xref: /dragonfly/sys/dev/netif/ral/rt2560.c (revision 1a05b9d1)
1 /*	$FreeBSD$	*/
2 
3 /*-
4  * Copyright (c) 2005, 2006
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __FBSDID("$FreeBSD$");
22 
23 /*-
24  * Ralink Technology RT2560 chipset driver
25  * http://www.ralinktech.com/
26  */
27 
28 #include <sys/param.h>
29 #include <sys/sysctl.h>
30 #include <sys/sockio.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/lock.h>
37 #include <sys/module.h>
38 #include <sys/bus.h>
39 #include <sys/endian.h>
40 
41 #if defined(__DragonFly__)
42 /* empty */
43 #else
44 #include <machine/bus.h>
45 #include <machine/resource.h>
46 #endif
47 #include <sys/rman.h>
48 
49 #include <net/bpf.h>
50 #include <net/if.h>
51 #include <net/if_var.h>
52 #include <net/if_arp.h>
53 #include <net/ethernet.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_types.h>
57 
58 #include <netproto/802_11/ieee80211_var.h>
59 #include <netproto/802_11/ieee80211_radiotap.h>
60 #include <netproto/802_11/ieee80211_regdomain.h>
61 #include <netproto/802_11/ieee80211_ratectl.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <netinet/ip.h>
67 #include <netinet/if_ether.h>
68 
69 #include <dev/netif/ral/rt2560reg.h>
70 #include <dev/netif/ral/rt2560var.h>
71 
72 #define RT2560_RSSI(sc, rssi)					\
73 	((rssi) > (RT2560_NOISE_FLOOR + (sc)->rssi_corr) ?	\
74 	 ((rssi) - RT2560_NOISE_FLOOR - (sc)->rssi_corr) : 0)
75 
76 #define RAL_DEBUG
77 #ifdef RAL_DEBUG
78 #define DPRINTF(sc, fmt, ...) do {				\
79 	if (sc->sc_debug > 0)					\
80 		kprintf(fmt, __VA_ARGS__);			\
81 } while (0)
82 #define DPRINTFN(sc, n, fmt, ...) do {				\
83 	if (sc->sc_debug >= (n))				\
84 		kprintf(fmt, __VA_ARGS__);			\
85 } while (0)
86 #else
87 #define DPRINTF(sc, fmt, ...)
88 #define DPRINTFN(sc, n, fmt, ...)
89 #endif
90 
91 static struct ieee80211vap *rt2560_vap_create(struct ieee80211com *,
92 			    const char [IFNAMSIZ], int, enum ieee80211_opmode,
93 			    int, const uint8_t [IEEE80211_ADDR_LEN],
94 			    const uint8_t [IEEE80211_ADDR_LEN]);
95 static void		rt2560_vap_delete(struct ieee80211vap *);
96 static void		rt2560_dma_map_addr(void *, bus_dma_segment_t *, int,
97 			    int);
98 static int		rt2560_alloc_tx_ring(struct rt2560_softc *,
99 			    struct rt2560_tx_ring *, int);
100 static void		rt2560_reset_tx_ring(struct rt2560_softc *,
101 			    struct rt2560_tx_ring *);
102 static void		rt2560_free_tx_ring(struct rt2560_softc *,
103 			    struct rt2560_tx_ring *);
104 static int		rt2560_alloc_rx_ring(struct rt2560_softc *,
105 			    struct rt2560_rx_ring *, int);
106 static void		rt2560_reset_rx_ring(struct rt2560_softc *,
107 			    struct rt2560_rx_ring *);
108 static void		rt2560_free_rx_ring(struct rt2560_softc *,
109 			    struct rt2560_rx_ring *);
110 static int		rt2560_newstate(struct ieee80211vap *,
111 			    enum ieee80211_state, int);
112 static uint16_t		rt2560_eeprom_read(struct rt2560_softc *, uint8_t);
113 static void		rt2560_encryption_intr(struct rt2560_softc *);
114 static void		rt2560_tx_intr(struct rt2560_softc *);
115 static void		rt2560_prio_intr(struct rt2560_softc *);
116 static void		rt2560_decryption_intr(struct rt2560_softc *);
117 static void		rt2560_rx_intr(struct rt2560_softc *);
118 static void		rt2560_beacon_update(struct ieee80211vap *, int item);
119 static void		rt2560_beacon_expire(struct rt2560_softc *);
120 static void		rt2560_wakeup_expire(struct rt2560_softc *);
121 static void		rt2560_scan_start(struct ieee80211com *);
122 static void		rt2560_scan_end(struct ieee80211com *);
123 static void		rt2560_set_channel(struct ieee80211com *);
124 static void		rt2560_setup_tx_desc(struct rt2560_softc *,
125 			    struct rt2560_tx_desc *, uint32_t, int, int, int,
126 			    bus_addr_t);
127 static int		rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *,
128 			    struct ieee80211_node *);
129 static int		rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *,
130 			    struct ieee80211_node *);
131 static int		rt2560_tx_data(struct rt2560_softc *, struct mbuf *,
132 			    struct ieee80211_node *);
133 static int		rt2560_transmit(struct ieee80211com *, struct mbuf *);
134 static void		rt2560_start(struct rt2560_softc *);
135 static void		rt2560_watchdog(void *);
136 static void		rt2560_parent(struct ieee80211com *);
137 static void		rt2560_bbp_write(struct rt2560_softc *, uint8_t,
138 			    uint8_t);
139 static uint8_t		rt2560_bbp_read(struct rt2560_softc *, uint8_t);
140 static void		rt2560_rf_write(struct rt2560_softc *, uint8_t,
141 			    uint32_t);
142 static void		rt2560_set_chan(struct rt2560_softc *,
143 			    struct ieee80211_channel *);
144 #if 0
145 static void		rt2560_disable_rf_tune(struct rt2560_softc *);
146 #endif
147 static void		rt2560_enable_tsf_sync(struct rt2560_softc *);
148 static void		rt2560_enable_tsf(struct rt2560_softc *);
149 static void		rt2560_update_plcp(struct rt2560_softc *);
150 static void		rt2560_update_slot(struct ieee80211com *);
151 static void		rt2560_set_basicrates(struct rt2560_softc *,
152 			    const struct ieee80211_rateset *);
153 static void		rt2560_update_led(struct rt2560_softc *, int, int);
154 static void		rt2560_set_bssid(struct rt2560_softc *, const uint8_t *);
155 static void		rt2560_set_macaddr(struct rt2560_softc *,
156 			    const uint8_t *);
157 static void		rt2560_get_macaddr(struct rt2560_softc *, uint8_t *);
158 static void		rt2560_update_promisc(struct ieee80211com *);
159 static const char	*rt2560_get_rf(int);
160 static void		rt2560_read_config(struct rt2560_softc *);
161 static int		rt2560_bbp_init(struct rt2560_softc *);
162 static void		rt2560_set_txantenna(struct rt2560_softc *, int);
163 static void		rt2560_set_rxantenna(struct rt2560_softc *, int);
164 static void		rt2560_init_locked(struct rt2560_softc *);
165 static void		rt2560_init(void *);
166 static void		rt2560_stop_locked(struct rt2560_softc *);
167 static int		rt2560_raw_xmit(struct ieee80211_node *, struct mbuf *,
168 				const struct ieee80211_bpf_params *);
169 
170 static const struct {
171 	uint32_t	reg;
172 	uint32_t	val;
173 } rt2560_def_mac[] = {
174 	RT2560_DEF_MAC
175 };
176 
177 static const struct {
178 	uint8_t	reg;
179 	uint8_t	val;
180 } rt2560_def_bbp[] = {
181 	RT2560_DEF_BBP
182 };
183 
184 static const uint32_t rt2560_rf2522_r2[]    = RT2560_RF2522_R2;
185 static const uint32_t rt2560_rf2523_r2[]    = RT2560_RF2523_R2;
186 static const uint32_t rt2560_rf2524_r2[]    = RT2560_RF2524_R2;
187 static const uint32_t rt2560_rf2525_r2[]    = RT2560_RF2525_R2;
188 static const uint32_t rt2560_rf2525_hi_r2[] = RT2560_RF2525_HI_R2;
189 static const uint32_t rt2560_rf2525e_r2[]   = RT2560_RF2525E_R2;
190 static const uint32_t rt2560_rf2526_r2[]    = RT2560_RF2526_R2;
191 static const uint32_t rt2560_rf2526_hi_r2[] = RT2560_RF2526_HI_R2;
192 
193 static const struct {
194 	uint8_t		chan;
195 	uint32_t	r1, r2, r4;
196 } rt2560_rf5222[] = {
197 	RT2560_RF5222
198 };
199 
200 int
201 rt2560_attach(device_t dev, int id)
202 {
203 	struct rt2560_softc *sc = device_get_softc(dev);
204 	struct ieee80211com *ic = &sc->sc_ic;
205 	uint8_t bands[IEEE80211_MODE_BYTES];
206 	int error;
207 
208 	sc->sc_dev = dev;
209 
210 #if defined(__DragonFly__)
211 	lockinit(&sc->sc_mtx, device_get_nameunit(dev), 0, LK_CANRECURSE);
212 #else
213 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
214 	    MTX_DEF | MTX_RECURSE);
215 #endif
216 
217 	callout_init_mtx(&sc->watchdog_ch, &sc->sc_mtx, 0);
218 	mbufq_init(&sc->sc_snd, ifqmaxlen);
219 
220 	/* retrieve RT2560 rev. no */
221 	sc->asic_rev = RAL_READ(sc, RT2560_CSR0);
222 
223 	/* retrieve RF rev. no and various other things from EEPROM */
224 	rt2560_read_config(sc);
225 
226 	device_printf(dev, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n",
227 	    sc->asic_rev, rt2560_get_rf(sc->rf_rev));
228 
229 	/*
230 	 * Allocate Tx and Rx rings.
231 	 */
232 	error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT);
233 	if (error != 0) {
234 		device_printf(sc->sc_dev, "could not allocate Tx ring\n");
235 		goto fail1;
236 	}
237 
238 	error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT);
239 	if (error != 0) {
240 		device_printf(sc->sc_dev, "could not allocate ATIM ring\n");
241 		goto fail2;
242 	}
243 
244 	error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT);
245 	if (error != 0) {
246 		device_printf(sc->sc_dev, "could not allocate Prio ring\n");
247 		goto fail3;
248 	}
249 
250 	error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT);
251 	if (error != 0) {
252 		device_printf(sc->sc_dev, "could not allocate Beacon ring\n");
253 		goto fail4;
254 	}
255 
256 	error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT);
257 	if (error != 0) {
258 		device_printf(sc->sc_dev, "could not allocate Rx ring\n");
259 		goto fail5;
260 	}
261 
262 	/* retrieve MAC address */
263 	rt2560_get_macaddr(sc, ic->ic_macaddr);
264 
265 	ic->ic_softc = sc;
266 	ic->ic_name = device_get_nameunit(dev);
267 	ic->ic_opmode = IEEE80211_M_STA;
268 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
269 
270 	/* set device capabilities */
271 	ic->ic_caps =
272 		  IEEE80211_C_STA		/* station mode */
273 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
274 		| IEEE80211_C_HOSTAP		/* hostap mode */
275 		| IEEE80211_C_MONITOR		/* monitor mode */
276 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
277 		| IEEE80211_C_WDS		/* 4-address traffic works */
278 		| IEEE80211_C_MBSS		/* mesh point link mode */
279 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
280 		| IEEE80211_C_SHSLOT		/* short slot time supported */
281 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
282 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
283 #ifdef notyet
284 		| IEEE80211_C_TXFRAG		/* handle tx frags */
285 #endif
286 		;
287 
288 	memset(bands, 0, sizeof(bands));
289 	setbit(bands, IEEE80211_MODE_11B);
290 	setbit(bands, IEEE80211_MODE_11G);
291 	if (sc->rf_rev == RT2560_RF_5222)
292 		setbit(bands, IEEE80211_MODE_11A);
293 	ieee80211_init_channels(ic, NULL, bands);
294 
295 	ieee80211_ifattach(ic);
296 	ic->ic_raw_xmit = rt2560_raw_xmit;
297 	ic->ic_updateslot = rt2560_update_slot;
298 	ic->ic_update_promisc = rt2560_update_promisc;
299 	ic->ic_scan_start = rt2560_scan_start;
300 	ic->ic_scan_end = rt2560_scan_end;
301 	ic->ic_set_channel = rt2560_set_channel;
302 
303 	ic->ic_vap_create = rt2560_vap_create;
304 	ic->ic_vap_delete = rt2560_vap_delete;
305 	ic->ic_parent = rt2560_parent;
306 	ic->ic_transmit = rt2560_transmit;
307 
308 	ieee80211_radiotap_attach(ic,
309 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
310 		RT2560_TX_RADIOTAP_PRESENT,
311 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
312 		RT2560_RX_RADIOTAP_PRESENT);
313 
314 	/*
315 	 * Add a few sysctl knobs.
316 	 */
317 #ifdef RAL_DEBUG
318 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
319 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
320 	    "debug", CTLFLAG_RW, &sc->sc_debug, 0, "debug msgs");
321 #endif
322 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
323 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
324 	    "txantenna", CTLFLAG_RW, &sc->tx_ant, 0, "tx antenna (0=auto)");
325 
326 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
327 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
328 	    "rxantenna", CTLFLAG_RW, &sc->rx_ant, 0, "rx antenna (0=auto)");
329 
330 	if (bootverbose)
331 		ieee80211_announce(ic);
332 
333 	return 0;
334 
335 fail5:	rt2560_free_tx_ring(sc, &sc->bcnq);
336 fail4:	rt2560_free_tx_ring(sc, &sc->prioq);
337 fail3:	rt2560_free_tx_ring(sc, &sc->atimq);
338 fail2:	rt2560_free_tx_ring(sc, &sc->txq);
339 #if defined(__DragonFly__)
340 fail1:	lockuninit(&sc->sc_mtx);
341 #else
342 fail1:	mtx_destroy(&sc->sc_mtx);
343 #endif
344 
345 	return ENXIO;
346 }
347 
348 int
349 rt2560_detach(void *xsc)
350 {
351 	struct rt2560_softc *sc = xsc;
352 	struct ieee80211com *ic = &sc->sc_ic;
353 
354 	rt2560_stop(sc);
355 
356 	ieee80211_ifdetach(ic);
357 	mbufq_drain(&sc->sc_snd);
358 
359 	rt2560_free_tx_ring(sc, &sc->txq);
360 	rt2560_free_tx_ring(sc, &sc->atimq);
361 	rt2560_free_tx_ring(sc, &sc->prioq);
362 	rt2560_free_tx_ring(sc, &sc->bcnq);
363 	rt2560_free_rx_ring(sc, &sc->rxq);
364 
365 #if defined(__DragonFly__)
366 	lockuninit(&sc->sc_mtx);
367 #else
368 	mtx_destroy(&sc->sc_mtx);
369 #endif
370 
371 	return 0;
372 }
373 
374 static struct ieee80211vap *
375 rt2560_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
376     enum ieee80211_opmode opmode, int flags,
377     const uint8_t bssid[IEEE80211_ADDR_LEN],
378     const uint8_t mac[IEEE80211_ADDR_LEN])
379 {
380 	struct rt2560_softc *sc = ic->ic_softc;
381 	struct rt2560_vap *rvp;
382 	struct ieee80211vap *vap;
383 
384 	switch (opmode) {
385 	case IEEE80211_M_STA:
386 	case IEEE80211_M_IBSS:
387 	case IEEE80211_M_AHDEMO:
388 	case IEEE80211_M_MONITOR:
389 	case IEEE80211_M_HOSTAP:
390 	case IEEE80211_M_MBSS:
391 		/* XXXRP: TBD */
392 		if (!TAILQ_EMPTY(&ic->ic_vaps)) {
393 			device_printf(sc->sc_dev, "only 1 vap supported\n");
394 			return NULL;
395 		}
396 		if (opmode == IEEE80211_M_STA)
397 			flags |= IEEE80211_CLONE_NOBEACONS;
398 		break;
399 	case IEEE80211_M_WDS:
400 		if (TAILQ_EMPTY(&ic->ic_vaps) ||
401 		    ic->ic_opmode != IEEE80211_M_HOSTAP) {
402 			device_printf(sc->sc_dev,
403 			    "wds only supported in ap mode\n");
404 			return NULL;
405 		}
406 		/*
407 		 * Silently remove any request for a unique
408 		 * bssid; WDS vap's always share the local
409 		 * mac address.
410 		 */
411 		flags &= ~IEEE80211_CLONE_BSSID;
412 		break;
413 	default:
414 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
415 		return NULL;
416 	}
417 	rvp = kmalloc(sizeof(struct rt2560_vap), M_80211_VAP,
418 		  M_WAITOK | M_ZERO);
419 	vap = &rvp->ral_vap;
420 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
421 
422 	/* override state transition machine */
423 	rvp->ral_newstate = vap->iv_newstate;
424 	vap->iv_newstate = rt2560_newstate;
425 	vap->iv_update_beacon = rt2560_beacon_update;
426 
427 	ieee80211_ratectl_init(vap);
428 	/* complete setup */
429 	ieee80211_vap_attach(vap, ieee80211_media_change,
430 	    ieee80211_media_status, mac);
431 	if (TAILQ_FIRST(&ic->ic_vaps) == vap)
432 		ic->ic_opmode = opmode;
433 	return vap;
434 }
435 
436 static void
437 rt2560_vap_delete(struct ieee80211vap *vap)
438 {
439 	struct rt2560_vap *rvp = RT2560_VAP(vap);
440 
441 	ieee80211_ratectl_deinit(vap);
442 	ieee80211_vap_detach(vap);
443 	kfree(rvp, M_80211_VAP);
444 }
445 
446 void
447 rt2560_resume(void *xsc)
448 {
449 	struct rt2560_softc *sc = xsc;
450 
451 	if (sc->sc_ic.ic_nrunning > 0)
452 		rt2560_init(sc);
453 }
454 
455 static void
456 rt2560_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
457 {
458 	if (error != 0)
459 		return;
460 
461 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
462 
463 	*(bus_addr_t *)arg = segs[0].ds_addr;
464 }
465 
466 static int
467 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring,
468     int count)
469 {
470 	int i, error;
471 
472 	ring->count = count;
473 	ring->queued = 0;
474 	ring->cur = ring->next = 0;
475 	ring->cur_encrypt = ring->next_encrypt = 0;
476 
477 #if defined(__DragonFly__)
478 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
479 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
480 	    count * RT2560_TX_DESC_SIZE, 1, count * RT2560_TX_DESC_SIZE,
481 	    0, &ring->desc_dmat);
482 #else
483 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
484 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
485 	    count * RT2560_TX_DESC_SIZE, 1, count * RT2560_TX_DESC_SIZE,
486 	    0, NULL, NULL, &ring->desc_dmat);
487 #endif
488 	if (error != 0) {
489 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
490 		goto fail;
491 	}
492 
493 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
494 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
495 	if (error != 0) {
496 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
497 		goto fail;
498 	}
499 
500 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
501 	    count * RT2560_TX_DESC_SIZE, rt2560_dma_map_addr, &ring->physaddr,
502 	    0);
503 	if (error != 0) {
504 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
505 		goto fail;
506 	}
507 
508 	ring->data = kmalloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF,
509 	    M_INTWAIT | M_ZERO);
510 	if (ring->data == NULL) {
511 		device_printf(sc->sc_dev, "could not allocate soft data\n");
512 		error = ENOMEM;
513 		goto fail;
514 	}
515 
516 #if defined(__DragonFly__)
517 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
518 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
519 	    MCLBYTES, RT2560_MAX_SCATTER, MCLBYTES, 0,
520 	    &ring->data_dmat);
521 #else
522 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
523 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
524 	    MCLBYTES, RT2560_MAX_SCATTER, MCLBYTES, 0, NULL, NULL,
525 	    &ring->data_dmat);
526 #endif
527 	if (error != 0) {
528 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
529 		goto fail;
530 	}
531 
532 	for (i = 0; i < count; i++) {
533 		error = bus_dmamap_create(ring->data_dmat, 0,
534 		    &ring->data[i].map);
535 		if (error != 0) {
536 			device_printf(sc->sc_dev, "could not create DMA map\n");
537 			goto fail;
538 		}
539 	}
540 
541 	return 0;
542 
543 fail:	rt2560_free_tx_ring(sc, ring);
544 	return error;
545 }
546 
547 static void
548 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
549 {
550 	struct rt2560_tx_desc *desc;
551 	struct rt2560_tx_data *data;
552 	int i;
553 
554 	for (i = 0; i < ring->count; i++) {
555 		desc = &ring->desc[i];
556 		data = &ring->data[i];
557 
558 		if (data->m != NULL) {
559 			bus_dmamap_sync(ring->data_dmat, data->map,
560 			    BUS_DMASYNC_POSTWRITE);
561 			bus_dmamap_unload(ring->data_dmat, data->map);
562 			m_freem(data->m);
563 			data->m = NULL;
564 		}
565 
566 		if (data->ni != NULL) {
567 			ieee80211_free_node(data->ni);
568 			data->ni = NULL;
569 		}
570 
571 		desc->flags = 0;
572 	}
573 
574 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
575 
576 	ring->queued = 0;
577 	ring->cur = ring->next = 0;
578 	ring->cur_encrypt = ring->next_encrypt = 0;
579 }
580 
581 static void
582 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
583 {
584 	struct rt2560_tx_data *data;
585 	int i;
586 
587 	if (ring->desc != NULL) {
588 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
589 		    BUS_DMASYNC_POSTWRITE);
590 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
591 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
592 	}
593 
594 	if (ring->desc_dmat != NULL)
595 		bus_dma_tag_destroy(ring->desc_dmat);
596 
597 	if (ring->data != NULL) {
598 		for (i = 0; i < ring->count; i++) {
599 			data = &ring->data[i];
600 
601 			if (data->m != NULL) {
602 				bus_dmamap_sync(ring->data_dmat, data->map,
603 				    BUS_DMASYNC_POSTWRITE);
604 				bus_dmamap_unload(ring->data_dmat, data->map);
605 				m_freem(data->m);
606 			}
607 
608 			if (data->ni != NULL)
609 				ieee80211_free_node(data->ni);
610 
611 			if (data->map != NULL)
612 				bus_dmamap_destroy(ring->data_dmat, data->map);
613 		}
614 
615 		kfree(ring->data, M_DEVBUF);
616 	}
617 
618 	if (ring->data_dmat != NULL)
619 		bus_dma_tag_destroy(ring->data_dmat);
620 }
621 
622 static int
623 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring,
624     int count)
625 {
626 	struct rt2560_rx_desc *desc;
627 	struct rt2560_rx_data *data;
628 	bus_addr_t physaddr;
629 	int i, error;
630 
631 	ring->count = count;
632 	ring->cur = ring->next = 0;
633 	ring->cur_decrypt = 0;
634 
635 #if defined(__DragonFly__)
636 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
637 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
638 	    count * RT2560_RX_DESC_SIZE, 1, count * RT2560_RX_DESC_SIZE,
639 	    0, &ring->desc_dmat);
640 #else
641 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
642 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
643 	    count * RT2560_RX_DESC_SIZE, 1, count * RT2560_RX_DESC_SIZE,
644 	    0, NULL, NULL, &ring->desc_dmat);
645 #endif
646 	if (error != 0) {
647 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
648 		goto fail;
649 	}
650 
651 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
652 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
653 	if (error != 0) {
654 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
655 		goto fail;
656 	}
657 
658 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
659 	    count * RT2560_RX_DESC_SIZE, rt2560_dma_map_addr, &ring->physaddr,
660 	    0);
661 	if (error != 0) {
662 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
663 		goto fail;
664 	}
665 
666 	ring->data = kmalloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF,
667 	    M_INTWAIT | M_ZERO);
668 	if (ring->data == NULL) {
669 		device_printf(sc->sc_dev, "could not allocate soft data\n");
670 		error = ENOMEM;
671 		goto fail;
672 	}
673 
674 	/*
675 	 * Pre-allocate Rx buffers and populate Rx ring.
676 	 */
677 #if defined(__DragonFly__)
678 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
679 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
680 	    1, MCLBYTES, 0, &ring->data_dmat);
681 #else
682 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
683 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
684 	    1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
685 #endif
686 	if (error != 0) {
687 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
688 		goto fail;
689 	}
690 
691 	for (i = 0; i < count; i++) {
692 		desc = &sc->rxq.desc[i];
693 		data = &sc->rxq.data[i];
694 
695 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
696 		if (error != 0) {
697 			device_printf(sc->sc_dev, "could not create DMA map\n");
698 			goto fail;
699 		}
700 
701 		data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
702 		if (data->m == NULL) {
703 			device_printf(sc->sc_dev,
704 			    "could not allocate rx mbuf\n");
705 			error = ENOMEM;
706 			goto fail;
707 		}
708 
709 		error = bus_dmamap_load(ring->data_dmat, data->map,
710 		    mtod(data->m, void *), MCLBYTES, rt2560_dma_map_addr,
711 		    &physaddr, 0);
712 		if (error != 0) {
713 			device_printf(sc->sc_dev,
714 			    "could not load rx buf DMA map");
715 			goto fail;
716 		}
717 
718 		desc->flags = htole32(RT2560_RX_BUSY);
719 		desc->physaddr = htole32(physaddr);
720 	}
721 
722 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
723 
724 	return 0;
725 
726 fail:	rt2560_free_rx_ring(sc, ring);
727 	return error;
728 }
729 
730 static void
731 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
732 {
733 	int i;
734 
735 	for (i = 0; i < ring->count; i++) {
736 		ring->desc[i].flags = htole32(RT2560_RX_BUSY);
737 		ring->data[i].drop = 0;
738 	}
739 
740 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
741 
742 	ring->cur = ring->next = 0;
743 	ring->cur_decrypt = 0;
744 }
745 
746 static void
747 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
748 {
749 	struct rt2560_rx_data *data;
750 	int i;
751 
752 	if (ring->desc != NULL) {
753 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
754 		    BUS_DMASYNC_POSTWRITE);
755 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
756 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
757 	}
758 
759 	if (ring->desc_dmat != NULL)
760 		bus_dma_tag_destroy(ring->desc_dmat);
761 
762 	if (ring->data != NULL) {
763 		for (i = 0; i < ring->count; i++) {
764 			data = &ring->data[i];
765 
766 			if (data->m != NULL) {
767 				bus_dmamap_sync(ring->data_dmat, data->map,
768 				    BUS_DMASYNC_POSTREAD);
769 				bus_dmamap_unload(ring->data_dmat, data->map);
770 				m_freem(data->m);
771 			}
772 
773 			if (data->map != NULL)
774 				bus_dmamap_destroy(ring->data_dmat, data->map);
775 		}
776 
777 		kfree(ring->data, M_DEVBUF);
778 	}
779 
780 	if (ring->data_dmat != NULL)
781 		bus_dma_tag_destroy(ring->data_dmat);
782 }
783 
784 static int
785 rt2560_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
786 {
787 	struct rt2560_vap *rvp = RT2560_VAP(vap);
788 	struct rt2560_softc *sc = vap->iv_ic->ic_softc;
789 	int error;
790 
791 	if (nstate == IEEE80211_S_INIT && vap->iv_state == IEEE80211_S_RUN) {
792 		/* abort TSF synchronization */
793 		RAL_WRITE(sc, RT2560_CSR14, 0);
794 
795 		/* turn association led off */
796 		rt2560_update_led(sc, 0, 0);
797 	}
798 
799 	error = rvp->ral_newstate(vap, nstate, arg);
800 
801 	if (error == 0 && nstate == IEEE80211_S_RUN) {
802 		struct ieee80211_node *ni = vap->iv_bss;
803 		struct mbuf *m;
804 
805 		if (vap->iv_opmode != IEEE80211_M_MONITOR) {
806 			rt2560_update_plcp(sc);
807 			rt2560_set_basicrates(sc, &ni->ni_rates);
808 			rt2560_set_bssid(sc, ni->ni_bssid);
809 		}
810 
811 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
812 		    vap->iv_opmode == IEEE80211_M_IBSS ||
813 		    vap->iv_opmode == IEEE80211_M_MBSS) {
814 			m = ieee80211_beacon_alloc(ni);
815 			if (m == NULL) {
816 				device_printf(sc->sc_dev,
817 				    "could not allocate beacon\n");
818 				return ENOBUFS;
819 			}
820 			ieee80211_ref_node(ni);
821 			error = rt2560_tx_bcn(sc, m, ni);
822 			if (error != 0)
823 				return error;
824 		}
825 
826 		/* turn association led on */
827 		rt2560_update_led(sc, 1, 0);
828 
829 		if (vap->iv_opmode != IEEE80211_M_MONITOR)
830 			rt2560_enable_tsf_sync(sc);
831 		else
832 			rt2560_enable_tsf(sc);
833 	}
834 	return error;
835 }
836 
837 /*
838  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
839  * 93C66).
840  */
841 static uint16_t
842 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr)
843 {
844 	uint32_t tmp;
845 	uint16_t val;
846 	int n;
847 
848 	/* clock C once before the first command */
849 	RT2560_EEPROM_CTL(sc, 0);
850 
851 	RT2560_EEPROM_CTL(sc, RT2560_S);
852 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
853 	RT2560_EEPROM_CTL(sc, RT2560_S);
854 
855 	/* write start bit (1) */
856 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
857 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
858 
859 	/* write READ opcode (10) */
860 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
861 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
862 	RT2560_EEPROM_CTL(sc, RT2560_S);
863 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
864 
865 	/* write address (A5-A0 or A7-A0) */
866 	n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7;
867 	for (; n >= 0; n--) {
868 		RT2560_EEPROM_CTL(sc, RT2560_S |
869 		    (((addr >> n) & 1) << RT2560_SHIFT_D));
870 		RT2560_EEPROM_CTL(sc, RT2560_S |
871 		    (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C);
872 	}
873 
874 	RT2560_EEPROM_CTL(sc, RT2560_S);
875 
876 	/* read data Q15-Q0 */
877 	val = 0;
878 	for (n = 15; n >= 0; n--) {
879 		RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
880 		tmp = RAL_READ(sc, RT2560_CSR21);
881 		val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n;
882 		RT2560_EEPROM_CTL(sc, RT2560_S);
883 	}
884 
885 	RT2560_EEPROM_CTL(sc, 0);
886 
887 	/* clear Chip Select and clock C */
888 	RT2560_EEPROM_CTL(sc, RT2560_S);
889 	RT2560_EEPROM_CTL(sc, 0);
890 	RT2560_EEPROM_CTL(sc, RT2560_C);
891 
892 	return val;
893 }
894 
895 /*
896  * Some frames were processed by the hardware cipher engine and are ready for
897  * transmission.
898  */
899 static void
900 rt2560_encryption_intr(struct rt2560_softc *sc)
901 {
902 	struct rt2560_tx_desc *desc;
903 	int hw;
904 
905 	/* retrieve last descriptor index processed by cipher engine */
906 	hw = RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr;
907 	hw /= RT2560_TX_DESC_SIZE;
908 
909 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
910 	    BUS_DMASYNC_POSTREAD);
911 
912 	while (sc->txq.next_encrypt != hw) {
913 		if (sc->txq.next_encrypt == sc->txq.cur_encrypt) {
914 			kprintf("hw encrypt %d, cur_encrypt %d\n", hw,
915 			    sc->txq.cur_encrypt);
916 			break;
917 		}
918 
919 		desc = &sc->txq.desc[sc->txq.next_encrypt];
920 
921 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
922 		    (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY))
923 			break;
924 
925 		/* for TKIP, swap eiv field to fix a bug in ASIC */
926 		if ((le32toh(desc->flags) & RT2560_TX_CIPHER_MASK) ==
927 		    RT2560_TX_CIPHER_TKIP)
928 			desc->eiv = bswap32(desc->eiv);
929 
930 		/* mark the frame ready for transmission */
931 		desc->flags |= htole32(RT2560_TX_VALID);
932 		desc->flags |= htole32(RT2560_TX_BUSY);
933 
934 		DPRINTFN(sc, 15, "encryption done idx=%u\n",
935 		    sc->txq.next_encrypt);
936 
937 		sc->txq.next_encrypt =
938 		    (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT;
939 	}
940 
941 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
942 	    BUS_DMASYNC_PREWRITE);
943 
944 	/* kick Tx */
945 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX);
946 }
947 
948 static void
949 rt2560_tx_intr(struct rt2560_softc *sc)
950 {
951 	struct rt2560_tx_desc *desc;
952 	struct rt2560_tx_data *data;
953 	struct mbuf *m;
954 	struct ieee80211vap *vap;
955 	struct ieee80211_node *ni;
956 	uint32_t flags;
957 	int retrycnt, status;
958 
959 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
960 	    BUS_DMASYNC_POSTREAD);
961 
962 	for (;;) {
963 		desc = &sc->txq.desc[sc->txq.next];
964 		data = &sc->txq.data[sc->txq.next];
965 
966 		flags = le32toh(desc->flags);
967 		if ((flags & RT2560_TX_BUSY) ||
968 		    (flags & RT2560_TX_CIPHER_BUSY) ||
969 		    !(flags & RT2560_TX_VALID))
970 			break;
971 
972 		m = data->m;
973 		ni = data->ni;
974 		vap = ni->ni_vap;
975 
976 		switch (flags & RT2560_TX_RESULT_MASK) {
977 		case RT2560_TX_SUCCESS:
978 			retrycnt = 0;
979 
980 			DPRINTFN(sc, 10, "%s\n", "data frame sent successfully");
981 			if (data->rix != IEEE80211_FIXED_RATE_NONE)
982 				ieee80211_ratectl_tx_complete(vap, ni,
983 				    IEEE80211_RATECTL_TX_SUCCESS,
984 				    &retrycnt, NULL);
985 			status = 0;
986 			break;
987 
988 		case RT2560_TX_SUCCESS_RETRY:
989 			retrycnt = RT2560_TX_RETRYCNT(flags);
990 
991 			DPRINTFN(sc, 9, "data frame sent after %u retries\n",
992 			    retrycnt);
993 			if (data->rix != IEEE80211_FIXED_RATE_NONE)
994 				ieee80211_ratectl_tx_complete(vap, ni,
995 				    IEEE80211_RATECTL_TX_SUCCESS,
996 				    &retrycnt, NULL);
997 			status = 0;
998 			break;
999 
1000 		case RT2560_TX_FAIL_RETRY:
1001 			retrycnt = RT2560_TX_RETRYCNT(flags);
1002 
1003 			DPRINTFN(sc, 9, "data frame failed after %d retries\n",
1004 			    retrycnt);
1005 			if (data->rix != IEEE80211_FIXED_RATE_NONE)
1006 				ieee80211_ratectl_tx_complete(vap, ni,
1007 				    IEEE80211_RATECTL_TX_FAILURE,
1008 				    &retrycnt, NULL);
1009 			status = 1;
1010 			break;
1011 
1012 		case RT2560_TX_FAIL_INVALID:
1013 		case RT2560_TX_FAIL_OTHER:
1014 		default:
1015 			device_printf(sc->sc_dev, "sending data frame failed "
1016 			    "0x%08x\n", flags);
1017 			status = 1;
1018 		}
1019 
1020 		bus_dmamap_sync(sc->txq.data_dmat, data->map,
1021 		    BUS_DMASYNC_POSTWRITE);
1022 		bus_dmamap_unload(sc->txq.data_dmat, data->map);
1023 
1024 		ieee80211_tx_complete(ni, m, status);
1025 		data->ni = NULL;
1026 		data->m = NULL;
1027 
1028 		/* descriptor is no longer valid */
1029 		desc->flags &= ~htole32(RT2560_TX_VALID);
1030 
1031 		DPRINTFN(sc, 15, "tx done idx=%u\n", sc->txq.next);
1032 
1033 		sc->txq.queued--;
1034 		sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT;
1035 	}
1036 
1037 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
1038 	    BUS_DMASYNC_PREWRITE);
1039 
1040 	if (sc->prioq.queued == 0 && sc->txq.queued == 0)
1041 		sc->sc_tx_timer = 0;
1042 
1043 	if (sc->txq.queued < RT2560_TX_RING_COUNT - 1)
1044 		rt2560_start(sc);
1045 }
1046 
1047 static void
1048 rt2560_prio_intr(struct rt2560_softc *sc)
1049 {
1050 	struct rt2560_tx_desc *desc;
1051 	struct rt2560_tx_data *data;
1052 	struct ieee80211_node *ni;
1053 	struct mbuf *m;
1054 	int flags;
1055 
1056 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1057 	    BUS_DMASYNC_POSTREAD);
1058 
1059 	for (;;) {
1060 		desc = &sc->prioq.desc[sc->prioq.next];
1061 		data = &sc->prioq.data[sc->prioq.next];
1062 
1063 		flags = le32toh(desc->flags);
1064 		if ((flags & RT2560_TX_BUSY) || (flags & RT2560_TX_VALID) == 0)
1065 			break;
1066 
1067 		switch (flags & RT2560_TX_RESULT_MASK) {
1068 		case RT2560_TX_SUCCESS:
1069 			DPRINTFN(sc, 10, "%s\n", "mgt frame sent successfully");
1070 			break;
1071 
1072 		case RT2560_TX_SUCCESS_RETRY:
1073 			DPRINTFN(sc, 9, "mgt frame sent after %u retries\n",
1074 			    (flags >> 5) & 0x7);
1075 			break;
1076 
1077 		case RT2560_TX_FAIL_RETRY:
1078 			DPRINTFN(sc, 9, "%s\n",
1079 			    "sending mgt frame failed (too much retries)");
1080 			break;
1081 
1082 		case RT2560_TX_FAIL_INVALID:
1083 		case RT2560_TX_FAIL_OTHER:
1084 		default:
1085 			device_printf(sc->sc_dev, "sending mgt frame failed "
1086 			    "0x%08x\n", flags);
1087 			break;
1088 		}
1089 
1090 		bus_dmamap_sync(sc->prioq.data_dmat, data->map,
1091 		    BUS_DMASYNC_POSTWRITE);
1092 		bus_dmamap_unload(sc->prioq.data_dmat, data->map);
1093 
1094 		m = data->m;
1095 		data->m = NULL;
1096 		ni = data->ni;
1097 		data->ni = NULL;
1098 
1099 		/* descriptor is no longer valid */
1100 		desc->flags &= ~htole32(RT2560_TX_VALID);
1101 
1102 		DPRINTFN(sc, 15, "prio done idx=%u\n", sc->prioq.next);
1103 
1104 		sc->prioq.queued--;
1105 		sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT;
1106 
1107 		if (m->m_flags & M_TXCB)
1108 			ieee80211_process_callback(ni, m,
1109 				(flags & RT2560_TX_RESULT_MASK) &~
1110 				(RT2560_TX_SUCCESS | RT2560_TX_SUCCESS_RETRY));
1111 		m_freem(m);
1112 		ieee80211_free_node(ni);
1113 	}
1114 
1115 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1116 	    BUS_DMASYNC_PREWRITE);
1117 
1118 	if (sc->prioq.queued == 0 && sc->txq.queued == 0)
1119 		sc->sc_tx_timer = 0;
1120 
1121 	if (sc->prioq.queued < RT2560_PRIO_RING_COUNT)
1122 		rt2560_start(sc);
1123 }
1124 
1125 /*
1126  * Some frames were processed by the hardware cipher engine and are ready for
1127  * handoff to the IEEE802.11 layer.
1128  */
1129 static void
1130 rt2560_decryption_intr(struct rt2560_softc *sc)
1131 {
1132 	struct ieee80211com *ic = &sc->sc_ic;
1133 	struct rt2560_rx_desc *desc;
1134 	struct rt2560_rx_data *data;
1135 	bus_addr_t physaddr;
1136 	struct ieee80211_frame *wh;
1137 	struct ieee80211_node *ni;
1138 	struct mbuf *mnew, *m;
1139 	int hw, error;
1140 	int8_t rssi, nf;
1141 
1142 	/* retrieve last descriptor index processed by cipher engine */
1143 	hw = RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr;
1144 	hw /= RT2560_RX_DESC_SIZE;
1145 
1146 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1147 	    BUS_DMASYNC_POSTREAD);
1148 
1149 	for (; sc->rxq.cur_decrypt != hw;) {
1150 		desc = &sc->rxq.desc[sc->rxq.cur_decrypt];
1151 		data = &sc->rxq.data[sc->rxq.cur_decrypt];
1152 
1153 		if ((le32toh(desc->flags) & RT2560_RX_BUSY) ||
1154 		    (le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY))
1155 			break;
1156 
1157 		if (data->drop) {
1158 #if defined(__DragonFly__)
1159 			/* not implemeted */
1160 #else
1161 			counter_u64_add(ic->ic_ierrors, 1);
1162 #endif
1163 			goto skip;
1164 		}
1165 
1166 		if ((le32toh(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 &&
1167 		    (le32toh(desc->flags) & RT2560_RX_ICV_ERROR)) {
1168 #if defined(__DragonFly__)
1169 			/* not implemeted */
1170 #else
1171 			counter_u64_add(ic->ic_ierrors, 1);
1172 #endif
1173 			goto skip;
1174 		}
1175 
1176 		/*
1177 		 * Try to allocate a new mbuf for this ring element and load it
1178 		 * before processing the current mbuf. If the ring element
1179 		 * cannot be loaded, drop the received packet and reuse the old
1180 		 * mbuf. In the unlikely case that the old mbuf can't be
1181 		 * reloaded either, explicitly panic.
1182 		 */
1183 		mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1184 		if (mnew == NULL) {
1185 #if defined(__DragonFly__)
1186 			/* not implemeted */
1187 #else
1188 			counter_u64_add(ic->ic_ierrors, 1);
1189 #endif
1190 			goto skip;
1191 		}
1192 
1193 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1194 		    BUS_DMASYNC_POSTREAD);
1195 		bus_dmamap_unload(sc->rxq.data_dmat, data->map);
1196 
1197 		error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1198 		    mtod(mnew, void *), MCLBYTES, rt2560_dma_map_addr,
1199 		    &physaddr, 0);
1200 		if (error != 0) {
1201 			m_freem(mnew);
1202 
1203 			/* try to reload the old mbuf */
1204 			error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1205 			    mtod(data->m, void *), MCLBYTES,
1206 			    rt2560_dma_map_addr, &physaddr, 0);
1207 			if (error != 0) {
1208 				/* very unlikely that it will fail... */
1209 				panic("%s: could not load old rx mbuf",
1210 				    device_get_name(sc->sc_dev));
1211 			}
1212 #if defined(__DragonFly__)
1213 			/* not implemeted */
1214 #else
1215 			counter_u64_add(ic->ic_ierrors, 1);
1216 #endif
1217 			goto skip;
1218 		}
1219 
1220 		/*
1221 	 	 * New mbuf successfully loaded, update Rx ring and continue
1222 		 * processing.
1223 		 */
1224 		m = data->m;
1225 		data->m = mnew;
1226 		desc->physaddr = htole32(physaddr);
1227 
1228 		/* finalize mbuf */
1229 		m->m_pkthdr.len = m->m_len =
1230 		    (le32toh(desc->flags) >> 16) & 0xfff;
1231 
1232 		rssi = RT2560_RSSI(sc, desc->rssi);
1233 		nf = RT2560_NOISE_FLOOR;
1234 		if (ieee80211_radiotap_active(ic)) {
1235 			struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap;
1236 			uint32_t tsf_lo, tsf_hi;
1237 
1238 			/* get timestamp (low and high 32 bits) */
1239 			tsf_hi = RAL_READ(sc, RT2560_CSR17);
1240 			tsf_lo = RAL_READ(sc, RT2560_CSR16);
1241 
1242 			tap->wr_tsf =
1243 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1244 			tap->wr_flags = 0;
1245 			tap->wr_rate = ieee80211_plcp2rate(desc->rate,
1246 			    (desc->flags & htole32(RT2560_RX_OFDM)) ?
1247 				IEEE80211_T_OFDM : IEEE80211_T_CCK);
1248 			tap->wr_antenna = sc->rx_ant;
1249 			tap->wr_antsignal = nf + rssi;
1250 			tap->wr_antnoise = nf;
1251 		}
1252 
1253 		sc->sc_flags |= RT2560_F_INPUT_RUNNING;
1254 		RAL_UNLOCK(sc);
1255 		wh = mtod(m, struct ieee80211_frame *);
1256 		ni = ieee80211_find_rxnode(ic,
1257 		    (struct ieee80211_frame_min *)wh);
1258 		if (ni != NULL) {
1259 			(void) ieee80211_input(ni, m, rssi, nf);
1260 			ieee80211_free_node(ni);
1261 		} else
1262 			(void) ieee80211_input_all(ic, m, rssi, nf);
1263 
1264 		RAL_LOCK(sc);
1265 		sc->sc_flags &= ~RT2560_F_INPUT_RUNNING;
1266 skip:		desc->flags = htole32(RT2560_RX_BUSY);
1267 
1268 		DPRINTFN(sc, 15, "decryption done idx=%u\n", sc->rxq.cur_decrypt);
1269 
1270 		sc->rxq.cur_decrypt =
1271 		    (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT;
1272 	}
1273 
1274 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1275 	    BUS_DMASYNC_PREWRITE);
1276 }
1277 
1278 /*
1279  * Some frames were received. Pass them to the hardware cipher engine before
1280  * sending them to the 802.11 layer.
1281  */
1282 static void
1283 rt2560_rx_intr(struct rt2560_softc *sc)
1284 {
1285 	struct rt2560_rx_desc *desc;
1286 	struct rt2560_rx_data *data;
1287 
1288 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1289 	    BUS_DMASYNC_POSTREAD);
1290 
1291 	for (;;) {
1292 		desc = &sc->rxq.desc[sc->rxq.cur];
1293 		data = &sc->rxq.data[sc->rxq.cur];
1294 
1295 		if ((le32toh(desc->flags) & RT2560_RX_BUSY) ||
1296 		    (le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY))
1297 			break;
1298 
1299 		data->drop = 0;
1300 
1301 		if ((le32toh(desc->flags) & RT2560_RX_PHY_ERROR) ||
1302 		    (le32toh(desc->flags) & RT2560_RX_CRC_ERROR)) {
1303 			/*
1304 			 * This should not happen since we did not request
1305 			 * to receive those frames when we filled RXCSR0.
1306 			 */
1307 			DPRINTFN(sc, 5, "PHY or CRC error flags 0x%08x\n",
1308 			    le32toh(desc->flags));
1309 			data->drop = 1;
1310 		}
1311 
1312 		if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) {
1313 			DPRINTFN(sc, 5, "%s\n", "bad length");
1314 			data->drop = 1;
1315 		}
1316 
1317 		/* mark the frame for decryption */
1318 		desc->flags |= htole32(RT2560_RX_CIPHER_BUSY);
1319 
1320 		DPRINTFN(sc, 15, "rx done idx=%u\n", sc->rxq.cur);
1321 
1322 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT;
1323 	}
1324 
1325 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1326 	    BUS_DMASYNC_PREWRITE);
1327 
1328 	/* kick decrypt */
1329 	RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT);
1330 }
1331 
1332 static void
1333 rt2560_beacon_update(struct ieee80211vap *vap, int item)
1334 {
1335 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
1336 
1337 	setbit(bo->bo_flags, item);
1338 }
1339 
1340 /*
1341  * This function is called periodically in IBSS mode when a new beacon must be
1342  * sent out.
1343  */
1344 static void
1345 rt2560_beacon_expire(struct rt2560_softc *sc)
1346 {
1347 	struct ieee80211com *ic = &sc->sc_ic;
1348 	struct rt2560_tx_data *data;
1349 
1350 	if (ic->ic_opmode != IEEE80211_M_IBSS &&
1351 	    ic->ic_opmode != IEEE80211_M_HOSTAP &&
1352 	    ic->ic_opmode != IEEE80211_M_MBSS)
1353 		return;
1354 
1355 	data = &sc->bcnq.data[sc->bcnq.next];
1356 	/*
1357 	 * Don't send beacon if bsschan isn't set
1358 	 */
1359 	if (data->ni == NULL)
1360 	        return;
1361 
1362 	bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
1363 	bus_dmamap_unload(sc->bcnq.data_dmat, data->map);
1364 
1365 	/* XXX 1 =>'s mcast frames which means all PS sta's will wakeup! */
1366 	ieee80211_beacon_update(data->ni, data->m, 1);
1367 
1368 	rt2560_tx_bcn(sc, data->m, data->ni);
1369 
1370 	DPRINTFN(sc, 15, "%s", "beacon expired\n");
1371 
1372 	sc->bcnq.next = (sc->bcnq.next + 1) % RT2560_BEACON_RING_COUNT;
1373 }
1374 
1375 /* ARGSUSED */
1376 static void
1377 rt2560_wakeup_expire(struct rt2560_softc *sc)
1378 {
1379 	DPRINTFN(sc, 2, "%s", "wakeup expired\n");
1380 }
1381 
1382 void
1383 rt2560_intr(void *arg)
1384 {
1385 	struct rt2560_softc *sc = arg;
1386 	uint32_t r;
1387 
1388 	RAL_LOCK(sc);
1389 
1390 	/* disable interrupts */
1391 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
1392 
1393 	/* don't re-enable interrupts if we're shutting down */
1394 	if (!(sc->sc_flags & RT2560_F_RUNNING)) {
1395 		RAL_UNLOCK(sc);
1396 		return;
1397 	}
1398 
1399 	r = RAL_READ(sc, RT2560_CSR7);
1400 	RAL_WRITE(sc, RT2560_CSR7, r);
1401 
1402 	if (r & RT2560_BEACON_EXPIRE)
1403 		rt2560_beacon_expire(sc);
1404 
1405 	if (r & RT2560_WAKEUP_EXPIRE)
1406 		rt2560_wakeup_expire(sc);
1407 
1408 	if (r & RT2560_ENCRYPTION_DONE)
1409 		rt2560_encryption_intr(sc);
1410 
1411 	if (r & RT2560_TX_DONE)
1412 		rt2560_tx_intr(sc);
1413 
1414 	if (r & RT2560_PRIO_DONE)
1415 		rt2560_prio_intr(sc);
1416 
1417 	if (r & RT2560_DECRYPTION_DONE)
1418 		rt2560_decryption_intr(sc);
1419 
1420 	if (r & RT2560_RX_DONE) {
1421 		rt2560_rx_intr(sc);
1422 		rt2560_encryption_intr(sc);
1423 	}
1424 
1425 	/* re-enable interrupts */
1426 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
1427 
1428 	RAL_UNLOCK(sc);
1429 }
1430 
1431 #define RAL_SIFS		10	/* us */
1432 
1433 #define RT2560_TXRX_TURNAROUND	10	/* us */
1434 
1435 static uint8_t
1436 rt2560_plcp_signal(int rate)
1437 {
1438 	switch (rate) {
1439 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1440 	case 12:	return 0xb;
1441 	case 18:	return 0xf;
1442 	case 24:	return 0xa;
1443 	case 36:	return 0xe;
1444 	case 48:	return 0x9;
1445 	case 72:	return 0xd;
1446 	case 96:	return 0x8;
1447 	case 108:	return 0xc;
1448 
1449 	/* CCK rates (NB: not IEEE std, device-specific) */
1450 	case 2:		return 0x0;
1451 	case 4:		return 0x1;
1452 	case 11:	return 0x2;
1453 	case 22:	return 0x3;
1454 	}
1455 	return 0xff;		/* XXX unsupported/unknown rate */
1456 }
1457 
1458 static void
1459 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc,
1460     uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr)
1461 {
1462 	struct ieee80211com *ic = &sc->sc_ic;
1463 	uint16_t plcp_length;
1464 	int remainder;
1465 
1466 	desc->flags = htole32(flags);
1467 	desc->flags |= htole32(len << 16);
1468 
1469 	desc->physaddr = htole32(physaddr);
1470 	desc->wme = htole16(
1471 	    RT2560_AIFSN(2) |
1472 	    RT2560_LOGCWMIN(3) |
1473 	    RT2560_LOGCWMAX(8));
1474 
1475 	/* setup PLCP fields */
1476 	desc->plcp_signal  = rt2560_plcp_signal(rate);
1477 	desc->plcp_service = 4;
1478 
1479 	len += IEEE80211_CRC_LEN;
1480 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
1481 		desc->flags |= htole32(RT2560_TX_OFDM);
1482 
1483 		plcp_length = len & 0xfff;
1484 		desc->plcp_length_hi = plcp_length >> 6;
1485 		desc->plcp_length_lo = plcp_length & 0x3f;
1486 	} else {
1487 		plcp_length = howmany(16 * len, rate);
1488 		if (rate == 22) {
1489 			remainder = (16 * len) % 22;
1490 			if (remainder != 0 && remainder < 7)
1491 				desc->plcp_service |= RT2560_PLCP_LENGEXT;
1492 		}
1493 		desc->plcp_length_hi = plcp_length >> 8;
1494 		desc->plcp_length_lo = plcp_length & 0xff;
1495 
1496 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1497 			desc->plcp_signal |= 0x08;
1498 	}
1499 
1500 	if (!encrypt)
1501 		desc->flags |= htole32(RT2560_TX_VALID);
1502 	desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY)
1503 			       : htole32(RT2560_TX_BUSY);
1504 }
1505 
1506 static int
1507 rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0,
1508     struct ieee80211_node *ni)
1509 {
1510 	struct ieee80211vap *vap = ni->ni_vap;
1511 	struct rt2560_tx_desc *desc;
1512 	struct rt2560_tx_data *data;
1513 	bus_dma_segment_t segs[RT2560_MAX_SCATTER];
1514 	int nsegs, rate, error;
1515 
1516 	desc = &sc->bcnq.desc[sc->bcnq.cur];
1517 	data = &sc->bcnq.data[sc->bcnq.cur];
1518 
1519 	/* XXX maybe a separate beacon rate? */
1520 	rate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].mgmtrate;
1521 
1522 #if defined(__DragonFly__)
1523 	error = bus_dmamap_load_mbuf_segment(sc->bcnq.data_dmat, data->map, m0,
1524 	    segs, 1, &nsegs, BUS_DMA_NOWAIT);
1525 #else
1526 	error = bus_dmamap_load_mbuf_sg(sc->bcnq.data_dmat, data->map, m0,
1527 	    segs, &nsegs, BUS_DMA_NOWAIT);
1528 #endif
1529 	if (error != 0) {
1530 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1531 		    error);
1532 		m_freem(m0);
1533 		return error;
1534 	}
1535 
1536 	if (ieee80211_radiotap_active_vap(vap)) {
1537 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1538 
1539 		tap->wt_flags = 0;
1540 		tap->wt_rate = rate;
1541 		tap->wt_antenna = sc->tx_ant;
1542 
1543 		ieee80211_radiotap_tx(vap, m0);
1544 	}
1545 
1546 	data->m = m0;
1547 	data->ni = ni;
1548 
1549 	rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF |
1550 	    RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0, segs->ds_addr);
1551 
1552 	DPRINTFN(sc, 10, "sending beacon frame len=%u idx=%u rate=%u\n",
1553 	    m0->m_pkthdr.len, sc->bcnq.cur, rate);
1554 
1555 	bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1556 	bus_dmamap_sync(sc->bcnq.desc_dmat, sc->bcnq.desc_map,
1557 	    BUS_DMASYNC_PREWRITE);
1558 
1559 	sc->bcnq.cur = (sc->bcnq.cur + 1) % RT2560_BEACON_RING_COUNT;
1560 
1561 	return 0;
1562 }
1563 
1564 static int
1565 rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0,
1566     struct ieee80211_node *ni)
1567 {
1568 	struct ieee80211vap *vap = ni->ni_vap;
1569 	struct ieee80211com *ic = ni->ni_ic;
1570 	struct rt2560_tx_desc *desc;
1571 	struct rt2560_tx_data *data;
1572 	struct ieee80211_frame *wh;
1573 	struct ieee80211_key *k;
1574 	bus_dma_segment_t segs[RT2560_MAX_SCATTER];
1575 	uint16_t dur;
1576 	uint32_t flags = 0;
1577 	int nsegs, rate, error;
1578 
1579 	desc = &sc->prioq.desc[sc->prioq.cur];
1580 	data = &sc->prioq.data[sc->prioq.cur];
1581 
1582 	rate = vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)].mgmtrate;
1583 
1584 	wh = mtod(m0, struct ieee80211_frame *);
1585 
1586 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1587 		k = ieee80211_crypto_encap(ni, m0);
1588 		if (k == NULL) {
1589 			m_freem(m0);
1590 			return ENOBUFS;
1591 		}
1592 	}
1593 
1594 #if defined(__DragonFly__)
1595 	error = bus_dmamap_load_mbuf_segment(sc->prioq.data_dmat, data->map, m0,
1596 	    segs, 1, &nsegs, BUS_DMA_NOWAIT);
1597 #else
1598 	error = bus_dmamap_load_mbuf_sg(sc->prioq.data_dmat, data->map, m0,
1599 	    segs, &nsegs, 0);
1600 #endif
1601 	if (error != 0) {
1602 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1603 		    error);
1604 		m_freem(m0);
1605 		return error;
1606 	}
1607 
1608 	if (ieee80211_radiotap_active_vap(vap)) {
1609 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1610 
1611 		tap->wt_flags = 0;
1612 		tap->wt_rate = rate;
1613 		tap->wt_antenna = sc->tx_ant;
1614 
1615 		ieee80211_radiotap_tx(vap, m0);
1616 	}
1617 
1618 	data->m = m0;
1619 	data->ni = ni;
1620 	/* management frames are not taken into account for amrr */
1621 	data->rix = IEEE80211_FIXED_RATE_NONE;
1622 
1623 	wh = mtod(m0, struct ieee80211_frame *);
1624 
1625 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1626 		flags |= RT2560_TX_ACK;
1627 
1628 		dur = ieee80211_ack_duration(ic->ic_rt,
1629 		    rate, ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1630 		*(uint16_t *)wh->i_dur = htole16(dur);
1631 
1632 		/* tell hardware to add timestamp for probe responses */
1633 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1634 		    IEEE80211_FC0_TYPE_MGT &&
1635 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1636 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1637 			flags |= RT2560_TX_TIMESTAMP;
1638 	}
1639 
1640 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0,
1641 	    segs->ds_addr);
1642 
1643 	bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1644 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1645 	    BUS_DMASYNC_PREWRITE);
1646 
1647 	DPRINTFN(sc, 10, "sending mgt frame len=%u idx=%u rate=%u\n",
1648 	    m0->m_pkthdr.len, sc->prioq.cur, rate);
1649 
1650 	/* kick prio */
1651 	sc->prioq.queued++;
1652 	sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
1653 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
1654 
1655 	return 0;
1656 }
1657 
1658 static int
1659 rt2560_sendprot(struct rt2560_softc *sc,
1660     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
1661 {
1662 	struct ieee80211com *ic = ni->ni_ic;
1663 	const struct ieee80211_frame *wh;
1664 	struct rt2560_tx_desc *desc;
1665 	struct rt2560_tx_data *data;
1666 	struct mbuf *mprot;
1667 	int protrate, ackrate, pktlen, flags, isshort, error;
1668 	uint16_t dur;
1669 	bus_dma_segment_t segs[RT2560_MAX_SCATTER];
1670 	int nsegs;
1671 
1672 	KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY,
1673 	    ("protection %d", prot));
1674 
1675 	wh = mtod(m, const struct ieee80211_frame *);
1676 	pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1677 
1678 	protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
1679 	ackrate = ieee80211_ack_rate(ic->ic_rt, rate);
1680 
1681 	isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
1682 	dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
1683 	    + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1684 	flags = RT2560_TX_MORE_FRAG;
1685 	if (prot == IEEE80211_PROT_RTSCTS) {
1686 		/* NB: CTS is the same size as an ACK */
1687 		dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1688 		flags |= RT2560_TX_ACK;
1689 		mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
1690 	} else {
1691 		mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
1692 	}
1693 	if (mprot == NULL) {
1694 		/* XXX stat + msg */
1695 		return ENOBUFS;
1696 	}
1697 
1698 	desc = &sc->txq.desc[sc->txq.cur_encrypt];
1699 	data = &sc->txq.data[sc->txq.cur_encrypt];
1700 
1701 #if defined(__DragonFly__)
1702 	error = bus_dmamap_load_mbuf_segment(sc->txq.data_dmat, data->map,
1703 	    mprot, segs, 1, &nsegs, BUS_DMA_NOWAIT);
1704 #else
1705 	error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map,
1706 	    mprot, segs, &nsegs, 0);
1707 #endif
1708 	if (error != 0) {
1709 		device_printf(sc->sc_dev,
1710 		    "could not map mbuf (error %d)\n", error);
1711 		m_freem(mprot);
1712 		return error;
1713 	}
1714 
1715 	data->m = mprot;
1716 	data->ni = ieee80211_ref_node(ni);
1717 	/* ctl frames are not taken into account for amrr */
1718 	data->rix = IEEE80211_FIXED_RATE_NONE;
1719 
1720 	rt2560_setup_tx_desc(sc, desc, flags, mprot->m_pkthdr.len, protrate, 1,
1721 	    segs->ds_addr);
1722 
1723 	bus_dmamap_sync(sc->txq.data_dmat, data->map,
1724 	    BUS_DMASYNC_PREWRITE);
1725 
1726 	sc->txq.queued++;
1727 	sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
1728 
1729 	return 0;
1730 }
1731 
1732 static int
1733 rt2560_tx_raw(struct rt2560_softc *sc, struct mbuf *m0,
1734     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
1735 {
1736 	struct ieee80211vap *vap = ni->ni_vap;
1737 	struct ieee80211com *ic = ni->ni_ic;
1738 	struct rt2560_tx_desc *desc;
1739 	struct rt2560_tx_data *data;
1740 	bus_dma_segment_t segs[RT2560_MAX_SCATTER];
1741 	uint32_t flags;
1742 	int nsegs, rate, error;
1743 
1744 	desc = &sc->prioq.desc[sc->prioq.cur];
1745 	data = &sc->prioq.data[sc->prioq.cur];
1746 
1747 	rate = params->ibp_rate0;
1748 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
1749 		/* XXX fall back to mcast/mgmt rate? */
1750 		m_freem(m0);
1751 		return EINVAL;
1752 	}
1753 
1754 	flags = 0;
1755 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1756 		flags |= RT2560_TX_ACK;
1757 	if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
1758 		error = rt2560_sendprot(sc, m0, ni,
1759 		    params->ibp_flags & IEEE80211_BPF_RTS ?
1760 			 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
1761 		    rate);
1762 		if (error) {
1763 			m_freem(m0);
1764 			return error;
1765 		}
1766 		flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
1767 	}
1768 
1769 #if defined(__DragonFly__)
1770 	error = bus_dmamap_load_mbuf_segment(sc->prioq.data_dmat, data->map, m0,
1771 	    segs, 1, &nsegs, BUS_DMA_NOWAIT);
1772 #else
1773 	error = bus_dmamap_load_mbuf_sg(sc->prioq.data_dmat, data->map, m0,
1774 	    segs, &nsegs, 0);
1775 #endif
1776 	if (error != 0) {
1777 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1778 		    error);
1779 		m_freem(m0);
1780 		return error;
1781 	}
1782 
1783 	if (ieee80211_radiotap_active_vap(vap)) {
1784 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1785 
1786 		tap->wt_flags = 0;
1787 		tap->wt_rate = rate;
1788 		tap->wt_antenna = sc->tx_ant;
1789 
1790 		ieee80211_radiotap_tx(ni->ni_vap, m0);
1791 	}
1792 
1793 	data->m = m0;
1794 	data->ni = ni;
1795 
1796 	/* XXX need to setup descriptor ourself */
1797 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len,
1798 	    rate, (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0,
1799 	    segs->ds_addr);
1800 
1801 	bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1802 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1803 	    BUS_DMASYNC_PREWRITE);
1804 
1805 	DPRINTFN(sc, 10, "sending raw frame len=%u idx=%u rate=%u\n",
1806 	    m0->m_pkthdr.len, sc->prioq.cur, rate);
1807 
1808 	/* kick prio */
1809 	sc->prioq.queued++;
1810 	sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
1811 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
1812 
1813 	return 0;
1814 }
1815 
1816 static int
1817 rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0,
1818     struct ieee80211_node *ni)
1819 {
1820 	struct ieee80211vap *vap = ni->ni_vap;
1821 	struct ieee80211com *ic = ni->ni_ic;
1822 	struct rt2560_tx_desc *desc;
1823 	struct rt2560_tx_data *data;
1824 	struct ieee80211_frame *wh;
1825 	const struct ieee80211_txparam *tp;
1826 	struct ieee80211_key *k;
1827 	struct mbuf *mnew;
1828 	bus_dma_segment_t segs[RT2560_MAX_SCATTER];
1829 	uint16_t dur;
1830 	uint32_t flags;
1831 	int nsegs, rate, error;
1832 
1833 	wh = mtod(m0, struct ieee80211_frame *);
1834 
1835 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1836 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1837 		rate = tp->mcastrate;
1838 	} else if (m0->m_flags & M_EAPOL) {
1839 		rate = tp->mgmtrate;
1840 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1841 		rate = tp->ucastrate;
1842 	} else {
1843 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
1844 		rate = ni->ni_txrate;
1845 	}
1846 
1847 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1848 		k = ieee80211_crypto_encap(ni, m0);
1849 		if (k == NULL) {
1850 			m_freem(m0);
1851 			return ENOBUFS;
1852 		}
1853 
1854 		/* packet header may have moved, reset our local pointer */
1855 		wh = mtod(m0, struct ieee80211_frame *);
1856 	}
1857 
1858 	flags = 0;
1859 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1860 		int prot = IEEE80211_PROT_NONE;
1861 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
1862 			prot = IEEE80211_PROT_RTSCTS;
1863 		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1864 		    ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
1865 			prot = ic->ic_protmode;
1866 		if (prot != IEEE80211_PROT_NONE) {
1867 			error = rt2560_sendprot(sc, m0, ni, prot, rate);
1868 			if (error) {
1869 				m_freem(m0);
1870 				return error;
1871 			}
1872 			flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
1873 		}
1874 	}
1875 
1876 	data = &sc->txq.data[sc->txq.cur_encrypt];
1877 	desc = &sc->txq.desc[sc->txq.cur_encrypt];
1878 
1879 #if defined(__DragonFly__)
1880 	error = bus_dmamap_load_mbuf_segment(sc->txq.data_dmat, data->map, m0,
1881 	    segs, 1, &nsegs, BUS_DMA_NOWAIT);
1882 #else
1883 	error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map, m0,
1884 	    segs, &nsegs, 0);
1885 #endif
1886 	if (error != 0 && error != EFBIG) {
1887 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1888 		    error);
1889 		m_freem(m0);
1890 		return error;
1891 	}
1892 	if (error != 0) {
1893 		mnew = m_defrag(m0, M_NOWAIT);
1894 		if (mnew == NULL) {
1895 			device_printf(sc->sc_dev,
1896 			    "could not defragment mbuf\n");
1897 			m_freem(m0);
1898 			return ENOBUFS;
1899 		}
1900 		m0 = mnew;
1901 
1902 #if defined(__DragonFly__)
1903 		error = bus_dmamap_load_mbuf_segment(sc->txq.data_dmat,
1904 		    data->map,
1905 		    m0, segs, 1, &nsegs, BUS_DMA_NOWAIT);
1906 #else
1907 		error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map,
1908 		    m0, segs, &nsegs, 0);
1909 #endif
1910 		if (error != 0) {
1911 			device_printf(sc->sc_dev,
1912 			    "could not map mbuf (error %d)\n", error);
1913 			m_freem(m0);
1914 			return error;
1915 		}
1916 
1917 		/* packet header may have moved, reset our local pointer */
1918 		wh = mtod(m0, struct ieee80211_frame *);
1919 	}
1920 
1921 	if (ieee80211_radiotap_active_vap(vap)) {
1922 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1923 
1924 		tap->wt_flags = 0;
1925 		tap->wt_rate = rate;
1926 		tap->wt_antenna = sc->tx_ant;
1927 
1928 		ieee80211_radiotap_tx(vap, m0);
1929 	}
1930 
1931 	data->m = m0;
1932 	data->ni = ni;
1933 
1934 	/* remember link conditions for rate adaptation algorithm */
1935 	if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) {
1936 		data->rix = ni->ni_txrate;
1937 		/* XXX probably need last rssi value and not avg */
1938 		data->rssi = ic->ic_node_getrssi(ni);
1939 	} else
1940 		data->rix = IEEE80211_FIXED_RATE_NONE;
1941 
1942 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1943 		flags |= RT2560_TX_ACK;
1944 
1945 		dur = ieee80211_ack_duration(ic->ic_rt,
1946 		    rate, ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1947 		*(uint16_t *)wh->i_dur = htole16(dur);
1948 	}
1949 
1950 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1,
1951 	    segs->ds_addr);
1952 
1953 	bus_dmamap_sync(sc->txq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1954 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
1955 	    BUS_DMASYNC_PREWRITE);
1956 
1957 	DPRINTFN(sc, 10, "sending data frame len=%u idx=%u rate=%u\n",
1958 	    m0->m_pkthdr.len, sc->txq.cur_encrypt, rate);
1959 
1960 	/* kick encrypt */
1961 	sc->txq.queued++;
1962 	sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
1963 	RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT);
1964 
1965 	return 0;
1966 }
1967 
1968 static int
1969 rt2560_transmit(struct ieee80211com *ic, struct mbuf *m)
1970 {
1971 	struct rt2560_softc *sc = ic->ic_softc;
1972 	int error;
1973 
1974 	RAL_LOCK(sc);
1975 	if ((sc->sc_flags & RT2560_F_RUNNING) == 0) {
1976 		RAL_UNLOCK(sc);
1977 		return (ENXIO);
1978 	}
1979 	error = mbufq_enqueue(&sc->sc_snd, m);
1980 	if (error) {
1981 		RAL_UNLOCK(sc);
1982 		return (error);
1983 	}
1984 	rt2560_start(sc);
1985 	RAL_UNLOCK(sc);
1986 
1987 	return (0);
1988 }
1989 
1990 static void
1991 rt2560_start(struct rt2560_softc *sc)
1992 {
1993 	struct ieee80211_node *ni;
1994 	struct mbuf *m;
1995 
1996 	RAL_LOCK_ASSERT(sc);
1997 
1998 	while (sc->txq.queued < RT2560_TX_RING_COUNT - 1 &&
1999 	    (m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
2000 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2001 		if (rt2560_tx_data(sc, m, ni) != 0) {
2002 			if_inc_counter(ni->ni_vap->iv_ifp,
2003 			    IFCOUNTER_OERRORS, 1);
2004 			ieee80211_free_node(ni);
2005 			break;
2006 		}
2007 		sc->sc_tx_timer = 5;
2008 	}
2009 }
2010 
2011 static void
2012 rt2560_watchdog(void *arg)
2013 {
2014 	struct rt2560_softc *sc = arg;
2015 
2016 	RAL_LOCK_ASSERT(sc);
2017 
2018 	KASSERT(sc->sc_flags & RT2560_F_RUNNING, ("not running"));
2019 
2020 	if (sc->sc_invalid)		/* card ejected */
2021 		return;
2022 
2023 	rt2560_encryption_intr(sc);
2024 	rt2560_tx_intr(sc);
2025 
2026 	if (sc->sc_tx_timer > 0 && --sc->sc_tx_timer == 0) {
2027 		device_printf(sc->sc_dev, "device timeout\n");
2028 		rt2560_init_locked(sc);
2029 #if defined(__DragonFly__)
2030 		/* not implemeted */
2031 #else
2032 		counter_u64_add(sc->sc_ic.ic_oerrors, 1);
2033 #endif
2034 		/* NB: callout is reset in rt2560_init() */
2035 		return;
2036 	}
2037 	callout_reset(&sc->watchdog_ch, hz, rt2560_watchdog, sc);
2038 }
2039 
2040 static void
2041 rt2560_parent(struct ieee80211com *ic)
2042 {
2043 	struct rt2560_softc *sc = ic->ic_softc;
2044 	int startall = 0;
2045 
2046 	RAL_LOCK(sc);
2047 	if (ic->ic_nrunning > 0) {
2048 		if ((sc->sc_flags & RT2560_F_RUNNING) == 0) {
2049 			rt2560_init_locked(sc);
2050 			startall = 1;
2051 		} else
2052 			rt2560_update_promisc(ic);
2053 	} else if (sc->sc_flags & RT2560_F_RUNNING)
2054 		rt2560_stop_locked(sc);
2055 	RAL_UNLOCK(sc);
2056 	if (startall)
2057 		ieee80211_start_all(ic);
2058 }
2059 
2060 static void
2061 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val)
2062 {
2063 	uint32_t tmp;
2064 	int ntries;
2065 
2066 	for (ntries = 0; ntries < 100; ntries++) {
2067 		if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
2068 			break;
2069 		DELAY(1);
2070 	}
2071 	if (ntries == 100) {
2072 		device_printf(sc->sc_dev, "could not write to BBP\n");
2073 		return;
2074 	}
2075 
2076 	tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val;
2077 	RAL_WRITE(sc, RT2560_BBPCSR, tmp);
2078 
2079 	DPRINTFN(sc, 15, "BBP R%u <- 0x%02x\n", reg, val);
2080 }
2081 
2082 static uint8_t
2083 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg)
2084 {
2085 	uint32_t val;
2086 	int ntries;
2087 
2088 	for (ntries = 0; ntries < 100; ntries++) {
2089 		if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
2090 			break;
2091 		DELAY(1);
2092 	}
2093 	if (ntries == 100) {
2094 		device_printf(sc->sc_dev, "could not read from BBP\n");
2095 		return 0;
2096 	}
2097 
2098 	val = RT2560_BBP_BUSY | reg << 8;
2099 	RAL_WRITE(sc, RT2560_BBPCSR, val);
2100 
2101 	for (ntries = 0; ntries < 100; ntries++) {
2102 		val = RAL_READ(sc, RT2560_BBPCSR);
2103 		if (!(val & RT2560_BBP_BUSY))
2104 			return val & 0xff;
2105 		DELAY(1);
2106 	}
2107 
2108 	device_printf(sc->sc_dev, "could not read from BBP\n");
2109 	return 0;
2110 }
2111 
2112 static void
2113 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val)
2114 {
2115 	uint32_t tmp;
2116 	int ntries;
2117 
2118 	for (ntries = 0; ntries < 100; ntries++) {
2119 		if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY))
2120 			break;
2121 		DELAY(1);
2122 	}
2123 	if (ntries == 100) {
2124 		device_printf(sc->sc_dev, "could not write to RF\n");
2125 		return;
2126 	}
2127 
2128 	tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 |
2129 	    (reg & 0x3);
2130 	RAL_WRITE(sc, RT2560_RFCSR, tmp);
2131 
2132 	/* remember last written value in sc */
2133 	sc->rf_regs[reg] = val;
2134 
2135 	DPRINTFN(sc, 15, "RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff);
2136 }
2137 
2138 static void
2139 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c)
2140 {
2141 	struct ieee80211com *ic = &sc->sc_ic;
2142 	uint8_t power, tmp;
2143 	u_int i, chan;
2144 
2145 	chan = ieee80211_chan2ieee(ic, c);
2146 	KASSERT(chan != 0 && chan != IEEE80211_CHAN_ANY, ("chan 0x%x", chan));
2147 
2148 	if (IEEE80211_IS_CHAN_2GHZ(c))
2149 		power = min(sc->txpow[chan - 1], 31);
2150 	else
2151 		power = 31;
2152 
2153 	/* adjust txpower using ifconfig settings */
2154 	power -= (100 - ic->ic_txpowlimit) / 8;
2155 
2156 	DPRINTFN(sc, 2, "setting channel to %u, txpower to %u\n", chan, power);
2157 
2158 	switch (sc->rf_rev) {
2159 	case RT2560_RF_2522:
2160 		rt2560_rf_write(sc, RAL_RF1, 0x00814);
2161 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2522_r2[chan - 1]);
2162 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
2163 		break;
2164 
2165 	case RT2560_RF_2523:
2166 		rt2560_rf_write(sc, RAL_RF1, 0x08804);
2167 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2523_r2[chan - 1]);
2168 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
2169 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2170 		break;
2171 
2172 	case RT2560_RF_2524:
2173 		rt2560_rf_write(sc, RAL_RF1, 0x0c808);
2174 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2524_r2[chan - 1]);
2175 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
2176 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2177 		break;
2178 
2179 	case RT2560_RF_2525:
2180 		rt2560_rf_write(sc, RAL_RF1, 0x08808);
2181 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_hi_r2[chan - 1]);
2182 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2183 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2184 
2185 		rt2560_rf_write(sc, RAL_RF1, 0x08808);
2186 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_r2[chan - 1]);
2187 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2188 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2189 		break;
2190 
2191 	case RT2560_RF_2525E:
2192 		rt2560_rf_write(sc, RAL_RF1, 0x08808);
2193 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525e_r2[chan - 1]);
2194 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2195 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
2196 		break;
2197 
2198 	case RT2560_RF_2526:
2199 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_hi_r2[chan - 1]);
2200 		rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
2201 		rt2560_rf_write(sc, RAL_RF1, 0x08804);
2202 
2203 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_r2[chan - 1]);
2204 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2205 		rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
2206 		break;
2207 
2208 	/* dual-band RF */
2209 	case RT2560_RF_5222:
2210 		for (i = 0; rt2560_rf5222[i].chan != chan; i++);
2211 
2212 		rt2560_rf_write(sc, RAL_RF1, rt2560_rf5222[i].r1);
2213 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf5222[i].r2);
2214 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
2215 		rt2560_rf_write(sc, RAL_RF4, rt2560_rf5222[i].r4);
2216 		break;
2217 	default:
2218 		kprintf("unknown ral rev=%d\n", sc->rf_rev);
2219 	}
2220 
2221 	/* XXX */
2222 	if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2223 		/* set Japan filter bit for channel 14 */
2224 		tmp = rt2560_bbp_read(sc, 70);
2225 
2226 		tmp &= ~RT2560_JAPAN_FILTER;
2227 		if (chan == 14)
2228 			tmp |= RT2560_JAPAN_FILTER;
2229 
2230 		rt2560_bbp_write(sc, 70, tmp);
2231 
2232 		/* clear CRC errors */
2233 		RAL_READ(sc, RT2560_CNT0);
2234 	}
2235 }
2236 
2237 static void
2238 rt2560_set_channel(struct ieee80211com *ic)
2239 {
2240 	struct rt2560_softc *sc = ic->ic_softc;
2241 
2242 	RAL_LOCK(sc);
2243 	rt2560_set_chan(sc, ic->ic_curchan);
2244 	RAL_UNLOCK(sc);
2245 
2246 }
2247 
2248 #if 0
2249 /*
2250  * Disable RF auto-tuning.
2251  */
2252 static void
2253 rt2560_disable_rf_tune(struct rt2560_softc *sc)
2254 {
2255 	uint32_t tmp;
2256 
2257 	if (sc->rf_rev != RT2560_RF_2523) {
2258 		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
2259 		rt2560_rf_write(sc, RAL_RF1, tmp);
2260 	}
2261 
2262 	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
2263 	rt2560_rf_write(sc, RAL_RF3, tmp);
2264 
2265 	DPRINTFN(sc, 2, "%s", "disabling RF autotune\n");
2266 }
2267 #endif
2268 
2269 /*
2270  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
2271  * synchronization.
2272  */
2273 static void
2274 rt2560_enable_tsf_sync(struct rt2560_softc *sc)
2275 {
2276 	struct ieee80211com *ic = &sc->sc_ic;
2277 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2278 	uint16_t logcwmin, preload;
2279 	uint32_t tmp;
2280 
2281 	/* first, disable TSF synchronization */
2282 	RAL_WRITE(sc, RT2560_CSR14, 0);
2283 
2284 	tmp = 16 * vap->iv_bss->ni_intval;
2285 	RAL_WRITE(sc, RT2560_CSR12, tmp);
2286 
2287 	RAL_WRITE(sc, RT2560_CSR13, 0);
2288 
2289 	logcwmin = 5;
2290 	preload = (vap->iv_opmode == IEEE80211_M_STA) ? 384 : 1024;
2291 	tmp = logcwmin << 16 | preload;
2292 	RAL_WRITE(sc, RT2560_BCNOCSR, tmp);
2293 
2294 	/* finally, enable TSF synchronization */
2295 	tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN;
2296 	if (ic->ic_opmode == IEEE80211_M_STA)
2297 		tmp |= RT2560_ENABLE_TSF_SYNC(1);
2298 	else
2299 		tmp |= RT2560_ENABLE_TSF_SYNC(2) |
2300 		       RT2560_ENABLE_BEACON_GENERATOR;
2301 	RAL_WRITE(sc, RT2560_CSR14, tmp);
2302 
2303 	DPRINTF(sc, "%s", "enabling TSF synchronization\n");
2304 }
2305 
2306 static void
2307 rt2560_enable_tsf(struct rt2560_softc *sc)
2308 {
2309 	RAL_WRITE(sc, RT2560_CSR14, 0);
2310 	RAL_WRITE(sc, RT2560_CSR14,
2311 	    RT2560_ENABLE_TSF_SYNC(2) | RT2560_ENABLE_TSF);
2312 }
2313 
2314 static void
2315 rt2560_update_plcp(struct rt2560_softc *sc)
2316 {
2317 	struct ieee80211com *ic = &sc->sc_ic;
2318 
2319 	/* no short preamble for 1Mbps */
2320 	RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400);
2321 
2322 	if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
2323 		/* values taken from the reference driver */
2324 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380401);
2325 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402);
2326 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b8403);
2327 	} else {
2328 		/* same values as above or'ed 0x8 */
2329 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380409);
2330 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a);
2331 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b840b);
2332 	}
2333 
2334 	DPRINTF(sc, "updating PLCP for %s preamble\n",
2335 	    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long");
2336 }
2337 
2338 /*
2339  * This function can be called by ieee80211_set_shortslottime(). Refer to
2340  * IEEE Std 802.11-1999 pp. 85 to know how these values are computed.
2341  */
2342 static void
2343 rt2560_update_slot(struct ieee80211com *ic)
2344 {
2345 	struct rt2560_softc *sc = ic->ic_softc;
2346 	uint8_t slottime;
2347 	uint16_t tx_sifs, tx_pifs, tx_difs, eifs;
2348 	uint32_t tmp;
2349 
2350 #ifndef FORCE_SLOTTIME
2351 	slottime = IEEE80211_GET_SLOTTIME(ic);
2352 #else
2353 	/*
2354 	 * Setting slot time according to "short slot time" capability
2355 	 * in beacon/probe_resp seems to cause problem to acknowledge
2356 	 * certain AP's data frames transimitted at CCK/DS rates: the
2357 	 * problematic AP keeps retransmitting data frames, probably
2358 	 * because MAC level acks are not received by hardware.
2359 	 * So we cheat a little bit here by claiming we are capable of
2360 	 * "short slot time" but setting hardware slot time to the normal
2361 	 * slot time.  ral(4) does not seem to have trouble to receive
2362 	 * frames transmitted using short slot time even if hardware
2363 	 * slot time is set to normal slot time.  If we didn't use this
2364 	 * trick, we would have to claim that short slot time is not
2365 	 * supported; this would give relative poor RX performance
2366 	 * (-1Mb~-2Mb lower) and the _whole_ BSS would stop using short
2367 	 * slot time.
2368 	 */
2369 	slottime = IEEE80211_DUR_SLOT;
2370 #endif
2371 
2372 	/* update the MAC slot boundaries */
2373 	tx_sifs = RAL_SIFS - RT2560_TXRX_TURNAROUND;
2374 	tx_pifs = tx_sifs + slottime;
2375 	tx_difs = IEEE80211_DUR_DIFS(tx_sifs, slottime);
2376 	eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
2377 
2378 	tmp = RAL_READ(sc, RT2560_CSR11);
2379 	tmp = (tmp & ~0x1f00) | slottime << 8;
2380 	RAL_WRITE(sc, RT2560_CSR11, tmp);
2381 
2382 	tmp = tx_pifs << 16 | tx_sifs;
2383 	RAL_WRITE(sc, RT2560_CSR18, tmp);
2384 
2385 	tmp = eifs << 16 | tx_difs;
2386 	RAL_WRITE(sc, RT2560_CSR19, tmp);
2387 
2388 	DPRINTF(sc, "setting slottime to %uus\n", slottime);
2389 }
2390 
2391 static void
2392 rt2560_set_basicrates(struct rt2560_softc *sc,
2393     const struct ieee80211_rateset *rs)
2394 {
2395 	struct ieee80211com *ic = &sc->sc_ic;
2396 	uint32_t mask = 0;
2397 	uint8_t rate;
2398 	int i;
2399 
2400 	for (i = 0; i < rs->rs_nrates; i++) {
2401 		rate = rs->rs_rates[i];
2402 
2403 		if (!(rate & IEEE80211_RATE_BASIC))
2404 			continue;
2405 
2406 		mask |= 1 << ieee80211_legacy_rate_lookup(ic->ic_rt,
2407 		    IEEE80211_RV(rate));
2408 	}
2409 
2410 	RAL_WRITE(sc, RT2560_ARSP_PLCP_1, mask);
2411 
2412 	DPRINTF(sc, "Setting basic rate mask to 0x%x\n", mask);
2413 }
2414 
2415 static void
2416 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2)
2417 {
2418 	uint32_t tmp;
2419 
2420 	/* set ON period to 70ms and OFF period to 30ms */
2421 	tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
2422 	RAL_WRITE(sc, RT2560_LEDCSR, tmp);
2423 }
2424 
2425 static void
2426 rt2560_set_bssid(struct rt2560_softc *sc, const uint8_t *bssid)
2427 {
2428 	uint32_t tmp;
2429 
2430 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2431 	RAL_WRITE(sc, RT2560_CSR5, tmp);
2432 
2433 	tmp = bssid[4] | bssid[5] << 8;
2434 	RAL_WRITE(sc, RT2560_CSR6, tmp);
2435 
2436 #if defined(__DragonFly__)
2437 	DPRINTF(sc, "setting BSSID to %s\n", ether_sprintf(bssid));
2438 #else
2439 	DPRINTF(sc, "setting BSSID to %6D\n", bssid, ":");
2440 #endif
2441 }
2442 
2443 static void
2444 rt2560_set_macaddr(struct rt2560_softc *sc, const uint8_t *addr)
2445 {
2446 	uint32_t tmp;
2447 
2448 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2449 	RAL_WRITE(sc, RT2560_CSR3, tmp);
2450 
2451 	tmp = addr[4] | addr[5] << 8;
2452 	RAL_WRITE(sc, RT2560_CSR4, tmp);
2453 
2454 #if defined(__DragonFly__)
2455 	DPRINTF(sc, "setting MAC address to %s\n", ether_sprintf(addr));
2456 #else
2457 	DPRINTF(sc, "setting MAC address to %6D\n", addr, ":");
2458 #endif
2459 }
2460 
2461 static void
2462 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2463 {
2464 	uint32_t tmp;
2465 
2466 	tmp = RAL_READ(sc, RT2560_CSR3);
2467 	addr[0] = tmp & 0xff;
2468 	addr[1] = (tmp >>  8) & 0xff;
2469 	addr[2] = (tmp >> 16) & 0xff;
2470 	addr[3] = (tmp >> 24);
2471 
2472 	tmp = RAL_READ(sc, RT2560_CSR4);
2473 	addr[4] = tmp & 0xff;
2474 	addr[5] = (tmp >> 8) & 0xff;
2475 }
2476 
2477 static void
2478 rt2560_update_promisc(struct ieee80211com *ic)
2479 {
2480 	struct rt2560_softc *sc = ic->ic_softc;
2481 	uint32_t tmp;
2482 
2483 	tmp = RAL_READ(sc, RT2560_RXCSR0);
2484 
2485 	tmp &= ~RT2560_DROP_NOT_TO_ME;
2486 	if (ic->ic_promisc == 0)
2487 		tmp |= RT2560_DROP_NOT_TO_ME;
2488 
2489 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2490 
2491 	DPRINTF(sc, "%s promiscuous mode\n",
2492 	    (ic->ic_promisc > 0) ?  "entering" : "leaving");
2493 }
2494 
2495 static const char *
2496 rt2560_get_rf(int rev)
2497 {
2498 	switch (rev) {
2499 	case RT2560_RF_2522:	return "RT2522";
2500 	case RT2560_RF_2523:	return "RT2523";
2501 	case RT2560_RF_2524:	return "RT2524";
2502 	case RT2560_RF_2525:	return "RT2525";
2503 	case RT2560_RF_2525E:	return "RT2525e";
2504 	case RT2560_RF_2526:	return "RT2526";
2505 	case RT2560_RF_5222:	return "RT5222";
2506 	default:		return "unknown";
2507 	}
2508 }
2509 
2510 static void
2511 rt2560_read_config(struct rt2560_softc *sc)
2512 {
2513 	uint16_t val;
2514 	int i;
2515 
2516 	val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0);
2517 	sc->rf_rev =   (val >> 11) & 0x7;
2518 	sc->hw_radio = (val >> 10) & 0x1;
2519 	sc->led_mode = (val >> 6)  & 0x7;
2520 	sc->rx_ant =   (val >> 4)  & 0x3;
2521 	sc->tx_ant =   (val >> 2)  & 0x3;
2522 	sc->nb_ant =   val & 0x3;
2523 
2524 	/* read default values for BBP registers */
2525 	for (i = 0; i < 16; i++) {
2526 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i);
2527 		if (val == 0 || val == 0xffff)
2528 			continue;
2529 
2530 		sc->bbp_prom[i].reg = val >> 8;
2531 		sc->bbp_prom[i].val = val & 0xff;
2532 	}
2533 
2534 	/* read Tx power for all b/g channels */
2535 	for (i = 0; i < 14 / 2; i++) {
2536 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i);
2537 		sc->txpow[i * 2] = val & 0xff;
2538 		sc->txpow[i * 2 + 1] = val >> 8;
2539 	}
2540 	for (i = 0; i < 14; ++i) {
2541 		if (sc->txpow[i] > 31)
2542 			sc->txpow[i] = 24;
2543 	}
2544 
2545 	val = rt2560_eeprom_read(sc, RT2560_EEPROM_CALIBRATE);
2546 	if ((val & 0xff) == 0xff)
2547 		sc->rssi_corr = RT2560_DEFAULT_RSSI_CORR;
2548 	else
2549 		sc->rssi_corr = val & 0xff;
2550 	DPRINTF(sc, "rssi correction %d, calibrate 0x%02x\n",
2551 		 sc->rssi_corr, val);
2552 }
2553 
2554 
2555 static void
2556 rt2560_scan_start(struct ieee80211com *ic)
2557 {
2558 	struct rt2560_softc *sc = ic->ic_softc;
2559 
2560 	/* abort TSF synchronization */
2561 	RAL_WRITE(sc, RT2560_CSR14, 0);
2562 	rt2560_set_bssid(sc, ieee80211broadcastaddr);
2563 }
2564 
2565 static void
2566 rt2560_scan_end(struct ieee80211com *ic)
2567 {
2568 	struct rt2560_softc *sc = ic->ic_softc;
2569 	struct ieee80211vap *vap = ic->ic_scan->ss_vap;
2570 
2571 	rt2560_enable_tsf_sync(sc);
2572 	/* XXX keep local copy */
2573 	rt2560_set_bssid(sc, vap->iv_bss->ni_bssid);
2574 }
2575 
2576 static int
2577 rt2560_bbp_init(struct rt2560_softc *sc)
2578 {
2579 	int i, ntries;
2580 
2581 	/* wait for BBP to be ready */
2582 	for (ntries = 0; ntries < 100; ntries++) {
2583 		if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0)
2584 			break;
2585 		DELAY(1);
2586 	}
2587 	if (ntries == 100) {
2588 		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
2589 		return EIO;
2590 	}
2591 
2592 	/* initialize BBP registers to default values */
2593 	for (i = 0; i < nitems(rt2560_def_bbp); i++) {
2594 		rt2560_bbp_write(sc, rt2560_def_bbp[i].reg,
2595 		    rt2560_def_bbp[i].val);
2596 	}
2597 
2598 	/* initialize BBP registers to values stored in EEPROM */
2599 	for (i = 0; i < 16; i++) {
2600 		if (sc->bbp_prom[i].reg == 0 && sc->bbp_prom[i].val == 0)
2601 			break;
2602 		rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2603 	}
2604 	rt2560_bbp_write(sc, 17, 0x48);	/* XXX restore bbp17 */
2605 
2606 	return 0;
2607 }
2608 
2609 static void
2610 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna)
2611 {
2612 	uint32_t tmp;
2613 	uint8_t tx;
2614 
2615 	tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK;
2616 	if (antenna == 1)
2617 		tx |= RT2560_BBP_ANTA;
2618 	else if (antenna == 2)
2619 		tx |= RT2560_BBP_ANTB;
2620 	else
2621 		tx |= RT2560_BBP_DIVERSITY;
2622 
2623 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2624 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 ||
2625 	    sc->rf_rev == RT2560_RF_5222)
2626 		tx |= RT2560_BBP_FLIPIQ;
2627 
2628 	rt2560_bbp_write(sc, RT2560_BBP_TX, tx);
2629 
2630 	/* update values for CCK and OFDM in BBPCSR1 */
2631 	tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007;
2632 	tmp |= (tx & 0x7) << 16 | (tx & 0x7);
2633 	RAL_WRITE(sc, RT2560_BBPCSR1, tmp);
2634 }
2635 
2636 static void
2637 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna)
2638 {
2639 	uint8_t rx;
2640 
2641 	rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK;
2642 	if (antenna == 1)
2643 		rx |= RT2560_BBP_ANTA;
2644 	else if (antenna == 2)
2645 		rx |= RT2560_BBP_ANTB;
2646 	else
2647 		rx |= RT2560_BBP_DIVERSITY;
2648 
2649 	/* need to force no I/Q flip for RF 2525e and 2526 */
2650 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526)
2651 		rx &= ~RT2560_BBP_FLIPIQ;
2652 
2653 	rt2560_bbp_write(sc, RT2560_BBP_RX, rx);
2654 }
2655 
2656 static void
2657 rt2560_init_locked(struct rt2560_softc *sc)
2658 {
2659 	struct ieee80211com *ic = &sc->sc_ic;
2660 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2661 	uint32_t tmp;
2662 	int i;
2663 
2664 	RAL_LOCK_ASSERT(sc);
2665 
2666 	rt2560_stop_locked(sc);
2667 
2668 	/* setup tx rings */
2669 	tmp = RT2560_PRIO_RING_COUNT << 24 |
2670 	      RT2560_ATIM_RING_COUNT << 16 |
2671 	      RT2560_TX_RING_COUNT   <<  8 |
2672 	      RT2560_TX_DESC_SIZE;
2673 
2674 	/* rings must be initialized in this exact order */
2675 	RAL_WRITE(sc, RT2560_TXCSR2, tmp);
2676 	RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr);
2677 	RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr);
2678 	RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr);
2679 	RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr);
2680 
2681 	/* setup rx ring */
2682 	tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE;
2683 
2684 	RAL_WRITE(sc, RT2560_RXCSR1, tmp);
2685 	RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr);
2686 
2687 	/* initialize MAC registers to default values */
2688 	for (i = 0; i < nitems(rt2560_def_mac); i++)
2689 		RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val);
2690 
2691 	rt2560_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr);
2692 
2693 	/* set basic rate set (will be updated later) */
2694 	RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153);
2695 
2696 	rt2560_update_slot(ic);
2697 	rt2560_update_plcp(sc);
2698 	rt2560_update_led(sc, 0, 0);
2699 
2700 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2701 	RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY);
2702 
2703 	if (rt2560_bbp_init(sc) != 0) {
2704 		rt2560_stop_locked(sc);
2705 		return;
2706 	}
2707 
2708 	rt2560_set_txantenna(sc, sc->tx_ant);
2709 	rt2560_set_rxantenna(sc, sc->rx_ant);
2710 
2711 	/* set default BSS channel */
2712 	rt2560_set_chan(sc, ic->ic_curchan);
2713 
2714 	/* kick Rx */
2715 	tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR;
2716 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2717 		tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR;
2718 		if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
2719 		    ic->ic_opmode != IEEE80211_M_MBSS)
2720 			tmp |= RT2560_DROP_TODS;
2721 		if (ic->ic_promisc == 0)
2722 			tmp |= RT2560_DROP_NOT_TO_ME;
2723 	}
2724 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2725 
2726 	/* clear old FCS and Rx FIFO errors */
2727 	RAL_READ(sc, RT2560_CNT0);
2728 	RAL_READ(sc, RT2560_CNT4);
2729 
2730 	/* clear any pending interrupts */
2731 	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2732 
2733 	/* enable interrupts */
2734 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
2735 
2736 	sc->sc_flags |= RT2560_F_RUNNING;
2737 
2738 	callout_reset(&sc->watchdog_ch, hz, rt2560_watchdog, sc);
2739 }
2740 
2741 static void
2742 rt2560_init(void *priv)
2743 {
2744 	struct rt2560_softc *sc = priv;
2745 	struct ieee80211com *ic = &sc->sc_ic;
2746 
2747 	RAL_LOCK(sc);
2748 	rt2560_init_locked(sc);
2749 	RAL_UNLOCK(sc);
2750 
2751 	if (sc->sc_flags & RT2560_F_RUNNING)
2752 		ieee80211_start_all(ic);		/* start all vap's */
2753 }
2754 
2755 static void
2756 rt2560_stop_locked(struct rt2560_softc *sc)
2757 {
2758 	volatile int *flags = &sc->sc_flags;
2759 
2760 	RAL_LOCK_ASSERT(sc);
2761 
2762 #if defined(__DragonFly__)
2763 	while (*flags & RT2560_F_INPUT_RUNNING)
2764 		lksleep(sc, &sc->sc_mtx, 0, "ralrunning", hz/10);
2765 #else
2766 	while (*flags & RT2560_F_INPUT_RUNNING)
2767 		msleep(sc, &sc->sc_mtx, 0, "ralrunning", hz/10);
2768 #endif
2769 
2770 	callout_stop(&sc->watchdog_ch);
2771 	sc->sc_tx_timer = 0;
2772 
2773 	if (sc->sc_flags & RT2560_F_RUNNING) {
2774 		sc->sc_flags &= ~RT2560_F_RUNNING;
2775 
2776 		/* abort Tx */
2777 		RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
2778 
2779 		/* disable Rx */
2780 		RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
2781 
2782 		/* reset ASIC (imply reset BBP) */
2783 		RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2784 		RAL_WRITE(sc, RT2560_CSR1, 0);
2785 
2786 		/* disable interrupts */
2787 		RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
2788 
2789 		/* reset Tx and Rx rings */
2790 		rt2560_reset_tx_ring(sc, &sc->txq);
2791 		rt2560_reset_tx_ring(sc, &sc->atimq);
2792 		rt2560_reset_tx_ring(sc, &sc->prioq);
2793 		rt2560_reset_tx_ring(sc, &sc->bcnq);
2794 		rt2560_reset_rx_ring(sc, &sc->rxq);
2795 	}
2796 }
2797 
2798 void
2799 rt2560_stop(void *arg)
2800 {
2801 	struct rt2560_softc *sc = arg;
2802 
2803 	RAL_LOCK(sc);
2804 	rt2560_stop_locked(sc);
2805 	RAL_UNLOCK(sc);
2806 }
2807 
2808 static int
2809 rt2560_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2810 	const struct ieee80211_bpf_params *params)
2811 {
2812 	struct ieee80211com *ic = ni->ni_ic;
2813 	struct rt2560_softc *sc = ic->ic_softc;
2814 
2815 	RAL_LOCK(sc);
2816 
2817 	/* prevent management frames from being sent if we're not ready */
2818 	if (!(sc->sc_flags & RT2560_F_RUNNING)) {
2819 		RAL_UNLOCK(sc);
2820 		m_freem(m);
2821 		return ENETDOWN;
2822 	}
2823 	if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
2824 		RAL_UNLOCK(sc);
2825 		m_freem(m);
2826 		return ENOBUFS;		/* XXX */
2827 	}
2828 
2829 	if (params == NULL) {
2830 		/*
2831 		 * Legacy path; interpret frame contents to decide
2832 		 * precisely how to send the frame.
2833 		 */
2834 		if (rt2560_tx_mgt(sc, m, ni) != 0)
2835 			goto bad;
2836 	} else {
2837 		/*
2838 		 * Caller supplied explicit parameters to use in
2839 		 * sending the frame.
2840 		 */
2841 		if (rt2560_tx_raw(sc, m, ni, params))
2842 			goto bad;
2843 	}
2844 	sc->sc_tx_timer = 5;
2845 
2846 	RAL_UNLOCK(sc);
2847 
2848 	return 0;
2849 bad:
2850 	RAL_UNLOCK(sc);
2851 	return EIO;		/* XXX */
2852 }
2853