xref: /dragonfly/sys/dev/netif/ral/rt2661.c (revision a68e0df0)
1 /*
2  * Copyright (c) 2006
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *
5  * Permission to use, copy, modify, and distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD: src/sys/dev/ral/rt2661.c,v 1.4 2006/03/21 21:15:43 damien Exp $
18  * $DragonFly: src/sys/dev/netif/ral/rt2661.c,v 1.30 2008/05/14 11:59:21 sephe Exp $
19  */
20 
21 /*
22  * Ralink Technology RT2561, RT2561S and RT2661 chipset driver
23  * http://www.ralinktech.com/
24  */
25 
26 #include <sys/param.h>
27 #include <sys/bus.h>
28 #include <sys/endian.h>
29 #include <sys/kernel.h>
30 #include <sys/interrupt.h>
31 #include <sys/malloc.h>
32 #include <sys/mbuf.h>
33 #include <sys/module.h>
34 #include <sys/queue.h>
35 #include <sys/rman.h>
36 #include <sys/socket.h>
37 #include <sys/sockio.h>
38 #include <sys/sysctl.h>
39 #include <sys/serialize.h>
40 
41 #include <net/bpf.h>
42 #include <net/if.h>
43 #include <net/if_arp.h>
44 #include <net/ethernet.h>
45 #include <net/if_dl.h>
46 #include <net/if_media.h>
47 #include <net/ifq_var.h>
48 
49 #include <netproto/802_11/ieee80211_var.h>
50 #include <netproto/802_11/ieee80211_radiotap.h>
51 #include <netproto/802_11/wlan_ratectl/onoe/ieee80211_onoe_param.h>
52 #include <netproto/802_11/wlan_ratectl/sample/ieee80211_sample_param.h>
53 
54 #include <dev/netif/ral/rt2661reg.h>
55 #include <dev/netif/ral/rt2661var.h>
56 #include <dev/netif/ral/rt2661_ucode.h>
57 
58 #ifdef RAL_DEBUG
59 #define DPRINTF(sc, x)		\
60 	do { if ((sc)->sc_debug > 0) kprintf x; } while (0)
61 #define DPRINTFN(sc, n, x)	\
62 	do { if ((sc)->sc_debug >= (n)) kprintf x; } while (0)
63 #else
64 #define DPRINTF(sc, x)
65 #define DPRINTFN(sc, n, x)
66 #endif
67 
68 MALLOC_DEFINE(M_RT2661, "rt2661_ratectl", "rt2661 rate control data");
69 
70 static void		rt2661_dma_map_addr(void *, bus_dma_segment_t *, int,
71 			    int);
72 static void		rt2661_dma_map_mbuf(void *, bus_dma_segment_t *, int,
73 					    bus_size_t, int);
74 static int		rt2661_alloc_tx_ring(struct rt2661_softc *,
75 			    struct rt2661_tx_ring *, int);
76 static void		rt2661_reset_tx_ring(struct rt2661_softc *,
77 			    struct rt2661_tx_ring *);
78 static void		rt2661_free_tx_ring(struct rt2661_softc *,
79 			    struct rt2661_tx_ring *);
80 static int		rt2661_alloc_rx_ring(struct rt2661_softc *,
81 			    struct rt2661_rx_ring *, int);
82 static void		rt2661_reset_rx_ring(struct rt2661_softc *,
83 			    struct rt2661_rx_ring *);
84 static void		rt2661_free_rx_ring(struct rt2661_softc *,
85 			    struct rt2661_rx_ring *);
86 static int		rt2661_media_change(struct ifnet *);
87 static void		rt2661_next_scan(void *);
88 static int		rt2661_newstate(struct ieee80211com *,
89 			    enum ieee80211_state, int);
90 static uint16_t		rt2661_eeprom_read(struct rt2661_softc *, uint8_t);
91 static void		rt2661_rx_intr(struct rt2661_softc *);
92 static void		rt2661_tx_intr(struct rt2661_softc *);
93 static void		rt2661_tx_dma_intr(struct rt2661_softc *,
94 			    struct rt2661_tx_ring *);
95 static void		rt2661_mcu_beacon_expire(struct rt2661_softc *);
96 static void		rt2661_mcu_wakeup(struct rt2661_softc *);
97 static void		rt2661_mcu_cmd_intr(struct rt2661_softc *);
98 static uint8_t		rt2661_rxrate(struct rt2661_rx_desc *);
99 static uint8_t		rt2661_plcp_signal(int);
100 static void		rt2661_setup_tx_desc(struct rt2661_softc *,
101 			    struct rt2661_tx_desc *, uint32_t, uint16_t, int,
102 			    int, const bus_dma_segment_t *, int, int, int,
103 			    const struct ieee80211_key *, void *,
104 			    const struct ieee80211_crypto_iv *);
105 static struct mbuf *	rt2661_get_rts(struct rt2661_softc *,
106 			    struct ieee80211_frame *, uint16_t);
107 static int		rt2661_tx_data(struct rt2661_softc *, struct mbuf *,
108 			    struct ieee80211_node *, int);
109 static int		rt2661_tx_mgt(struct rt2661_softc *, struct mbuf *,
110 			    struct ieee80211_node *);
111 static void		rt2661_start(struct ifnet *);
112 static void		rt2661_watchdog(struct ifnet *);
113 static int		rt2661_reset(struct ifnet *);
114 static int		rt2661_ioctl(struct ifnet *, u_long, caddr_t,
115 				     struct ucred *);
116 static void		rt2661_bbp_write(struct rt2661_softc *, uint8_t,
117 			    uint8_t);
118 static uint8_t		rt2661_bbp_read(struct rt2661_softc *, uint8_t);
119 static void		rt2661_rf_write(struct rt2661_softc *, uint8_t,
120 			    uint32_t);
121 static int		rt2661_tx_cmd(struct rt2661_softc *, uint8_t,
122 			    uint16_t);
123 static void		rt2661_select_antenna(struct rt2661_softc *);
124 static void		rt2661_enable_mrr(struct rt2661_softc *);
125 static void		rt2661_set_txpreamble(struct rt2661_softc *);
126 static void		rt2661_set_ackrates(struct rt2661_softc *,
127 			    const struct ieee80211_rateset *);
128 static void		rt2661_select_band(struct rt2661_softc *,
129 			    struct ieee80211_channel *);
130 static void		rt2661_set_chan(struct rt2661_softc *,
131 			    struct ieee80211_channel *);
132 static void		rt2661_set_bssid(struct rt2661_softc *,
133 			    const uint8_t *);
134 static void		rt2661_set_macaddr(struct rt2661_softc *,
135 			   const uint8_t *);
136 static void		rt2661_update_promisc(struct rt2661_softc *);
137 static int		rt2661_wme_update(struct ieee80211com *) __unused;
138 static void		rt2661_update_slot(struct ifnet *);
139 static const char	*rt2661_get_rf(int);
140 static void		rt2661_read_config(struct rt2661_softc *);
141 static void		rt2661_read_txpower_config(struct rt2661_softc *,
142 						   uint8_t, int, int *);
143 static int		rt2661_bbp_init(struct rt2661_softc *);
144 static void		rt2661_init(void *);
145 static void		rt2661_stop(void *);
146 static void		rt2661_intr(void *);
147 static int		rt2661_load_microcode(struct rt2661_softc *,
148 			    const uint8_t *, int);
149 static int		rt2661_prepare_beacon(struct rt2661_softc *);
150 static void		rt2661_enable_tsf_sync(struct rt2661_softc *);
151 static int		rt2661_get_rssi(struct rt2661_softc *, uint8_t, int);
152 static void		rt2661_led_newstate(struct rt2661_softc *,
153 					    enum ieee80211_state);
154 static int		rt2661_key_alloc(struct ieee80211com *,
155 					 const struct ieee80211_key *,
156 					 ieee80211_keyix *, ieee80211_keyix *);
157 static int		rt2661_key_delete(struct ieee80211com *,
158 					  const struct ieee80211_key *);
159 static int		rt2661_key_set(struct ieee80211com *,
160 				       const struct ieee80211_key *,
161 				       const uint8_t mac[IEEE80211_ADDR_LEN]);
162 static void		*rt2661_ratectl_attach(struct ieee80211com *, u_int);
163 static void		rt2661_set_txpower(struct rt2661_softc *, int8_t);
164 static void		rt2661_calibrate(void *);
165 static void		rt2661_calib_txpower(struct rt2661_softc *);
166 static void		rt2661_calib_rxsensibility(struct rt2661_softc *,
167 						   uint32_t);
168 
169 /*
170  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
171  */
172 static const struct ieee80211_rateset rt2661_rateset_11a =
173 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
174 
175 static const struct ieee80211_rateset rt2661_rateset_11b =
176 	{ 4, { 2, 4, 11, 22 } };
177 
178 static const struct ieee80211_rateset rt2661_rateset_11g =
179 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
180 
181 static const struct {
182 	uint32_t	reg;
183 	uint32_t	val;
184 } rt2661_def_mac[] = {
185 	RT2661_DEF_MAC
186 };
187 
188 static const struct {
189 	uint8_t	reg;
190 	uint8_t	val;
191 } rt2661_def_bbp[] = {
192 	RT2661_DEF_BBP
193 };
194 
195 static const struct rt2661_rfprog rt2661_rf5225_1[] = { RT2661_RF5225_1 };
196 static const struct rt2661_rfprog rt2661_rf5225_2[] = { RT2661_RF5225_2 };
197 
198 #define LED_EE2MCU(bit)	{ \
199 	.ee_bit		= RT2661_EE_LED_##bit, \
200 	.mcu_bit	= RT2661_MCU_LED_##bit \
201 }
202 static const struct {
203 	uint16_t	ee_bit;
204 	uint16_t	mcu_bit;
205 } led_ee2mcu[] = {
206 	LED_EE2MCU(RDYG),
207 	LED_EE2MCU(RDYA),
208 	LED_EE2MCU(ACT),
209 	LED_EE2MCU(GPIO0),
210 	LED_EE2MCU(GPIO1),
211 	LED_EE2MCU(GPIO2),
212 	LED_EE2MCU(GPIO3),
213 	LED_EE2MCU(GPIO4)
214 };
215 #undef LED_EE2MCU
216 
217 struct rt2661_dmamap {
218 	bus_dma_segment_t	segs[RT2661_MAX_SCATTER];
219 	int			nseg;
220 };
221 
222 static __inline int
223 rt2661_cipher(const struct ieee80211_key *k)
224 {
225 	switch (k->wk_cipher->ic_cipher) {
226 	case IEEE80211_CIPHER_WEP:
227 		if (k->wk_keylen == (40 / NBBY))
228 			return RT2661_CIPHER_WEP40;
229 		else
230 			return RT2661_CIPHER_WEP104;
231 	case IEEE80211_CIPHER_TKIP:
232 		return RT2661_CIPHER_TKIP;
233 	case IEEE80211_CIPHER_AES_CCM:
234 		return RT2661_CIPHER_AES;
235 	default:
236 		return RT2661_CIPHER_NONE;
237 	}
238 }
239 
240 static __inline int8_t
241 rt2661_txpower(const struct rt2661_softc *sc, int8_t power)
242 {
243 	if (sc->sc_txpwr_corr > 0) {
244 		if (power > sc->sc_txpwr_corr)
245 			power -= sc->sc_txpwr_corr;
246 		else
247 			power = 0;
248 	}
249 	return power;
250 }
251 
252 static __inline int
253 rt2661_avgrssi(const struct rt2661_softc *sc)
254 {
255 	int rssi_dbm;
256 
257 	rssi_dbm = sc->avg_rssi[0] + RT2661_NOISE_FLOOR;
258 	if (sc->rf_rev == RT2661_RF_2529) {
259 		if (sc->avg_rssi[1] > sc->avg_rssi[0])
260 			rssi_dbm = sc->avg_rssi[0] + RT2661_NOISE_FLOOR;
261 	}
262 	return rssi_dbm;
263 }
264 
265 int
266 rt2661_attach(device_t dev, int id)
267 {
268 	struct rt2661_softc *sc = device_get_softc(dev);
269 	struct ieee80211com *ic = &sc->sc_ic;
270 	struct ifnet *ifp = &ic->ic_if;
271 	uint32_t val, bbp_type;
272 	const uint8_t *ucode = NULL;
273 	int error, i, ac, ntries, size = 0;
274 
275 	callout_init(&sc->scan_ch);
276 	callout_init(&sc->calib_ch);
277 #ifdef RAL_DEBUG
278 	sc->sc_debug = 1;
279 #endif
280 
281 	sc->sc_irq_rid = 0;
282 	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->sc_irq_rid,
283 					    RF_ACTIVE | RF_SHAREABLE);
284 	if (sc->sc_irq == NULL) {
285 		device_printf(dev, "could not allocate interrupt resource\n");
286 		return ENXIO;
287 	}
288 
289 	/* wait for NIC to initialize */
290 	for (ntries = 0; ntries < 1000; ntries++) {
291 		if ((val = RAL_READ(sc, RT2661_MAC_CSR0)) != 0)
292 			break;
293 		DELAY(1000);
294 	}
295 	if (ntries == 1000) {
296 		device_printf(sc->sc_dev,
297 		    "timeout waiting for NIC to initialize\n");
298 		error = EIO;
299 		goto fail;
300 	}
301 	bbp_type = val;
302 
303 	/* retrieve RF rev. no and various other things from EEPROM */
304 	rt2661_read_config(sc);
305 
306 	device_printf(dev, "MAC/BBP RT%X, RF %s\n", bbp_type,
307 	    rt2661_get_rf(sc->rf_rev));
308 
309 	/*
310 	 * Load 8051 microcode into NIC.
311 	 */
312 	switch (id) {
313 	case 0x0301:
314 		ucode = rt2561s_ucode;
315 		size = sizeof rt2561s_ucode;
316 		break;
317 	case 0x0302:
318 		ucode = rt2561_ucode;
319 		size = sizeof rt2561_ucode;
320 		break;
321 	case 0x0401:
322 		ucode = rt2661_ucode;
323 		size = sizeof rt2661_ucode;
324 		break;
325 	}
326 
327 	error = rt2661_load_microcode(sc, ucode, size);
328 	if (error != 0) {
329 		device_printf(sc->sc_dev, "could not load 8051 microcode\n");
330 		goto fail;
331 	}
332 
333 	/*
334 	 * Allocate Tx and Rx rings.
335 	 */
336 	for (ac = 0; ac < 4; ac++) {
337 		error = rt2661_alloc_tx_ring(sc, &sc->txq[ac],
338 		    RT2661_TX_RING_COUNT);
339 		if (error != 0) {
340 			device_printf(sc->sc_dev,
341 			    "could not allocate Tx ring %d\n", ac);
342 			goto fail;
343 		}
344 	}
345 
346 	error = rt2661_alloc_tx_ring(sc, &sc->mgtq, RT2661_MGT_RING_COUNT);
347 	if (error != 0) {
348 		device_printf(sc->sc_dev, "could not allocate Mgt ring\n");
349 		goto fail;
350 	}
351 
352 	error = rt2661_alloc_rx_ring(sc, &sc->rxq, RT2661_RX_RING_COUNT);
353 	if (error != 0) {
354 		device_printf(sc->sc_dev, "could not allocate Rx ring\n");
355 		goto fail;
356 	}
357 
358 	STAILQ_INIT(&sc->tx_ratectl);
359 
360 	sysctl_ctx_init(&sc->sysctl_ctx);
361 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
362 					  SYSCTL_STATIC_CHILDREN(_hw),
363 					  OID_AUTO,
364 					  device_get_nameunit(dev),
365 					  CTLFLAG_RD, 0, "");
366 	if (sc->sysctl_tree == NULL) {
367 		device_printf(dev, "could not add sysctl node\n");
368 		error = ENXIO;
369 		goto fail;
370 	}
371 
372 	ifp->if_softc = sc;
373 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
374 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
375 	ifp->if_init = rt2661_init;
376 	ifp->if_ioctl = rt2661_ioctl;
377 	ifp->if_start = rt2661_start;
378 	ifp->if_watchdog = rt2661_watchdog;
379 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
380 	ifq_set_ready(&ifp->if_snd);
381 
382 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
383 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
384 	ic->ic_state = IEEE80211_S_INIT;
385 	rt2661_led_newstate(sc, IEEE80211_S_INIT);
386 
387 	IEEE80211_ONOE_PARAM_SETUP(&sc->sc_onoe_param);
388 	ic->ic_ratectl.rc_st_ratectl_cap = IEEE80211_RATECTL_CAP_ONOE;
389 	if (bbp_type == RT2661_BBP_2661D) {
390 		ic->ic_ratectl.rc_st_ratectl = IEEE80211_RATECTL_ONOE;
391 	} else {
392 		IEEE80211_SAMPLE_PARAM_SETUP(&sc->sc_sample_param);
393 		ic->ic_ratectl.rc_st_ratectl_cap |=
394 			IEEE80211_RATECTL_CAP_SAMPLE;
395 		ic->ic_ratectl.rc_st_ratectl = IEEE80211_RATECTL_SAMPLE;
396 	}
397 	ic->ic_ratectl.rc_st_attach = rt2661_ratectl_attach;
398 
399 	/* set device capabilities */
400 	ic->ic_caps =
401 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
402 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
403 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
404 	    IEEE80211_C_TXPMGT |	/* tx power management */
405 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
406 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
407 #ifdef notyet
408 	    IEEE80211_C_WME |		/* 802.11e */
409 #endif
410 	    IEEE80211_C_WPA;		/* 802.11i */
411 
412 	/* Set hardware crypto capabilities. */
413 	ic->ic_caps |= IEEE80211_C_WEP |
414 		       IEEE80211_C_TKIP |
415 		       IEEE80211_C_TKIPMIC |
416 		       IEEE80211_C_AES_CCM;
417 
418 	ic->ic_caps_ext = IEEE80211_CEXT_CRYPTO_HDR |
419 			  IEEE80211_CEXT_STRIP_MIC;
420 
421 	if (sc->rf_rev == RT2661_RF_5225 || sc->rf_rev == RT2661_RF_5325) {
422 		/* set supported .11a rates */
423 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2661_rateset_11a;
424 
425 		/* set supported .11a channels */
426 		for (i = 36; i <= 64; i += 4) {
427 			ic->ic_channels[i].ic_freq =
428 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
429 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
430 		}
431 		for (i = 100; i <= 140; i += 4) {
432 			ic->ic_channels[i].ic_freq =
433 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
434 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
435 		}
436 		for (i = 149; i <= 165; i += 4) {
437 			ic->ic_channels[i].ic_freq =
438 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
439 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
440 		}
441 	}
442 
443 	/* set supported .11b and .11g rates */
444 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2661_rateset_11b;
445 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2661_rateset_11g;
446 
447 	/* set supported .11b and .11g channels (1 through 14) */
448 	for (i = 1; i <= 14; i++) {
449 		ic->ic_channels[i].ic_freq =
450 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
451 		ic->ic_channels[i].ic_flags =
452 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
453 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
454 	}
455 
456 	sc->sc_sifs = IEEE80211_DUR_SIFS;	/* Default SIFS */
457 
458 	ieee80211_ifattach(ic);
459 /*	ic->ic_wme.wme_update = rt2661_wme_update;*/
460 	ic->ic_updateslot = rt2661_update_slot;
461 	ic->ic_reset = rt2661_reset;
462 	/* enable s/w bmiss handling in sta mode */
463 	ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
464 
465 	sc->sc_key_alloc = ic->ic_crypto.cs_key_alloc;
466 	sc->sc_key_delete = ic->ic_crypto.cs_key_delete;
467 	sc->sc_key_set = ic->ic_crypto.cs_key_set;
468 
469 	ic->ic_crypto.cs_max_keyix = RT2661_KEY_MAX;
470 	ic->ic_crypto.cs_key_alloc = rt2661_key_alloc;
471 	ic->ic_crypto.cs_key_delete = rt2661_key_delete;
472 	ic->ic_crypto.cs_key_set = rt2661_key_set;
473 
474 	/* override state transition machine */
475 	sc->sc_newstate = ic->ic_newstate;
476 	ic->ic_newstate = rt2661_newstate;
477 	ieee80211_media_init(ic, rt2661_media_change, ieee80211_media_status);
478 
479 	bpfattach_dlt(ifp, DLT_IEEE802_11_RADIO,
480 	    sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
481 
482 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
483 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
484 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2661_RX_RADIOTAP_PRESENT);
485 
486 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
487 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
488 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2661_TX_RADIOTAP_PRESENT);
489 
490 	/*
491 	 * Add a few sysctl knobs.
492 	 */
493 	sc->sc_dwelltime = 200;	/* milliseconds */
494 	sc->sc_txpwr_corr = -1;	/* Disable */
495 	sc->sc_calib_txpwr = 0;	/* Disable */
496 	sc->sc_calib_rxsns = 0;	/* Disable */
497 
498 	SYSCTL_ADD_INT(&sc->sysctl_ctx,
499 	    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, "dwell",
500 	    CTLFLAG_RW, &sc->sc_dwelltime, 0,
501 	    "Channel dwell time (ms) for AP/station scanning");
502 
503 #ifdef RAL_DEBUG
504 	SYSCTL_ADD_INT(&sc->sysctl_ctx,
505 	    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, "debug",
506 	    CTLFLAG_RW, &sc->sc_debug, 0, "debug level");
507 #endif
508 
509 	SYSCTL_ADD_INT(&sc->sysctl_ctx,
510 	    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, "txpwr_corr",
511 	    CTLFLAG_RW, &sc->sc_txpwr_corr, 0,
512 	    "TX power correction value (<0 no correction)");
513 
514 	SYSCTL_ADD_INT(&sc->sysctl_ctx,
515 	    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, "calib_txpwr",
516 	    CTLFLAG_RW, &sc->sc_calib_txpwr, 0,
517 	    "Enable TX power calibration (sta mode)");
518 	SYSCTL_ADD_INT(&sc->sysctl_ctx,
519 	    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, "calib_rxsns",
520 	    CTLFLAG_RW, &sc->sc_calib_rxsns, 0,
521 	    "Enable RX sensibility calibration (sta mode)");
522 
523 	error = bus_setup_intr(dev, sc->sc_irq, INTR_MPSAFE, rt2661_intr,
524 			       sc, &sc->sc_ih, ifp->if_serializer);
525 	if (error != 0) {
526 		device_printf(dev, "could not set up interrupt\n");
527 		bpfdetach(ifp);
528 		ieee80211_ifdetach(ic);
529 		goto fail;
530 	}
531 
532 	ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->sc_irq));
533 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
534 
535 	if (bootverbose)
536 		ieee80211_announce(ic);
537 	return 0;
538 fail:
539 	rt2661_detach(sc);
540 	return error;
541 }
542 
543 int
544 rt2661_detach(void *xsc)
545 {
546 	struct rt2661_softc *sc = xsc;
547 	struct ieee80211com *ic = &sc->sc_ic;
548 	struct ifnet *ifp = &ic->ic_if;
549 
550 	if (device_is_attached(sc->sc_dev)) {
551 		lwkt_serialize_enter(ifp->if_serializer);
552 
553 		callout_stop(&sc->scan_ch);
554 		rt2661_stop(sc);
555 		bus_teardown_intr(sc->sc_dev, sc->sc_irq, sc->sc_ih);
556 
557 		lwkt_serialize_exit(ifp->if_serializer);
558 
559 		bpfdetach(ifp);
560 		ieee80211_ifdetach(ic);
561 	}
562 
563 	rt2661_free_tx_ring(sc, &sc->txq[0]);
564 	rt2661_free_tx_ring(sc, &sc->txq[1]);
565 	rt2661_free_tx_ring(sc, &sc->txq[2]);
566 	rt2661_free_tx_ring(sc, &sc->txq[3]);
567 	rt2661_free_tx_ring(sc, &sc->mgtq);
568 	rt2661_free_rx_ring(sc, &sc->rxq);
569 
570 	if (sc->sc_irq != NULL) {
571 		bus_release_resource(sc->sc_dev, SYS_RES_IRQ, sc->sc_irq_rid,
572 				     sc->sc_irq);
573 	}
574 
575 	if (sc->sysctl_tree != NULL)
576 		sysctl_ctx_free(&sc->sysctl_ctx);
577 
578 	return 0;
579 }
580 
581 void
582 rt2661_shutdown(void *xsc)
583 {
584 	struct rt2661_softc *sc = xsc;
585 	struct ifnet *ifp = &sc->sc_ic.ic_if;
586 
587 	lwkt_serialize_enter(ifp->if_serializer);
588 	rt2661_stop(sc);
589 	lwkt_serialize_exit(ifp->if_serializer);
590 }
591 
592 void
593 rt2661_suspend(void *xsc)
594 {
595 	struct rt2661_softc *sc = xsc;
596 	struct ifnet *ifp = &sc->sc_ic.ic_if;
597 
598 	lwkt_serialize_enter(ifp->if_serializer);
599 	rt2661_stop(sc);
600 	lwkt_serialize_exit(ifp->if_serializer);
601 }
602 
603 void
604 rt2661_resume(void *xsc)
605 {
606 	struct rt2661_softc *sc = xsc;
607 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
608 
609 	lwkt_serialize_enter(ifp->if_serializer);
610 	if (ifp->if_flags & IFF_UP) {
611 		ifp->if_init(ifp->if_softc);
612 		if (ifp->if_flags & IFF_RUNNING)
613 			ifp->if_start(ifp);
614 	}
615 	lwkt_serialize_exit(ifp->if_serializer);
616 }
617 
618 static void
619 rt2661_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
620 {
621 	if (error != 0)
622 		return;
623 
624 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
625 
626 	*(bus_addr_t *)arg = segs[0].ds_addr;
627 }
628 
629 static int
630 rt2661_alloc_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring,
631     int count)
632 {
633 	int i, error;
634 
635 	ring->count = count;
636 	ring->queued = 0;
637 	ring->cur = ring->next = 0;
638 
639 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
640 	    BUS_SPACE_MAXADDR, NULL, NULL, count * RT2661_TX_DESC_SIZE, 1,
641 	    count * RT2661_TX_DESC_SIZE, 0, &ring->desc_dmat);
642 	if (error != 0) {
643 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
644 		goto fail;
645 	}
646 
647 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
648 	    BUS_DMA_WAITOK | BUS_DMA_ZERO, &ring->desc_map);
649 	if (error != 0) {
650 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
651 		goto fail;
652 	}
653 
654 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
655 	    count * RT2661_TX_DESC_SIZE, rt2661_dma_map_addr, &ring->physaddr,
656 	    0);
657 	if (error != 0) {
658 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
659 
660 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
661 		ring->desc = NULL;
662 		goto fail;
663 	}
664 
665 	ring->data = kmalloc(count * sizeof (struct rt2661_data), M_DEVBUF,
666 	    M_WAITOK | M_ZERO);
667 
668 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
669 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * RT2661_MAX_SCATTER,
670 	    RT2661_MAX_SCATTER, MCLBYTES, 0, &ring->data_dmat);
671 	if (error != 0) {
672 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
673 		goto fail;
674 	}
675 
676 	for (i = 0; i < count; i++) {
677 		error = bus_dmamap_create(ring->data_dmat, 0,
678 		    &ring->data[i].map);
679 		if (error != 0) {
680 			device_printf(sc->sc_dev, "could not create DMA map\n");
681 			goto fail;
682 		}
683 	}
684 	return 0;
685 
686 fail:	rt2661_free_tx_ring(sc, ring);
687 	return error;
688 }
689 
690 static void
691 rt2661_reset_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
692 {
693 	struct rt2661_tx_desc *desc;
694 	struct rt2661_data *data;
695 	int i;
696 
697 	for (i = 0; i < ring->count; i++) {
698 		desc = &ring->desc[i];
699 		data = &ring->data[i];
700 
701 		if (data->m != NULL) {
702 			bus_dmamap_sync(ring->data_dmat, data->map,
703 			    BUS_DMASYNC_POSTWRITE);
704 			bus_dmamap_unload(ring->data_dmat, data->map);
705 			m_freem(data->m);
706 			data->m = NULL;
707 		}
708 
709 		desc->flags = 0;
710 	}
711 
712 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
713 
714 	ring->queued = 0;
715 	ring->cur = ring->next = 0;
716 }
717 
718 static void
719 rt2661_free_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
720 {
721 	struct rt2661_data *data;
722 	int i;
723 
724 	if (ring->desc != NULL) {
725 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
726 		    BUS_DMASYNC_POSTWRITE);
727 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
728 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
729 		ring->desc = NULL;
730 	}
731 
732 	if (ring->desc_dmat != NULL) {
733 		bus_dma_tag_destroy(ring->desc_dmat);
734 		ring->desc_dmat = NULL;
735 	}
736 
737 	if (ring->data != NULL) {
738 		for (i = 0; i < ring->count; i++) {
739 			data = &ring->data[i];
740 
741 			if (data->m != NULL) {
742 				bus_dmamap_sync(ring->data_dmat, data->map,
743 				    BUS_DMASYNC_POSTWRITE);
744 				bus_dmamap_unload(ring->data_dmat, data->map);
745 				m_freem(data->m);
746 				data->m = NULL;
747 			}
748 
749 			if (data->map != NULL) {
750 				bus_dmamap_destroy(ring->data_dmat, data->map);
751 				data->map = NULL;
752 			}
753 		}
754 
755 		kfree(ring->data, M_DEVBUF);
756 		ring->data = NULL;
757 	}
758 
759 	if (ring->data_dmat != NULL) {
760 		bus_dma_tag_destroy(ring->data_dmat);
761 		ring->data_dmat = NULL;
762 	}
763 }
764 
765 static int
766 rt2661_alloc_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring,
767     int count)
768 {
769 	struct rt2661_rx_desc *desc;
770 	struct rt2661_data *data;
771 	bus_addr_t physaddr;
772 	int i, error;
773 
774 	ring->count = count;
775 	ring->cur = ring->next = 0;
776 
777 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
778 	    BUS_SPACE_MAXADDR, NULL, NULL, count * RT2661_RX_DESC_SIZE, 1,
779 	    count * RT2661_RX_DESC_SIZE, 0, &ring->desc_dmat);
780 	if (error != 0) {
781 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
782 		goto fail;
783 	}
784 
785 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
786 	    BUS_DMA_WAITOK | BUS_DMA_ZERO, &ring->desc_map);
787 	if (error != 0) {
788 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
789 		goto fail;
790 	}
791 
792 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
793 	    count * RT2661_RX_DESC_SIZE, rt2661_dma_map_addr, &ring->physaddr,
794 	    0);
795 	if (error != 0) {
796 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
797 
798 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
799 		ring->desc = NULL;
800 		goto fail;
801 	}
802 
803 	ring->data = kmalloc(count * sizeof (struct rt2661_data), M_DEVBUF,
804 	    M_WAITOK | M_ZERO);
805 
806 	/*
807 	 * Pre-allocate Rx buffers and populate Rx ring.
808 	 */
809 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
810 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0,
811 	    &ring->data_dmat);
812 	if (error != 0) {
813 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
814 		goto fail;
815 	}
816 
817 	for (i = 0; i < count; i++) {
818 		desc = &sc->rxq.desc[i];
819 		data = &sc->rxq.data[i];
820 
821 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
822 		if (error != 0) {
823 			device_printf(sc->sc_dev, "could not create DMA map\n");
824 			goto fail;
825 		}
826 
827 		data->m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
828 		if (data->m == NULL) {
829 			device_printf(sc->sc_dev,
830 			    "could not allocate rx mbuf\n");
831 			error = ENOMEM;
832 			goto fail;
833 		}
834 
835 		error = bus_dmamap_load(ring->data_dmat, data->map,
836 		    mtod(data->m, void *), MCLBYTES, rt2661_dma_map_addr,
837 		    &physaddr, 0);
838 		if (error != 0) {
839 			device_printf(sc->sc_dev,
840 			    "could not load rx buf DMA map");
841 
842 			m_freem(data->m);
843 			data->m = NULL;
844 			goto fail;
845 		}
846 
847 		desc->flags = htole32(RT2661_RX_BUSY);
848 		desc->physaddr = htole32(physaddr);
849 	}
850 
851 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
852 
853 	return 0;
854 
855 fail:	rt2661_free_rx_ring(sc, ring);
856 	return error;
857 }
858 
859 static void
860 rt2661_reset_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
861 {
862 	int i;
863 
864 	for (i = 0; i < ring->count; i++)
865 		ring->desc[i].flags = htole32(RT2661_RX_BUSY);
866 
867 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
868 
869 	ring->cur = ring->next = 0;
870 }
871 
872 static void
873 rt2661_free_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
874 {
875 	struct rt2661_data *data;
876 	int i;
877 
878 	if (ring->desc != NULL) {
879 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
880 		    BUS_DMASYNC_POSTWRITE);
881 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
882 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
883 		ring->desc = NULL;
884 	}
885 
886 	if (ring->desc_dmat != NULL) {
887 		bus_dma_tag_destroy(ring->desc_dmat);
888 		ring->desc_dmat = NULL;
889 	}
890 
891 	if (ring->data != NULL) {
892 		for (i = 0; i < ring->count; i++) {
893 			data = &ring->data[i];
894 
895 			if (data->m != NULL) {
896 				bus_dmamap_sync(ring->data_dmat, data->map,
897 				    BUS_DMASYNC_POSTREAD);
898 				bus_dmamap_unload(ring->data_dmat, data->map);
899 				m_freem(data->m);
900 				data->m = NULL;
901 			}
902 
903 			if (data->map != NULL) {
904 				bus_dmamap_destroy(ring->data_dmat, data->map);
905 				data->map = NULL;
906 			}
907 		}
908 
909 		kfree(ring->data, M_DEVBUF);
910 		ring->data = NULL;
911 	}
912 
913 	if (ring->data_dmat != NULL) {
914 		bus_dma_tag_destroy(ring->data_dmat);
915 		ring->data_dmat = NULL;
916 	}
917 }
918 
919 static int
920 rt2661_media_change(struct ifnet *ifp)
921 {
922 	struct rt2661_softc *sc = ifp->if_softc;
923 	int error;
924 
925 	error = ieee80211_media_change(ifp);
926 	if (error != ENETRESET)
927 		return error;
928 
929 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
930 		rt2661_init(sc);
931 	return 0;
932 }
933 
934 /*
935  * This function is called periodically (every 200ms) during scanning to
936  * switch from one channel to another.
937  */
938 static void
939 rt2661_next_scan(void *arg)
940 {
941 	struct rt2661_softc *sc = arg;
942 	struct ieee80211com *ic = &sc->sc_ic;
943 	struct ifnet *ifp = &ic->ic_if;
944 
945 	lwkt_serialize_enter(ifp->if_serializer);
946 	if (ic->ic_state == IEEE80211_S_SCAN)
947 		ieee80211_next_scan(ic);
948 	lwkt_serialize_exit(ifp->if_serializer);
949 }
950 
951 static int
952 rt2661_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
953 {
954 	struct rt2661_softc *sc = ic->ic_ifp->if_softc;
955 	enum ieee80211_state ostate;
956 	struct ieee80211_node *ni;
957 	uint32_t tmp;
958 	int error = 0;
959 
960 	ostate = ic->ic_state;
961 	callout_stop(&sc->scan_ch);
962 	callout_stop(&sc->calib_ch);
963 
964 	if (ostate != nstate)
965 		rt2661_led_newstate(sc, nstate);
966 
967 	ieee80211_ratectl_newstate(ic, nstate);
968 
969 	switch (nstate) {
970 	case IEEE80211_S_INIT:
971 		if (ostate == IEEE80211_S_RUN) {
972 			/* abort TSF synchronization */
973 			tmp = RAL_READ(sc, RT2661_TXRX_CSR9);
974 			RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0x00ffffff);
975 		}
976 		break;
977 
978 	case IEEE80211_S_SCAN:
979 		rt2661_set_chan(sc, ic->ic_curchan);
980 		callout_reset(&sc->scan_ch, (sc->sc_dwelltime * hz) / 1000,
981 		    rt2661_next_scan, sc);
982 		break;
983 
984 	case IEEE80211_S_AUTH:
985 	case IEEE80211_S_ASSOC:
986 		rt2661_set_chan(sc, ic->ic_curchan);
987 		break;
988 
989 	case IEEE80211_S_RUN:
990 		RT2661_RESET_AVG_RSSI(sc);
991 
992 		rt2661_set_chan(sc, ic->ic_curchan);
993 
994 		ni = ic->ic_bss;
995 
996 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
997 			rt2661_enable_mrr(sc);
998 			rt2661_set_txpreamble(sc);
999 			rt2661_set_ackrates(sc, &ni->ni_rates);
1000 			rt2661_set_bssid(sc, ni->ni_bssid);
1001 		}
1002 
1003 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
1004 		    ic->ic_opmode == IEEE80211_M_IBSS) {
1005 			if ((error = rt2661_prepare_beacon(sc)) != 0)
1006 				break;
1007 		}
1008 
1009 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
1010 			rt2661_enable_tsf_sync(sc);
1011 
1012 		if (ic->ic_opmode == IEEE80211_M_STA) {
1013 			uint32_t sta[4];
1014 
1015 #define N(arr)	(int)(sizeof(arr) / sizeof(arr[0]))
1016 			/* clear STA registers */
1017 			RAL_READ_REGION_4(sc, RT2661_STA_CSR0, sta, N(sta));
1018 #undef N
1019 			sc->sc_txpwr_cnt = 0;
1020 			callout_reset(&sc->calib_ch, hz, rt2661_calibrate, sc);
1021 		}
1022 		break;
1023 	}
1024 
1025 	return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
1026 }
1027 
1028 /*
1029  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
1030  * 93C66).
1031  */
1032 static uint16_t
1033 rt2661_eeprom_read(struct rt2661_softc *sc, uint8_t addr)
1034 {
1035 	uint32_t tmp;
1036 	uint16_t val;
1037 	int n;
1038 
1039 	/* clock C once before the first command */
1040 	RT2661_EEPROM_CTL(sc, 0);
1041 
1042 	RT2661_EEPROM_CTL(sc, RT2661_S);
1043 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
1044 	RT2661_EEPROM_CTL(sc, RT2661_S);
1045 
1046 	/* write start bit (1) */
1047 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
1048 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
1049 
1050 	/* write READ opcode (10) */
1051 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
1052 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
1053 	RT2661_EEPROM_CTL(sc, RT2661_S);
1054 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
1055 
1056 	/* write address (A5-A0 or A7-A0) */
1057 	n = (RAL_READ(sc, RT2661_E2PROM_CSR) & RT2661_93C46) ? 5 : 7;
1058 	for (; n >= 0; n--) {
1059 		RT2661_EEPROM_CTL(sc, RT2661_S |
1060 		    (((addr >> n) & 1) << RT2661_SHIFT_D));
1061 		RT2661_EEPROM_CTL(sc, RT2661_S |
1062 		    (((addr >> n) & 1) << RT2661_SHIFT_D) | RT2661_C);
1063 	}
1064 
1065 	RT2661_EEPROM_CTL(sc, RT2661_S);
1066 
1067 	/* read data Q15-Q0 */
1068 	val = 0;
1069 	for (n = 15; n >= 0; n--) {
1070 		RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
1071 		tmp = RAL_READ(sc, RT2661_E2PROM_CSR);
1072 		val |= ((tmp & RT2661_Q) >> RT2661_SHIFT_Q) << n;
1073 		RT2661_EEPROM_CTL(sc, RT2661_S);
1074 	}
1075 
1076 	RT2661_EEPROM_CTL(sc, 0);
1077 
1078 	/* clear Chip Select and clock C */
1079 	RT2661_EEPROM_CTL(sc, RT2661_S);
1080 	RT2661_EEPROM_CTL(sc, 0);
1081 	RT2661_EEPROM_CTL(sc, RT2661_C);
1082 
1083 	return val;
1084 }
1085 
1086 static void
1087 rt2661_tx_intr(struct rt2661_softc *sc)
1088 {
1089 	struct ieee80211com *ic = &sc->sc_ic;
1090 	struct ifnet *ifp = ic->ic_ifp;
1091 	struct rt2661_tx_ratectl *rctl;
1092 	uint32_t val, result;
1093 	int retrycnt;
1094 
1095 	for (;;) {
1096 		struct ieee80211_ratectl_res res;
1097 
1098 		val = RAL_READ(sc, RT2661_STA_CSR4);
1099 		if (!(val & RT2661_TX_STAT_VALID))
1100 			break;
1101 
1102 		/* Gather statistics */
1103 		result = RT2661_TX_RESULT(val);
1104 		if (result == RT2661_TX_SUCCESS)
1105 			ifp->if_opackets++;
1106 		else
1107 			ifp->if_oerrors++;
1108 
1109 		/* No rate control */
1110 		if (RT2661_TX_QID(val) == 0)
1111 			continue;
1112 
1113 		/* retrieve rate control algorithm context */
1114 		rctl = STAILQ_FIRST(&sc->tx_ratectl);
1115 		if (rctl == NULL) {
1116 			/*
1117 			 * XXX
1118 			 * This really should not happen.  Maybe we should
1119 			 * use assertion here?  But why should we rely on
1120 			 * hardware to do the correct things?  Even the
1121 			 * reference driver (RT61?) provided by Ralink does
1122 			 * not provide enough clue that this kind of interrupt
1123 			 * is promised to be generated for each packet.  So
1124 			 * just print a message and keep going ...
1125 			 */
1126 			if_printf(ifp, "WARNING: no rate control information\n");
1127 			continue;
1128 		}
1129 		STAILQ_REMOVE_HEAD(&sc->tx_ratectl, link);
1130 
1131 		retrycnt = 7;
1132 		switch (result) {
1133 		case RT2661_TX_SUCCESS:
1134 			retrycnt = RT2661_TX_RETRYCNT(val);
1135 			DPRINTFN(sc, 10, ("data frame sent successfully after "
1136 			    "%d retries\n", retrycnt));
1137 			break;
1138 
1139 		case RT2661_TX_RETRY_FAIL:
1140 			DPRINTFN(sc, 9, ("sending data frame failed (too much "
1141 			    "retries)\n"));
1142 			break;
1143 
1144 		default:
1145 			/* other failure */
1146 			device_printf(sc->sc_dev,
1147 			    "sending data frame failed 0x%08x\n", val);
1148 			break;
1149 		}
1150 
1151 		res.rc_res_rateidx = rctl->rateidx;
1152 		res.rc_res_tries = retrycnt + 1;
1153 		ieee80211_ratectl_tx_complete(rctl->ni, rctl->len, &res, 1,
1154 			retrycnt, 0, result != RT2661_TX_SUCCESS);
1155 
1156 		ieee80211_free_node(rctl->ni);
1157 		rctl->ni = NULL;
1158 		kfree(rctl, M_RT2661);
1159 	}
1160 }
1161 
1162 static void
1163 rt2661_tx_dma_intr(struct rt2661_softc *sc, struct rt2661_tx_ring *txq)
1164 {
1165 	struct rt2661_tx_desc *desc;
1166 	struct rt2661_data *data;
1167 
1168 	bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_POSTREAD);
1169 
1170 	for (;;) {
1171 		desc = &txq->desc[txq->next];
1172 		data = &txq->data[txq->next];
1173 
1174 		if ((le32toh(desc->flags) & RT2661_TX_BUSY) ||
1175 		    !(le32toh(desc->flags) & RT2661_TX_VALID))
1176 			break;
1177 
1178 		bus_dmamap_sync(txq->data_dmat, data->map,
1179 		    BUS_DMASYNC_POSTWRITE);
1180 		bus_dmamap_unload(txq->data_dmat, data->map);
1181 		m_freem(data->m);
1182 		data->m = NULL;
1183 
1184 		/* descriptor is no longer valid */
1185 		desc->flags &= ~htole32(RT2661_TX_VALID);
1186 
1187 		DPRINTFN(sc, 15, ("tx dma done q=%p idx=%u\n", txq, txq->next));
1188 
1189 		txq->queued--;
1190 		if (++txq->next >= txq->count)	/* faster than % count */
1191 			txq->next = 0;
1192 	}
1193 
1194 	bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE);
1195 
1196 	if (txq->queued < txq->count) {
1197 		struct ifnet *ifp = &sc->sc_ic.ic_if;
1198 
1199 		sc->sc_tx_timer = 0;
1200 		ifp->if_flags &= ~IFF_OACTIVE;
1201 		ifp->if_start(ifp);
1202 	}
1203 }
1204 
1205 static void
1206 rt2661_rx_intr(struct rt2661_softc *sc)
1207 {
1208 	struct ieee80211com *ic = &sc->sc_ic;
1209 	struct ifnet *ifp = ic->ic_ifp;
1210 	struct rt2661_rx_desc *desc;
1211 	struct rt2661_data *data;
1212 	bus_addr_t physaddr;
1213 	struct ieee80211_frame_min *wh;
1214 	struct ieee80211_node *ni;
1215 	struct mbuf *mnew, *m;
1216 	int error;
1217 
1218 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1219 	    BUS_DMASYNC_POSTREAD);
1220 
1221 	for (;;) {
1222 		uint32_t flags;
1223 		int rssi;
1224 
1225 		desc = &sc->rxq.desc[sc->rxq.cur];
1226 		data = &sc->rxq.data[sc->rxq.cur];
1227 		flags = le32toh(desc->flags);
1228 
1229 		if (flags & RT2661_RX_BUSY)
1230 			break;
1231 
1232 		if (flags & RT2661_RX_CRC_ERROR) {
1233 			/*
1234 			 * This should not happen since we did not request
1235 			 * to receive those frames when we filled TXRX_CSR0.
1236 			 */
1237 			DPRINTFN(sc, 5, ("CRC error flags 0x%08x\n", flags));
1238 			ifp->if_ierrors++;
1239 			goto skip;
1240 		}
1241 
1242 		if (flags & RT2661_RX_CIPHER_MASK) {
1243 			DPRINTFN(sc, 5, ("cipher error 0x%08x\n", flags));
1244 			ifp->if_ierrors++;
1245 			goto skip;
1246 		}
1247 
1248 		/*
1249 		 * Try to allocate a new mbuf for this ring element and load it
1250 		 * before processing the current mbuf. If the ring element
1251 		 * cannot be loaded, drop the received packet and reuse the old
1252 		 * mbuf. In the unlikely case that the old mbuf can't be
1253 		 * reloaded either, explicitly panic.
1254 		 */
1255 		mnew = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1256 		if (mnew == NULL) {
1257 			ifp->if_ierrors++;
1258 			goto skip;
1259 		}
1260 
1261 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1262 		    BUS_DMASYNC_POSTREAD);
1263 		bus_dmamap_unload(sc->rxq.data_dmat, data->map);
1264 
1265 		error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1266 		    mtod(mnew, void *), MCLBYTES, rt2661_dma_map_addr,
1267 		    &physaddr, 0);
1268 		if (error != 0) {
1269 			m_freem(mnew);
1270 
1271 			/* try to reload the old mbuf */
1272 			error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1273 			    mtod(data->m, void *), MCLBYTES,
1274 			    rt2661_dma_map_addr, &physaddr, 0);
1275 			if (error != 0) {
1276 				/* very unlikely that it will fail... */
1277 				panic("%s: could not load old rx mbuf",
1278 				    device_get_name(sc->sc_dev));
1279 			}
1280 			ifp->if_ierrors++;
1281 			goto skip;
1282 		}
1283 
1284 		/*
1285 	 	 * New mbuf successfully loaded, update Rx ring and continue
1286 		 * processing.
1287 		 */
1288 		m = data->m;
1289 		data->m = mnew;
1290 		desc->physaddr = htole32(physaddr);
1291 
1292 		/* finalize mbuf */
1293 		m->m_pkthdr.rcvif = ifp;
1294 		m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff;
1295 
1296 		rssi = rt2661_get_rssi(sc, desc->rssi, 0);
1297 		if (sc->rf_rev == RT2661_RF_2529)
1298 			rt2661_get_rssi(sc, desc->rssi, 1);
1299 
1300 		wh = mtod(m, struct ieee80211_frame_min *);
1301 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1302 			DPRINTFN(sc, 5, ("keyix %d\n", RT2661_RX_KEYIX(flags)));
1303 
1304 		ni = ieee80211_find_rxnode(ic, wh);
1305 
1306 		/* Error happened during RSSI conversion. */
1307 		if (rssi < 0)
1308 			rssi = ni->ni_rssi;
1309 
1310 		if (sc->sc_drvbpf != NULL) {
1311 			struct rt2661_rx_radiotap_header *tap = &sc->sc_rxtap;
1312 			uint32_t tsf_lo, tsf_hi;
1313 
1314 			/* get timestamp (low and high 32 bits) */
1315 			tsf_hi = RAL_READ(sc, RT2661_TXRX_CSR13);
1316 			tsf_lo = RAL_READ(sc, RT2661_TXRX_CSR12);
1317 
1318 			tap->wr_tsf =
1319 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1320 			tap->wr_flags = 0;
1321 			tap->wr_rate = rt2661_rxrate(desc);
1322 			tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1323 			tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1324 			tap->wr_antsignal = rssi;
1325 
1326 			bpf_ptap(sc->sc_drvbpf, m, tap, sc->sc_rxtap_len);
1327 		}
1328 
1329 		/* send the frame to the 802.11 layer */
1330 		if (RT2661_RX_CIPHER(flags) != RT2661_CIPHER_NONE) {
1331 			struct ieee80211_crypto_iv iv;
1332 
1333 			memcpy(iv.ic_iv, desc->iv, sizeof(iv.ic_iv));
1334 			memcpy(iv.ic_eiv, desc->eiv, sizeof(iv.ic_eiv));
1335 			ieee80211_input_withiv(ic, m, ni, rssi, 0, &iv);
1336 		} else {
1337 			ieee80211_input(ic, m, ni, rssi, 0);
1338 		}
1339 
1340 		/* node is no longer needed */
1341 		ieee80211_free_node(ni);
1342 
1343 skip:		desc->flags |= htole32(RT2661_RX_BUSY);
1344 
1345 		DPRINTFN(sc, 15, ("rx intr idx=%u\n", sc->rxq.cur));
1346 
1347 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2661_RX_RING_COUNT;
1348 	}
1349 
1350 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1351 	    BUS_DMASYNC_PREWRITE);
1352 }
1353 
1354 /* ARGSUSED */
1355 static void
1356 rt2661_mcu_beacon_expire(struct rt2661_softc *sc)
1357 {
1358 	/* do nothing */
1359 }
1360 
1361 static void
1362 rt2661_mcu_wakeup(struct rt2661_softc *sc)
1363 {
1364 	RAL_WRITE(sc, RT2661_MAC_CSR11, 5 << 16);
1365 
1366 	RAL_WRITE(sc, RT2661_SOFT_RESET_CSR, 0x7);
1367 	RAL_WRITE(sc, RT2661_IO_CNTL_CSR, 0x18);
1368 	RAL_WRITE(sc, RT2661_PCI_USEC_CSR, 0x20);
1369 
1370 	/* send wakeup command to MCU */
1371 	rt2661_tx_cmd(sc, RT2661_MCU_CMD_WAKEUP, 0);
1372 }
1373 
1374 static void
1375 rt2661_mcu_cmd_intr(struct rt2661_softc *sc)
1376 {
1377 	RAL_READ(sc, RT2661_M2H_CMD_DONE_CSR);
1378 	RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
1379 }
1380 
1381 static void
1382 rt2661_intr(void *arg)
1383 {
1384 	struct rt2661_softc *sc = arg;
1385 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1386 	uint32_t r1, r2;
1387 
1388 	/* disable MAC and MCU interrupts */
1389 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
1390 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
1391 
1392 	/* don't re-enable interrupts if we're shutting down */
1393 	if (!(ifp->if_flags & IFF_RUNNING))
1394 		return;
1395 
1396 	r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
1397 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, r1);
1398 
1399 	r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
1400 	RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, r2);
1401 
1402 	if (r1 & RT2661_MGT_DONE)
1403 		rt2661_tx_dma_intr(sc, &sc->mgtq);
1404 
1405 	if (r1 & RT2661_RX_DONE)
1406 		rt2661_rx_intr(sc);
1407 
1408 	if (r1 & RT2661_TX0_DMA_DONE)
1409 		rt2661_tx_dma_intr(sc, &sc->txq[0]);
1410 
1411 	if (r1 & RT2661_TX1_DMA_DONE)
1412 		rt2661_tx_dma_intr(sc, &sc->txq[1]);
1413 
1414 	if (r1 & RT2661_TX2_DMA_DONE)
1415 		rt2661_tx_dma_intr(sc, &sc->txq[2]);
1416 
1417 	if (r1 & RT2661_TX3_DMA_DONE)
1418 		rt2661_tx_dma_intr(sc, &sc->txq[3]);
1419 
1420 	if (r1 & RT2661_TX_DONE)
1421 		rt2661_tx_intr(sc);
1422 
1423 	if (r2 & RT2661_MCU_CMD_DONE)
1424 		rt2661_mcu_cmd_intr(sc);
1425 
1426 	if (r2 & RT2661_MCU_BEACON_EXPIRE)
1427 		rt2661_mcu_beacon_expire(sc);
1428 
1429 	if (r2 & RT2661_MCU_WAKEUP)
1430 		rt2661_mcu_wakeup(sc);
1431 
1432 	/* re-enable MAC and MCU interrupts */
1433 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
1434 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
1435 }
1436 
1437 /* quickly determine if a given rate is CCK or OFDM */
1438 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1439 
1440 #define RAL_ACK_SIZE	(sizeof(struct ieee80211_frame_ack) + IEEE80211_CRC_LEN)
1441 #define RAL_CTS_SIZE	(sizeof(struct ieee80211_frame_cts) + IEEE80211_CRC_LEN)
1442 
1443 /*
1444  * This function is only used by the Rx radiotap code. It returns the rate at
1445  * which a given frame was received.
1446  */
1447 static uint8_t
1448 rt2661_rxrate(struct rt2661_rx_desc *desc)
1449 {
1450 	if (le32toh(desc->flags) & RT2661_RX_OFDM) {
1451 		/* reverse function of rt2661_plcp_signal */
1452 		switch (desc->rate & 0xf) {
1453 		case 0xb:	return 12;
1454 		case 0xf:	return 18;
1455 		case 0xa:	return 24;
1456 		case 0xe:	return 36;
1457 		case 0x9:	return 48;
1458 		case 0xd:	return 72;
1459 		case 0x8:	return 96;
1460 		case 0xc:	return 108;
1461 		}
1462 	} else {
1463 		if (desc->rate == 10)
1464 			return 2;
1465 		if (desc->rate == 20)
1466 			return 4;
1467 		if (desc->rate == 55)
1468 			return 11;
1469 		if (desc->rate == 110)
1470 			return 22;
1471 	}
1472 	return 2;	/* should not get there */
1473 }
1474 
1475 static uint8_t
1476 rt2661_plcp_signal(int rate)
1477 {
1478 	switch (rate) {
1479 	/* CCK rates (returned values are device-dependent) */
1480 	case 2:		return 0x0;
1481 	case 4:		return 0x1;
1482 	case 11:	return 0x2;
1483 	case 22:	return 0x3;
1484 
1485 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1486 	case 12:	return 0xb;
1487 	case 18:	return 0xf;
1488 	case 24:	return 0xa;
1489 	case 36:	return 0xe;
1490 	case 48:	return 0x9;
1491 	case 72:	return 0xd;
1492 	case 96:	return 0x8;
1493 	case 108:	return 0xc;
1494 
1495 	/* unsupported rates (should not get there) */
1496 	default:	return 0xff;
1497 	}
1498 }
1499 
1500 static void
1501 rt2661_setup_tx_desc(struct rt2661_softc *sc, struct rt2661_tx_desc *desc,
1502     uint32_t flags, uint16_t xflags, int len, int rate,
1503     const bus_dma_segment_t *segs, int nsegs, int ac, int ratectl,
1504     const struct ieee80211_key *key, void *buf,
1505     const struct ieee80211_crypto_iv *iv)
1506 {
1507 	const struct ieee80211_cipher *cip = NULL;
1508 	struct ieee80211com *ic = &sc->sc_ic;
1509 	uint16_t plcp_length;
1510 	int i, remainder;
1511 
1512 	if (key != NULL)
1513 		cip = key->wk_cipher;
1514 
1515 	desc->flags = htole32(flags);
1516 	desc->flags |= htole32(len << 16);
1517 	desc->flags |= htole32(RT2661_TX_VALID);
1518 	if (key != NULL) {
1519 		int cipher = rt2661_cipher(key);
1520 
1521 		desc->flags |= htole32(cipher << 29);
1522 		desc->flags |= htole32(key->wk_keyix << 10);
1523 		if (key->wk_keyix >= IEEE80211_WEP_NKID)
1524 			desc->flags |= htole32(RT2661_TX_PAIRWISE_KEY);
1525 
1526 		/* XXX fragmentation */
1527 		desc->flags |= htole32(RT2661_TX_HWMIC);
1528 	}
1529 
1530 	desc->xflags = htole16(xflags);
1531 	desc->xflags |= htole16(nsegs << 13);
1532 	if (key != NULL) {
1533 		int hdrsize;
1534 
1535 		hdrsize = ieee80211_hdrspace(ic, buf);
1536 		desc->xflags |= htole16(hdrsize);
1537 	}
1538 
1539 	desc->wme = htole16(
1540 	    RT2661_QID(ac) |
1541 	    RT2661_AIFSN(2) |
1542 	    RT2661_LOGCWMIN(4) |
1543 	    RT2661_LOGCWMAX(10));
1544 
1545 	if (key != NULL && iv != NULL) {
1546 		memcpy(desc->iv, iv->ic_iv, sizeof(desc->iv));
1547 		memcpy(desc->eiv, iv->ic_eiv, sizeof(desc->eiv));
1548 	}
1549 
1550 	/*
1551 	 * Remember whether TX rate control information should be gathered.
1552 	 * This field is driver private data only.  It will be made available
1553 	 * by the NIC in STA_CSR4 on Tx done interrupts.
1554 	 */
1555 	desc->qid = ratectl;
1556 
1557 	/* setup PLCP fields */
1558 	desc->plcp_signal  = rt2661_plcp_signal(rate);
1559 	desc->plcp_service = 4;
1560 
1561 	len += IEEE80211_CRC_LEN;
1562 	if (cip != NULL) {
1563 		len += cip->ic_header + cip->ic_trailer;
1564 
1565 		/* XXX fragmentation */
1566 		len += cip->ic_miclen;
1567 	}
1568 
1569 	if (RAL_RATE_IS_OFDM(rate)) {
1570 		desc->flags |= htole32(RT2661_TX_OFDM);
1571 
1572 		plcp_length = len & 0xfff;
1573 		desc->plcp_length_hi = plcp_length >> 6;
1574 		desc->plcp_length_lo = plcp_length & 0x3f;
1575 	} else {
1576 		plcp_length = (16 * len + rate - 1) / rate;
1577 		if (rate == 22) {
1578 			remainder = (16 * len) % 22;
1579 			if (remainder != 0 && remainder < 7)
1580 				desc->plcp_service |= RT2661_PLCP_LENGEXT;
1581 		}
1582 		desc->plcp_length_hi = plcp_length >> 8;
1583 		desc->plcp_length_lo = plcp_length & 0xff;
1584 
1585 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1586 			desc->plcp_signal |= 0x08;
1587 	}
1588 
1589 	/* RT2x61 supports scatter with up to 5 segments */
1590 	for (i = 0; i < nsegs; i++) {
1591 		desc->addr[i] = htole32(segs[i].ds_addr);
1592 		desc->len [i] = htole16(segs[i].ds_len);
1593 	}
1594 
1595 	desc->flags |= htole32(RT2661_TX_BUSY);
1596 }
1597 
1598 static int
1599 rt2661_tx_mgt(struct rt2661_softc *sc, struct mbuf *m0,
1600     struct ieee80211_node *ni)
1601 {
1602 	struct ieee80211com *ic = &sc->sc_ic;
1603 	struct rt2661_tx_desc *desc;
1604 	struct rt2661_data *data;
1605 	struct ieee80211_frame *wh;
1606 	struct rt2661_dmamap map;
1607 	uint16_t dur;
1608 	uint32_t flags = 0;	/* XXX HWSEQ */
1609 	int rate, error;
1610 
1611 	desc = &sc->mgtq.desc[sc->mgtq.cur];
1612 	data = &sc->mgtq.data[sc->mgtq.cur];
1613 
1614 	/* send mgt frames at the lowest available rate */
1615 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1616 
1617 	error = bus_dmamap_load_mbuf(sc->mgtq.data_dmat, data->map, m0,
1618 				     rt2661_dma_map_mbuf, &map, 0);
1619 	if (error != 0) {
1620 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1621 		    error);
1622 		ieee80211_free_node(ni);
1623 		m_freem(m0);
1624 		return error;
1625 	}
1626 
1627 	if (sc->sc_drvbpf != NULL) {
1628 		struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1629 
1630 		tap->wt_flags = 0;
1631 		tap->wt_rate = rate;
1632 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1633 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1634 
1635 		bpf_ptap(sc->sc_drvbpf, m0, tap, sc->sc_txtap_len);
1636 	}
1637 
1638 	data->m = m0;
1639 
1640 	wh = mtod(m0, struct ieee80211_frame *);
1641 
1642 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1643 		flags |= RT2661_TX_NEED_ACK;
1644 
1645 		dur = ieee80211_txtime(ni, RAL_ACK_SIZE, rate, ic->ic_flags) +
1646 		      sc->sc_sifs;
1647 		*(uint16_t *)wh->i_dur = htole16(dur);
1648 
1649 		/* tell hardware to add timestamp in probe responses */
1650 		if ((wh->i_fc[0] &
1651 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1652 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1653 			flags |= RT2661_TX_TIMESTAMP;
1654 	}
1655 
1656 	rt2661_setup_tx_desc(sc, desc, flags, 0 /* XXX HWSEQ */,
1657 	    m0->m_pkthdr.len, rate, map.segs, map.nseg, RT2661_QID_MGT, 0, NULL, NULL, NULL);
1658 
1659 	bus_dmamap_sync(sc->mgtq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1660 	bus_dmamap_sync(sc->mgtq.desc_dmat, sc->mgtq.desc_map,
1661 	    BUS_DMASYNC_PREWRITE);
1662 
1663 	DPRINTFN(sc, 10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1664 	    m0->m_pkthdr.len, sc->mgtq.cur, rate));
1665 
1666 	/* kick mgt */
1667 	sc->mgtq.queued++;
1668 	sc->mgtq.cur = (sc->mgtq.cur + 1) % RT2661_MGT_RING_COUNT;
1669 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, RT2661_KICK_MGT);
1670 
1671 	ieee80211_free_node(ni);
1672 
1673 	return 0;
1674 }
1675 
1676 /*
1677  * Build a RTS control frame.
1678  */
1679 static struct mbuf *
1680 rt2661_get_rts(struct rt2661_softc *sc, struct ieee80211_frame *wh,
1681     uint16_t dur)
1682 {
1683 	struct ieee80211_frame_rts *rts;
1684 	struct mbuf *m;
1685 
1686 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
1687 	if (m == NULL) {
1688 		sc->sc_ic.ic_stats.is_tx_nobuf++;
1689 		device_printf(sc->sc_dev, "could not allocate RTS frame\n");
1690 		return NULL;
1691 	}
1692 
1693 	rts = mtod(m, struct ieee80211_frame_rts *);
1694 
1695 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1696 	    IEEE80211_FC0_SUBTYPE_RTS;
1697 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1698 	*(uint16_t *)rts->i_dur = htole16(dur);
1699 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1700 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1701 
1702 	m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1703 
1704 	return m;
1705 }
1706 
1707 static int
1708 rt2661_tx_data(struct rt2661_softc *sc, struct mbuf *m0,
1709     struct ieee80211_node *ni, int ac)
1710 {
1711 	struct ieee80211com *ic = &sc->sc_ic;
1712 	struct rt2661_tx_ring *txq = &sc->txq[ac];
1713 	struct rt2661_tx_desc *desc;
1714 	struct rt2661_data *data;
1715 	struct rt2661_tx_ratectl *rctl;
1716 	struct ieee80211_frame *wh;
1717 	struct ieee80211_key *k = NULL;
1718 	const struct chanAccParams *cap;
1719 	struct mbuf *mnew;
1720 	struct rt2661_dmamap map;
1721 	uint16_t dur;
1722 	uint32_t flags = 0;
1723 	int error, rate, ackrate, noack = 0, rateidx;
1724 	struct ieee80211_crypto_iv iv, *ivp = NULL;
1725 
1726 	wh = mtod(m0, struct ieee80211_frame *);
1727 	if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
1728 		cap = &ic->ic_wme.wme_chanParams;
1729 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1730 	}
1731 
1732 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1733 		k = ieee80211_crypto_findkey(ic, ni, m0);
1734 		if (k == NULL) {
1735 			m_freem(m0);
1736 			return ENOBUFS;
1737 		}
1738 
1739 		if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1740 			k = ieee80211_crypto_encap_withkey(ic, m0, k);
1741 		} else {
1742 			k = ieee80211_crypto_getiv(ic, &iv, k);
1743 			ivp = &iv;
1744 		}
1745 		if (k == NULL) {
1746 			m_freem(m0);
1747 			return ENOBUFS;
1748 		}
1749 
1750 		if (ivp == NULL)
1751 			k = NULL;
1752 
1753 		/* packet header may have moved, reset our local pointer */
1754 		wh = mtod(m0, struct ieee80211_frame *);
1755 	}
1756 
1757 	ieee80211_ratectl_findrate(ni, m0->m_pkthdr.len, &rateidx, 1);
1758 	rate = IEEE80211_RS_RATE(&ni->ni_rates, rateidx);
1759 
1760 	ackrate = ieee80211_ack_rate(ni, rate);
1761 
1762 	/*
1763 	 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1764 	 * for directed frames only when the length of the MPDU is greater
1765 	 * than the length threshold indicated by [...]" ic_rtsthreshold.
1766 	 */
1767 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1768 	    m0->m_pkthdr.len > ic->ic_rtsthreshold) {
1769 		struct mbuf *m;
1770 		uint16_t dur;
1771 		int rtsrate;
1772 
1773 		rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1774 
1775 		/* XXX: noack (QoS)? */
1776 		dur = ieee80211_txtime(ni, m0->m_pkthdr.len + IEEE80211_CRC_LEN,
1777 				       rate, ic->ic_flags) +
1778 		      ieee80211_txtime(ni, RAL_CTS_SIZE, rtsrate, ic->ic_flags)+
1779 		      ieee80211_txtime(ni, RAL_ACK_SIZE, ackrate, ic->ic_flags)+
1780 		      3 * sc->sc_sifs;
1781 
1782 		m = rt2661_get_rts(sc, wh, dur);
1783 
1784 		desc = &txq->desc[txq->cur];
1785 		data = &txq->data[txq->cur];
1786 
1787 		error = bus_dmamap_load_mbuf(txq->data_dmat, data->map, m,
1788 					     rt2661_dma_map_mbuf, &map, 0);
1789 		if (error != 0) {
1790 			device_printf(sc->sc_dev,
1791 			    "could not map mbuf (error %d)\n", error);
1792 			m_freem(m);
1793 			m_freem(m0);
1794 			return error;
1795 		}
1796 
1797 		data->m = m;
1798 
1799 		rt2661_setup_tx_desc(sc, desc, RT2661_TX_NEED_ACK |
1800 				     RT2661_TX_MORE_FRAG, 0, m->m_pkthdr.len,
1801 				     rtsrate, map.segs, map.nseg, ac, 0, NULL, NULL, NULL);
1802 
1803 		bus_dmamap_sync(txq->data_dmat, data->map,
1804 		    BUS_DMASYNC_PREWRITE);
1805 
1806 		txq->queued++;
1807 		txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1808 
1809 		/*
1810 		 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
1811 		 * asynchronous data frame shall be transmitted after the CTS
1812 		 * frame and a SIFS period.
1813 		 */
1814 		flags |= RT2661_TX_LONG_RETRY | RT2661_TX_IFS;
1815 	}
1816 
1817 	data = &txq->data[txq->cur];
1818 	desc = &txq->desc[txq->cur];
1819 
1820 	error = bus_dmamap_load_mbuf(txq->data_dmat, data->map, m0,
1821 				     rt2661_dma_map_mbuf, &map, 0);
1822 	if (error != 0 && error != EFBIG) {
1823 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1824 		    error);
1825 		m_freem(m0);
1826 		return error;
1827 	}
1828 	if (error != 0) {
1829 		mnew = m_defrag(m0, MB_DONTWAIT);
1830 		if (mnew == NULL) {
1831 			device_printf(sc->sc_dev,
1832 			    "could not defragment mbuf\n");
1833 			m_freem(m0);
1834 			return ENOBUFS;
1835 		}
1836 		m0 = mnew;
1837 
1838 		error = bus_dmamap_load_mbuf(txq->data_dmat, data->map, m0,
1839 					     rt2661_dma_map_mbuf, &map, 0);
1840 		if (error != 0) {
1841 			device_printf(sc->sc_dev,
1842 			    "could not map mbuf (error %d)\n", error);
1843 			m_freem(m0);
1844 			return error;
1845 		}
1846 
1847 		/* packet header have moved, reset our local pointer */
1848 		wh = mtod(m0, struct ieee80211_frame *);
1849 	}
1850 
1851 	if (sc->sc_drvbpf != NULL) {
1852 		struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1853 
1854 		tap->wt_flags = 0;
1855 		tap->wt_rate = rate;
1856 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1857 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1858 
1859 		bpf_ptap(sc->sc_drvbpf, m0, tap, sc->sc_txtap_len);
1860 	}
1861 
1862 	data->m = m0;
1863 
1864 	rctl = kmalloc(sizeof(*rctl), M_RT2661, M_NOWAIT);
1865 	if (rctl != NULL) {
1866 		rctl->ni = ni;
1867 		rctl->len = m0->m_pkthdr.len;
1868 		rctl->rateidx = rateidx;
1869 		STAILQ_INSERT_TAIL(&sc->tx_ratectl, rctl, link);
1870 	}
1871 
1872 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1873 		flags |= RT2661_TX_NEED_ACK;
1874 
1875 		dur = ieee80211_txtime(ni, RAL_ACK_SIZE, ackrate, ic->ic_flags)+
1876 		      sc->sc_sifs;
1877 		*(uint16_t *)wh->i_dur = htole16(dur);
1878 	}
1879 
1880 	rt2661_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate,
1881 			     map.segs, map.nseg, ac, rctl != NULL, k, wh, ivp);
1882 
1883 	bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1884 	bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE);
1885 
1886 	DPRINTFN(sc, 10, ("sending data frame len=%u idx=%u rate=%u\n",
1887 	    m0->m_pkthdr.len, txq->cur, rate));
1888 
1889 	/* kick Tx */
1890 	txq->queued++;
1891 	txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1892 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 1 << ac);
1893 
1894 	if (rctl == NULL)
1895 		ieee80211_free_node(ni);
1896 
1897 	return 0;
1898 }
1899 
1900 static void
1901 rt2661_start(struct ifnet *ifp)
1902 {
1903 	struct rt2661_softc *sc = ifp->if_softc;
1904 	struct ieee80211com *ic = &sc->sc_ic;
1905 	struct mbuf *m0;
1906 	struct ether_header *eh;
1907 	struct ieee80211_node *ni;
1908 	int ac;
1909 
1910 	/* prevent management frames from being sent if we're not ready */
1911 	if (!(ifp->if_flags & IFF_RUNNING))
1912 		return;
1913 
1914 	for (;;) {
1915 		IF_POLL(&ic->ic_mgtq, m0);
1916 		if (m0 != NULL) {
1917 			if (sc->mgtq.queued >= RT2661_MGT_RING_COUNT) {
1918 				ifp->if_flags |= IFF_OACTIVE;
1919 				break;
1920 			}
1921 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1922 
1923 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1924 			m0->m_pkthdr.rcvif = NULL;
1925 
1926 			if (ic->ic_rawbpf != NULL)
1927 				bpf_mtap(ic->ic_rawbpf, m0);
1928 
1929 			if (rt2661_tx_mgt(sc, m0, ni) != 0)
1930 				break;
1931 		} else {
1932 			if (ic->ic_state != IEEE80211_S_RUN) {
1933 				ifq_purge(&ifp->if_snd);
1934 				break;
1935 			}
1936 
1937 			m0 = ifq_dequeue(&ifp->if_snd, NULL);
1938 			if (m0 == NULL)
1939 				break;
1940 
1941 			if (m0->m_len < sizeof (struct ether_header) &&
1942 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1943 				continue;
1944 
1945 			eh = mtod(m0, struct ether_header *);
1946 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1947 			if (ni == NULL) {
1948 				m_freem(m0);
1949 				ifp->if_oerrors++;
1950 				continue;
1951 			}
1952 
1953 			/* classify mbuf so we can find which tx ring to use */
1954 			if (ieee80211_classify(ic, m0, ni) != 0) {
1955 				m_freem(m0);
1956 				ieee80211_free_node(ni);
1957 				ifp->if_oerrors++;
1958 				continue;
1959 			}
1960 
1961 			/* no QoS encapsulation for EAPOL frames */
1962 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
1963 			    M_WME_GETAC(m0) : WME_AC_BE;
1964 
1965 			if (sc->txq[ac].queued >= RT2661_TX_RING_COUNT - 1) {
1966 				/* there is no place left in this ring */
1967 				ifp->if_flags |= IFF_OACTIVE;
1968 				m_freem(m0);
1969 				ieee80211_free_node(ni);
1970 				break;
1971 			}
1972 
1973 			BPF_MTAP(ifp, m0);
1974 
1975 			m0 = ieee80211_encap(ic, m0, ni);
1976 			if (m0 == NULL) {
1977 				ieee80211_free_node(ni);
1978 				ifp->if_oerrors++;
1979 				continue;
1980 			}
1981 
1982 			if (ic->ic_rawbpf != NULL)
1983 				bpf_mtap(ic->ic_rawbpf, m0);
1984 
1985 			if (rt2661_tx_data(sc, m0, ni, ac) != 0) {
1986 				ieee80211_free_node(ni);
1987 				ifp->if_oerrors++;
1988 				break;
1989 			}
1990 		}
1991 
1992 		sc->sc_tx_timer = 5;
1993 		ifp->if_timer = 1;
1994 	}
1995 }
1996 
1997 static void
1998 rt2661_watchdog(struct ifnet *ifp)
1999 {
2000 	struct rt2661_softc *sc = ifp->if_softc;
2001 	struct ieee80211com *ic = &sc->sc_ic;
2002 
2003 	ifp->if_timer = 0;
2004 
2005 	if (sc->sc_tx_timer > 0) {
2006 		if (--sc->sc_tx_timer == 0) {
2007 			device_printf(sc->sc_dev, "device timeout\n");
2008 			rt2661_init(sc);
2009 			ifp->if_oerrors++;
2010 			return;
2011 		}
2012 		ifp->if_timer = 1;
2013 	}
2014 
2015 	ieee80211_watchdog(ic);
2016 }
2017 
2018 /*
2019  * This function allows for fast channel switching in monitor mode (used by
2020  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
2021  * generate a new beacon frame.
2022  */
2023 static int
2024 rt2661_reset(struct ifnet *ifp)
2025 {
2026 	struct rt2661_softc *sc = ifp->if_softc;
2027 	struct ieee80211com *ic = &sc->sc_ic;
2028 
2029 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
2030 		return ENETRESET;
2031 
2032 	rt2661_set_chan(sc, ic->ic_curchan);
2033 
2034 	return 0;
2035 }
2036 
2037 static int
2038 rt2661_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
2039 {
2040 	struct rt2661_softc *sc = ifp->if_softc;
2041 	struct ieee80211com *ic = &sc->sc_ic;
2042 	int error = 0;
2043 
2044 	switch (cmd) {
2045 	case SIOCSIFFLAGS:
2046 		if (ifp->if_flags & IFF_UP) {
2047 			if (ifp->if_flags & IFF_RUNNING)
2048 				rt2661_update_promisc(sc);
2049 			else
2050 				rt2661_init(sc);
2051 		} else {
2052 			if (ifp->if_flags & IFF_RUNNING)
2053 				rt2661_stop(sc);
2054 		}
2055 		break;
2056 
2057 	default:
2058 		error = ieee80211_ioctl(ic, cmd, data, cr);
2059 	}
2060 
2061 	if (error == ENETRESET) {
2062 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2063 		    (IFF_UP | IFF_RUNNING) &&
2064 		    (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2065 			rt2661_init(sc);
2066 		error = 0;
2067 	}
2068 	return error;
2069 }
2070 
2071 static void
2072 rt2661_bbp_write(struct rt2661_softc *sc, uint8_t reg, uint8_t val)
2073 {
2074 	uint32_t tmp;
2075 	int ntries;
2076 
2077 	for (ntries = 0; ntries < 100; ntries++) {
2078 		if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
2079 			break;
2080 		DELAY(1);
2081 	}
2082 	if (ntries == 100) {
2083 		device_printf(sc->sc_dev, "could not write to BBP\n");
2084 		return;
2085 	}
2086 
2087 	tmp = RT2661_BBP_BUSY | (reg & 0x7f) << 8 | val;
2088 	RAL_WRITE(sc, RT2661_PHY_CSR3, tmp);
2089 
2090 	DPRINTFN(sc, 15, ("BBP R%u <- 0x%02x\n", reg, val));
2091 
2092 	/* XXX */
2093 	if (reg == 17) {
2094 		DPRINTF(sc, ("record bbp17 %#x\n", val));
2095 		sc->bbp17 = val;
2096 	}
2097 }
2098 
2099 static uint8_t
2100 rt2661_bbp_read(struct rt2661_softc *sc, uint8_t reg)
2101 {
2102 	uint32_t val;
2103 	int ntries;
2104 
2105 	for (ntries = 0; ntries < 100; ntries++) {
2106 		if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
2107 			break;
2108 		DELAY(1);
2109 	}
2110 	if (ntries == 100) {
2111 		device_printf(sc->sc_dev, "could not read from BBP\n");
2112 		return 0;
2113 	}
2114 
2115 	val = RT2661_BBP_BUSY | RT2661_BBP_READ | reg << 8;
2116 	RAL_WRITE(sc, RT2661_PHY_CSR3, val);
2117 
2118 	for (ntries = 0; ntries < 100; ntries++) {
2119 		val = RAL_READ(sc, RT2661_PHY_CSR3);
2120 		if (!(val & RT2661_BBP_BUSY))
2121 			return val & 0xff;
2122 		DELAY(1);
2123 	}
2124 
2125 	device_printf(sc->sc_dev, "could not read from BBP\n");
2126 	return 0;
2127 }
2128 
2129 static void
2130 rt2661_rf_write(struct rt2661_softc *sc, uint8_t reg, uint32_t val)
2131 {
2132 	uint32_t tmp;
2133 	int ntries;
2134 
2135 	for (ntries = 0; ntries < 100; ntries++) {
2136 		if (!(RAL_READ(sc, RT2661_PHY_CSR4) & RT2661_RF_BUSY))
2137 			break;
2138 		DELAY(1);
2139 	}
2140 	if (ntries == 100) {
2141 		device_printf(sc->sc_dev, "could not write to RF\n");
2142 		return;
2143 	}
2144 
2145 	tmp = RT2661_RF_BUSY | RT2661_RF_21BIT | (val & 0x1fffff) << 2 |
2146 	    (reg & 3);
2147 	RAL_WRITE(sc, RT2661_PHY_CSR4, tmp);
2148 
2149 	/* remember last written value in sc */
2150 	sc->rf_regs[reg] = val;
2151 
2152 	DPRINTFN(sc, 15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0x1fffff));
2153 }
2154 
2155 static int
2156 rt2661_tx_cmd(struct rt2661_softc *sc, uint8_t cmd, uint16_t arg)
2157 {
2158 	if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY)
2159 		return EIO;	/* there is already a command pending */
2160 
2161 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR,
2162 	    RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | arg);
2163 
2164 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | cmd);
2165 
2166 	return 0;
2167 }
2168 
2169 static void
2170 rt2661_select_antenna(struct rt2661_softc *sc)
2171 {
2172 	uint8_t bbp4, bbp77;
2173 	uint32_t tmp;
2174 
2175 	bbp4  = rt2661_bbp_read(sc,  4);
2176 	bbp77 = rt2661_bbp_read(sc, 77);
2177 
2178 	/* TBD */
2179 
2180 	/* make sure Rx is disabled before switching antenna */
2181 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2182 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2183 
2184 	rt2661_bbp_write(sc,  4, bbp4);
2185 	rt2661_bbp_write(sc, 77, bbp77);
2186 
2187 	/* restore Rx filter */
2188 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2189 }
2190 
2191 /*
2192  * Enable multi-rate retries for frames sent at OFDM rates.
2193  * In 802.11b/g mode, allow fallback to CCK rates.
2194  */
2195 static void
2196 rt2661_enable_mrr(struct rt2661_softc *sc)
2197 {
2198 	struct ieee80211com *ic = &sc->sc_ic;
2199 	uint32_t tmp;
2200 
2201 	tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2202 
2203 	tmp &= ~RT2661_MRR_CCK_FALLBACK;
2204 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan))
2205 		tmp |= RT2661_MRR_CCK_FALLBACK;
2206 	tmp |= RT2661_MRR_ENABLED;
2207 	tmp |= RT2661_SRETRY_LIMIT(7) | RT2661_LRETRY_LIMIT(4);
2208 
2209 	RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2210 }
2211 
2212 static void
2213 rt2661_set_txpreamble(struct rt2661_softc *sc)
2214 {
2215 	uint32_t tmp;
2216 
2217 	tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2218 
2219 	tmp &= ~RT2661_SHORT_PREAMBLE;
2220 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
2221 		tmp |= RT2661_SHORT_PREAMBLE;
2222 
2223 	RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2224 }
2225 
2226 static void
2227 rt2661_set_ackrates(struct rt2661_softc *sc, const struct ieee80211_rateset *rs)
2228 {
2229 #define RV(r)	((r) & IEEE80211_RATE_VAL)
2230 	struct ieee80211com *ic = &sc->sc_ic;
2231 	uint32_t mask = 0;
2232 	uint8_t rate;
2233 	int i, j;
2234 
2235 	for (i = 0; i < rs->rs_nrates; i++) {
2236 		rate = rs->rs_rates[i];
2237 
2238 		if (!(rate & IEEE80211_RATE_BASIC))
2239 			continue;
2240 
2241 		/*
2242 		 * Find h/w rate index.  We know it exists because the rate
2243 		 * set has already been negotiated.
2244 		 */
2245 		for (j = 0; rt2661_rateset_11g.rs_rates[j] != RV(rate); j++)
2246 			; /* EMPTY */
2247 
2248 		mask |= 1 << j;
2249 	}
2250 
2251 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan) &&
2252 	    ic->ic_curmode != IEEE80211_MODE_11B &&
2253 	    ieee80211_iserp_rateset(ic, rs)) {
2254 		/*
2255 		 * Always set following rates as ACK rates to conform
2256 		 * IEEE Std 802.11g-2003 clause 9.6
2257 		 *
2258 		 * 24Mbits/s	0x100
2259 		 * 12Mbits/s	0x040
2260 		 *  6Mbits/s	0x010
2261 		 */
2262 		mask |= 0x150;
2263 	}
2264 
2265 	RAL_WRITE(sc, RT2661_TXRX_CSR5, mask);
2266 
2267 	DPRINTF(sc, ("Setting ack rate mask to 0x%x\n", mask));
2268 #undef RV
2269 }
2270 
2271 /*
2272  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
2273  * driver.
2274  */
2275 static void
2276 rt2661_select_band(struct rt2661_softc *sc, struct ieee80211_channel *c)
2277 {
2278 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
2279 	uint32_t tmp;
2280 
2281 	/* update all BBP registers that depend on the band */
2282 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
2283 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
2284 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2285 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
2286 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
2287 	}
2288 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2289 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2290 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
2291 	}
2292 
2293 	rt2661_bbp_write(sc,  17, bbp17);
2294 	rt2661_bbp_write(sc,  96, bbp96);
2295 	rt2661_bbp_write(sc, 104, bbp104);
2296 
2297 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2298 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2299 		rt2661_bbp_write(sc, 75, 0x80);
2300 		rt2661_bbp_write(sc, 86, 0x80);
2301 		rt2661_bbp_write(sc, 88, 0x80);
2302 	}
2303 
2304 	rt2661_bbp_write(sc, 35, bbp35);
2305 	rt2661_bbp_write(sc, 97, bbp97);
2306 	rt2661_bbp_write(sc, 98, bbp98);
2307 
2308 	tmp = RAL_READ(sc, RT2661_PHY_CSR0);
2309 	tmp &= ~(RT2661_PA_PE_2GHZ | RT2661_PA_PE_5GHZ);
2310 	if (IEEE80211_IS_CHAN_2GHZ(c))
2311 		tmp |= RT2661_PA_PE_2GHZ;
2312 	else
2313 		tmp |= RT2661_PA_PE_5GHZ;
2314 	RAL_WRITE(sc, RT2661_PHY_CSR0, tmp);
2315 }
2316 
2317 static void
2318 rt2661_set_txpower(struct rt2661_softc *sc, int8_t power)
2319 {
2320 	const struct rt2661_rfprog *rfprog = sc->rfprog;
2321 	int i = sc->sc_curchan_idx;
2322 
2323 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2324 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2325 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2326 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2327 
2328 	DELAY(200);
2329 
2330 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2331 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2332 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7 | 1);
2333 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2334 
2335 	DELAY(200);
2336 
2337 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2338 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2339 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2340 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2341 
2342 	sc->sc_txpwr = power;
2343 }
2344 
2345 static void
2346 rt2661_set_chan(struct rt2661_softc *sc, struct ieee80211_channel *c)
2347 {
2348 	struct ieee80211com *ic = &sc->sc_ic;
2349 	const struct rt2661_rfprog *rfprog = sc->rfprog;
2350 	uint8_t bbp3, bbp94 = RT2661_BBPR94_DEFAULT;
2351 	int8_t power;
2352 	u_int i, chan;
2353 
2354 	chan = ieee80211_chan2ieee(ic, c);
2355 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2356 		return;
2357 
2358 	/* find the settings for this channel (we know it exists) */
2359 	for (i = 0; rfprog[i].chan != chan; i++)
2360 		; /* EMPTY */
2361 	KASSERT(i < RT2661_NCHAN_MAX, ("invalid channel %d\n", chan));
2362 	sc->sc_curchan_idx = i;
2363 
2364 	power = sc->txpow[i];
2365 	if (power < 0) {
2366 		bbp94 += power;
2367 		power = 0;
2368 	} else if (power > 31) {
2369 		bbp94 += power - 31;
2370 		power = 31;
2371 	}
2372 
2373 	power = rt2661_txpower(sc, power);
2374 
2375 	/*
2376 	 * If we are switching from the 2GHz band to the 5GHz band or
2377 	 * vice-versa, BBP registers need to be reprogrammed.
2378 	 */
2379 	if (c->ic_flags != sc->sc_curchan->ic_flags) {
2380 		rt2661_select_band(sc, c);
2381 		rt2661_select_antenna(sc);
2382 	}
2383 	sc->sc_curchan = c;
2384 
2385 	rt2661_set_txpower(sc, power);
2386 
2387 	/* enable smart mode for MIMO-capable RFs */
2388 	bbp3 = rt2661_bbp_read(sc, 3);
2389 
2390 	bbp3 &= ~RT2661_SMART_MODE;
2391 	if (sc->rf_rev == RT2661_RF_5325 || sc->rf_rev == RT2661_RF_2529)
2392 		bbp3 |= RT2661_SMART_MODE;
2393 
2394 	rt2661_bbp_write(sc, 3, bbp3);
2395 
2396 	if (bbp94 != RT2661_BBPR94_DEFAULT)
2397 		rt2661_bbp_write(sc, 94, bbp94);
2398 
2399 	/* 5GHz radio needs a 1ms delay here */
2400 	if (IEEE80211_IS_CHAN_5GHZ(c))
2401 		DELAY(1000);
2402 
2403 	sc->sc_sifs = IEEE80211_IS_CHAN_5GHZ(c) ? IEEE80211_DUR_OFDM_SIFS
2404 						: IEEE80211_DUR_SIFS;
2405 }
2406 
2407 static void
2408 rt2661_set_bssid(struct rt2661_softc *sc, const uint8_t *bssid)
2409 {
2410 	uint32_t tmp;
2411 
2412 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2413 	RAL_WRITE(sc, RT2661_MAC_CSR4, tmp);
2414 
2415 	tmp = bssid[4] | bssid[5] << 8 | RT2661_ONE_BSSID << 16;
2416 	RAL_WRITE(sc, RT2661_MAC_CSR5, tmp);
2417 }
2418 
2419 static void
2420 rt2661_set_macaddr(struct rt2661_softc *sc, const uint8_t *addr)
2421 {
2422 	uint32_t tmp;
2423 
2424 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2425 	RAL_WRITE(sc, RT2661_MAC_CSR2, tmp);
2426 
2427 	tmp = addr[4] | addr[5] << 8;
2428 	RAL_WRITE(sc, RT2661_MAC_CSR3, tmp);
2429 }
2430 
2431 static void
2432 rt2661_update_promisc(struct rt2661_softc *sc)
2433 {
2434 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2435 	uint32_t tmp;
2436 
2437 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2438 
2439 	tmp &= ~RT2661_DROP_NOT_TO_ME;
2440 	if (!(ifp->if_flags & IFF_PROMISC))
2441 		tmp |= RT2661_DROP_NOT_TO_ME;
2442 
2443 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2444 
2445 	DPRINTF(sc, ("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2446 	    "entering" : "leaving"));
2447 }
2448 
2449 /*
2450  * Update QoS (802.11e) settings for each h/w Tx ring.
2451  */
2452 static int
2453 rt2661_wme_update(struct ieee80211com *ic)
2454 {
2455 	struct rt2661_softc *sc = ic->ic_ifp->if_softc;
2456 	const struct wmeParams *wmep;
2457 
2458 	wmep = ic->ic_wme.wme_chanParams.cap_wmeParams;
2459 
2460 	/* XXX: not sure about shifts. */
2461 	/* XXX: the reference driver plays with AC_VI settings too. */
2462 
2463 	/* update TxOp */
2464 	RAL_WRITE(sc, RT2661_AC_TXOP_CSR0,
2465 	    wmep[WME_AC_BE].wmep_txopLimit << 16 |
2466 	    wmep[WME_AC_BK].wmep_txopLimit);
2467 	RAL_WRITE(sc, RT2661_AC_TXOP_CSR1,
2468 	    wmep[WME_AC_VI].wmep_txopLimit << 16 |
2469 	    wmep[WME_AC_VO].wmep_txopLimit);
2470 
2471 	/* update CWmin */
2472 	RAL_WRITE(sc, RT2661_CWMIN_CSR,
2473 	    wmep[WME_AC_BE].wmep_logcwmin << 12 |
2474 	    wmep[WME_AC_BK].wmep_logcwmin <<  8 |
2475 	    wmep[WME_AC_VI].wmep_logcwmin <<  4 |
2476 	    wmep[WME_AC_VO].wmep_logcwmin);
2477 
2478 	/* update CWmax */
2479 	RAL_WRITE(sc, RT2661_CWMAX_CSR,
2480 	    wmep[WME_AC_BE].wmep_logcwmax << 12 |
2481 	    wmep[WME_AC_BK].wmep_logcwmax <<  8 |
2482 	    wmep[WME_AC_VI].wmep_logcwmax <<  4 |
2483 	    wmep[WME_AC_VO].wmep_logcwmax);
2484 
2485 	/* update Aifsn */
2486 	RAL_WRITE(sc, RT2661_AIFSN_CSR,
2487 	    wmep[WME_AC_BE].wmep_aifsn << 12 |
2488 	    wmep[WME_AC_BK].wmep_aifsn <<  8 |
2489 	    wmep[WME_AC_VI].wmep_aifsn <<  4 |
2490 	    wmep[WME_AC_VO].wmep_aifsn);
2491 
2492 	return 0;
2493 }
2494 
2495 static void
2496 rt2661_update_slot(struct ifnet *ifp)
2497 {
2498 	struct rt2661_softc *sc = ifp->if_softc;
2499 	struct ieee80211com *ic = &sc->sc_ic;
2500 	uint8_t slottime;
2501 	uint32_t tmp;
2502 
2503 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2504 
2505 	tmp = RAL_READ(sc, RT2661_MAC_CSR9);
2506 	tmp = (tmp & ~0xff) | slottime;
2507 	RAL_WRITE(sc, RT2661_MAC_CSR9, tmp);
2508 }
2509 
2510 static const char *
2511 rt2661_get_rf(int rev)
2512 {
2513 	switch (rev) {
2514 	case RT2661_RF_5225:	return "RT5225";
2515 	case RT2661_RF_5325:	return "RT5325 (MIMO XR)";
2516 	case RT2661_RF_2527:	return "RT2527";
2517 	case RT2661_RF_2529:	return "RT2529 (MIMO XR)";
2518 	default:		return "unknown";
2519 	}
2520 }
2521 
2522 static void
2523 rt2661_read_config(struct rt2661_softc *sc)
2524 {
2525 	struct ieee80211com *ic = &sc->sc_ic;
2526 	uint16_t val;
2527 	uint8_t rfprog = 0;
2528 	int i, start_chan;
2529 
2530 	/* read MAC address */
2531 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC01);
2532 	ic->ic_myaddr[0] = val & 0xff;
2533 	ic->ic_myaddr[1] = val >> 8;
2534 
2535 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC23);
2536 	ic->ic_myaddr[2] = val & 0xff;
2537 	ic->ic_myaddr[3] = val >> 8;
2538 
2539 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC45);
2540 	ic->ic_myaddr[4] = val & 0xff;
2541 	ic->ic_myaddr[5] = val >> 8;
2542 
2543 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_ANTENNA);
2544 	/* XXX: test if different from 0xffff? */
2545 	sc->rf_rev   = (val >> 11) & 0x1f;
2546 	sc->hw_radio = (val >> 10) & 0x1;
2547 	sc->auto_txagc = (val >> 9) & 0x1;
2548 	sc->rx_ant   = (val >> 4)  & 0x3;
2549 	sc->tx_ant   = (val >> 2)  & 0x3;
2550 	sc->nb_ant   = val & 0x3;
2551 
2552 	DPRINTF(sc, ("RF revision=%d\n", sc->rf_rev));
2553 	DPRINTF(sc, ("Number of ant %d, rxant %d, txant %d\n",
2554 		 sc->nb_ant, sc->rx_ant, sc->tx_ant));
2555 
2556 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_CONFIG2);
2557 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
2558 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
2559 
2560 	DPRINTF(sc, ("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
2561 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
2562 
2563 	if (sc->ext_2ghz_lna) {
2564 		sc->bbp17_2ghz_min = 0x30;
2565 		sc->bbp17_2ghz_max = 0x50;
2566 	} else {
2567 		sc->bbp17_2ghz_min = 0x20;
2568 		sc->bbp17_2ghz_max = 0x40;
2569 	}
2570 
2571 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_2GHZ_OFFSET);
2572 	sc->rssi_2ghz_corr[0] = (int8_t)(val & 0xff);	/* signed */
2573 	sc->rssi_2ghz_corr[1] = (int8_t)(val >> 8);	/* signed */
2574 
2575 	/* Only [-10, 10] is valid */
2576 	for (i = 0; i < 2; ++i) {
2577 		if (sc->rssi_2ghz_corr[i] < -10 || sc->rssi_2ghz_corr[i] > 10)
2578 			sc->rssi_2ghz_corr[i] = 0;
2579 	}
2580 
2581 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_5GHZ_OFFSET);
2582 	if ((val & 0xff) != 0xff)
2583 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
2584 
2585 	/* Only [-10, 10] is valid */
2586 	if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10)
2587 		sc->rssi_5ghz_corr = 0;
2588 
2589 	/* adjust RSSI correction for external low-noise amplifier */
2590 	if (sc->ext_2ghz_lna) {
2591 		sc->rssi_2ghz_corr[0] -= 14;
2592 		sc->rssi_2ghz_corr[1] -= 14;
2593 	}
2594 	if (sc->ext_5ghz_lna)
2595 		sc->rssi_5ghz_corr -= 14;
2596 
2597 	DPRINTF(sc, ("RSSI 2GHz corr0=%d corr1=%d\nRSSI 5GHz corr=%d\n",
2598 	    sc->rssi_2ghz_corr[0], sc->rssi_2ghz_corr[1], sc->rssi_5ghz_corr));
2599 
2600 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_FREQ_OFFSET);
2601 	if ((val >> 8) != 0xff)
2602 		rfprog = (val >> 8) & 0x3;
2603 	if ((val & 0xff) != 0xff)
2604 		sc->rffreq = val & 0xff;
2605 
2606 	DPRINTF(sc, ("RF prog=%d\nRF freq=%d\n", rfprog, sc->rffreq));
2607 
2608 	sc->rfprog = rfprog == 0 ? rt2661_rf5225_1 : rt2661_rf5225_2;
2609 
2610 #define NCHAN_2GHZ	14
2611 #define NCHAN_5GHZ	24
2612 	/*
2613 	 * Read channel TX power
2614 	 */
2615 	start_chan = 0;
2616 	rt2661_read_txpower_config(sc, RT2661_EEPROM_TXPOWER_2GHZ,
2617 				   NCHAN_2GHZ, &start_chan);
2618 	rt2661_read_txpower_config(sc, RT2661_EEPROM_TXPOWER_5GHZ,
2619 				   NCHAN_5GHZ, &start_chan);
2620 #undef NCHAN_2GHZ
2621 #undef NCHAN_5GHZ
2622 
2623 	/* read vendor-specific BBP values */
2624 	for (i = 0; i < 16; i++) {
2625 		val = rt2661_eeprom_read(sc, RT2661_EEPROM_BBP_BASE + i);
2626 		if (val == 0 || val == 0xffff)
2627 			continue;	/* skip invalid entries */
2628 		sc->bbp_prom[i].reg = val >> 8;
2629 		sc->bbp_prom[i].val = val & 0xff;
2630 		DPRINTF(sc, ("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
2631 		    sc->bbp_prom[i].val));
2632 	}
2633 
2634 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_LED_OFFSET);
2635 	DPRINTF(sc, ("LED %02x\n", val));
2636 	if (val == 0xffff) {
2637 		sc->mcu_led = RT2661_MCU_LED_DEFAULT;
2638 	} else {
2639 #define N(arr)	(int)(sizeof(arr) / sizeof(arr[0]))
2640 
2641 		for (i = 0; i < N(led_ee2mcu); ++i) {
2642 			if (val & led_ee2mcu[i].ee_bit)
2643 				sc->mcu_led |= led_ee2mcu[i].mcu_bit;
2644 		}
2645 
2646 #undef N
2647 
2648 		sc->mcu_led |= ((val >> RT2661_EE_LED_MODE_SHIFT) &
2649 				RT2661_EE_LED_MODE_MASK);
2650 	}
2651 
2652 	/* TX power down step array */
2653 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_2GHZ_TSSI1);
2654 	sc->tssi_2ghz_down[3] = val & 0xff;
2655 	sc->tssi_2ghz_down[2] = val >> 8;
2656 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_2GHZ_TSSI2);
2657 	sc->tssi_2ghz_down[1] = val & 0xff;
2658 	sc->tssi_2ghz_down[0] = val >> 8;
2659 	DPRINTF(sc, ("2GHZ tssi down 0:%u 1:%u 2:%u 3:%u\n",
2660 		 sc->tssi_2ghz_down[0], sc->tssi_2ghz_down[1],
2661 		 sc->tssi_2ghz_down[2], sc->tssi_2ghz_down[3]));
2662 
2663 	/* TX power up step array */
2664 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_2GHZ_TSSI3);
2665 	sc->tssi_2ghz_up[0] = val & 0xff;
2666 	sc->tssi_2ghz_up[1] = val >> 8;
2667 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_2GHZ_TSSI4);
2668 	sc->tssi_2ghz_up[2] = val & 0xff;
2669 	sc->tssi_2ghz_up[3] = val >> 8;
2670 	DPRINTF(sc, ("2GHZ tssi up 0:%u 1:%u 2:%u 3:%u\n",
2671 		 sc->tssi_2ghz_up[0], sc->tssi_2ghz_up[1],
2672 		 sc->tssi_2ghz_up[2], sc->tssi_2ghz_up[3]));
2673 
2674 	/* TX power adjustment reference value and step */
2675 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_2GHZ_TSSI5);
2676 	sc->tssi_2ghz_ref = val & 0xff;
2677 	sc->tssi_2ghz_step = val >> 8;
2678 	DPRINTF(sc, ("2GHZ tssi ref %u, step %d\n",
2679 		 sc->tssi_2ghz_ref, sc->tssi_2ghz_step));
2680 
2681 	if (sc->tssi_2ghz_ref == 0xff)
2682 		sc->auto_txagc = 0;
2683 	DPRINTF(sc, ("Auto TX AGC %d\n", sc->auto_txagc));
2684 }
2685 
2686 static int
2687 rt2661_bbp_init(struct rt2661_softc *sc)
2688 {
2689 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2690 	int i, ntries;
2691 	uint8_t val;
2692 
2693 	/* wait for BBP to be ready */
2694 	for (ntries = 0; ntries < 100; ntries++) {
2695 		val = rt2661_bbp_read(sc, 0);
2696 		if (val != 0 && val != 0xff)
2697 			break;
2698 		DELAY(100);
2699 	}
2700 	if (ntries == 100) {
2701 		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
2702 		return EIO;
2703 	}
2704 
2705 	/* initialize BBP registers to default values */
2706 	for (i = 0; i < N(rt2661_def_bbp); i++) {
2707 		rt2661_bbp_write(sc, rt2661_def_bbp[i].reg,
2708 		    rt2661_def_bbp[i].val);
2709 	}
2710 
2711 	/* write vendor-specific BBP values (from EEPROM) */
2712 	for (i = 0; i < 16; i++) {
2713 		if (sc->bbp_prom[i].reg == 0)
2714 			continue;
2715 		rt2661_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2716 	}
2717 
2718 	return 0;
2719 #undef N
2720 }
2721 
2722 static void
2723 rt2661_init(void *priv)
2724 {
2725 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2726 	struct rt2661_softc *sc = priv;
2727 	struct ieee80211com *ic = &sc->sc_ic;
2728 	struct ifnet *ifp = ic->ic_ifp;
2729 	uint32_t tmp, sta[3];
2730 	int i, ntries;
2731 
2732 	rt2661_stop(sc);
2733 
2734 	/* initialize Tx rings */
2735 	RAL_WRITE(sc, RT2661_AC1_BASE_CSR, sc->txq[1].physaddr);
2736 	RAL_WRITE(sc, RT2661_AC0_BASE_CSR, sc->txq[0].physaddr);
2737 	RAL_WRITE(sc, RT2661_AC2_BASE_CSR, sc->txq[2].physaddr);
2738 	RAL_WRITE(sc, RT2661_AC3_BASE_CSR, sc->txq[3].physaddr);
2739 
2740 	/* initialize Mgt ring */
2741 	RAL_WRITE(sc, RT2661_MGT_BASE_CSR, sc->mgtq.physaddr);
2742 
2743 	/* initialize Rx ring */
2744 	RAL_WRITE(sc, RT2661_RX_BASE_CSR, sc->rxq.physaddr);
2745 
2746 	/* initialize Tx rings sizes */
2747 	RAL_WRITE(sc, RT2661_TX_RING_CSR0,
2748 	    RT2661_TX_RING_COUNT << 24 |
2749 	    RT2661_TX_RING_COUNT << 16 |
2750 	    RT2661_TX_RING_COUNT <<  8 |
2751 	    RT2661_TX_RING_COUNT);
2752 
2753 	RAL_WRITE(sc, RT2661_TX_RING_CSR1,
2754 	    RT2661_TX_DESC_WSIZE << 16 |
2755 	    RT2661_TX_RING_COUNT <<  8 |	/* XXX: HCCA ring unused */
2756 	    RT2661_MGT_RING_COUNT);
2757 
2758 	/* initialize Rx rings */
2759 	RAL_WRITE(sc, RT2661_RX_RING_CSR,
2760 	    RT2661_RX_DESC_BACK  << 16 |
2761 	    RT2661_RX_DESC_WSIZE <<  8 |
2762 	    RT2661_RX_RING_COUNT);
2763 
2764 	/* XXX: some magic here */
2765 	RAL_WRITE(sc, RT2661_TX_DMA_DST_CSR, 0xaa);
2766 
2767 	/* load base addresses of all 5 Tx rings (4 data + 1 mgt) */
2768 	RAL_WRITE(sc, RT2661_LOAD_TX_RING_CSR, 0x1f);
2769 
2770 	/* load base address of Rx ring */
2771 	RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 2);
2772 
2773 	/* initialize MAC registers to default values */
2774 	for (i = 0; i < N(rt2661_def_mac); i++)
2775 		RAL_WRITE(sc, rt2661_def_mac[i].reg, rt2661_def_mac[i].val);
2776 
2777 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
2778 	rt2661_set_macaddr(sc, ic->ic_myaddr);
2779 
2780 	/* set host ready */
2781 	RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2782 	RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2783 
2784 	/* wait for BBP/RF to wakeup */
2785 	for (ntries = 0; ntries < 1000; ntries++) {
2786 		if (RAL_READ(sc, RT2661_MAC_CSR12) & 8)
2787 			break;
2788 		DELAY(1000);
2789 	}
2790 	if (ntries == 1000) {
2791 		kprintf("timeout waiting for BBP/RF to wakeup\n");
2792 		rt2661_stop(sc);
2793 		return;
2794 	}
2795 
2796 	if (rt2661_bbp_init(sc) != 0) {
2797 		rt2661_stop(sc);
2798 		return;
2799 	}
2800 
2801 	/* select default channel */
2802 	sc->sc_curchan = ic->ic_curchan;
2803 	rt2661_select_band(sc, sc->sc_curchan);
2804 	rt2661_select_antenna(sc);
2805 	rt2661_set_chan(sc, sc->sc_curchan);
2806 
2807 	/* update Rx filter */
2808 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0) & 0xffff;
2809 
2810 	tmp |= RT2661_DROP_PHY_ERROR | RT2661_DROP_CRC_ERROR;
2811 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2812 		tmp |= RT2661_DROP_CTL | RT2661_DROP_VER_ERROR |
2813 		       RT2661_DROP_ACKCTS;
2814 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2815 			tmp |= RT2661_DROP_TODS;
2816 		if (!(ifp->if_flags & IFF_PROMISC))
2817 			tmp |= RT2661_DROP_NOT_TO_ME;
2818 	}
2819 
2820 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2821 
2822 	/* clear STA registers */
2823 	RAL_READ_REGION_4(sc, RT2661_STA_CSR0, sta, N(sta));
2824 
2825 	/* initialize ASIC */
2826 	RAL_WRITE(sc, RT2661_MAC_CSR1, 4);
2827 
2828 	/* clear any pending interrupt */
2829 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2830 
2831 	/* enable interrupts */
2832 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
2833 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
2834 
2835 	/* kick Rx */
2836 	RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 1);
2837 
2838 	ifp->if_flags &= ~IFF_OACTIVE;
2839 	ifp->if_flags |= IFF_RUNNING;
2840 
2841 	for (i = 0; i < IEEE80211_WEP_NKID; ++i) {
2842 		uint8_t mac[IEEE80211_ADDR_LEN];
2843 		const struct ieee80211_key *k = &ic->ic_nw_keys[i];
2844 
2845 		if (k->wk_keyix != IEEE80211_KEYIX_NONE)
2846 			rt2661_key_set(ic, k, mac);
2847 	}
2848 
2849 	RT2661_RESET_AVG_RSSI(sc);
2850 
2851 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2852 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2853 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2854 	} else {
2855 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2856 	}
2857 #undef N
2858 }
2859 
2860 void
2861 rt2661_stop(void *priv)
2862 {
2863 	struct rt2661_softc *sc = priv;
2864 	struct ieee80211com *ic = &sc->sc_ic;
2865 	struct ifnet *ifp = ic->ic_ifp;
2866 	struct rt2661_tx_ratectl *rctl;
2867 	uint32_t tmp;
2868 
2869 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2870 
2871 	sc->sc_tx_timer = 0;
2872 	ifp->if_timer = 0;
2873 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2874 
2875 	/* abort Tx (for all 5 Tx rings) */
2876 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 0x1f << 16);
2877 
2878 	/* disable Rx (value remains after reset!) */
2879 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2880 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2881 
2882 	/* reset ASIC */
2883 	RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2884 	RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2885 
2886 	/* disable interrupts */
2887 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffffff);
2888 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
2889 
2890 	/* clear any pending interrupt */
2891 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2892 	RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, 0xffffffff);
2893 
2894 	while ((rctl = STAILQ_FIRST(&sc->tx_ratectl)) != NULL) {
2895 		STAILQ_REMOVE_HEAD(&sc->tx_ratectl, link);
2896 		ieee80211_free_node(rctl->ni);
2897 		rctl->ni = NULL;
2898 		kfree(rctl, M_RT2661);
2899 	}
2900 
2901 	/* reset Tx and Rx rings */
2902 	rt2661_reset_tx_ring(sc, &sc->txq[0]);
2903 	rt2661_reset_tx_ring(sc, &sc->txq[1]);
2904 	rt2661_reset_tx_ring(sc, &sc->txq[2]);
2905 	rt2661_reset_tx_ring(sc, &sc->txq[3]);
2906 	rt2661_reset_tx_ring(sc, &sc->mgtq);
2907 	rt2661_reset_rx_ring(sc, &sc->rxq);
2908 
2909 	/* Clear key map. */
2910 	bzero(sc->sc_keymap, sizeof(sc->sc_keymap));
2911 }
2912 
2913 static int
2914 rt2661_load_microcode(struct rt2661_softc *sc, const uint8_t *ucode, int size)
2915 {
2916 	int ntries;
2917 
2918 	/* reset 8051 */
2919 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2920 
2921 	/* cancel any pending Host to MCU command */
2922 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 0);
2923 	RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
2924 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, 0);
2925 
2926 	/* write 8051's microcode */
2927 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET | RT2661_MCU_SEL);
2928 	RAL_WRITE_REGION_1(sc, RT2661_MCU_CODE_BASE, ucode, size);
2929 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2930 
2931 	/* kick 8051's ass */
2932 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, 0);
2933 
2934 	/* wait for 8051 to initialize */
2935 	for (ntries = 0; ntries < 500; ntries++) {
2936 		if (RAL_READ(sc, RT2661_MCU_CNTL_CSR) & RT2661_MCU_READY)
2937 			break;
2938 		DELAY(100);
2939 	}
2940 	if (ntries == 500) {
2941 		kprintf("timeout waiting for MCU to initialize\n");
2942 		return EIO;
2943 	}
2944 	return 0;
2945 }
2946 
2947 static int
2948 rt2661_prepare_beacon(struct rt2661_softc *sc)
2949 {
2950 	struct ieee80211com *ic = &sc->sc_ic;
2951 	struct ieee80211_beacon_offsets bo;
2952 	struct rt2661_tx_desc desc;
2953 	struct mbuf *m0;
2954 	int rate;
2955 
2956 	m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &bo);
2957 	if (m0 == NULL) {
2958 		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2959 		return ENOBUFS;
2960 	}
2961 
2962 	/* send beacons at the lowest available rate */
2963 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan) ? 12 : 2;
2964 
2965 	rt2661_setup_tx_desc(sc, &desc, RT2661_TX_TIMESTAMP, RT2661_TX_HWSEQ,
2966 	    m0->m_pkthdr.len, rate, NULL, 0, RT2661_QID_MGT, 0, NULL, NULL, NULL);
2967 
2968 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2969 	RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2970 
2971 	/* copy beacon header and payload into NIC memory */
2972 	RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0 + 24,
2973 	    mtod(m0, uint8_t *), m0->m_pkthdr.len);
2974 
2975 	m_freem(m0);
2976 	return 0;
2977 }
2978 
2979 /*
2980  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
2981  * and HostAP operating modes.
2982  */
2983 static void
2984 rt2661_enable_tsf_sync(struct rt2661_softc *sc)
2985 {
2986 	struct ieee80211com *ic = &sc->sc_ic;
2987 	uint32_t tmp;
2988 
2989 	if (ic->ic_opmode != IEEE80211_M_STA) {
2990 		/*
2991 		 * Change default 16ms TBTT adjustment to 8ms.
2992 		 * Must be done before enabling beacon generation.
2993 		 */
2994 		RAL_WRITE(sc, RT2661_TXRX_CSR10, 1 << 12 | 8);
2995 	}
2996 
2997 	tmp = RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000;
2998 
2999 	/* set beacon interval (in 1/16ms unit) */
3000 	tmp |= ic->ic_bss->ni_intval * 16;
3001 
3002 	tmp |= RT2661_TSF_TICKING | RT2661_ENABLE_TBTT;
3003 	if (ic->ic_opmode == IEEE80211_M_STA)
3004 		tmp |= RT2661_TSF_MODE(1);
3005 	else
3006 		tmp |= RT2661_TSF_MODE(2) | RT2661_GENERATE_BEACON;
3007 
3008 	RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp);
3009 }
3010 
3011 /*
3012  * Retrieve the "Received Signal Strength Indicator" from the raw values
3013  * contained in Rx descriptors.  The computation depends on which band the
3014  * frame was received.  Correction values taken from the reference driver.
3015  */
3016 static int
3017 rt2661_get_rssi(struct rt2661_softc *sc, uint8_t raw, int i)
3018 {
3019 	int lna, agc, rssi;
3020 
3021 	lna = (raw >> 5) & 0x3;
3022 	agc = raw & 0x1f;
3023 
3024 	if (lna == 0) {
3025 		/*
3026 		 * No RSSI mapping
3027 		 *
3028 		 * NB: Since RSSI is relative to noise floor, -1 is
3029 		 *     adequate for caller to know error happened.
3030 		 */
3031 		return -1;
3032 	}
3033 
3034 	rssi = (2 * agc) - RT2661_NOISE_FLOOR;
3035 
3036 	if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) {
3037 		rssi += sc->rssi_2ghz_corr[i];
3038 
3039 		if (lna == 1)
3040 			rssi -= 64;
3041 		else if (lna == 2)
3042 			rssi -= 74;
3043 		else if (lna == 3)
3044 			rssi -= 90;
3045 	} else {
3046 		rssi += sc->rssi_5ghz_corr;
3047 
3048 		if (lna == 1)
3049 			rssi -= 64;
3050 		else if (lna == 2)
3051 			rssi -= 86;
3052 		else if (lna == 3)
3053 			rssi -= 100;
3054 	}
3055 
3056 	if (sc->avg_rssi[i] < 0) {
3057 		sc->avg_rssi[i] = rssi;
3058 	} else {
3059 		sc->avg_rssi[i] =
3060 		((sc->avg_rssi[i] << 3) - sc->avg_rssi[i] + rssi) >> 3;
3061 	}
3062 	return rssi;
3063 }
3064 
3065 static void
3066 rt2661_dma_map_mbuf(void *arg, bus_dma_segment_t *seg, int nseg,
3067 		    bus_size_t map_size __unused, int error)
3068 {
3069 	struct rt2661_dmamap *map = arg;
3070 
3071 	if (error)
3072 		return;
3073 
3074 	KASSERT(nseg <= RT2661_MAX_SCATTER, ("too many DMA segments"));
3075 
3076 	bcopy(seg, map->segs, nseg * sizeof(bus_dma_segment_t));
3077 	map->nseg = nseg;
3078 }
3079 
3080 static void
3081 rt2661_led_newstate(struct rt2661_softc *sc, enum ieee80211_state nstate)
3082 {
3083 	struct ieee80211com *ic = &sc->sc_ic;
3084 	uint32_t off, on;
3085 	uint32_t mail = sc->mcu_led;
3086 
3087 	if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY) {
3088 		DPRINTF(sc, ("%s failed\n", __func__));
3089 		return;
3090 	}
3091 
3092 	switch (nstate) {
3093 	case IEEE80211_S_INIT:
3094 		mail &= ~(RT2661_MCU_LED_LINKA | RT2661_MCU_LED_LINKG |
3095 			  RT2661_MCU_LED_RF);
3096 		break;
3097 	default:
3098 		if (ic->ic_curchan == NULL)
3099 			return;
3100 
3101 		on = RT2661_MCU_LED_LINKG;
3102 		off = RT2661_MCU_LED_LINKA;
3103 		if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) {
3104 			on = RT2661_MCU_LED_LINKA;
3105 			off = RT2661_MCU_LED_LINKG;
3106 		}
3107 
3108 		mail |= RT2661_MCU_LED_RF | on;
3109 		mail &= ~off;
3110 		break;
3111 	}
3112 
3113 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR,
3114 		  RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | mail);
3115 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | RT2661_MCU_SET_LED);
3116 }
3117 
3118 static void
3119 rt2661_read_txpower_config(struct rt2661_softc *sc, uint8_t txpwr_ofs,
3120 			   int nchan, int *start_chan0)
3121 {
3122 	int i, loop_max;
3123 	int start_chan = *start_chan0;
3124 
3125 	KASSERT(nchan % 2 == 0, ("number of channels %d is not even\n", nchan));
3126 	KASSERT(start_chan + nchan <= RT2661_NCHAN_MAX, ("too many channels"));
3127 
3128 	loop_max = nchan / 2;
3129 
3130 	for (i = 0; i < loop_max; i++) {
3131 		int chan_idx, j;
3132 		uint16_t val;
3133 
3134 		val = rt2661_eeprom_read(sc, txpwr_ofs + i);
3135 		chan_idx = i * 2 + start_chan;
3136 
3137 		for (j = 0; j < 2; ++j) {
3138 			int8_t tx_power;	/* signed */
3139 
3140 			tx_power = (int8_t)((val >> (8 * j)) & 0xff);
3141 			if (tx_power > RT2661_TXPOWER_MAX)
3142 				tx_power = RT2661_TXPOWER_DEFAULT;
3143 
3144 			sc->txpow[chan_idx] = tx_power;
3145 			DPRINTF(sc, ("Channel=%d Tx power=%d\n",
3146 			    rt2661_rf5225_1[chan_idx].chan, sc->txpow[chan_idx]));
3147 
3148 			++chan_idx;
3149 		}
3150 	}
3151 	*start_chan0 += nchan;
3152 }
3153 
3154 static int
3155 rt2661_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *key,
3156 		 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
3157 {
3158 	struct rt2661_softc *sc = ic->ic_if.if_softc;
3159 
3160 	DPRINTF(sc, ("%s: ", __func__));
3161 
3162 	if (key->wk_flags & IEEE80211_KEY_SWCRYPT) {
3163 		DPRINTF(sc, ("alloc sw key\n"));
3164 		return sc->sc_key_alloc(ic, key, keyix, rxkeyix);
3165 	}
3166 
3167 	if (key->wk_flags & IEEE80211_KEY_GROUP) {	/* Global key */
3168 		DPRINTF(sc, ("alloc group key\n"));
3169 
3170 		KASSERT(key >= &ic->ic_nw_keys[0] &&
3171 			key < &ic->ic_nw_keys[IEEE80211_WEP_NKID],
3172 			("bogus group key\n"));
3173 
3174 		*keyix = *rxkeyix = key - ic->ic_nw_keys;
3175 		return 1;
3176 	} else {					/* Pairwise key */
3177 		int i;
3178 
3179 		DPRINTF(sc, ("alloc pairwise key\n"));
3180 
3181 		for (i = IEEE80211_WEP_NKID; i < RT2661_KEY_MAX; ++i) {
3182 			if (!RT2661_KEY_ISSET(sc, i))
3183 				break;
3184 		}
3185 #ifndef MIXED_KEY_TEST
3186 		if (i == RT2661_KEY_MAX)
3187 			return 0;
3188 #else
3189 		if (i != IEEE80211_WEP_NKID)
3190 			return 0;
3191 #endif
3192 
3193 		RT2661_KEY_SET(sc, i);
3194 		*keyix = *rxkeyix = i;
3195 		return 1;
3196 	}
3197 }
3198 
3199 static int
3200 rt2661_key_delete(struct ieee80211com *ic, const struct ieee80211_key *key)
3201 {
3202 	struct rt2661_softc *sc = ic->ic_if.if_softc;
3203 	uint32_t val;
3204 
3205 	DPRINTF(sc, ("%s: keyix %d, rxkeyix %d, ", __func__,
3206 		 key->wk_keyix, key->wk_rxkeyix));
3207 
3208 	if (key->wk_flags & IEEE80211_KEY_SWCRYPT) {
3209 		DPRINTF(sc, ("delete sw key\n"));
3210 		return sc->sc_key_delete(ic, key);
3211 	}
3212 
3213 	if (key->wk_keyix < IEEE80211_WEP_NKID) {	/* Global key */
3214 		DPRINTF(sc, ("delete global key\n"));
3215 		val = RAL_READ(sc, RT2661_SEC_CSR0);
3216 		val &= ~(1 << key->wk_keyix);
3217 		RAL_WRITE(sc, RT2661_SEC_CSR0, val);
3218 	} else {					/* Pairwise key */
3219 		DPRINTF(sc, ("delete pairwise key\n"));
3220 
3221 		RT2661_KEY_CLR(sc, key->wk_keyix);
3222 		if (key->wk_keyix < 32) {
3223 			val = RAL_READ(sc, RT2661_SEC_CSR2);
3224 			val &= ~(1 << key->wk_keyix);
3225 			RAL_WRITE(sc, RT2661_SEC_CSR2, val);
3226 		} else {
3227 			val = RAL_READ(sc, RT2661_SEC_CSR3);
3228 			val &= ~(1 << (key->wk_keyix - 32));
3229 			RAL_WRITE(sc, RT2661_SEC_CSR3, val);
3230 		}
3231 	}
3232 	return 1;
3233 }
3234 
3235 static int
3236 rt2661_key_set(struct ieee80211com *ic, const struct ieee80211_key *key,
3237 	       const uint8_t mac[IEEE80211_ADDR_LEN])
3238 {
3239 	struct rt2661_softc *sc = ic->ic_if.if_softc;
3240 	uint32_t addr, val;
3241 
3242 	DPRINTF(sc, ("%s: keyix %d, rxkeyix %d, flags 0x%04x, ", __func__,
3243 		 key->wk_keyix, key->wk_rxkeyix, key->wk_flags));
3244 
3245 	if (key->wk_flags & IEEE80211_KEY_SWCRYPT) {
3246 		DPRINTF(sc, ("set sw key\n"));
3247 		return sc->sc_key_set(ic, key, mac);
3248 	}
3249 
3250 	if (key->wk_keyix < IEEE80211_WEP_NKID) {	/* Global Key */
3251 		int cipher, keyix_shift;
3252 
3253 		DPRINTF(sc, ("set global key\n"));
3254 
3255 		/*
3256 		 * Install key content.
3257 		 */
3258 		addr = RT2661_GLOBAL_KEY_BASE +
3259 		       (key->wk_keyix * sizeof(key->wk_key));
3260 		RAL_WRITE_REGION_1(sc, addr, key->wk_key, sizeof(key->wk_key));
3261 
3262 		/*
3263 		 * Set key cipher.
3264 		 */
3265 		cipher = rt2661_cipher(key);
3266 		keyix_shift = key->wk_keyix * 4;
3267 
3268 		val = RAL_READ(sc, RT2661_SEC_CSR1);
3269 		val &= ~(0xf << keyix_shift);
3270 		val |= cipher << keyix_shift;
3271 		RAL_WRITE(sc, RT2661_SEC_CSR1, val);
3272 
3273 		/*
3274 		 * Enable key slot.
3275 		 */
3276 		val = RAL_READ(sc, RT2661_SEC_CSR0);
3277 		val |= 1 << key->wk_keyix;
3278 		RAL_WRITE(sc, RT2661_SEC_CSR0, val);
3279 	} else {					/* Pairwise key */
3280 		uint8_t mac_cipher[IEEE80211_ADDR_LEN + 1];
3281 
3282 		DPRINTF(sc, ("set pairwise key\n"));
3283 
3284 		/*
3285 		 * Install key content.
3286 		 */
3287 		addr = RT2661_PAIRWISE_KEY_BASE +
3288 		       (key->wk_keyix * sizeof(key->wk_key));
3289 		RAL_WRITE_REGION_1(sc, addr, key->wk_key, sizeof(key->wk_key));
3290 
3291 		/*
3292 		 * Set target address and key cipher.
3293 		 */
3294 		memcpy(mac_cipher, mac, IEEE80211_ADDR_LEN);
3295 		mac_cipher[IEEE80211_ADDR_LEN] = rt2661_cipher(key);
3296 
3297 		/* XXX Actually slot size is 1 byte bigger than mac_cipher */
3298 		addr = RT2661_TARGET_ADDR_BASE +
3299 		       (key->wk_keyix * (IEEE80211_ADDR_LEN + 2));
3300 		RAL_WRITE_REGION_1(sc, addr, mac_cipher, sizeof(mac_cipher));
3301 
3302 		/*
3303 		 * Enable key slot.
3304 		 */
3305 		if (key->wk_keyix < 32) {
3306 			val = RAL_READ(sc, RT2661_SEC_CSR2);
3307 			val |= 1 << key->wk_keyix;
3308 			RAL_WRITE(sc, RT2661_SEC_CSR2, val);
3309 		} else {
3310 			val = RAL_READ(sc, RT2661_SEC_CSR3);
3311 			val |= 1 << (key->wk_keyix - 32);
3312 			RAL_WRITE(sc, RT2661_SEC_CSR3, val);
3313 		}
3314 
3315 		/*
3316 		 * Enable pairwise key looking up when RX.
3317 		 */
3318 		RAL_WRITE(sc, RT2661_SEC_CSR4, 1);
3319 	}
3320 	return 1;
3321 }
3322 
3323 static void *
3324 rt2661_ratectl_attach(struct ieee80211com *ic, u_int rc)
3325 {
3326 	struct rt2661_softc *sc = ic->ic_if.if_softc;
3327 
3328 	switch (rc) {
3329 	case IEEE80211_RATECTL_ONOE:
3330 		return &sc->sc_onoe_param;
3331 
3332 	case IEEE80211_RATECTL_SAMPLE:
3333 		if ((ic->ic_ratectl.rc_st_ratectl_cap &
3334 		     IEEE80211_RATECTL_CAP_SAMPLE) == 0)
3335 			panic("sample rate control algo is not supported\n");
3336 		return &sc->sc_sample_param;
3337 
3338 	case IEEE80211_RATECTL_NONE:
3339 		/* This could only happen during detaching */
3340 		return NULL;
3341 
3342 	default:
3343 		panic("unknown rate control algo %u\n", rc);
3344 		return NULL;
3345 	}
3346 }
3347 
3348 static void
3349 rt2661_calib_txpower(struct rt2661_softc *sc)
3350 {
3351 	int8_t txpower;
3352 	int rssi_dbm;
3353 
3354 	if (sc->sc_ic.ic_state != IEEE80211_S_RUN)
3355 		return;
3356 
3357 	txpower = sc->txpow[sc->sc_curchan_idx];
3358 	if (txpower < 0)
3359 		txpower = 0;
3360 	else if (txpower > 31)
3361 		txpower = 31;
3362 	txpower = rt2661_txpower(sc, txpower);
3363 
3364 	if (sc->auto_txagc) {
3365 		/*
3366 		 * Compensate TX power according to temperature change
3367 		 */
3368 		if (sc->sc_txpwr_cnt++ % 4 == 0) {
3369 			uint8_t bbp1;
3370 			int i;
3371 
3372 			/*
3373 			 * Adjust compensation very 4 seconds
3374 			 */
3375 			bbp1 = rt2661_bbp_read(sc, 1);
3376 			if (bbp1 > sc->tssi_2ghz_ref) {
3377 				for (i = 0; i < RT2661_TSSI_LIMSZ; ++i) {
3378 					if (bbp1 <= sc->tssi_2ghz_down[i])
3379 						break;
3380 				}
3381 				if (txpower > (sc->tssi_2ghz_step * i)) {
3382 					sc->tssi_2ghz_comp =
3383 					-(sc->tssi_2ghz_step * i);
3384 				} else {
3385 					sc->tssi_2ghz_comp = -txpower;
3386 				}
3387 			} else if (bbp1 < sc->tssi_2ghz_ref) {
3388 				for (i = 0; i < RT2661_TSSI_LIMSZ; ++i) {
3389 					if (bbp1 >= sc->tssi_2ghz_up[i])
3390 						break;
3391 				}
3392 				sc->tssi_2ghz_comp = sc->tssi_2ghz_step * i;
3393 			}
3394 		}
3395 		txpower += sc->tssi_2ghz_comp;
3396 	}
3397 
3398 	/*
3399 	 * Adjust TX power according to RSSI
3400 	 */
3401 	rssi_dbm = rt2661_avgrssi(sc);
3402 	DPRINTF(sc, ("dbm %d, txpower %d\n", rssi_dbm, txpower));
3403 
3404 	if (rssi_dbm > -30) {
3405 		if (txpower > 16)
3406 			txpower -= 16;
3407 		else
3408 			txpower = 0;
3409 	} else if (rssi_dbm > -45) {
3410 		if (txpower > 6)
3411 			txpower -= 6;
3412 		else
3413 			txpower = 0;
3414 	}
3415 
3416 	if (txpower != sc->sc_txpwr)
3417 		rt2661_set_txpower(sc, txpower);
3418 }
3419 
3420 static void
3421 rt2661_calib_rxsensibility(struct rt2661_softc *sc, uint32_t false_cca)
3422 {
3423 #define MIDRANGE_RSSI	-74
3424 
3425 	uint8_t bbp17;
3426 	int rssi_dbm;
3427 
3428 	if (sc->sc_ic.ic_state != IEEE80211_S_RUN)
3429 		return;
3430 
3431 	rssi_dbm = rt2661_avgrssi(sc);
3432 
3433 	if (rssi_dbm >= MIDRANGE_RSSI) {
3434 		if (rssi_dbm >= -35)
3435 			bbp17 = 0x60;
3436 		else if (rssi_dbm >= -58)
3437 			bbp17 = sc->bbp17_2ghz_max;
3438 		else if (rssi_dbm >= -66)
3439 			bbp17 = sc->bbp17_2ghz_min + 0x10;
3440 		else
3441 			bbp17 = sc->bbp17_2ghz_min + 0x8;
3442 
3443 		if (sc->bbp17 != bbp17)
3444 			rt2661_bbp_write(sc, 17, bbp17);
3445 		return;
3446 	}
3447 
3448 	bbp17 = sc->bbp17_2ghz_max - (2 * (MIDRANGE_RSSI - rssi_dbm));
3449 	if (bbp17 < sc->bbp17_2ghz_min)
3450 		bbp17 = sc->bbp17_2ghz_min;
3451 
3452 	if (sc->bbp17 > bbp17) {
3453 		rt2661_bbp_write(sc, 17, bbp17);
3454 		return;
3455 	}
3456 
3457 	DPRINTF(sc, ("calibrate according to false CCA\n"));
3458 
3459 	if (false_cca > 512 && sc->bbp17 > sc->bbp17_2ghz_min)
3460 		rt2661_bbp_write(sc, 17, sc->bbp17 - 1);
3461 	else if (false_cca < 100 && sc->bbp17 < bbp17)
3462 		rt2661_bbp_write(sc, 17, sc->bbp17 + 1);
3463 
3464 #undef MIDRANGE_RSSI
3465 }
3466 
3467 static void
3468 rt2661_calibrate(void *xsc)
3469 {
3470 	struct rt2661_softc *sc = xsc;
3471 	struct ifnet *ifp = &sc->sc_ic.ic_if;
3472 	uint32_t false_cca;
3473 
3474 	lwkt_serialize_enter(ifp->if_serializer);
3475 
3476 	false_cca = (RAL_READ(sc, RT2661_STA_CSR1) >> 16);
3477 	DPRINTF(sc, ("false cca %u\n", false_cca));
3478 
3479 	if (sc->sc_calib_rxsns)
3480 		rt2661_calib_rxsensibility(sc, false_cca);
3481 
3482 	if (sc->sc_calib_txpwr)
3483 		rt2661_calib_txpower(sc);
3484 
3485 	callout_reset(&sc->calib_ch, hz, rt2661_calibrate, sc);
3486 
3487 	lwkt_serialize_exit(ifp->if_serializer);
3488 }
3489