xref: /dragonfly/sys/dev/netif/nge/if_nge.c (revision c03f08f3)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/nge/if_nge.c,v 1.13.2.13 2003/02/05 22:03:57 mbr Exp $
34  * $DragonFly: src/sys/dev/netif/nge/if_nge.c,v 1.43 2007/08/14 13:30:35 sephe Exp $
35  */
36 
37 /*
38  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
39  * for FreeBSD. Datasheets are available from:
40  *
41  * http://www.national.com/ds/DP/DP83820.pdf
42  * http://www.national.com/ds/DP/DP83821.pdf
43  *
44  * These chips are used on several low cost gigabit ethernet NICs
45  * sold by D-Link, Addtron, SMC and Asante. Both parts are
46  * virtually the same, except the 83820 is a 64-bit/32-bit part,
47  * while the 83821 is 32-bit only.
48  *
49  * Many cards also use National gigE transceivers, such as the
50  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
51  * contains a full register description that applies to all of these
52  * components:
53  *
54  * http://www.national.com/ds/DP/DP83861.pdf
55  *
56  * Written by Bill Paul <wpaul@bsdi.com>
57  * BSDi Open Source Solutions
58  */
59 
60 /*
61  * The NatSemi DP83820 and 83821 controllers are enhanced versions
62  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
63  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
64  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
65  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
66  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
67  * matching buffers, one perfect address filter buffer and interrupt
68  * moderation. The 83820 supports both 64-bit and 32-bit addressing
69  * and data transfers: the 64-bit support can be toggled on or off
70  * via software. This affects the size of certain fields in the DMA
71  * descriptors.
72  *
73  * There are two bugs/misfeatures in the 83820/83821 that I have
74  * discovered so far:
75  *
76  * - Receive buffers must be aligned on 64-bit boundaries, which means
77  *   you must resort to copying data in order to fix up the payload
78  *   alignment.
79  *
80  * - In order to transmit jumbo frames larger than 8170 bytes, you have
81  *   to turn off transmit checksum offloading, because the chip can't
82  *   compute the checksum on an outgoing frame unless it fits entirely
83  *   within the TX FIFO, which is only 8192 bytes in size. If you have
84  *   TX checksum offload enabled and you transmit attempt to transmit a
85  *   frame larger than 8170 bytes, the transmitter will wedge.
86  *
87  * To work around the latter problem, TX checksum offload is disabled
88  * if the user selects an MTU larger than 8152 (8170 - 18).
89  */
90 
91 #include "opt_polling.h"
92 
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/sockio.h>
96 #include <sys/mbuf.h>
97 #include <sys/malloc.h>
98 #include <sys/kernel.h>
99 #include <sys/socket.h>
100 #include <sys/serialize.h>
101 #include <sys/bus.h>
102 #include <sys/rman.h>
103 #include <sys/thread2.h>
104 
105 #include <net/if.h>
106 #include <net/ifq_var.h>
107 #include <net/if_arp.h>
108 #include <net/ethernet.h>
109 #include <net/if_dl.h>
110 #include <net/if_media.h>
111 #include <net/if_types.h>
112 #include <net/vlan/if_vlan_var.h>
113 
114 #include <net/bpf.h>
115 
116 #include <vm/vm.h>              /* for vtophys */
117 #include <vm/pmap.h>            /* for vtophys */
118 
119 #include <dev/netif/mii_layer/mii.h>
120 #include <dev/netif/mii_layer/miivar.h>
121 
122 #include <bus/pci/pcidevs.h>
123 #include <bus/pci/pcireg.h>
124 #include <bus/pci/pcivar.h>
125 
126 #define NGE_USEIOSPACE
127 
128 #include "if_ngereg.h"
129 
130 
131 /* "controller miibus0" required.  See GENERIC if you get errors here. */
132 #include "miibus_if.h"
133 
134 #define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
135 
136 /*
137  * Various supported device vendors/types and their names.
138  */
139 static struct nge_type nge_devs[] = {
140 	{ PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
141 	    "National Semiconductor Gigabit Ethernet" },
142 	{ 0, 0, NULL }
143 };
144 
145 static int	nge_probe(device_t);
146 static int	nge_attach(device_t);
147 static int	nge_detach(device_t);
148 
149 static int	nge_alloc_jumbo_mem(struct nge_softc *);
150 static struct nge_jslot
151 		*nge_jalloc(struct nge_softc *);
152 static void	nge_jfree(void *);
153 static void	nge_jref(void *);
154 
155 static int	nge_newbuf(struct nge_softc *, struct nge_desc *,
156 			   struct mbuf *);
157 static int	nge_encap(struct nge_softc *, struct mbuf *, uint32_t *);
158 static void	nge_rxeof(struct nge_softc *);
159 static void	nge_txeof(struct nge_softc *);
160 static void	nge_intr(void *);
161 static void	nge_tick(void *);
162 static void	nge_start(struct ifnet *);
163 static int	nge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
164 static void	nge_init(void *);
165 static void	nge_stop(struct nge_softc *);
166 static void	nge_watchdog(struct ifnet *);
167 static void	nge_shutdown(device_t);
168 static int	nge_ifmedia_upd(struct ifnet *);
169 static void	nge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
170 
171 static void	nge_delay(struct nge_softc *);
172 static void	nge_eeprom_idle(struct nge_softc *);
173 static void	nge_eeprom_putbyte(struct nge_softc *, int);
174 static void	nge_eeprom_getword(struct nge_softc *, int, uint16_t *);
175 static void	nge_read_eeprom(struct nge_softc *, void *, int, int);
176 
177 static void	nge_mii_sync(struct nge_softc *);
178 static void	nge_mii_send(struct nge_softc *, uint32_t, int);
179 static int	nge_mii_readreg(struct nge_softc *, struct nge_mii_frame *);
180 static int	nge_mii_writereg(struct nge_softc *, struct nge_mii_frame *);
181 
182 static int	nge_miibus_readreg(device_t, int, int);
183 static int	nge_miibus_writereg(device_t, int, int, int);
184 static void	nge_miibus_statchg(device_t);
185 
186 static void	nge_setmulti(struct nge_softc *);
187 static void	nge_reset(struct nge_softc *);
188 static int	nge_list_rx_init(struct nge_softc *);
189 static int	nge_list_tx_init(struct nge_softc *);
190 #ifdef DEVICE_POLLING
191 static void	nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
192 #endif
193 
194 #ifdef NGE_USEIOSPACE
195 #define NGE_RES			SYS_RES_IOPORT
196 #define NGE_RID			NGE_PCI_LOIO
197 #else
198 #define NGE_RES			SYS_RES_MEMORY
199 #define NGE_RID			NGE_PCI_LOMEM
200 #endif
201 
202 static device_method_t nge_methods[] = {
203 	/* Device interface */
204 	DEVMETHOD(device_probe,		nge_probe),
205 	DEVMETHOD(device_attach,	nge_attach),
206 	DEVMETHOD(device_detach,	nge_detach),
207 	DEVMETHOD(device_shutdown,	nge_shutdown),
208 
209 	/* bus interface */
210 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
211 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
212 
213 	/* MII interface */
214 	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
215 	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
216 	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
217 
218 	{ 0, 0 }
219 };
220 
221 static DEFINE_CLASS_0(nge, nge_driver, nge_methods, sizeof(struct nge_softc));
222 static devclass_t nge_devclass;
223 
224 DECLARE_DUMMY_MODULE(if_nge);
225 MODULE_DEPEND(if_nge, miibus, 1, 1, 1);
226 DRIVER_MODULE(if_nge, pci, nge_driver, nge_devclass, 0, 0);
227 DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
228 
229 #define NGE_SETBIT(sc, reg, x)				\
230 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
231 
232 #define NGE_CLRBIT(sc, reg, x)				\
233 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
234 
235 #define SIO_SET(x)					\
236 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
237 
238 #define SIO_CLR(x)					\
239 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
240 
241 static void
242 nge_delay(struct nge_softc *sc)
243 {
244 	int idx;
245 
246 	for (idx = (300 / 33) + 1; idx > 0; idx--)
247 		CSR_READ_4(sc, NGE_CSR);
248 }
249 
250 static void
251 nge_eeprom_idle(struct nge_softc *sc)
252 {
253 	int i;
254 
255 	SIO_SET(NGE_MEAR_EE_CSEL);
256 	nge_delay(sc);
257 	SIO_SET(NGE_MEAR_EE_CLK);
258 	nge_delay(sc);
259 
260 	for (i = 0; i < 25; i++) {
261 		SIO_CLR(NGE_MEAR_EE_CLK);
262 		nge_delay(sc);
263 		SIO_SET(NGE_MEAR_EE_CLK);
264 		nge_delay(sc);
265 	}
266 
267 	SIO_CLR(NGE_MEAR_EE_CLK);
268 	nge_delay(sc);
269 	SIO_CLR(NGE_MEAR_EE_CSEL);
270 	nge_delay(sc);
271 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
272 }
273 
274 /*
275  * Send a read command and address to the EEPROM, check for ACK.
276  */
277 static void
278 nge_eeprom_putbyte(struct nge_softc *sc, int addr)
279 {
280 	int d, i;
281 
282 	d = addr | NGE_EECMD_READ;
283 
284 	/*
285 	 * Feed in each bit and stobe the clock.
286 	 */
287 	for (i = 0x400; i; i >>= 1) {
288 		if (d & i)
289 			SIO_SET(NGE_MEAR_EE_DIN);
290 		else
291 			SIO_CLR(NGE_MEAR_EE_DIN);
292 		nge_delay(sc);
293 		SIO_SET(NGE_MEAR_EE_CLK);
294 		nge_delay(sc);
295 		SIO_CLR(NGE_MEAR_EE_CLK);
296 		nge_delay(sc);
297 	}
298 }
299 
300 /*
301  * Read a word of data stored in the EEPROM at address 'addr.'
302  */
303 static void
304 nge_eeprom_getword(struct nge_softc *sc, int addr, uint16_t *dest)
305 {
306 	int i;
307 	uint16_t word = 0;
308 
309 	/* Force EEPROM to idle state. */
310 	nge_eeprom_idle(sc);
311 
312 	/* Enter EEPROM access mode. */
313 	nge_delay(sc);
314 	SIO_CLR(NGE_MEAR_EE_CLK);
315 	nge_delay(sc);
316 	SIO_SET(NGE_MEAR_EE_CSEL);
317 	nge_delay(sc);
318 
319 	/*
320 	 * Send address of word we want to read.
321 	 */
322 	nge_eeprom_putbyte(sc, addr);
323 
324 	/*
325 	 * Start reading bits from EEPROM.
326 	 */
327 	for (i = 0x8000; i; i >>= 1) {
328 		SIO_SET(NGE_MEAR_EE_CLK);
329 		nge_delay(sc);
330 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
331 			word |= i;
332 		nge_delay(sc);
333 		SIO_CLR(NGE_MEAR_EE_CLK);
334 		nge_delay(sc);
335 	}
336 
337 	/* Turn off EEPROM access mode. */
338 	nge_eeprom_idle(sc);
339 
340 	*dest = word;
341 }
342 
343 /*
344  * Read a sequence of words from the EEPROM.
345  */
346 static void
347 nge_read_eeprom(struct nge_softc *sc, void *dest, int off, int cnt)
348 {
349 	int i;
350 	uint16_t word = 0, *ptr;
351 
352 	for (i = 0; i < cnt; i++) {
353 		nge_eeprom_getword(sc, off + i, &word);
354 		ptr = (uint16_t *)((uint8_t *)dest + (i * 2));
355 		*ptr = word;
356 	}
357 }
358 
359 /*
360  * Sync the PHYs by setting data bit and strobing the clock 32 times.
361  */
362 static void
363 nge_mii_sync(struct nge_softc *sc)
364 {
365 	int i;
366 
367 	SIO_SET(NGE_MEAR_MII_DIR | NGE_MEAR_MII_DATA);
368 
369 	for (i = 0; i < 32; i++) {
370 		SIO_SET(NGE_MEAR_MII_CLK);
371 		DELAY(1);
372 		SIO_CLR(NGE_MEAR_MII_CLK);
373 		DELAY(1);
374 	}
375 }
376 
377 /*
378  * Clock a series of bits through the MII.
379  */
380 static void
381 nge_mii_send(struct nge_softc *sc, uint32_t bits, int cnt)
382 {
383 	int i;
384 
385 	SIO_CLR(NGE_MEAR_MII_CLK);
386 
387 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
388                 if (bits & i)
389 			SIO_SET(NGE_MEAR_MII_DATA);
390                 else
391 			SIO_CLR(NGE_MEAR_MII_DATA);
392 		DELAY(1);
393 		SIO_CLR(NGE_MEAR_MII_CLK);
394 		DELAY(1);
395 		SIO_SET(NGE_MEAR_MII_CLK);
396 	}
397 }
398 
399 /*
400  * Read an PHY register through the MII.
401  */
402 static int
403 nge_mii_readreg(struct nge_softc *sc, struct nge_mii_frame *frame)
404 {
405 	int ack, i;
406 
407 	/*
408 	 * Set up frame for RX.
409 	 */
410 	frame->mii_stdelim = NGE_MII_STARTDELIM;
411 	frame->mii_opcode = NGE_MII_READOP;
412 	frame->mii_turnaround = 0;
413 	frame->mii_data = 0;
414 
415 	CSR_WRITE_4(sc, NGE_MEAR, 0);
416 
417 	/*
418  	 * Turn on data xmit.
419 	 */
420 	SIO_SET(NGE_MEAR_MII_DIR);
421 
422 	nge_mii_sync(sc);
423 
424 	/*
425 	 * Send command/address info.
426 	 */
427 	nge_mii_send(sc, frame->mii_stdelim, 2);
428 	nge_mii_send(sc, frame->mii_opcode, 2);
429 	nge_mii_send(sc, frame->mii_phyaddr, 5);
430 	nge_mii_send(sc, frame->mii_regaddr, 5);
431 
432 	/* Idle bit */
433 	SIO_CLR((NGE_MEAR_MII_CLK | NGE_MEAR_MII_DATA));
434 	DELAY(1);
435 	SIO_SET(NGE_MEAR_MII_CLK);
436 	DELAY(1);
437 
438 	/* Turn off xmit. */
439 	SIO_CLR(NGE_MEAR_MII_DIR);
440 	/* Check for ack */
441 	SIO_CLR(NGE_MEAR_MII_CLK);
442 	DELAY(1);
443 	ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
444 	SIO_SET(NGE_MEAR_MII_CLK);
445 	DELAY(1);
446 
447 	/*
448 	 * Now try reading data bits. If the ack failed, we still
449 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
450 	 */
451 	if (ack) {
452 		for(i = 0; i < 16; i++) {
453 			SIO_CLR(NGE_MEAR_MII_CLK);
454 			DELAY(1);
455 			SIO_SET(NGE_MEAR_MII_CLK);
456 			DELAY(1);
457 		}
458 		goto fail;
459 	}
460 
461 	for (i = 0x8000; i; i >>= 1) {
462 		SIO_CLR(NGE_MEAR_MII_CLK);
463 		DELAY(1);
464 		if (!ack) {
465 			if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
466 				frame->mii_data |= i;
467 			DELAY(1);
468 		}
469 		SIO_SET(NGE_MEAR_MII_CLK);
470 		DELAY(1);
471 	}
472 
473 fail:
474 	SIO_CLR(NGE_MEAR_MII_CLK);
475 	DELAY(1);
476 	SIO_SET(NGE_MEAR_MII_CLK);
477 	DELAY(1);
478 
479 	if (ack)
480 		return(1);
481 	return(0);
482 }
483 
484 /*
485  * Write to a PHY register through the MII.
486  */
487 static int
488 nge_mii_writereg(struct nge_softc *sc, struct nge_mii_frame *frame)
489 {
490 	/*
491 	 * Set up frame for TX.
492 	 */
493 
494 	frame->mii_stdelim = NGE_MII_STARTDELIM;
495 	frame->mii_opcode = NGE_MII_WRITEOP;
496 	frame->mii_turnaround = NGE_MII_TURNAROUND;
497 
498 	/*
499  	 * Turn on data output.
500 	 */
501 	SIO_SET(NGE_MEAR_MII_DIR);
502 
503 	nge_mii_sync(sc);
504 
505 	nge_mii_send(sc, frame->mii_stdelim, 2);
506 	nge_mii_send(sc, frame->mii_opcode, 2);
507 	nge_mii_send(sc, frame->mii_phyaddr, 5);
508 	nge_mii_send(sc, frame->mii_regaddr, 5);
509 	nge_mii_send(sc, frame->mii_turnaround, 2);
510 	nge_mii_send(sc, frame->mii_data, 16);
511 
512 	/* Idle bit. */
513 	SIO_SET(NGE_MEAR_MII_CLK);
514 	DELAY(1);
515 	SIO_CLR(NGE_MEAR_MII_CLK);
516 	DELAY(1);
517 
518 	/*
519 	 * Turn off xmit.
520 	 */
521 	SIO_CLR(NGE_MEAR_MII_DIR);
522 
523 	return(0);
524 }
525 
526 static int
527 nge_miibus_readreg(device_t dev, int phy, int reg)
528 {
529 	struct nge_softc *sc = device_get_softc(dev);
530 	struct nge_mii_frame frame;
531 
532 	bzero((char *)&frame, sizeof(frame));
533 
534 	frame.mii_phyaddr = phy;
535 	frame.mii_regaddr = reg;
536 	nge_mii_readreg(sc, &frame);
537 
538 	return(frame.mii_data);
539 }
540 
541 static int
542 nge_miibus_writereg(device_t dev, int phy, int reg, int data)
543 {
544 	struct nge_softc *sc = device_get_softc(dev);
545 	struct nge_mii_frame frame;
546 
547 	bzero((char *)&frame, sizeof(frame));
548 
549 	frame.mii_phyaddr = phy;
550 	frame.mii_regaddr = reg;
551 	frame.mii_data = data;
552 	nge_mii_writereg(sc, &frame);
553 
554 	return(0);
555 }
556 
557 static void
558 nge_miibus_statchg(device_t dev)
559 {
560 	struct nge_softc *sc = device_get_softc(dev);
561 	struct mii_data *mii;
562 	int status;
563 
564 	if (sc->nge_tbi) {
565 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
566 		    == IFM_AUTO) {
567 			status = CSR_READ_4(sc, NGE_TBI_ANLPAR);
568 			if (status == 0 || status & NGE_TBIANAR_FDX) {
569 				NGE_SETBIT(sc, NGE_TX_CFG,
570 				    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
571 				NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
572 			} else {
573 				NGE_CLRBIT(sc, NGE_TX_CFG,
574 				    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
575 				NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
576 			}
577 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
578 			!= IFM_FDX) {
579 			NGE_CLRBIT(sc, NGE_TX_CFG,
580 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
581 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
582 		} else {
583 			NGE_SETBIT(sc, NGE_TX_CFG,
584 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
585 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
586 		}
587 	} else {
588 		mii = device_get_softc(sc->nge_miibus);
589 
590 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
591 		        NGE_SETBIT(sc, NGE_TX_CFG,
592 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
593 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
594 		} else {
595 			NGE_CLRBIT(sc, NGE_TX_CFG,
596 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
597 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
598 		}
599 
600 		/* If we have a 1000Mbps link, set the mode_1000 bit. */
601 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
602 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
603 			NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
604 		} else {
605 			NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
606 		}
607 	}
608 }
609 
610 static void
611 nge_setmulti(struct nge_softc *sc)
612 {
613 	struct ifnet *ifp = &sc->arpcom.ac_if;
614 	struct ifmultiaddr *ifma;
615 	uint32_t filtsave, h = 0, i;
616 	int bit, index;
617 
618 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
619 		NGE_CLRBIT(sc, NGE_RXFILT_CTL,
620 		    NGE_RXFILTCTL_MCHASH | NGE_RXFILTCTL_UCHASH);
621 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI);
622 		return;
623 	}
624 
625 	/*
626 	 * We have to explicitly enable the multicast hash table
627 	 * on the NatSemi chip if we want to use it, which we do.
628 	 * We also have to tell it that we don't want to use the
629 	 * hash table for matching unicast addresses.
630 	 */
631 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH);
632 	NGE_CLRBIT(sc, NGE_RXFILT_CTL,
633 	    NGE_RXFILTCTL_ALLMULTI | NGE_RXFILTCTL_UCHASH);
634 
635 	filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL);
636 
637 	/* first, zot all the existing hash bits */
638 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
639 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
640 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
641 	}
642 
643 	/*
644 	 * From the 11 bits returned by the crc routine, the top 7
645 	 * bits represent the 16-bit word in the mcast hash table
646 	 * that needs to be updated, and the lower 4 bits represent
647 	 * which bit within that byte needs to be set.
648 	 */
649 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
650 		if (ifma->ifma_addr->sa_family != AF_LINK)
651 			continue;
652 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
653 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 21;
654 		index = (h >> 4) & 0x7F;
655 		bit = h & 0xF;
656 		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
657 		    NGE_FILTADDR_MCAST_LO + (index * 2));
658 		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
659 	}
660 
661 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave);
662 }
663 
664 static void
665 nge_reset(struct nge_softc *sc)
666 {
667 	int i;
668 
669 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
670 
671 	for (i = 0; i < NGE_TIMEOUT; i++) {
672 		if ((CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET) == 0)
673 			break;
674 	}
675 
676 	if (i == NGE_TIMEOUT)
677 		kprintf("nge%d: reset never completed\n", sc->nge_unit);
678 
679 	/* Wait a little while for the chip to get its brains in order. */
680 	DELAY(1000);
681 
682 	/*
683 	 * If this is a NetSemi chip, make sure to clear
684 	 * PME mode.
685 	 */
686 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
687 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
688 }
689 
690 /*
691  * Probe for an NatSemi chip. Check the PCI vendor and device
692  * IDs against our list and return a device name if we find a match.
693  */
694 static int
695 nge_probe(device_t dev)
696 {
697 	struct nge_type	*t;
698 	uint16_t vendor, product;
699 
700 	vendor = pci_get_vendor(dev);
701 	product = pci_get_device(dev);
702 
703 	for (t = nge_devs; t->nge_name != NULL; t++) {
704 		if (vendor == t->nge_vid && product == t->nge_did) {
705 			device_set_desc(dev, t->nge_name);
706 			return(0);
707 		}
708 	}
709 
710 	return(ENXIO);
711 }
712 
713 /*
714  * Attach the interface. Allocate softc structures, do ifmedia
715  * setup and ethernet/BPF attach.
716  */
717 static int
718 nge_attach(device_t dev)
719 {
720 	struct nge_softc *sc;
721 	struct ifnet *ifp;
722 	uint8_t eaddr[ETHER_ADDR_LEN];
723 	uint32_t		command;
724 	int error = 0, rid, unit;
725 	const char		*sep = "";
726 
727 	sc = device_get_softc(dev);
728 	unit = device_get_unit(dev);
729 	callout_init(&sc->nge_stat_timer);
730 	lwkt_serialize_init(&sc->nge_jslot_serializer);
731 
732 	/*
733 	 * Handle power management nonsense.
734 	 */
735 	command = pci_read_config(dev, NGE_PCI_CAPID, 4) & 0x000000FF;
736 	if (command == 0x01) {
737 		command = pci_read_config(dev, NGE_PCI_PWRMGMTCTRL, 4);
738 		if (command & NGE_PSTATE_MASK) {
739 			uint32_t		iobase, membase, irq;
740 
741 			/* Save important PCI config data. */
742 			iobase = pci_read_config(dev, NGE_PCI_LOIO, 4);
743 			membase = pci_read_config(dev, NGE_PCI_LOMEM, 4);
744 			irq = pci_read_config(dev, NGE_PCI_INTLINE, 4);
745 
746 			/* Reset the power state. */
747 			kprintf("nge%d: chip is in D%d power mode "
748 			"-- setting to D0\n", unit, command & NGE_PSTATE_MASK);
749 			command &= 0xFFFFFFFC;
750 			pci_write_config(dev, NGE_PCI_PWRMGMTCTRL, command, 4);
751 
752 			/* Restore PCI config data. */
753 			pci_write_config(dev, NGE_PCI_LOIO, iobase, 4);
754 			pci_write_config(dev, NGE_PCI_LOMEM, membase, 4);
755 			pci_write_config(dev, NGE_PCI_INTLINE, irq, 4);
756 		}
757 	}
758 
759 	/*
760 	 * Map control/status registers.
761 	 */
762 	command = pci_read_config(dev, PCIR_COMMAND, 4);
763 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
764 	pci_write_config(dev, PCIR_COMMAND, command, 4);
765 	command = pci_read_config(dev, PCIR_COMMAND, 4);
766 
767 #ifdef NGE_USEIOSPACE
768 	if (!(command & PCIM_CMD_PORTEN)) {
769 		kprintf("nge%d: failed to enable I/O ports!\n", unit);
770 		error = ENXIO;
771 		return(error);
772 	}
773 #else
774 	if (!(command & PCIM_CMD_MEMEN)) {
775 		kprintf("nge%d: failed to enable memory mapping!\n", unit);
776 		error = ENXIO;
777 		return(error);
778 	}
779 #endif
780 
781 	rid = NGE_RID;
782 	sc->nge_res = bus_alloc_resource_any(dev, NGE_RES, &rid, RF_ACTIVE);
783 
784 	if (sc->nge_res == NULL) {
785 		kprintf("nge%d: couldn't map ports/memory\n", unit);
786 		error = ENXIO;
787 		return(error);
788 	}
789 
790 	sc->nge_btag = rman_get_bustag(sc->nge_res);
791 	sc->nge_bhandle = rman_get_bushandle(sc->nge_res);
792 
793 	/* Allocate interrupt */
794 	rid = 0;
795 	sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
796 	    RF_SHAREABLE | RF_ACTIVE);
797 
798 	if (sc->nge_irq == NULL) {
799 		kprintf("nge%d: couldn't map interrupt\n", unit);
800 		error = ENXIO;
801 		goto fail;
802 	}
803 
804 	/* Reset the adapter. */
805 	nge_reset(sc);
806 
807 	/*
808 	 * Get station address from the EEPROM.
809 	 */
810 	nge_read_eeprom(sc, &eaddr[4], NGE_EE_NODEADDR, 1);
811 	nge_read_eeprom(sc, &eaddr[2], NGE_EE_NODEADDR + 1, 1);
812 	nge_read_eeprom(sc, &eaddr[0], NGE_EE_NODEADDR + 2, 1);
813 
814 	sc->nge_unit = unit;
815 
816 	sc->nge_ldata = contigmalloc(sizeof(struct nge_list_data), M_DEVBUF,
817 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
818 
819 	if (sc->nge_ldata == NULL) {
820 		kprintf("nge%d: no memory for list buffers!\n", unit);
821 		error = ENXIO;
822 		goto fail;
823 	}
824 	bzero(sc->nge_ldata, sizeof(struct nge_list_data));
825 
826 	/* Try to allocate memory for jumbo buffers. */
827 	if (nge_alloc_jumbo_mem(sc)) {
828 		kprintf("nge%d: jumbo buffer allocation failed\n",
829                     sc->nge_unit);
830 		error = ENXIO;
831 		goto fail;
832 	}
833 
834 	ifp = &sc->arpcom.ac_if;
835 	ifp->if_softc = sc;
836 	if_initname(ifp, "nge", unit);
837 	ifp->if_mtu = ETHERMTU;
838 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
839 	ifp->if_ioctl = nge_ioctl;
840 	ifp->if_start = nge_start;
841 #ifdef DEVICE_POLLING
842 	ifp->if_poll = nge_poll;
843 #endif
844 	ifp->if_watchdog = nge_watchdog;
845 	ifp->if_init = nge_init;
846 	ifp->if_baudrate = 1000000000;
847 	ifq_set_maxlen(&ifp->if_snd, NGE_TX_LIST_CNT - 1);
848 	ifq_set_ready(&ifp->if_snd);
849 	ifp->if_hwassist = NGE_CSUM_FEATURES;
850 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING;
851 	ifp->if_capenable = ifp->if_capabilities;
852 
853 	/*
854 	 * Do MII setup.
855 	 */
856 	if (mii_phy_probe(dev, &sc->nge_miibus,
857 			  nge_ifmedia_upd, nge_ifmedia_sts)) {
858 		if (CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) {
859 			sc->nge_tbi = 1;
860 			device_printf(dev, "Using TBI\n");
861 
862 			sc->nge_miibus = dev;
863 
864 			ifmedia_init(&sc->nge_ifmedia, 0, nge_ifmedia_upd,
865 				nge_ifmedia_sts);
866 #define	ADD(m, c)	ifmedia_add(&sc->nge_ifmedia, (m), (c), NULL)
867 #define PRINT(s)	kprintf("%s%s", sep, s); sep = ", "
868 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_NONE, 0, 0), 0);
869 			device_printf(dev, " ");
870 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, 0, 0), 0);
871 			PRINT("1000baseSX");
872 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, IFM_FDX, 0),0);
873 			PRINT("1000baseSX-FDX");
874 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0), 0);
875 			PRINT("auto");
876 
877 			kprintf("\n");
878 #undef ADD
879 #undef PRINT
880 			ifmedia_set(&sc->nge_ifmedia,
881 				IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0));
882 
883 			CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
884 				| NGE_GPIO_GP4_OUT
885 				| NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
886 				| NGE_GPIO_GP3_OUTENB
887 				| NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
888 
889 		} else {
890 			kprintf("nge%d: MII without any PHY!\n", sc->nge_unit);
891 			error = ENXIO;
892 			goto fail;
893 		}
894 	}
895 
896 	/*
897 	 * Call MI attach routine.
898 	 */
899 	ether_ifattach(ifp, eaddr, NULL);
900 
901 	error = bus_setup_intr(dev, sc->nge_irq, INTR_NETSAFE,
902 			       nge_intr, sc, &sc->nge_intrhand,
903 			       ifp->if_serializer);
904 	if (error) {
905 		ether_ifdetach(ifp);
906 		device_printf(dev, "couldn't set up irq\n");
907 		goto fail;
908 	}
909 
910 	return(0);
911 fail:
912 	nge_detach(dev);
913 	return(error);
914 }
915 
916 static int
917 nge_detach(device_t dev)
918 {
919 	struct nge_softc *sc = device_get_softc(dev);
920 	struct ifnet *ifp = &sc->arpcom.ac_if;
921 
922 	if (device_is_attached(dev)) {
923 		lwkt_serialize_enter(ifp->if_serializer);
924 		nge_reset(sc);
925 		nge_stop(sc);
926 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
927 		lwkt_serialize_exit(ifp->if_serializer);
928 
929 		ether_ifdetach(ifp);
930 	}
931 
932 	if (sc->nge_miibus)
933 		device_delete_child(dev, sc->nge_miibus);
934 	bus_generic_detach(dev);
935 
936 	if (sc->nge_irq)
937 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
938 	if (sc->nge_res)
939 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
940 	if (sc->nge_ldata) {
941 		contigfree(sc->nge_ldata, sizeof(struct nge_list_data),
942 			   M_DEVBUF);
943 	}
944 	if (sc->nge_cdata.nge_jumbo_buf)
945 		contigfree(sc->nge_cdata.nge_jumbo_buf, NGE_JMEM, M_DEVBUF);
946 
947 	return(0);
948 }
949 
950 /*
951  * Initialize the transmit descriptors.
952  */
953 static int
954 nge_list_tx_init(struct nge_softc *sc)
955 {
956 	struct nge_list_data *ld;
957 	struct nge_ring_data *cd;
958 	int i;
959 
960 	cd = &sc->nge_cdata;
961 	ld = sc->nge_ldata;
962 
963 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
964 		if (i == (NGE_TX_LIST_CNT - 1)) {
965 			ld->nge_tx_list[i].nge_nextdesc =
966 			    &ld->nge_tx_list[0];
967 			ld->nge_tx_list[i].nge_next =
968 			    vtophys(&ld->nge_tx_list[0]);
969 		} else {
970 			ld->nge_tx_list[i].nge_nextdesc =
971 			    &ld->nge_tx_list[i + 1];
972 			ld->nge_tx_list[i].nge_next =
973 			    vtophys(&ld->nge_tx_list[i + 1]);
974 		}
975 		ld->nge_tx_list[i].nge_mbuf = NULL;
976 		ld->nge_tx_list[i].nge_ptr = 0;
977 		ld->nge_tx_list[i].nge_ctl = 0;
978 	}
979 
980 	cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0;
981 
982 	return(0);
983 }
984 
985 
986 /*
987  * Initialize the RX descriptors and allocate mbufs for them. Note that
988  * we arrange the descriptors in a closed ring, so that the last descriptor
989  * points back to the first.
990  */
991 static int
992 nge_list_rx_init(struct nge_softc *sc)
993 {
994 	struct nge_list_data *ld;
995 	struct nge_ring_data *cd;
996 	int i;
997 
998 	ld = sc->nge_ldata;
999 	cd = &sc->nge_cdata;
1000 
1001 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
1002 		if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS)
1003 			return(ENOBUFS);
1004 		if (i == (NGE_RX_LIST_CNT - 1)) {
1005 			ld->nge_rx_list[i].nge_nextdesc =
1006 			    &ld->nge_rx_list[0];
1007 			ld->nge_rx_list[i].nge_next =
1008 			    vtophys(&ld->nge_rx_list[0]);
1009 		} else {
1010 			ld->nge_rx_list[i].nge_nextdesc =
1011 			    &ld->nge_rx_list[i + 1];
1012 			ld->nge_rx_list[i].nge_next =
1013 			    vtophys(&ld->nge_rx_list[i + 1]);
1014 		}
1015 	}
1016 
1017 	cd->nge_rx_prod = 0;
1018 
1019 	return(0);
1020 }
1021 
1022 /*
1023  * Initialize an RX descriptor and attach an MBUF cluster.
1024  */
1025 static int
1026 nge_newbuf(struct nge_softc *sc, struct nge_desc *c, struct mbuf *m)
1027 {
1028 	struct mbuf *m_new = NULL;
1029 	struct nge_jslot *buf;
1030 
1031 	if (m == NULL) {
1032 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1033 		if (m_new == NULL) {
1034 			kprintf("nge%d: no memory for rx list "
1035 			    "-- packet dropped!\n", sc->nge_unit);
1036 			return(ENOBUFS);
1037 		}
1038 
1039 		/* Allocate the jumbo buffer */
1040 		buf = nge_jalloc(sc);
1041 		if (buf == NULL) {
1042 #ifdef NGE_VERBOSE
1043 			kprintf("nge%d: jumbo allocation failed "
1044 			    "-- packet dropped!\n", sc->nge_unit);
1045 #endif
1046 			m_freem(m_new);
1047 			return(ENOBUFS);
1048 		}
1049 		/* Attach the buffer to the mbuf */
1050 		m_new->m_ext.ext_arg = buf;
1051 		m_new->m_ext.ext_buf = buf->nge_buf;
1052 		m_new->m_ext.ext_free = nge_jfree;
1053 		m_new->m_ext.ext_ref = nge_jref;
1054 		m_new->m_ext.ext_size = NGE_JUMBO_FRAMELEN;
1055 
1056 		m_new->m_data = m_new->m_ext.ext_buf;
1057 		m_new->m_flags |= M_EXT;
1058 		m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
1059 	} else {
1060 		m_new = m;
1061 		m_new->m_len = m_new->m_pkthdr.len = NGE_JLEN;
1062 		m_new->m_data = m_new->m_ext.ext_buf;
1063 	}
1064 
1065 	m_adj(m_new, sizeof(uint64_t));
1066 
1067 	c->nge_mbuf = m_new;
1068 	c->nge_ptr = vtophys(mtod(m_new, caddr_t));
1069 	c->nge_ctl = m_new->m_len;
1070 	c->nge_extsts = 0;
1071 
1072 	return(0);
1073 }
1074 
1075 static int
1076 nge_alloc_jumbo_mem(struct nge_softc *sc)
1077 {
1078 	caddr_t ptr;
1079 	int i;
1080 	struct nge_jslot *entry;
1081 
1082 	/* Grab a big chunk o' storage. */
1083 	sc->nge_cdata.nge_jumbo_buf = contigmalloc(NGE_JMEM, M_DEVBUF,
1084 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
1085 
1086 	if (sc->nge_cdata.nge_jumbo_buf == NULL) {
1087 		kprintf("nge%d: no memory for jumbo buffers!\n", sc->nge_unit);
1088 		return(ENOBUFS);
1089 	}
1090 
1091 	SLIST_INIT(&sc->nge_jfree_listhead);
1092 
1093 	/*
1094 	 * Now divide it up into 9K pieces and save the addresses
1095 	 * in an array.
1096 	 */
1097 	ptr = sc->nge_cdata.nge_jumbo_buf;
1098 	for (i = 0; i < NGE_JSLOTS; i++) {
1099 		entry = &sc->nge_cdata.nge_jslots[i];
1100 		entry->nge_sc = sc;
1101 		entry->nge_buf = ptr;
1102 		entry->nge_inuse = 0;
1103 		entry->nge_slot = i;
1104 		SLIST_INSERT_HEAD(&sc->nge_jfree_listhead, entry, jslot_link);
1105 		ptr += NGE_JLEN;
1106 	}
1107 
1108 	return(0);
1109 }
1110 
1111 
1112 /*
1113  * Allocate a jumbo buffer.
1114  */
1115 static struct nge_jslot *
1116 nge_jalloc(struct nge_softc *sc)
1117 {
1118 	struct nge_jslot *entry;
1119 
1120 	lwkt_serialize_enter(&sc->nge_jslot_serializer);
1121 	entry = SLIST_FIRST(&sc->nge_jfree_listhead);
1122 	if (entry) {
1123 		SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jslot_link);
1124 		entry->nge_inuse = 1;
1125 	} else {
1126 #ifdef NGE_VERBOSE
1127 		kprintf("nge%d: no free jumbo buffers\n", sc->nge_unit);
1128 #endif
1129 	}
1130 	lwkt_serialize_exit(&sc->nge_jslot_serializer);
1131 	return(entry);
1132 }
1133 
1134 /*
1135  * Adjust usage count on a jumbo buffer. In general this doesn't
1136  * get used much because our jumbo buffers don't get passed around
1137  * a lot, but it's implemented for correctness.
1138  */
1139 static void
1140 nge_jref(void *arg)
1141 {
1142 	struct nge_jslot *entry = (struct nge_jslot *)arg;
1143 	struct nge_softc *sc = entry->nge_sc;
1144 
1145 	if (sc == NULL)
1146 		panic("nge_jref: can't find softc pointer!");
1147 
1148 	if (&sc->nge_cdata.nge_jslots[entry->nge_slot] != entry)
1149 		panic("nge_jref: asked to reference buffer "
1150 		    "that we don't manage!");
1151 	else if (entry->nge_inuse == 0)
1152 		panic("nge_jref: buffer already free!");
1153 	else
1154 		atomic_add_int(&entry->nge_inuse, 1);
1155 }
1156 
1157 /*
1158  * Release a jumbo buffer.
1159  */
1160 static void
1161 nge_jfree(void *arg)
1162 {
1163 	struct nge_jslot *entry = (struct nge_jslot *)arg;
1164 	struct nge_softc *sc = entry->nge_sc;
1165 
1166 	if (sc == NULL)
1167 		panic("nge_jref: can't find softc pointer!");
1168 
1169 	if (&sc->nge_cdata.nge_jslots[entry->nge_slot] != entry) {
1170 		panic("nge_jref: asked to reference buffer "
1171 		    "that we don't manage!");
1172 	} else if (entry->nge_inuse == 0) {
1173 		panic("nge_jref: buffer already free!");
1174 	} else {
1175 		lwkt_serialize_enter(&sc->nge_jslot_serializer);
1176 		atomic_subtract_int(&entry->nge_inuse, 1);
1177 		if (entry->nge_inuse == 0) {
1178 			SLIST_INSERT_HEAD(&sc->nge_jfree_listhead,
1179 					  entry, jslot_link);
1180 		}
1181 		lwkt_serialize_exit(&sc->nge_jslot_serializer);
1182 	}
1183 }
1184 /*
1185  * A frame has been uploaded: pass the resulting mbuf chain up to
1186  * the higher level protocols.
1187  */
1188 static void
1189 nge_rxeof(struct nge_softc *sc)
1190 {
1191         struct mbuf *m;
1192         struct ifnet *ifp = &sc->arpcom.ac_if;
1193 	struct nge_desc *cur_rx;
1194 	int i, total_len = 0;
1195 	uint32_t rxstat;
1196 
1197 	i = sc->nge_cdata.nge_rx_prod;
1198 
1199 	while(NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) {
1200 		struct mbuf *m0 = NULL;
1201 		uint32_t extsts;
1202 
1203 #ifdef DEVICE_POLLING
1204 		if (ifp->if_flags & IFF_POLLING) {
1205 			if (sc->rxcycles <= 0)
1206 				break;
1207 			sc->rxcycles--;
1208 		}
1209 #endif /* DEVICE_POLLING */
1210 
1211 		cur_rx = &sc->nge_ldata->nge_rx_list[i];
1212 		rxstat = cur_rx->nge_rxstat;
1213 		extsts = cur_rx->nge_extsts;
1214 		m = cur_rx->nge_mbuf;
1215 		cur_rx->nge_mbuf = NULL;
1216 		total_len = NGE_RXBYTES(cur_rx);
1217 		NGE_INC(i, NGE_RX_LIST_CNT);
1218 		/*
1219 		 * If an error occurs, update stats, clear the
1220 		 * status word and leave the mbuf cluster in place:
1221 		 * it should simply get re-used next time this descriptor
1222 	 	 * comes up in the ring.
1223 		 */
1224 		if ((rxstat & NGE_CMDSTS_PKT_OK) == 0) {
1225 			ifp->if_ierrors++;
1226 			nge_newbuf(sc, cur_rx, m);
1227 			continue;
1228 		}
1229 
1230 		/*
1231 		 * Ok. NatSemi really screwed up here. This is the
1232 		 * only gigE chip I know of with alignment constraints
1233 		 * on receive buffers. RX buffers must be 64-bit aligned.
1234 		 */
1235 #ifdef __i386__
1236 		/*
1237 		 * By popular demand, ignore the alignment problems
1238 		 * on the Intel x86 platform. The performance hit
1239 		 * incurred due to unaligned accesses is much smaller
1240 		 * than the hit produced by forcing buffer copies all
1241 		 * the time, especially with jumbo frames. We still
1242 		 * need to fix up the alignment everywhere else though.
1243 		 */
1244 		if (nge_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
1245 #endif
1246 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1247 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
1248 			nge_newbuf(sc, cur_rx, m);
1249 			if (m0 == NULL) {
1250 				kprintf("nge%d: no receive buffers "
1251 				    "available -- packet dropped!\n",
1252 				    sc->nge_unit);
1253 				ifp->if_ierrors++;
1254 				continue;
1255 			}
1256 			m_adj(m0, ETHER_ALIGN);
1257 			m = m0;
1258 #ifdef __i386__
1259 		} else {
1260 			m->m_pkthdr.rcvif = ifp;
1261 			m->m_pkthdr.len = m->m_len = total_len;
1262 		}
1263 #endif
1264 
1265 		ifp->if_ipackets++;
1266 
1267 		/* Do IP checksum checking. */
1268 		if (extsts & NGE_RXEXTSTS_IPPKT)
1269 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1270 		if (!(extsts & NGE_RXEXTSTS_IPCSUMERR))
1271 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1272 		if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1273 		    (extsts & NGE_RXEXTSTS_TCPCSUMERR) == 0) ||
1274 		    (extsts & NGE_RXEXTSTS_UDPPKT &&
1275 		    (extsts & NGE_RXEXTSTS_UDPCSUMERR) == 0)) {
1276 			m->m_pkthdr.csum_flags |=
1277 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
1278 			    CSUM_FRAG_NOT_CHECKED;
1279 			m->m_pkthdr.csum_data = 0xffff;
1280 		}
1281 
1282 		/*
1283 		 * If we received a packet with a vlan tag, pass it
1284 		 * to vlan_input() instead of ether_input().
1285 		 */
1286 		if (extsts & NGE_RXEXTSTS_VLANPKT)
1287 			VLAN_INPUT_TAG(m, extsts & NGE_RXEXTSTS_VTCI);
1288 		else
1289 			ifp->if_input(ifp, m);
1290 	}
1291 
1292 	sc->nge_cdata.nge_rx_prod = i;
1293 }
1294 
1295 /*
1296  * A frame was downloaded to the chip. It's safe for us to clean up
1297  * the list buffers.
1298  */
1299 static void
1300 nge_txeof(struct nge_softc *sc)
1301 {
1302 	struct ifnet *ifp = &sc->arpcom.ac_if;
1303 	struct nge_desc *cur_tx = NULL;
1304 	uint32_t idx;
1305 
1306 	/* Clear the timeout timer. */
1307 	ifp->if_timer = 0;
1308 
1309 	/*
1310 	 * Go through our tx list and free mbufs for those
1311 	 * frames that have been transmitted.
1312 	 */
1313 	idx = sc->nge_cdata.nge_tx_cons;
1314 	while (idx != sc->nge_cdata.nge_tx_prod) {
1315 		cur_tx = &sc->nge_ldata->nge_tx_list[idx];
1316 
1317 		if (NGE_OWNDESC(cur_tx))
1318 			break;
1319 
1320 		if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) {
1321 			sc->nge_cdata.nge_tx_cnt--;
1322 			NGE_INC(idx, NGE_TX_LIST_CNT);
1323 			continue;
1324 		}
1325 
1326 		if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) {
1327 			ifp->if_oerrors++;
1328 			if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS)
1329 				ifp->if_collisions++;
1330 			if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL)
1331 				ifp->if_collisions++;
1332 		}
1333 
1334 		ifp->if_collisions +=
1335 		    (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16;
1336 
1337 		ifp->if_opackets++;
1338 		if (cur_tx->nge_mbuf != NULL) {
1339 			m_freem(cur_tx->nge_mbuf);
1340 			cur_tx->nge_mbuf = NULL;
1341 		}
1342 
1343 		sc->nge_cdata.nge_tx_cnt--;
1344 		NGE_INC(idx, NGE_TX_LIST_CNT);
1345 		ifp->if_timer = 0;
1346 	}
1347 
1348 	sc->nge_cdata.nge_tx_cons = idx;
1349 
1350 	if (cur_tx != NULL)
1351 		ifp->if_flags &= ~IFF_OACTIVE;
1352 }
1353 
1354 static void
1355 nge_tick(void *xsc)
1356 {
1357 	struct nge_softc *sc = xsc;
1358 	struct ifnet *ifp = &sc->arpcom.ac_if;
1359 	struct mii_data *mii;
1360 
1361 	lwkt_serialize_enter(ifp->if_serializer);
1362 
1363 	if (sc->nge_tbi) {
1364 		if (sc->nge_link == 0) {
1365 			if (CSR_READ_4(sc, NGE_TBI_BMSR)
1366 			    & NGE_TBIBMSR_ANEG_DONE) {
1367 				kprintf("nge%d: gigabit link up\n",
1368 				    sc->nge_unit);
1369 				nge_miibus_statchg(sc->nge_miibus);
1370 				sc->nge_link++;
1371 				if (!ifq_is_empty(&ifp->if_snd))
1372 					nge_start(ifp);
1373 			}
1374 		}
1375 	} else {
1376 		mii = device_get_softc(sc->nge_miibus);
1377 		mii_tick(mii);
1378 
1379 		if (sc->nge_link == 0) {
1380 			if (mii->mii_media_status & IFM_ACTIVE &&
1381 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1382 				sc->nge_link++;
1383 				if (IFM_SUBTYPE(mii->mii_media_active)
1384 				    == IFM_1000_T)
1385 					kprintf("nge%d: gigabit link up\n",
1386 					    sc->nge_unit);
1387 				if (!ifq_is_empty(&ifp->if_snd))
1388 					nge_start(ifp);
1389 			}
1390 		}
1391 	}
1392 	callout_reset(&sc->nge_stat_timer, hz, nge_tick, sc);
1393 
1394 	lwkt_serialize_exit(ifp->if_serializer);
1395 }
1396 
1397 #ifdef DEVICE_POLLING
1398 
1399 static void
1400 nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1401 {
1402 	struct nge_softc *sc = ifp->if_softc;
1403 
1404 	switch(cmd) {
1405 	case POLL_REGISTER:
1406 		/* disable interrupts */
1407 		CSR_WRITE_4(sc, NGE_IER, 0);
1408 		break;
1409 	case POLL_DEREGISTER:
1410 		/* enable interrupts */
1411 		CSR_WRITE_4(sc, NGE_IER, 1);
1412 		break;
1413 	default:
1414 		/*
1415 		 * On the nge, reading the status register also clears it.
1416 		 * So before returning to intr mode we must make sure that all
1417 		 * possible pending sources of interrupts have been served.
1418 		 * In practice this means run to completion the *eof routines,
1419 		 * and then call the interrupt routine
1420 		 */
1421 		sc->rxcycles = count;
1422 		nge_rxeof(sc);
1423 		nge_txeof(sc);
1424 		if (!ifq_is_empty(&ifp->if_snd))
1425 			nge_start(ifp);
1426 
1427 		if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1428 			uint32_t status;
1429 
1430 			/* Reading the ISR register clears all interrupts. */
1431 			status = CSR_READ_4(sc, NGE_ISR);
1432 
1433 			if (status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW))
1434 				nge_rxeof(sc);
1435 
1436 			if (status & (NGE_ISR_RX_IDLE))
1437 				NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1438 
1439 			if (status & NGE_ISR_SYSERR) {
1440 				nge_reset(sc);
1441 				nge_init(sc);
1442 			}
1443 		}
1444 		break;
1445 	}
1446 }
1447 
1448 #endif /* DEVICE_POLLING */
1449 
1450 static void
1451 nge_intr(void *arg)
1452 {
1453 	struct nge_softc *sc = arg;
1454 	struct ifnet *ifp = &sc->arpcom.ac_if;
1455 	uint32_t status;
1456 
1457 	/* Supress unwanted interrupts */
1458 	if (!(ifp->if_flags & IFF_UP)) {
1459 		nge_stop(sc);
1460 		return;
1461 	}
1462 
1463 	/* Disable interrupts. */
1464 	CSR_WRITE_4(sc, NGE_IER, 0);
1465 
1466 	/* Data LED on for TBI mode */
1467 	if(sc->nge_tbi)
1468 		 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1469 			     | NGE_GPIO_GP3_OUT);
1470 
1471 	for (;;) {
1472 		/* Reading the ISR register clears all interrupts. */
1473 		status = CSR_READ_4(sc, NGE_ISR);
1474 
1475 		if ((status & NGE_INTRS) == 0)
1476 			break;
1477 
1478 		if ((status & NGE_ISR_TX_DESC_OK) ||
1479 		    (status & NGE_ISR_TX_ERR) ||
1480 		    (status & NGE_ISR_TX_OK) ||
1481 		    (status & NGE_ISR_TX_IDLE))
1482 			nge_txeof(sc);
1483 
1484 		if ((status & NGE_ISR_RX_DESC_OK) ||
1485 		    (status & NGE_ISR_RX_ERR) ||
1486 		    (status & NGE_ISR_RX_OFLOW) ||
1487 		    (status & NGE_ISR_RX_FIFO_OFLOW) ||
1488 		    (status & NGE_ISR_RX_IDLE) ||
1489 		    (status & NGE_ISR_RX_OK))
1490 			nge_rxeof(sc);
1491 
1492 		if ((status & NGE_ISR_RX_IDLE))
1493 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1494 
1495 		if (status & NGE_ISR_SYSERR) {
1496 			nge_reset(sc);
1497 			ifp->if_flags &= ~IFF_RUNNING;
1498 			nge_init(sc);
1499 		}
1500 
1501 #ifdef notyet
1502 		/* mii_tick should only be called once per second */
1503 		if (status & NGE_ISR_PHY_INTR) {
1504 			sc->nge_link = 0;
1505 			nge_tick_serialized(sc);
1506 		}
1507 #endif
1508 	}
1509 
1510 	/* Re-enable interrupts. */
1511 	CSR_WRITE_4(sc, NGE_IER, 1);
1512 
1513 	if (!ifq_is_empty(&ifp->if_snd))
1514 		nge_start(ifp);
1515 
1516 	/* Data LED off for TBI mode */
1517 
1518 	if(sc->nge_tbi)
1519 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1520 			    & ~NGE_GPIO_GP3_OUT);
1521 }
1522 
1523 /*
1524  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1525  * pointers to the fragment pointers.
1526  */
1527 static int
1528 nge_encap(struct nge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
1529 {
1530 	struct nge_desc *f = NULL;
1531 	struct mbuf *m;
1532 	int frag, cur, cnt = 0;
1533 	struct ifvlan *ifv = NULL;
1534 
1535 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1536 	    m_head->m_pkthdr.rcvif != NULL &&
1537 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
1538 		ifv = m_head->m_pkthdr.rcvif->if_softc;
1539 
1540 	/*
1541  	 * Start packing the mbufs in this chain into
1542 	 * the fragment pointers. Stop when we run out
1543  	 * of fragments or hit the end of the mbuf chain.
1544 	 */
1545 	m = m_head;
1546 	cur = frag = *txidx;
1547 
1548 	for (m = m_head; m != NULL; m = m->m_next) {
1549 		if (m->m_len != 0) {
1550 			if ((NGE_TX_LIST_CNT -
1551 			    (sc->nge_cdata.nge_tx_cnt + cnt)) < 2)
1552 				return(ENOBUFS);
1553 			f = &sc->nge_ldata->nge_tx_list[frag];
1554 			f->nge_ctl = NGE_CMDSTS_MORE | m->m_len;
1555 			f->nge_ptr = vtophys(mtod(m, vm_offset_t));
1556 			if (cnt != 0)
1557 				f->nge_ctl |= NGE_CMDSTS_OWN;
1558 			cur = frag;
1559 			NGE_INC(frag, NGE_TX_LIST_CNT);
1560 			cnt++;
1561 		}
1562 	}
1563 
1564 	if (m != NULL)
1565 		return(ENOBUFS);
1566 
1567 	sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0;
1568 	if (m_head->m_pkthdr.csum_flags) {
1569 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1570 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1571 			    NGE_TXEXTSTS_IPCSUM;
1572 		if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1573 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1574 			    NGE_TXEXTSTS_TCPCSUM;
1575 		if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1576 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1577 			    NGE_TXEXTSTS_UDPCSUM;
1578 	}
1579 
1580 	if (ifv != NULL) {
1581 		sc->nge_ldata->nge_tx_list[cur].nge_extsts |=
1582 			(NGE_TXEXTSTS_VLANPKT|ifv->ifv_tag);
1583 	}
1584 
1585 	sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head;
1586 	sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE;
1587 	sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN;
1588 	sc->nge_cdata.nge_tx_cnt += cnt;
1589 	*txidx = frag;
1590 
1591 	return(0);
1592 }
1593 
1594 /*
1595  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1596  * to the mbuf data regions directly in the transmit lists. We also save a
1597  * copy of the pointers since the transmit list fragment pointers are
1598  * physical addresses.
1599  */
1600 
1601 static void
1602 nge_start(struct ifnet *ifp)
1603 {
1604 	struct nge_softc *sc = ifp->if_softc;
1605 	struct mbuf *m_head = NULL;
1606 	uint32_t idx;
1607 	int need_trans;
1608 
1609 	if (!sc->nge_link)
1610 		return;
1611 
1612 	idx = sc->nge_cdata.nge_tx_prod;
1613 
1614 	if (ifp->if_flags & IFF_OACTIVE)
1615 		return;
1616 
1617 	need_trans = 0;
1618 	while(sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) {
1619 		m_head = ifq_poll(&ifp->if_snd);
1620 		if (m_head == NULL)
1621 			break;
1622 
1623 		if (nge_encap(sc, m_head, &idx)) {
1624 			ifp->if_flags |= IFF_OACTIVE;
1625 			break;
1626 		}
1627 		ifq_dequeue(&ifp->if_snd, m_head);
1628 		need_trans = 1;
1629 
1630 		BPF_MTAP(ifp, m_head);
1631 	}
1632 
1633 	if (!need_trans)
1634 		return;
1635 
1636 	/* Transmit */
1637 	sc->nge_cdata.nge_tx_prod = idx;
1638 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
1639 
1640 	/*
1641 	 * Set a timeout in case the chip goes out to lunch.
1642 	 */
1643 	ifp->if_timer = 5;
1644 }
1645 
1646 static void
1647 nge_init(void *xsc)
1648 {
1649 	struct nge_softc *sc = xsc;
1650 	struct ifnet *ifp = &sc->arpcom.ac_if;
1651 	struct mii_data *mii;
1652 
1653 	if (ifp->if_flags & IFF_RUNNING) {
1654 		return;
1655 	}
1656 
1657 	/*
1658 	 * Cancel pending I/O and free all RX/TX buffers.
1659 	 */
1660 	nge_stop(sc);
1661 	callout_reset(&sc->nge_stat_timer, hz, nge_tick, sc);
1662 
1663 	if (sc->nge_tbi)
1664 		mii = NULL;
1665 	else
1666 		mii = device_get_softc(sc->nge_miibus);
1667 
1668 	/* Set MAC address */
1669 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
1670 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1671 	    ((uint16_t *)sc->arpcom.ac_enaddr)[0]);
1672 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
1673 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1674 	    ((uint16_t *)sc->arpcom.ac_enaddr)[1]);
1675 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
1676 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1677 	    ((uint16_t *)sc->arpcom.ac_enaddr)[2]);
1678 
1679 	/* Init circular RX list. */
1680 	if (nge_list_rx_init(sc) == ENOBUFS) {
1681 		kprintf("nge%d: initialization failed: no "
1682 			"memory for rx buffers\n", sc->nge_unit);
1683 		nge_stop(sc);
1684 		return;
1685 	}
1686 
1687 	/*
1688 	 * Init tx descriptors.
1689 	 */
1690 	nge_list_tx_init(sc);
1691 
1692 	/*
1693 	 * For the NatSemi chip, we have to explicitly enable the
1694 	 * reception of ARP frames, as well as turn on the 'perfect
1695 	 * match' filter where we store the station address, otherwise
1696 	 * we won't receive unicasts meant for this host.
1697 	 */
1698 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
1699 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
1700 
1701 	 /* If we want promiscuous mode, set the allframes bit. */
1702 	if (ifp->if_flags & IFF_PROMISC)
1703 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1704 	else
1705 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1706 
1707 	/*
1708 	 * Set the capture broadcast bit to capture broadcast frames.
1709 	 */
1710 	if (ifp->if_flags & IFF_BROADCAST)
1711 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1712 	else
1713 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1714 
1715 	/*
1716 	 * Load the multicast filter.
1717 	 */
1718 	nge_setmulti(sc);
1719 
1720 	/* Turn the receive filter on */
1721 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
1722 
1723 	/*
1724 	 * Load the address of the RX and TX lists.
1725 	 */
1726 	CSR_WRITE_4(sc, NGE_RX_LISTPTR,
1727 	    vtophys(&sc->nge_ldata->nge_rx_list[0]));
1728 	CSR_WRITE_4(sc, NGE_TX_LISTPTR,
1729 	    vtophys(&sc->nge_ldata->nge_tx_list[0]));
1730 
1731 	/* Set RX configuration */
1732 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
1733 	/*
1734 	 * Enable hardware checksum validation for all IPv4
1735 	 * packets, do not reject packets with bad checksums.
1736 	 */
1737 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
1738 
1739 	/*
1740 	 * Tell the chip to detect and strip VLAN tag info from
1741 	 * received frames. The tag will be provided in the extsts
1742 	 * field in the RX descriptors.
1743 	 */
1744 	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL,
1745 	    NGE_VIPRXCTL_TAG_DETECT_ENB|NGE_VIPRXCTL_TAG_STRIP_ENB);
1746 
1747 	/* Set TX configuration */
1748 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
1749 
1750 	/*
1751 	 * Enable TX IPv4 checksumming on a per-packet basis.
1752 	 */
1753 	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
1754 
1755 	/*
1756 	 * Tell the chip to insert VLAN tags on a per-packet basis as
1757 	 * dictated by the code in the frame encapsulation routine.
1758 	 */
1759 	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
1760 
1761 	/* Set full/half duplex mode. */
1762 	if (sc->nge_tbi) {
1763 		if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1764 		    == IFM_FDX) {
1765 			NGE_SETBIT(sc, NGE_TX_CFG,
1766 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1767 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1768 		} else {
1769 			NGE_CLRBIT(sc, NGE_TX_CFG,
1770 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1771 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1772 		}
1773 	} else {
1774 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1775 			NGE_SETBIT(sc, NGE_TX_CFG,
1776 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1777 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1778 		} else {
1779 			NGE_CLRBIT(sc, NGE_TX_CFG,
1780 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1781 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1782 		}
1783 	}
1784 
1785 	/*
1786 	 * Enable the delivery of PHY interrupts based on
1787 	 * link/speed/duplex status changes. Also enable the
1788 	 * extsts field in the DMA descriptors (needed for
1789 	 * TCP/IP checksum offload on transmit).
1790 	 */
1791 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD |
1792 	    NGE_CFG_PHYINTR_LNK | NGE_CFG_PHYINTR_DUP | NGE_CFG_EXTSTS_ENB);
1793 
1794 	/*
1795 	 * Configure interrupt holdoff (moderation). We can
1796 	 * have the chip delay interrupt delivery for a certain
1797 	 * period. Units are in 100us, and the max setting
1798 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
1799 	 */
1800 	CSR_WRITE_4(sc, NGE_IHR, 0x01);
1801 
1802 	/*
1803 	 * Enable interrupts.
1804 	 */
1805 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
1806 #ifdef DEVICE_POLLING
1807 	/*
1808 	 * ... only enable interrupts if we are not polling, make sure
1809 	 * they are off otherwise.
1810 	 */
1811 	if (ifp->if_flags & IFF_POLLING)
1812 		CSR_WRITE_4(sc, NGE_IER, 0);
1813 	else
1814 #endif /* DEVICE_POLLING */
1815 	CSR_WRITE_4(sc, NGE_IER, 1);
1816 
1817 	/* Enable receiver and transmitter. */
1818 	NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE | NGE_CSR_RX_DISABLE);
1819 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1820 
1821 	nge_ifmedia_upd(ifp);
1822 
1823 	ifp->if_flags |= IFF_RUNNING;
1824 	ifp->if_flags &= ~IFF_OACTIVE;
1825 }
1826 
1827 /*
1828  * Set media options.
1829  */
1830 static int
1831 nge_ifmedia_upd(struct ifnet *ifp)
1832 {
1833 	struct nge_softc *sc = ifp->if_softc;
1834 	struct mii_data *mii;
1835 
1836 	if (sc->nge_tbi) {
1837 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1838 		     == IFM_AUTO) {
1839 			CSR_WRITE_4(sc, NGE_TBI_ANAR,
1840 				CSR_READ_4(sc, NGE_TBI_ANAR)
1841 					| NGE_TBIANAR_HDX | NGE_TBIANAR_FDX
1842 					| NGE_TBIANAR_PS1 | NGE_TBIANAR_PS2);
1843 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG
1844 				| NGE_TBIBMCR_RESTART_ANEG);
1845 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG);
1846 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media
1847 			    & IFM_GMASK) == IFM_FDX) {
1848 			NGE_SETBIT(sc, NGE_TX_CFG,
1849 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1850 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1851 
1852 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
1853 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1854 		} else {
1855 			NGE_CLRBIT(sc, NGE_TX_CFG,
1856 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1857 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1858 
1859 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
1860 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1861 		}
1862 
1863 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1864 			    & ~NGE_GPIO_GP3_OUT);
1865 	} else {
1866 		mii = device_get_softc(sc->nge_miibus);
1867 		sc->nge_link = 0;
1868 		if (mii->mii_instance) {
1869 			struct mii_softc	*miisc;
1870 			for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1871 			    miisc = LIST_NEXT(miisc, mii_list))
1872 				mii_phy_reset(miisc);
1873 		}
1874 		mii_mediachg(mii);
1875 	}
1876 
1877 	return(0);
1878 }
1879 
1880 /*
1881  * Report current media status.
1882  */
1883 static void
1884 nge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1885 {
1886 	struct nge_softc *sc = ifp->if_softc;
1887 	struct mii_data *mii;
1888 
1889 	if (sc->nge_tbi) {
1890 		ifmr->ifm_status = IFM_AVALID;
1891 		ifmr->ifm_active = IFM_ETHER;
1892 
1893 		if (CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE)
1894 			ifmr->ifm_status |= IFM_ACTIVE;
1895 		if (CSR_READ_4(sc, NGE_TBI_BMCR) & NGE_TBIBMCR_LOOPBACK)
1896 			ifmr->ifm_active |= IFM_LOOP;
1897 		if (!CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) {
1898 			ifmr->ifm_active |= IFM_NONE;
1899 			ifmr->ifm_status = 0;
1900 			return;
1901 		}
1902 		ifmr->ifm_active |= IFM_1000_SX;
1903 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1904 		    == IFM_AUTO) {
1905 			ifmr->ifm_active |= IFM_AUTO;
1906 			if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
1907 			    & NGE_TBIANAR_FDX) {
1908 				ifmr->ifm_active |= IFM_FDX;
1909 			}else if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
1910 				  & NGE_TBIANAR_HDX) {
1911 				ifmr->ifm_active |= IFM_HDX;
1912 			}
1913 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1914 			== IFM_FDX)
1915 			ifmr->ifm_active |= IFM_FDX;
1916 		else
1917 			ifmr->ifm_active |= IFM_HDX;
1918 
1919 	} else {
1920 		mii = device_get_softc(sc->nge_miibus);
1921 		mii_pollstat(mii);
1922 		ifmr->ifm_active = mii->mii_media_active;
1923 		ifmr->ifm_status = mii->mii_media_status;
1924 	}
1925 }
1926 
1927 static int
1928 nge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1929 {
1930 	struct nge_softc *sc = ifp->if_softc;
1931 	struct ifreq *ifr = (struct ifreq *) data;
1932 	struct mii_data *mii;
1933 	int error = 0;
1934 
1935 	switch(command) {
1936 	case SIOCSIFMTU:
1937 		if (ifr->ifr_mtu > NGE_JUMBO_MTU) {
1938 			error = EINVAL;
1939 		} else {
1940 			ifp->if_mtu = ifr->ifr_mtu;
1941 			/*
1942 			 * Workaround: if the MTU is larger than
1943 			 * 8152 (TX FIFO size minus 64 minus 18), turn off
1944 			 * TX checksum offloading.
1945 			 */
1946 			if (ifr->ifr_mtu >= 8152)
1947 				ifp->if_hwassist = 0;
1948 			else
1949 				ifp->if_hwassist = NGE_CSUM_FEATURES;
1950 		}
1951 		break;
1952 	case SIOCSIFFLAGS:
1953 		if (ifp->if_flags & IFF_UP) {
1954 			if (ifp->if_flags & IFF_RUNNING &&
1955 			    ifp->if_flags & IFF_PROMISC &&
1956 			    !(sc->nge_if_flags & IFF_PROMISC)) {
1957 				NGE_SETBIT(sc, NGE_RXFILT_CTL,
1958 				    NGE_RXFILTCTL_ALLPHYS|
1959 				    NGE_RXFILTCTL_ALLMULTI);
1960 			} else if (ifp->if_flags & IFF_RUNNING &&
1961 			    !(ifp->if_flags & IFF_PROMISC) &&
1962 			    sc->nge_if_flags & IFF_PROMISC) {
1963 				NGE_CLRBIT(sc, NGE_RXFILT_CTL,
1964 				    NGE_RXFILTCTL_ALLPHYS);
1965 				if (!(ifp->if_flags & IFF_ALLMULTI))
1966 					NGE_CLRBIT(sc, NGE_RXFILT_CTL,
1967 					    NGE_RXFILTCTL_ALLMULTI);
1968 			} else {
1969 				ifp->if_flags &= ~IFF_RUNNING;
1970 				nge_init(sc);
1971 			}
1972 		} else {
1973 			if (ifp->if_flags & IFF_RUNNING)
1974 				nge_stop(sc);
1975 		}
1976 		sc->nge_if_flags = ifp->if_flags;
1977 		error = 0;
1978 		break;
1979 	case SIOCADDMULTI:
1980 	case SIOCDELMULTI:
1981 		nge_setmulti(sc);
1982 		error = 0;
1983 		break;
1984 	case SIOCGIFMEDIA:
1985 	case SIOCSIFMEDIA:
1986 		if (sc->nge_tbi) {
1987 			error = ifmedia_ioctl(ifp, ifr, &sc->nge_ifmedia,
1988 					      command);
1989 		} else {
1990 			mii = device_get_softc(sc->nge_miibus);
1991 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
1992 					      command);
1993 		}
1994 		break;
1995 	default:
1996 		error = ether_ioctl(ifp, command, data);
1997 		break;
1998 	}
1999 	return(error);
2000 }
2001 
2002 static void
2003 nge_watchdog(struct ifnet *ifp)
2004 {
2005 	struct nge_softc *sc = ifp->if_softc;
2006 
2007 	ifp->if_oerrors++;
2008 	kprintf("nge%d: watchdog timeout\n", sc->nge_unit);
2009 
2010 	nge_stop(sc);
2011 	nge_reset(sc);
2012 	ifp->if_flags &= ~IFF_RUNNING;
2013 	nge_init(sc);
2014 
2015 	if (!ifq_is_empty(&ifp->if_snd))
2016 		nge_start(ifp);
2017 }
2018 
2019 /*
2020  * Stop the adapter and free any mbufs allocated to the
2021  * RX and TX lists.
2022  */
2023 static void
2024 nge_stop(struct nge_softc *sc)
2025 {
2026 	struct ifnet *ifp = &sc->arpcom.ac_if;
2027 	struct ifmedia_entry *ifm;
2028 	struct mii_data *mii;
2029 	int i, itmp, mtmp, dtmp;
2030 
2031 	ifp->if_timer = 0;
2032 	if (sc->nge_tbi)
2033 		mii = NULL;
2034 	else
2035 		mii = device_get_softc(sc->nge_miibus);
2036 
2037 	callout_stop(&sc->nge_stat_timer);
2038 	CSR_WRITE_4(sc, NGE_IER, 0);
2039 	CSR_WRITE_4(sc, NGE_IMR, 0);
2040 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
2041 	DELAY(1000);
2042 	CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0);
2043 	CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0);
2044 
2045 	/*
2046 	 * Isolate/power down the PHY, but leave the media selection
2047 	 * unchanged so that things will be put back to normal when
2048 	 * we bring the interface back up.
2049 	 */
2050 	itmp = ifp->if_flags;
2051 	ifp->if_flags |= IFF_UP;
2052 
2053 	if (sc->nge_tbi)
2054 		ifm = sc->nge_ifmedia.ifm_cur;
2055 	else
2056 		ifm = mii->mii_media.ifm_cur;
2057 
2058 	mtmp = ifm->ifm_media;
2059 	dtmp = ifm->ifm_data;
2060 	ifm->ifm_media = IFM_ETHER|IFM_NONE;
2061 	ifm->ifm_data = MII_MEDIA_NONE;
2062 
2063 	if (!sc->nge_tbi)
2064 		mii_mediachg(mii);
2065 	ifm->ifm_media = mtmp;
2066 	ifm->ifm_data = dtmp;
2067 	ifp->if_flags = itmp;
2068 
2069 	sc->nge_link = 0;
2070 
2071 	/*
2072 	 * Free data in the RX lists.
2073 	 */
2074 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
2075 		if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) {
2076 			m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf);
2077 			sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL;
2078 		}
2079 	}
2080 	bzero(&sc->nge_ldata->nge_rx_list,
2081 		sizeof(sc->nge_ldata->nge_rx_list));
2082 
2083 	/*
2084 	 * Free the TX list buffers.
2085 	 */
2086 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
2087 		if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) {
2088 			m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf);
2089 			sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL;
2090 		}
2091 	}
2092 
2093 	bzero(&sc->nge_ldata->nge_tx_list,
2094 		sizeof(sc->nge_ldata->nge_tx_list));
2095 
2096 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2097 }
2098 
2099 /*
2100  * Stop all chip I/O so that the kernel's probe routines don't
2101  * get confused by errant DMAs when rebooting.
2102  */
2103 static void
2104 nge_shutdown(device_t dev)
2105 {
2106 	struct nge_softc *sc = device_get_softc(dev);
2107 	struct ifnet *ifp = &sc->arpcom.ac_if;
2108 
2109 	lwkt_serialize_enter(ifp->if_serializer);
2110 	nge_reset(sc);
2111 	nge_stop(sc);
2112 	lwkt_serialize_exit(ifp->if_serializer);
2113 }
2114 
2115