xref: /dragonfly/sys/dev/netif/nge/if_nge.c (revision 8a7bdfea)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/nge/if_nge.c,v 1.13.2.13 2003/02/05 22:03:57 mbr Exp $
34  * $DragonFly: src/sys/dev/netif/nge/if_nge.c,v 1.46 2008/03/10 12:59:51 sephe Exp $
35  */
36 
37 /*
38  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
39  * for FreeBSD. Datasheets are available from:
40  *
41  * http://www.national.com/ds/DP/DP83820.pdf
42  * http://www.national.com/ds/DP/DP83821.pdf
43  *
44  * These chips are used on several low cost gigabit ethernet NICs
45  * sold by D-Link, Addtron, SMC and Asante. Both parts are
46  * virtually the same, except the 83820 is a 64-bit/32-bit part,
47  * while the 83821 is 32-bit only.
48  *
49  * Many cards also use National gigE transceivers, such as the
50  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
51  * contains a full register description that applies to all of these
52  * components:
53  *
54  * http://www.national.com/ds/DP/DP83861.pdf
55  *
56  * Written by Bill Paul <wpaul@bsdi.com>
57  * BSDi Open Source Solutions
58  */
59 
60 /*
61  * The NatSemi DP83820 and 83821 controllers are enhanced versions
62  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
63  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
64  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
65  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
66  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
67  * matching buffers, one perfect address filter buffer and interrupt
68  * moderation. The 83820 supports both 64-bit and 32-bit addressing
69  * and data transfers: the 64-bit support can be toggled on or off
70  * via software. This affects the size of certain fields in the DMA
71  * descriptors.
72  *
73  * There are two bugs/misfeatures in the 83820/83821 that I have
74  * discovered so far:
75  *
76  * - Receive buffers must be aligned on 64-bit boundaries, which means
77  *   you must resort to copying data in order to fix up the payload
78  *   alignment.
79  *
80  * - In order to transmit jumbo frames larger than 8170 bytes, you have
81  *   to turn off transmit checksum offloading, because the chip can't
82  *   compute the checksum on an outgoing frame unless it fits entirely
83  *   within the TX FIFO, which is only 8192 bytes in size. If you have
84  *   TX checksum offload enabled and you transmit attempt to transmit a
85  *   frame larger than 8170 bytes, the transmitter will wedge.
86  *
87  * To work around the latter problem, TX checksum offload is disabled
88  * if the user selects an MTU larger than 8152 (8170 - 18).
89  */
90 
91 #include "opt_polling.h"
92 
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/sockio.h>
96 #include <sys/mbuf.h>
97 #include <sys/malloc.h>
98 #include <sys/kernel.h>
99 #include <sys/socket.h>
100 #include <sys/serialize.h>
101 #include <sys/bus.h>
102 #include <sys/rman.h>
103 #include <sys/thread2.h>
104 
105 #include <net/if.h>
106 #include <net/ifq_var.h>
107 #include <net/if_arp.h>
108 #include <net/ethernet.h>
109 #include <net/if_dl.h>
110 #include <net/if_media.h>
111 #include <net/if_types.h>
112 #include <net/vlan/if_vlan_var.h>
113 #include <net/vlan/if_vlan_ether.h>
114 
115 #include <net/bpf.h>
116 
117 #include <vm/vm.h>              /* for vtophys */
118 #include <vm/pmap.h>            /* for vtophys */
119 
120 #include <dev/netif/mii_layer/mii.h>
121 #include <dev/netif/mii_layer/miivar.h>
122 
123 #include <bus/pci/pcidevs.h>
124 #include <bus/pci/pcireg.h>
125 #include <bus/pci/pcivar.h>
126 
127 #define NGE_USEIOSPACE
128 
129 #include "if_ngereg.h"
130 
131 
132 /* "controller miibus0" required.  See GENERIC if you get errors here. */
133 #include "miibus_if.h"
134 
135 #define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
136 
137 /*
138  * Various supported device vendors/types and their names.
139  */
140 static struct nge_type nge_devs[] = {
141 	{ PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
142 	    "National Semiconductor Gigabit Ethernet" },
143 	{ 0, 0, NULL }
144 };
145 
146 static int	nge_probe(device_t);
147 static int	nge_attach(device_t);
148 static int	nge_detach(device_t);
149 
150 static int	nge_alloc_jumbo_mem(struct nge_softc *);
151 static struct nge_jslot
152 		*nge_jalloc(struct nge_softc *);
153 static void	nge_jfree(void *);
154 static void	nge_jref(void *);
155 
156 static int	nge_newbuf(struct nge_softc *, struct nge_desc *,
157 			   struct mbuf *);
158 static int	nge_encap(struct nge_softc *, struct mbuf *, uint32_t *);
159 static void	nge_rxeof(struct nge_softc *);
160 static void	nge_txeof(struct nge_softc *);
161 static void	nge_intr(void *);
162 static void	nge_tick(void *);
163 static void	nge_start(struct ifnet *);
164 static int	nge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
165 static void	nge_init(void *);
166 static void	nge_stop(struct nge_softc *);
167 static void	nge_watchdog(struct ifnet *);
168 static void	nge_shutdown(device_t);
169 static int	nge_ifmedia_upd(struct ifnet *);
170 static void	nge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
171 
172 static void	nge_delay(struct nge_softc *);
173 static void	nge_eeprom_idle(struct nge_softc *);
174 static void	nge_eeprom_putbyte(struct nge_softc *, int);
175 static void	nge_eeprom_getword(struct nge_softc *, int, uint16_t *);
176 static void	nge_read_eeprom(struct nge_softc *, void *, int, int);
177 
178 static void	nge_mii_sync(struct nge_softc *);
179 static void	nge_mii_send(struct nge_softc *, uint32_t, int);
180 static int	nge_mii_readreg(struct nge_softc *, struct nge_mii_frame *);
181 static int	nge_mii_writereg(struct nge_softc *, struct nge_mii_frame *);
182 
183 static int	nge_miibus_readreg(device_t, int, int);
184 static int	nge_miibus_writereg(device_t, int, int, int);
185 static void	nge_miibus_statchg(device_t);
186 
187 static void	nge_setmulti(struct nge_softc *);
188 static void	nge_reset(struct nge_softc *);
189 static int	nge_list_rx_init(struct nge_softc *);
190 static int	nge_list_tx_init(struct nge_softc *);
191 #ifdef DEVICE_POLLING
192 static void	nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
193 #endif
194 
195 #ifdef NGE_USEIOSPACE
196 #define NGE_RES			SYS_RES_IOPORT
197 #define NGE_RID			NGE_PCI_LOIO
198 #else
199 #define NGE_RES			SYS_RES_MEMORY
200 #define NGE_RID			NGE_PCI_LOMEM
201 #endif
202 
203 static device_method_t nge_methods[] = {
204 	/* Device interface */
205 	DEVMETHOD(device_probe,		nge_probe),
206 	DEVMETHOD(device_attach,	nge_attach),
207 	DEVMETHOD(device_detach,	nge_detach),
208 	DEVMETHOD(device_shutdown,	nge_shutdown),
209 
210 	/* bus interface */
211 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
212 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
213 
214 	/* MII interface */
215 	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
216 	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
217 	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
218 
219 	{ 0, 0 }
220 };
221 
222 static DEFINE_CLASS_0(nge, nge_driver, nge_methods, sizeof(struct nge_softc));
223 static devclass_t nge_devclass;
224 
225 DECLARE_DUMMY_MODULE(if_nge);
226 MODULE_DEPEND(if_nge, miibus, 1, 1, 1);
227 DRIVER_MODULE(if_nge, pci, nge_driver, nge_devclass, 0, 0);
228 DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
229 
230 #define NGE_SETBIT(sc, reg, x)				\
231 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
232 
233 #define NGE_CLRBIT(sc, reg, x)				\
234 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
235 
236 #define SIO_SET(x)					\
237 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
238 
239 #define SIO_CLR(x)					\
240 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
241 
242 static void
243 nge_delay(struct nge_softc *sc)
244 {
245 	int idx;
246 
247 	for (idx = (300 / 33) + 1; idx > 0; idx--)
248 		CSR_READ_4(sc, NGE_CSR);
249 }
250 
251 static void
252 nge_eeprom_idle(struct nge_softc *sc)
253 {
254 	int i;
255 
256 	SIO_SET(NGE_MEAR_EE_CSEL);
257 	nge_delay(sc);
258 	SIO_SET(NGE_MEAR_EE_CLK);
259 	nge_delay(sc);
260 
261 	for (i = 0; i < 25; i++) {
262 		SIO_CLR(NGE_MEAR_EE_CLK);
263 		nge_delay(sc);
264 		SIO_SET(NGE_MEAR_EE_CLK);
265 		nge_delay(sc);
266 	}
267 
268 	SIO_CLR(NGE_MEAR_EE_CLK);
269 	nge_delay(sc);
270 	SIO_CLR(NGE_MEAR_EE_CSEL);
271 	nge_delay(sc);
272 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
273 }
274 
275 /*
276  * Send a read command and address to the EEPROM, check for ACK.
277  */
278 static void
279 nge_eeprom_putbyte(struct nge_softc *sc, int addr)
280 {
281 	int d, i;
282 
283 	d = addr | NGE_EECMD_READ;
284 
285 	/*
286 	 * Feed in each bit and stobe the clock.
287 	 */
288 	for (i = 0x400; i; i >>= 1) {
289 		if (d & i)
290 			SIO_SET(NGE_MEAR_EE_DIN);
291 		else
292 			SIO_CLR(NGE_MEAR_EE_DIN);
293 		nge_delay(sc);
294 		SIO_SET(NGE_MEAR_EE_CLK);
295 		nge_delay(sc);
296 		SIO_CLR(NGE_MEAR_EE_CLK);
297 		nge_delay(sc);
298 	}
299 }
300 
301 /*
302  * Read a word of data stored in the EEPROM at address 'addr.'
303  */
304 static void
305 nge_eeprom_getword(struct nge_softc *sc, int addr, uint16_t *dest)
306 {
307 	int i;
308 	uint16_t word = 0;
309 
310 	/* Force EEPROM to idle state. */
311 	nge_eeprom_idle(sc);
312 
313 	/* Enter EEPROM access mode. */
314 	nge_delay(sc);
315 	SIO_CLR(NGE_MEAR_EE_CLK);
316 	nge_delay(sc);
317 	SIO_SET(NGE_MEAR_EE_CSEL);
318 	nge_delay(sc);
319 
320 	/*
321 	 * Send address of word we want to read.
322 	 */
323 	nge_eeprom_putbyte(sc, addr);
324 
325 	/*
326 	 * Start reading bits from EEPROM.
327 	 */
328 	for (i = 0x8000; i; i >>= 1) {
329 		SIO_SET(NGE_MEAR_EE_CLK);
330 		nge_delay(sc);
331 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
332 			word |= i;
333 		nge_delay(sc);
334 		SIO_CLR(NGE_MEAR_EE_CLK);
335 		nge_delay(sc);
336 	}
337 
338 	/* Turn off EEPROM access mode. */
339 	nge_eeprom_idle(sc);
340 
341 	*dest = word;
342 }
343 
344 /*
345  * Read a sequence of words from the EEPROM.
346  */
347 static void
348 nge_read_eeprom(struct nge_softc *sc, void *dest, int off, int cnt)
349 {
350 	int i;
351 	uint16_t word = 0, *ptr;
352 
353 	for (i = 0; i < cnt; i++) {
354 		nge_eeprom_getword(sc, off + i, &word);
355 		ptr = (uint16_t *)((uint8_t *)dest + (i * 2));
356 		*ptr = word;
357 	}
358 }
359 
360 /*
361  * Sync the PHYs by setting data bit and strobing the clock 32 times.
362  */
363 static void
364 nge_mii_sync(struct nge_softc *sc)
365 {
366 	int i;
367 
368 	SIO_SET(NGE_MEAR_MII_DIR | NGE_MEAR_MII_DATA);
369 
370 	for (i = 0; i < 32; i++) {
371 		SIO_SET(NGE_MEAR_MII_CLK);
372 		DELAY(1);
373 		SIO_CLR(NGE_MEAR_MII_CLK);
374 		DELAY(1);
375 	}
376 }
377 
378 /*
379  * Clock a series of bits through the MII.
380  */
381 static void
382 nge_mii_send(struct nge_softc *sc, uint32_t bits, int cnt)
383 {
384 	int i;
385 
386 	SIO_CLR(NGE_MEAR_MII_CLK);
387 
388 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
389                 if (bits & i)
390 			SIO_SET(NGE_MEAR_MII_DATA);
391                 else
392 			SIO_CLR(NGE_MEAR_MII_DATA);
393 		DELAY(1);
394 		SIO_CLR(NGE_MEAR_MII_CLK);
395 		DELAY(1);
396 		SIO_SET(NGE_MEAR_MII_CLK);
397 	}
398 }
399 
400 /*
401  * Read an PHY register through the MII.
402  */
403 static int
404 nge_mii_readreg(struct nge_softc *sc, struct nge_mii_frame *frame)
405 {
406 	int ack, i;
407 
408 	/*
409 	 * Set up frame for RX.
410 	 */
411 	frame->mii_stdelim = NGE_MII_STARTDELIM;
412 	frame->mii_opcode = NGE_MII_READOP;
413 	frame->mii_turnaround = 0;
414 	frame->mii_data = 0;
415 
416 	CSR_WRITE_4(sc, NGE_MEAR, 0);
417 
418 	/*
419  	 * Turn on data xmit.
420 	 */
421 	SIO_SET(NGE_MEAR_MII_DIR);
422 
423 	nge_mii_sync(sc);
424 
425 	/*
426 	 * Send command/address info.
427 	 */
428 	nge_mii_send(sc, frame->mii_stdelim, 2);
429 	nge_mii_send(sc, frame->mii_opcode, 2);
430 	nge_mii_send(sc, frame->mii_phyaddr, 5);
431 	nge_mii_send(sc, frame->mii_regaddr, 5);
432 
433 	/* Idle bit */
434 	SIO_CLR((NGE_MEAR_MII_CLK | NGE_MEAR_MII_DATA));
435 	DELAY(1);
436 	SIO_SET(NGE_MEAR_MII_CLK);
437 	DELAY(1);
438 
439 	/* Turn off xmit. */
440 	SIO_CLR(NGE_MEAR_MII_DIR);
441 	/* Check for ack */
442 	SIO_CLR(NGE_MEAR_MII_CLK);
443 	DELAY(1);
444 	ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
445 	SIO_SET(NGE_MEAR_MII_CLK);
446 	DELAY(1);
447 
448 	/*
449 	 * Now try reading data bits. If the ack failed, we still
450 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
451 	 */
452 	if (ack) {
453 		for(i = 0; i < 16; i++) {
454 			SIO_CLR(NGE_MEAR_MII_CLK);
455 			DELAY(1);
456 			SIO_SET(NGE_MEAR_MII_CLK);
457 			DELAY(1);
458 		}
459 		goto fail;
460 	}
461 
462 	for (i = 0x8000; i; i >>= 1) {
463 		SIO_CLR(NGE_MEAR_MII_CLK);
464 		DELAY(1);
465 		if (!ack) {
466 			if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
467 				frame->mii_data |= i;
468 			DELAY(1);
469 		}
470 		SIO_SET(NGE_MEAR_MII_CLK);
471 		DELAY(1);
472 	}
473 
474 fail:
475 	SIO_CLR(NGE_MEAR_MII_CLK);
476 	DELAY(1);
477 	SIO_SET(NGE_MEAR_MII_CLK);
478 	DELAY(1);
479 
480 	if (ack)
481 		return(1);
482 	return(0);
483 }
484 
485 /*
486  * Write to a PHY register through the MII.
487  */
488 static int
489 nge_mii_writereg(struct nge_softc *sc, struct nge_mii_frame *frame)
490 {
491 	/*
492 	 * Set up frame for TX.
493 	 */
494 
495 	frame->mii_stdelim = NGE_MII_STARTDELIM;
496 	frame->mii_opcode = NGE_MII_WRITEOP;
497 	frame->mii_turnaround = NGE_MII_TURNAROUND;
498 
499 	/*
500  	 * Turn on data output.
501 	 */
502 	SIO_SET(NGE_MEAR_MII_DIR);
503 
504 	nge_mii_sync(sc);
505 
506 	nge_mii_send(sc, frame->mii_stdelim, 2);
507 	nge_mii_send(sc, frame->mii_opcode, 2);
508 	nge_mii_send(sc, frame->mii_phyaddr, 5);
509 	nge_mii_send(sc, frame->mii_regaddr, 5);
510 	nge_mii_send(sc, frame->mii_turnaround, 2);
511 	nge_mii_send(sc, frame->mii_data, 16);
512 
513 	/* Idle bit. */
514 	SIO_SET(NGE_MEAR_MII_CLK);
515 	DELAY(1);
516 	SIO_CLR(NGE_MEAR_MII_CLK);
517 	DELAY(1);
518 
519 	/*
520 	 * Turn off xmit.
521 	 */
522 	SIO_CLR(NGE_MEAR_MII_DIR);
523 
524 	return(0);
525 }
526 
527 static int
528 nge_miibus_readreg(device_t dev, int phy, int reg)
529 {
530 	struct nge_softc *sc = device_get_softc(dev);
531 	struct nge_mii_frame frame;
532 
533 	bzero((char *)&frame, sizeof(frame));
534 
535 	frame.mii_phyaddr = phy;
536 	frame.mii_regaddr = reg;
537 	nge_mii_readreg(sc, &frame);
538 
539 	return(frame.mii_data);
540 }
541 
542 static int
543 nge_miibus_writereg(device_t dev, int phy, int reg, int data)
544 {
545 	struct nge_softc *sc = device_get_softc(dev);
546 	struct nge_mii_frame frame;
547 
548 	bzero((char *)&frame, sizeof(frame));
549 
550 	frame.mii_phyaddr = phy;
551 	frame.mii_regaddr = reg;
552 	frame.mii_data = data;
553 	nge_mii_writereg(sc, &frame);
554 
555 	return(0);
556 }
557 
558 static void
559 nge_miibus_statchg(device_t dev)
560 {
561 	struct nge_softc *sc = device_get_softc(dev);
562 	struct mii_data *mii;
563 	int status;
564 
565 	if (sc->nge_tbi) {
566 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
567 		    == IFM_AUTO) {
568 			status = CSR_READ_4(sc, NGE_TBI_ANLPAR);
569 			if (status == 0 || status & NGE_TBIANAR_FDX) {
570 				NGE_SETBIT(sc, NGE_TX_CFG,
571 				    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
572 				NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
573 			} else {
574 				NGE_CLRBIT(sc, NGE_TX_CFG,
575 				    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
576 				NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
577 			}
578 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
579 			!= IFM_FDX) {
580 			NGE_CLRBIT(sc, NGE_TX_CFG,
581 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
582 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
583 		} else {
584 			NGE_SETBIT(sc, NGE_TX_CFG,
585 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
586 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
587 		}
588 	} else {
589 		mii = device_get_softc(sc->nge_miibus);
590 
591 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
592 		        NGE_SETBIT(sc, NGE_TX_CFG,
593 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
594 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
595 		} else {
596 			NGE_CLRBIT(sc, NGE_TX_CFG,
597 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
598 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
599 		}
600 
601 		/* If we have a 1000Mbps link, set the mode_1000 bit. */
602 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
603 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
604 			NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
605 		} else {
606 			NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
607 		}
608 	}
609 }
610 
611 static void
612 nge_setmulti(struct nge_softc *sc)
613 {
614 	struct ifnet *ifp = &sc->arpcom.ac_if;
615 	struct ifmultiaddr *ifma;
616 	uint32_t filtsave, h = 0, i;
617 	int bit, index;
618 
619 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
620 		NGE_CLRBIT(sc, NGE_RXFILT_CTL,
621 		    NGE_RXFILTCTL_MCHASH | NGE_RXFILTCTL_UCHASH);
622 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI);
623 		return;
624 	}
625 
626 	/*
627 	 * We have to explicitly enable the multicast hash table
628 	 * on the NatSemi chip if we want to use it, which we do.
629 	 * We also have to tell it that we don't want to use the
630 	 * hash table for matching unicast addresses.
631 	 */
632 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH);
633 	NGE_CLRBIT(sc, NGE_RXFILT_CTL,
634 	    NGE_RXFILTCTL_ALLMULTI | NGE_RXFILTCTL_UCHASH);
635 
636 	filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL);
637 
638 	/* first, zot all the existing hash bits */
639 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
640 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
641 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
642 	}
643 
644 	/*
645 	 * From the 11 bits returned by the crc routine, the top 7
646 	 * bits represent the 16-bit word in the mcast hash table
647 	 * that needs to be updated, and the lower 4 bits represent
648 	 * which bit within that byte needs to be set.
649 	 */
650 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
651 		if (ifma->ifma_addr->sa_family != AF_LINK)
652 			continue;
653 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
654 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 21;
655 		index = (h >> 4) & 0x7F;
656 		bit = h & 0xF;
657 		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
658 		    NGE_FILTADDR_MCAST_LO + (index * 2));
659 		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
660 	}
661 
662 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave);
663 }
664 
665 static void
666 nge_reset(struct nge_softc *sc)
667 {
668 	int i;
669 
670 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
671 
672 	for (i = 0; i < NGE_TIMEOUT; i++) {
673 		if ((CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET) == 0)
674 			break;
675 	}
676 
677 	if (i == NGE_TIMEOUT)
678 		kprintf("nge%d: reset never completed\n", sc->nge_unit);
679 
680 	/* Wait a little while for the chip to get its brains in order. */
681 	DELAY(1000);
682 
683 	/*
684 	 * If this is a NetSemi chip, make sure to clear
685 	 * PME mode.
686 	 */
687 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
688 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
689 }
690 
691 /*
692  * Probe for an NatSemi chip. Check the PCI vendor and device
693  * IDs against our list and return a device name if we find a match.
694  */
695 static int
696 nge_probe(device_t dev)
697 {
698 	struct nge_type	*t;
699 	uint16_t vendor, product;
700 
701 	vendor = pci_get_vendor(dev);
702 	product = pci_get_device(dev);
703 
704 	for (t = nge_devs; t->nge_name != NULL; t++) {
705 		if (vendor == t->nge_vid && product == t->nge_did) {
706 			device_set_desc(dev, t->nge_name);
707 			return(0);
708 		}
709 	}
710 
711 	return(ENXIO);
712 }
713 
714 /*
715  * Attach the interface. Allocate softc structures, do ifmedia
716  * setup and ethernet/BPF attach.
717  */
718 static int
719 nge_attach(device_t dev)
720 {
721 	struct nge_softc *sc;
722 	struct ifnet *ifp;
723 	uint8_t eaddr[ETHER_ADDR_LEN];
724 	uint32_t		command;
725 	int error = 0, rid, unit;
726 	const char		*sep = "";
727 
728 	sc = device_get_softc(dev);
729 	unit = device_get_unit(dev);
730 	callout_init(&sc->nge_stat_timer);
731 	lwkt_serialize_init(&sc->nge_jslot_serializer);
732 
733 	/*
734 	 * Handle power management nonsense.
735 	 */
736 	command = pci_read_config(dev, NGE_PCI_CAPID, 4) & 0x000000FF;
737 	if (command == 0x01) {
738 		command = pci_read_config(dev, NGE_PCI_PWRMGMTCTRL, 4);
739 		if (command & NGE_PSTATE_MASK) {
740 			uint32_t		iobase, membase, irq;
741 
742 			/* Save important PCI config data. */
743 			iobase = pci_read_config(dev, NGE_PCI_LOIO, 4);
744 			membase = pci_read_config(dev, NGE_PCI_LOMEM, 4);
745 			irq = pci_read_config(dev, NGE_PCI_INTLINE, 4);
746 
747 			/* Reset the power state. */
748 			kprintf("nge%d: chip is in D%d power mode "
749 			"-- setting to D0\n", unit, command & NGE_PSTATE_MASK);
750 			command &= 0xFFFFFFFC;
751 			pci_write_config(dev, NGE_PCI_PWRMGMTCTRL, command, 4);
752 
753 			/* Restore PCI config data. */
754 			pci_write_config(dev, NGE_PCI_LOIO, iobase, 4);
755 			pci_write_config(dev, NGE_PCI_LOMEM, membase, 4);
756 			pci_write_config(dev, NGE_PCI_INTLINE, irq, 4);
757 		}
758 	}
759 
760 	/*
761 	 * Map control/status registers.
762 	 */
763 	command = pci_read_config(dev, PCIR_COMMAND, 4);
764 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
765 	pci_write_config(dev, PCIR_COMMAND, command, 4);
766 	command = pci_read_config(dev, PCIR_COMMAND, 4);
767 
768 #ifdef NGE_USEIOSPACE
769 	if (!(command & PCIM_CMD_PORTEN)) {
770 		kprintf("nge%d: failed to enable I/O ports!\n", unit);
771 		error = ENXIO;
772 		return(error);
773 	}
774 #else
775 	if (!(command & PCIM_CMD_MEMEN)) {
776 		kprintf("nge%d: failed to enable memory mapping!\n", unit);
777 		error = ENXIO;
778 		return(error);
779 	}
780 #endif
781 
782 	rid = NGE_RID;
783 	sc->nge_res = bus_alloc_resource_any(dev, NGE_RES, &rid, RF_ACTIVE);
784 
785 	if (sc->nge_res == NULL) {
786 		kprintf("nge%d: couldn't map ports/memory\n", unit);
787 		error = ENXIO;
788 		return(error);
789 	}
790 
791 	sc->nge_btag = rman_get_bustag(sc->nge_res);
792 	sc->nge_bhandle = rman_get_bushandle(sc->nge_res);
793 
794 	/* Allocate interrupt */
795 	rid = 0;
796 	sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
797 	    RF_SHAREABLE | RF_ACTIVE);
798 
799 	if (sc->nge_irq == NULL) {
800 		kprintf("nge%d: couldn't map interrupt\n", unit);
801 		error = ENXIO;
802 		goto fail;
803 	}
804 
805 	/* Reset the adapter. */
806 	nge_reset(sc);
807 
808 	/*
809 	 * Get station address from the EEPROM.
810 	 */
811 	nge_read_eeprom(sc, &eaddr[4], NGE_EE_NODEADDR, 1);
812 	nge_read_eeprom(sc, &eaddr[2], NGE_EE_NODEADDR + 1, 1);
813 	nge_read_eeprom(sc, &eaddr[0], NGE_EE_NODEADDR + 2, 1);
814 
815 	sc->nge_unit = unit;
816 
817 	sc->nge_ldata = contigmalloc(sizeof(struct nge_list_data), M_DEVBUF,
818 	    M_WAITOK | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
819 
820 	if (sc->nge_ldata == NULL) {
821 		kprintf("nge%d: no memory for list buffers!\n", unit);
822 		error = ENXIO;
823 		goto fail;
824 	}
825 
826 	/* Try to allocate memory for jumbo buffers. */
827 	if (nge_alloc_jumbo_mem(sc)) {
828 		kprintf("nge%d: jumbo buffer allocation failed\n",
829                     sc->nge_unit);
830 		error = ENXIO;
831 		goto fail;
832 	}
833 
834 	ifp = &sc->arpcom.ac_if;
835 	ifp->if_softc = sc;
836 	if_initname(ifp, "nge", unit);
837 	ifp->if_mtu = ETHERMTU;
838 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
839 	ifp->if_ioctl = nge_ioctl;
840 	ifp->if_start = nge_start;
841 #ifdef DEVICE_POLLING
842 	ifp->if_poll = nge_poll;
843 #endif
844 	ifp->if_watchdog = nge_watchdog;
845 	ifp->if_init = nge_init;
846 	ifp->if_baudrate = 1000000000;
847 	ifq_set_maxlen(&ifp->if_snd, NGE_TX_LIST_CNT - 1);
848 	ifq_set_ready(&ifp->if_snd);
849 	ifp->if_hwassist = NGE_CSUM_FEATURES;
850 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING;
851 	ifp->if_capenable = ifp->if_capabilities;
852 
853 	/*
854 	 * Do MII setup.
855 	 */
856 	if (mii_phy_probe(dev, &sc->nge_miibus,
857 			  nge_ifmedia_upd, nge_ifmedia_sts)) {
858 		if (CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) {
859 			sc->nge_tbi = 1;
860 			device_printf(dev, "Using TBI\n");
861 
862 			sc->nge_miibus = dev;
863 
864 			ifmedia_init(&sc->nge_ifmedia, 0, nge_ifmedia_upd,
865 				nge_ifmedia_sts);
866 #define	ADD(m, c)	ifmedia_add(&sc->nge_ifmedia, (m), (c), NULL)
867 #define PRINT(s)	kprintf("%s%s", sep, s); sep = ", "
868 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_NONE, 0, 0), 0);
869 			device_printf(dev, " ");
870 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, 0, 0), 0);
871 			PRINT("1000baseSX");
872 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, IFM_FDX, 0),0);
873 			PRINT("1000baseSX-FDX");
874 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0), 0);
875 			PRINT("auto");
876 
877 			kprintf("\n");
878 #undef ADD
879 #undef PRINT
880 			ifmedia_set(&sc->nge_ifmedia,
881 				IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0));
882 
883 			CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
884 				| NGE_GPIO_GP4_OUT
885 				| NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
886 				| NGE_GPIO_GP3_OUTENB
887 				| NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
888 
889 		} else {
890 			kprintf("nge%d: MII without any PHY!\n", sc->nge_unit);
891 			error = ENXIO;
892 			goto fail;
893 		}
894 	}
895 
896 	/*
897 	 * Call MI attach routine.
898 	 */
899 	ether_ifattach(ifp, eaddr, NULL);
900 
901 	error = bus_setup_intr(dev, sc->nge_irq, INTR_NETSAFE,
902 			       nge_intr, sc, &sc->nge_intrhand,
903 			       ifp->if_serializer);
904 	if (error) {
905 		ether_ifdetach(ifp);
906 		device_printf(dev, "couldn't set up irq\n");
907 		goto fail;
908 	}
909 
910 	return(0);
911 fail:
912 	nge_detach(dev);
913 	return(error);
914 }
915 
916 static int
917 nge_detach(device_t dev)
918 {
919 	struct nge_softc *sc = device_get_softc(dev);
920 	struct ifnet *ifp = &sc->arpcom.ac_if;
921 
922 	if (device_is_attached(dev)) {
923 		lwkt_serialize_enter(ifp->if_serializer);
924 		nge_reset(sc);
925 		nge_stop(sc);
926 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
927 		lwkt_serialize_exit(ifp->if_serializer);
928 
929 		ether_ifdetach(ifp);
930 	}
931 
932 	if (sc->nge_miibus)
933 		device_delete_child(dev, sc->nge_miibus);
934 	bus_generic_detach(dev);
935 
936 	if (sc->nge_irq)
937 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
938 	if (sc->nge_res)
939 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
940 	if (sc->nge_ldata) {
941 		contigfree(sc->nge_ldata, sizeof(struct nge_list_data),
942 			   M_DEVBUF);
943 	}
944 	if (sc->nge_cdata.nge_jumbo_buf)
945 		contigfree(sc->nge_cdata.nge_jumbo_buf, NGE_JMEM, M_DEVBUF);
946 
947 	return(0);
948 }
949 
950 /*
951  * Initialize the transmit descriptors.
952  */
953 static int
954 nge_list_tx_init(struct nge_softc *sc)
955 {
956 	struct nge_list_data *ld;
957 	struct nge_ring_data *cd;
958 	int i;
959 
960 	cd = &sc->nge_cdata;
961 	ld = sc->nge_ldata;
962 
963 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
964 		if (i == (NGE_TX_LIST_CNT - 1)) {
965 			ld->nge_tx_list[i].nge_nextdesc =
966 			    &ld->nge_tx_list[0];
967 			ld->nge_tx_list[i].nge_next =
968 			    vtophys(&ld->nge_tx_list[0]);
969 		} else {
970 			ld->nge_tx_list[i].nge_nextdesc =
971 			    &ld->nge_tx_list[i + 1];
972 			ld->nge_tx_list[i].nge_next =
973 			    vtophys(&ld->nge_tx_list[i + 1]);
974 		}
975 		ld->nge_tx_list[i].nge_mbuf = NULL;
976 		ld->nge_tx_list[i].nge_ptr = 0;
977 		ld->nge_tx_list[i].nge_ctl = 0;
978 	}
979 
980 	cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0;
981 
982 	return(0);
983 }
984 
985 
986 /*
987  * Initialize the RX descriptors and allocate mbufs for them. Note that
988  * we arrange the descriptors in a closed ring, so that the last descriptor
989  * points back to the first.
990  */
991 static int
992 nge_list_rx_init(struct nge_softc *sc)
993 {
994 	struct nge_list_data *ld;
995 	struct nge_ring_data *cd;
996 	int i;
997 
998 	ld = sc->nge_ldata;
999 	cd = &sc->nge_cdata;
1000 
1001 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
1002 		if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS)
1003 			return(ENOBUFS);
1004 		if (i == (NGE_RX_LIST_CNT - 1)) {
1005 			ld->nge_rx_list[i].nge_nextdesc =
1006 			    &ld->nge_rx_list[0];
1007 			ld->nge_rx_list[i].nge_next =
1008 			    vtophys(&ld->nge_rx_list[0]);
1009 		} else {
1010 			ld->nge_rx_list[i].nge_nextdesc =
1011 			    &ld->nge_rx_list[i + 1];
1012 			ld->nge_rx_list[i].nge_next =
1013 			    vtophys(&ld->nge_rx_list[i + 1]);
1014 		}
1015 	}
1016 
1017 	cd->nge_rx_prod = 0;
1018 
1019 	return(0);
1020 }
1021 
1022 /*
1023  * Initialize an RX descriptor and attach an MBUF cluster.
1024  */
1025 static int
1026 nge_newbuf(struct nge_softc *sc, struct nge_desc *c, struct mbuf *m)
1027 {
1028 	struct mbuf *m_new = NULL;
1029 	struct nge_jslot *buf;
1030 
1031 	if (m == NULL) {
1032 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1033 		if (m_new == NULL) {
1034 			kprintf("nge%d: no memory for rx list "
1035 			    "-- packet dropped!\n", sc->nge_unit);
1036 			return(ENOBUFS);
1037 		}
1038 
1039 		/* Allocate the jumbo buffer */
1040 		buf = nge_jalloc(sc);
1041 		if (buf == NULL) {
1042 #ifdef NGE_VERBOSE
1043 			kprintf("nge%d: jumbo allocation failed "
1044 			    "-- packet dropped!\n", sc->nge_unit);
1045 #endif
1046 			m_freem(m_new);
1047 			return(ENOBUFS);
1048 		}
1049 		/* Attach the buffer to the mbuf */
1050 		m_new->m_ext.ext_arg = buf;
1051 		m_new->m_ext.ext_buf = buf->nge_buf;
1052 		m_new->m_ext.ext_free = nge_jfree;
1053 		m_new->m_ext.ext_ref = nge_jref;
1054 		m_new->m_ext.ext_size = NGE_JUMBO_FRAMELEN;
1055 
1056 		m_new->m_data = m_new->m_ext.ext_buf;
1057 		m_new->m_flags |= M_EXT;
1058 		m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
1059 	} else {
1060 		m_new = m;
1061 		m_new->m_len = m_new->m_pkthdr.len = NGE_JLEN;
1062 		m_new->m_data = m_new->m_ext.ext_buf;
1063 	}
1064 
1065 	m_adj(m_new, sizeof(uint64_t));
1066 
1067 	c->nge_mbuf = m_new;
1068 	c->nge_ptr = vtophys(mtod(m_new, caddr_t));
1069 	c->nge_ctl = m_new->m_len;
1070 	c->nge_extsts = 0;
1071 
1072 	return(0);
1073 }
1074 
1075 static int
1076 nge_alloc_jumbo_mem(struct nge_softc *sc)
1077 {
1078 	caddr_t ptr;
1079 	int i;
1080 	struct nge_jslot *entry;
1081 
1082 	/* Grab a big chunk o' storage. */
1083 	sc->nge_cdata.nge_jumbo_buf = contigmalloc(NGE_JMEM, M_DEVBUF,
1084 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
1085 
1086 	if (sc->nge_cdata.nge_jumbo_buf == NULL) {
1087 		kprintf("nge%d: no memory for jumbo buffers!\n", sc->nge_unit);
1088 		return(ENOBUFS);
1089 	}
1090 
1091 	SLIST_INIT(&sc->nge_jfree_listhead);
1092 
1093 	/*
1094 	 * Now divide it up into 9K pieces and save the addresses
1095 	 * in an array.
1096 	 */
1097 	ptr = sc->nge_cdata.nge_jumbo_buf;
1098 	for (i = 0; i < NGE_JSLOTS; i++) {
1099 		entry = &sc->nge_cdata.nge_jslots[i];
1100 		entry->nge_sc = sc;
1101 		entry->nge_buf = ptr;
1102 		entry->nge_inuse = 0;
1103 		entry->nge_slot = i;
1104 		SLIST_INSERT_HEAD(&sc->nge_jfree_listhead, entry, jslot_link);
1105 		ptr += NGE_JLEN;
1106 	}
1107 
1108 	return(0);
1109 }
1110 
1111 
1112 /*
1113  * Allocate a jumbo buffer.
1114  */
1115 static struct nge_jslot *
1116 nge_jalloc(struct nge_softc *sc)
1117 {
1118 	struct nge_jslot *entry;
1119 
1120 	lwkt_serialize_enter(&sc->nge_jslot_serializer);
1121 	entry = SLIST_FIRST(&sc->nge_jfree_listhead);
1122 	if (entry) {
1123 		SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jslot_link);
1124 		entry->nge_inuse = 1;
1125 	} else {
1126 #ifdef NGE_VERBOSE
1127 		kprintf("nge%d: no free jumbo buffers\n", sc->nge_unit);
1128 #endif
1129 	}
1130 	lwkt_serialize_exit(&sc->nge_jslot_serializer);
1131 	return(entry);
1132 }
1133 
1134 /*
1135  * Adjust usage count on a jumbo buffer. In general this doesn't
1136  * get used much because our jumbo buffers don't get passed around
1137  * a lot, but it's implemented for correctness.
1138  */
1139 static void
1140 nge_jref(void *arg)
1141 {
1142 	struct nge_jslot *entry = (struct nge_jslot *)arg;
1143 	struct nge_softc *sc = entry->nge_sc;
1144 
1145 	if (sc == NULL)
1146 		panic("nge_jref: can't find softc pointer!");
1147 
1148 	if (&sc->nge_cdata.nge_jslots[entry->nge_slot] != entry)
1149 		panic("nge_jref: asked to reference buffer "
1150 		    "that we don't manage!");
1151 	else if (entry->nge_inuse == 0)
1152 		panic("nge_jref: buffer already free!");
1153 	else
1154 		atomic_add_int(&entry->nge_inuse, 1);
1155 }
1156 
1157 /*
1158  * Release a jumbo buffer.
1159  */
1160 static void
1161 nge_jfree(void *arg)
1162 {
1163 	struct nge_jslot *entry = (struct nge_jslot *)arg;
1164 	struct nge_softc *sc = entry->nge_sc;
1165 
1166 	if (sc == NULL)
1167 		panic("nge_jref: can't find softc pointer!");
1168 
1169 	if (&sc->nge_cdata.nge_jslots[entry->nge_slot] != entry) {
1170 		panic("nge_jref: asked to reference buffer "
1171 		    "that we don't manage!");
1172 	} else if (entry->nge_inuse == 0) {
1173 		panic("nge_jref: buffer already free!");
1174 	} else {
1175 		lwkt_serialize_enter(&sc->nge_jslot_serializer);
1176 		atomic_subtract_int(&entry->nge_inuse, 1);
1177 		if (entry->nge_inuse == 0) {
1178 			SLIST_INSERT_HEAD(&sc->nge_jfree_listhead,
1179 					  entry, jslot_link);
1180 		}
1181 		lwkt_serialize_exit(&sc->nge_jslot_serializer);
1182 	}
1183 }
1184 /*
1185  * A frame has been uploaded: pass the resulting mbuf chain up to
1186  * the higher level protocols.
1187  */
1188 static void
1189 nge_rxeof(struct nge_softc *sc)
1190 {
1191         struct mbuf *m;
1192         struct ifnet *ifp = &sc->arpcom.ac_if;
1193 	struct nge_desc *cur_rx;
1194 	int i, total_len = 0;
1195 	uint32_t rxstat;
1196 
1197 	i = sc->nge_cdata.nge_rx_prod;
1198 
1199 	while(NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) {
1200 		struct mbuf *m0 = NULL;
1201 		uint32_t extsts;
1202 
1203 #ifdef DEVICE_POLLING
1204 		if (ifp->if_flags & IFF_POLLING) {
1205 			if (sc->rxcycles <= 0)
1206 				break;
1207 			sc->rxcycles--;
1208 		}
1209 #endif /* DEVICE_POLLING */
1210 
1211 		cur_rx = &sc->nge_ldata->nge_rx_list[i];
1212 		rxstat = cur_rx->nge_rxstat;
1213 		extsts = cur_rx->nge_extsts;
1214 		m = cur_rx->nge_mbuf;
1215 		cur_rx->nge_mbuf = NULL;
1216 		total_len = NGE_RXBYTES(cur_rx);
1217 		NGE_INC(i, NGE_RX_LIST_CNT);
1218 		/*
1219 		 * If an error occurs, update stats, clear the
1220 		 * status word and leave the mbuf cluster in place:
1221 		 * it should simply get re-used next time this descriptor
1222 	 	 * comes up in the ring.
1223 		 */
1224 		if ((rxstat & NGE_CMDSTS_PKT_OK) == 0) {
1225 			ifp->if_ierrors++;
1226 			nge_newbuf(sc, cur_rx, m);
1227 			continue;
1228 		}
1229 
1230 		/*
1231 		 * Ok. NatSemi really screwed up here. This is the
1232 		 * only gigE chip I know of with alignment constraints
1233 		 * on receive buffers. RX buffers must be 64-bit aligned.
1234 		 */
1235 #ifdef __i386__
1236 		/*
1237 		 * By popular demand, ignore the alignment problems
1238 		 * on the Intel x86 platform. The performance hit
1239 		 * incurred due to unaligned accesses is much smaller
1240 		 * than the hit produced by forcing buffer copies all
1241 		 * the time, especially with jumbo frames. We still
1242 		 * need to fix up the alignment everywhere else though.
1243 		 */
1244 		if (nge_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
1245 #endif
1246 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1247 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
1248 			nge_newbuf(sc, cur_rx, m);
1249 			if (m0 == NULL) {
1250 				kprintf("nge%d: no receive buffers "
1251 				    "available -- packet dropped!\n",
1252 				    sc->nge_unit);
1253 				ifp->if_ierrors++;
1254 				continue;
1255 			}
1256 			m_adj(m0, ETHER_ALIGN);
1257 			m = m0;
1258 #ifdef __i386__
1259 		} else {
1260 			m->m_pkthdr.rcvif = ifp;
1261 			m->m_pkthdr.len = m->m_len = total_len;
1262 		}
1263 #endif
1264 
1265 		ifp->if_ipackets++;
1266 
1267 		/* Do IP checksum checking. */
1268 		if (extsts & NGE_RXEXTSTS_IPPKT)
1269 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1270 		if (!(extsts & NGE_RXEXTSTS_IPCSUMERR))
1271 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1272 		if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1273 		    (extsts & NGE_RXEXTSTS_TCPCSUMERR) == 0) ||
1274 		    (extsts & NGE_RXEXTSTS_UDPPKT &&
1275 		    (extsts & NGE_RXEXTSTS_UDPCSUMERR) == 0)) {
1276 			m->m_pkthdr.csum_flags |=
1277 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
1278 			    CSUM_FRAG_NOT_CHECKED;
1279 			m->m_pkthdr.csum_data = 0xffff;
1280 		}
1281 
1282 		/*
1283 		 * If we received a packet with a vlan tag, pass it
1284 		 * to vlan_input() instead of ether_input().
1285 		 */
1286 		if (extsts & NGE_RXEXTSTS_VLANPKT)
1287 			VLAN_INPUT_TAG(m, extsts & NGE_RXEXTSTS_VTCI);
1288 		else
1289 			ifp->if_input(ifp, m);
1290 	}
1291 
1292 	sc->nge_cdata.nge_rx_prod = i;
1293 }
1294 
1295 /*
1296  * A frame was downloaded to the chip. It's safe for us to clean up
1297  * the list buffers.
1298  */
1299 static void
1300 nge_txeof(struct nge_softc *sc)
1301 {
1302 	struct ifnet *ifp = &sc->arpcom.ac_if;
1303 	struct nge_desc *cur_tx = NULL;
1304 	uint32_t idx;
1305 
1306 	/* Clear the timeout timer. */
1307 	ifp->if_timer = 0;
1308 
1309 	/*
1310 	 * Go through our tx list and free mbufs for those
1311 	 * frames that have been transmitted.
1312 	 */
1313 	idx = sc->nge_cdata.nge_tx_cons;
1314 	while (idx != sc->nge_cdata.nge_tx_prod) {
1315 		cur_tx = &sc->nge_ldata->nge_tx_list[idx];
1316 
1317 		if (NGE_OWNDESC(cur_tx))
1318 			break;
1319 
1320 		if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) {
1321 			sc->nge_cdata.nge_tx_cnt--;
1322 			NGE_INC(idx, NGE_TX_LIST_CNT);
1323 			continue;
1324 		}
1325 
1326 		if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) {
1327 			ifp->if_oerrors++;
1328 			if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS)
1329 				ifp->if_collisions++;
1330 			if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL)
1331 				ifp->if_collisions++;
1332 		}
1333 
1334 		ifp->if_collisions +=
1335 		    (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16;
1336 
1337 		ifp->if_opackets++;
1338 		if (cur_tx->nge_mbuf != NULL) {
1339 			m_freem(cur_tx->nge_mbuf);
1340 			cur_tx->nge_mbuf = NULL;
1341 		}
1342 
1343 		sc->nge_cdata.nge_tx_cnt--;
1344 		NGE_INC(idx, NGE_TX_LIST_CNT);
1345 		ifp->if_timer = 0;
1346 	}
1347 
1348 	sc->nge_cdata.nge_tx_cons = idx;
1349 
1350 	if (cur_tx != NULL)
1351 		ifp->if_flags &= ~IFF_OACTIVE;
1352 }
1353 
1354 static void
1355 nge_tick(void *xsc)
1356 {
1357 	struct nge_softc *sc = xsc;
1358 	struct ifnet *ifp = &sc->arpcom.ac_if;
1359 	struct mii_data *mii;
1360 
1361 	lwkt_serialize_enter(ifp->if_serializer);
1362 
1363 	if (sc->nge_tbi) {
1364 		if (sc->nge_link == 0) {
1365 			if (CSR_READ_4(sc, NGE_TBI_BMSR)
1366 			    & NGE_TBIBMSR_ANEG_DONE) {
1367 				kprintf("nge%d: gigabit link up\n",
1368 				    sc->nge_unit);
1369 				nge_miibus_statchg(sc->nge_miibus);
1370 				sc->nge_link++;
1371 				if (!ifq_is_empty(&ifp->if_snd))
1372 					nge_start(ifp);
1373 			}
1374 		}
1375 	} else {
1376 		mii = device_get_softc(sc->nge_miibus);
1377 		mii_tick(mii);
1378 
1379 		if (sc->nge_link == 0) {
1380 			if (mii->mii_media_status & IFM_ACTIVE &&
1381 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1382 				sc->nge_link++;
1383 				if (IFM_SUBTYPE(mii->mii_media_active)
1384 				    == IFM_1000_T)
1385 					kprintf("nge%d: gigabit link up\n",
1386 					    sc->nge_unit);
1387 				if (!ifq_is_empty(&ifp->if_snd))
1388 					nge_start(ifp);
1389 			}
1390 		}
1391 	}
1392 	callout_reset(&sc->nge_stat_timer, hz, nge_tick, sc);
1393 
1394 	lwkt_serialize_exit(ifp->if_serializer);
1395 }
1396 
1397 #ifdef DEVICE_POLLING
1398 
1399 static void
1400 nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1401 {
1402 	struct nge_softc *sc = ifp->if_softc;
1403 
1404 	switch(cmd) {
1405 	case POLL_REGISTER:
1406 		/* disable interrupts */
1407 		CSR_WRITE_4(sc, NGE_IER, 0);
1408 		break;
1409 	case POLL_DEREGISTER:
1410 		/* enable interrupts */
1411 		CSR_WRITE_4(sc, NGE_IER, 1);
1412 		break;
1413 	default:
1414 		/*
1415 		 * On the nge, reading the status register also clears it.
1416 		 * So before returning to intr mode we must make sure that all
1417 		 * possible pending sources of interrupts have been served.
1418 		 * In practice this means run to completion the *eof routines,
1419 		 * and then call the interrupt routine
1420 		 */
1421 		sc->rxcycles = count;
1422 		nge_rxeof(sc);
1423 		nge_txeof(sc);
1424 		if (!ifq_is_empty(&ifp->if_snd))
1425 			nge_start(ifp);
1426 
1427 		if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1428 			uint32_t status;
1429 
1430 			/* Reading the ISR register clears all interrupts. */
1431 			status = CSR_READ_4(sc, NGE_ISR);
1432 
1433 			if (status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW))
1434 				nge_rxeof(sc);
1435 
1436 			if (status & (NGE_ISR_RX_IDLE))
1437 				NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1438 
1439 			if (status & NGE_ISR_SYSERR) {
1440 				nge_reset(sc);
1441 				nge_init(sc);
1442 			}
1443 		}
1444 		break;
1445 	}
1446 }
1447 
1448 #endif /* DEVICE_POLLING */
1449 
1450 static void
1451 nge_intr(void *arg)
1452 {
1453 	struct nge_softc *sc = arg;
1454 	struct ifnet *ifp = &sc->arpcom.ac_if;
1455 	uint32_t status;
1456 
1457 	/* Supress unwanted interrupts */
1458 	if (!(ifp->if_flags & IFF_UP)) {
1459 		nge_stop(sc);
1460 		return;
1461 	}
1462 
1463 	/* Disable interrupts. */
1464 	CSR_WRITE_4(sc, NGE_IER, 0);
1465 
1466 	/* Data LED on for TBI mode */
1467 	if(sc->nge_tbi)
1468 		 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1469 			     | NGE_GPIO_GP3_OUT);
1470 
1471 	for (;;) {
1472 		/* Reading the ISR register clears all interrupts. */
1473 		status = CSR_READ_4(sc, NGE_ISR);
1474 
1475 		if ((status & NGE_INTRS) == 0)
1476 			break;
1477 
1478 		if ((status & NGE_ISR_TX_DESC_OK) ||
1479 		    (status & NGE_ISR_TX_ERR) ||
1480 		    (status & NGE_ISR_TX_OK) ||
1481 		    (status & NGE_ISR_TX_IDLE))
1482 			nge_txeof(sc);
1483 
1484 		if ((status & NGE_ISR_RX_DESC_OK) ||
1485 		    (status & NGE_ISR_RX_ERR) ||
1486 		    (status & NGE_ISR_RX_OFLOW) ||
1487 		    (status & NGE_ISR_RX_FIFO_OFLOW) ||
1488 		    (status & NGE_ISR_RX_IDLE) ||
1489 		    (status & NGE_ISR_RX_OK))
1490 			nge_rxeof(sc);
1491 
1492 		if ((status & NGE_ISR_RX_IDLE))
1493 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1494 
1495 		if (status & NGE_ISR_SYSERR) {
1496 			nge_reset(sc);
1497 			ifp->if_flags &= ~IFF_RUNNING;
1498 			nge_init(sc);
1499 		}
1500 
1501 #ifdef notyet
1502 		/* mii_tick should only be called once per second */
1503 		if (status & NGE_ISR_PHY_INTR) {
1504 			sc->nge_link = 0;
1505 			nge_tick_serialized(sc);
1506 		}
1507 #endif
1508 	}
1509 
1510 	/* Re-enable interrupts. */
1511 	CSR_WRITE_4(sc, NGE_IER, 1);
1512 
1513 	if (!ifq_is_empty(&ifp->if_snd))
1514 		nge_start(ifp);
1515 
1516 	/* Data LED off for TBI mode */
1517 
1518 	if(sc->nge_tbi)
1519 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1520 			    & ~NGE_GPIO_GP3_OUT);
1521 }
1522 
1523 /*
1524  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1525  * pointers to the fragment pointers.
1526  */
1527 static int
1528 nge_encap(struct nge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
1529 {
1530 	struct nge_desc *f = NULL;
1531 	struct mbuf *m;
1532 	int frag, cur, cnt = 0;
1533 
1534 	/*
1535  	 * Start packing the mbufs in this chain into
1536 	 * the fragment pointers. Stop when we run out
1537  	 * of fragments or hit the end of the mbuf chain.
1538 	 */
1539 	m = m_head;
1540 	cur = frag = *txidx;
1541 
1542 	for (m = m_head; m != NULL; m = m->m_next) {
1543 		if (m->m_len != 0) {
1544 			if ((NGE_TX_LIST_CNT -
1545 			    (sc->nge_cdata.nge_tx_cnt + cnt)) < 2)
1546 				return(ENOBUFS);
1547 			f = &sc->nge_ldata->nge_tx_list[frag];
1548 			f->nge_ctl = NGE_CMDSTS_MORE | m->m_len;
1549 			f->nge_ptr = vtophys(mtod(m, vm_offset_t));
1550 			if (cnt != 0)
1551 				f->nge_ctl |= NGE_CMDSTS_OWN;
1552 			cur = frag;
1553 			NGE_INC(frag, NGE_TX_LIST_CNT);
1554 			cnt++;
1555 		}
1556 	}
1557 
1558 	if (m != NULL)
1559 		return(ENOBUFS);
1560 
1561 	sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0;
1562 	if (m_head->m_pkthdr.csum_flags) {
1563 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1564 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1565 			    NGE_TXEXTSTS_IPCSUM;
1566 		if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1567 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1568 			    NGE_TXEXTSTS_TCPCSUM;
1569 		if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1570 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1571 			    NGE_TXEXTSTS_UDPCSUM;
1572 	}
1573 
1574 	if (m_head->m_flags & M_VLANTAG) {
1575 		sc->nge_ldata->nge_tx_list[cur].nge_extsts |=
1576 			(NGE_TXEXTSTS_VLANPKT|m_head->m_pkthdr.ether_vlantag);
1577 	}
1578 
1579 	sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head;
1580 	sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE;
1581 	sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN;
1582 	sc->nge_cdata.nge_tx_cnt += cnt;
1583 	*txidx = frag;
1584 
1585 	return(0);
1586 }
1587 
1588 /*
1589  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1590  * to the mbuf data regions directly in the transmit lists. We also save a
1591  * copy of the pointers since the transmit list fragment pointers are
1592  * physical addresses.
1593  */
1594 
1595 static void
1596 nge_start(struct ifnet *ifp)
1597 {
1598 	struct nge_softc *sc = ifp->if_softc;
1599 	struct mbuf *m_head = NULL;
1600 	uint32_t idx;
1601 	int need_trans;
1602 
1603 	if (!sc->nge_link)
1604 		return;
1605 
1606 	idx = sc->nge_cdata.nge_tx_prod;
1607 
1608 	if (ifp->if_flags & IFF_OACTIVE)
1609 		return;
1610 
1611 	need_trans = 0;
1612 	while(sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) {
1613 		m_head = ifq_poll(&ifp->if_snd);
1614 		if (m_head == NULL)
1615 			break;
1616 
1617 		if (nge_encap(sc, m_head, &idx)) {
1618 			ifp->if_flags |= IFF_OACTIVE;
1619 			break;
1620 		}
1621 		ifq_dequeue(&ifp->if_snd, m_head);
1622 		need_trans = 1;
1623 
1624 		ETHER_BPF_MTAP(ifp, m_head);
1625 	}
1626 
1627 	if (!need_trans)
1628 		return;
1629 
1630 	/* Transmit */
1631 	sc->nge_cdata.nge_tx_prod = idx;
1632 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
1633 
1634 	/*
1635 	 * Set a timeout in case the chip goes out to lunch.
1636 	 */
1637 	ifp->if_timer = 5;
1638 }
1639 
1640 static void
1641 nge_init(void *xsc)
1642 {
1643 	struct nge_softc *sc = xsc;
1644 	struct ifnet *ifp = &sc->arpcom.ac_if;
1645 	struct mii_data *mii;
1646 
1647 	if (ifp->if_flags & IFF_RUNNING) {
1648 		return;
1649 	}
1650 
1651 	/*
1652 	 * Cancel pending I/O and free all RX/TX buffers.
1653 	 */
1654 	nge_stop(sc);
1655 	callout_reset(&sc->nge_stat_timer, hz, nge_tick, sc);
1656 
1657 	if (sc->nge_tbi)
1658 		mii = NULL;
1659 	else
1660 		mii = device_get_softc(sc->nge_miibus);
1661 
1662 	/* Set MAC address */
1663 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
1664 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1665 	    ((uint16_t *)sc->arpcom.ac_enaddr)[0]);
1666 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
1667 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1668 	    ((uint16_t *)sc->arpcom.ac_enaddr)[1]);
1669 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
1670 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1671 	    ((uint16_t *)sc->arpcom.ac_enaddr)[2]);
1672 
1673 	/* Init circular RX list. */
1674 	if (nge_list_rx_init(sc) == ENOBUFS) {
1675 		kprintf("nge%d: initialization failed: no "
1676 			"memory for rx buffers\n", sc->nge_unit);
1677 		nge_stop(sc);
1678 		return;
1679 	}
1680 
1681 	/*
1682 	 * Init tx descriptors.
1683 	 */
1684 	nge_list_tx_init(sc);
1685 
1686 	/*
1687 	 * For the NatSemi chip, we have to explicitly enable the
1688 	 * reception of ARP frames, as well as turn on the 'perfect
1689 	 * match' filter where we store the station address, otherwise
1690 	 * we won't receive unicasts meant for this host.
1691 	 */
1692 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
1693 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
1694 
1695 	 /* If we want promiscuous mode, set the allframes bit. */
1696 	if (ifp->if_flags & IFF_PROMISC)
1697 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1698 	else
1699 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1700 
1701 	/*
1702 	 * Set the capture broadcast bit to capture broadcast frames.
1703 	 */
1704 	if (ifp->if_flags & IFF_BROADCAST)
1705 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1706 	else
1707 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1708 
1709 	/*
1710 	 * Load the multicast filter.
1711 	 */
1712 	nge_setmulti(sc);
1713 
1714 	/* Turn the receive filter on */
1715 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
1716 
1717 	/*
1718 	 * Load the address of the RX and TX lists.
1719 	 */
1720 	CSR_WRITE_4(sc, NGE_RX_LISTPTR,
1721 	    vtophys(&sc->nge_ldata->nge_rx_list[0]));
1722 	CSR_WRITE_4(sc, NGE_TX_LISTPTR,
1723 	    vtophys(&sc->nge_ldata->nge_tx_list[0]));
1724 
1725 	/* Set RX configuration */
1726 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
1727 	/*
1728 	 * Enable hardware checksum validation for all IPv4
1729 	 * packets, do not reject packets with bad checksums.
1730 	 */
1731 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
1732 
1733 	/*
1734 	 * Tell the chip to detect and strip VLAN tag info from
1735 	 * received frames. The tag will be provided in the extsts
1736 	 * field in the RX descriptors.
1737 	 */
1738 	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL,
1739 	    NGE_VIPRXCTL_TAG_DETECT_ENB|NGE_VIPRXCTL_TAG_STRIP_ENB);
1740 
1741 	/* Set TX configuration */
1742 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
1743 
1744 	/*
1745 	 * Enable TX IPv4 checksumming on a per-packet basis.
1746 	 */
1747 	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
1748 
1749 	/*
1750 	 * Tell the chip to insert VLAN tags on a per-packet basis as
1751 	 * dictated by the code in the frame encapsulation routine.
1752 	 */
1753 	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
1754 
1755 	/* Set full/half duplex mode. */
1756 	if (sc->nge_tbi) {
1757 		if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1758 		    == IFM_FDX) {
1759 			NGE_SETBIT(sc, NGE_TX_CFG,
1760 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1761 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1762 		} else {
1763 			NGE_CLRBIT(sc, NGE_TX_CFG,
1764 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1765 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1766 		}
1767 	} else {
1768 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1769 			NGE_SETBIT(sc, NGE_TX_CFG,
1770 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1771 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1772 		} else {
1773 			NGE_CLRBIT(sc, NGE_TX_CFG,
1774 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1775 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1776 		}
1777 	}
1778 
1779 	/*
1780 	 * Enable the delivery of PHY interrupts based on
1781 	 * link/speed/duplex status changes. Also enable the
1782 	 * extsts field in the DMA descriptors (needed for
1783 	 * TCP/IP checksum offload on transmit).
1784 	 */
1785 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD |
1786 	    NGE_CFG_PHYINTR_LNK | NGE_CFG_PHYINTR_DUP | NGE_CFG_EXTSTS_ENB);
1787 
1788 	/*
1789 	 * Configure interrupt holdoff (moderation). We can
1790 	 * have the chip delay interrupt delivery for a certain
1791 	 * period. Units are in 100us, and the max setting
1792 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
1793 	 */
1794 	CSR_WRITE_4(sc, NGE_IHR, 0x01);
1795 
1796 	/*
1797 	 * Enable interrupts.
1798 	 */
1799 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
1800 #ifdef DEVICE_POLLING
1801 	/*
1802 	 * ... only enable interrupts if we are not polling, make sure
1803 	 * they are off otherwise.
1804 	 */
1805 	if (ifp->if_flags & IFF_POLLING)
1806 		CSR_WRITE_4(sc, NGE_IER, 0);
1807 	else
1808 #endif /* DEVICE_POLLING */
1809 	CSR_WRITE_4(sc, NGE_IER, 1);
1810 
1811 	/* Enable receiver and transmitter. */
1812 	NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE | NGE_CSR_RX_DISABLE);
1813 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1814 
1815 	nge_ifmedia_upd(ifp);
1816 
1817 	ifp->if_flags |= IFF_RUNNING;
1818 	ifp->if_flags &= ~IFF_OACTIVE;
1819 }
1820 
1821 /*
1822  * Set media options.
1823  */
1824 static int
1825 nge_ifmedia_upd(struct ifnet *ifp)
1826 {
1827 	struct nge_softc *sc = ifp->if_softc;
1828 	struct mii_data *mii;
1829 
1830 	if (sc->nge_tbi) {
1831 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1832 		     == IFM_AUTO) {
1833 			CSR_WRITE_4(sc, NGE_TBI_ANAR,
1834 				CSR_READ_4(sc, NGE_TBI_ANAR)
1835 					| NGE_TBIANAR_HDX | NGE_TBIANAR_FDX
1836 					| NGE_TBIANAR_PS1 | NGE_TBIANAR_PS2);
1837 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG
1838 				| NGE_TBIBMCR_RESTART_ANEG);
1839 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG);
1840 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media
1841 			    & IFM_GMASK) == IFM_FDX) {
1842 			NGE_SETBIT(sc, NGE_TX_CFG,
1843 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1844 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1845 
1846 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
1847 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1848 		} else {
1849 			NGE_CLRBIT(sc, NGE_TX_CFG,
1850 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1851 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1852 
1853 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
1854 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1855 		}
1856 
1857 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1858 			    & ~NGE_GPIO_GP3_OUT);
1859 	} else {
1860 		mii = device_get_softc(sc->nge_miibus);
1861 		sc->nge_link = 0;
1862 		if (mii->mii_instance) {
1863 			struct mii_softc	*miisc;
1864 			for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1865 			    miisc = LIST_NEXT(miisc, mii_list))
1866 				mii_phy_reset(miisc);
1867 		}
1868 		mii_mediachg(mii);
1869 	}
1870 
1871 	return(0);
1872 }
1873 
1874 /*
1875  * Report current media status.
1876  */
1877 static void
1878 nge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1879 {
1880 	struct nge_softc *sc = ifp->if_softc;
1881 	struct mii_data *mii;
1882 
1883 	if (sc->nge_tbi) {
1884 		ifmr->ifm_status = IFM_AVALID;
1885 		ifmr->ifm_active = IFM_ETHER;
1886 
1887 		if (CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE)
1888 			ifmr->ifm_status |= IFM_ACTIVE;
1889 		if (CSR_READ_4(sc, NGE_TBI_BMCR) & NGE_TBIBMCR_LOOPBACK)
1890 			ifmr->ifm_active |= IFM_LOOP;
1891 		if (!CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) {
1892 			ifmr->ifm_active |= IFM_NONE;
1893 			ifmr->ifm_status = 0;
1894 			return;
1895 		}
1896 		ifmr->ifm_active |= IFM_1000_SX;
1897 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1898 		    == IFM_AUTO) {
1899 			ifmr->ifm_active |= IFM_AUTO;
1900 			if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
1901 			    & NGE_TBIANAR_FDX) {
1902 				ifmr->ifm_active |= IFM_FDX;
1903 			}else if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
1904 				  & NGE_TBIANAR_HDX) {
1905 				ifmr->ifm_active |= IFM_HDX;
1906 			}
1907 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1908 			== IFM_FDX)
1909 			ifmr->ifm_active |= IFM_FDX;
1910 		else
1911 			ifmr->ifm_active |= IFM_HDX;
1912 
1913 	} else {
1914 		mii = device_get_softc(sc->nge_miibus);
1915 		mii_pollstat(mii);
1916 		ifmr->ifm_active = mii->mii_media_active;
1917 		ifmr->ifm_status = mii->mii_media_status;
1918 	}
1919 }
1920 
1921 static int
1922 nge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1923 {
1924 	struct nge_softc *sc = ifp->if_softc;
1925 	struct ifreq *ifr = (struct ifreq *) data;
1926 	struct mii_data *mii;
1927 	int error = 0;
1928 
1929 	switch(command) {
1930 	case SIOCSIFMTU:
1931 		if (ifr->ifr_mtu > NGE_JUMBO_MTU) {
1932 			error = EINVAL;
1933 		} else {
1934 			ifp->if_mtu = ifr->ifr_mtu;
1935 			/*
1936 			 * Workaround: if the MTU is larger than
1937 			 * 8152 (TX FIFO size minus 64 minus 18), turn off
1938 			 * TX checksum offloading.
1939 			 */
1940 			if (ifr->ifr_mtu >= 8152)
1941 				ifp->if_hwassist = 0;
1942 			else
1943 				ifp->if_hwassist = NGE_CSUM_FEATURES;
1944 		}
1945 		break;
1946 	case SIOCSIFFLAGS:
1947 		if (ifp->if_flags & IFF_UP) {
1948 			if (ifp->if_flags & IFF_RUNNING &&
1949 			    ifp->if_flags & IFF_PROMISC &&
1950 			    !(sc->nge_if_flags & IFF_PROMISC)) {
1951 				NGE_SETBIT(sc, NGE_RXFILT_CTL,
1952 				    NGE_RXFILTCTL_ALLPHYS|
1953 				    NGE_RXFILTCTL_ALLMULTI);
1954 			} else if (ifp->if_flags & IFF_RUNNING &&
1955 			    !(ifp->if_flags & IFF_PROMISC) &&
1956 			    sc->nge_if_flags & IFF_PROMISC) {
1957 				NGE_CLRBIT(sc, NGE_RXFILT_CTL,
1958 				    NGE_RXFILTCTL_ALLPHYS);
1959 				if (!(ifp->if_flags & IFF_ALLMULTI))
1960 					NGE_CLRBIT(sc, NGE_RXFILT_CTL,
1961 					    NGE_RXFILTCTL_ALLMULTI);
1962 			} else {
1963 				ifp->if_flags &= ~IFF_RUNNING;
1964 				nge_init(sc);
1965 			}
1966 		} else {
1967 			if (ifp->if_flags & IFF_RUNNING)
1968 				nge_stop(sc);
1969 		}
1970 		sc->nge_if_flags = ifp->if_flags;
1971 		error = 0;
1972 		break;
1973 	case SIOCADDMULTI:
1974 	case SIOCDELMULTI:
1975 		nge_setmulti(sc);
1976 		error = 0;
1977 		break;
1978 	case SIOCGIFMEDIA:
1979 	case SIOCSIFMEDIA:
1980 		if (sc->nge_tbi) {
1981 			error = ifmedia_ioctl(ifp, ifr, &sc->nge_ifmedia,
1982 					      command);
1983 		} else {
1984 			mii = device_get_softc(sc->nge_miibus);
1985 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
1986 					      command);
1987 		}
1988 		break;
1989 	default:
1990 		error = ether_ioctl(ifp, command, data);
1991 		break;
1992 	}
1993 	return(error);
1994 }
1995 
1996 static void
1997 nge_watchdog(struct ifnet *ifp)
1998 {
1999 	struct nge_softc *sc = ifp->if_softc;
2000 
2001 	ifp->if_oerrors++;
2002 	kprintf("nge%d: watchdog timeout\n", sc->nge_unit);
2003 
2004 	nge_stop(sc);
2005 	nge_reset(sc);
2006 	ifp->if_flags &= ~IFF_RUNNING;
2007 	nge_init(sc);
2008 
2009 	if (!ifq_is_empty(&ifp->if_snd))
2010 		nge_start(ifp);
2011 }
2012 
2013 /*
2014  * Stop the adapter and free any mbufs allocated to the
2015  * RX and TX lists.
2016  */
2017 static void
2018 nge_stop(struct nge_softc *sc)
2019 {
2020 	struct ifnet *ifp = &sc->arpcom.ac_if;
2021 	struct ifmedia_entry *ifm;
2022 	struct mii_data *mii;
2023 	int i, itmp, mtmp, dtmp;
2024 
2025 	ifp->if_timer = 0;
2026 	if (sc->nge_tbi)
2027 		mii = NULL;
2028 	else
2029 		mii = device_get_softc(sc->nge_miibus);
2030 
2031 	callout_stop(&sc->nge_stat_timer);
2032 	CSR_WRITE_4(sc, NGE_IER, 0);
2033 	CSR_WRITE_4(sc, NGE_IMR, 0);
2034 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
2035 	DELAY(1000);
2036 	CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0);
2037 	CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0);
2038 
2039 	/*
2040 	 * Isolate/power down the PHY, but leave the media selection
2041 	 * unchanged so that things will be put back to normal when
2042 	 * we bring the interface back up.
2043 	 */
2044 	itmp = ifp->if_flags;
2045 	ifp->if_flags |= IFF_UP;
2046 
2047 	if (sc->nge_tbi)
2048 		ifm = sc->nge_ifmedia.ifm_cur;
2049 	else
2050 		ifm = mii->mii_media.ifm_cur;
2051 
2052 	mtmp = ifm->ifm_media;
2053 	dtmp = ifm->ifm_data;
2054 	ifm->ifm_media = IFM_ETHER|IFM_NONE;
2055 	ifm->ifm_data = MII_MEDIA_NONE;
2056 
2057 	if (!sc->nge_tbi)
2058 		mii_mediachg(mii);
2059 	ifm->ifm_media = mtmp;
2060 	ifm->ifm_data = dtmp;
2061 	ifp->if_flags = itmp;
2062 
2063 	sc->nge_link = 0;
2064 
2065 	/*
2066 	 * Free data in the RX lists.
2067 	 */
2068 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
2069 		if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) {
2070 			m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf);
2071 			sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL;
2072 		}
2073 	}
2074 	bzero(&sc->nge_ldata->nge_rx_list,
2075 		sizeof(sc->nge_ldata->nge_rx_list));
2076 
2077 	/*
2078 	 * Free the TX list buffers.
2079 	 */
2080 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
2081 		if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) {
2082 			m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf);
2083 			sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL;
2084 		}
2085 	}
2086 
2087 	bzero(&sc->nge_ldata->nge_tx_list,
2088 		sizeof(sc->nge_ldata->nge_tx_list));
2089 
2090 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2091 }
2092 
2093 /*
2094  * Stop all chip I/O so that the kernel's probe routines don't
2095  * get confused by errant DMAs when rebooting.
2096  */
2097 static void
2098 nge_shutdown(device_t dev)
2099 {
2100 	struct nge_softc *sc = device_get_softc(dev);
2101 	struct ifnet *ifp = &sc->arpcom.ac_if;
2102 
2103 	lwkt_serialize_enter(ifp->if_serializer);
2104 	nge_reset(sc);
2105 	nge_stop(sc);
2106 	lwkt_serialize_exit(ifp->if_serializer);
2107 }
2108 
2109