xref: /dragonfly/sys/dev/netif/re/if_re.c (revision 19fe1c42)
1 /*
2  * Copyright (c) 2004
3  *	Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
4  *
5  * Copyright (c) 1997, 1998-2003
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: src/sys/dev/re/if_re.c,v 1.25 2004/06/09 14:34:01 naddy Exp $
36  * $DragonFly: src/sys/dev/netif/re/if_re.c,v 1.99 2008/10/30 11:27:40 sephe Exp $
37  */
38 
39 /*
40  * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
41  *
42  * Written by Bill Paul <wpaul@windriver.com>
43  * Senior Networking Software Engineer
44  * Wind River Systems
45  */
46 
47 /*
48  * This driver is designed to support RealTek's next generation of
49  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50  * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
51  * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
52  *
53  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54  * with the older 8139 family, however it also supports a special
55  * C+ mode of operation that provides several new performance enhancing
56  * features. These include:
57  *
58  *	o Descriptor based DMA mechanism. Each descriptor represents
59  *	  a single packet fragment. Data buffers may be aligned on
60  *	  any byte boundary.
61  *
62  *	o 64-bit DMA
63  *
64  *	o TCP/IP checksum offload for both RX and TX
65  *
66  *	o High and normal priority transmit DMA rings
67  *
68  *	o VLAN tag insertion and extraction
69  *
70  *	o TCP large send (segmentation offload)
71  *
72  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73  * programming API is fairly straightforward. The RX filtering, EEPROM
74  * access and PHY access is the same as it is on the older 8139 series
75  * chips.
76  *
77  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78  * same programming API and feature set as the 8139C+ with the following
79  * differences and additions:
80  *
81  *	o 1000Mbps mode
82  *
83  *	o Jumbo frames
84  *
85  * 	o GMII and TBI ports/registers for interfacing with copper
86  *	  or fiber PHYs
87  *
88  *      o RX and TX DMA rings can have up to 1024 descriptors
89  *        (the 8139C+ allows a maximum of 64)
90  *
91  *	o Slight differences in register layout from the 8139C+
92  *
93  * The TX start and timer interrupt registers are at different locations
94  * on the 8169 than they are on the 8139C+. Also, the status word in the
95  * RX descriptor has a slightly different bit layout. The 8169 does not
96  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97  * copper gigE PHY.
98  *
99  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100  * (the 'S' stands for 'single-chip'). These devices have the same
101  * programming API as the older 8169, but also have some vendor-specific
102  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104  *
105  * This driver takes advantage of the RX and TX checksum offload and
106  * VLAN tag insertion/extraction features. It also implements TX
107  * interrupt moderation using the timer interrupt registers, which
108  * significantly reduces TX interrupt load. There is also support
109  * for jumbo frames, however the 8169/8169S/8110S can not transmit
110  * jumbo frames larger than 7440, so the max MTU possible with this
111  * driver is 7422 bytes.
112  */
113 
114 #define _IP_VHL
115 
116 #include "opt_polling.h"
117 
118 #include <sys/param.h>
119 #include <sys/bus.h>
120 #include <sys/endian.h>
121 #include <sys/kernel.h>
122 #include <sys/in_cksum.h>
123 #include <sys/interrupt.h>
124 #include <sys/malloc.h>
125 #include <sys/mbuf.h>
126 #include <sys/rman.h>
127 #include <sys/serialize.h>
128 #include <sys/socket.h>
129 #include <sys/sockio.h>
130 #include <sys/sysctl.h>
131 
132 #include <net/bpf.h>
133 #include <net/ethernet.h>
134 #include <net/if.h>
135 #include <net/ifq_var.h>
136 #include <net/if_arp.h>
137 #include <net/if_dl.h>
138 #include <net/if_media.h>
139 #include <net/if_types.h>
140 #include <net/vlan/if_vlan_var.h>
141 #include <net/vlan/if_vlan_ether.h>
142 
143 #include <netinet/ip.h>
144 
145 #include <dev/netif/mii_layer/mii.h>
146 #include <dev/netif/mii_layer/miivar.h>
147 
148 #include <bus/pci/pcidevs.h>
149 #include <bus/pci/pcireg.h>
150 #include <bus/pci/pcivar.h>
151 
152 /* "device miibus" required.  See GENERIC if you get errors here. */
153 #include "miibus_if.h"
154 
155 #include <dev/netif/re/if_rereg.h>
156 #include <dev/netif/re/if_revar.h>
157 
158 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
159 
160 /*
161  * Various supported device vendors/types and their names.
162  */
163 static const struct re_type {
164 	uint16_t	re_vid;
165 	uint16_t	re_did;
166 	const char	*re_name;
167 } re_devs[] = {
168 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE528T,
169 	  "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
170 
171 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8139,
172 	  "RealTek 8139C+ 10/100BaseTX" },
173 
174 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8101E,
175 	  "RealTek 810x PCIe 10/100baseTX" },
176 
177 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8168,
178 	  "RealTek 8111/8168 PCIe Gigabit Ethernet" },
179 
180 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169,
181 	  "RealTek 8110/8169 Gigabit Ethernet" },
182 
183 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169SC,
184 	  "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
185 
186 	{ PCI_VENDOR_COREGA, PCI_PRODUCT_COREGA_CG_LAPCIGT,
187 	  "Corega CG-LAPCIGT Gigabit Ethernet" },
188 
189 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032,
190 	  "Linksys EG1032 Gigabit Ethernet" },
191 
192 	{ PCI_VENDOR_USR2, PCI_PRODUCT_USR2_997902,
193 	  "US Robotics 997902 Gigabit Ethernet" },
194 
195 	{ PCI_VENDOR_TTTECH, PCI_PRODUCT_TTTECH_MC322,
196 	  "TTTech MC322 Gigabit Ethernet" },
197 
198 	{ 0, 0, NULL }
199 };
200 
201 static const struct re_hwrev re_hwrevs[] = {
202 	{ RE_HWREV_8139CPLUS,	RE_MACVER_UNKN,		ETHERMTU,
203 	  RE_C_HWCSUM | RE_C_8139CP | RE_C_FASTE },
204 
205 	{ RE_HWREV_8169,	RE_MACVER_UNKN,		ETHERMTU,
206 	  RE_C_HWCSUM | RE_C_8169 },
207 
208 	{ RE_HWREV_8110S,	RE_MACVER_03,		RE_MTU_6K,
209 	  RE_C_HWCSUM | RE_C_8169 },
210 
211 	{ RE_HWREV_8169S,	RE_MACVER_03,		RE_MTU_6K,
212 	  RE_C_HWCSUM | RE_C_8169 },
213 
214 	{ RE_HWREV_8169SB,	RE_MACVER_04,		RE_MTU_6K,
215 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
216 
217 	{ RE_HWREV_8169SC1,	RE_MACVER_05,		RE_MTU_6K,
218 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
219 
220 	{ RE_HWREV_8169SC2,	RE_MACVER_06,		RE_MTU_6K,
221 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
222 
223 	{ RE_HWREV_8168B1,	RE_MACVER_21,		RE_MTU_6K,
224 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT },
225 
226 	{ RE_HWREV_8168B2,	RE_MACVER_23,		RE_MTU_6K,
227 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_AUTOPAD },
228 
229 	{ RE_HWREV_8168B3,	RE_MACVER_23,		RE_MTU_6K,
230 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_AUTOPAD },
231 
232 	{ RE_HWREV_8168C,	RE_MACVER_29,		RE_MTU_6K,
233 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
234 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
235 
236 	{ RE_HWREV_8168CP,	RE_MACVER_2B,		RE_MTU_6K,
237 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
238 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
239 
240 	{ RE_HWREV_8168D,	RE_MACVER_2A,		RE_MTU_9K,
241 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
242 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
243 
244 	{ RE_HWREV_8100E,	RE_MACVER_UNKN,		ETHERMTU,
245 	  RE_C_HWCSUM | RE_C_FASTE },
246 
247 	{ RE_HWREV_8101E1,	RE_MACVER_16,		ETHERMTU,
248 	  RE_C_HWCSUM | RE_C_FASTE },
249 
250 	{ RE_HWREV_8101E2,	RE_MACVER_16,		ETHERMTU,
251 	  RE_C_HWCSUM | RE_C_FASTE },
252 
253 	{ RE_HWREV_8102E,	RE_MACVER_15,		ETHERMTU,
254 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
255 	  RE_C_FASTE },
256 
257 	{ RE_HWREV_8102EL,	RE_MACVER_15,		ETHERMTU,
258 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
259 	  RE_C_FASTE },
260 
261 	{ RE_HWREV_NULL, 0, 0, 0 }
262 };
263 
264 static int	re_probe(device_t);
265 static int	re_attach(device_t);
266 static int	re_detach(device_t);
267 static int	re_suspend(device_t);
268 static int	re_resume(device_t);
269 static void	re_shutdown(device_t);
270 
271 static void	re_dma_map_addr(void *, bus_dma_segment_t *, int, int);
272 static void	re_dma_map_desc(void *, bus_dma_segment_t *, int,
273 				bus_size_t, int);
274 static int	re_allocmem(device_t);
275 static void	re_freemem(device_t);
276 static void	re_freebufmem(struct re_softc *, int, int);
277 static int	re_encap(struct re_softc *, struct mbuf **, int *);
278 static int	re_newbuf_std(struct re_softc *, int, int);
279 static int	re_newbuf_jumbo(struct re_softc *, int, int);
280 static void	re_setup_rxdesc(struct re_softc *, int);
281 static int	re_rx_list_init(struct re_softc *);
282 static int	re_tx_list_init(struct re_softc *);
283 static int	re_rxeof(struct re_softc *);
284 static int	re_txeof(struct re_softc *);
285 static int	re_tx_collect(struct re_softc *);
286 static void	re_intr(void *);
287 static void	re_tick(void *);
288 static void	re_tick_serialized(void *);
289 
290 static void	re_start(struct ifnet *);
291 static int	re_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
292 static void	re_init(void *);
293 static void	re_stop(struct re_softc *);
294 static void	re_watchdog(struct ifnet *);
295 static int	re_ifmedia_upd(struct ifnet *);
296 static void	re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
297 
298 static void	re_eeprom_putbyte(struct re_softc *, int);
299 static void	re_eeprom_getword(struct re_softc *, int, u_int16_t *);
300 static void	re_read_eeprom(struct re_softc *, caddr_t, int, int);
301 static void	re_get_eewidth(struct re_softc *);
302 
303 static int	re_gmii_readreg(device_t, int, int);
304 static int	re_gmii_writereg(device_t, int, int, int);
305 
306 static int	re_miibus_readreg(device_t, int, int);
307 static int	re_miibus_writereg(device_t, int, int, int);
308 static void	re_miibus_statchg(device_t);
309 
310 static void	re_setmulti(struct re_softc *);
311 static void	re_reset(struct re_softc *, int);
312 static void	re_get_eaddr(struct re_softc *, uint8_t *);
313 
314 static void	re_setup_hw_im(struct re_softc *);
315 static void	re_setup_sim_im(struct re_softc *);
316 static void	re_disable_hw_im(struct re_softc *);
317 static void	re_disable_sim_im(struct re_softc *);
318 static void	re_config_imtype(struct re_softc *, int);
319 static void	re_setup_intr(struct re_softc *, int, int);
320 
321 static int	re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *);
322 static int	re_sysctl_rxtime(SYSCTL_HANDLER_ARGS);
323 static int	re_sysctl_txtime(SYSCTL_HANDLER_ARGS);
324 static int	re_sysctl_simtime(SYSCTL_HANDLER_ARGS);
325 static int	re_sysctl_imtype(SYSCTL_HANDLER_ARGS);
326 
327 static int	re_jpool_alloc(struct re_softc *);
328 static void	re_jpool_free(struct re_softc *);
329 static struct re_jbuf *re_jbuf_alloc(struct re_softc *);
330 static void	re_jbuf_free(void *);
331 static void	re_jbuf_ref(void *);
332 
333 #ifdef RE_DIAG
334 static int	re_diag(struct re_softc *);
335 #endif
336 
337 #ifdef DEVICE_POLLING
338 static void	re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
339 #endif
340 
341 static device_method_t re_methods[] = {
342 	/* Device interface */
343 	DEVMETHOD(device_probe,		re_probe),
344 	DEVMETHOD(device_attach,	re_attach),
345 	DEVMETHOD(device_detach,	re_detach),
346 	DEVMETHOD(device_suspend,	re_suspend),
347 	DEVMETHOD(device_resume,	re_resume),
348 	DEVMETHOD(device_shutdown,	re_shutdown),
349 
350 	/* bus interface */
351 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
352 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
353 
354 	/* MII interface */
355 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
356 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
357 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
358 
359 	{ 0, 0 }
360 };
361 
362 static driver_t re_driver = {
363 	"re",
364 	re_methods,
365 	sizeof(struct re_softc)
366 };
367 
368 static devclass_t re_devclass;
369 
370 DECLARE_DUMMY_MODULE(if_re);
371 MODULE_DEPEND(if_re, miibus, 1, 1, 1);
372 DRIVER_MODULE(if_re, pci, re_driver, re_devclass, 0, 0);
373 DRIVER_MODULE(if_re, cardbus, re_driver, re_devclass, 0, 0);
374 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
375 
376 static int	re_rx_desc_count = RE_RX_DESC_CNT_DEF;
377 static int	re_tx_desc_count = RE_TX_DESC_CNT_DEF;
378 
379 TUNABLE_INT("hw.re.rx_desc_count", &re_rx_desc_count);
380 TUNABLE_INT("hw.re.tx_desc_count", &re_tx_desc_count);
381 
382 #define EE_SET(x)	\
383 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) | (x))
384 
385 #define EE_CLR(x)	\
386 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) & ~(x))
387 
388 static __inline void
389 re_free_rxchain(struct re_softc *sc)
390 {
391 	if (sc->re_head != NULL) {
392 		m_freem(sc->re_head);
393 		sc->re_head = sc->re_tail = NULL;
394 	}
395 }
396 
397 /*
398  * Send a read command and address to the EEPROM, check for ACK.
399  */
400 static void
401 re_eeprom_putbyte(struct re_softc *sc, int addr)
402 {
403 	int d, i;
404 
405 	d = addr | (RE_9346_READ << sc->re_eewidth);
406 
407 	/*
408 	 * Feed in each bit and strobe the clock.
409 	 */
410 	for (i = 1 << (sc->re_eewidth + 3); i; i >>= 1) {
411 		if (d & i)
412 			EE_SET(RE_EE_DATAIN);
413 		else
414 			EE_CLR(RE_EE_DATAIN);
415 		DELAY(100);
416 		EE_SET(RE_EE_CLK);
417 		DELAY(150);
418 		EE_CLR(RE_EE_CLK);
419 		DELAY(100);
420 	}
421 }
422 
423 /*
424  * Read a word of data stored in the EEPROM at address 'addr.'
425  */
426 static void
427 re_eeprom_getword(struct re_softc *sc, int addr, uint16_t *dest)
428 {
429 	int i;
430 	uint16_t word = 0;
431 
432 	/*
433 	 * Send address of word we want to read.
434 	 */
435 	re_eeprom_putbyte(sc, addr);
436 
437 	/*
438 	 * Start reading bits from EEPROM.
439 	 */
440 	for (i = 0x8000; i != 0; i >>= 1) {
441 		EE_SET(RE_EE_CLK);
442 		DELAY(100);
443 		if (CSR_READ_1(sc, RE_EECMD) & RE_EE_DATAOUT)
444 			word |= i;
445 		EE_CLR(RE_EE_CLK);
446 		DELAY(100);
447 	}
448 
449 	*dest = word;
450 }
451 
452 /*
453  * Read a sequence of words from the EEPROM.
454  */
455 static void
456 re_read_eeprom(struct re_softc *sc, caddr_t dest, int off, int cnt)
457 {
458 	int i;
459 	uint16_t word = 0, *ptr;
460 
461 	CSR_SETBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
462 	DELAY(100);
463 
464 	for (i = 0; i < cnt; i++) {
465 		CSR_SETBIT_1(sc, RE_EECMD, RE_EE_SEL);
466 		re_eeprom_getword(sc, off + i, &word);
467 		CSR_CLRBIT_1(sc, RE_EECMD, RE_EE_SEL);
468 		ptr = (uint16_t *)(dest + (i * 2));
469 		*ptr = word;
470 	}
471 
472 	CSR_CLRBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
473 }
474 
475 static void
476 re_get_eewidth(struct re_softc *sc)
477 {
478 	uint16_t re_did = 0;
479 
480 	sc->re_eewidth = 6;
481 	re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
482 	if (re_did != 0x8129)
483 		sc->re_eewidth = 8;
484 }
485 
486 static int
487 re_gmii_readreg(device_t dev, int phy, int reg)
488 {
489 	struct re_softc *sc = device_get_softc(dev);
490 	u_int32_t rval;
491 	int i;
492 
493 	if (phy != 1)
494 		return(0);
495 
496 	/* Let the rgephy driver read the GMEDIASTAT register */
497 
498 	if (reg == RE_GMEDIASTAT)
499 		return(CSR_READ_1(sc, RE_GMEDIASTAT));
500 
501 	CSR_WRITE_4(sc, RE_PHYAR, reg << 16);
502 	DELAY(1000);
503 
504 	for (i = 0; i < RE_TIMEOUT; i++) {
505 		rval = CSR_READ_4(sc, RE_PHYAR);
506 		if (rval & RE_PHYAR_BUSY)
507 			break;
508 		DELAY(100);
509 	}
510 
511 	if (i == RE_TIMEOUT) {
512 		device_printf(dev, "PHY read failed\n");
513 		return(0);
514 	}
515 
516 	return(rval & RE_PHYAR_PHYDATA);
517 }
518 
519 static int
520 re_gmii_writereg(device_t dev, int phy, int reg, int data)
521 {
522 	struct re_softc *sc = device_get_softc(dev);
523 	uint32_t rval;
524 	int i;
525 
526 	CSR_WRITE_4(sc, RE_PHYAR,
527 		    (reg << 16) | (data & RE_PHYAR_PHYDATA) | RE_PHYAR_BUSY);
528 	DELAY(1000);
529 
530 	for (i = 0; i < RE_TIMEOUT; i++) {
531 		rval = CSR_READ_4(sc, RE_PHYAR);
532 		if ((rval & RE_PHYAR_BUSY) == 0)
533 			break;
534 		DELAY(100);
535 	}
536 
537 	if (i == RE_TIMEOUT)
538 		device_printf(dev, "PHY write failed\n");
539 
540 	return(0);
541 }
542 
543 static int
544 re_miibus_readreg(device_t dev, int phy, int reg)
545 {
546 	struct re_softc	*sc = device_get_softc(dev);
547 	uint16_t rval = 0;
548 	uint16_t re8139_reg = 0;
549 
550 	if (!RE_IS_8139CP(sc)) {
551 		rval = re_gmii_readreg(dev, phy, reg);
552 		return(rval);
553 	}
554 
555 	/* Pretend the internal PHY is only at address 0 */
556 	if (phy)
557 		return(0);
558 
559 	switch(reg) {
560 	case MII_BMCR:
561 		re8139_reg = RE_BMCR;
562 		break;
563 	case MII_BMSR:
564 		re8139_reg = RE_BMSR;
565 		break;
566 	case MII_ANAR:
567 		re8139_reg = RE_ANAR;
568 		break;
569 	case MII_ANER:
570 		re8139_reg = RE_ANER;
571 		break;
572 	case MII_ANLPAR:
573 		re8139_reg = RE_LPAR;
574 		break;
575 	case MII_PHYIDR1:
576 	case MII_PHYIDR2:
577 		return(0);
578 	/*
579 	 * Allow the rlphy driver to read the media status
580 	 * register. If we have a link partner which does not
581 	 * support NWAY, this is the register which will tell
582 	 * us the results of parallel detection.
583 	 */
584 	case RE_MEDIASTAT:
585 		return(CSR_READ_1(sc, RE_MEDIASTAT));
586 	default:
587 		device_printf(dev, "bad phy register\n");
588 		return(0);
589 	}
590 	rval = CSR_READ_2(sc, re8139_reg);
591 	if (re8139_reg == RE_BMCR) {
592 		/* 8139C+ has different bit layout. */
593 		rval &= ~(BMCR_LOOP | BMCR_ISO);
594 	}
595 	return(rval);
596 }
597 
598 static int
599 re_miibus_writereg(device_t dev, int phy, int reg, int data)
600 {
601 	struct re_softc *sc= device_get_softc(dev);
602 	u_int16_t re8139_reg = 0;
603 
604 	if (!RE_IS_8139CP(sc))
605 		return(re_gmii_writereg(dev, phy, reg, data));
606 
607 	/* Pretend the internal PHY is only at address 0 */
608 	if (phy)
609 		return(0);
610 
611 	switch(reg) {
612 	case MII_BMCR:
613 		re8139_reg = RE_BMCR;
614 		/* 8139C+ has different bit layout. */
615 		data &= ~(BMCR_LOOP | BMCR_ISO);
616 		break;
617 	case MII_BMSR:
618 		re8139_reg = RE_BMSR;
619 		break;
620 	case MII_ANAR:
621 		re8139_reg = RE_ANAR;
622 		break;
623 	case MII_ANER:
624 		re8139_reg = RE_ANER;
625 		break;
626 	case MII_ANLPAR:
627 		re8139_reg = RE_LPAR;
628 		break;
629 	case MII_PHYIDR1:
630 	case MII_PHYIDR2:
631 		return(0);
632 	default:
633 		device_printf(dev, "bad phy register\n");
634 		return(0);
635 	}
636 	CSR_WRITE_2(sc, re8139_reg, data);
637 	return(0);
638 }
639 
640 static void
641 re_miibus_statchg(device_t dev)
642 {
643 }
644 
645 /*
646  * Program the 64-bit multicast hash filter.
647  */
648 static void
649 re_setmulti(struct re_softc *sc)
650 {
651 	struct ifnet *ifp = &sc->arpcom.ac_if;
652 	int h = 0;
653 	uint32_t hashes[2] = { 0, 0 };
654 	struct ifmultiaddr *ifma;
655 	uint32_t rxfilt;
656 	int mcnt = 0;
657 
658 	rxfilt = CSR_READ_4(sc, RE_RXCFG);
659 
660 	/* Set the individual bit to receive frames for this host only. */
661 	rxfilt |= RE_RXCFG_RX_INDIV;
662 	/* Set capture broadcast bit to capture broadcast frames. */
663 	rxfilt |= RE_RXCFG_RX_BROAD;
664 
665 	rxfilt &= ~(RE_RXCFG_RX_ALLPHYS | RE_RXCFG_RX_MULTI);
666 	if ((ifp->if_flags & IFF_ALLMULTI) || (ifp->if_flags & IFF_PROMISC)) {
667 		rxfilt |= RE_RXCFG_RX_MULTI;
668 
669 		/* If we want promiscuous mode, set the allframes bit. */
670 		if (ifp->if_flags & IFF_PROMISC)
671 			rxfilt |= RE_RXCFG_RX_ALLPHYS;
672 
673 		CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
674 		CSR_WRITE_4(sc, RE_MAR0, 0xFFFFFFFF);
675 		CSR_WRITE_4(sc, RE_MAR4, 0xFFFFFFFF);
676 		return;
677 	}
678 
679 	/* first, zot all the existing hash bits */
680 	CSR_WRITE_4(sc, RE_MAR0, 0);
681 	CSR_WRITE_4(sc, RE_MAR4, 0);
682 
683 	/* now program new ones */
684 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
685 		if (ifma->ifma_addr->sa_family != AF_LINK)
686 			continue;
687 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
688 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
689 		if (h < 32)
690 			hashes[0] |= (1 << h);
691 		else
692 			hashes[1] |= (1 << (h - 32));
693 		mcnt++;
694 	}
695 
696 	if (mcnt)
697 		rxfilt |= RE_RXCFG_RX_MULTI;
698 	else
699 		rxfilt &= ~RE_RXCFG_RX_MULTI;
700 
701 	CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
702 
703 	/*
704 	 * For some unfathomable reason, RealTek decided to reverse
705 	 * the order of the multicast hash registers in the PCI Express
706 	 * parts. This means we have to write the hash pattern in reverse
707 	 * order for those devices.
708 	 */
709 	if (sc->re_caps & RE_C_PCIE) {
710 		CSR_WRITE_4(sc, RE_MAR0, bswap32(hashes[0]));
711 		CSR_WRITE_4(sc, RE_MAR4, bswap32(hashes[1]));
712 	} else {
713 		CSR_WRITE_4(sc, RE_MAR0, hashes[0]);
714 		CSR_WRITE_4(sc, RE_MAR4, hashes[1]);
715 	}
716 }
717 
718 static void
719 re_reset(struct re_softc *sc, int running)
720 {
721 	int i;
722 
723 	if ((sc->re_caps & RE_C_STOP_RXTX) && running) {
724 		CSR_WRITE_1(sc, RE_COMMAND,
725 			    RE_CMD_STOPREQ | RE_CMD_TX_ENB | RE_CMD_RX_ENB);
726 		DELAY(100);
727 	}
728 
729 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_RESET);
730 
731 	for (i = 0; i < RE_TIMEOUT; i++) {
732 		DELAY(10);
733 		if ((CSR_READ_1(sc, RE_COMMAND) & RE_CMD_RESET) == 0)
734 			break;
735 	}
736 	if (i == RE_TIMEOUT)
737 		if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
738 }
739 
740 #ifdef RE_DIAG
741 /*
742  * The following routine is designed to test for a defect on some
743  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
744  * lines connected to the bus, however for a 32-bit only card, they
745  * should be pulled high. The result of this defect is that the
746  * NIC will not work right if you plug it into a 64-bit slot: DMA
747  * operations will be done with 64-bit transfers, which will fail
748  * because the 64-bit data lines aren't connected.
749  *
750  * There's no way to work around this (short of talking a soldering
751  * iron to the board), however we can detect it. The method we use
752  * here is to put the NIC into digital loopback mode, set the receiver
753  * to promiscuous mode, and then try to send a frame. We then compare
754  * the frame data we sent to what was received. If the data matches,
755  * then the NIC is working correctly, otherwise we know the user has
756  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
757  * slot. In the latter case, there's no way the NIC can work correctly,
758  * so we print out a message on the console and abort the device attach.
759  */
760 
761 static int
762 re_diag(struct re_softc *sc)
763 {
764 	struct ifnet *ifp = &sc->arpcom.ac_if;
765 	struct mbuf *m0;
766 	struct ether_header *eh;
767 	struct re_desc *cur_rx;
768 	uint16_t status;
769 	uint32_t rxstat;
770 	int total_len, i, error = 0, phyaddr;
771 	uint8_t dst[ETHER_ADDR_LEN] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
772 	uint8_t src[ETHER_ADDR_LEN] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
773 
774 	/* Allocate a single mbuf */
775 
776 	MGETHDR(m0, MB_DONTWAIT, MT_DATA);
777 	if (m0 == NULL)
778 		return(ENOBUFS);
779 
780 	/*
781 	 * Initialize the NIC in test mode. This sets the chip up
782 	 * so that it can send and receive frames, but performs the
783 	 * following special functions:
784 	 * - Puts receiver in promiscuous mode
785 	 * - Enables digital loopback mode
786 	 * - Leaves interrupts turned off
787 	 */
788 
789 	ifp->if_flags |= IFF_PROMISC;
790 	sc->re_flags |= RE_F_TESTMODE;
791 	re_init(sc);
792 	sc->re_flags |= RE_F_LINKED;
793 	if (!RE_IS_8139CP(sc))
794 		phyaddr = 1;
795 	else
796 		phyaddr = 0;
797 
798 	re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_RESET);
799 	for (i = 0; i < RE_TIMEOUT; i++) {
800 		status = re_miibus_readreg(sc->re_dev, phyaddr, MII_BMCR);
801 		if (!(status & BMCR_RESET))
802 			break;
803 	}
804 
805 	re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_LOOP);
806 	CSR_WRITE_2(sc, RE_ISR, RE_INTRS_DIAG);
807 
808 	DELAY(100000);
809 
810 	/* Put some data in the mbuf */
811 
812 	eh = mtod(m0, struct ether_header *);
813 	bcopy (dst, eh->ether_dhost, ETHER_ADDR_LEN);
814 	bcopy (src, eh->ether_shost, ETHER_ADDR_LEN);
815 	eh->ether_type = htons(ETHERTYPE_IP);
816 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
817 
818 	/*
819 	 * Queue the packet, start transmission.
820 	 * Note: ifq_handoff() ultimately calls re_start() for us.
821 	 */
822 
823 	CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
824 	error = ifq_handoff(ifp, m0, NULL);
825 	if (error) {
826 		m0 = NULL;
827 		goto done;
828 	}
829 	m0 = NULL;
830 
831 	/* Wait for it to propagate through the chip */
832 
833 	DELAY(100000);
834 	for (i = 0; i < RE_TIMEOUT; i++) {
835 		status = CSR_READ_2(sc, RE_ISR);
836 		CSR_WRITE_2(sc, RE_ISR, status);
837 		if ((status & (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK)) ==
838 		    (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK))
839 			break;
840 		DELAY(10);
841 	}
842 
843 	if (i == RE_TIMEOUT) {
844 		if_printf(ifp, "diagnostic failed to receive packet "
845 			  "in loopback mode\n");
846 		error = EIO;
847 		goto done;
848 	}
849 
850 	/*
851 	 * The packet should have been dumped into the first
852 	 * entry in the RX DMA ring. Grab it from there.
853 	 */
854 
855 	bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
856 			sc->re_ldata.re_rx_list_map, BUS_DMASYNC_POSTREAD);
857 	bus_dmamap_sync(sc->re_ldata.re_mtag, sc->re_ldata.re_rx_dmamap[0],
858 			BUS_DMASYNC_POSTWRITE);
859 	bus_dmamap_unload(sc->re_ldata.re_mtag, sc->re_ldata.re_rx_dmamap[0]);
860 
861 	m0 = sc->re_ldata.re_rx_mbuf[0];
862 	sc->re_ldata.re_rx_mbuf[0] = NULL;
863 	eh = mtod(m0, struct ether_header *);
864 
865 	cur_rx = &sc->re_ldata.re_rx_list[0];
866 	total_len = RE_RXBYTES(cur_rx);
867 	rxstat = le32toh(cur_rx->re_cmdstat);
868 
869 	if (total_len != ETHER_MIN_LEN) {
870 		if_printf(ifp, "diagnostic failed, received short packet\n");
871 		error = EIO;
872 		goto done;
873 	}
874 
875 	/* Test that the received packet data matches what we sent. */
876 
877 	if (bcmp(eh->ether_dhost, dst, ETHER_ADDR_LEN) ||
878 	    bcmp(eh->ether_shost, &src, ETHER_ADDR_LEN) ||
879 	    be16toh(eh->ether_type) != ETHERTYPE_IP) {
880 		if_printf(ifp, "WARNING, DMA FAILURE!\n");
881 		if_printf(ifp, "expected TX data: %6D/%6D/0x%x\n",
882 		    dst, ":", src, ":", ETHERTYPE_IP);
883 		if_printf(ifp, "received RX data: %6D/%6D/0x%x\n",
884 		    eh->ether_dhost, ":",  eh->ether_shost, ":",
885 		    ntohs(eh->ether_type));
886 		if_printf(ifp, "You may have a defective 32-bit NIC plugged "
887 		    "into a 64-bit PCI slot.\n");
888 		if_printf(ifp, "Please re-install the NIC in a 32-bit slot "
889 		    "for proper operation.\n");
890 		if_printf(ifp, "Read the re(4) man page for more details.\n");
891 		error = EIO;
892 	}
893 
894 done:
895 	/* Turn interface off, release resources */
896 
897 	sc->re_flags &= ~(RE_F_LINKED | RE_F_TESTMODE);
898 	ifp->if_flags &= ~IFF_PROMISC;
899 	re_stop(sc);
900 	if (m0 != NULL)
901 		m_freem(m0);
902 
903 	return (error);
904 }
905 #endif	/* RE_DIAG */
906 
907 /*
908  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
909  * IDs against our list and return a device name if we find a match.
910  */
911 static int
912 re_probe(device_t dev)
913 {
914 	const struct re_type *t;
915 	const struct re_hwrev *hw_rev;
916 	struct re_softc *sc;
917 	int rid;
918 	uint32_t hwrev, macmode, txcfg;
919 	uint16_t vendor, product;
920 
921 	vendor = pci_get_vendor(dev);
922 	product = pci_get_device(dev);
923 
924 	/*
925 	 * Only attach to rev.3 of the Linksys EG1032 adapter.
926 	 * Rev.2 is supported by sk(4).
927 	 */
928 	if (vendor == PCI_VENDOR_LINKSYS &&
929 	    product == PCI_PRODUCT_LINKSYS_EG1032 &&
930 	    pci_get_subdevice(dev) != PCI_SUBDEVICE_LINKSYS_EG1032_REV3)
931 		return ENXIO;
932 
933 	if (vendor == PCI_VENDOR_REALTEK &&
934 	    product == PCI_PRODUCT_REALTEK_RT8139 &&
935 	    pci_get_revid(dev) != PCI_REVID_REALTEK_RT8139CP) {
936 		/* Poor 8139 */
937 		return ENXIO;
938 	}
939 
940 	for (t = re_devs; t->re_name != NULL; t++) {
941 		if (product == t->re_did && vendor == t->re_vid)
942 			break;
943 	}
944 
945 	/*
946 	 * Check if we found a RealTek device.
947 	 */
948 	if (t->re_name == NULL)
949 		return ENXIO;
950 
951 	/*
952 	 * Temporarily map the I/O space so we can read the chip ID register.
953 	 */
954 	sc = kmalloc(sizeof(*sc), M_TEMP, M_WAITOK | M_ZERO);
955 	rid = RE_PCI_LOIO;
956 	sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
957 					    RF_ACTIVE);
958 	if (sc->re_res == NULL) {
959 		device_printf(dev, "couldn't map ports/memory\n");
960 		kfree(sc, M_TEMP);
961 		return ENXIO;
962 	}
963 
964 	sc->re_btag = rman_get_bustag(sc->re_res);
965 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
966 
967 	txcfg = CSR_READ_4(sc, RE_TXCFG);
968 	hwrev = txcfg & RE_TXCFG_HWREV;
969 	macmode = txcfg & RE_TXCFG_MACMODE;
970 	bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO, sc->re_res);
971 	kfree(sc, M_TEMP);
972 
973 	/*
974 	 * and continue matching for the specific chip...
975 	 */
976 	for (hw_rev = re_hwrevs; hw_rev->re_hwrev != RE_HWREV_NULL; hw_rev++) {
977 		if (hw_rev->re_hwrev == hwrev) {
978 			sc = device_get_softc(dev);
979 
980 			sc->re_hwrev = hw_rev->re_hwrev;
981 			sc->re_macver = hw_rev->re_macver;
982 			sc->re_caps = hw_rev->re_caps;
983 			sc->re_maxmtu = hw_rev->re_maxmtu;
984 
985 			/*
986 			 * Apply chip property fixup
987 			 */
988 			switch (sc->re_hwrev) {
989 			case RE_HWREV_8101E1:
990 			case RE_HWREV_8101E2:
991 				if (macmode == 0)
992 					sc->re_macver = RE_MACVER_11;
993 				else if (macmode == 0x200000)
994 					sc->re_macver = RE_MACVER_12;
995 				break;
996 			case RE_HWREV_8102E:
997 			case RE_HWREV_8102EL:
998 				if (macmode == 0)
999 					sc->re_macver = RE_MACVER_13;
1000 				else if (macmode == 0x100000)
1001 					sc->re_macver = RE_MACVER_14;
1002 				break;
1003 			case RE_HWREV_8168B2:
1004 			case RE_HWREV_8168B3:
1005 				if (macmode == 0)
1006 					sc->re_macver = RE_MACVER_22;
1007 				break;
1008 			case RE_HWREV_8168C:
1009 				if (macmode == 0)
1010 					sc->re_macver = RE_MACVER_24;
1011 				else if (macmode == 0x200000)
1012 					sc->re_macver = RE_MACVER_25;
1013 				else if (macmode == 0x300000)
1014 					sc->re_macver = RE_MACVER_27;
1015 				break;
1016 			case RE_HWREV_8168CP:
1017 				if (macmode == 0)
1018 					sc->re_macver = RE_MACVER_26;
1019 				else if (macmode == 0x100000)
1020 					sc->re_macver = RE_MACVER_28;
1021 				break;
1022 			}
1023 			if (pci_is_pcie(dev))
1024 				sc->re_caps |= RE_C_PCIE;
1025 
1026 			device_set_desc(dev, t->re_name);
1027 			return 0;
1028 		}
1029 	}
1030 
1031 	if (bootverbose) {
1032 		device_printf(dev, "unknown hwrev 0x%08x, macmode 0x%08x\n",
1033 			      hwrev, macmode);
1034 	}
1035 	return ENXIO;
1036 }
1037 
1038 static void
1039 re_dma_map_desc(void *xarg, bus_dma_segment_t *segs, int nsegs,
1040 		bus_size_t mapsize, int error)
1041 {
1042 	struct re_dmaload_arg *arg = xarg;
1043 	int i;
1044 
1045 	if (error)
1046 		return;
1047 
1048 	if (nsegs > arg->re_nsegs) {
1049 		arg->re_nsegs = 0;
1050 		return;
1051 	}
1052 
1053 	arg->re_nsegs = nsegs;
1054 	for (i = 0; i < nsegs; ++i)
1055 		arg->re_segs[i] = segs[i];
1056 }
1057 
1058 /*
1059  * Map a single buffer address.
1060  */
1061 
1062 static void
1063 re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1064 {
1065 	uint32_t *addr;
1066 
1067 	if (error)
1068 		return;
1069 
1070 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
1071 	addr = arg;
1072 	*addr = segs->ds_addr;
1073 }
1074 
1075 static int
1076 re_allocmem(device_t dev)
1077 {
1078 	struct re_softc *sc = device_get_softc(dev);
1079 	int error, i;
1080 
1081 	/*
1082 	 * Allocate list data
1083 	 */
1084 	sc->re_ldata.re_tx_mbuf =
1085 	kmalloc(sc->re_tx_desc_cnt * sizeof(struct mbuf *),
1086 		M_DEVBUF, M_ZERO | M_WAITOK);
1087 
1088 	sc->re_ldata.re_rx_mbuf =
1089 	kmalloc(sc->re_rx_desc_cnt * sizeof(struct mbuf *),
1090 		M_DEVBUF, M_ZERO | M_WAITOK);
1091 
1092 	sc->re_ldata.re_rx_paddr =
1093 	kmalloc(sc->re_rx_desc_cnt * sizeof(bus_addr_t),
1094 		M_DEVBUF, M_ZERO | M_WAITOK);
1095 
1096 	sc->re_ldata.re_tx_dmamap =
1097 	kmalloc(sc->re_tx_desc_cnt * sizeof(bus_dmamap_t),
1098 		M_DEVBUF, M_ZERO | M_WAITOK);
1099 
1100 	sc->re_ldata.re_rx_dmamap =
1101 	kmalloc(sc->re_rx_desc_cnt * sizeof(bus_dmamap_t),
1102 		M_DEVBUF, M_ZERO | M_WAITOK);
1103 
1104 	/*
1105 	 * Allocate the parent bus DMA tag appropriate for PCI.
1106 	 */
1107 	error = bus_dma_tag_create(NULL,	/* parent */
1108 			1, 0,			/* alignment, boundary */
1109 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1110 			BUS_SPACE_MAXADDR,	/* highaddr */
1111 			NULL, NULL,		/* filter, filterarg */
1112 			MAXBSIZE, RE_MAXSEGS,	/* maxsize, nsegments */
1113 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1114 			BUS_DMA_ALLOCNOW,	/* flags */
1115 			&sc->re_parent_tag);
1116 	if (error) {
1117 		device_printf(dev, "could not allocate parent dma tag\n");
1118 		return error;
1119 	}
1120 
1121 	/* Allocate tag for TX descriptor list. */
1122 	error = bus_dma_tag_create(sc->re_parent_tag,
1123 			RE_RING_ALIGN, 0,
1124 			BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1125 			NULL, NULL,
1126 			RE_TX_LIST_SZ(sc), 1, RE_TX_LIST_SZ(sc),
1127 			BUS_DMA_ALLOCNOW,
1128 			&sc->re_ldata.re_tx_list_tag);
1129 	if (error) {
1130 		device_printf(dev, "could not allocate TX ring dma tag\n");
1131 		return(error);
1132 	}
1133 
1134 	/* Allocate DMA'able memory for the TX ring */
1135         error = bus_dmamem_alloc(sc->re_ldata.re_tx_list_tag,
1136 			(void **)&sc->re_ldata.re_tx_list,
1137 			BUS_DMA_WAITOK | BUS_DMA_ZERO,
1138 			&sc->re_ldata.re_tx_list_map);
1139         if (error) {
1140 		device_printf(dev, "could not allocate TX ring\n");
1141 		bus_dma_tag_destroy(sc->re_ldata.re_tx_list_tag);
1142 		sc->re_ldata.re_tx_list_tag = NULL;
1143                 return(error);
1144 	}
1145 
1146 	/* Load the map for the TX ring. */
1147 	error = bus_dmamap_load(sc->re_ldata.re_tx_list_tag,
1148 			sc->re_ldata.re_tx_list_map,
1149 			sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc),
1150 			re_dma_map_addr, &sc->re_ldata.re_tx_list_addr,
1151 			BUS_DMA_NOWAIT);
1152 	if (error) {
1153 		device_printf(dev, "could not get address of TX ring\n");
1154 		bus_dmamem_free(sc->re_ldata.re_tx_list_tag,
1155 				sc->re_ldata.re_tx_list,
1156 				sc->re_ldata.re_tx_list_map);
1157 		bus_dma_tag_destroy(sc->re_ldata.re_tx_list_tag);
1158 		sc->re_ldata.re_tx_list_tag = NULL;
1159 		return(error);
1160 	}
1161 
1162 	/* Allocate tag for RX descriptor list. */
1163 	error = bus_dma_tag_create(sc->re_parent_tag,
1164 			RE_RING_ALIGN, 0,
1165 			BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1166 			NULL, NULL,
1167 			RE_RX_LIST_SZ(sc), 1, RE_RX_LIST_SZ(sc),
1168 			BUS_DMA_ALLOCNOW,
1169 			&sc->re_ldata.re_rx_list_tag);
1170 	if (error) {
1171 		device_printf(dev, "could not allocate RX ring dma tag\n");
1172 		return(error);
1173 	}
1174 
1175 	/* Allocate DMA'able memory for the RX ring */
1176         error = bus_dmamem_alloc(sc->re_ldata.re_rx_list_tag,
1177 			(void **)&sc->re_ldata.re_rx_list,
1178 			BUS_DMA_WAITOK | BUS_DMA_ZERO,
1179 			&sc->re_ldata.re_rx_list_map);
1180         if (error) {
1181 		device_printf(dev, "could not allocate RX ring\n");
1182 		bus_dma_tag_destroy(sc->re_ldata.re_rx_list_tag);
1183 		sc->re_ldata.re_rx_list_tag = NULL;
1184                 return(error);
1185 	}
1186 
1187 	/* Load the map for the RX ring. */
1188 	error = bus_dmamap_load(sc->re_ldata.re_rx_list_tag,
1189 			sc->re_ldata.re_rx_list_map,
1190 			sc->re_ldata.re_rx_list, RE_RX_LIST_SZ(sc),
1191 			re_dma_map_addr, &sc->re_ldata.re_rx_list_addr,
1192 			BUS_DMA_NOWAIT);
1193 	if (error) {
1194 		device_printf(dev, "could not get address of RX ring\n");
1195 		bus_dmamem_free(sc->re_ldata.re_rx_list_tag,
1196 				sc->re_ldata.re_rx_list,
1197 				sc->re_ldata.re_rx_list_map);
1198 		bus_dma_tag_destroy(sc->re_ldata.re_rx_list_tag);
1199 		sc->re_ldata.re_rx_list_tag = NULL;
1200 		return(error);
1201 	}
1202 
1203 	/* Allocate map for RX/TX mbufs. */
1204 	error = bus_dma_tag_create(sc->re_parent_tag,
1205 			ETHER_ALIGN, 0,
1206 			BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1207 			NULL, NULL,
1208 			RE_FRAMELEN_MAX, RE_MAXSEGS, MCLBYTES,
1209 			BUS_DMA_ALLOCNOW,
1210 			&sc->re_ldata.re_mtag);
1211 	if (error) {
1212 		device_printf(dev, "could not allocate buf dma tag\n");
1213 		return(error);
1214 	}
1215 
1216 	/* Create spare DMA map for RX */
1217 	error = bus_dmamap_create(sc->re_ldata.re_mtag, 0,
1218 			&sc->re_ldata.re_rx_spare);
1219 	if (error) {
1220 		device_printf(dev, "can't create spare DMA map for RX\n");
1221 		bus_dma_tag_destroy(sc->re_ldata.re_mtag);
1222 		sc->re_ldata.re_mtag = NULL;
1223 		return error;
1224 	}
1225 
1226 	/* Create DMA maps for TX buffers */
1227 	for (i = 0; i < sc->re_tx_desc_cnt; i++) {
1228 		error = bus_dmamap_create(sc->re_ldata.re_mtag, 0,
1229 				&sc->re_ldata.re_tx_dmamap[i]);
1230 		if (error) {
1231 			device_printf(dev, "can't create DMA map for TX buf\n");
1232 			re_freebufmem(sc, i, 0);
1233 			return(error);
1234 		}
1235 	}
1236 
1237 	/* Create DMA maps for RX buffers */
1238 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1239 		error = bus_dmamap_create(sc->re_ldata.re_mtag, 0,
1240 				&sc->re_ldata.re_rx_dmamap[i]);
1241 		if (error) {
1242 			device_printf(dev, "can't create DMA map for RX buf\n");
1243 			re_freebufmem(sc, sc->re_tx_desc_cnt, i);
1244 			return(error);
1245 		}
1246 	}
1247 
1248 	/* Create jumbo buffer pool for RX if required */
1249 	if (sc->re_caps & RE_C_CONTIGRX) {
1250 		error = re_jpool_alloc(sc);
1251 		if (error) {
1252 			re_jpool_free(sc);
1253 			/* Disable jumbo frame support */
1254 			sc->re_maxmtu = ETHERMTU;
1255 		}
1256 	}
1257 	return(0);
1258 }
1259 
1260 static void
1261 re_freebufmem(struct re_softc *sc, int tx_cnt, int rx_cnt)
1262 {
1263 	int i;
1264 
1265 	/* Destroy all the RX and TX buffer maps */
1266 	if (sc->re_ldata.re_mtag) {
1267 		for (i = 0; i < tx_cnt; i++) {
1268 			bus_dmamap_destroy(sc->re_ldata.re_mtag,
1269 					   sc->re_ldata.re_tx_dmamap[i]);
1270 		}
1271 		for (i = 0; i < rx_cnt; i++) {
1272 			bus_dmamap_destroy(sc->re_ldata.re_mtag,
1273 					   sc->re_ldata.re_rx_dmamap[i]);
1274 		}
1275 		bus_dmamap_destroy(sc->re_ldata.re_mtag,
1276 				   sc->re_ldata.re_rx_spare);
1277 		bus_dma_tag_destroy(sc->re_ldata.re_mtag);
1278 		sc->re_ldata.re_mtag = NULL;
1279 	}
1280 }
1281 
1282 static void
1283 re_freemem(device_t dev)
1284 {
1285 	struct re_softc *sc = device_get_softc(dev);
1286 
1287 	/* Unload and free the RX DMA ring memory and map */
1288 	if (sc->re_ldata.re_rx_list_tag) {
1289 		bus_dmamap_unload(sc->re_ldata.re_rx_list_tag,
1290 				  sc->re_ldata.re_rx_list_map);
1291 		bus_dmamem_free(sc->re_ldata.re_rx_list_tag,
1292 				sc->re_ldata.re_rx_list,
1293 				sc->re_ldata.re_rx_list_map);
1294 		bus_dma_tag_destroy(sc->re_ldata.re_rx_list_tag);
1295 	}
1296 
1297 	/* Unload and free the TX DMA ring memory and map */
1298 	if (sc->re_ldata.re_tx_list_tag) {
1299 		bus_dmamap_unload(sc->re_ldata.re_tx_list_tag,
1300 				  sc->re_ldata.re_tx_list_map);
1301 		bus_dmamem_free(sc->re_ldata.re_tx_list_tag,
1302 				sc->re_ldata.re_tx_list,
1303 				sc->re_ldata.re_tx_list_map);
1304 		bus_dma_tag_destroy(sc->re_ldata.re_tx_list_tag);
1305 	}
1306 
1307 	/* Free RX/TX buf DMA stuffs */
1308 	re_freebufmem(sc, sc->re_tx_desc_cnt, sc->re_rx_desc_cnt);
1309 
1310 	/* Unload and free the stats buffer and map */
1311 	if (sc->re_ldata.re_stag) {
1312 		bus_dmamap_unload(sc->re_ldata.re_stag,
1313 				  sc->re_ldata.re_rx_list_map);
1314 		bus_dmamem_free(sc->re_ldata.re_stag,
1315 				sc->re_ldata.re_stats,
1316 				sc->re_ldata.re_smap);
1317 		bus_dma_tag_destroy(sc->re_ldata.re_stag);
1318 	}
1319 
1320 	if (sc->re_caps & RE_C_CONTIGRX)
1321 		re_jpool_free(sc);
1322 
1323 	if (sc->re_parent_tag)
1324 		bus_dma_tag_destroy(sc->re_parent_tag);
1325 
1326 	if (sc->re_ldata.re_tx_mbuf != NULL)
1327 		kfree(sc->re_ldata.re_tx_mbuf, M_DEVBUF);
1328 	if (sc->re_ldata.re_rx_mbuf != NULL)
1329 		kfree(sc->re_ldata.re_rx_mbuf, M_DEVBUF);
1330 	if (sc->re_ldata.re_rx_paddr != NULL)
1331 		kfree(sc->re_ldata.re_rx_paddr, M_DEVBUF);
1332 	if (sc->re_ldata.re_tx_dmamap != NULL)
1333 		kfree(sc->re_ldata.re_tx_dmamap, M_DEVBUF);
1334 	if (sc->re_ldata.re_rx_dmamap != NULL)
1335 		kfree(sc->re_ldata.re_rx_dmamap, M_DEVBUF);
1336 }
1337 
1338 /*
1339  * Attach the interface. Allocate softc structures, do ifmedia
1340  * setup and ethernet/BPF attach.
1341  */
1342 static int
1343 re_attach(device_t dev)
1344 {
1345 	struct re_softc	*sc = device_get_softc(dev);
1346 	struct ifnet *ifp;
1347 	uint8_t eaddr[ETHER_ADDR_LEN];
1348 	int error = 0, rid, qlen;
1349 
1350 	callout_init(&sc->re_timer);
1351 	sc->re_dev = dev;
1352 
1353 	if (RE_IS_8139CP(sc)) {
1354 		sc->re_rx_desc_cnt = RE_RX_DESC_CNT_8139CP;
1355 		sc->re_tx_desc_cnt = RE_TX_DESC_CNT_8139CP;
1356 	} else {
1357 		sc->re_rx_desc_cnt = re_rx_desc_count;
1358 		if (sc->re_rx_desc_cnt > RE_RX_DESC_CNT_MAX)
1359 			sc->re_rx_desc_cnt = RE_RX_DESC_CNT_MAX;
1360 
1361 		sc->re_tx_desc_cnt = re_tx_desc_count;
1362 		if (sc->re_tx_desc_cnt > RE_TX_DESC_CNT_MAX)
1363 			sc->re_tx_desc_cnt = RE_TX_DESC_CNT_MAX;
1364 	}
1365 
1366 	qlen = RE_IFQ_MAXLEN;
1367 	if (sc->re_tx_desc_cnt > qlen)
1368 		qlen = sc->re_tx_desc_cnt;
1369 
1370 	sc->re_rxbuf_size = MCLBYTES;
1371 	sc->re_newbuf = re_newbuf_std;
1372 
1373 	sc->re_tx_time = 5;		/* 125us */
1374 	sc->re_rx_time = 2;		/* 50us */
1375 	if (sc->re_caps & RE_C_PCIE)
1376 		sc->re_sim_time = 75;	/* 75us */
1377 	else
1378 		sc->re_sim_time = 125;	/* 125us */
1379 	if (!RE_IS_8139CP(sc)) {
1380 		/* simulated interrupt moderation */
1381 		sc->re_imtype = RE_IMTYPE_SIM;
1382 	} else {
1383 		sc->re_imtype = RE_IMTYPE_NONE;
1384 	}
1385 	re_config_imtype(sc, sc->re_imtype);
1386 
1387 	sysctl_ctx_init(&sc->re_sysctl_ctx);
1388 	sc->re_sysctl_tree = SYSCTL_ADD_NODE(&sc->re_sysctl_ctx,
1389 					     SYSCTL_STATIC_CHILDREN(_hw),
1390 					     OID_AUTO,
1391 					     device_get_nameunit(dev),
1392 					     CTLFLAG_RD, 0, "");
1393 	if (sc->re_sysctl_tree == NULL) {
1394 		device_printf(dev, "can't add sysctl node\n");
1395 		error = ENXIO;
1396 		goto fail;
1397 	}
1398 	SYSCTL_ADD_INT(&sc->re_sysctl_ctx,
1399 		       SYSCTL_CHILDREN(sc->re_sysctl_tree), OID_AUTO,
1400 		       "rx_desc_count", CTLFLAG_RD, &sc->re_rx_desc_cnt,
1401 		       0, "RX desc count");
1402 	SYSCTL_ADD_INT(&sc->re_sysctl_ctx,
1403 		       SYSCTL_CHILDREN(sc->re_sysctl_tree), OID_AUTO,
1404 		       "tx_desc_count", CTLFLAG_RD, &sc->re_tx_desc_cnt,
1405 		       0, "TX desc count");
1406 	SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1407 			SYSCTL_CHILDREN(sc->re_sysctl_tree),
1408 			OID_AUTO, "sim_time",
1409 			CTLTYPE_INT | CTLFLAG_RW,
1410 			sc, 0, re_sysctl_simtime, "I",
1411 			"Simulated interrupt moderation time (usec).");
1412 	SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1413 			SYSCTL_CHILDREN(sc->re_sysctl_tree),
1414 			OID_AUTO, "imtype",
1415 			CTLTYPE_INT | CTLFLAG_RW,
1416 			sc, 0, re_sysctl_imtype, "I",
1417 			"Interrupt moderation type -- "
1418 			"0:disable, 1:simulated, "
1419 			"2:hardware(if supported)");
1420 	if (sc->re_caps & RE_C_HWIM) {
1421 		SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1422 				SYSCTL_CHILDREN(sc->re_sysctl_tree),
1423 				OID_AUTO, "hw_rxtime",
1424 				CTLTYPE_INT | CTLFLAG_RW,
1425 				sc, 0, re_sysctl_rxtime, "I",
1426 				"Hardware interrupt moderation time "
1427 				"(unit: 25usec).");
1428 		SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1429 				SYSCTL_CHILDREN(sc->re_sysctl_tree),
1430 				OID_AUTO, "hw_txtime",
1431 				CTLTYPE_INT | CTLFLAG_RW,
1432 				sc, 0, re_sysctl_txtime, "I",
1433 				"Hardware interrupt moderation time "
1434 				"(unit: 25usec).");
1435 	}
1436 
1437 #ifndef BURN_BRIDGES
1438 	/*
1439 	 * Handle power management nonsense.
1440 	 */
1441 
1442 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1443 		uint32_t membase, irq;
1444 
1445 		/* Save important PCI config data. */
1446 		membase = pci_read_config(dev, RE_PCI_LOMEM, 4);
1447 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
1448 
1449 		/* Reset the power state. */
1450 		device_printf(dev, "chip is in D%d power mode "
1451 		    "-- setting to D0\n", pci_get_powerstate(dev));
1452 
1453 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1454 
1455 		/* Restore PCI config data. */
1456 		pci_write_config(dev, RE_PCI_LOMEM, membase, 4);
1457 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
1458 	}
1459 #endif
1460 	/*
1461 	 * Map control/status registers.
1462 	 */
1463 	pci_enable_busmaster(dev);
1464 
1465 	rid = RE_PCI_LOIO;
1466 	sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1467 					    RF_ACTIVE);
1468 
1469 	if (sc->re_res == NULL) {
1470 		device_printf(dev, "couldn't map ports\n");
1471 		error = ENXIO;
1472 		goto fail;
1473 	}
1474 
1475 	sc->re_btag = rman_get_bustag(sc->re_res);
1476 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
1477 
1478 	/* Allocate interrupt */
1479 	rid = 0;
1480 	sc->re_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1481 					    RF_SHAREABLE | RF_ACTIVE);
1482 
1483 	if (sc->re_irq == NULL) {
1484 		device_printf(dev, "couldn't map interrupt\n");
1485 		error = ENXIO;
1486 		goto fail;
1487 	}
1488 
1489 	/* Reset the adapter. */
1490 	re_reset(sc, 0);
1491 
1492 	if (RE_IS_8139CP(sc)) {
1493 		sc->re_bus_speed = 33; /* XXX */
1494 	} else if (sc->re_caps & RE_C_PCIE) {
1495 		sc->re_bus_speed = 125;
1496 	} else {
1497 		uint8_t cfg2;
1498 
1499 		cfg2 = CSR_READ_1(sc, RE_CFG2);
1500 		switch (cfg2 & RE_CFG2_PCICLK_MASK) {
1501 		case RE_CFG2_PCICLK_33MHZ:
1502 			sc->re_bus_speed = 33;
1503 			break;
1504 		case RE_CFG2_PCICLK_66MHZ:
1505 			sc->re_bus_speed = 66;
1506 			break;
1507 		default:
1508 			device_printf(dev, "unknown bus speed, assume 33MHz\n");
1509 			sc->re_bus_speed = 33;
1510 			break;
1511 		}
1512 		if (cfg2 & RE_CFG2_PCI64)
1513 			sc->re_caps |= RE_C_PCI64;
1514 	}
1515 	device_printf(dev, "Hardware rev. 0x%08x; MAC ver. 0x%02x; "
1516 		      "PCI%s %dMHz\n",
1517 		      sc->re_hwrev, sc->re_macver,
1518 		      (sc->re_caps & RE_C_PCIE) ?
1519 		      "-E" : ((sc->re_caps & RE_C_PCI64) ? "64" : "32"),
1520 		      sc->re_bus_speed);
1521 
1522 	/*
1523 	 * NOTE:
1524 	 * DO NOT try to adjust config1 and config5 which was spotted in
1525 	 * Realtek's Linux drivers.  It will _permanently_ damage certain
1526 	 * cards EEPROM, e.g. one of my 8168B (0x38000000) card ...
1527 	 */
1528 
1529 	re_get_eaddr(sc, eaddr);
1530 
1531 	if (!RE_IS_8139CP(sc)) {
1532 		/* Set RX length mask */
1533 		sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
1534 		sc->re_txstart = RE_GTXSTART;
1535 	} else {
1536 		/* Set RX length mask */
1537 		sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
1538 		sc->re_txstart = RE_TXSTART;
1539 	}
1540 
1541 	/* Allocate DMA stuffs */
1542 	error = re_allocmem(dev);
1543 	if (error)
1544 		goto fail;
1545 
1546 	/*
1547 	 * Apply some magic PCI settings from Realtek ...
1548 	 */
1549 	if (RE_IS_8169(sc)) {
1550 		CSR_WRITE_1(sc, 0x82, 1);
1551 		pci_write_config(dev, PCIR_CACHELNSZ, 0x8, 1);
1552 	}
1553 	pci_write_config(dev, PCIR_LATTIMER, 0x40, 1);
1554 
1555 	if (sc->re_caps & RE_C_MAC2) {
1556 		/*
1557 		 * Following part is extracted from Realtek BSD driver v176.
1558 		 * However, this does _not_ make much/any sense:
1559 		 * 8168C's PCI Express device control is located at 0x78,
1560 		 * so the reading from 0x79 (higher part of 0x78) and setting
1561 		 * the 4~6bits intend to enlarge the "max read request size"
1562 		 * (we will do it).  The content of the rest part of this
1563 		 * register is not meaningful to other PCI registers, so
1564 		 * writing the value to 0x54 could be completely wrong.
1565 		 * 0x80 is the lower part of PCI Express device status, non-
1566 		 * reserved bits are RW1C, writing 0 to them will not have
1567 		 * any effect at all.
1568 		 */
1569 #ifdef foo
1570 		uint8_t val;
1571 
1572 		val = pci_read_config(dev, 0x79, 1);
1573 		val = (val & ~0x70) | 0x50;
1574 		pci_write_config(dev, 0x54, val, 1);
1575 		pci_write_config(dev, 0x80, 0, 1);
1576 #endif
1577 	}
1578 
1579 	/*
1580 	 * Apply some PHY fixup from Realtek ...
1581 	 */
1582 	if (sc->re_hwrev == RE_HWREV_8110S) {
1583 		CSR_WRITE_1(sc, 0x82, 1);
1584 		re_miibus_writereg(dev, 1, 0xb, 0);
1585 	}
1586 	if (sc->re_caps & RE_C_PHYPMGT) {
1587 		/* Power up PHY */
1588 		re_miibus_writereg(dev, 1, 0x1f, 0);
1589 		re_miibus_writereg(dev, 1, 0xe, 0);
1590 	}
1591 
1592 	/* Do MII setup */
1593 	if (mii_phy_probe(dev, &sc->re_miibus,
1594 	    re_ifmedia_upd, re_ifmedia_sts)) {
1595 		device_printf(dev, "MII without any phy!\n");
1596 		error = ENXIO;
1597 		goto fail;
1598 	}
1599 
1600 	ifp = &sc->arpcom.ac_if;
1601 	ifp->if_softc = sc;
1602 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1603 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1604 	ifp->if_ioctl = re_ioctl;
1605 	ifp->if_start = re_start;
1606 #ifdef DEVICE_POLLING
1607 	ifp->if_poll = re_poll;
1608 #endif
1609 	ifp->if_watchdog = re_watchdog;
1610 	ifp->if_init = re_init;
1611 	if (!RE_IS_8139CP(sc)) /* XXX */
1612 		ifp->if_baudrate = 1000000000;
1613 	else
1614 		ifp->if_baudrate = 100000000;
1615 	ifq_set_maxlen(&ifp->if_snd, qlen);
1616 	ifq_set_ready(&ifp->if_snd);
1617 
1618 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1619 	if (sc->re_caps & RE_C_HWCSUM)
1620 		ifp->if_capabilities |= IFCAP_HWCSUM;
1621 
1622 	ifp->if_capenable = ifp->if_capabilities;
1623 	if (ifp->if_capabilities & IFCAP_HWCSUM)
1624 		ifp->if_hwassist = RE_CSUM_FEATURES;
1625 	else
1626 		ifp->if_hwassist = 0;
1627 
1628 	/*
1629 	 * Call MI attach routine.
1630 	 */
1631 	ether_ifattach(ifp, eaddr, NULL);
1632 
1633 #ifdef RE_DIAG
1634 	/*
1635 	 * Perform hardware diagnostic on the original RTL8169.
1636 	 * Some 32-bit cards were incorrectly wired and would
1637 	 * malfunction if plugged into a 64-bit slot.
1638 	 */
1639 	if (sc->re_hwrev == RE_HWREV_8169) {
1640 		lwkt_serialize_enter(ifp->if_serializer);
1641 		error = re_diag(sc);
1642 		lwkt_serialize_exit(ifp->if_serializer);
1643 
1644 		if (error) {
1645 			device_printf(dev, "hardware diagnostic failure\n");
1646 			ether_ifdetach(ifp);
1647 			goto fail;
1648 		}
1649 	}
1650 #endif	/* RE_DIAG */
1651 
1652 	/* Hook interrupt last to avoid having to lock softc */
1653 	error = bus_setup_intr(dev, sc->re_irq, INTR_MPSAFE, re_intr, sc,
1654 			       &sc->re_intrhand, ifp->if_serializer);
1655 
1656 	if (error) {
1657 		device_printf(dev, "couldn't set up irq\n");
1658 		ether_ifdetach(ifp);
1659 		goto fail;
1660 	}
1661 
1662 	ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->re_irq));
1663 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
1664 
1665 fail:
1666 	if (error)
1667 		re_detach(dev);
1668 
1669 	return (error);
1670 }
1671 
1672 /*
1673  * Shutdown hardware and free up resources. This can be called any
1674  * time after the mutex has been initialized. It is called in both
1675  * the error case in attach and the normal detach case so it needs
1676  * to be careful about only freeing resources that have actually been
1677  * allocated.
1678  */
1679 static int
1680 re_detach(device_t dev)
1681 {
1682 	struct re_softc *sc = device_get_softc(dev);
1683 	struct ifnet *ifp = &sc->arpcom.ac_if;
1684 
1685 	/* These should only be active if attach succeeded */
1686 	if (device_is_attached(dev)) {
1687 		lwkt_serialize_enter(ifp->if_serializer);
1688 		re_stop(sc);
1689 		bus_teardown_intr(dev, sc->re_irq, sc->re_intrhand);
1690 		lwkt_serialize_exit(ifp->if_serializer);
1691 
1692 		ether_ifdetach(ifp);
1693 	}
1694 	if (sc->re_miibus)
1695 		device_delete_child(dev, sc->re_miibus);
1696 	bus_generic_detach(dev);
1697 
1698 	if (sc->re_sysctl_tree != NULL)
1699 		sysctl_ctx_free(&sc->re_sysctl_ctx);
1700 
1701 	if (sc->re_irq)
1702 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->re_irq);
1703 	if (sc->re_res) {
1704 		bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO,
1705 				     sc->re_res);
1706 	}
1707 
1708 	/* Free DMA stuffs */
1709 	re_freemem(dev);
1710 
1711 	return(0);
1712 }
1713 
1714 static void
1715 re_setup_rxdesc(struct re_softc *sc, int idx)
1716 {
1717 	bus_addr_t paddr;
1718 	uint32_t cmdstat;
1719 	struct re_desc *d;
1720 
1721 	paddr = sc->re_ldata.re_rx_paddr[idx];
1722 	d = &sc->re_ldata.re_rx_list[idx];
1723 
1724 	d->re_bufaddr_lo = htole32(RE_ADDR_LO(paddr));
1725 	d->re_bufaddr_hi = htole32(RE_ADDR_HI(paddr));
1726 
1727 	cmdstat = sc->re_rxbuf_size | RE_RDESC_CMD_OWN;
1728 	if (idx == (sc->re_rx_desc_cnt - 1))
1729 		cmdstat |= RE_RDESC_CMD_EOR;
1730 	d->re_cmdstat = htole32(cmdstat);
1731 }
1732 
1733 static int
1734 re_newbuf_std(struct re_softc *sc, int idx, int init)
1735 {
1736 	struct re_dmaload_arg arg;
1737 	bus_dma_segment_t seg;
1738 	bus_dmamap_t map;
1739 	struct mbuf *m;
1740 	int error;
1741 
1742 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
1743 	if (m == NULL) {
1744 		error = ENOBUFS;
1745 
1746 		if (init) {
1747 			if_printf(&sc->arpcom.ac_if, "m_getcl failed\n");
1748 			return error;
1749 		} else {
1750 			goto back;
1751 		}
1752 	}
1753 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1754 
1755 	/*
1756 	 * NOTE:
1757 	 * Some re(4) chips(e.g. RTL8101E) need address of the receive buffer
1758 	 * to be 8-byte aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1759 	 */
1760 
1761 	arg.re_nsegs = 1;
1762 	arg.re_segs = &seg;
1763         error = bus_dmamap_load_mbuf(sc->re_ldata.re_mtag,
1764 				     sc->re_ldata.re_rx_spare, m,
1765 				     re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1766 	if (error || arg.re_nsegs == 0) {
1767 		if (!error) {
1768 			if_printf(&sc->arpcom.ac_if, "too many segments?!\n");
1769 			bus_dmamap_unload(sc->re_ldata.re_mtag,
1770 					  sc->re_ldata.re_rx_spare);
1771 			error = EFBIG;
1772 		}
1773 		m_freem(m);
1774 
1775 		if (init) {
1776 			if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n");
1777 			return error;
1778 		} else {
1779 			goto back;
1780 		}
1781 	}
1782 
1783 	if (!init) {
1784 		bus_dmamap_sync(sc->re_ldata.re_mtag,
1785 				sc->re_ldata.re_rx_dmamap[idx],
1786 				BUS_DMASYNC_POSTREAD);
1787 		bus_dmamap_unload(sc->re_ldata.re_mtag,
1788 				  sc->re_ldata.re_rx_dmamap[idx]);
1789 	}
1790 	sc->re_ldata.re_rx_mbuf[idx] = m;
1791 	sc->re_ldata.re_rx_paddr[idx] = seg.ds_addr;
1792 
1793 	map = sc->re_ldata.re_rx_dmamap[idx];
1794 	sc->re_ldata.re_rx_dmamap[idx] = sc->re_ldata.re_rx_spare;
1795 	sc->re_ldata.re_rx_spare = map;
1796 back:
1797 	re_setup_rxdesc(sc, idx);
1798 	return error;
1799 }
1800 
1801 static int
1802 re_newbuf_jumbo(struct re_softc *sc, int idx, int init)
1803 {
1804 	struct mbuf *m;
1805 	struct re_jbuf *jbuf;
1806 	int error = 0;
1807 
1808 	MGETHDR(m, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1809 	if (m == NULL) {
1810 		error = ENOBUFS;
1811 		if (init) {
1812 			if_printf(&sc->arpcom.ac_if, "MGETHDR failed\n");
1813 			return error;
1814 		} else {
1815 			goto back;
1816 		}
1817 	}
1818 
1819 	jbuf = re_jbuf_alloc(sc);
1820 	if (jbuf == NULL) {
1821 		m_freem(m);
1822 
1823 		error = ENOBUFS;
1824 		if (init) {
1825 			if_printf(&sc->arpcom.ac_if, "jpool is empty\n");
1826 			return error;
1827 		} else {
1828 			goto back;
1829 		}
1830 	}
1831 
1832 	m->m_ext.ext_arg = jbuf;
1833 	m->m_ext.ext_buf = jbuf->re_buf;
1834 	m->m_ext.ext_free = re_jbuf_free;
1835 	m->m_ext.ext_ref = re_jbuf_ref;
1836 	m->m_ext.ext_size = sc->re_rxbuf_size;
1837 
1838 	m->m_data = m->m_ext.ext_buf;
1839 	m->m_flags |= M_EXT;
1840 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1841 
1842 	/*
1843 	 * NOTE:
1844 	 * Some re(4) chips(e.g. RTL8101E) need address of the receive buffer
1845 	 * to be 8-byte aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1846 	 */
1847 
1848 	sc->re_ldata.re_rx_mbuf[idx] = m;
1849 	sc->re_ldata.re_rx_paddr[idx] = jbuf->re_paddr;
1850 back:
1851 	re_setup_rxdesc(sc, idx);
1852 	return error;
1853 }
1854 
1855 static int
1856 re_tx_list_init(struct re_softc *sc)
1857 {
1858 	bzero(sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
1859 
1860 	/* Flush the TX descriptors */
1861 	bus_dmamap_sync(sc->re_ldata.re_tx_list_tag,
1862 			sc->re_ldata.re_tx_list_map, BUS_DMASYNC_PREWRITE);
1863 
1864 	sc->re_ldata.re_tx_prodidx = 0;
1865 	sc->re_ldata.re_tx_considx = 0;
1866 	sc->re_ldata.re_tx_free = sc->re_tx_desc_cnt;
1867 
1868 	return(0);
1869 }
1870 
1871 static int
1872 re_rx_list_init(struct re_softc *sc)
1873 {
1874 	int i, error;
1875 
1876 	bzero(sc->re_ldata.re_rx_list, RE_RX_LIST_SZ(sc));
1877 
1878 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1879 		error = sc->re_newbuf(sc, i, 1);
1880 		if (error)
1881 			return(error);
1882 	}
1883 
1884 	/* Flush the RX descriptors */
1885 	bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
1886 			sc->re_ldata.re_rx_list_map, BUS_DMASYNC_PREWRITE);
1887 
1888 	sc->re_ldata.re_rx_prodidx = 0;
1889 	sc->re_head = sc->re_tail = NULL;
1890 
1891 	return(0);
1892 }
1893 
1894 #define RE_IP4_PACKET	0x1
1895 #define RE_TCP_PACKET	0x2
1896 #define RE_UDP_PACKET	0x4
1897 
1898 static __inline uint8_t
1899 re_packet_type(struct re_softc *sc, uint32_t rxstat, uint32_t rxctrl)
1900 {
1901 	uint8_t packet_type = 0;
1902 
1903 	if (sc->re_caps & RE_C_MAC2) {
1904 		if (rxctrl & RE_RDESC_CTL_PROTOIP4)
1905 			packet_type |= RE_IP4_PACKET;
1906 	} else {
1907 		if (rxstat & RE_RDESC_STAT_PROTOID)
1908 			packet_type |= RE_IP4_PACKET;
1909 	}
1910 	if (RE_TCPPKT(rxstat))
1911 		packet_type |= RE_TCP_PACKET;
1912 	else if (RE_UDPPKT(rxstat))
1913 		packet_type |= RE_UDP_PACKET;
1914 	return packet_type;
1915 }
1916 
1917 /*
1918  * RX handler for C+ and 8169. For the gigE chips, we support
1919  * the reception of jumbo frames that have been fragmented
1920  * across multiple 2K mbuf cluster buffers.
1921  */
1922 static int
1923 re_rxeof(struct re_softc *sc)
1924 {
1925 	struct ifnet *ifp = &sc->arpcom.ac_if;
1926 	struct mbuf *m;
1927 	struct re_desc 	*cur_rx;
1928 	uint32_t rxstat, rxctrl;
1929 	int i, total_len, rx = 0;
1930 	struct mbuf_chain chain[MAXCPU];
1931 
1932 	/* Invalidate the descriptor memory */
1933 
1934 	bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
1935 			sc->re_ldata.re_rx_list_map, BUS_DMASYNC_POSTREAD);
1936 
1937 	ether_input_chain_init(chain);
1938 
1939 	for (i = sc->re_ldata.re_rx_prodidx;
1940 	     RE_OWN(&sc->re_ldata.re_rx_list[i]) == 0; RE_RXDESC_INC(sc, i)) {
1941 		cur_rx = &sc->re_ldata.re_rx_list[i];
1942 		m = sc->re_ldata.re_rx_mbuf[i];
1943 		total_len = RE_RXBYTES(cur_rx);
1944 		rxstat = le32toh(cur_rx->re_cmdstat);
1945 		rxctrl = le32toh(cur_rx->re_control);
1946 
1947 		rx = 1;
1948 
1949 #ifdef INVARIANTS
1950 		if (sc->re_flags & RE_F_USE_JPOOL)
1951 			KKASSERT(rxstat & RE_RDESC_STAT_EOF);
1952 #endif
1953 
1954 		if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1955 			if (sc->re_flags & RE_F_DROP_RXFRAG) {
1956 				re_setup_rxdesc(sc, i);
1957 				continue;
1958 			}
1959 
1960 			if (sc->re_newbuf(sc, i, 0)) {
1961 				/* Drop upcoming fragments */
1962 				sc->re_flags |= RE_F_DROP_RXFRAG;
1963 				continue;
1964 			}
1965 
1966 			m->m_len = MCLBYTES;
1967 			if (sc->re_head == NULL) {
1968 				sc->re_head = sc->re_tail = m;
1969 			} else {
1970 				sc->re_tail->m_next = m;
1971 				sc->re_tail = m;
1972 			}
1973 			continue;
1974 		} else if (sc->re_flags & RE_F_DROP_RXFRAG) {
1975 			/*
1976 			 * Last fragment of a multi-fragment packet.
1977 			 *
1978 			 * Since error already happened, this fragment
1979 			 * must be dropped as well as the fragment chain.
1980 			 */
1981 			re_setup_rxdesc(sc, i);
1982 			re_free_rxchain(sc);
1983 			sc->re_flags &= ~RE_F_DROP_RXFRAG;
1984 			continue;
1985 		}
1986 
1987 		/*
1988 		 * NOTE: for the 8139C+, the frame length field
1989 		 * is always 12 bits in size, but for the gigE chips,
1990 		 * it is 13 bits (since the max RX frame length is 16K).
1991 		 * Unfortunately, all 32 bits in the status word
1992 		 * were already used, so to make room for the extra
1993 		 * length bit, RealTek took out the 'frame alignment
1994 		 * error' bit and shifted the other status bits
1995 		 * over one slot. The OWN, EOR, FS and LS bits are
1996 		 * still in the same places. We have already extracted
1997 		 * the frame length and checked the OWN bit, so rather
1998 		 * than using an alternate bit mapping, we shift the
1999 		 * status bits one space to the right so we can evaluate
2000 		 * them using the 8169 status as though it was in the
2001 		 * same format as that of the 8139C+.
2002 		 */
2003 		if (!RE_IS_8139CP(sc))
2004 			rxstat >>= 1;
2005 
2006 		if (rxstat & RE_RDESC_STAT_RXERRSUM) {
2007 			ifp->if_ierrors++;
2008 			/*
2009 			 * If this is part of a multi-fragment packet,
2010 			 * discard all the pieces.
2011 			 */
2012 			re_free_rxchain(sc);
2013 			re_setup_rxdesc(sc, i);
2014 			continue;
2015 		}
2016 
2017 		/*
2018 		 * If allocating a replacement mbuf fails,
2019 		 * reload the current one.
2020 		 */
2021 
2022 		if (sc->re_newbuf(sc, i, 0)) {
2023 			ifp->if_ierrors++;
2024 			continue;
2025 		}
2026 
2027 		if (sc->re_head != NULL) {
2028 			m->m_len = total_len % MCLBYTES;
2029 			/*
2030 			 * Special case: if there's 4 bytes or less
2031 			 * in this buffer, the mbuf can be discarded:
2032 			 * the last 4 bytes is the CRC, which we don't
2033 			 * care about anyway.
2034 			 */
2035 			if (m->m_len <= ETHER_CRC_LEN) {
2036 				sc->re_tail->m_len -=
2037 				    (ETHER_CRC_LEN - m->m_len);
2038 				m_freem(m);
2039 			} else {
2040 				m->m_len -= ETHER_CRC_LEN;
2041 				sc->re_tail->m_next = m;
2042 			}
2043 			m = sc->re_head;
2044 			sc->re_head = sc->re_tail = NULL;
2045 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
2046 		} else {
2047 			m->m_pkthdr.len = m->m_len =
2048 			    (total_len - ETHER_CRC_LEN);
2049 		}
2050 
2051 		ifp->if_ipackets++;
2052 		m->m_pkthdr.rcvif = ifp;
2053 
2054 		/* Do RX checksumming if enabled */
2055 
2056 		if (ifp->if_capenable & IFCAP_RXCSUM) {
2057 			uint8_t packet_type;
2058 
2059 			packet_type = re_packet_type(sc, rxstat, rxctrl);
2060 
2061 			/* Check IP header checksum */
2062 			if (packet_type & RE_IP4_PACKET) {
2063 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2064 				if ((rxstat & RE_RDESC_STAT_IPSUMBAD) == 0)
2065 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2066 			}
2067 
2068 			/* Check TCP/UDP checksum */
2069 			if (((packet_type & RE_TCP_PACKET) &&
2070 			     (rxstat & RE_RDESC_STAT_TCPSUMBAD) == 0) ||
2071 			    ((packet_type & RE_UDP_PACKET) &&
2072 			     (rxstat & RE_RDESC_STAT_UDPSUMBAD) == 0)) {
2073 				m->m_pkthdr.csum_flags |=
2074 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
2075 				    CSUM_FRAG_NOT_CHECKED;
2076 				m->m_pkthdr.csum_data = 0xffff;
2077 			}
2078 		}
2079 
2080 		if (rxctrl & RE_RDESC_CTL_HASTAG) {
2081 			m->m_flags |= M_VLANTAG;
2082 			m->m_pkthdr.ether_vlantag =
2083 				be16toh((rxctrl & RE_RDESC_CTL_TAGDATA));
2084 		}
2085 		ether_input_chain(ifp, m, chain);
2086 	}
2087 
2088 	ether_input_dispatch(chain);
2089 
2090 	/* Flush the RX DMA ring */
2091 
2092 	bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
2093 			sc->re_ldata.re_rx_list_map, BUS_DMASYNC_PREWRITE);
2094 
2095 	sc->re_ldata.re_rx_prodidx = i;
2096 
2097 	return rx;
2098 }
2099 
2100 #undef RE_IP4_PACKET
2101 #undef RE_TCP_PACKET
2102 #undef RE_UDP_PACKET
2103 
2104 static int
2105 re_tx_collect(struct re_softc *sc)
2106 {
2107 	struct ifnet *ifp = &sc->arpcom.ac_if;
2108 	uint32_t txstat;
2109 	int idx, tx = 0;
2110 
2111 	/* Invalidate the TX descriptor list */
2112 	bus_dmamap_sync(sc->re_ldata.re_tx_list_tag,
2113 			sc->re_ldata.re_tx_list_map, BUS_DMASYNC_POSTREAD);
2114 
2115 	for (idx = sc->re_ldata.re_tx_considx;
2116 	     sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt;
2117 	     RE_TXDESC_INC(sc, idx)) {
2118 		txstat = le32toh(sc->re_ldata.re_tx_list[idx].re_cmdstat);
2119 		if (txstat & RE_TDESC_CMD_OWN)
2120 			break;
2121 
2122 		tx = 1;
2123 
2124 		sc->re_ldata.re_tx_list[idx].re_bufaddr_lo = 0;
2125 
2126 		/*
2127 		 * We only stash mbufs in the last descriptor
2128 		 * in a fragment chain, which also happens to
2129 		 * be the only place where the TX status bits
2130 		 * are valid.
2131 		 */
2132 		if (txstat & RE_TDESC_CMD_EOF) {
2133 			m_freem(sc->re_ldata.re_tx_mbuf[idx]);
2134 			sc->re_ldata.re_tx_mbuf[idx] = NULL;
2135 			bus_dmamap_unload(sc->re_ldata.re_mtag,
2136 			    sc->re_ldata.re_tx_dmamap[idx]);
2137 			if (txstat & (RE_TDESC_STAT_EXCESSCOL|
2138 			    RE_TDESC_STAT_COLCNT))
2139 				ifp->if_collisions++;
2140 			if (txstat & RE_TDESC_STAT_TXERRSUM)
2141 				ifp->if_oerrors++;
2142 			else
2143 				ifp->if_opackets++;
2144 		}
2145 		sc->re_ldata.re_tx_free++;
2146 	}
2147 	sc->re_ldata.re_tx_considx = idx;
2148 
2149 	return tx;
2150 }
2151 
2152 static int
2153 re_txeof(struct re_softc *sc)
2154 {
2155 	struct ifnet *ifp = &sc->arpcom.ac_if;
2156 	int tx;
2157 
2158 	tx = re_tx_collect(sc);
2159 
2160 	/* There is enough free TX descs */
2161 	if (sc->re_ldata.re_tx_free > RE_TXDESC_SPARE)
2162 		ifp->if_flags &= ~IFF_OACTIVE;
2163 
2164 	/*
2165 	 * Some chips will ignore a second TX request issued while an
2166 	 * existing transmission is in progress. If the transmitter goes
2167 	 * idle but there are still packets waiting to be sent, we need
2168 	 * to restart the channel here to flush them out. This only seems
2169 	 * to be required with the PCIe devices.
2170 	 */
2171 	if (sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt)
2172 		CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2173 	else
2174 		ifp->if_timer = 0;
2175 
2176 	return tx;
2177 }
2178 
2179 static void
2180 re_tick(void *xsc)
2181 {
2182 	struct re_softc *sc = xsc;
2183 
2184 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
2185 	re_tick_serialized(xsc);
2186 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
2187 }
2188 
2189 static void
2190 re_tick_serialized(void *xsc)
2191 {
2192 	struct re_softc *sc = xsc;
2193 	struct ifnet *ifp = &sc->arpcom.ac_if;
2194 	struct mii_data *mii;
2195 
2196 	ASSERT_SERIALIZED(ifp->if_serializer);
2197 
2198 	mii = device_get_softc(sc->re_miibus);
2199 	mii_tick(mii);
2200 	if (sc->re_flags & RE_F_LINKED) {
2201 		if (!(mii->mii_media_status & IFM_ACTIVE))
2202 			sc->re_flags &= ~RE_F_LINKED;
2203 	} else {
2204 		if (mii->mii_media_status & IFM_ACTIVE &&
2205 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2206 			sc->re_flags |= RE_F_LINKED;
2207 			if (!ifq_is_empty(&ifp->if_snd))
2208 				if_devstart(ifp);
2209 		}
2210 	}
2211 
2212 	callout_reset(&sc->re_timer, hz, re_tick, sc);
2213 }
2214 
2215 #ifdef DEVICE_POLLING
2216 
2217 static void
2218 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2219 {
2220 	struct re_softc *sc = ifp->if_softc;
2221 
2222 	ASSERT_SERIALIZED(ifp->if_serializer);
2223 
2224 	switch(cmd) {
2225 	case POLL_REGISTER:
2226 		/* disable interrupts */
2227 		re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2228 		break;
2229 
2230 	case POLL_DEREGISTER:
2231 		/* enable interrupts */
2232 		re_setup_intr(sc, 1, sc->re_imtype);
2233 		break;
2234 
2235 	default:
2236 		sc->rxcycles = count;
2237 		re_rxeof(sc);
2238 		re_txeof(sc);
2239 
2240 		if (!ifq_is_empty(&ifp->if_snd))
2241 			if_devstart(ifp);
2242 
2243 		if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2244 			uint16_t       status;
2245 
2246 			status = CSR_READ_2(sc, RE_ISR);
2247 			if (status == 0xffff)
2248 				return;
2249 			if (status)
2250 				CSR_WRITE_2(sc, RE_ISR, status);
2251 
2252 			/*
2253 			 * XXX check behaviour on receiver stalls.
2254 			 */
2255 
2256 			if (status & RE_ISR_SYSTEM_ERR)
2257 				re_init(sc);
2258 		}
2259 		break;
2260 	}
2261 }
2262 #endif /* DEVICE_POLLING */
2263 
2264 static void
2265 re_intr(void *arg)
2266 {
2267 	struct re_softc	*sc = arg;
2268 	struct ifnet *ifp = &sc->arpcom.ac_if;
2269 	uint16_t status;
2270 	int rx, tx;
2271 
2272 	ASSERT_SERIALIZED(ifp->if_serializer);
2273 
2274 	if ((sc->re_flags & RE_F_SUSPENDED) ||
2275 	    (ifp->if_flags & IFF_RUNNING) == 0)
2276 		return;
2277 
2278 	rx = tx = 0;
2279 	for (;;) {
2280 		status = CSR_READ_2(sc, RE_ISR);
2281 		/* If the card has gone away the read returns 0xffff. */
2282 		if (status == 0xffff)
2283 			break;
2284 		if (status)
2285 			CSR_WRITE_2(sc, RE_ISR, status);
2286 
2287 		if ((status & sc->re_intrs) == 0)
2288 			break;
2289 
2290 		if (status & (sc->re_rx_ack | RE_ISR_RX_ERR))
2291 			rx |= re_rxeof(sc);
2292 
2293 		if (status & (sc->re_tx_ack | RE_ISR_TX_ERR))
2294 			tx |= re_txeof(sc);
2295 
2296 		if (status & RE_ISR_SYSTEM_ERR)
2297 			re_init(sc);
2298 
2299 		if (status & RE_ISR_LINKCHG) {
2300 			callout_stop(&sc->re_timer);
2301 			re_tick_serialized(sc);
2302 		}
2303 	}
2304 
2305 	if (sc->re_imtype == RE_IMTYPE_SIM) {
2306 		if ((sc->re_flags & RE_F_TIMER_INTR)) {
2307 			if ((tx | rx) == 0) {
2308 				/*
2309 				 * Nothing needs to be processed, fallback
2310 				 * to use TX/RX interrupts.
2311 				 */
2312 				re_setup_intr(sc, 1, RE_IMTYPE_NONE);
2313 
2314 				/*
2315 				 * Recollect, mainly to avoid the possible
2316 				 * race introduced by changing interrupt
2317 				 * masks.
2318 				 */
2319 				re_rxeof(sc);
2320 				tx = re_txeof(sc);
2321 			} else {
2322 				CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
2323 			}
2324 		} else if (tx | rx) {
2325 			/*
2326 			 * Assume that using simulated interrupt moderation
2327 			 * (hardware timer based) could reduce the interript
2328 			 * rate.
2329 			 */
2330 			re_setup_intr(sc, 1, RE_IMTYPE_SIM);
2331 		}
2332 	}
2333 
2334 	if (tx && !ifq_is_empty(&ifp->if_snd))
2335 		if_devstart(ifp);
2336 }
2337 
2338 static int
2339 re_encap(struct re_softc *sc, struct mbuf **m_head, int *idx0)
2340 {
2341 	struct ifnet *ifp = &sc->arpcom.ac_if;
2342 	struct mbuf *m;
2343 	struct re_dmaload_arg arg;
2344 	bus_dma_segment_t segs[RE_MAXSEGS];
2345 	bus_dmamap_t map;
2346 	int error, maxsegs, idx, i;
2347 	struct re_desc *d, *tx_ring;
2348 	uint32_t cmd_csum, ctl_csum, vlantag;
2349 
2350 	KASSERT(sc->re_ldata.re_tx_free > RE_TXDESC_SPARE,
2351 		("not enough free TX desc\n"));
2352 
2353 	m = *m_head;
2354 	map = sc->re_ldata.re_tx_dmamap[*idx0];
2355 
2356 	/*
2357 	 * Set up checksum offload. Note: checksum offload bits must
2358 	 * appear in all descriptors of a multi-descriptor transmit
2359 	 * attempt. (This is according to testing done with an 8169
2360 	 * chip. I'm not sure if this is a requirement or a bug.)
2361 	 */
2362 	cmd_csum = ctl_csum = 0;
2363 	if (m->m_pkthdr.csum_flags & CSUM_IP) {
2364 		cmd_csum |= RE_TDESC_CMD_IPCSUM;
2365 		ctl_csum |= RE_TDESC_CTL_IPCSUM;
2366 	}
2367 	if (m->m_pkthdr.csum_flags & CSUM_TCP) {
2368 		cmd_csum |= RE_TDESC_CMD_TCPCSUM;
2369 		ctl_csum |= RE_TDESC_CTL_TCPCSUM;
2370 	}
2371 	if (m->m_pkthdr.csum_flags & CSUM_UDP) {
2372 		cmd_csum |= RE_TDESC_CMD_UDPCSUM;
2373 		ctl_csum |= RE_TDESC_CTL_UDPCSUM;
2374 	}
2375 
2376 	/* For MAC2 chips, csum flags are set on re_control */
2377 	if (sc->re_caps & RE_C_MAC2)
2378 		cmd_csum = 0;
2379 	else
2380 		ctl_csum = 0;
2381 
2382 	if ((sc->re_caps & RE_C_AUTOPAD) == 0) {
2383 		/*
2384 		 * With some of the RealTek chips, using the checksum offload
2385 		 * support in conjunction with the autopadding feature results
2386 		 * in the transmission of corrupt frames. For example, if we
2387 		 * need to send a really small IP fragment that's less than 60
2388 		 * bytes in size, and IP header checksumming is enabled, the
2389 		 * resulting ethernet frame that appears on the wire will
2390 		 * have garbled payload. To work around this, if TX checksum
2391 		 * offload is enabled, we always manually pad short frames out
2392 		 * to the minimum ethernet frame size.
2393 		 *
2394 		 * Note: this appears unnecessary for TCP, and doing it for TCP
2395 		 * with PCIe adapters seems to result in bad checksums.
2396 		 */
2397 		if ((m->m_pkthdr.csum_flags &
2398 		     (CSUM_DELAY_IP | CSUM_DELAY_DATA)) &&
2399 		    (m->m_pkthdr.csum_flags & CSUM_TCP) == 0 &&
2400 		    m->m_pkthdr.len < RE_MIN_FRAMELEN) {
2401 			error = m_devpad(m, RE_MIN_FRAMELEN);
2402 			if (error)
2403 				goto back;
2404 		}
2405 	}
2406 
2407 	vlantag = 0;
2408 	if (m->m_flags & M_VLANTAG) {
2409 		vlantag = htobe16(m->m_pkthdr.ether_vlantag) |
2410 			  RE_TDESC_CTL_INSTAG;
2411 	}
2412 
2413 	maxsegs = sc->re_ldata.re_tx_free;
2414 	if (maxsegs > RE_MAXSEGS)
2415 		maxsegs = RE_MAXSEGS;
2416 
2417 	arg.re_nsegs = maxsegs;
2418 	arg.re_segs = segs;
2419 	error = bus_dmamap_load_mbuf(sc->re_ldata.re_mtag, map, m,
2420 				     re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
2421 	if (error && error != EFBIG) {
2422 		if_printf(ifp, "can't map mbuf (error %d)\n", error);
2423 		goto back;
2424 	}
2425 
2426 	/*
2427 	 * Too many segments to map, coalesce into a single mbuf
2428 	 */
2429 	if (!error && arg.re_nsegs == 0) {
2430 		bus_dmamap_unload(sc->re_ldata.re_mtag, map);
2431 		error = EFBIG;
2432 	}
2433 	if (error) {
2434 		struct mbuf *m_new;
2435 
2436 		m_new = m_defrag(m, MB_DONTWAIT);
2437 		if (m_new == NULL) {
2438 			if_printf(ifp, "can't defrag TX mbuf\n");
2439 			error = ENOBUFS;
2440 			goto back;
2441 		} else {
2442 			*m_head = m = m_new;
2443 		}
2444 
2445 		arg.re_nsegs = maxsegs;
2446 		arg.re_segs = segs;
2447 		error = bus_dmamap_load_mbuf(sc->re_ldata.re_mtag, map, m,
2448 					     re_dma_map_desc, &arg,
2449 					     BUS_DMA_NOWAIT);
2450 		if (error || arg.re_nsegs == 0) {
2451 			if (!error) {
2452 				bus_dmamap_unload(sc->re_ldata.re_mtag, map);
2453 				error = EFBIG;
2454 			}
2455 			if_printf(ifp, "can't map mbuf (error %d)\n", error);
2456 			goto back;
2457 		}
2458 	}
2459 	bus_dmamap_sync(sc->re_ldata.re_mtag, map, BUS_DMASYNC_PREWRITE);
2460 
2461 	/*
2462 	 * Map the segment array into descriptors.  We also keep track
2463 	 * of the end of the ring and set the end-of-ring bits as needed,
2464 	 * and we set the ownership bits in all except the very first
2465 	 * descriptor, whose ownership bits will be turned on later.
2466 	 */
2467 	tx_ring = sc->re_ldata.re_tx_list;
2468 	idx = *idx0;
2469 	i = 0;
2470 	for (;;) {
2471 		uint32_t cmdstat;
2472 
2473 		d = &tx_ring[idx];
2474 
2475 		cmdstat = segs[i].ds_len;
2476 		d->re_bufaddr_lo = htole32(RE_ADDR_LO(segs[i].ds_addr));
2477 		d->re_bufaddr_hi = htole32(RE_ADDR_HI(segs[i].ds_addr));
2478 		if (i == 0)
2479 			cmdstat |= RE_TDESC_CMD_SOF;
2480 		else
2481 			cmdstat |= RE_TDESC_CMD_OWN;
2482 		if (idx == (sc->re_tx_desc_cnt - 1))
2483 			cmdstat |= RE_TDESC_CMD_EOR;
2484 		d->re_cmdstat = htole32(cmdstat | cmd_csum);
2485 		d->re_control = htole32(ctl_csum | vlantag);
2486 
2487 		i++;
2488 		if (i == arg.re_nsegs)
2489 			break;
2490 		RE_TXDESC_INC(sc, idx);
2491 	}
2492 	d->re_cmdstat |= htole32(RE_TDESC_CMD_EOF);
2493 
2494 	/* Transfer ownership of packet to the chip. */
2495 	d->re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2496 	if (*idx0 != idx)
2497 		tx_ring[*idx0].re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2498 
2499 	/*
2500 	 * Insure that the map for this transmission
2501 	 * is placed at the array index of the last descriptor
2502 	 * in this chain.
2503 	 */
2504 	sc->re_ldata.re_tx_dmamap[*idx0] = sc->re_ldata.re_tx_dmamap[idx];
2505 	sc->re_ldata.re_tx_dmamap[idx] = map;
2506 
2507 	sc->re_ldata.re_tx_mbuf[idx] = m;
2508 	sc->re_ldata.re_tx_free -= arg.re_nsegs;
2509 
2510 	RE_TXDESC_INC(sc, idx);
2511 	*idx0 = idx;
2512 back:
2513 	if (error) {
2514 		m_freem(m);
2515 		*m_head = NULL;
2516 	}
2517 	return error;
2518 }
2519 
2520 /*
2521  * Main transmit routine for C+ and gigE NICs.
2522  */
2523 
2524 static void
2525 re_start(struct ifnet *ifp)
2526 {
2527 	struct re_softc	*sc = ifp->if_softc;
2528 	struct mbuf *m_head;
2529 	int idx, need_trans, oactive, error;
2530 
2531 	ASSERT_SERIALIZED(ifp->if_serializer);
2532 
2533 	if ((sc->re_flags & RE_F_LINKED) == 0) {
2534 		ifq_purge(&ifp->if_snd);
2535 		return;
2536 	}
2537 
2538 	if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
2539 		return;
2540 
2541 	idx = sc->re_ldata.re_tx_prodidx;
2542 
2543 	need_trans = 0;
2544 	oactive = 0;
2545 	while (sc->re_ldata.re_tx_mbuf[idx] == NULL) {
2546 		if (sc->re_ldata.re_tx_free <= RE_TXDESC_SPARE) {
2547 			if (!oactive) {
2548 				if (re_tx_collect(sc)) {
2549 					oactive = 1;
2550 					continue;
2551 				}
2552 			}
2553 			ifp->if_flags |= IFF_OACTIVE;
2554 			break;
2555 		}
2556 
2557 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
2558 		if (m_head == NULL)
2559 			break;
2560 
2561 		error = re_encap(sc, &m_head, &idx);
2562 		if (error) {
2563 			/* m_head is freed by re_encap(), if we reach here */
2564 			ifp->if_oerrors++;
2565 
2566 			if (error == EFBIG && !oactive) {
2567 				if (re_tx_collect(sc)) {
2568 					oactive = 1;
2569 					continue;
2570 				}
2571 			}
2572 			ifp->if_flags |= IFF_OACTIVE;
2573 			break;
2574 		}
2575 
2576 		oactive = 0;
2577 		need_trans = 1;
2578 
2579 		/*
2580 		 * If there's a BPF listener, bounce a copy of this frame
2581 		 * to him.
2582 		 */
2583 		ETHER_BPF_MTAP(ifp, m_head);
2584 	}
2585 
2586 	if (!need_trans)
2587 		return;
2588 
2589 	/* Flush the TX descriptors */
2590 	bus_dmamap_sync(sc->re_ldata.re_tx_list_tag,
2591 			sc->re_ldata.re_tx_list_map, BUS_DMASYNC_PREWRITE);
2592 
2593 	sc->re_ldata.re_tx_prodidx = idx;
2594 
2595 	/*
2596 	 * RealTek put the TX poll request register in a different
2597 	 * location on the 8169 gigE chip. I don't know why.
2598 	 */
2599 	CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2600 
2601 	/*
2602 	 * Set a timeout in case the chip goes out to lunch.
2603 	 */
2604 	ifp->if_timer = 5;
2605 }
2606 
2607 static void
2608 re_init(void *xsc)
2609 {
2610 	struct re_softc *sc = xsc;
2611 	struct ifnet *ifp = &sc->arpcom.ac_if;
2612 	struct mii_data *mii;
2613 	int error, framelen;
2614 
2615 	ASSERT_SERIALIZED(ifp->if_serializer);
2616 
2617 	mii = device_get_softc(sc->re_miibus);
2618 
2619 	/*
2620 	 * Cancel pending I/O and free all RX/TX buffers.
2621 	 */
2622 	re_stop(sc);
2623 
2624 	if (sc->re_caps & RE_C_CONTIGRX) {
2625 		if (ifp->if_mtu > ETHERMTU) {
2626 			KKASSERT(sc->re_ldata.re_jbuf != NULL);
2627 			sc->re_flags |= RE_F_USE_JPOOL;
2628 			sc->re_rxbuf_size = RE_FRAMELEN_MAX;
2629 			sc->re_newbuf = re_newbuf_jumbo;
2630 		} else {
2631 			sc->re_flags &= ~RE_F_USE_JPOOL;
2632 			sc->re_rxbuf_size = MCLBYTES;
2633 			sc->re_newbuf = re_newbuf_std;
2634 		}
2635 	}
2636 
2637 	/*
2638 	 * Adjust max read request size according to MTU; mainly to
2639 	 * improve TX performance for common case (ETHERMTU) on GigE
2640 	 * NICs.  However, this could _not_ be done on 10/100 only
2641 	 * NICs; their DMA engines will malfunction using non-default
2642 	 * max read request size.
2643 	 */
2644 	if ((sc->re_caps & (RE_C_PCIE | RE_C_FASTE)) == RE_C_PCIE) {
2645 		if (ifp->if_mtu > ETHERMTU) {
2646 			/*
2647 			 * 512 seems to be the only value that works
2648 			 * reliably with jumbo frame
2649 			 */
2650 			pcie_set_max_readrq(sc->re_dev,
2651 				PCIEM_DEVCTL_MAX_READRQ_512);
2652 		} else {
2653 			pcie_set_max_readrq(sc->re_dev,
2654 				PCIEM_DEVCTL_MAX_READRQ_4096);
2655 		}
2656 	}
2657 
2658 	/*
2659 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2660 	 * RX checksum offload. We must configure the C+ register
2661 	 * before all others.
2662 	 */
2663 	CSR_WRITE_2(sc, RE_CPLUS_CMD, RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB |
2664 		    RE_CPLUSCMD_PCI_MRW |
2665 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING ?
2666 		     RE_CPLUSCMD_VLANSTRIP : 0) |
2667 		    (ifp->if_capenable & IFCAP_RXCSUM ?
2668 		     RE_CPLUSCMD_RXCSUM_ENB : 0));
2669 
2670 	/*
2671 	 * Init our MAC address.  Even though the chipset
2672 	 * documentation doesn't mention it, we need to enter "Config
2673 	 * register write enable" mode to modify the ID registers.
2674 	 */
2675 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_WRITECFG);
2676 	CSR_WRITE_4(sc, RE_IDR0,
2677 	    htole32(*(uint32_t *)(&sc->arpcom.ac_enaddr[0])));
2678 	CSR_WRITE_2(sc, RE_IDR4,
2679 	    htole16(*(uint16_t *)(&sc->arpcom.ac_enaddr[4])));
2680 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_OFF);
2681 
2682 	/*
2683 	 * For C+ mode, initialize the RX descriptors and mbufs.
2684 	 */
2685 	error = re_rx_list_init(sc);
2686 	if (error) {
2687 		re_stop(sc);
2688 		return;
2689 	}
2690 	error = re_tx_list_init(sc);
2691 	if (error) {
2692 		re_stop(sc);
2693 		return;
2694 	}
2695 
2696 	/*
2697 	 * Load the addresses of the RX and TX lists into the chip.
2698 	 */
2699 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_HI,
2700 	    RE_ADDR_HI(sc->re_ldata.re_rx_list_addr));
2701 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_LO,
2702 	    RE_ADDR_LO(sc->re_ldata.re_rx_list_addr));
2703 
2704 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_HI,
2705 	    RE_ADDR_HI(sc->re_ldata.re_tx_list_addr));
2706 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_LO,
2707 	    RE_ADDR_LO(sc->re_ldata.re_tx_list_addr));
2708 
2709 	/*
2710 	 * Enable transmit and receive.
2711 	 */
2712 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2713 
2714 	/*
2715 	 * Set the initial TX and RX configuration.
2716 	 */
2717 	if (sc->re_flags & RE_F_TESTMODE) {
2718 		if (!RE_IS_8139CP(sc))
2719 			CSR_WRITE_4(sc, RE_TXCFG,
2720 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON);
2721 		else
2722 			CSR_WRITE_4(sc, RE_TXCFG,
2723 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON_CPLUS);
2724 	} else
2725 		CSR_WRITE_4(sc, RE_TXCFG, RE_TXCFG_CONFIG);
2726 
2727 	framelen = RE_FRAMELEN(ifp->if_mtu);
2728 	if (framelen < MCLBYTES)
2729 		CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(MCLBYTES, 128));
2730 	else
2731 		CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(framelen, 128));
2732 
2733 	CSR_WRITE_4(sc, RE_RXCFG, RE_RXCFG_CONFIG);
2734 
2735 	/*
2736 	 * Program the multicast filter, if necessary.
2737 	 */
2738 	re_setmulti(sc);
2739 
2740 #ifdef DEVICE_POLLING
2741 	/*
2742 	 * Disable interrupts if we are polling.
2743 	 */
2744 	if (ifp->if_flags & IFF_POLLING)
2745 		re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2746 	else	/* otherwise ... */
2747 #endif /* DEVICE_POLLING */
2748 	/*
2749 	 * Enable interrupts.
2750 	 */
2751 	if (sc->re_flags & RE_F_TESTMODE)
2752 		CSR_WRITE_2(sc, RE_IMR, 0);
2753 	else
2754 		re_setup_intr(sc, 1, sc->re_imtype);
2755 	CSR_WRITE_2(sc, RE_ISR, sc->re_intrs);
2756 
2757 	/* Start RX/TX process. */
2758 	CSR_WRITE_4(sc, RE_MISSEDPKT, 0);
2759 
2760 #ifdef notdef
2761 	/* Enable receiver and transmitter. */
2762 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2763 #endif
2764 
2765 	/*
2766 	 * For 8169 gigE NICs, set the max allowed RX packet
2767 	 * size so we can receive jumbo frames.
2768 	 */
2769 	if (!RE_IS_8139CP(sc)) {
2770 		if (sc->re_caps & RE_C_CONTIGRX)
2771 			CSR_WRITE_2(sc, RE_MAXRXPKTLEN, sc->re_rxbuf_size);
2772 		else
2773 			CSR_WRITE_2(sc, RE_MAXRXPKTLEN, 16383);
2774 	}
2775 
2776 	if (sc->re_flags & RE_F_TESTMODE)
2777 		return;
2778 
2779 	mii_mediachg(mii);
2780 
2781 	CSR_WRITE_1(sc, RE_CFG1, RE_CFG1_DRVLOAD|RE_CFG1_FULLDUPLEX);
2782 
2783 	ifp->if_flags |= IFF_RUNNING;
2784 	ifp->if_flags &= ~IFF_OACTIVE;
2785 
2786 	callout_reset(&sc->re_timer, hz, re_tick, sc);
2787 }
2788 
2789 /*
2790  * Set media options.
2791  */
2792 static int
2793 re_ifmedia_upd(struct ifnet *ifp)
2794 {
2795 	struct re_softc *sc = ifp->if_softc;
2796 	struct mii_data *mii;
2797 
2798 	ASSERT_SERIALIZED(ifp->if_serializer);
2799 
2800 	mii = device_get_softc(sc->re_miibus);
2801 	mii_mediachg(mii);
2802 
2803 	return(0);
2804 }
2805 
2806 /*
2807  * Report current media status.
2808  */
2809 static void
2810 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2811 {
2812 	struct re_softc *sc = ifp->if_softc;
2813 	struct mii_data *mii;
2814 
2815 	ASSERT_SERIALIZED(ifp->if_serializer);
2816 
2817 	mii = device_get_softc(sc->re_miibus);
2818 
2819 	mii_pollstat(mii);
2820 	ifmr->ifm_active = mii->mii_media_active;
2821 	ifmr->ifm_status = mii->mii_media_status;
2822 }
2823 
2824 static int
2825 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2826 {
2827 	struct re_softc *sc = ifp->if_softc;
2828 	struct ifreq *ifr = (struct ifreq *) data;
2829 	struct mii_data *mii;
2830 	int error = 0, mask;
2831 
2832 	ASSERT_SERIALIZED(ifp->if_serializer);
2833 
2834 	switch(command) {
2835 	case SIOCSIFMTU:
2836 		if (ifr->ifr_mtu > sc->re_maxmtu) {
2837 			error = EINVAL;
2838 		} else if (ifp->if_mtu != ifr->ifr_mtu) {
2839 			ifp->if_mtu = ifr->ifr_mtu;
2840 			if (ifp->if_flags & IFF_RUNNING)
2841 				ifp->if_init(sc);
2842 		}
2843 		break;
2844 
2845 	case SIOCSIFFLAGS:
2846 		if (ifp->if_flags & IFF_UP) {
2847 			if (ifp->if_flags & IFF_RUNNING) {
2848 				if ((ifp->if_flags ^ sc->re_if_flags) &
2849 				    (IFF_PROMISC | IFF_ALLMULTI))
2850 					re_setmulti(sc);
2851 			} else {
2852 				re_init(sc);
2853 			}
2854 		} else if (ifp->if_flags & IFF_RUNNING) {
2855 			re_stop(sc);
2856 		}
2857 		sc->re_if_flags = ifp->if_flags;
2858 		break;
2859 
2860 	case SIOCADDMULTI:
2861 	case SIOCDELMULTI:
2862 		re_setmulti(sc);
2863 		break;
2864 
2865 	case SIOCGIFMEDIA:
2866 	case SIOCSIFMEDIA:
2867 		mii = device_get_softc(sc->re_miibus);
2868 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2869 		break;
2870 
2871 	case SIOCSIFCAP:
2872 		mask = (ifr->ifr_reqcap ^ ifp->if_capenable) &
2873 		       ifp->if_capabilities;
2874 		ifp->if_capenable ^= mask;
2875 
2876 		if (mask & IFCAP_HWCSUM) {
2877 			if (ifp->if_capenable & IFCAP_TXCSUM)
2878 				ifp->if_hwassist = RE_CSUM_FEATURES;
2879 			else
2880 				ifp->if_hwassist = 0;
2881 		}
2882 		if (mask && (ifp->if_flags & IFF_RUNNING))
2883 			re_init(sc);
2884 		break;
2885 
2886 	default:
2887 		error = ether_ioctl(ifp, command, data);
2888 		break;
2889 	}
2890 	return(error);
2891 }
2892 
2893 static void
2894 re_watchdog(struct ifnet *ifp)
2895 {
2896 	struct re_softc *sc = ifp->if_softc;
2897 
2898 	ASSERT_SERIALIZED(ifp->if_serializer);
2899 
2900 	if_printf(ifp, "watchdog timeout\n");
2901 
2902 	ifp->if_oerrors++;
2903 
2904 	re_txeof(sc);
2905 	re_rxeof(sc);
2906 
2907 	re_init(sc);
2908 
2909 	if (!ifq_is_empty(&ifp->if_snd))
2910 		if_devstart(ifp);
2911 }
2912 
2913 /*
2914  * Stop the adapter and free any mbufs allocated to the
2915  * RX and TX lists.
2916  */
2917 static void
2918 re_stop(struct re_softc *sc)
2919 {
2920 	struct ifnet *ifp = &sc->arpcom.ac_if;
2921 	int i;
2922 
2923 	ASSERT_SERIALIZED(ifp->if_serializer);
2924 
2925 	/* Reset the adapter. */
2926 	re_reset(sc, ifp->if_flags & IFF_RUNNING);
2927 
2928 	ifp->if_timer = 0;
2929 	callout_stop(&sc->re_timer);
2930 
2931 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2932 	sc->re_flags &= ~(RE_F_TIMER_INTR | RE_F_DROP_RXFRAG | RE_F_LINKED);
2933 
2934 	CSR_WRITE_1(sc, RE_COMMAND, 0x00);
2935 	CSR_WRITE_2(sc, RE_IMR, 0x0000);
2936 	CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
2937 
2938 	re_free_rxchain(sc);
2939 
2940 	/* Free the TX list buffers. */
2941 	for (i = 0; i < sc->re_tx_desc_cnt; i++) {
2942 		if (sc->re_ldata.re_tx_mbuf[i] != NULL) {
2943 			bus_dmamap_unload(sc->re_ldata.re_mtag,
2944 					  sc->re_ldata.re_tx_dmamap[i]);
2945 			m_freem(sc->re_ldata.re_tx_mbuf[i]);
2946 			sc->re_ldata.re_tx_mbuf[i] = NULL;
2947 		}
2948 	}
2949 
2950 	/* Free the RX list buffers. */
2951 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
2952 		if (sc->re_ldata.re_rx_mbuf[i] != NULL) {
2953 			if ((sc->re_flags & RE_F_USE_JPOOL) == 0) {
2954 				bus_dmamap_unload(sc->re_ldata.re_mtag,
2955 						  sc->re_ldata.re_rx_dmamap[i]);
2956 			}
2957 			m_freem(sc->re_ldata.re_rx_mbuf[i]);
2958 			sc->re_ldata.re_rx_mbuf[i] = NULL;
2959 		}
2960 	}
2961 }
2962 
2963 /*
2964  * Device suspend routine.  Stop the interface and save some PCI
2965  * settings in case the BIOS doesn't restore them properly on
2966  * resume.
2967  */
2968 static int
2969 re_suspend(device_t dev)
2970 {
2971 #ifndef BURN_BRIDGES
2972 	int i;
2973 #endif
2974 	struct re_softc *sc = device_get_softc(dev);
2975 	struct ifnet *ifp = &sc->arpcom.ac_if;
2976 
2977 	lwkt_serialize_enter(ifp->if_serializer);
2978 
2979 	re_stop(sc);
2980 
2981 #ifndef BURN_BRIDGES
2982 	for (i = 0; i < 5; i++)
2983 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2984 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2985 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2986 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2987 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2988 #endif
2989 
2990 	sc->re_flags |= RE_F_SUSPENDED;
2991 
2992 	lwkt_serialize_exit(ifp->if_serializer);
2993 
2994 	return (0);
2995 }
2996 
2997 /*
2998  * Device resume routine.  Restore some PCI settings in case the BIOS
2999  * doesn't, re-enable busmastering, and restart the interface if
3000  * appropriate.
3001  */
3002 static int
3003 re_resume(device_t dev)
3004 {
3005 	struct re_softc *sc = device_get_softc(dev);
3006 	struct ifnet *ifp = &sc->arpcom.ac_if;
3007 #ifndef BURN_BRIDGES
3008 	int i;
3009 #endif
3010 
3011 	lwkt_serialize_enter(ifp->if_serializer);
3012 
3013 #ifndef BURN_BRIDGES
3014 	/* better way to do this? */
3015 	for (i = 0; i < 5; i++)
3016 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
3017 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
3018 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
3019 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
3020 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
3021 
3022 	/* reenable busmastering */
3023 	pci_enable_busmaster(dev);
3024 	pci_enable_io(dev, SYS_RES_IOPORT);
3025 #endif
3026 
3027 	/* reinitialize interface if necessary */
3028 	if (ifp->if_flags & IFF_UP)
3029 		re_init(sc);
3030 
3031 	sc->re_flags &= ~RE_F_SUSPENDED;
3032 
3033 	lwkt_serialize_exit(ifp->if_serializer);
3034 
3035 	return (0);
3036 }
3037 
3038 /*
3039  * Stop all chip I/O so that the kernel's probe routines don't
3040  * get confused by errant DMAs when rebooting.
3041  */
3042 static void
3043 re_shutdown(device_t dev)
3044 {
3045 	struct re_softc *sc = device_get_softc(dev);
3046 	struct ifnet *ifp = &sc->arpcom.ac_if;
3047 
3048 	lwkt_serialize_enter(ifp->if_serializer);
3049 	re_stop(sc);
3050 	lwkt_serialize_exit(ifp->if_serializer);
3051 }
3052 
3053 static int
3054 re_sysctl_rxtime(SYSCTL_HANDLER_ARGS)
3055 {
3056 	struct re_softc *sc = arg1;
3057 
3058 	return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_rx_time);
3059 }
3060 
3061 static int
3062 re_sysctl_txtime(SYSCTL_HANDLER_ARGS)
3063 {
3064 	struct re_softc *sc = arg1;
3065 
3066 	return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_tx_time);
3067 }
3068 
3069 static int
3070 re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *hwtime)
3071 {
3072 	struct re_softc *sc = arg1;
3073 	struct ifnet *ifp = &sc->arpcom.ac_if;
3074 	int error, v;
3075 
3076 	lwkt_serialize_enter(ifp->if_serializer);
3077 
3078 	v = *hwtime;
3079 	error = sysctl_handle_int(oidp, &v, 0, req);
3080 	if (error || req->newptr == NULL)
3081 		goto back;
3082 
3083 	if (v <= 0) {
3084 		error = EINVAL;
3085 		goto back;
3086 	}
3087 
3088 	if (v != *hwtime) {
3089 		*hwtime = v;
3090 
3091 		if ((ifp->if_flags & (IFF_RUNNING | IFF_POLLING)) ==
3092 		    IFF_RUNNING && sc->re_imtype == RE_IMTYPE_HW)
3093 			re_setup_hw_im(sc);
3094 	}
3095 back:
3096 	lwkt_serialize_exit(ifp->if_serializer);
3097 	return error;
3098 }
3099 
3100 static int
3101 re_sysctl_simtime(SYSCTL_HANDLER_ARGS)
3102 {
3103 	struct re_softc *sc = arg1;
3104 	struct ifnet *ifp = &sc->arpcom.ac_if;
3105 	int error, v;
3106 
3107 	lwkt_serialize_enter(ifp->if_serializer);
3108 
3109 	v = sc->re_sim_time;
3110 	error = sysctl_handle_int(oidp, &v, 0, req);
3111 	if (error || req->newptr == NULL)
3112 		goto back;
3113 
3114 	if (v <= 0) {
3115 		error = EINVAL;
3116 		goto back;
3117 	}
3118 
3119 	if (v != sc->re_sim_time) {
3120 		sc->re_sim_time = v;
3121 
3122 		if ((ifp->if_flags & (IFF_RUNNING | IFF_POLLING)) ==
3123 		    IFF_RUNNING && sc->re_imtype == RE_IMTYPE_SIM) {
3124 #ifdef foo
3125 			int reg;
3126 
3127 			/*
3128 			 * Following code causes various strange
3129 			 * performance problems.  Hmm ...
3130 			 */
3131 			CSR_WRITE_2(sc, RE_IMR, 0);
3132 			if (!RE_IS_8139CP(sc))
3133 				reg = RE_TIMERINT_8169;
3134 			else
3135 				reg = RE_TIMERINT;
3136 			CSR_WRITE_4(sc, reg, 0);
3137 			CSR_READ_4(sc, reg); /* flush */
3138 
3139 			CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
3140 			re_setup_sim_im(sc);
3141 #else
3142 			re_setup_intr(sc, 0, RE_IMTYPE_NONE);
3143 			DELAY(10);
3144 			re_setup_intr(sc, 1, RE_IMTYPE_SIM);
3145 #endif
3146 		}
3147 	}
3148 back:
3149 	lwkt_serialize_exit(ifp->if_serializer);
3150 	return error;
3151 }
3152 
3153 static int
3154 re_sysctl_imtype(SYSCTL_HANDLER_ARGS)
3155 {
3156 	struct re_softc *sc = arg1;
3157 	struct ifnet *ifp = &sc->arpcom.ac_if;
3158 	int error, v;
3159 
3160 	lwkt_serialize_enter(ifp->if_serializer);
3161 
3162 	v = sc->re_imtype;
3163 	error = sysctl_handle_int(oidp, &v, 0, req);
3164 	if (error || req->newptr == NULL)
3165 		goto back;
3166 
3167 	if (v != RE_IMTYPE_HW && v != RE_IMTYPE_SIM && v != RE_IMTYPE_NONE) {
3168 		error = EINVAL;
3169 		goto back;
3170 	}
3171 	if (v == RE_IMTYPE_HW && (sc->re_caps & RE_C_HWIM) == 0) {
3172 		/* Can't do hardware interrupt moderation */
3173 		error = EOPNOTSUPP;
3174 		goto back;
3175 	}
3176 
3177 	if (v != sc->re_imtype) {
3178 		sc->re_imtype = v;
3179 		if ((ifp->if_flags & (IFF_RUNNING | IFF_POLLING)) ==
3180 		    IFF_RUNNING)
3181 			re_setup_intr(sc, 1, sc->re_imtype);
3182 	}
3183 back:
3184 	lwkt_serialize_exit(ifp->if_serializer);
3185 	return error;
3186 }
3187 
3188 static void
3189 re_setup_hw_im(struct re_softc *sc)
3190 {
3191 	KKASSERT(sc->re_caps & RE_C_HWIM);
3192 
3193 	/*
3194 	 * Interrupt moderation
3195 	 *
3196 	 * 0xABCD
3197 	 * A - unknown (maybe TX related)
3198 	 * B - TX timer (unit: 25us)
3199 	 * C - unknown (maybe RX related)
3200 	 * D - RX timer (unit: 25us)
3201 	 *
3202 	 *
3203 	 * re(4)'s interrupt moderation is actually controlled by
3204 	 * two variables, like most other NICs (bge, bce etc.)
3205 	 * o  timer
3206 	 * o  number of packets [P]
3207 	 *
3208 	 * The logic relationship between these two variables is
3209 	 * similar to other NICs too:
3210 	 * if (timer expire || packets > [P])
3211 	 *     Interrupt is delivered
3212 	 *
3213 	 * Currently we only know how to set 'timer', but not
3214 	 * 'number of packets', which should be ~30, as far as I
3215 	 * tested (sink ~900Kpps, interrupt rate is 30KHz)
3216 	 */
3217 	CSR_WRITE_2(sc, RE_IM,
3218 		    RE_IM_RXTIME(sc->re_rx_time) |
3219 		    RE_IM_TXTIME(sc->re_tx_time) |
3220 		    RE_IM_MAGIC);
3221 }
3222 
3223 static void
3224 re_disable_hw_im(struct re_softc *sc)
3225 {
3226 	if (sc->re_caps & RE_C_HWIM)
3227 		CSR_WRITE_2(sc, RE_IM, 0);
3228 }
3229 
3230 static void
3231 re_setup_sim_im(struct re_softc *sc)
3232 {
3233 	if (!RE_IS_8139CP(sc)) {
3234 		uint32_t ticks;
3235 
3236 		/*
3237 		 * Datasheet says tick decreases at bus speed,
3238 		 * but it seems the clock runs a little bit
3239 		 * faster, so we do some compensation here.
3240 		 */
3241 		ticks = (sc->re_sim_time * sc->re_bus_speed * 8) / 5;
3242 		CSR_WRITE_4(sc, RE_TIMERINT_8169, ticks);
3243 	} else {
3244 		CSR_WRITE_4(sc, RE_TIMERINT, 0x400); /* XXX */
3245 	}
3246 	CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
3247 	sc->re_flags |= RE_F_TIMER_INTR;
3248 }
3249 
3250 static void
3251 re_disable_sim_im(struct re_softc *sc)
3252 {
3253 	if (!RE_IS_8139CP(sc))
3254 		CSR_WRITE_4(sc, RE_TIMERINT_8169, 0);
3255 	else
3256 		CSR_WRITE_4(sc, RE_TIMERINT, 0);
3257 	sc->re_flags &= ~RE_F_TIMER_INTR;
3258 }
3259 
3260 static void
3261 re_config_imtype(struct re_softc *sc, int imtype)
3262 {
3263 	switch (imtype) {
3264 	case RE_IMTYPE_HW:
3265 		KKASSERT(sc->re_caps & RE_C_HWIM);
3266 		/* FALL THROUGH */
3267 	case RE_IMTYPE_NONE:
3268 		sc->re_intrs = RE_INTRS;
3269 		sc->re_rx_ack = RE_ISR_RX_OK | RE_ISR_FIFO_OFLOW |
3270 				RE_ISR_RX_OVERRUN;
3271 		sc->re_tx_ack = RE_ISR_TX_OK;
3272 		break;
3273 
3274 	case RE_IMTYPE_SIM:
3275 		sc->re_intrs = RE_INTRS_TIMER;
3276 		sc->re_rx_ack = RE_ISR_TIMEOUT_EXPIRED;
3277 		sc->re_tx_ack = RE_ISR_TIMEOUT_EXPIRED;
3278 		break;
3279 
3280 	default:
3281 		panic("%s: unknown imtype %d\n",
3282 		      sc->arpcom.ac_if.if_xname, imtype);
3283 	}
3284 }
3285 
3286 static void
3287 re_setup_intr(struct re_softc *sc, int enable_intrs, int imtype)
3288 {
3289 	re_config_imtype(sc, imtype);
3290 
3291 	if (enable_intrs)
3292 		CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
3293 	else
3294 		CSR_WRITE_2(sc, RE_IMR, 0);
3295 
3296 	switch (imtype) {
3297 	case RE_IMTYPE_NONE:
3298 		re_disable_sim_im(sc);
3299 		re_disable_hw_im(sc);
3300 		break;
3301 
3302 	case RE_IMTYPE_HW:
3303 		KKASSERT(sc->re_caps & RE_C_HWIM);
3304 		re_disable_sim_im(sc);
3305 		re_setup_hw_im(sc);
3306 		break;
3307 
3308 	case RE_IMTYPE_SIM:
3309 		re_disable_hw_im(sc);
3310 		re_setup_sim_im(sc);
3311 		break;
3312 
3313 	default:
3314 		panic("%s: unknown imtype %d\n",
3315 		      sc->arpcom.ac_if.if_xname, imtype);
3316 	}
3317 }
3318 
3319 static void
3320 re_get_eaddr(struct re_softc *sc, uint8_t *eaddr)
3321 {
3322 	int i;
3323 
3324 	if (sc->re_macver == RE_MACVER_11 || sc->re_macver == RE_MACVER_12) {
3325 		uint16_t re_did;
3326 
3327 		re_get_eewidth(sc);
3328 		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
3329 		if (re_did == 0x8128) {
3330 			uint16_t as[ETHER_ADDR_LEN / 2];
3331 
3332 			/*
3333 			 * Get station address from the EEPROM.
3334 			 */
3335 			re_read_eeprom(sc, (caddr_t)as, RE_EE_EADDR, 3);
3336 			for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
3337 				as[i] = le16toh(as[i]);
3338 			bcopy(as, eaddr, sizeof(eaddr));
3339 			return;
3340 		}
3341 	}
3342 
3343 	/*
3344 	 * Get station address from IDRx.
3345 	 */
3346 	for (i = 0; i < ETHER_ADDR_LEN; ++i)
3347 		eaddr[i] = CSR_READ_1(sc, RE_IDR0 + i);
3348 }
3349 
3350 static int
3351 re_jpool_alloc(struct re_softc *sc)
3352 {
3353 	struct re_list_data *ldata = &sc->re_ldata;
3354 	struct re_jbuf *jbuf;
3355 	bus_addr_t paddr;
3356 	bus_size_t jpool_size;
3357 	caddr_t buf;
3358 	int i, error;
3359 
3360 	lwkt_serialize_init(&ldata->re_jbuf_serializer);
3361 
3362 	ldata->re_jbuf = kmalloc(sizeof(struct re_jbuf) * RE_JBUF_COUNT(sc),
3363 				 M_DEVBUF, M_WAITOK | M_ZERO);
3364 
3365 	jpool_size = RE_JBUF_COUNT(sc) * RE_JBUF_SIZE;
3366 
3367 	error = bus_dma_tag_create(sc->re_parent_tag,
3368 			RE_BUF_ALIGN, 0,	/* alignment, boundary */
3369 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
3370 			BUS_SPACE_MAXADDR,	/* highaddr */
3371 			NULL, NULL,		/* filter, filterarg */
3372 			jpool_size, 1,		/* nsegments, maxsize */
3373 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
3374 			BUS_DMA_ALLOCNOW,	/* flags */
3375 			&ldata->re_jpool_tag);
3376 	if (error) {
3377 		device_printf(sc->re_dev, "could not allocate jumbo dma tag\n");
3378 		return error;
3379 	}
3380 
3381 	error = bus_dmamem_alloc(ldata->re_jpool_tag, (void **)&ldata->re_jpool,
3382 				 BUS_DMA_WAITOK, &ldata->re_jpool_map);
3383 	if (error) {
3384 		device_printf(sc->re_dev,
3385 			      "could not allocate jumbo dma memory\n");
3386 		bus_dma_tag_destroy(ldata->re_jpool_tag);
3387 		ldata->re_jpool_tag = NULL;
3388 		return error;
3389 	}
3390 
3391 	error = bus_dmamap_load(ldata->re_jpool_tag, ldata->re_jpool_map,
3392 				ldata->re_jpool, jpool_size,
3393 				re_dma_map_addr, &paddr, BUS_DMA_WAITOK);
3394 	if (error) {
3395 		device_printf(sc->re_dev, "could not load jumbo dma map\n");
3396 		bus_dmamem_free(ldata->re_jpool_tag, ldata->re_jpool,
3397 				ldata->re_jpool_map);
3398 		bus_dma_tag_destroy(ldata->re_jpool_tag);
3399 		ldata->re_jpool_tag = NULL;
3400 		return error;
3401 	}
3402 
3403 	/* ..and split it into 9KB chunks */
3404 	SLIST_INIT(&ldata->re_jbuf_free);
3405 
3406 	buf = ldata->re_jpool;
3407 	for (i = 0; i < RE_JBUF_COUNT(sc); i++) {
3408 		jbuf = &ldata->re_jbuf[i];
3409 
3410 		jbuf->re_sc = sc;
3411 		jbuf->re_inuse = 0;
3412 		jbuf->re_slot = i;
3413 		jbuf->re_buf = buf;
3414 		jbuf->re_paddr = paddr;
3415 
3416 		SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3417 
3418 		buf += RE_JBUF_SIZE;
3419 		paddr += RE_JBUF_SIZE;
3420 	}
3421 	return 0;
3422 }
3423 
3424 static void
3425 re_jpool_free(struct re_softc *sc)
3426 {
3427 	struct re_list_data *ldata = &sc->re_ldata;
3428 
3429 	if (ldata->re_jpool_tag != NULL) {
3430 		bus_dmamap_unload(ldata->re_jpool_tag, ldata->re_jpool_map);
3431 		bus_dmamem_free(ldata->re_jpool_tag, ldata->re_jpool,
3432 				ldata->re_jpool_map);
3433 		bus_dma_tag_destroy(ldata->re_jpool_tag);
3434 		ldata->re_jpool_tag = NULL;
3435 	}
3436 
3437 	if (ldata->re_jbuf != NULL) {
3438 		kfree(ldata->re_jbuf, M_DEVBUF);
3439 		ldata->re_jbuf = NULL;
3440 	}
3441 }
3442 
3443 static struct re_jbuf *
3444 re_jbuf_alloc(struct re_softc *sc)
3445 {
3446 	struct re_list_data *ldata = &sc->re_ldata;
3447 	struct re_jbuf *jbuf;
3448 
3449 	lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3450 
3451 	jbuf = SLIST_FIRST(&ldata->re_jbuf_free);
3452 	if (jbuf != NULL) {
3453 		SLIST_REMOVE_HEAD(&ldata->re_jbuf_free, re_link);
3454 		jbuf->re_inuse = 1;
3455 	}
3456 
3457 	lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3458 
3459 	return jbuf;
3460 }
3461 
3462 static void
3463 re_jbuf_free(void *arg)
3464 {
3465 	struct re_jbuf *jbuf = arg;
3466 	struct re_softc *sc = jbuf->re_sc;
3467 	struct re_list_data *ldata = &sc->re_ldata;
3468 
3469 	if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3470 		panic("%s: free wrong jumbo buffer\n",
3471 		      sc->arpcom.ac_if.if_xname);
3472 	} else if (jbuf->re_inuse == 0) {
3473 		panic("%s: jumbo buffer already freed\n",
3474 		      sc->arpcom.ac_if.if_xname);
3475 	}
3476 
3477 	lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3478 	atomic_subtract_int(&jbuf->re_inuse, 1);
3479 	if (jbuf->re_inuse == 0)
3480 		SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3481 	lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3482 }
3483 
3484 static void
3485 re_jbuf_ref(void *arg)
3486 {
3487 	struct re_jbuf *jbuf = arg;
3488 	struct re_softc *sc = jbuf->re_sc;
3489 	struct re_list_data *ldata = &sc->re_ldata;
3490 
3491 	if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3492 		panic("%s: ref wrong jumbo buffer\n",
3493 		      sc->arpcom.ac_if.if_xname);
3494 	} else if (jbuf->re_inuse == 0) {
3495 		panic("%s: jumbo buffer already freed\n",
3496 		      sc->arpcom.ac_if.if_xname);
3497 	}
3498 	atomic_add_int(&jbuf->re_inuse, 1);
3499 }
3500