492 	crit_enter();
493 
494 	/*
495 	 * Set up frame for TX.
496 	 */
497 
498 	frame->mii_stdelim = NGE_MII_STARTDELIM;
499 	frame->mii_opcode = NGE_MII_WRITEOP;
500 	frame->mii_turnaround = NGE_MII_TURNAROUND;
501 
502 	/*
503  	 * Turn on data output.
504 	 */
505 	SIO_SET(NGE_MEAR_MII_DIR);
506 
507 	nge_mii_sync(sc);
508 
509 	nge_mii_send(sc, frame->mii_stdelim, 2);
510 	nge_mii_send(sc, frame->mii_opcode, 2);
511 	nge_mii_send(sc, frame->mii_phyaddr, 5);
512 	nge_mii_send(sc, frame->mii_regaddr, 5);
513 	nge_mii_send(sc, frame->mii_turnaround, 2);
514 	nge_mii_send(sc, frame->mii_data, 16);
515 
516 	/* Idle bit. */
517 	SIO_SET(NGE_MEAR_MII_CLK);
518 	DELAY(1);
519 	SIO_CLR(NGE_MEAR_MII_CLK);
520 	DELAY(1);
521 
522 	/*
523 	 * Turn off xmit.
524 	 */
525 	SIO_CLR(NGE_MEAR_MII_DIR);
526 
527 	crit_exit();
528 
529 	return(0);
530 }
531 
532 static int
533 nge_miibus_readreg(device_t dev, int phy, int reg)
534 {
535 	struct nge_softc *sc = device_get_softc(dev);
536 	struct nge_mii_frame frame;
537 
538 	bzero((char *)&frame, sizeof(frame));
539 
540 	frame.mii_phyaddr = phy;
541 	frame.mii_regaddr = reg;
542 	nge_mii_readreg(sc, &frame);
543 
544 	return(frame.mii_data);
545 }
546 
547 static int
548 nge_miibus_writereg(device_t dev, int phy, int reg, int data)
549 {
550 	struct nge_softc *sc = device_get_softc(dev);
551 	struct nge_mii_frame frame;
552 
553 	bzero((char *)&frame, sizeof(frame));
554 
555 	frame.mii_phyaddr = phy;
556 	frame.mii_regaddr = reg;
557 	frame.mii_data = data;
558 	nge_mii_writereg(sc, &frame);
559 
560 	return(0);
561 }
562 
563 static void
564 nge_miibus_statchg(device_t dev)
565 {
566 	struct nge_softc *sc = device_get_softc(dev);
567 	struct mii_data *mii;
568 	int status;
569 
570 	if (sc->nge_tbi) {
571 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
572 		    == IFM_AUTO) {
573 			status = CSR_READ_4(sc, NGE_TBI_ANLPAR);
574 			if (status == 0 || status & NGE_TBIANAR_FDX) {
575 				NGE_SETBIT(sc, NGE_TX_CFG,
576 				    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
577 				NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
578 			} else {
579 				NGE_CLRBIT(sc, NGE_TX_CFG,
580 				    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
581 				NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
582 			}
583 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
584 			!= IFM_FDX) {
585 			NGE_CLRBIT(sc, NGE_TX_CFG,
586 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
587 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
588 		} else {
589 			NGE_SETBIT(sc, NGE_TX_CFG,
590 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
591 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
592 		}
593 	} else {
594 		mii = device_get_softc(sc->nge_miibus);
595 
596 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
597 		        NGE_SETBIT(sc, NGE_TX_CFG,
598 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
599 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
600 		} else {
601 			NGE_CLRBIT(sc, NGE_TX_CFG,
602 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
603 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
604 		}
605 
606 		/* If we have a 1000Mbps link, set the mode_1000 bit. */
607 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
608 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
609 			NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
610 		} else {
611 			NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
612 		}
613 	}
614 }
615 
616 static void
617 nge_setmulti(struct nge_softc *sc)
618 {
619 	struct ifnet *ifp = &sc->arpcom.ac_if;
620 	struct ifmultiaddr *ifma;
621 	uint32_t filtsave, h = 0, i;
622 	int bit, index;
623 
624 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
625 		NGE_CLRBIT(sc, NGE_RXFILT_CTL,
626 		    NGE_RXFILTCTL_MCHASH | NGE_RXFILTCTL_UCHASH);
627 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI);
628 		return;
629 	}
630 
631 	/*
632 	 * We have to explicitly enable the multicast hash table
633 	 * on the NatSemi chip if we want to use it, which we do.
634 	 * We also have to tell it that we don't want to use the
635 	 * hash table for matching unicast addresses.
636 	 */
637 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH);
638 	NGE_CLRBIT(sc, NGE_RXFILT_CTL,
639 	    NGE_RXFILTCTL_ALLMULTI | NGE_RXFILTCTL_UCHASH);
640 
641 	filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL);
642 
643 	/* first, zot all the existing hash bits */
644 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
645 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
646 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
647 	}
648 
649 	/*
650 	 * From the 11 bits returned by the crc routine, the top 7
651 	 * bits represent the 16-bit word in the mcast hash table
652 	 * that needs to be updated, and the lower 4 bits represent
653 	 * which bit within that byte needs to be set.
654 	 */
655 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
656 		if (ifma->ifma_addr->sa_family != AF_LINK)
657 			continue;
658 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
659 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 21;
660 		index = (h >> 4) & 0x7F;
661 		bit = h & 0xF;
662 		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
663 		    NGE_FILTADDR_MCAST_LO + (index * 2));
664 		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
665 	}
666 
667 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave);
668 }
669 
670 static void
671 nge_reset(struct nge_softc *sc)
672 {
673 	int i;
674 
675 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
676 
677 	for (i = 0; i < NGE_TIMEOUT; i++) {
678 		if ((CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET) == 0)
679 			break;
680 	}
681 
682 	if (i == NGE_TIMEOUT)
683 		printf("nge%d: reset never completed\n", sc->nge_unit);
684 
685 	/* Wait a little while for the chip to get its brains in order. */
686 	DELAY(1000);
687 
688 	/*
689 	 * If this is a NetSemi chip, make sure to clear
690 	 * PME mode.
691 	 */
692 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
693 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
694 }
695 
696 /*
697  * Probe for an NatSemi chip. Check the PCI vendor and device
698  * IDs against our list and return a device name if we find a match.
699  */
700 static int
701 nge_probe(device_t dev)
702 {
703 	struct nge_type	*t;
704 	uint16_t vendor, product;
705 
706 	vendor = pci_get_vendor(dev);
707 	product = pci_get_device(dev);
708 
709 	for (t = nge_devs; t->nge_name != NULL; t++) {
710 		if (vendor == t->nge_vid && product == t->nge_did) {
711 			device_set_desc(dev, t->nge_name);
712 			return(0);
713 		}
714 	}
715 
716 	return(ENXIO);
717 }
718 
719 /*
720  * Attach the interface. Allocate softc structures, do ifmedia
721  * setup and ethernet/BPF attach.
722  */
723 static int
724 nge_attach(device_t dev)
725 {
726 	struct nge_softc *sc;
727 	struct ifnet *ifp;
728 	uint8_t eaddr[ETHER_ADDR_LEN];
729 	uint32_t		command;
730 	int error = 0, rid, unit;
731 	const char		*sep = "";
732 
733 	sc = device_get_softc(dev);
734 	unit = device_get_unit(dev);
735 	callout_init(&sc->nge_stat_timer);
736 
737 	/*
738 	 * Handle power management nonsense.
739 	 */
740 	command = pci_read_config(dev, NGE_PCI_CAPID, 4) & 0x000000FF;
741 	if (command == 0x01) {
742 		command = pci_read_config(dev, NGE_PCI_PWRMGMTCTRL, 4);
743 		if (command & NGE_PSTATE_MASK) {
744 			uint32_t		iobase, membase, irq;
745 
746 			/* Save important PCI config data. */
747 			iobase = pci_read_config(dev, NGE_PCI_LOIO, 4);
748 			membase = pci_read_config(dev, NGE_PCI_LOMEM, 4);
749 			irq = pci_read_config(dev, NGE_PCI_INTLINE, 4);
750 
751 			/* Reset the power state. */
752 			printf("nge%d: chip is in D%d power mode "
753 			"-- setting to D0\n", unit, command & NGE_PSTATE_MASK);
754 			command &= 0xFFFFFFFC;
755 			pci_write_config(dev, NGE_PCI_PWRMGMTCTRL, command, 4);
756 
757 			/* Restore PCI config data. */
758 			pci_write_config(dev, NGE_PCI_LOIO, iobase, 4);
759 			pci_write_config(dev, NGE_PCI_LOMEM, membase, 4);
760 			pci_write_config(dev, NGE_PCI_INTLINE, irq, 4);
761 		}
762 	}
763 
764 	/*
765 	 * Map control/status registers.
766 	 */
767 	command = pci_read_config(dev, PCIR_COMMAND, 4);
768 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
769 	pci_write_config(dev, PCIR_COMMAND, command, 4);
770 	command = pci_read_config(dev, PCIR_COMMAND, 4);
771 
772 #ifdef NGE_USEIOSPACE
773 	if (!(command & PCIM_CMD_PORTEN)) {
774 		printf("nge%d: failed to enable I/O ports!\n", unit);
775 		error = ENXIO;
776 		return(error);
777 	}
778 #else
779 	if (!(command & PCIM_CMD_MEMEN)) {
780 		printf("nge%d: failed to enable memory mapping!\n", unit);
781 		error = ENXIO;
782 		return(error);
783 	}
784 #endif
785 
786 	rid = NGE_RID;
787 	sc->nge_res = bus_alloc_resource_any(dev, NGE_RES, &rid, RF_ACTIVE);
788 
789 	if (sc->nge_res == NULL) {
790 		printf("nge%d: couldn't map ports/memory\n", unit);
791 		error = ENXIO;
792 		return(error);
793 	}
794 
795 	sc->nge_btag = rman_get_bustag(sc->nge_res);
796 	sc->nge_bhandle = rman_get_bushandle(sc->nge_res);
797 
798 	/* Allocate interrupt */
799 	rid = 0;
800 	sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
801 	    RF_SHAREABLE | RF_ACTIVE);
802 
803 	if (sc->nge_irq == NULL) {
804 		printf("nge%d: couldn't map interrupt\n", unit);
805 		error = ENXIO;
806 		goto fail;
807 	}
808 
809 	/* Reset the adapter. */
810 	nge_reset(sc);
811 
812 	/*
813 	 * Get station address from the EEPROM.
814 	 */
815 	nge_read_eeprom(sc, &eaddr[4], NGE_EE_NODEADDR, 1);
816 	nge_read_eeprom(sc, &eaddr[2], NGE_EE_NODEADDR + 1, 1);
817 	nge_read_eeprom(sc, &eaddr[0], NGE_EE_NODEADDR + 2, 1);
818 
819 	sc->nge_unit = unit;
820 
821 	sc->nge_ldata = contigmalloc(sizeof(struct nge_list_data), M_DEVBUF,
822 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
823 
824 	if (sc->nge_ldata == NULL) {
825 		printf("nge%d: no memory for list buffers!\n", unit);
826 		error = ENXIO;
827 		goto fail;
828 	}
829 	bzero(sc->nge_ldata, sizeof(struct nge_list_data));
830 
831 	/* Try to allocate memory for jumbo buffers. */
832 	if (nge_alloc_jumbo_mem(sc)) {
833 		printf("nge%d: jumbo buffer allocation failed\n",
834                     sc->nge_unit);
835 		error = ENXIO;
836 		goto fail;
837 	}
838 
839 	ifp = &sc->arpcom.ac_if;
840 	ifp->if_softc = sc;
841 	if_initname(ifp, "nge", unit);
842 	ifp->if_mtu = ETHERMTU;
843 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
844 	ifp->if_ioctl = nge_ioctl;
845 	ifp->if_start = nge_start;
846 #ifdef DEVICE_POLLING
847 	ifp->if_poll = nge_poll;
848 #endif
849 	ifp->if_watchdog = nge_watchdog;
850 	ifp->if_init = nge_init;
851 	ifp->if_baudrate = 1000000000;
852 	ifq_set_maxlen(&ifp->if_snd, NGE_TX_LIST_CNT - 1);
853 	ifq_set_ready(&ifp->if_snd);
854 	ifp->if_hwassist = NGE_CSUM_FEATURES;
855 	ifp->if_capabilities = IFCAP_HWCSUM;
856 	ifp->if_capenable = ifp->if_capabilities;
857 
858 	/*
859 	 * Do MII setup.
860 	 */
861 	if (mii_phy_probe(dev, &sc->nge_miibus,
862 			  nge_ifmedia_upd, nge_ifmedia_sts)) {
863 		if (CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) {
864 			sc->nge_tbi = 1;
865 			device_printf(dev, "Using TBI\n");
866 
867 			sc->nge_miibus = dev;
868 
869 			ifmedia_init(&sc->nge_ifmedia, 0, nge_ifmedia_upd,
870 				nge_ifmedia_sts);
871 #define	ADD(m, c)	ifmedia_add(&sc->nge_ifmedia, (m), (c), NULL)
872 #define PRINT(s)	printf("%s%s", sep, s); sep = ", "
873 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_NONE, 0, 0), 0);
874 			device_printf(dev, " ");
875 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, 0, 0), 0);
876 			PRINT("1000baseSX");
877 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, IFM_FDX, 0),0);
878 			PRINT("1000baseSX-FDX");
879 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0), 0);
880 			PRINT("auto");
881 
882 			printf("\n");
883 #undef ADD
884 #undef PRINT
885 			ifmedia_set(&sc->nge_ifmedia,
886 				IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0));
887 
888 			CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
889 				| NGE_GPIO_GP4_OUT
890 				| NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
891 				| NGE_GPIO_GP3_OUTENB
892 				| NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
893 
894 		} else {
895 			printf("nge%d: MII without any PHY!\n", sc->nge_unit);
896 			error = ENXIO;
897 			goto fail;
898 		}
899 	}
900 
901 	/*
902 	 * Call MI attach routine.
903 	 */
904 	ether_ifattach(ifp, eaddr);
905 
906 	error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET,
907 			       nge_intr, sc, &sc->nge_intrhand, NULL);
908 	if (error) {
909 		ether_ifdetach(ifp);
910 		device_printf(dev, "couldn't set up irq\n");
911 		goto fail;
912 	}
913 
914 	return(0);
915 fail:
916 	nge_detach(dev);
917 	return(error);
918 }
919 
920 static int
921 nge_detach(device_t dev)
922 {
923 	struct nge_softc *sc = device_get_softc(dev);
924 	struct ifnet *ifp = &sc->arpcom.ac_if;
925 
926 	crit_enter();
927 
928 	if (device_is_attached(dev)) {
929 		nge_reset(sc);
930 		nge_stop(sc);
931 		ether_ifdetach(ifp);
932 	}
933 
934 	if (sc->nge_miibus)
935 		device_delete_child(dev, sc->nge_miibus);
936 	bus_generic_detach(dev);
937 
938 	if (sc->nge_intrhand)
939 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
940 
941 	crit_exit();
942 
943 	if (sc->nge_irq)
944 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
945 	if (sc->nge_res)
946 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
947 	if (sc->nge_ldata) {
948 		contigfree(sc->nge_ldata, sizeof(struct nge_list_data),
949 			   M_DEVBUF);
950 	}
951 	if (sc->nge_cdata.nge_jumbo_buf)
952 		contigfree(sc->nge_cdata.nge_jumbo_buf, NGE_JMEM, M_DEVBUF);
953 
954 	return(0);
955 }
956 
957 /*
958  * Initialize the transmit descriptors.
959  */
960 static int
961 nge_list_tx_init(struct nge_softc *sc)
962 {
963 	struct nge_list_data *ld;
964 	struct nge_ring_data *cd;
965 	int i;
966 
967 	cd = &sc->nge_cdata;
968 	ld = sc->nge_ldata;
969 
970 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
971 		if (i == (NGE_TX_LIST_CNT - 1)) {
972 			ld->nge_tx_list[i].nge_nextdesc =
973 			    &ld->nge_tx_list[0];
974 			ld->nge_tx_list[i].nge_next =
975 			    vtophys(&ld->nge_tx_list[0]);
976 		} else {
977 			ld->nge_tx_list[i].nge_nextdesc =
978 			    &ld->nge_tx_list[i + 1];
979 			ld->nge_tx_list[i].nge_next =
980 			    vtophys(&ld->nge_tx_list[i + 1]);
981 		}
982 		ld->nge_tx_list[i].nge_mbuf = NULL;
983 		ld->nge_tx_list[i].nge_ptr = 0;
984 		ld->nge_tx_list[i].nge_ctl = 0;
985 	}
986 
987 	cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0;
988 
989 	return(0);
990 }
991 
992 
993 /*
994  * Initialize the RX descriptors and allocate mbufs for them. Note that
995  * we arrange the descriptors in a closed ring, so that the last descriptor
996  * points back to the first.
997  */
998 static int
999 nge_list_rx_init(struct nge_softc *sc)
1000 {
1001 	struct nge_list_data *ld;
1002 	struct nge_ring_data *cd;
1003 	int i;
1004 
1005 	ld = sc->nge_ldata;
1006 	cd = &sc->nge_cdata;
1007 
1008 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
1009 		if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS)
1010 			return(ENOBUFS);
1011 		if (i == (NGE_RX_LIST_CNT - 1)) {
1012 			ld->nge_rx_list[i].nge_nextdesc =
1013 			    &ld->nge_rx_list[0];
1014 			ld->nge_rx_list[i].nge_next =
1015 			    vtophys(&ld->nge_rx_list[0]);
1016 		} else {
1017 			ld->nge_rx_list[i].nge_nextdesc =
1018 			    &ld->nge_rx_list[i + 1];
1019 			ld->nge_rx_list[i].nge_next =
1020 			    vtophys(&ld->nge_rx_list[i + 1]);
1021 		}
1022 	}
1023 
1024 	cd->nge_rx_prod = 0;
1025 
1026 	return(0);
1027 }
1028 
1029 /*
1030  * Initialize an RX descriptor and attach an MBUF cluster.
1031  */
1032 static int
1033 nge_newbuf(struct nge_softc *sc, struct nge_desc *c, struct mbuf *m)
1034 {
1035 	struct mbuf *m_new = NULL;
1036 	struct nge_jslot *buf;
1037 
1038 	if (m == NULL) {
1039 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1040 		if (m_new == NULL) {
1041 			printf("nge%d: no memory for rx list "
1042 			    "-- packet dropped!\n", sc->nge_unit);
1043 			return(ENOBUFS);
1044 		}
1045 
1046 		/* Allocate the jumbo buffer */
1047 		buf = nge_jalloc(sc);
1048 		if (buf == NULL) {
1049 #ifdef NGE_VERBOSE
1050 			printf("nge%d: jumbo allocation failed "
1051 			    "-- packet dropped!\n", sc->nge_unit);
1052 #endif
1053 			m_freem(m_new);
1054 			return(ENOBUFS);
1055 		}
1056 		/* Attach the buffer to the mbuf */
1057 		m_new->m_ext.ext_arg = buf;
1058 		m_new->m_ext.ext_buf = buf->nge_buf;
1059 		m_new->m_ext.ext_free = nge_jfree;
1060 		m_new->m_ext.ext_ref = nge_jref;
1061 		m_new->m_ext.ext_size = NGE_JUMBO_FRAMELEN;
1062 
1063 		m_new->m_data = m_new->m_ext.ext_buf;
1064 		m_new->m_flags |= M_EXT;
1065 		m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
1066 	} else {
1067 		m_new = m;
1068 		m_new->m_len = m_new->m_pkthdr.len = NGE_JLEN;
1069 		m_new->m_data = m_new->m_ext.ext_buf;
1070 	}
1071 
1072 	m_adj(m_new, sizeof(uint64_t));
1073 
1074 	c->nge_mbuf = m_new;
1075 	c->nge_ptr = vtophys(mtod(m_new, caddr_t));
1076 	c->nge_ctl = m_new->m_len;
1077 	c->nge_extsts = 0;
1078 
1079 	return(0);
1080 }
1081 
1082 static int
1083 nge_alloc_jumbo_mem(struct nge_softc *sc)
1084 {
1085 	caddr_t ptr;
1086 	int i;
1087 	struct nge_jslot *entry;
1088 
1089 	/* Grab a big chunk o' storage. */
1090 	sc->nge_cdata.nge_jumbo_buf = contigmalloc(NGE_JMEM, M_DEVBUF,
1091 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
1092 
1093 	if (sc->nge_cdata.nge_jumbo_buf == NULL) {
1094 		printf("nge%d: no memory for jumbo buffers!\n", sc->nge_unit);
1095 		return(ENOBUFS);
1096 	}
1097 
1098 	SLIST_INIT(&sc->nge_jfree_listhead);
1099 
1100 	/*
1101 	 * Now divide it up into 9K pieces and save the addresses
1102 	 * in an array.
1103 	 */
1104 	ptr = sc->nge_cdata.nge_jumbo_buf;
1105 	for (i = 0; i < NGE_JSLOTS; i++) {
1106 		entry = &sc->nge_cdata.nge_jslots[i];
1107 		entry->nge_sc = sc;
1108 		entry->nge_buf = ptr;
1109 		entry->nge_inuse = 0;
1110 		entry->nge_slot = i;
1111 		SLIST_INSERT_HEAD(&sc->nge_jfree_listhead, entry, jslot_link);
1112 		ptr += NGE_JLEN;
1113 	}
1114 
1115 	return(0);
1116 }
1117 
1118 
1119 /*
1120  * Allocate a jumbo buffer.
1121  */
1122 static struct nge_jslot *
1123 nge_jalloc(struct nge_softc *sc)
1124 {
1125 	struct nge_jslot *entry;
1126 
1127 	entry = SLIST_FIRST(&sc->nge_jfree_listhead);
1128 
1129 	if (entry == NULL) {
1130 #ifdef NGE_VERBOSE
1131 		printf("nge%d: no free jumbo buffers\n", sc->nge_unit);
1132 #endif
1133 		return(NULL);
1134 	}
1135 
1136 	SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jslot_link);
1137 	entry->nge_inuse = 1;
1138 
1139 	return(entry);
1140 }
1141 
1142 /*
1143  * Adjust usage count on a jumbo buffer. In general this doesn't
1144  * get used much because our jumbo buffers don't get passed around
1145  * a lot, but it's implemented for correctness.
1146  */
1147 static void
1148 nge_jref(void *arg)
1149 {
1150 	struct nge_jslot *entry = (struct nge_jslot *)arg;
1151 	struct nge_softc *sc = entry->nge_sc;
1152 
1153 	if (sc == NULL)
1154 		panic("nge_jref: can't find softc pointer!");
1155 
1156 	if (&sc->nge_cdata.nge_jslots[entry->nge_slot] != entry)
1157 		panic("nge_jref: asked to reference buffer "
1158 		    "that we don't manage!");
1159 	else if (entry->nge_inuse == 0)
1160 		panic("nge_jref: buffer already free!");
1161 	else
1162 		entry->nge_inuse++;
1163 }
1164 
1165 /*
1166  * Release a jumbo buffer.
1167  */
1168 static void
1169 nge_jfree(void *arg)
1170 {
1171 	struct nge_jslot *entry = (struct nge_jslot *)arg;
1172 	struct nge_softc *sc = entry->nge_sc;
1173 
1174 	if (sc == NULL)
1175 		panic("nge_jref: can't find softc pointer!");
1176 
1177 	if (&sc->nge_cdata.nge_jslots[entry->nge_slot] != entry)
1178 		panic("nge_jref: asked to reference buffer "
1179 		    "that we don't manage!");
1180 	else if (entry->nge_inuse == 0)
1181 		panic("nge_jref: buffer already free!");
1182 	else if (--entry->nge_inuse == 0)
1183 		SLIST_INSERT_HEAD(&sc->nge_jfree_listhead, entry, jslot_link);
1184 }
1185 /*
1186  * A frame has been uploaded: pass the resulting mbuf chain up to
1187  * the higher level protocols.
1188  */
1189 static void
1190 nge_rxeof(struct nge_softc *sc)
1191 {
1192         struct mbuf *m;
1193         struct ifnet *ifp = &sc->arpcom.ac_if;
1194 	struct nge_desc *cur_rx;
1195 	int i, total_len = 0;
1196 	uint32_t rxstat;
1197 
1198 	i = sc->nge_cdata.nge_rx_prod;
1199 
1200 	while(NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) {
1201 		struct mbuf *m0 = NULL;
1202 		uint32_t extsts;
1203 
1204 #ifdef DEVICE_POLLING
1205 		if (ifp->if_flags & IFF_POLLING) {
1206 			if (sc->rxcycles <= 0)
1207 				break;
1208 			sc->rxcycles--;
1209 		}
1210 #endif /* DEVICE_POLLING */
1211 
1212 		cur_rx = &sc->nge_ldata->nge_rx_list[i];
1213 		rxstat = cur_rx->nge_rxstat;
1214 		extsts = cur_rx->nge_extsts;
1215 		m = cur_rx->nge_mbuf;
1216 		cur_rx->nge_mbuf = NULL;
1217 		total_len = NGE_RXBYTES(cur_rx);
1218 		NGE_INC(i, NGE_RX_LIST_CNT);
1219 		/*
1220 		 * If an error occurs, update stats, clear the
1221 		 * status word and leave the mbuf cluster in place:
1222 		 * it should simply get re-used next time this descriptor
1223 	 	 * comes up in the ring.
1224 		 */
1225 		if ((rxstat & NGE_CMDSTS_PKT_OK) == 0) {
1226 			ifp->if_ierrors++;
1227 			nge_newbuf(sc, cur_rx, m);
1228 			continue;
1229 		}
1230 
1231 		/*
1232 		 * Ok. NatSemi really screwed up here. This is the
1233 		 * only gigE chip I know of with alignment constraints
1234 		 * on receive buffers. RX buffers must be 64-bit aligned.
1235 		 */
1236 #ifdef __i386__
1237 		/*
1238 		 * By popular demand, ignore the alignment problems
1239 		 * on the Intel x86 platform. The performance hit
1240 		 * incurred due to unaligned accesses is much smaller
1241 		 * than the hit produced by forcing buffer copies all
1242 		 * the time, especially with jumbo frames. We still
1243 		 * need to fix up the alignment everywhere else though.
1244 		 */
1245 		if (nge_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
1246 #endif
1247 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1248 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
1249 			nge_newbuf(sc, cur_rx, m);
1250 			if (m0 == NULL) {
1251 				printf("nge%d: no receive buffers "
1252 				    "available -- packet dropped!\n",
1253 				    sc->nge_unit);
1254 				ifp->if_ierrors++;
1255 				continue;
1256 			}
1257 			m_adj(m0, ETHER_ALIGN);
1258 			m = m0;
1259 #ifdef __i386__
1260 		} else {
1261 			m->m_pkthdr.rcvif = ifp;
1262 			m->m_pkthdr.len = m->m_len = total_len;
1263 		}
1264 #endif
1265 
1266 		ifp->if_ipackets++;
1267 
1268 		/* Do IP checksum checking. */
1269 		if (extsts & NGE_RXEXTSTS_IPPKT)
1270 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1271 		if (!(extsts & NGE_RXEXTSTS_IPCSUMERR))
1272 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1273 		if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1274 		    (extsts & NGE_RXEXTSTS_TCPCSUMERR) == 0) ||
1275 		    (extsts & NGE_RXEXTSTS_UDPPKT &&
1276 		    (extsts & NGE_RXEXTSTS_UDPCSUMERR) == 0)) {
1277 			m->m_pkthdr.csum_flags |=
1278 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1279 			m->m_pkthdr.csum_data = 0xffff;
1280 		}
1281 
1282 		/*
1283 		 * If we received a packet with a vlan tag, pass it
1284 		 * to vlan_input() instead of ether_input().
1285 		 */
1286 		if (extsts & NGE_RXEXTSTS_VLANPKT)
1287 			VLAN_INPUT_TAG(m, extsts & NGE_RXEXTSTS_VTCI);
1288 		else
1289 			(*ifp->if_input)(ifp, m);
1290 	}
1291 
1292 	sc->nge_cdata.nge_rx_prod = i;
1293 }
1294 
1295 /*
1296  * A frame was downloaded to the chip. It's safe for us to clean up
1297  * the list buffers.
1298  */
1299 static void
1300 nge_txeof(struct nge_softc *sc)
1301 {
1302 	struct ifnet *ifp = &sc->arpcom.ac_if;
1303 	struct nge_desc *cur_tx = NULL;
1304 	uint32_t idx;
1305 
1306 	/* Clear the timeout timer. */
1307 	ifp->if_timer = 0;
1308 
1309 	/*
1310 	 * Go through our tx list and free mbufs for those
1311 	 * frames that have been transmitted.
1312 	 */
1313 	idx = sc->nge_cdata.nge_tx_cons;
1314 	while (idx != sc->nge_cdata.nge_tx_prod) {
1315 		cur_tx = &sc->nge_ldata->nge_tx_list[idx];
1316 
1317 		if (NGE_OWNDESC(cur_tx))
1318 			break;
1319 
1320 		if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) {
1321 			sc->nge_cdata.nge_tx_cnt--;
1322 			NGE_INC(idx, NGE_TX_LIST_CNT);
1323 			continue;
1324 		}
1325 
1326 		if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) {
1327 			ifp->if_oerrors++;
1328 			if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS)
1329 				ifp->if_collisions++;
1330 			if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL)
1331 				ifp->if_collisions++;
1332 		}
1333 
1334 		ifp->if_collisions +=
1335 		    (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16;
1336 
1337 		ifp->if_opackets++;
1338 		if (cur_tx->nge_mbuf != NULL) {
1339 			m_freem(cur_tx->nge_mbuf);
1340 			cur_tx->nge_mbuf = NULL;
1341 		}
1342 
1343 		sc->nge_cdata.nge_tx_cnt--;
1344 		NGE_INC(idx, NGE_TX_LIST_CNT);
1345 		ifp->if_timer = 0;
1346 	}
1347 
1348 	sc->nge_cdata.nge_tx_cons = idx;
1349 
1350 	if (cur_tx != NULL)
1351 		ifp->if_flags &= ~IFF_OACTIVE;
1352 }
1353 
1354 static void
1355 nge_tick(void *xsc)
1356 {
1357 	struct nge_softc *sc = xsc;
1358 	struct ifnet *ifp = &sc->arpcom.ac_if;
1359 	struct mii_data *mii;
1360 
1361 	crit_enter();
1362 
1363 	if (sc->nge_tbi) {
1364 		if (sc->nge_link == 0) {
1365 			if (CSR_READ_4(sc, NGE_TBI_BMSR)
1366 			    & NGE_TBIBMSR_ANEG_DONE) {
1367 				printf("nge%d: gigabit link up\n",
1368 				    sc->nge_unit);
1369 				nge_miibus_statchg(sc->nge_miibus);
1370 				sc->nge_link++;
1371 				if (!ifq_is_empty(&ifp->if_snd))
1372 					nge_start(ifp);
1373 			}
1374 		}
1375 	} else {
1376 		mii = device_get_softc(sc->nge_miibus);
1377 		mii_tick(mii);
1378 
1379 		if (sc->nge_link == 0) {
1380 			if (mii->mii_media_status & IFM_ACTIVE &&
1381 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1382 				sc->nge_link++;
1383 				if (IFM_SUBTYPE(mii->mii_media_active)
1384 				    == IFM_1000_T)
1385 					printf("nge%d: gigabit link up\n",
1386 					    sc->nge_unit);
1387 				if (!ifq_is_empty(&ifp->if_snd))
1388 					nge_start(ifp);
1389 			}
1390 		}
1391 	}
1392 	callout_reset(&sc->nge_stat_timer, hz, nge_tick, sc);
1393 
1394 	crit_exit();
1395 }
1396 
1397 #ifdef DEVICE_POLLING
1398 
1399 static void
1400 nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1401 {
1402 	struct nge_softc *sc = ifp->if_softc;
1403 
1404 	switch(cmd) {
1405 	case POLL_REGISTER:
1406 		/* disable interrupts */
1407 		CSR_WRITE_4(sc, NGE_IER, 0);
1408 		break;
1409 	case POLL_DEREGISTER:
1410 		/* enable interrupts */
1411 		CSR_WRITE_4(sc, NGE_IER, 1);
1412 		break;
1413 	default:
1414 		/*
1415 		 * On the nge, reading the status register also clears it.
1416 		 * So before returning to intr mode we must make sure that all
1417 		 * possible pending sources of interrupts have been served.
1418 		 * In practice this means run to completion the *eof routines,
1419 		 * and then call the interrupt routine
1420 		 */
1421 		sc->rxcycles = count;
1422 		nge_rxeof(sc);
1423 		nge_txeof(sc);
1424 		if (!ifq_is_empty(&ifp->if_snd))
1425 			nge_start(ifp);
1426 
1427 		if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1428 			uint32_t status;
1429 
1430 			/* Reading the ISR register clears all interrupts. */
1431 			status = CSR_READ_4(sc, NGE_ISR);
1432 
1433 			if (status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW))
1434 				nge_rxeof(sc);
1435 
1436 			if (status & (NGE_ISR_RX_IDLE))
1437 				NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1438 
1439 			if (status & NGE_ISR_SYSERR) {
1440 				nge_reset(sc);
1441 				nge_init(sc);
1442 			}
1443 		}
1444 		break;
1445 	}
1446 }
1447 
1448 #endif /* DEVICE_POLLING */
1449 
1450 static void
1451 nge_intr(void *arg)
1452 {
1453 	struct nge_softc *sc = arg;
1454 	struct ifnet *ifp = &sc->arpcom.ac_if;
1455 	uint32_t status;
1456 
1457 	/* Supress unwanted interrupts */
1458 	if (!(ifp->if_flags & IFF_UP)) {
1459 		nge_stop(sc);
1460 		return;
1461 	}
1462 
1463 	/* Disable interrupts. */
1464 	CSR_WRITE_4(sc, NGE_IER, 0);
1465 
1466 	/* Data LED on for TBI mode */
1467 	if(sc->nge_tbi)
1468 		 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1469 			     | NGE_GPIO_GP3_OUT);
1470 
1471 	for (;;) {
1472 		/* Reading the ISR register clears all interrupts. */
1473 		status = CSR_READ_4(sc, NGE_ISR);
1474 
1475 		if ((status & NGE_INTRS) == 0)
1476 			break;
1477 
1478 		if ((status & NGE_ISR_TX_DESC_OK) ||
1479 		    (status & NGE_ISR_TX_ERR) ||
1480 		    (status & NGE_ISR_TX_OK) ||
1481 		    (status & NGE_ISR_TX_IDLE))
1482 			nge_txeof(sc);
1483 
1484 		if ((status & NGE_ISR_RX_DESC_OK) ||
1485 		    (status & NGE_ISR_RX_ERR) ||
1486 		    (status & NGE_ISR_RX_OFLOW) ||
1487 		    (status & NGE_ISR_RX_FIFO_OFLOW) ||
1488 		    (status & NGE_ISR_RX_IDLE) ||
1489 		    (status & NGE_ISR_RX_OK))
1490 			nge_rxeof(sc);
1491 
1492 		if ((status & NGE_ISR_RX_IDLE))
1493 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1494 
1495 		if (status & NGE_ISR_SYSERR) {
1496 			nge_reset(sc);
1497 			ifp->if_flags &= ~IFF_RUNNING;
1498 			nge_init(sc);
1499 		}
1500 
1501 #ifdef notyet
1502 		/* mii_tick should only be called once per second */
1503 		if (status & NGE_ISR_PHY_INTR) {
1504 			sc->nge_link = 0;
1505 			nge_tick(sc);
1506 		}
1507 #endif
1508 	}
1509 
1510 	/* Re-enable interrupts. */
1511 	CSR_WRITE_4(sc, NGE_IER, 1);
1512 
1513 	if (!ifq_is_empty(&ifp->if_snd))
1514 		nge_start(ifp);
1515 
1516 	/* Data LED off for TBI mode */
1517 
1518 	if(sc->nge_tbi)
1519 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1520 			    & ~NGE_GPIO_GP3_OUT);
1521 }
1522 
1523 /*
1524  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1525  * pointers to the fragment pointers.
1526  */
1527 static int
1528 nge_encap(struct nge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
1529 {
1530 	struct nge_desc *f = NULL;
1531 	struct mbuf *m;
1532 	int frag, cur, cnt = 0;
1533 	struct ifvlan *ifv = NULL;
1534 
1535 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1536 	    m_head->m_pkthdr.rcvif != NULL &&
1537 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
1538 		ifv = m_head->m_pkthdr.rcvif->if_softc;
1539 
1540 	/*
1541  	 * Start packing the mbufs in this chain into
1542 	 * the fragment pointers. Stop when we run out
1543  	 * of fragments or hit the end of the mbuf chain.
1544 	 */
1545 	m = m_head;
1546 	cur = frag = *txidx;
1547 
1548 	for (m = m_head; m != NULL; m = m->m_next) {
1549 		if (m->m_len != 0) {
1550 			if ((NGE_TX_LIST_CNT -
1551 			    (sc->nge_cdata.nge_tx_cnt + cnt)) < 2)
1552 				return(ENOBUFS);
1553 			f = &sc->nge_ldata->nge_tx_list[frag];
1554 			f->nge_ctl = NGE_CMDSTS_MORE | m->m_len;
1555 			f->nge_ptr = vtophys(mtod(m, vm_offset_t));
1556 			if (cnt != 0)
1557 				f->nge_ctl |= NGE_CMDSTS_OWN;
1558 			cur = frag;
1559 			NGE_INC(frag, NGE_TX_LIST_CNT);
1560 			cnt++;
1561 		}
1562 	}
1563 
1564 	if (m != NULL)
1565 		return(ENOBUFS);
1566 
1567 	sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0;
1568 	if (m_head->m_pkthdr.csum_flags) {
1569 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1570 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1571 			    NGE_TXEXTSTS_IPCSUM;
1572 		if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1573 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1574 			    NGE_TXEXTSTS_TCPCSUM;
1575 		if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1576 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1577 			    NGE_TXEXTSTS_UDPCSUM;
1578 	}
1579 
1580 	if (ifv != NULL) {
1581 		sc->nge_ldata->nge_tx_list[cur].nge_extsts |=
1582 			(NGE_TXEXTSTS_VLANPKT|ifv->ifv_tag);
1583 	}
1584 
1585 	sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head;
1586 	sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE;
1587 	sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN;
1588 	sc->nge_cdata.nge_tx_cnt += cnt;
1589 	*txidx = frag;
1590 
1591 	return(0);
1592 }
1593 
1594 /*
1595  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1596  * to the mbuf data regions directly in the transmit lists. We also save a
1597  * copy of the pointers since the transmit list fragment pointers are
1598  * physical addresses.
1599  */
1600 
1601 static void
1602 nge_start(struct ifnet *ifp)
1603 {
1604 	struct nge_softc *sc = ifp->if_softc;
1605 	struct mbuf *m_head = NULL;
1606 	uint32_t idx;
1607 
1608 	if (!sc->nge_link)
1609 		return;
1610 
1611 	idx = sc->nge_cdata.nge_tx_prod;
1612 
1613 	if (ifp->if_flags & IFF_OACTIVE)
1614 		return;
1615 
1616 	while(sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) {
1617 		m_head = ifq_poll(&ifp->if_snd);
1618 		if (m_head == NULL)
1619 			break;
1620 
1621 		if (nge_encap(sc, m_head, &idx)) {
1622 			ifp->if_flags |= IFF_OACTIVE;
1623 			break;
1624 		}
1625 		m_head = ifq_dequeue(&ifp->if_snd);
1626 
1627 		BPF_MTAP(ifp, m_head);
1628 	}
1629 
1630 	/* Transmit */
1631 	sc->nge_cdata.nge_tx_prod = idx;
1632 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
1633 
1634 	/*
1635 	 * Set a timeout in case the chip goes out to lunch.
1636 	 */
1637 	ifp->if_timer = 5;
1638 }
1639 
1640 static void
1641 nge_init(void *xsc)
1642 {
1643 	struct nge_softc *sc = xsc;
1644 	struct ifnet *ifp = &sc->arpcom.ac_if;
1645 	struct mii_data *mii;
1646 
1647 	crit_enter();
1648 
1649 	if (ifp->if_flags & IFF_RUNNING) {
1650 		crit_exit();
1651 		return;
1652 	}
1653 
1654 	/*
1655 	 * Cancel pending I/O and free all RX/TX buffers.
1656 	 */
1657 	nge_stop(sc);
1658 	callout_reset(&sc->nge_stat_timer, hz, nge_tick, sc);
1659 
1660 	if (sc->nge_tbi)
1661 		mii = NULL;
1662 	else
1663 		mii = device_get_softc(sc->nge_miibus);
1664 
1665 	/* Set MAC address */
1666 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
1667 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1668 	    ((uint16_t *)sc->arpcom.ac_enaddr)[0]);
1669 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
1670 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1671 	    ((uint16_t *)sc->arpcom.ac_enaddr)[1]);
1672 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
1673 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1674 	    ((uint16_t *)sc->arpcom.ac_enaddr)[2]);
1675 
1676 	/* Init circular RX list. */
1677 	if (nge_list_rx_init(sc) == ENOBUFS) {
1678 		printf("nge%d: initialization failed: no "
1679 			"memory for rx buffers\n", sc->nge_unit);
1680 		nge_stop(sc);
1681 		crit_exit();
1682 		return;
1683 	}
1684 
1685 	/*
1686 	 * Init tx descriptors.
1687 	 */
1688 	nge_list_tx_init(sc);
1689 
1690 	/*
1691 	 * For the NatSemi chip, we have to explicitly enable the
1692 	 * reception of ARP frames, as well as turn on the 'perfect
1693 	 * match' filter where we store the station address, otherwise
1694 	 * we won't receive unicasts meant for this host.
1695 	 */
1696 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
1697 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
1698 
1699 	 /* If we want promiscuous mode, set the allframes bit. */
1700 	if (ifp->if_flags & IFF_PROMISC)
1701 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1702 	else
1703 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1704 
1705 	/*
1706 	 * Set the capture broadcast bit to capture broadcast frames.
1707 	 */
1708 	if (ifp->if_flags & IFF_BROADCAST)
1709 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1710 	else
1711 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1712 
1713 	/*
1714 	 * Load the multicast filter.
1715 	 */
1716 	nge_setmulti(sc);
1717 
1718 	/* Turn the receive filter on */
1719 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
1720 
1721 	/*
1722 	 * Load the address of the RX and TX lists.
1723 	 */
1724 	CSR_WRITE_4(sc, NGE_RX_LISTPTR,
1725 	    vtophys(&sc->nge_ldata->nge_rx_list[0]));
1726 	CSR_WRITE_4(sc, NGE_TX_LISTPTR,
1727 	    vtophys(&sc->nge_ldata->nge_tx_list[0]));
1728 
1729 	/* Set RX configuration */
1730 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
1731 	/*
1732 	 * Enable hardware checksum validation for all IPv4
1733 	 * packets, do not reject packets with bad checksums.
1734 	 */
1735 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
1736 
1737 	/*
1738 	 * Tell the chip to detect and strip VLAN tag info from
1739 	 * received frames. The tag will be provided in the extsts
1740 	 * field in the RX descriptors.
1741 	 */
1742 	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL,
1743 	    NGE_VIPRXCTL_TAG_DETECT_ENB|NGE_VIPRXCTL_TAG_STRIP_ENB);
1744 
1745 	/* Set TX configuration */
1746 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
1747 
1748 	/*
1749 	 * Enable TX IPv4 checksumming on a per-packet basis.
1750 	 */
1751 	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
1752 
1753 	/*
1754 	 * Tell the chip to insert VLAN tags on a per-packet basis as
1755 	 * dictated by the code in the frame encapsulation routine.
1756 	 */
1757 	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
1758 
1759 	/* Set full/half duplex mode. */
1760 	if (sc->nge_tbi) {
1761 		if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1762 		    == IFM_FDX) {
1763 			NGE_SETBIT(sc, NGE_TX_CFG,
1764 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1765 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1766 		} else {
1767 			NGE_CLRBIT(sc, NGE_TX_CFG,
1768 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1769 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1770 		}
1771 	} else {
1772 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1773 			NGE_SETBIT(sc, NGE_TX_CFG,
1774 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1775 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1776 		} else {
1777 			NGE_CLRBIT(sc, NGE_TX_CFG,
1778 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1779 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1780 		}
1781 	}
1782 
1783 	/*
1784 	 * Enable the delivery of PHY interrupts based on
1785 	 * link/speed/duplex status changes. Also enable the
1786 	 * extsts field in the DMA descriptors (needed for
1787 	 * TCP/IP checksum offload on transmit).
1788 	 */
1789 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD |
1790 	    NGE_CFG_PHYINTR_LNK | NGE_CFG_PHYINTR_DUP | NGE_CFG_EXTSTS_ENB);
1791 
1792 	/*
1793 	 * Configure interrupt holdoff (moderation). We can
1794 	 * have the chip delay interrupt delivery for a certain
1795 	 * period. Units are in 100us, and the max setting
1796 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
1797 	 */
1798 	CSR_WRITE_4(sc, NGE_IHR, 0x01);
1799 
1800 	/*
1801 	 * Enable interrupts.
1802 	 */
1803 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
1804 #ifdef DEVICE_POLLING
1805 	/*
1806 	 * ... only enable interrupts if we are not polling, make sure
1807 	 * they are off otherwise.
1808 	 */
1809 	if (ifp->if_flags & IFF_POLLING)
1810 		CSR_WRITE_4(sc, NGE_IER, 0);
1811 	else
1812 #endif /* DEVICE_POLLING */
1813 	CSR_WRITE_4(sc, NGE_IER, 1);
1814 
1815 	/* Enable receiver and transmitter. */
1816 	NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE | NGE_CSR_RX_DISABLE);
1817 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1818 
1819 	nge_ifmedia_upd(ifp);
1820 
1821 	ifp->if_flags |= IFF_RUNNING;
1822 	ifp->if_flags &= ~IFF_OACTIVE;
1823 
1824 	crit_exit();
1825 }
1826 
1827 /*
1828  * Set media options.
1829  */
1830 static int
1831 nge_ifmedia_upd(struct ifnet *ifp)
1832 {
1833 	struct nge_softc *sc = ifp->if_softc;
1834 	struct mii_data *mii;
1835 
1836 	if (sc->nge_tbi) {
1837 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1838 		     == IFM_AUTO) {
1839 			CSR_WRITE_4(sc, NGE_TBI_ANAR,
1840 				CSR_READ_4(sc, NGE_TBI_ANAR)
1841 					| NGE_TBIANAR_HDX | NGE_TBIANAR_FDX
1842 					| NGE_TBIANAR_PS1 | NGE_TBIANAR_PS2);
1843 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG
1844 				| NGE_TBIBMCR_RESTART_ANEG);
1845 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG);
1846 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media
1847 			    & IFM_GMASK) == IFM_FDX) {
1848 			NGE_SETBIT(sc, NGE_TX_CFG,
1849 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1850 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1851 
1852 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
1853 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1854 		} else {
1855 			NGE_CLRBIT(sc, NGE_TX_CFG,
1856 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1857 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1858 
1859 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
1860 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1861 		}
1862 
1863 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1864 			    & ~NGE_GPIO_GP3_OUT);
1865 	} else {
1866 		mii = device_get_softc(sc->nge_miibus);
1867 		sc->nge_link = 0;
1868 		if (mii->mii_instance) {
1869 			struct mii_softc	*miisc;
1870 			for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1871 			    miisc = LIST_NEXT(miisc, mii_list))
1872 				mii_phy_reset(miisc);
1873 		}
1874 		mii_mediachg(mii);
1875 	}
1876 
1877 	return(0);
1878 }
1879 
1880 /*
1881  * Report current media status.
1882  */
1883 static void
1884 nge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1885 {
1886 	struct nge_softc *sc = ifp->if_softc;
1887 	struct mii_data *mii;
1888 
1889 	if (sc->nge_tbi) {
1890 		ifmr->ifm_status = IFM_AVALID;
1891 		ifmr->ifm_active = IFM_ETHER;
1892 
1893 		if (CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE)
1894 			ifmr->ifm_status |= IFM_ACTIVE;
1895 		if (CSR_READ_4(sc, NGE_TBI_BMCR) & NGE_TBIBMCR_LOOPBACK)
1896 			ifmr->ifm_active |= IFM_LOOP;
1897 		if (!CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) {
1898 			ifmr->ifm_active |= IFM_NONE;
1899 			ifmr->ifm_status = 0;
1900 			return;
1901 		}
1902 		ifmr->ifm_active |= IFM_1000_SX;
1903 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1904 		    == IFM_AUTO) {
1905 			ifmr->ifm_active |= IFM_AUTO;
1906 			if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
1907 			    & NGE_TBIANAR_FDX) {
1908 				ifmr->ifm_active |= IFM_FDX;
1909 			}else if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
1910 				  & NGE_TBIANAR_HDX) {
1911 				ifmr->ifm_active |= IFM_HDX;
1912 			}
1913 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1914 			== IFM_FDX)
1915 			ifmr->ifm_active |= IFM_FDX;
1916 		else
1917 			ifmr->ifm_active |= IFM_HDX;
1918 
1919 	} else {
1920 		mii = device_get_softc(sc->nge_miibus);
1921 		mii_pollstat(mii);
1922 		ifmr->ifm_active = mii->mii_media_active;
1923 		ifmr->ifm_status = mii->mii_media_status;
1924 	}
1925 }
1926 
1927 static int
1928 nge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1929 {
1930 	struct nge_softc *sc = ifp->if_softc;
1931 	struct ifreq *ifr = (struct ifreq *) data;
1932 	struct mii_data *mii;
1933 	int error = 0;
1934 
1935 	crit_enter();
1936 
1937 	switch(command) {
1938 	case SIOCSIFMTU:
1939 		if (ifr->ifr_mtu > NGE_JUMBO_MTU) {
1940 			error = EINVAL;
1941 		} else {
1942 			ifp->if_mtu = ifr->ifr_mtu;
1943 			/*
1944 			 * Workaround: if the MTU is larger than
1945 			 * 8152 (TX FIFO size minus 64 minus 18), turn off
1946 			 * TX checksum offloading.
1947 			 */
1948 			if (ifr->ifr_mtu >= 8152)
1949 				ifp->if_hwassist = 0;
1950 			else
1951 				ifp->if_hwassist = NGE_CSUM_FEATURES;
1952 		}
1953 		break;
1954 	case SIOCSIFFLAGS:
1955 		if (ifp->if_flags & IFF_UP) {
1956 			if (ifp->if_flags & IFF_RUNNING &&
1957 			    ifp->if_flags & IFF_PROMISC &&
1958 			    !(sc->nge_if_flags & IFF_PROMISC)) {
1959 				NGE_SETBIT(sc, NGE_RXFILT_CTL,
1960 				    NGE_RXFILTCTL_ALLPHYS|
1961 				    NGE_RXFILTCTL_ALLMULTI);
1962 			} else if (ifp->if_flags & IFF_RUNNING &&
1963 			    !(ifp->if_flags & IFF_PROMISC) &&
1964 			    sc->nge_if_flags & IFF_PROMISC) {
1965 				NGE_CLRBIT(sc, NGE_RXFILT_CTL,
1966 				    NGE_RXFILTCTL_ALLPHYS);
1967 				if (!(ifp->if_flags & IFF_ALLMULTI))
1968 					NGE_CLRBIT(sc, NGE_RXFILT_CTL,
1969 					    NGE_RXFILTCTL_ALLMULTI);
1970 			} else {
1971 				ifp->if_flags &= ~IFF_RUNNING;
1972 				nge_init(sc);
1973 			}
1974 		} else {
1975 			if (ifp->if_flags & IFF_RUNNING)
1976 				nge_stop(sc);
1977 		}
1978 		sc->nge_if_flags = ifp->if_flags;
1979 		error = 0;
1980 		break;
1981 	case SIOCADDMULTI:
1982 	case SIOCDELMULTI:
1983 		nge_setmulti(sc);
1984 		error = 0;
1985 		break;
1986 	case SIOCGIFMEDIA:
1987 	case SIOCSIFMEDIA:
1988 		if (sc->nge_tbi) {
1989 			error = ifmedia_ioctl(ifp, ifr, &sc->nge_ifmedia,
1990 					      command);
1991 		} else {
1992 			mii = device_get_softc(sc->nge_miibus);
1993 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
1994 					      command);
1995 		}
1996 		break;
1997 	default:
1998 		error = ether_ioctl(ifp, command, data);
1999 		break;
2000 	}
2001 
2002 	crit_exit();
2003 
2004 	return(error);
2005 }
2006 
2007 static void
2008 nge_watchdog(struct ifnet *ifp)
2009 {
2010 	struct nge_softc *sc = ifp->if_softc;
2011 
2012 	ifp->if_oerrors++;
2013 	printf("nge%d: watchdog timeout\n", sc->nge_unit);
2014 
2015 	nge_stop(sc);
2016 	nge_reset(sc);
2017 	ifp->if_flags &= ~IFF_RUNNING;
2018 	nge_init(sc);
2019 
2020 	if (!ifq_is_empty(&ifp->if_snd))
2021 		nge_start(ifp);
2022 }
2023 
2024 /*
2025  * Stop the adapter and free any mbufs allocated to the
2026  * RX and TX lists.
2027  */
2028 static void
2029 nge_stop(struct nge_softc *sc)
2030 {
2031 	struct ifnet *ifp = &sc->arpcom.ac_if;
2032 	struct ifmedia_entry *ifm;
2033 	struct mii_data *mii;
2034 	int i, itmp, mtmp;
2035 
2036 	ifp->if_timer = 0;
2037 	if (sc->nge_tbi)
2038 		mii = NULL;
2039 	else
2040 		mii = device_get_softc(sc->nge_miibus);
2041 
2042 	callout_stop(&sc->nge_stat_timer);
2043 	CSR_WRITE_4(sc, NGE_IER, 0);
2044 	CSR_WRITE_4(sc, NGE_IMR, 0);
2045 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
2046 	DELAY(1000);
2047 	CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0);
2048 	CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0);
2049 
2050 	/*
2051 	 * Isolate/power down the PHY, but leave the media selection
2052 	 * unchanged so that things will be put back to normal when
2053 	 * we bring the interface back up.
2054 	 */
2055 	itmp = ifp->if_flags;
2056 	ifp->if_flags |= IFF_UP;
2057 
2058 	if (sc->nge_tbi)
2059 		ifm = sc->nge_ifmedia.ifm_cur;
2060 	else
2061 		ifm = mii->mii_media.ifm_cur;
2062 
2063 	mtmp = ifm->ifm_media;
2064 	ifm->ifm_media = IFM_ETHER|IFM_NONE;
2065 
2066 	if (!sc->nge_tbi)
2067 		mii_mediachg(mii);
2068 	ifm->ifm_media = mtmp;
2069 	ifp->if_flags = itmp;
2070 
2071 	sc->nge_link = 0;
2072 
2073 	/*
2074 	 * Free data in the RX lists.
2075 	 */
2076 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
2077 		if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) {
2078 			m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf);
2079 			sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL;
2080 		}
2081 	}
2082 	bzero(&sc->nge_ldata->nge_rx_list,
2083 		sizeof(sc->nge_ldata->nge_rx_list));
2084 
2085 	/*
2086 	 * Free the TX list buffers.
2087 	 */
2088 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
2089 		if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) {
2090 			m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf);
2091 			sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL;
2092 		}
2093 	}
2094 
2095 	bzero(&sc->nge_ldata->nge_tx_list,
2096 		sizeof(sc->nge_ldata->nge_tx_list));
2097 
2098 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2099 }
2100 
2101 /*
2102  * Stop all chip I/O so that the kernel's probe routines don't
2103  * get confused by errant DMAs when rebooting.
2104  */
2105 static void
2106 nge_shutdown(device_t dev)
2107 {
2108 	struct nge_softc *sc = device_get_softc(dev);
2109 
2110 	nge_reset(sc);
2111 	nge_stop(sc);
2112 }
2113