xref: /dragonfly/sys/dev/netif/nge/if_nge.c (revision 984263bc)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/nge/if_nge.c,v 1.13.2.13 2003/02/05 22:03:57 mbr Exp $
34  */
35 
36 /*
37  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
38  * for FreeBSD. Datasheets are available from:
39  *
40  * http://www.national.com/ds/DP/DP83820.pdf
41  * http://www.national.com/ds/DP/DP83821.pdf
42  *
43  * These chips are used on several low cost gigabit ethernet NICs
44  * sold by D-Link, Addtron, SMC and Asante. Both parts are
45  * virtually the same, except the 83820 is a 64-bit/32-bit part,
46  * while the 83821 is 32-bit only.
47  *
48  * Many cards also use National gigE transceivers, such as the
49  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
50  * contains a full register description that applies to all of these
51  * components:
52  *
53  * http://www.national.com/ds/DP/DP83861.pdf
54  *
55  * Written by Bill Paul <wpaul@bsdi.com>
56  * BSDi Open Source Solutions
57  */
58 
59 /*
60  * The NatSemi DP83820 and 83821 controllers are enhanced versions
61  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
62  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
63  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
64  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
65  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
66  * matching buffers, one perfect address filter buffer and interrupt
67  * moderation. The 83820 supports both 64-bit and 32-bit addressing
68  * and data transfers: the 64-bit support can be toggled on or off
69  * via software. This affects the size of certain fields in the DMA
70  * descriptors.
71  *
72  * There are two bugs/misfeatures in the 83820/83821 that I have
73  * discovered so far:
74  *
75  * - Receive buffers must be aligned on 64-bit boundaries, which means
76  *   you must resort to copying data in order to fix up the payload
77  *   alignment.
78  *
79  * - In order to transmit jumbo frames larger than 8170 bytes, you have
80  *   to turn off transmit checksum offloading, because the chip can't
81  *   compute the checksum on an outgoing frame unless it fits entirely
82  *   within the TX FIFO, which is only 8192 bytes in size. If you have
83  *   TX checksum offload enabled and you transmit attempt to transmit a
84  *   frame larger than 8170 bytes, the transmitter will wedge.
85  *
86  * To work around the latter problem, TX checksum offload is disabled
87  * if the user selects an MTU larger than 8152 (8170 - 18).
88  */
89 
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/socket.h>
97 
98 #include <net/if.h>
99 #include <net/if_arp.h>
100 #include <net/ethernet.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103 #include <net/if_types.h>
104 #include <net/if_vlan_var.h>
105 
106 #include <net/bpf.h>
107 
108 #include <vm/vm.h>              /* for vtophys */
109 #include <vm/pmap.h>            /* for vtophys */
110 #include <machine/clock.h>      /* for DELAY */
111 #include <machine/bus_pio.h>
112 #include <machine/bus_memio.h>
113 #include <machine/bus.h>
114 #include <machine/resource.h>
115 #include <sys/bus.h>
116 #include <sys/rman.h>
117 
118 #include <dev/mii/mii.h>
119 #include <dev/mii/miivar.h>
120 
121 #include <pci/pcireg.h>
122 #include <pci/pcivar.h>
123 
124 #define NGE_USEIOSPACE
125 
126 #include <dev/nge/if_ngereg.h>
127 
128 MODULE_DEPEND(nge, miibus, 1, 1, 1);
129 
130 /* "controller miibus0" required.  See GENERIC if you get errors here. */
131 #include "miibus_if.h"
132 
133 #ifndef lint
134 static const char rcsid[] =
135   "$FreeBSD: src/sys/dev/nge/if_nge.c,v 1.13.2.13 2003/02/05 22:03:57 mbr Exp $";
136 #endif
137 
138 #define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
139 
140 /*
141  * Various supported device vendors/types and their names.
142  */
143 static struct nge_type nge_devs[] = {
144 	{ NGE_VENDORID, NGE_DEVICEID,
145 	    "National Semiconductor Gigabit Ethernet" },
146 	{ 0, 0, NULL }
147 };
148 
149 static int nge_probe		(device_t);
150 static int nge_attach		(device_t);
151 static int nge_detach		(device_t);
152 
153 static int nge_alloc_jumbo_mem	(struct nge_softc *);
154 static void nge_free_jumbo_mem	(struct nge_softc *);
155 static void *nge_jalloc		(struct nge_softc *);
156 static void nge_jfree		(caddr_t, u_int);
157 static void nge_jref		(caddr_t, u_int);
158 
159 static int nge_newbuf		(struct nge_softc *,
160 					struct nge_desc *, struct mbuf *);
161 static int nge_encap		(struct nge_softc *,
162 					struct mbuf *, u_int32_t *);
163 static void nge_rxeof		(struct nge_softc *);
164 static void nge_txeof		(struct nge_softc *);
165 static void nge_intr		(void *);
166 static void nge_tick		(void *);
167 static void nge_start		(struct ifnet *);
168 static int nge_ioctl		(struct ifnet *, u_long, caddr_t);
169 static void nge_init		(void *);
170 static void nge_stop		(struct nge_softc *);
171 static void nge_watchdog		(struct ifnet *);
172 static void nge_shutdown		(device_t);
173 static int nge_ifmedia_upd	(struct ifnet *);
174 static void nge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
175 
176 static void nge_delay		(struct nge_softc *);
177 static void nge_eeprom_idle	(struct nge_softc *);
178 static void nge_eeprom_putbyte	(struct nge_softc *, int);
179 static void nge_eeprom_getword	(struct nge_softc *, int, u_int16_t *);
180 static void nge_read_eeprom	(struct nge_softc *, caddr_t, int, int, int);
181 
182 static void nge_mii_sync	(struct nge_softc *);
183 static void nge_mii_send	(struct nge_softc *, u_int32_t, int);
184 static int nge_mii_readreg	(struct nge_softc *, struct nge_mii_frame *);
185 static int nge_mii_writereg	(struct nge_softc *, struct nge_mii_frame *);
186 
187 static int nge_miibus_readreg	(device_t, int, int);
188 static int nge_miibus_writereg	(device_t, int, int, int);
189 static void nge_miibus_statchg	(device_t);
190 
191 static void nge_setmulti	(struct nge_softc *);
192 static u_int32_t nge_crc	(struct nge_softc *, caddr_t);
193 static void nge_reset		(struct nge_softc *);
194 static int nge_list_rx_init	(struct nge_softc *);
195 static int nge_list_tx_init	(struct nge_softc *);
196 
197 #ifdef NGE_USEIOSPACE
198 #define NGE_RES			SYS_RES_IOPORT
199 #define NGE_RID			NGE_PCI_LOIO
200 #else
201 #define NGE_RES			SYS_RES_MEMORY
202 #define NGE_RID			NGE_PCI_LOMEM
203 #endif
204 
205 static device_method_t nge_methods[] = {
206 	/* Device interface */
207 	DEVMETHOD(device_probe,		nge_probe),
208 	DEVMETHOD(device_attach,	nge_attach),
209 	DEVMETHOD(device_detach,	nge_detach),
210 	DEVMETHOD(device_shutdown,	nge_shutdown),
211 
212 	/* bus interface */
213 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
214 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
215 
216 	/* MII interface */
217 	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
218 	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
219 	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
220 
221 	{ 0, 0 }
222 };
223 
224 static driver_t nge_driver = {
225 	"nge",
226 	nge_methods,
227 	sizeof(struct nge_softc)
228 };
229 
230 static devclass_t nge_devclass;
231 
232 DRIVER_MODULE(if_nge, pci, nge_driver, nge_devclass, 0, 0);
233 DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
234 
235 #define NGE_SETBIT(sc, reg, x)				\
236 	CSR_WRITE_4(sc, reg,				\
237 		CSR_READ_4(sc, reg) | (x))
238 
239 #define NGE_CLRBIT(sc, reg, x)				\
240 	CSR_WRITE_4(sc, reg,				\
241 		CSR_READ_4(sc, reg) & ~(x))
242 
243 #define SIO_SET(x)					\
244 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | x)
245 
246 #define SIO_CLR(x)					\
247 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~x)
248 
249 static void nge_delay(sc)
250 	struct nge_softc	*sc;
251 {
252 	int			idx;
253 
254 	for (idx = (300 / 33) + 1; idx > 0; idx--)
255 		CSR_READ_4(sc, NGE_CSR);
256 
257 	return;
258 }
259 
260 static void nge_eeprom_idle(sc)
261 	struct nge_softc	*sc;
262 {
263 	register int		i;
264 
265 	SIO_SET(NGE_MEAR_EE_CSEL);
266 	nge_delay(sc);
267 	SIO_SET(NGE_MEAR_EE_CLK);
268 	nge_delay(sc);
269 
270 	for (i = 0; i < 25; i++) {
271 		SIO_CLR(NGE_MEAR_EE_CLK);
272 		nge_delay(sc);
273 		SIO_SET(NGE_MEAR_EE_CLK);
274 		nge_delay(sc);
275 	}
276 
277 	SIO_CLR(NGE_MEAR_EE_CLK);
278 	nge_delay(sc);
279 	SIO_CLR(NGE_MEAR_EE_CSEL);
280 	nge_delay(sc);
281 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
282 
283 	return;
284 }
285 
286 /*
287  * Send a read command and address to the EEPROM, check for ACK.
288  */
289 static void nge_eeprom_putbyte(sc, addr)
290 	struct nge_softc	*sc;
291 	int			addr;
292 {
293 	register int		d, i;
294 
295 	d = addr | NGE_EECMD_READ;
296 
297 	/*
298 	 * Feed in each bit and stobe the clock.
299 	 */
300 	for (i = 0x400; i; i >>= 1) {
301 		if (d & i) {
302 			SIO_SET(NGE_MEAR_EE_DIN);
303 		} else {
304 			SIO_CLR(NGE_MEAR_EE_DIN);
305 		}
306 		nge_delay(sc);
307 		SIO_SET(NGE_MEAR_EE_CLK);
308 		nge_delay(sc);
309 		SIO_CLR(NGE_MEAR_EE_CLK);
310 		nge_delay(sc);
311 	}
312 
313 	return;
314 }
315 
316 /*
317  * Read a word of data stored in the EEPROM at address 'addr.'
318  */
319 static void nge_eeprom_getword(sc, addr, dest)
320 	struct nge_softc	*sc;
321 	int			addr;
322 	u_int16_t		*dest;
323 {
324 	register int		i;
325 	u_int16_t		word = 0;
326 
327 	/* Force EEPROM to idle state. */
328 	nge_eeprom_idle(sc);
329 
330 	/* Enter EEPROM access mode. */
331 	nge_delay(sc);
332 	SIO_CLR(NGE_MEAR_EE_CLK);
333 	nge_delay(sc);
334 	SIO_SET(NGE_MEAR_EE_CSEL);
335 	nge_delay(sc);
336 
337 	/*
338 	 * Send address of word we want to read.
339 	 */
340 	nge_eeprom_putbyte(sc, addr);
341 
342 	/*
343 	 * Start reading bits from EEPROM.
344 	 */
345 	for (i = 0x8000; i; i >>= 1) {
346 		SIO_SET(NGE_MEAR_EE_CLK);
347 		nge_delay(sc);
348 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
349 			word |= i;
350 		nge_delay(sc);
351 		SIO_CLR(NGE_MEAR_EE_CLK);
352 		nge_delay(sc);
353 	}
354 
355 	/* Turn off EEPROM access mode. */
356 	nge_eeprom_idle(sc);
357 
358 	*dest = word;
359 
360 	return;
361 }
362 
363 /*
364  * Read a sequence of words from the EEPROM.
365  */
366 static void nge_read_eeprom(sc, dest, off, cnt, swap)
367 	struct nge_softc	*sc;
368 	caddr_t			dest;
369 	int			off;
370 	int			cnt;
371 	int			swap;
372 {
373 	int			i;
374 	u_int16_t		word = 0, *ptr;
375 
376 	for (i = 0; i < cnt; i++) {
377 		nge_eeprom_getword(sc, off + i, &word);
378 		ptr = (u_int16_t *)(dest + (i * 2));
379 		if (swap)
380 			*ptr = ntohs(word);
381 		else
382 			*ptr = word;
383 	}
384 
385 	return;
386 }
387 
388 /*
389  * Sync the PHYs by setting data bit and strobing the clock 32 times.
390  */
391 static void nge_mii_sync(sc)
392 	struct nge_softc		*sc;
393 {
394 	register int		i;
395 
396 	SIO_SET(NGE_MEAR_MII_DIR|NGE_MEAR_MII_DATA);
397 
398 	for (i = 0; i < 32; i++) {
399 		SIO_SET(NGE_MEAR_MII_CLK);
400 		DELAY(1);
401 		SIO_CLR(NGE_MEAR_MII_CLK);
402 		DELAY(1);
403 	}
404 
405 	return;
406 }
407 
408 /*
409  * Clock a series of bits through the MII.
410  */
411 static void nge_mii_send(sc, bits, cnt)
412 	struct nge_softc		*sc;
413 	u_int32_t		bits;
414 	int			cnt;
415 {
416 	int			i;
417 
418 	SIO_CLR(NGE_MEAR_MII_CLK);
419 
420 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
421                 if (bits & i) {
422 			SIO_SET(NGE_MEAR_MII_DATA);
423                 } else {
424 			SIO_CLR(NGE_MEAR_MII_DATA);
425                 }
426 		DELAY(1);
427 		SIO_CLR(NGE_MEAR_MII_CLK);
428 		DELAY(1);
429 		SIO_SET(NGE_MEAR_MII_CLK);
430 	}
431 }
432 
433 /*
434  * Read an PHY register through the MII.
435  */
436 static int nge_mii_readreg(sc, frame)
437 	struct nge_softc		*sc;
438 	struct nge_mii_frame	*frame;
439 
440 {
441 	int			i, ack, s;
442 
443 	s = splimp();
444 
445 	/*
446 	 * Set up frame for RX.
447 	 */
448 	frame->mii_stdelim = NGE_MII_STARTDELIM;
449 	frame->mii_opcode = NGE_MII_READOP;
450 	frame->mii_turnaround = 0;
451 	frame->mii_data = 0;
452 
453 	CSR_WRITE_4(sc, NGE_MEAR, 0);
454 
455 	/*
456  	 * Turn on data xmit.
457 	 */
458 	SIO_SET(NGE_MEAR_MII_DIR);
459 
460 	nge_mii_sync(sc);
461 
462 	/*
463 	 * Send command/address info.
464 	 */
465 	nge_mii_send(sc, frame->mii_stdelim, 2);
466 	nge_mii_send(sc, frame->mii_opcode, 2);
467 	nge_mii_send(sc, frame->mii_phyaddr, 5);
468 	nge_mii_send(sc, frame->mii_regaddr, 5);
469 
470 	/* Idle bit */
471 	SIO_CLR((NGE_MEAR_MII_CLK|NGE_MEAR_MII_DATA));
472 	DELAY(1);
473 	SIO_SET(NGE_MEAR_MII_CLK);
474 	DELAY(1);
475 
476 	/* Turn off xmit. */
477 	SIO_CLR(NGE_MEAR_MII_DIR);
478 	/* Check for ack */
479 	SIO_CLR(NGE_MEAR_MII_CLK);
480 	DELAY(1);
481 	ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
482 	SIO_SET(NGE_MEAR_MII_CLK);
483 	DELAY(1);
484 
485 	/*
486 	 * Now try reading data bits. If the ack failed, we still
487 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
488 	 */
489 	if (ack) {
490 		for(i = 0; i < 16; i++) {
491 			SIO_CLR(NGE_MEAR_MII_CLK);
492 			DELAY(1);
493 			SIO_SET(NGE_MEAR_MII_CLK);
494 			DELAY(1);
495 		}
496 		goto fail;
497 	}
498 
499 	for (i = 0x8000; i; i >>= 1) {
500 		SIO_CLR(NGE_MEAR_MII_CLK);
501 		DELAY(1);
502 		if (!ack) {
503 			if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
504 				frame->mii_data |= i;
505 			DELAY(1);
506 		}
507 		SIO_SET(NGE_MEAR_MII_CLK);
508 		DELAY(1);
509 	}
510 
511 fail:
512 
513 	SIO_CLR(NGE_MEAR_MII_CLK);
514 	DELAY(1);
515 	SIO_SET(NGE_MEAR_MII_CLK);
516 	DELAY(1);
517 
518 	splx(s);
519 
520 	if (ack)
521 		return(1);
522 	return(0);
523 }
524 
525 /*
526  * Write to a PHY register through the MII.
527  */
528 static int nge_mii_writereg(sc, frame)
529 	struct nge_softc		*sc;
530 	struct nge_mii_frame	*frame;
531 
532 {
533 	int			s;
534 
535 	s = splimp();
536 	/*
537 	 * Set up frame for TX.
538 	 */
539 
540 	frame->mii_stdelim = NGE_MII_STARTDELIM;
541 	frame->mii_opcode = NGE_MII_WRITEOP;
542 	frame->mii_turnaround = NGE_MII_TURNAROUND;
543 
544 	/*
545  	 * Turn on data output.
546 	 */
547 	SIO_SET(NGE_MEAR_MII_DIR);
548 
549 	nge_mii_sync(sc);
550 
551 	nge_mii_send(sc, frame->mii_stdelim, 2);
552 	nge_mii_send(sc, frame->mii_opcode, 2);
553 	nge_mii_send(sc, frame->mii_phyaddr, 5);
554 	nge_mii_send(sc, frame->mii_regaddr, 5);
555 	nge_mii_send(sc, frame->mii_turnaround, 2);
556 	nge_mii_send(sc, frame->mii_data, 16);
557 
558 	/* Idle bit. */
559 	SIO_SET(NGE_MEAR_MII_CLK);
560 	DELAY(1);
561 	SIO_CLR(NGE_MEAR_MII_CLK);
562 	DELAY(1);
563 
564 	/*
565 	 * Turn off xmit.
566 	 */
567 	SIO_CLR(NGE_MEAR_MII_DIR);
568 
569 	splx(s);
570 
571 	return(0);
572 }
573 
574 static int nge_miibus_readreg(dev, phy, reg)
575 	device_t		dev;
576 	int			phy, reg;
577 {
578 	struct nge_softc	*sc;
579 	struct nge_mii_frame	frame;
580 
581 	sc = device_get_softc(dev);
582 
583 	bzero((char *)&frame, sizeof(frame));
584 
585 	frame.mii_phyaddr = phy;
586 	frame.mii_regaddr = reg;
587 	nge_mii_readreg(sc, &frame);
588 
589 	return(frame.mii_data);
590 }
591 
592 static int nge_miibus_writereg(dev, phy, reg, data)
593 	device_t		dev;
594 	int			phy, reg, data;
595 {
596 	struct nge_softc	*sc;
597 	struct nge_mii_frame	frame;
598 
599 	sc = device_get_softc(dev);
600 
601 	bzero((char *)&frame, sizeof(frame));
602 
603 	frame.mii_phyaddr = phy;
604 	frame.mii_regaddr = reg;
605 	frame.mii_data = data;
606 	nge_mii_writereg(sc, &frame);
607 
608 	return(0);
609 }
610 
611 static void nge_miibus_statchg(dev)
612 	device_t		dev;
613 {
614 	int			status;
615 	struct nge_softc	*sc;
616 	struct mii_data		*mii;
617 
618 	sc = device_get_softc(dev);
619 	if (sc->nge_tbi) {
620 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
621 		    == IFM_AUTO) {
622 			status = CSR_READ_4(sc, NGE_TBI_ANLPAR);
623 			if (status == 0 || status & NGE_TBIANAR_FDX) {
624 				NGE_SETBIT(sc, NGE_TX_CFG,
625 				    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
626 				NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
627 			} else {
628 				NGE_CLRBIT(sc, NGE_TX_CFG,
629 				    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
630 				NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
631 			}
632 
633 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
634 			!= IFM_FDX) {
635 			NGE_CLRBIT(sc, NGE_TX_CFG,
636 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
637 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
638 		} else {
639 			NGE_SETBIT(sc, NGE_TX_CFG,
640 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
641 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
642 		}
643 	} else {
644 		mii = device_get_softc(sc->nge_miibus);
645 
646 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
647 		        NGE_SETBIT(sc, NGE_TX_CFG,
648 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
649 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
650 		} else {
651 			NGE_CLRBIT(sc, NGE_TX_CFG,
652 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
653 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
654 		}
655 
656 		/* If we have a 1000Mbps link, set the mode_1000 bit. */
657 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_TX ||
658 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
659 			NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
660 		} else {
661 			NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
662 		}
663 	}
664 	return;
665 }
666 
667 static u_int32_t nge_crc(sc, addr)
668 	struct nge_softc	*sc;
669 	caddr_t			addr;
670 {
671 	u_int32_t		crc, carry;
672 	int			i, j;
673 	u_int8_t		c;
674 
675 	/* Compute CRC for the address value. */
676 	crc = 0xFFFFFFFF; /* initial value */
677 
678 	for (i = 0; i < 6; i++) {
679 		c = *(addr + i);
680 		for (j = 0; j < 8; j++) {
681 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
682 			crc <<= 1;
683 			c >>= 1;
684 			if (carry)
685 				crc = (crc ^ 0x04c11db6) | carry;
686 		}
687 	}
688 
689 	/*
690 	 * return the filter bit position
691 	 */
692 
693 	return((crc >> 21) & 0x00000FFF);
694 }
695 
696 static void nge_setmulti(sc)
697 	struct nge_softc	*sc;
698 {
699 	struct ifnet		*ifp;
700 	struct ifmultiaddr	*ifma;
701 	u_int32_t		h = 0, i, filtsave;
702 	int			bit, index;
703 
704 	ifp = &sc->arpcom.ac_if;
705 
706 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
707 		NGE_CLRBIT(sc, NGE_RXFILT_CTL,
708 		    NGE_RXFILTCTL_MCHASH|NGE_RXFILTCTL_UCHASH);
709 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI);
710 		return;
711 	}
712 
713 	/*
714 	 * We have to explicitly enable the multicast hash table
715 	 * on the NatSemi chip if we want to use it, which we do.
716 	 * We also have to tell it that we don't want to use the
717 	 * hash table for matching unicast addresses.
718 	 */
719 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH);
720 	NGE_CLRBIT(sc, NGE_RXFILT_CTL,
721 	    NGE_RXFILTCTL_ALLMULTI|NGE_RXFILTCTL_UCHASH);
722 
723 	filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL);
724 
725 	/* first, zot all the existing hash bits */
726 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
727 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
728 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
729 	}
730 
731 	/*
732 	 * From the 11 bits returned by the crc routine, the top 7
733 	 * bits represent the 16-bit word in the mcast hash table
734 	 * that needs to be updated, and the lower 4 bits represent
735 	 * which bit within that byte needs to be set.
736 	 */
737 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
738 		if (ifma->ifma_addr->sa_family != AF_LINK)
739 			continue;
740 		h = nge_crc(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
741 		index = (h >> 4) & 0x7F;
742 		bit = h & 0xF;
743 		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
744 		    NGE_FILTADDR_MCAST_LO + (index * 2));
745 		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
746 	}
747 
748 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave);
749 
750 	return;
751 }
752 
753 static void nge_reset(sc)
754 	struct nge_softc	*sc;
755 {
756 	register int		i;
757 
758 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
759 
760 	for (i = 0; i < NGE_TIMEOUT; i++) {
761 		if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
762 			break;
763 	}
764 
765 	if (i == NGE_TIMEOUT)
766 		printf("nge%d: reset never completed\n", sc->nge_unit);
767 
768 	/* Wait a little while for the chip to get its brains in order. */
769 	DELAY(1000);
770 
771 	/*
772 	 * If this is a NetSemi chip, make sure to clear
773 	 * PME mode.
774 	 */
775 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
776 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
777 
778         return;
779 }
780 
781 /*
782  * Probe for an NatSemi chip. Check the PCI vendor and device
783  * IDs against our list and return a device name if we find a match.
784  */
785 static int nge_probe(dev)
786 	device_t		dev;
787 {
788 	struct nge_type		*t;
789 
790 	t = nge_devs;
791 
792 	while(t->nge_name != NULL) {
793 		if ((pci_get_vendor(dev) == t->nge_vid) &&
794 		    (pci_get_device(dev) == t->nge_did)) {
795 			device_set_desc(dev, t->nge_name);
796 			return(0);
797 		}
798 		t++;
799 	}
800 
801 	return(ENXIO);
802 }
803 
804 /*
805  * Attach the interface. Allocate softc structures, do ifmedia
806  * setup and ethernet/BPF attach.
807  */
808 static int nge_attach(dev)
809 	device_t		dev;
810 {
811 	int			s;
812 	u_char			eaddr[ETHER_ADDR_LEN];
813 	u_int32_t		command;
814 	struct nge_softc	*sc;
815 	struct ifnet		*ifp;
816 	int			unit, error = 0, rid;
817 	const char		*sep = "";
818 
819 	s = splimp();
820 
821 	sc = device_get_softc(dev);
822 	unit = device_get_unit(dev);
823 	bzero(sc, sizeof(struct nge_softc));
824 
825 	/*
826 	 * Handle power management nonsense.
827 	 */
828 
829 
830 	command = pci_read_config(dev, NGE_PCI_CAPID, 4) & 0x000000FF;
831 	if (command == 0x01) {
832 
833 		command = pci_read_config(dev, NGE_PCI_PWRMGMTCTRL, 4);
834 		if (command & NGE_PSTATE_MASK) {
835 			u_int32_t		iobase, membase, irq;
836 
837 			/* Save important PCI config data. */
838 			iobase = pci_read_config(dev, NGE_PCI_LOIO, 4);
839 			membase = pci_read_config(dev, NGE_PCI_LOMEM, 4);
840 			irq = pci_read_config(dev, NGE_PCI_INTLINE, 4);
841 
842 			/* Reset the power state. */
843 			printf("nge%d: chip is in D%d power mode "
844 			"-- setting to D0\n", unit, command & NGE_PSTATE_MASK);
845 			command &= 0xFFFFFFFC;
846 			pci_write_config(dev, NGE_PCI_PWRMGMTCTRL, command, 4);
847 
848 			/* Restore PCI config data. */
849 			pci_write_config(dev, NGE_PCI_LOIO, iobase, 4);
850 			pci_write_config(dev, NGE_PCI_LOMEM, membase, 4);
851 			pci_write_config(dev, NGE_PCI_INTLINE, irq, 4);
852 		}
853 	}
854 
855 	/*
856 	 * Map control/status registers.
857 	 */
858 	command = pci_read_config(dev, PCIR_COMMAND, 4);
859 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
860 	pci_write_config(dev, PCIR_COMMAND, command, 4);
861 	command = pci_read_config(dev, PCIR_COMMAND, 4);
862 
863 #ifdef NGE_USEIOSPACE
864 	if (!(command & PCIM_CMD_PORTEN)) {
865 		printf("nge%d: failed to enable I/O ports!\n", unit);
866 		error = ENXIO;;
867 		goto fail;
868 	}
869 #else
870 	if (!(command & PCIM_CMD_MEMEN)) {
871 		printf("nge%d: failed to enable memory mapping!\n", unit);
872 		error = ENXIO;;
873 		goto fail;
874 	}
875 #endif
876 
877 	rid = NGE_RID;
878 	sc->nge_res = bus_alloc_resource(dev, NGE_RES, &rid,
879 	    0, ~0, 1, RF_ACTIVE);
880 
881 	if (sc->nge_res == NULL) {
882 		printf("nge%d: couldn't map ports/memory\n", unit);
883 		error = ENXIO;
884 		goto fail;
885 	}
886 
887 	sc->nge_btag = rman_get_bustag(sc->nge_res);
888 	sc->nge_bhandle = rman_get_bushandle(sc->nge_res);
889 
890 	/* Allocate interrupt */
891 	rid = 0;
892 	sc->nge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
893 	    RF_SHAREABLE | RF_ACTIVE);
894 
895 	if (sc->nge_irq == NULL) {
896 		printf("nge%d: couldn't map interrupt\n", unit);
897 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
898 		error = ENXIO;
899 		goto fail;
900 	}
901 
902 	error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET,
903 	    nge_intr, sc, &sc->nge_intrhand);
904 
905 	if (error) {
906 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
907 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
908 		printf("nge%d: couldn't set up irq\n", unit);
909 		goto fail;
910 	}
911 
912 	/* Reset the adapter. */
913 	nge_reset(sc);
914 
915 	/*
916 	 * Get station address from the EEPROM.
917 	 */
918 	nge_read_eeprom(sc, (caddr_t)&eaddr[4], NGE_EE_NODEADDR, 1, 0);
919 	nge_read_eeprom(sc, (caddr_t)&eaddr[2], NGE_EE_NODEADDR + 1, 1, 0);
920 	nge_read_eeprom(sc, (caddr_t)&eaddr[0], NGE_EE_NODEADDR + 2, 1, 0);
921 
922 	/*
923 	 * A NatSemi chip was detected. Inform the world.
924 	 */
925 	printf("nge%d: Ethernet address: %6D\n", unit, eaddr, ":");
926 
927 	sc->nge_unit = unit;
928 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
929 
930 	sc->nge_ldata = contigmalloc(sizeof(struct nge_list_data), M_DEVBUF,
931 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
932 
933 	if (sc->nge_ldata == NULL) {
934 		printf("nge%d: no memory for list buffers!\n", unit);
935 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
936 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
937 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
938 		error = ENXIO;
939 		goto fail;
940 	}
941 	bzero(sc->nge_ldata, sizeof(struct nge_list_data));
942 
943 	/* Try to allocate memory for jumbo buffers. */
944 	if (nge_alloc_jumbo_mem(sc)) {
945 		printf("nge%d: jumbo buffer allocation failed\n",
946                     sc->nge_unit);
947 		contigfree(sc->nge_ldata,
948 		    sizeof(struct nge_list_data), M_DEVBUF);
949 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
950 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
951 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
952 		error = ENXIO;
953 		goto fail;
954 	}
955 
956 	ifp = &sc->arpcom.ac_if;
957 	ifp->if_softc = sc;
958 	ifp->if_unit = unit;
959 	ifp->if_name = "nge";
960 	ifp->if_mtu = ETHERMTU;
961 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
962 	ifp->if_ioctl = nge_ioctl;
963 	ifp->if_output = ether_output;
964 	ifp->if_start = nge_start;
965 	ifp->if_watchdog = nge_watchdog;
966 	ifp->if_init = nge_init;
967 	ifp->if_baudrate = 1000000000;
968 	ifp->if_snd.ifq_maxlen = NGE_TX_LIST_CNT - 1;
969 	ifp->if_hwassist = NGE_CSUM_FEATURES;
970 	ifp->if_capabilities = IFCAP_HWCSUM;
971 	ifp->if_capenable = ifp->if_capabilities;
972 
973 	/*
974 	 * Do MII setup.
975 	 */
976 	if (mii_phy_probe(dev, &sc->nge_miibus,
977 			  nge_ifmedia_upd, nge_ifmedia_sts)) {
978 		if (CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) {
979 			sc->nge_tbi = 1;
980 			device_printf(dev, "Using TBI\n");
981 
982 			sc->nge_miibus = dev;
983 
984 			ifmedia_init(&sc->nge_ifmedia, 0, nge_ifmedia_upd,
985 				nge_ifmedia_sts);
986 #define	ADD(m, c)	ifmedia_add(&sc->nge_ifmedia, (m), (c), NULL)
987 #define PRINT(s)	printf("%s%s", sep, s); sep = ", "
988 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_NONE, 0, 0), 0);
989 			device_printf(dev, " ");
990 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, 0, 0), 0);
991 			PRINT("1000baseSX");
992 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, IFM_FDX, 0),0);
993 			PRINT("1000baseSX-FDX");
994 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0), 0);
995 			PRINT("auto");
996 
997 			printf("\n");
998 #undef ADD
999 #undef PRINT
1000 			ifmedia_set(&sc->nge_ifmedia,
1001 				IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0));
1002 
1003 			CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1004 				| NGE_GPIO_GP4_OUT
1005 				| NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
1006 				| NGE_GPIO_GP3_OUTENB
1007 				| NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
1008 
1009 		} else {
1010 			printf("nge%d: MII without any PHY!\n", sc->nge_unit);
1011 			nge_free_jumbo_mem(sc);
1012 			bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
1013 			bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
1014 			bus_release_resource(dev, NGE_RES, NGE_RID,
1015 					 sc->nge_res);
1016 			error = ENXIO;
1017 			goto fail;
1018 		}
1019 	}
1020 
1021 	/*
1022 	 * Call MI attach routine.
1023 	 */
1024 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
1025 	callout_handle_init(&sc->nge_stat_ch);
1026 
1027 fail:
1028 
1029 	splx(s);
1030 	return(error);
1031 }
1032 
1033 static int nge_detach(dev)
1034 	device_t		dev;
1035 {
1036 	struct nge_softc	*sc;
1037 	struct ifnet		*ifp;
1038 	int			s;
1039 
1040 	s = splimp();
1041 
1042 	sc = device_get_softc(dev);
1043 	ifp = &sc->arpcom.ac_if;
1044 
1045 	nge_reset(sc);
1046 	nge_stop(sc);
1047 	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
1048 
1049 	bus_generic_detach(dev);
1050 	if (!sc->nge_tbi) {
1051 		device_delete_child(dev, sc->nge_miibus);
1052 	}
1053 	bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
1054 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
1055 	bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
1056 
1057 	contigfree(sc->nge_ldata, sizeof(struct nge_list_data), M_DEVBUF);
1058 	nge_free_jumbo_mem(sc);
1059 
1060 	splx(s);
1061 
1062 	return(0);
1063 }
1064 
1065 /*
1066  * Initialize the transmit descriptors.
1067  */
1068 static int nge_list_tx_init(sc)
1069 	struct nge_softc	*sc;
1070 {
1071 	struct nge_list_data	*ld;
1072 	struct nge_ring_data	*cd;
1073 	int			i;
1074 
1075 	cd = &sc->nge_cdata;
1076 	ld = sc->nge_ldata;
1077 
1078 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
1079 		if (i == (NGE_TX_LIST_CNT - 1)) {
1080 			ld->nge_tx_list[i].nge_nextdesc =
1081 			    &ld->nge_tx_list[0];
1082 			ld->nge_tx_list[i].nge_next =
1083 			    vtophys(&ld->nge_tx_list[0]);
1084 		} else {
1085 			ld->nge_tx_list[i].nge_nextdesc =
1086 			    &ld->nge_tx_list[i + 1];
1087 			ld->nge_tx_list[i].nge_next =
1088 			    vtophys(&ld->nge_tx_list[i + 1]);
1089 		}
1090 		ld->nge_tx_list[i].nge_mbuf = NULL;
1091 		ld->nge_tx_list[i].nge_ptr = 0;
1092 		ld->nge_tx_list[i].nge_ctl = 0;
1093 	}
1094 
1095 	cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0;
1096 
1097 	return(0);
1098 }
1099 
1100 
1101 /*
1102  * Initialize the RX descriptors and allocate mbufs for them. Note that
1103  * we arrange the descriptors in a closed ring, so that the last descriptor
1104  * points back to the first.
1105  */
1106 static int nge_list_rx_init(sc)
1107 	struct nge_softc	*sc;
1108 {
1109 	struct nge_list_data	*ld;
1110 	struct nge_ring_data	*cd;
1111 	int			i;
1112 
1113 	ld = sc->nge_ldata;
1114 	cd = &sc->nge_cdata;
1115 
1116 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
1117 		if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS)
1118 			return(ENOBUFS);
1119 		if (i == (NGE_RX_LIST_CNT - 1)) {
1120 			ld->nge_rx_list[i].nge_nextdesc =
1121 			    &ld->nge_rx_list[0];
1122 			ld->nge_rx_list[i].nge_next =
1123 			    vtophys(&ld->nge_rx_list[0]);
1124 		} else {
1125 			ld->nge_rx_list[i].nge_nextdesc =
1126 			    &ld->nge_rx_list[i + 1];
1127 			ld->nge_rx_list[i].nge_next =
1128 			    vtophys(&ld->nge_rx_list[i + 1]);
1129 		}
1130 	}
1131 
1132 	cd->nge_rx_prod = 0;
1133 
1134 	return(0);
1135 }
1136 
1137 /*
1138  * Initialize an RX descriptor and attach an MBUF cluster.
1139  */
1140 static int nge_newbuf(sc, c, m)
1141 	struct nge_softc	*sc;
1142 	struct nge_desc		*c;
1143 	struct mbuf		*m;
1144 {
1145 	struct mbuf		*m_new = NULL;
1146 	caddr_t			*buf = NULL;
1147 
1148 	if (m == NULL) {
1149 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1150 		if (m_new == NULL) {
1151 			printf("nge%d: no memory for rx list "
1152 			    "-- packet dropped!\n", sc->nge_unit);
1153 			return(ENOBUFS);
1154 		}
1155 
1156 		/* Allocate the jumbo buffer */
1157 		buf = nge_jalloc(sc);
1158 		if (buf == NULL) {
1159 #ifdef NGE_VERBOSE
1160 			printf("nge%d: jumbo allocation failed "
1161 			    "-- packet dropped!\n", sc->nge_unit);
1162 #endif
1163 			m_freem(m_new);
1164 			return(ENOBUFS);
1165 		}
1166 		/* Attach the buffer to the mbuf */
1167 		m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
1168 		m_new->m_flags |= M_EXT;
1169 		m_new->m_ext.ext_size = m_new->m_pkthdr.len =
1170 		    m_new->m_len = NGE_MCLBYTES;
1171 		m_new->m_ext.ext_free = nge_jfree;
1172 		m_new->m_ext.ext_ref = nge_jref;
1173 	} else {
1174 		m_new = m;
1175 		m_new->m_len = m_new->m_pkthdr.len = NGE_MCLBYTES;
1176 		m_new->m_data = m_new->m_ext.ext_buf;
1177 	}
1178 
1179 	m_adj(m_new, sizeof(u_int64_t));
1180 
1181 	c->nge_mbuf = m_new;
1182 	c->nge_ptr = vtophys(mtod(m_new, caddr_t));
1183 	c->nge_ctl = m_new->m_len;
1184 	c->nge_extsts = 0;
1185 
1186 	return(0);
1187 }
1188 
1189 static int nge_alloc_jumbo_mem(sc)
1190 	struct nge_softc	*sc;
1191 {
1192 	caddr_t			ptr;
1193 	register int		i;
1194 	struct nge_jpool_entry   *entry;
1195 
1196 	/* Grab a big chunk o' storage. */
1197 	sc->nge_cdata.nge_jumbo_buf = contigmalloc(NGE_JMEM, M_DEVBUF,
1198 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1199 
1200 	if (sc->nge_cdata.nge_jumbo_buf == NULL) {
1201 		printf("nge%d: no memory for jumbo buffers!\n", sc->nge_unit);
1202 		return(ENOBUFS);
1203 	}
1204 
1205 	SLIST_INIT(&sc->nge_jfree_listhead);
1206 	SLIST_INIT(&sc->nge_jinuse_listhead);
1207 
1208 	/*
1209 	 * Now divide it up into 9K pieces and save the addresses
1210 	 * in an array.
1211 	 */
1212 	ptr = sc->nge_cdata.nge_jumbo_buf;
1213 	for (i = 0; i < NGE_JSLOTS; i++) {
1214 		u_int64_t		**aptr;
1215 		aptr = (u_int64_t **)ptr;
1216 		aptr[0] = (u_int64_t *)sc;
1217 		ptr += sizeof(u_int64_t);
1218 		sc->nge_cdata.nge_jslots[i].nge_buf = ptr;
1219 		sc->nge_cdata.nge_jslots[i].nge_inuse = 0;
1220 		ptr += NGE_MCLBYTES;
1221 		entry = malloc(sizeof(struct nge_jpool_entry),
1222 		    M_DEVBUF, M_NOWAIT);
1223 		if (entry == NULL) {
1224 			printf("nge%d: no memory for jumbo "
1225 			    "buffer queue!\n", sc->nge_unit);
1226 			return(ENOBUFS);
1227 		}
1228 		entry->slot = i;
1229 		SLIST_INSERT_HEAD(&sc->nge_jfree_listhead,
1230 		    entry, jpool_entries);
1231 	}
1232 
1233 	return(0);
1234 }
1235 
1236 static void nge_free_jumbo_mem(sc)
1237 	struct nge_softc	*sc;
1238 {
1239 	register int		i;
1240 	struct nge_jpool_entry   *entry;
1241 
1242 	for (i = 0; i < NGE_JSLOTS; i++) {
1243 		entry = SLIST_FIRST(&sc->nge_jfree_listhead);
1244 		SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jpool_entries);
1245 		free(entry, M_DEVBUF);
1246 	}
1247 
1248 	contigfree(sc->nge_cdata.nge_jumbo_buf, NGE_JMEM, M_DEVBUF);
1249 
1250 	return;
1251 }
1252 
1253 /*
1254  * Allocate a jumbo buffer.
1255  */
1256 static void *nge_jalloc(sc)
1257 	struct nge_softc	*sc;
1258 {
1259 	struct nge_jpool_entry   *entry;
1260 
1261 	entry = SLIST_FIRST(&sc->nge_jfree_listhead);
1262 
1263 	if (entry == NULL) {
1264 #ifdef NGE_VERBOSE
1265 		printf("nge%d: no free jumbo buffers\n", sc->nge_unit);
1266 #endif
1267 		return(NULL);
1268 	}
1269 
1270 	SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jpool_entries);
1271 	SLIST_INSERT_HEAD(&sc->nge_jinuse_listhead, entry, jpool_entries);
1272 	sc->nge_cdata.nge_jslots[entry->slot].nge_inuse = 1;
1273 	return(sc->nge_cdata.nge_jslots[entry->slot].nge_buf);
1274 }
1275 
1276 /*
1277  * Adjust usage count on a jumbo buffer. In general this doesn't
1278  * get used much because our jumbo buffers don't get passed around
1279  * a lot, but it's implemented for correctness.
1280  */
1281 static void nge_jref(buf, size)
1282 	caddr_t			buf;
1283 	u_int			size;
1284 {
1285 	struct nge_softc	*sc;
1286 	u_int64_t		**aptr;
1287 	register int		i;
1288 
1289 	/* Extract the softc struct pointer. */
1290 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
1291 	sc = (struct nge_softc *)(aptr[0]);
1292 
1293 	if (sc == NULL)
1294 		panic("nge_jref: can't find softc pointer!");
1295 
1296 	if (size != NGE_MCLBYTES)
1297 		panic("nge_jref: adjusting refcount of buf of wrong size!");
1298 
1299 	/* calculate the slot this buffer belongs to */
1300 
1301 	i = ((vm_offset_t)aptr
1302 	     - (vm_offset_t)sc->nge_cdata.nge_jumbo_buf) / NGE_JLEN;
1303 
1304 	if ((i < 0) || (i >= NGE_JSLOTS))
1305 		panic("nge_jref: asked to reference buffer "
1306 		    "that we don't manage!");
1307 	else if (sc->nge_cdata.nge_jslots[i].nge_inuse == 0)
1308 		panic("nge_jref: buffer already free!");
1309 	else
1310 		sc->nge_cdata.nge_jslots[i].nge_inuse++;
1311 
1312 	return;
1313 }
1314 
1315 /*
1316  * Release a jumbo buffer.
1317  */
1318 static void nge_jfree(buf, size)
1319 	caddr_t			buf;
1320 	u_int			size;
1321 {
1322 	struct nge_softc	*sc;
1323 	u_int64_t		**aptr;
1324 	int		        i;
1325 	struct nge_jpool_entry   *entry;
1326 
1327 	/* Extract the softc struct pointer. */
1328 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
1329 	sc = (struct nge_softc *)(aptr[0]);
1330 
1331 	if (sc == NULL)
1332 		panic("nge_jfree: can't find softc pointer!");
1333 
1334 	if (size != NGE_MCLBYTES)
1335 		panic("nge_jfree: freeing buffer of wrong size!");
1336 
1337 	/* calculate the slot this buffer belongs to */
1338 
1339 	i = ((vm_offset_t)aptr
1340 	     - (vm_offset_t)sc->nge_cdata.nge_jumbo_buf) / NGE_JLEN;
1341 
1342 	if ((i < 0) || (i >= NGE_JSLOTS))
1343 		panic("nge_jfree: asked to free buffer that we don't manage!");
1344 	else if (sc->nge_cdata.nge_jslots[i].nge_inuse == 0)
1345 		panic("nge_jfree: buffer already free!");
1346 	else {
1347 		sc->nge_cdata.nge_jslots[i].nge_inuse--;
1348 		if(sc->nge_cdata.nge_jslots[i].nge_inuse == 0) {
1349 			entry = SLIST_FIRST(&sc->nge_jinuse_listhead);
1350 			if (entry == NULL)
1351 				panic("nge_jfree: buffer not in use!");
1352 			entry->slot = i;
1353 			SLIST_REMOVE_HEAD(&sc->nge_jinuse_listhead,
1354 					  jpool_entries);
1355 			SLIST_INSERT_HEAD(&sc->nge_jfree_listhead,
1356 					  entry, jpool_entries);
1357 		}
1358 	}
1359 
1360 	return;
1361 }
1362 /*
1363  * A frame has been uploaded: pass the resulting mbuf chain up to
1364  * the higher level protocols.
1365  */
1366 static void nge_rxeof(sc)
1367 	struct nge_softc	*sc;
1368 {
1369         struct ether_header	*eh;
1370         struct mbuf		*m;
1371         struct ifnet		*ifp;
1372 	struct nge_desc		*cur_rx;
1373 	int			i, total_len = 0;
1374 	u_int32_t		rxstat;
1375 
1376 	ifp = &sc->arpcom.ac_if;
1377 	i = sc->nge_cdata.nge_rx_prod;
1378 
1379 	while(NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) {
1380 		struct mbuf		*m0 = NULL;
1381 		u_int32_t		extsts;
1382 
1383 #ifdef DEVICE_POLLING
1384 		if (ifp->if_ipending & IFF_POLLING) {
1385 			if (sc->rxcycles <= 0)
1386 				break;
1387 			sc->rxcycles--;
1388 		}
1389 #endif /* DEVICE_POLLING */
1390 
1391 		cur_rx = &sc->nge_ldata->nge_rx_list[i];
1392 		rxstat = cur_rx->nge_rxstat;
1393 		extsts = cur_rx->nge_extsts;
1394 		m = cur_rx->nge_mbuf;
1395 		cur_rx->nge_mbuf = NULL;
1396 		total_len = NGE_RXBYTES(cur_rx);
1397 		NGE_INC(i, NGE_RX_LIST_CNT);
1398 		/*
1399 		 * If an error occurs, update stats, clear the
1400 		 * status word and leave the mbuf cluster in place:
1401 		 * it should simply get re-used next time this descriptor
1402 	 	 * comes up in the ring.
1403 		 */
1404 		if (!(rxstat & NGE_CMDSTS_PKT_OK)) {
1405 			ifp->if_ierrors++;
1406 			nge_newbuf(sc, cur_rx, m);
1407 			continue;
1408 		}
1409 
1410 		/*
1411 		 * Ok. NatSemi really screwed up here. This is the
1412 		 * only gigE chip I know of with alignment constraints
1413 		 * on receive buffers. RX buffers must be 64-bit aligned.
1414 		 */
1415 #ifdef __i386__
1416 		/*
1417 		 * By popular demand, ignore the alignment problems
1418 		 * on the Intel x86 platform. The performance hit
1419 		 * incurred due to unaligned accesses is much smaller
1420 		 * than the hit produced by forcing buffer copies all
1421 		 * the time, especially with jumbo frames. We still
1422 		 * need to fix up the alignment everywhere else though.
1423 		 */
1424 		if (nge_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
1425 #endif
1426 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1427 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
1428 			nge_newbuf(sc, cur_rx, m);
1429 			if (m0 == NULL) {
1430 				printf("nge%d: no receive buffers "
1431 				    "available -- packet dropped!\n",
1432 				    sc->nge_unit);
1433 				ifp->if_ierrors++;
1434 				continue;
1435 			}
1436 			m_adj(m0, ETHER_ALIGN);
1437 			m = m0;
1438 #ifdef __i386__
1439 		} else {
1440 			m->m_pkthdr.rcvif = ifp;
1441 			m->m_pkthdr.len = m->m_len = total_len;
1442 		}
1443 #endif
1444 
1445 		ifp->if_ipackets++;
1446 		eh = mtod(m, struct ether_header *);
1447 
1448 		/* Remove header from mbuf and pass it on. */
1449 		m_adj(m, sizeof(struct ether_header));
1450 
1451 		/* Do IP checksum checking. */
1452 		if (extsts & NGE_RXEXTSTS_IPPKT)
1453 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1454 		if (!(extsts & NGE_RXEXTSTS_IPCSUMERR))
1455 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1456 		if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1457 		    !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) ||
1458 		    (extsts & NGE_RXEXTSTS_UDPPKT &&
1459 		    !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) {
1460 			m->m_pkthdr.csum_flags |=
1461 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1462 			m->m_pkthdr.csum_data = 0xffff;
1463 		}
1464 
1465 		/*
1466 		 * If we received a packet with a vlan tag, pass it
1467 		 * to vlan_input() instead of ether_input().
1468 		 */
1469 		if (extsts & NGE_RXEXTSTS_VLANPKT) {
1470 			VLAN_INPUT_TAG(eh, m, extsts & NGE_RXEXTSTS_VTCI);
1471                         continue;
1472                 }
1473 
1474 		ether_input(ifp, eh, m);
1475 	}
1476 
1477 	sc->nge_cdata.nge_rx_prod = i;
1478 
1479 	return;
1480 }
1481 
1482 /*
1483  * A frame was downloaded to the chip. It's safe for us to clean up
1484  * the list buffers.
1485  */
1486 
1487 static void nge_txeof(sc)
1488 	struct nge_softc	*sc;
1489 {
1490 	struct nge_desc		*cur_tx = NULL;
1491 	struct ifnet		*ifp;
1492 	u_int32_t		idx;
1493 
1494 	ifp = &sc->arpcom.ac_if;
1495 
1496 	/* Clear the timeout timer. */
1497 	ifp->if_timer = 0;
1498 
1499 	/*
1500 	 * Go through our tx list and free mbufs for those
1501 	 * frames that have been transmitted.
1502 	 */
1503 	idx = sc->nge_cdata.nge_tx_cons;
1504 	while (idx != sc->nge_cdata.nge_tx_prod) {
1505 		cur_tx = &sc->nge_ldata->nge_tx_list[idx];
1506 
1507 		if (NGE_OWNDESC(cur_tx))
1508 			break;
1509 
1510 		if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) {
1511 			sc->nge_cdata.nge_tx_cnt--;
1512 			NGE_INC(idx, NGE_TX_LIST_CNT);
1513 			continue;
1514 		}
1515 
1516 		if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) {
1517 			ifp->if_oerrors++;
1518 			if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS)
1519 				ifp->if_collisions++;
1520 			if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL)
1521 				ifp->if_collisions++;
1522 		}
1523 
1524 		ifp->if_collisions +=
1525 		    (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16;
1526 
1527 		ifp->if_opackets++;
1528 		if (cur_tx->nge_mbuf != NULL) {
1529 			m_freem(cur_tx->nge_mbuf);
1530 			cur_tx->nge_mbuf = NULL;
1531 		}
1532 
1533 		sc->nge_cdata.nge_tx_cnt--;
1534 		NGE_INC(idx, NGE_TX_LIST_CNT);
1535 		ifp->if_timer = 0;
1536 	}
1537 
1538 	sc->nge_cdata.nge_tx_cons = idx;
1539 
1540 	if (cur_tx != NULL)
1541 		ifp->if_flags &= ~IFF_OACTIVE;
1542 
1543 	return;
1544 }
1545 
1546 static void nge_tick(xsc)
1547 	void			*xsc;
1548 {
1549 	struct nge_softc	*sc;
1550 	struct mii_data		*mii;
1551 	struct ifnet		*ifp;
1552 	int			s;
1553 
1554 	s = splimp();
1555 
1556 	sc = xsc;
1557 	ifp = &sc->arpcom.ac_if;
1558 
1559 	if (sc->nge_tbi) {
1560 		if (!sc->nge_link) {
1561 			if (CSR_READ_4(sc, NGE_TBI_BMSR)
1562 			    & NGE_TBIBMSR_ANEG_DONE) {
1563 				printf("nge%d: gigabit link up\n",
1564 				    sc->nge_unit);
1565 				nge_miibus_statchg(sc->nge_miibus);
1566 				sc->nge_link++;
1567 				if (ifp->if_snd.ifq_head != NULL)
1568 					nge_start(ifp);
1569 			}
1570 		}
1571 	} else {
1572 		mii = device_get_softc(sc->nge_miibus);
1573 		mii_tick(mii);
1574 
1575 		if (!sc->nge_link) {
1576 			if (mii->mii_media_status & IFM_ACTIVE &&
1577 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1578 				sc->nge_link++;
1579 				if (IFM_SUBTYPE(mii->mii_media_active)
1580 				    == IFM_1000_TX)
1581 					printf("nge%d: gigabit link up\n",
1582 					    sc->nge_unit);
1583 				if (ifp->if_snd.ifq_head != NULL)
1584 					nge_start(ifp);
1585 			}
1586 		}
1587 	}
1588 	sc->nge_stat_ch = timeout(nge_tick, sc, hz);
1589 
1590 	splx(s);
1591 
1592 	return;
1593 }
1594 
1595 #ifdef DEVICE_POLLING
1596 static poll_handler_t nge_poll;
1597 
1598 static void
1599 nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1600 {
1601 	struct  nge_softc *sc = ifp->if_softc;
1602 
1603 	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1604 		CSR_WRITE_4(sc, NGE_IER, 1);
1605 		return;
1606 	}
1607 
1608 	/*
1609 	 * On the nge, reading the status register also clears it.
1610 	 * So before returning to intr mode we must make sure that all
1611 	 * possible pending sources of interrupts have been served.
1612 	 * In practice this means run to completion the *eof routines,
1613 	 * and then call the interrupt routine
1614 	 */
1615 	sc->rxcycles = count;
1616 	nge_rxeof(sc);
1617 	nge_txeof(sc);
1618 	if (ifp->if_snd.ifq_head != NULL)
1619 		nge_start(ifp);
1620 
1621 	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1622 		u_int32_t	status;
1623 
1624 		/* Reading the ISR register clears all interrupts. */
1625 		status = CSR_READ_4(sc, NGE_ISR);
1626 
1627 		if (status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW))
1628 			nge_rxeof(sc);
1629 
1630 		if (status & (NGE_ISR_RX_IDLE))
1631 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1632 
1633 		if (status & NGE_ISR_SYSERR) {
1634 			nge_reset(sc);
1635 			nge_init(sc);
1636 		}
1637 	}
1638 }
1639 #endif /* DEVICE_POLLING */
1640 
1641 static void nge_intr(arg)
1642 	void			*arg;
1643 {
1644 	struct nge_softc	*sc;
1645 	struct ifnet		*ifp;
1646 	u_int32_t		status;
1647 
1648 	sc = arg;
1649 	ifp = &sc->arpcom.ac_if;
1650 
1651 #ifdef DEVICE_POLLING
1652 	if (ifp->if_ipending & IFF_POLLING)
1653 		return;
1654 	if (ether_poll_register(nge_poll, ifp)) { /* ok, disable interrupts */
1655 		CSR_WRITE_4(sc, NGE_IER, 0);
1656 		nge_poll(ifp, 0, 1);
1657 		return;
1658 	}
1659 #endif /* DEVICE_POLLING */
1660 
1661 	/* Supress unwanted interrupts */
1662 	if (!(ifp->if_flags & IFF_UP)) {
1663 		nge_stop(sc);
1664 		return;
1665 	}
1666 
1667 	/* Disable interrupts. */
1668 	CSR_WRITE_4(sc, NGE_IER, 0);
1669 
1670 	/* Data LED on for TBI mode */
1671 	if(sc->nge_tbi)
1672 		 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1673 			     | NGE_GPIO_GP3_OUT);
1674 
1675 	for (;;) {
1676 		/* Reading the ISR register clears all interrupts. */
1677 		status = CSR_READ_4(sc, NGE_ISR);
1678 
1679 		if ((status & NGE_INTRS) == 0)
1680 			break;
1681 
1682 		if ((status & NGE_ISR_TX_DESC_OK) ||
1683 		    (status & NGE_ISR_TX_ERR) ||
1684 		    (status & NGE_ISR_TX_OK) ||
1685 		    (status & NGE_ISR_TX_IDLE))
1686 			nge_txeof(sc);
1687 
1688 		if ((status & NGE_ISR_RX_DESC_OK) ||
1689 		    (status & NGE_ISR_RX_ERR) ||
1690 		    (status & NGE_ISR_RX_OFLOW) ||
1691 		    (status & NGE_ISR_RX_FIFO_OFLOW) ||
1692 		    (status & NGE_ISR_RX_IDLE) ||
1693 		    (status & NGE_ISR_RX_OK))
1694 			nge_rxeof(sc);
1695 
1696 		if ((status & NGE_ISR_RX_IDLE))
1697 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1698 
1699 		if (status & NGE_ISR_SYSERR) {
1700 			nge_reset(sc);
1701 			ifp->if_flags &= ~IFF_RUNNING;
1702 			nge_init(sc);
1703 		}
1704 
1705 #ifdef notyet
1706 		/* mii_tick should only be called once per second */
1707 		if (status & NGE_ISR_PHY_INTR) {
1708 			sc->nge_link = 0;
1709 			nge_tick(sc);
1710 		}
1711 #endif
1712 	}
1713 
1714 	/* Re-enable interrupts. */
1715 	CSR_WRITE_4(sc, NGE_IER, 1);
1716 
1717 	if (ifp->if_snd.ifq_head != NULL)
1718 		nge_start(ifp);
1719 
1720 	/* Data LED off for TBI mode */
1721 
1722 	if(sc->nge_tbi)
1723 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1724 			    & ~NGE_GPIO_GP3_OUT);
1725 
1726 	return;
1727 }
1728 
1729 /*
1730  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1731  * pointers to the fragment pointers.
1732  */
1733 static int nge_encap(sc, m_head, txidx)
1734 	struct nge_softc	*sc;
1735 	struct mbuf		*m_head;
1736 	u_int32_t		*txidx;
1737 {
1738 	struct nge_desc		*f = NULL;
1739 	struct mbuf		*m;
1740 	int			frag, cur, cnt = 0;
1741 	struct ifvlan		*ifv = NULL;
1742 
1743 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1744 	    m_head->m_pkthdr.rcvif != NULL &&
1745 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
1746 		ifv = m_head->m_pkthdr.rcvif->if_softc;
1747 
1748 	/*
1749  	 * Start packing the mbufs in this chain into
1750 	 * the fragment pointers. Stop when we run out
1751  	 * of fragments or hit the end of the mbuf chain.
1752 	 */
1753 	m = m_head;
1754 	cur = frag = *txidx;
1755 
1756 	for (m = m_head; m != NULL; m = m->m_next) {
1757 		if (m->m_len != 0) {
1758 			if ((NGE_TX_LIST_CNT -
1759 			    (sc->nge_cdata.nge_tx_cnt + cnt)) < 2)
1760 				return(ENOBUFS);
1761 			f = &sc->nge_ldata->nge_tx_list[frag];
1762 			f->nge_ctl = NGE_CMDSTS_MORE | m->m_len;
1763 			f->nge_ptr = vtophys(mtod(m, vm_offset_t));
1764 			if (cnt != 0)
1765 				f->nge_ctl |= NGE_CMDSTS_OWN;
1766 			cur = frag;
1767 			NGE_INC(frag, NGE_TX_LIST_CNT);
1768 			cnt++;
1769 		}
1770 	}
1771 
1772 	if (m != NULL)
1773 		return(ENOBUFS);
1774 
1775 	sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0;
1776 	if (m_head->m_pkthdr.csum_flags) {
1777 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1778 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1779 			    NGE_TXEXTSTS_IPCSUM;
1780 		if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1781 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1782 			    NGE_TXEXTSTS_TCPCSUM;
1783 		if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1784 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1785 			    NGE_TXEXTSTS_UDPCSUM;
1786 	}
1787 
1788 	if (ifv != NULL) {
1789 		sc->nge_ldata->nge_tx_list[cur].nge_extsts |=
1790 			(NGE_TXEXTSTS_VLANPKT|ifv->ifv_tag);
1791 	}
1792 
1793 	sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head;
1794 	sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE;
1795 	sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN;
1796 	sc->nge_cdata.nge_tx_cnt += cnt;
1797 	*txidx = frag;
1798 
1799 	return(0);
1800 }
1801 
1802 /*
1803  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1804  * to the mbuf data regions directly in the transmit lists. We also save a
1805  * copy of the pointers since the transmit list fragment pointers are
1806  * physical addresses.
1807  */
1808 
1809 static void nge_start(ifp)
1810 	struct ifnet		*ifp;
1811 {
1812 	struct nge_softc	*sc;
1813 	struct mbuf		*m_head = NULL;
1814 	u_int32_t		idx;
1815 
1816 	sc = ifp->if_softc;
1817 
1818 	if (!sc->nge_link)
1819 		return;
1820 
1821 	idx = sc->nge_cdata.nge_tx_prod;
1822 
1823 	if (ifp->if_flags & IFF_OACTIVE)
1824 		return;
1825 
1826 	while(sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) {
1827 		IF_DEQUEUE(&ifp->if_snd, m_head);
1828 		if (m_head == NULL)
1829 			break;
1830 
1831 		if (nge_encap(sc, m_head, &idx)) {
1832 			IF_PREPEND(&ifp->if_snd, m_head);
1833 			ifp->if_flags |= IFF_OACTIVE;
1834 			break;
1835 		}
1836 
1837 		/*
1838 		 * If there's a BPF listener, bounce a copy of this frame
1839 		 * to him.
1840 		 */
1841 		if (ifp->if_bpf)
1842 			bpf_mtap(ifp, m_head);
1843 
1844 	}
1845 
1846 	/* Transmit */
1847 	sc->nge_cdata.nge_tx_prod = idx;
1848 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
1849 
1850 	/*
1851 	 * Set a timeout in case the chip goes out to lunch.
1852 	 */
1853 	ifp->if_timer = 5;
1854 
1855 	return;
1856 }
1857 
1858 static void nge_init(xsc)
1859 	void			*xsc;
1860 {
1861 	struct nge_softc	*sc = xsc;
1862 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1863 	struct mii_data		*mii;
1864 	int			s;
1865 
1866 	if (ifp->if_flags & IFF_RUNNING)
1867 		return;
1868 
1869 	s = splimp();
1870 
1871 	/*
1872 	 * Cancel pending I/O and free all RX/TX buffers.
1873 	 */
1874 	nge_stop(sc);
1875 	sc->nge_stat_ch = timeout(nge_tick, sc, hz);
1876 
1877 	if (sc->nge_tbi) {
1878 		mii = NULL;
1879 	} else {
1880 		mii = device_get_softc(sc->nge_miibus);
1881 	}
1882 
1883 	/* Set MAC address */
1884 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
1885 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1886 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1887 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
1888 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1889 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1890 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
1891 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1892 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1893 
1894 	/* Init circular RX list. */
1895 	if (nge_list_rx_init(sc) == ENOBUFS) {
1896 		printf("nge%d: initialization failed: no "
1897 			"memory for rx buffers\n", sc->nge_unit);
1898 		nge_stop(sc);
1899 		(void)splx(s);
1900 		return;
1901 	}
1902 
1903 	/*
1904 	 * Init tx descriptors.
1905 	 */
1906 	nge_list_tx_init(sc);
1907 
1908 	/*
1909 	 * For the NatSemi chip, we have to explicitly enable the
1910 	 * reception of ARP frames, as well as turn on the 'perfect
1911 	 * match' filter where we store the station address, otherwise
1912 	 * we won't receive unicasts meant for this host.
1913 	 */
1914 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
1915 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
1916 
1917 	 /* If we want promiscuous mode, set the allframes bit. */
1918 	if (ifp->if_flags & IFF_PROMISC) {
1919 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1920 	} else {
1921 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1922 	}
1923 
1924 	/*
1925 	 * Set the capture broadcast bit to capture broadcast frames.
1926 	 */
1927 	if (ifp->if_flags & IFF_BROADCAST) {
1928 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1929 	} else {
1930 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1931 	}
1932 
1933 	/*
1934 	 * Load the multicast filter.
1935 	 */
1936 	nge_setmulti(sc);
1937 
1938 	/* Turn the receive filter on */
1939 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
1940 
1941 	/*
1942 	 * Load the address of the RX and TX lists.
1943 	 */
1944 	CSR_WRITE_4(sc, NGE_RX_LISTPTR,
1945 	    vtophys(&sc->nge_ldata->nge_rx_list[0]));
1946 	CSR_WRITE_4(sc, NGE_TX_LISTPTR,
1947 	    vtophys(&sc->nge_ldata->nge_tx_list[0]));
1948 
1949 	/* Set RX configuration */
1950 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
1951 	/*
1952 	 * Enable hardware checksum validation for all IPv4
1953 	 * packets, do not reject packets with bad checksums.
1954 	 */
1955 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
1956 
1957 	/*
1958 	 * Tell the chip to detect and strip VLAN tag info from
1959 	 * received frames. The tag will be provided in the extsts
1960 	 * field in the RX descriptors.
1961 	 */
1962 	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL,
1963 	    NGE_VIPRXCTL_TAG_DETECT_ENB|NGE_VIPRXCTL_TAG_STRIP_ENB);
1964 
1965 	/* Set TX configuration */
1966 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
1967 
1968 	/*
1969 	 * Enable TX IPv4 checksumming on a per-packet basis.
1970 	 */
1971 	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
1972 
1973 	/*
1974 	 * Tell the chip to insert VLAN tags on a per-packet basis as
1975 	 * dictated by the code in the frame encapsulation routine.
1976 	 */
1977 	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
1978 
1979 	/* Set full/half duplex mode. */
1980 	if (sc->nge_tbi) {
1981 		if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1982 		    == IFM_FDX) {
1983 			NGE_SETBIT(sc, NGE_TX_CFG,
1984 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1985 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1986 		} else {
1987 			NGE_CLRBIT(sc, NGE_TX_CFG,
1988 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1989 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1990 		}
1991 	} else {
1992 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1993 			NGE_SETBIT(sc, NGE_TX_CFG,
1994 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1995 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1996 		} else {
1997 			NGE_CLRBIT(sc, NGE_TX_CFG,
1998 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1999 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
2000 		}
2001 	}
2002 
2003 	/*
2004 	 * Enable the delivery of PHY interrupts based on
2005 	 * link/speed/duplex status changes. Also enable the
2006 	 * extsts field in the DMA descriptors (needed for
2007 	 * TCP/IP checksum offload on transmit).
2008 	 */
2009 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD|
2010 	    NGE_CFG_PHYINTR_LNK|NGE_CFG_PHYINTR_DUP|NGE_CFG_EXTSTS_ENB);
2011 
2012 	/*
2013 	 * Configure interrupt holdoff (moderation). We can
2014 	 * have the chip delay interrupt delivery for a certain
2015 	 * period. Units are in 100us, and the max setting
2016 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
2017 	 */
2018 	CSR_WRITE_4(sc, NGE_IHR, 0x01);
2019 
2020 	/*
2021 	 * Enable interrupts.
2022 	 */
2023 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
2024 #ifdef DEVICE_POLLING
2025 	/*
2026 	 * ... only enable interrupts if we are not polling, make sure
2027 	 * they are off otherwise.
2028 	 */
2029 	if (ifp->if_ipending & IFF_POLLING)
2030 		CSR_WRITE_4(sc, NGE_IER, 0);
2031 	else
2032 #endif /* DEVICE_POLLING */
2033 	CSR_WRITE_4(sc, NGE_IER, 1);
2034 
2035 	/* Enable receiver and transmitter. */
2036 	NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
2037 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
2038 
2039 	nge_ifmedia_upd(ifp);
2040 
2041 	ifp->if_flags |= IFF_RUNNING;
2042 	ifp->if_flags &= ~IFF_OACTIVE;
2043 
2044 	(void)splx(s);
2045 
2046 	return;
2047 }
2048 
2049 /*
2050  * Set media options.
2051  */
2052 static int nge_ifmedia_upd(ifp)
2053 	struct ifnet		*ifp;
2054 {
2055 	struct nge_softc	*sc;
2056 	struct mii_data		*mii;
2057 
2058 	sc = ifp->if_softc;
2059 
2060 	if (sc->nge_tbi) {
2061 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
2062 		     == IFM_AUTO) {
2063 			CSR_WRITE_4(sc, NGE_TBI_ANAR,
2064 				CSR_READ_4(sc, NGE_TBI_ANAR)
2065 					| NGE_TBIANAR_HDX | NGE_TBIANAR_FDX
2066 					| NGE_TBIANAR_PS1 | NGE_TBIANAR_PS2);
2067 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG
2068 				| NGE_TBIBMCR_RESTART_ANEG);
2069 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG);
2070 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media
2071 			    & IFM_GMASK) == IFM_FDX) {
2072 			NGE_SETBIT(sc, NGE_TX_CFG,
2073 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
2074 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
2075 
2076 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
2077 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
2078 		} else {
2079 			NGE_CLRBIT(sc, NGE_TX_CFG,
2080 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
2081 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
2082 
2083 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
2084 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
2085 		}
2086 
2087 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
2088 			    & ~NGE_GPIO_GP3_OUT);
2089 	} else {
2090 		mii = device_get_softc(sc->nge_miibus);
2091 		sc->nge_link = 0;
2092 		if (mii->mii_instance) {
2093 			struct mii_softc	*miisc;
2094 			for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
2095 			    miisc = LIST_NEXT(miisc, mii_list))
2096 				mii_phy_reset(miisc);
2097 		}
2098 		mii_mediachg(mii);
2099 	}
2100 
2101 	return(0);
2102 }
2103 
2104 /*
2105  * Report current media status.
2106  */
2107 static void nge_ifmedia_sts(ifp, ifmr)
2108 	struct ifnet		*ifp;
2109 	struct ifmediareq	*ifmr;
2110 {
2111 	struct nge_softc	*sc;
2112 	struct mii_data		*mii;
2113 
2114 	sc = ifp->if_softc;
2115 
2116 	if (sc->nge_tbi) {
2117 		ifmr->ifm_status = IFM_AVALID;
2118 		ifmr->ifm_active = IFM_ETHER;
2119 
2120 		if (CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) {
2121 			ifmr->ifm_status |= IFM_ACTIVE;
2122 		}
2123 		if (CSR_READ_4(sc, NGE_TBI_BMCR) & NGE_TBIBMCR_LOOPBACK)
2124 			ifmr->ifm_active |= IFM_LOOP;
2125 		if (!CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) {
2126 			ifmr->ifm_active |= IFM_NONE;
2127 			ifmr->ifm_status = 0;
2128 			return;
2129 		}
2130 		ifmr->ifm_active |= IFM_1000_SX;
2131 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
2132 		    == IFM_AUTO) {
2133 			ifmr->ifm_active |= IFM_AUTO;
2134 			if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
2135 			    & NGE_TBIANAR_FDX) {
2136 				ifmr->ifm_active |= IFM_FDX;
2137 			}else if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
2138 				  & NGE_TBIANAR_HDX) {
2139 				ifmr->ifm_active |= IFM_HDX;
2140 			}
2141 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
2142 			== IFM_FDX)
2143 			ifmr->ifm_active |= IFM_FDX;
2144 		else
2145 			ifmr->ifm_active |= IFM_HDX;
2146 
2147 	} else {
2148 		mii = device_get_softc(sc->nge_miibus);
2149 		mii_pollstat(mii);
2150 		ifmr->ifm_active = mii->mii_media_active;
2151 		ifmr->ifm_status = mii->mii_media_status;
2152 	}
2153 
2154 	return;
2155 }
2156 
2157 static int nge_ioctl(ifp, command, data)
2158 	struct ifnet		*ifp;
2159 	u_long			command;
2160 	caddr_t			data;
2161 {
2162 	struct nge_softc	*sc = ifp->if_softc;
2163 	struct ifreq		*ifr = (struct ifreq *) data;
2164 	struct mii_data		*mii;
2165 	int			s, error = 0;
2166 
2167 	s = splimp();
2168 
2169 	switch(command) {
2170 	case SIOCSIFADDR:
2171 	case SIOCGIFADDR:
2172 		error = ether_ioctl(ifp, command, data);
2173 		break;
2174 	case SIOCSIFMTU:
2175 		if (ifr->ifr_mtu > NGE_JUMBO_MTU)
2176 			error = EINVAL;
2177 		else {
2178 			ifp->if_mtu = ifr->ifr_mtu;
2179 			/*
2180 			 * Workaround: if the MTU is larger than
2181 			 * 8152 (TX FIFO size minus 64 minus 18), turn off
2182 			 * TX checksum offloading.
2183 			 */
2184 			if (ifr->ifr_mtu >= 8152)
2185 				ifp->if_hwassist = 0;
2186 			else
2187 				ifp->if_hwassist = NGE_CSUM_FEATURES;
2188 		}
2189 		break;
2190 	case SIOCSIFFLAGS:
2191 		if (ifp->if_flags & IFF_UP) {
2192 			if (ifp->if_flags & IFF_RUNNING &&
2193 			    ifp->if_flags & IFF_PROMISC &&
2194 			    !(sc->nge_if_flags & IFF_PROMISC)) {
2195 				NGE_SETBIT(sc, NGE_RXFILT_CTL,
2196 				    NGE_RXFILTCTL_ALLPHYS|
2197 				    NGE_RXFILTCTL_ALLMULTI);
2198 			} else if (ifp->if_flags & IFF_RUNNING &&
2199 			    !(ifp->if_flags & IFF_PROMISC) &&
2200 			    sc->nge_if_flags & IFF_PROMISC) {
2201 				NGE_CLRBIT(sc, NGE_RXFILT_CTL,
2202 				    NGE_RXFILTCTL_ALLPHYS);
2203 				if (!(ifp->if_flags & IFF_ALLMULTI))
2204 					NGE_CLRBIT(sc, NGE_RXFILT_CTL,
2205 					    NGE_RXFILTCTL_ALLMULTI);
2206 			} else {
2207 				ifp->if_flags &= ~IFF_RUNNING;
2208 				nge_init(sc);
2209 			}
2210 		} else {
2211 			if (ifp->if_flags & IFF_RUNNING)
2212 				nge_stop(sc);
2213 		}
2214 		sc->nge_if_flags = ifp->if_flags;
2215 		error = 0;
2216 		break;
2217 	case SIOCADDMULTI:
2218 	case SIOCDELMULTI:
2219 		nge_setmulti(sc);
2220 		error = 0;
2221 		break;
2222 	case SIOCGIFMEDIA:
2223 	case SIOCSIFMEDIA:
2224 		if (sc->nge_tbi) {
2225 			error = ifmedia_ioctl(ifp, ifr, &sc->nge_ifmedia,
2226 					      command);
2227 		} else {
2228 			mii = device_get_softc(sc->nge_miibus);
2229 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
2230 					      command);
2231 		}
2232 		break;
2233 	default:
2234 		error = EINVAL;
2235 		break;
2236 	}
2237 
2238 	(void)splx(s);
2239 
2240 	return(error);
2241 }
2242 
2243 static void nge_watchdog(ifp)
2244 	struct ifnet		*ifp;
2245 {
2246 	struct nge_softc	*sc;
2247 
2248 	sc = ifp->if_softc;
2249 
2250 	ifp->if_oerrors++;
2251 	printf("nge%d: watchdog timeout\n", sc->nge_unit);
2252 
2253 	nge_stop(sc);
2254 	nge_reset(sc);
2255 	ifp->if_flags &= ~IFF_RUNNING;
2256 	nge_init(sc);
2257 
2258 	if (ifp->if_snd.ifq_head != NULL)
2259 		nge_start(ifp);
2260 
2261 	return;
2262 }
2263 
2264 /*
2265  * Stop the adapter and free any mbufs allocated to the
2266  * RX and TX lists.
2267  */
2268 static void nge_stop(sc)
2269 	struct nge_softc	*sc;
2270 {
2271 	register int		i;
2272 	struct ifnet		*ifp;
2273 	struct ifmedia_entry	*ifm;
2274 	struct mii_data		*mii;
2275 	int			mtmp, itmp;
2276 
2277 	ifp = &sc->arpcom.ac_if;
2278 	ifp->if_timer = 0;
2279 	if (sc->nge_tbi) {
2280 		mii = NULL;
2281 	} else {
2282 		mii = device_get_softc(sc->nge_miibus);
2283 	}
2284 
2285 	untimeout(nge_tick, sc, sc->nge_stat_ch);
2286 #ifdef DEVICE_POLLING
2287 	ether_poll_deregister(ifp);
2288 #endif
2289 	CSR_WRITE_4(sc, NGE_IER, 0);
2290 	CSR_WRITE_4(sc, NGE_IMR, 0);
2291 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
2292 	DELAY(1000);
2293 	CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0);
2294 	CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0);
2295 
2296 	/*
2297 	 * Isolate/power down the PHY, but leave the media selection
2298 	 * unchanged so that things will be put back to normal when
2299 	 * we bring the interface back up.
2300 	 */
2301 	itmp = ifp->if_flags;
2302 	ifp->if_flags |= IFF_UP;
2303 
2304 	if (sc->nge_tbi)
2305 		ifm = sc->nge_ifmedia.ifm_cur;
2306 	else
2307 		ifm = mii->mii_media.ifm_cur;
2308 
2309 	mtmp = ifm->ifm_media;
2310 	ifm->ifm_media = IFM_ETHER|IFM_NONE;
2311 
2312 	if (!sc->nge_tbi)
2313 		mii_mediachg(mii);
2314 	ifm->ifm_media = mtmp;
2315 	ifp->if_flags = itmp;
2316 
2317 	sc->nge_link = 0;
2318 
2319 	/*
2320 	 * Free data in the RX lists.
2321 	 */
2322 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
2323 		if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) {
2324 			m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf);
2325 			sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL;
2326 		}
2327 	}
2328 	bzero((char *)&sc->nge_ldata->nge_rx_list,
2329 		sizeof(sc->nge_ldata->nge_rx_list));
2330 
2331 	/*
2332 	 * Free the TX list buffers.
2333 	 */
2334 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
2335 		if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) {
2336 			m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf);
2337 			sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL;
2338 		}
2339 	}
2340 
2341 	bzero((char *)&sc->nge_ldata->nge_tx_list,
2342 		sizeof(sc->nge_ldata->nge_tx_list));
2343 
2344 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2345 
2346 	return;
2347 }
2348 
2349 /*
2350  * Stop all chip I/O so that the kernel's probe routines don't
2351  * get confused by errant DMAs when rebooting.
2352  */
2353 static void nge_shutdown(dev)
2354 	device_t		dev;
2355 {
2356 	struct nge_softc	*sc;
2357 
2358 	sc = device_get_softc(dev);
2359 
2360 	nge_reset(sc);
2361 	nge_stop(sc);
2362 
2363 	return;
2364 }
2365