xref: /dragonfly/sys/dev/netif/re/if_re.c (revision 3170ffd7)
1 /*
2  * Copyright (c) 2004
3  *	Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
4  *
5  * Copyright (c) 1997, 1998-2003
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: src/sys/dev/re/if_re.c,v 1.25 2004/06/09 14:34:01 naddy Exp $
36  */
37 
38 /*
39  * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
40  *
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Networking Software Engineer
43  * Wind River Systems
44  */
45 
46 /*
47  * This driver is designed to support RealTek's next generation of
48  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49  * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
50  * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
51  *
52  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53  * with the older 8139 family, however it also supports a special
54  * C+ mode of operation that provides several new performance enhancing
55  * features. These include:
56  *
57  *	o Descriptor based DMA mechanism. Each descriptor represents
58  *	  a single packet fragment. Data buffers may be aligned on
59  *	  any byte boundary.
60  *
61  *	o 64-bit DMA
62  *
63  *	o TCP/IP checksum offload for both RX and TX
64  *
65  *	o High and normal priority transmit DMA rings
66  *
67  *	o VLAN tag insertion and extraction
68  *
69  *	o TCP large send (segmentation offload)
70  *
71  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72  * programming API is fairly straightforward. The RX filtering, EEPROM
73  * access and PHY access is the same as it is on the older 8139 series
74  * chips.
75  *
76  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77  * same programming API and feature set as the 8139C+ with the following
78  * differences and additions:
79  *
80  *	o 1000Mbps mode
81  *
82  *	o Jumbo frames
83  *
84  * 	o GMII and TBI ports/registers for interfacing with copper
85  *	  or fiber PHYs
86  *
87  *      o RX and TX DMA rings can have up to 1024 descriptors
88  *        (the 8139C+ allows a maximum of 64)
89  *
90  *	o Slight differences in register layout from the 8139C+
91  *
92  * The TX start and timer interrupt registers are at different locations
93  * on the 8169 than they are on the 8139C+. Also, the status word in the
94  * RX descriptor has a slightly different bit layout. The 8169 does not
95  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96  * copper gigE PHY.
97  *
98  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99  * (the 'S' stands for 'single-chip'). These devices have the same
100  * programming API as the older 8169, but also have some vendor-specific
101  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103  *
104  * This driver takes advantage of the RX and TX checksum offload and
105  * VLAN tag insertion/extraction features. It also implements TX
106  * interrupt moderation using the timer interrupt registers, which
107  * significantly reduces TX interrupt load. There is also support
108  * for jumbo frames, however the 8169/8169S/8110S can not transmit
109  * jumbo frames larger than 7440, so the max MTU possible with this
110  * driver is 7422 bytes.
111  */
112 
113 #define _IP_VHL
114 
115 #include "opt_ifpoll.h"
116 
117 #include <sys/param.h>
118 #include <sys/bus.h>
119 #include <sys/endian.h>
120 #include <sys/kernel.h>
121 #include <sys/in_cksum.h>
122 #include <sys/interrupt.h>
123 #include <sys/malloc.h>
124 #include <sys/mbuf.h>
125 #include <sys/rman.h>
126 #include <sys/serialize.h>
127 #include <sys/socket.h>
128 #include <sys/sockio.h>
129 #include <sys/sysctl.h>
130 
131 #include <net/bpf.h>
132 #include <net/ethernet.h>
133 #include <net/if.h>
134 #include <net/ifq_var.h>
135 #include <net/if_arp.h>
136 #include <net/if_dl.h>
137 #include <net/if_media.h>
138 #include <net/if_poll.h>
139 #include <net/if_types.h>
140 #include <net/vlan/if_vlan_var.h>
141 #include <net/vlan/if_vlan_ether.h>
142 
143 #include <netinet/ip.h>
144 
145 #include <dev/netif/mii_layer/mii.h>
146 #include <dev/netif/mii_layer/miivar.h>
147 
148 #include <bus/pci/pcidevs.h>
149 #include <bus/pci/pcireg.h>
150 #include <bus/pci/pcivar.h>
151 
152 /* "device miibus" required.  See GENERIC if you get errors here. */
153 #include "miibus_if.h"
154 
155 #include <dev/netif/re/if_rereg.h>
156 #include <dev/netif/re/if_revar.h>
157 
158 /*
159  * Various supported device vendors/types and their names.
160  */
161 static const struct re_type {
162 	uint16_t	re_vid;
163 	uint16_t	re_did;
164 	const char	*re_name;
165 } re_devs[] = {
166 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE528T,
167 	  "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
168 
169 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8139,
170 	  "RealTek 8139C+ 10/100BaseTX" },
171 
172 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8101E,
173 	  "RealTek 810x PCIe 10/100baseTX" },
174 
175 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8168,
176 	  "RealTek 8111/8168 PCIe Gigabit Ethernet" },
177 
178 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169,
179 	  "RealTek 8110/8169 Gigabit Ethernet" },
180 
181 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169SC,
182 	  "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
183 
184 	{ PCI_VENDOR_COREGA, PCI_PRODUCT_COREGA_CG_LAPCIGT,
185 	  "Corega CG-LAPCIGT Gigabit Ethernet" },
186 
187 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032,
188 	  "Linksys EG1032 Gigabit Ethernet" },
189 
190 	{ PCI_VENDOR_USR2, PCI_PRODUCT_USR2_997902,
191 	  "US Robotics 997902 Gigabit Ethernet" },
192 
193 	{ PCI_VENDOR_TTTECH, PCI_PRODUCT_TTTECH_MC322,
194 	  "TTTech MC322 Gigabit Ethernet" },
195 
196 	{ 0, 0, NULL }
197 };
198 
199 static const struct re_hwrev re_hwrevs[] = {
200 	{ RE_HWREV_8139CPLUS,	RE_MACVER_UNKN,		ETHERMTU,
201 	  RE_C_HWCSUM | RE_C_8139CP | RE_C_FASTE },
202 
203 	{ RE_HWREV_8169,	RE_MACVER_UNKN,		ETHERMTU,
204 	  RE_C_HWCSUM | RE_C_8169 },
205 
206 	{ RE_HWREV_8110S,	RE_MACVER_03,		RE_MTU_6K,
207 	  RE_C_HWCSUM | RE_C_8169 },
208 
209 	{ RE_HWREV_8169S,	RE_MACVER_03,		RE_MTU_6K,
210 	  RE_C_HWCSUM | RE_C_8169 },
211 
212 	{ RE_HWREV_8169SB,	RE_MACVER_04,		RE_MTU_6K,
213 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
214 
215 	{ RE_HWREV_8169SC1,	RE_MACVER_05,		RE_MTU_6K,
216 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
217 
218 	{ RE_HWREV_8169SC2,	RE_MACVER_06,		RE_MTU_6K,
219 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
220 
221 	{ RE_HWREV_8168B1,	RE_MACVER_21,		RE_MTU_6K,
222 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT },
223 
224 	{ RE_HWREV_8168B2,	RE_MACVER_23,		RE_MTU_6K,
225 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_AUTOPAD },
226 
227 	{ RE_HWREV_8168B3,	RE_MACVER_23,		RE_MTU_6K,
228 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_AUTOPAD },
229 
230 	{ RE_HWREV_8168C,	RE_MACVER_29,		RE_MTU_6K,
231 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
232 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
233 
234 	{ RE_HWREV_8168CP,	RE_MACVER_2B,		RE_MTU_6K,
235 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
236 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
237 
238 	{ RE_HWREV_8168D,	RE_MACVER_2A,		RE_MTU_9K,
239 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
240 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
241 
242 	{ RE_HWREV_8168DP,	RE_MACVER_2D,		RE_MTU_9K,
243 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
244 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
245 
246 	{ RE_HWREV_8168E,	RE_MACVER_UNKN,		RE_MTU_9K,
247 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
248 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
249 
250 	{ RE_HWREV_8168F,	RE_MACVER_UNKN,		RE_MTU_9K,
251 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
252 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
253 
254 	{ RE_HWREV_8111F,	RE_MACVER_UNKN,		RE_MTU_9K,
255 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
256 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
257 
258 	{ RE_HWREV_8100E,	RE_MACVER_UNKN,		ETHERMTU,
259 	  RE_C_HWCSUM | RE_C_FASTE },
260 
261 	{ RE_HWREV_8101E1,	RE_MACVER_16,		ETHERMTU,
262 	  RE_C_HWCSUM | RE_C_FASTE },
263 
264 	{ RE_HWREV_8101E2,	RE_MACVER_16,		ETHERMTU,
265 	  RE_C_HWCSUM | RE_C_FASTE },
266 
267 	{ RE_HWREV_8102E,	RE_MACVER_15,		ETHERMTU,
268 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
269 	  RE_C_FASTE },
270 
271 	{ RE_HWREV_8102EL,	RE_MACVER_15,		ETHERMTU,
272 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
273 	  RE_C_FASTE },
274 
275 	{ RE_HWREV_8105E,	RE_MACVER_UNKN,		ETHERMTU,
276 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT | RE_C_AUTOPAD |
277 	  RE_C_STOP_RXTX | RE_C_FASTE },
278 
279 	{ RE_HWREV_NULL, 0, 0, 0 }
280 };
281 
282 static int	re_probe(device_t);
283 static int	re_attach(device_t);
284 static int	re_detach(device_t);
285 static int	re_suspend(device_t);
286 static int	re_resume(device_t);
287 static void	re_shutdown(device_t);
288 
289 static int	re_allocmem(device_t);
290 static void	re_freemem(device_t);
291 static void	re_freebufmem(struct re_softc *, int, int);
292 static int	re_encap(struct re_softc *, struct mbuf **, int *);
293 static int	re_newbuf_std(struct re_softc *, int, int);
294 static int	re_newbuf_jumbo(struct re_softc *, int, int);
295 static void	re_setup_rxdesc(struct re_softc *, int);
296 static int	re_rx_list_init(struct re_softc *);
297 static int	re_tx_list_init(struct re_softc *);
298 static int	re_rxeof(struct re_softc *);
299 static int	re_txeof(struct re_softc *);
300 static int	re_tx_collect(struct re_softc *);
301 static void	re_intr(void *);
302 static void	re_tick(void *);
303 static void	re_tick_serialized(void *);
304 
305 static void	re_start(struct ifnet *, struct ifaltq_subque *);
306 static int	re_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
307 static void	re_init(void *);
308 static void	re_stop(struct re_softc *);
309 static void	re_watchdog(struct ifnet *);
310 static int	re_ifmedia_upd(struct ifnet *);
311 static void	re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
312 
313 static void	re_eeprom_putbyte(struct re_softc *, int);
314 static void	re_eeprom_getword(struct re_softc *, int, u_int16_t *);
315 static void	re_read_eeprom(struct re_softc *, caddr_t, int, int);
316 static void	re_get_eewidth(struct re_softc *);
317 
318 static int	re_gmii_readreg(device_t, int, int);
319 static int	re_gmii_writereg(device_t, int, int, int);
320 
321 static int	re_miibus_readreg(device_t, int, int);
322 static int	re_miibus_writereg(device_t, int, int, int);
323 static void	re_miibus_statchg(device_t);
324 
325 static void	re_setmulti(struct re_softc *);
326 static void	re_reset(struct re_softc *, int);
327 static void	re_get_eaddr(struct re_softc *, uint8_t *);
328 
329 static void	re_setup_hw_im(struct re_softc *);
330 static void	re_setup_sim_im(struct re_softc *);
331 static void	re_disable_hw_im(struct re_softc *);
332 static void	re_disable_sim_im(struct re_softc *);
333 static void	re_config_imtype(struct re_softc *, int);
334 static void	re_setup_intr(struct re_softc *, int, int);
335 
336 static int	re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *);
337 static int	re_sysctl_rxtime(SYSCTL_HANDLER_ARGS);
338 static int	re_sysctl_txtime(SYSCTL_HANDLER_ARGS);
339 static int	re_sysctl_simtime(SYSCTL_HANDLER_ARGS);
340 static int	re_sysctl_imtype(SYSCTL_HANDLER_ARGS);
341 
342 static int	re_jpool_alloc(struct re_softc *);
343 static void	re_jpool_free(struct re_softc *);
344 static struct re_jbuf *re_jbuf_alloc(struct re_softc *);
345 static void	re_jbuf_free(void *);
346 static void	re_jbuf_ref(void *);
347 
348 #ifdef RE_DIAG
349 static int	re_diag(struct re_softc *);
350 #endif
351 
352 #ifdef IFPOLL_ENABLE
353 static void	re_npoll(struct ifnet *, struct ifpoll_info *);
354 static void	re_npoll_compat(struct ifnet *, void *, int);
355 #endif
356 
357 static device_method_t re_methods[] = {
358 	/* Device interface */
359 	DEVMETHOD(device_probe,		re_probe),
360 	DEVMETHOD(device_attach,	re_attach),
361 	DEVMETHOD(device_detach,	re_detach),
362 	DEVMETHOD(device_suspend,	re_suspend),
363 	DEVMETHOD(device_resume,	re_resume),
364 	DEVMETHOD(device_shutdown,	re_shutdown),
365 
366 	/* bus interface */
367 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
368 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
369 
370 	/* MII interface */
371 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
372 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
373 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
374 
375 	DEVMETHOD_END
376 };
377 
378 static driver_t re_driver = {
379 	"re",
380 	re_methods,
381 	sizeof(struct re_softc)
382 };
383 
384 static devclass_t re_devclass;
385 
386 DECLARE_DUMMY_MODULE(if_re);
387 MODULE_DEPEND(if_re, miibus, 1, 1, 1);
388 DRIVER_MODULE(if_re, pci, re_driver, re_devclass, NULL, NULL);
389 DRIVER_MODULE(if_re, cardbus, re_driver, re_devclass, NULL, NULL);
390 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, NULL, NULL);
391 
392 static int	re_rx_desc_count = RE_RX_DESC_CNT_DEF;
393 static int	re_tx_desc_count = RE_TX_DESC_CNT_DEF;
394 static int	re_msi_enable = 0;
395 
396 TUNABLE_INT("hw.re.rx_desc_count", &re_rx_desc_count);
397 TUNABLE_INT("hw.re.tx_desc_count", &re_tx_desc_count);
398 TUNABLE_INT("hw.re.msi.enable", &re_msi_enable);
399 
400 #define EE_SET(x)	\
401 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) | (x))
402 
403 #define EE_CLR(x)	\
404 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) & ~(x))
405 
406 static __inline void
407 re_free_rxchain(struct re_softc *sc)
408 {
409 	if (sc->re_head != NULL) {
410 		m_freem(sc->re_head);
411 		sc->re_head = sc->re_tail = NULL;
412 	}
413 }
414 
415 /*
416  * Send a read command and address to the EEPROM, check for ACK.
417  */
418 static void
419 re_eeprom_putbyte(struct re_softc *sc, int addr)
420 {
421 	int d, i;
422 
423 	d = addr | (RE_9346_READ << sc->re_eewidth);
424 
425 	/*
426 	 * Feed in each bit and strobe the clock.
427 	 */
428 	for (i = 1 << (sc->re_eewidth + 3); i; i >>= 1) {
429 		if (d & i)
430 			EE_SET(RE_EE_DATAIN);
431 		else
432 			EE_CLR(RE_EE_DATAIN);
433 		DELAY(100);
434 		EE_SET(RE_EE_CLK);
435 		DELAY(150);
436 		EE_CLR(RE_EE_CLK);
437 		DELAY(100);
438 	}
439 }
440 
441 /*
442  * Read a word of data stored in the EEPROM at address 'addr.'
443  */
444 static void
445 re_eeprom_getword(struct re_softc *sc, int addr, uint16_t *dest)
446 {
447 	int i;
448 	uint16_t word = 0;
449 
450 	/*
451 	 * Send address of word we want to read.
452 	 */
453 	re_eeprom_putbyte(sc, addr);
454 
455 	/*
456 	 * Start reading bits from EEPROM.
457 	 */
458 	for (i = 0x8000; i != 0; i >>= 1) {
459 		EE_SET(RE_EE_CLK);
460 		DELAY(100);
461 		if (CSR_READ_1(sc, RE_EECMD) & RE_EE_DATAOUT)
462 			word |= i;
463 		EE_CLR(RE_EE_CLK);
464 		DELAY(100);
465 	}
466 
467 	*dest = word;
468 }
469 
470 /*
471  * Read a sequence of words from the EEPROM.
472  */
473 static void
474 re_read_eeprom(struct re_softc *sc, caddr_t dest, int off, int cnt)
475 {
476 	int i;
477 	uint16_t word = 0, *ptr;
478 
479 	CSR_SETBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
480 	DELAY(100);
481 
482 	for (i = 0; i < cnt; i++) {
483 		CSR_SETBIT_1(sc, RE_EECMD, RE_EE_SEL);
484 		re_eeprom_getword(sc, off + i, &word);
485 		CSR_CLRBIT_1(sc, RE_EECMD, RE_EE_SEL);
486 		ptr = (uint16_t *)(dest + (i * 2));
487 		*ptr = word;
488 	}
489 
490 	CSR_CLRBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
491 }
492 
493 static void
494 re_get_eewidth(struct re_softc *sc)
495 {
496 	uint16_t re_did = 0;
497 
498 	sc->re_eewidth = 6;
499 	re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
500 	if (re_did != 0x8129)
501 		sc->re_eewidth = 8;
502 }
503 
504 static int
505 re_gmii_readreg(device_t dev, int phy, int reg)
506 {
507 	struct re_softc *sc = device_get_softc(dev);
508 	u_int32_t rval;
509 	int i;
510 
511 	if (phy != 1)
512 		return(0);
513 
514 	/* Let the rgephy driver read the GMEDIASTAT register */
515 
516 	if (reg == RE_GMEDIASTAT)
517 		return(CSR_READ_1(sc, RE_GMEDIASTAT));
518 
519 	CSR_WRITE_4(sc, RE_PHYAR, reg << 16);
520 	DELAY(1000);
521 
522 	for (i = 0; i < RE_TIMEOUT; i++) {
523 		rval = CSR_READ_4(sc, RE_PHYAR);
524 		if (rval & RE_PHYAR_BUSY)
525 			break;
526 		DELAY(100);
527 	}
528 
529 	if (i == RE_TIMEOUT) {
530 		device_printf(dev, "PHY read failed\n");
531 		return(0);
532 	}
533 
534 	return(rval & RE_PHYAR_PHYDATA);
535 }
536 
537 static int
538 re_gmii_writereg(device_t dev, int phy, int reg, int data)
539 {
540 	struct re_softc *sc = device_get_softc(dev);
541 	uint32_t rval;
542 	int i;
543 
544 	CSR_WRITE_4(sc, RE_PHYAR,
545 		    (reg << 16) | (data & RE_PHYAR_PHYDATA) | RE_PHYAR_BUSY);
546 	DELAY(1000);
547 
548 	for (i = 0; i < RE_TIMEOUT; i++) {
549 		rval = CSR_READ_4(sc, RE_PHYAR);
550 		if ((rval & RE_PHYAR_BUSY) == 0)
551 			break;
552 		DELAY(100);
553 	}
554 
555 	if (i == RE_TIMEOUT)
556 		device_printf(dev, "PHY write failed\n");
557 
558 	return(0);
559 }
560 
561 static int
562 re_miibus_readreg(device_t dev, int phy, int reg)
563 {
564 	struct re_softc	*sc = device_get_softc(dev);
565 	uint16_t rval = 0;
566 	uint16_t re8139_reg = 0;
567 
568 	if (!RE_IS_8139CP(sc)) {
569 		rval = re_gmii_readreg(dev, phy, reg);
570 		return(rval);
571 	}
572 
573 	/* Pretend the internal PHY is only at address 0 */
574 	if (phy)
575 		return(0);
576 
577 	switch(reg) {
578 	case MII_BMCR:
579 		re8139_reg = RE_BMCR;
580 		break;
581 	case MII_BMSR:
582 		re8139_reg = RE_BMSR;
583 		break;
584 	case MII_ANAR:
585 		re8139_reg = RE_ANAR;
586 		break;
587 	case MII_ANER:
588 		re8139_reg = RE_ANER;
589 		break;
590 	case MII_ANLPAR:
591 		re8139_reg = RE_LPAR;
592 		break;
593 	case MII_PHYIDR1:
594 	case MII_PHYIDR2:
595 		return(0);
596 	/*
597 	 * Allow the rlphy driver to read the media status
598 	 * register. If we have a link partner which does not
599 	 * support NWAY, this is the register which will tell
600 	 * us the results of parallel detection.
601 	 */
602 	case RE_MEDIASTAT:
603 		return(CSR_READ_1(sc, RE_MEDIASTAT));
604 	default:
605 		device_printf(dev, "bad phy register\n");
606 		return(0);
607 	}
608 	rval = CSR_READ_2(sc, re8139_reg);
609 	if (re8139_reg == RE_BMCR) {
610 		/* 8139C+ has different bit layout. */
611 		rval &= ~(BMCR_LOOP | BMCR_ISO);
612 	}
613 	return(rval);
614 }
615 
616 static int
617 re_miibus_writereg(device_t dev, int phy, int reg, int data)
618 {
619 	struct re_softc *sc= device_get_softc(dev);
620 	u_int16_t re8139_reg = 0;
621 
622 	if (!RE_IS_8139CP(sc))
623 		return(re_gmii_writereg(dev, phy, reg, data));
624 
625 	/* Pretend the internal PHY is only at address 0 */
626 	if (phy)
627 		return(0);
628 
629 	switch(reg) {
630 	case MII_BMCR:
631 		re8139_reg = RE_BMCR;
632 		/* 8139C+ has different bit layout. */
633 		data &= ~(BMCR_LOOP | BMCR_ISO);
634 		break;
635 	case MII_BMSR:
636 		re8139_reg = RE_BMSR;
637 		break;
638 	case MII_ANAR:
639 		re8139_reg = RE_ANAR;
640 		break;
641 	case MII_ANER:
642 		re8139_reg = RE_ANER;
643 		break;
644 	case MII_ANLPAR:
645 		re8139_reg = RE_LPAR;
646 		break;
647 	case MII_PHYIDR1:
648 	case MII_PHYIDR2:
649 		return(0);
650 	default:
651 		device_printf(dev, "bad phy register\n");
652 		return(0);
653 	}
654 	CSR_WRITE_2(sc, re8139_reg, data);
655 	return(0);
656 }
657 
658 static void
659 re_miibus_statchg(device_t dev)
660 {
661 }
662 
663 /*
664  * Program the 64-bit multicast hash filter.
665  */
666 static void
667 re_setmulti(struct re_softc *sc)
668 {
669 	struct ifnet *ifp = &sc->arpcom.ac_if;
670 	int h = 0;
671 	uint32_t hashes[2] = { 0, 0 };
672 	struct ifmultiaddr *ifma;
673 	uint32_t rxfilt;
674 	int mcnt = 0;
675 
676 	rxfilt = CSR_READ_4(sc, RE_RXCFG);
677 
678 	/* Set the individual bit to receive frames for this host only. */
679 	rxfilt |= RE_RXCFG_RX_INDIV;
680 	/* Set capture broadcast bit to capture broadcast frames. */
681 	rxfilt |= RE_RXCFG_RX_BROAD;
682 
683 	rxfilt &= ~(RE_RXCFG_RX_ALLPHYS | RE_RXCFG_RX_MULTI);
684 	if ((ifp->if_flags & IFF_ALLMULTI) || (ifp->if_flags & IFF_PROMISC)) {
685 		rxfilt |= RE_RXCFG_RX_MULTI;
686 
687 		/* If we want promiscuous mode, set the allframes bit. */
688 		if (ifp->if_flags & IFF_PROMISC)
689 			rxfilt |= RE_RXCFG_RX_ALLPHYS;
690 
691 		CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
692 		CSR_WRITE_4(sc, RE_MAR0, 0xFFFFFFFF);
693 		CSR_WRITE_4(sc, RE_MAR4, 0xFFFFFFFF);
694 		return;
695 	}
696 
697 	/* first, zot all the existing hash bits */
698 	CSR_WRITE_4(sc, RE_MAR0, 0);
699 	CSR_WRITE_4(sc, RE_MAR4, 0);
700 
701 	/* now program new ones */
702 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
703 		if (ifma->ifma_addr->sa_family != AF_LINK)
704 			continue;
705 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
706 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
707 		if (h < 32)
708 			hashes[0] |= (1 << h);
709 		else
710 			hashes[1] |= (1 << (h - 32));
711 		mcnt++;
712 	}
713 
714 	if (mcnt)
715 		rxfilt |= RE_RXCFG_RX_MULTI;
716 	else
717 		rxfilt &= ~RE_RXCFG_RX_MULTI;
718 
719 	CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
720 
721 	/*
722 	 * For some unfathomable reason, RealTek decided to reverse
723 	 * the order of the multicast hash registers in the PCI Express
724 	 * parts. This means we have to write the hash pattern in reverse
725 	 * order for those devices.
726 	 */
727 	if (sc->re_caps & RE_C_PCIE) {
728 		CSR_WRITE_4(sc, RE_MAR0, bswap32(hashes[1]));
729 		CSR_WRITE_4(sc, RE_MAR4, bswap32(hashes[0]));
730 	} else {
731 		CSR_WRITE_4(sc, RE_MAR0, hashes[0]);
732 		CSR_WRITE_4(sc, RE_MAR4, hashes[1]);
733 	}
734 }
735 
736 static void
737 re_reset(struct re_softc *sc, int running)
738 {
739 	int i;
740 
741 	if ((sc->re_caps & RE_C_STOP_RXTX) && running) {
742 		CSR_WRITE_1(sc, RE_COMMAND,
743 			    RE_CMD_STOPREQ | RE_CMD_TX_ENB | RE_CMD_RX_ENB);
744 		DELAY(100);
745 	}
746 
747 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_RESET);
748 
749 	for (i = 0; i < RE_TIMEOUT; i++) {
750 		DELAY(10);
751 		if ((CSR_READ_1(sc, RE_COMMAND) & RE_CMD_RESET) == 0)
752 			break;
753 	}
754 	if (i == RE_TIMEOUT)
755 		if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
756 }
757 
758 #ifdef RE_DIAG
759 /*
760  * The following routine is designed to test for a defect on some
761  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
762  * lines connected to the bus, however for a 32-bit only card, they
763  * should be pulled high. The result of this defect is that the
764  * NIC will not work right if you plug it into a 64-bit slot: DMA
765  * operations will be done with 64-bit transfers, which will fail
766  * because the 64-bit data lines aren't connected.
767  *
768  * There's no way to work around this (short of talking a soldering
769  * iron to the board), however we can detect it. The method we use
770  * here is to put the NIC into digital loopback mode, set the receiver
771  * to promiscuous mode, and then try to send a frame. We then compare
772  * the frame data we sent to what was received. If the data matches,
773  * then the NIC is working correctly, otherwise we know the user has
774  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
775  * slot. In the latter case, there's no way the NIC can work correctly,
776  * so we print out a message on the console and abort the device attach.
777  */
778 
779 static int
780 re_diag(struct re_softc *sc)
781 {
782 	struct ifnet *ifp = &sc->arpcom.ac_if;
783 	struct mbuf *m0;
784 	struct ether_header *eh;
785 	struct re_desc *cur_rx;
786 	uint16_t status;
787 	int total_len, i, error = 0, phyaddr;
788 	uint8_t dst[ETHER_ADDR_LEN] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
789 	uint8_t src[ETHER_ADDR_LEN] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
790 	char ethstr[2][ETHER_ADDRSTRLEN + 1];
791 
792 	/* Allocate a single mbuf */
793 
794 	MGETHDR(m0, MB_DONTWAIT, MT_DATA);
795 	if (m0 == NULL)
796 		return(ENOBUFS);
797 
798 	/*
799 	 * Initialize the NIC in test mode. This sets the chip up
800 	 * so that it can send and receive frames, but performs the
801 	 * following special functions:
802 	 * - Puts receiver in promiscuous mode
803 	 * - Enables digital loopback mode
804 	 * - Leaves interrupts turned off
805 	 */
806 
807 	ifp->if_flags |= IFF_PROMISC;
808 	sc->re_flags |= RE_F_TESTMODE;
809 	re_init(sc);
810 	sc->re_flags |= RE_F_LINKED;
811 	if (!RE_IS_8139CP(sc))
812 		phyaddr = 1;
813 	else
814 		phyaddr = 0;
815 
816 	re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_RESET);
817 	for (i = 0; i < RE_TIMEOUT; i++) {
818 		status = re_miibus_readreg(sc->re_dev, phyaddr, MII_BMCR);
819 		if (!(status & BMCR_RESET))
820 			break;
821 	}
822 
823 	re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_LOOP);
824 	CSR_WRITE_2(sc, RE_ISR, RE_INTRS_DIAG);
825 
826 	DELAY(100000);
827 
828 	/* Put some data in the mbuf */
829 
830 	eh = mtod(m0, struct ether_header *);
831 	bcopy (dst, eh->ether_dhost, ETHER_ADDR_LEN);
832 	bcopy (src, eh->ether_shost, ETHER_ADDR_LEN);
833 	eh->ether_type = htons(ETHERTYPE_IP);
834 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
835 
836 	/*
837 	 * Queue the packet, start transmission.
838 	 * Note: ifq_handoff() ultimately calls re_start() for us.
839 	 */
840 
841 	CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
842 	error = ifq_handoff(ifp, m0, NULL);
843 	if (error) {
844 		m0 = NULL;
845 		goto done;
846 	}
847 	m0 = NULL;
848 
849 	/* Wait for it to propagate through the chip */
850 
851 	DELAY(100000);
852 	for (i = 0; i < RE_TIMEOUT; i++) {
853 		status = CSR_READ_2(sc, RE_ISR);
854 		CSR_WRITE_2(sc, RE_ISR, status);
855 		if ((status & (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK)) ==
856 		    (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK))
857 			break;
858 		DELAY(10);
859 	}
860 
861 	if (i == RE_TIMEOUT) {
862 		if_printf(ifp, "diagnostic failed to receive packet "
863 			  "in loopback mode\n");
864 		error = EIO;
865 		goto done;
866 	}
867 
868 	/*
869 	 * The packet should have been dumped into the first
870 	 * entry in the RX DMA ring. Grab it from there.
871 	 */
872 
873 	bus_dmamap_sync(sc->re_ldata.re_rx_mtag, sc->re_ldata.re_rx_dmamap[0],
874 			BUS_DMASYNC_POSTREAD);
875 	bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
876 			  sc->re_ldata.re_rx_dmamap[0]);
877 
878 	m0 = sc->re_ldata.re_rx_mbuf[0];
879 	sc->re_ldata.re_rx_mbuf[0] = NULL;
880 	eh = mtod(m0, struct ether_header *);
881 
882 	cur_rx = &sc->re_ldata.re_rx_list[0];
883 	total_len = RE_RXBYTES(cur_rx);
884 
885 	if (total_len != ETHER_MIN_LEN) {
886 		if_printf(ifp, "diagnostic failed, received short packet\n");
887 		error = EIO;
888 		goto done;
889 	}
890 
891 	/* Test that the received packet data matches what we sent. */
892 
893 	if (bcmp(eh->ether_dhost, dst, ETHER_ADDR_LEN) ||
894 	    bcmp(eh->ether_shost, &src, ETHER_ADDR_LEN) ||
895 	    be16toh(eh->ether_type) != ETHERTYPE_IP) {
896 		if_printf(ifp, "WARNING, DMA FAILURE!\n");
897 		if_printf(ifp, "expected TX data: %s/%s/0x%x\n",
898 		    kether_ntoa(dst, ethstr[0]), kether_ntoa(src, ethstr[1]), ETHERTYPE_IP);
899 		if_printf(ifp, "received RX data: %s/%s/0x%x\n",
900 		    kether_ntoa(eh->ether_dhost, ethstr[0]),
901 		    kether_ntoa(eh->ether_shost, ethstr[1]),
902 		    ntohs(eh->ether_type));
903 		if_printf(ifp, "You may have a defective 32-bit NIC plugged "
904 		    "into a 64-bit PCI slot.\n");
905 		if_printf(ifp, "Please re-install the NIC in a 32-bit slot "
906 		    "for proper operation.\n");
907 		if_printf(ifp, "Read the re(4) man page for more details.\n");
908 		error = EIO;
909 	}
910 
911 done:
912 	/* Turn interface off, release resources */
913 
914 	sc->re_flags &= ~(RE_F_LINKED | RE_F_TESTMODE);
915 	ifp->if_flags &= ~IFF_PROMISC;
916 	re_stop(sc);
917 	if (m0 != NULL)
918 		m_freem(m0);
919 
920 	return (error);
921 }
922 #endif	/* RE_DIAG */
923 
924 /*
925  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
926  * IDs against our list and return a device name if we find a match.
927  */
928 static int
929 re_probe(device_t dev)
930 {
931 	const struct re_type *t;
932 	const struct re_hwrev *hw_rev;
933 	struct re_softc *sc;
934 	int rid;
935 	uint32_t hwrev, macmode, txcfg;
936 	uint16_t vendor, product;
937 
938 	vendor = pci_get_vendor(dev);
939 	product = pci_get_device(dev);
940 
941 	/*
942 	 * Only attach to rev.3 of the Linksys EG1032 adapter.
943 	 * Rev.2 is supported by sk(4).
944 	 */
945 	if (vendor == PCI_VENDOR_LINKSYS &&
946 	    product == PCI_PRODUCT_LINKSYS_EG1032 &&
947 	    pci_get_subdevice(dev) != PCI_SUBDEVICE_LINKSYS_EG1032_REV3)
948 		return ENXIO;
949 
950 	if (vendor == PCI_VENDOR_REALTEK &&
951 	    product == PCI_PRODUCT_REALTEK_RT8139 &&
952 	    pci_get_revid(dev) != PCI_REVID_REALTEK_RT8139CP) {
953 		/* Poor 8139 */
954 		return ENXIO;
955 	}
956 
957 	for (t = re_devs; t->re_name != NULL; t++) {
958 		if (product == t->re_did && vendor == t->re_vid)
959 			break;
960 	}
961 
962 	/*
963 	 * Check if we found a RealTek device.
964 	 */
965 	if (t->re_name == NULL)
966 		return ENXIO;
967 
968 	/*
969 	 * Temporarily map the I/O space so we can read the chip ID register.
970 	 */
971 	sc = kmalloc(sizeof(*sc), M_TEMP, M_WAITOK | M_ZERO);
972 	rid = RE_PCI_LOIO;
973 	sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
974 					    RF_ACTIVE);
975 	if (sc->re_res == NULL) {
976 		device_printf(dev, "couldn't map ports/memory\n");
977 		kfree(sc, M_TEMP);
978 		return ENXIO;
979 	}
980 
981 	sc->re_btag = rman_get_bustag(sc->re_res);
982 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
983 
984 	txcfg = CSR_READ_4(sc, RE_TXCFG);
985 	hwrev = txcfg & RE_TXCFG_HWREV;
986 	macmode = txcfg & RE_TXCFG_MACMODE;
987 	bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO, sc->re_res);
988 	kfree(sc, M_TEMP);
989 
990 	/*
991 	 * and continue matching for the specific chip...
992 	 */
993 	for (hw_rev = re_hwrevs; hw_rev->re_hwrev != RE_HWREV_NULL; hw_rev++) {
994 		if (hw_rev->re_hwrev == hwrev) {
995 			sc = device_get_softc(dev);
996 
997 			sc->re_hwrev = hw_rev->re_hwrev;
998 			sc->re_macver = hw_rev->re_macver;
999 			sc->re_caps = hw_rev->re_caps;
1000 			sc->re_maxmtu = hw_rev->re_maxmtu;
1001 
1002 			/*
1003 			 * Apply chip property fixup
1004 			 */
1005 			switch (sc->re_hwrev) {
1006 			case RE_HWREV_8101E1:
1007 			case RE_HWREV_8101E2:
1008 				if (macmode == 0)
1009 					sc->re_macver = RE_MACVER_11;
1010 				else if (macmode == 0x200000)
1011 					sc->re_macver = RE_MACVER_12;
1012 				break;
1013 			case RE_HWREV_8102E:
1014 			case RE_HWREV_8102EL:
1015 				if (macmode == 0)
1016 					sc->re_macver = RE_MACVER_13;
1017 				else if (macmode == 0x100000)
1018 					sc->re_macver = RE_MACVER_14;
1019 				break;
1020 			case RE_HWREV_8168B2:
1021 			case RE_HWREV_8168B3:
1022 				if (macmode == 0)
1023 					sc->re_macver = RE_MACVER_22;
1024 				break;
1025 			case RE_HWREV_8168C:
1026 				if (macmode == 0)
1027 					sc->re_macver = RE_MACVER_24;
1028 				else if (macmode == 0x200000)
1029 					sc->re_macver = RE_MACVER_25;
1030 				else if (macmode == 0x300000)
1031 					sc->re_macver = RE_MACVER_27;
1032 				break;
1033 			case RE_HWREV_8168CP:
1034 				if (macmode == 0)
1035 					sc->re_macver = RE_MACVER_26;
1036 				else if (macmode == 0x100000)
1037 					sc->re_macver = RE_MACVER_28;
1038 				break;
1039 			case RE_HWREV_8168DP:
1040 				if (macmode == 0)
1041 					sc->re_macver = RE_MACVER_2B;
1042 				else if (macmode == 0x200000)
1043 					sc->re_macver = RE_MACVER_2C;
1044 				break;
1045 			case RE_HWREV_8168E:
1046 				if (macmode == 0x100000)
1047 					sc->re_macver = RE_MACVER_2E;
1048 				else if (macmode == 0x200000)
1049 					sc->re_macver = RE_MACVER_2F;
1050 				break;
1051 			case RE_HWREV_8168F:
1052 			case RE_HWREV_8111F:
1053 				if (macmode == 0x000000)
1054 					sc->re_macver = RE_MACVER_30;
1055 				else if (macmode == 0x100000)
1056 					sc->re_macver = RE_MACVER_31;
1057 				break;
1058 			}
1059 			if (pci_is_pcie(dev))
1060 				sc->re_caps |= RE_C_PCIE;
1061 
1062 			device_set_desc(dev, t->re_name);
1063 			return 0;
1064 		}
1065 	}
1066 
1067 	if (bootverbose) {
1068 		device_printf(dev, "unknown hwrev 0x%08x, macmode 0x%08x\n",
1069 			      hwrev, macmode);
1070 	}
1071 	return ENXIO;
1072 }
1073 
1074 static int
1075 re_allocmem(device_t dev)
1076 {
1077 	struct re_softc *sc = device_get_softc(dev);
1078 	bus_dmamem_t dmem;
1079 	int error, i;
1080 
1081 	/*
1082 	 * Allocate list data
1083 	 */
1084 	sc->re_ldata.re_tx_mbuf =
1085 	kmalloc(sc->re_tx_desc_cnt * sizeof(struct mbuf *),
1086 		M_DEVBUF, M_ZERO | M_WAITOK);
1087 
1088 	sc->re_ldata.re_rx_mbuf =
1089 	kmalloc(sc->re_rx_desc_cnt * sizeof(struct mbuf *),
1090 		M_DEVBUF, M_ZERO | M_WAITOK);
1091 
1092 	sc->re_ldata.re_rx_paddr =
1093 	kmalloc(sc->re_rx_desc_cnt * sizeof(bus_addr_t),
1094 		M_DEVBUF, M_ZERO | M_WAITOK);
1095 
1096 	sc->re_ldata.re_tx_dmamap =
1097 	kmalloc(sc->re_tx_desc_cnt * sizeof(bus_dmamap_t),
1098 		M_DEVBUF, M_ZERO | M_WAITOK);
1099 
1100 	sc->re_ldata.re_rx_dmamap =
1101 	kmalloc(sc->re_rx_desc_cnt * sizeof(bus_dmamap_t),
1102 		M_DEVBUF, M_ZERO | M_WAITOK);
1103 
1104 	/*
1105 	 * Allocate the parent bus DMA tag appropriate for PCI.
1106 	 */
1107 	error = bus_dma_tag_create(NULL,	/* parent */
1108 			1, 0,			/* alignment, boundary */
1109 			BUS_SPACE_MAXADDR,	/* lowaddr */
1110 			BUS_SPACE_MAXADDR,	/* highaddr */
1111 			NULL, NULL,		/* filter, filterarg */
1112 			BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
1113 			0,			/* nsegments */
1114 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1115 			0,			/* flags */
1116 			&sc->re_parent_tag);
1117 	if (error) {
1118 		device_printf(dev, "could not allocate parent dma tag\n");
1119 		return error;
1120 	}
1121 
1122 	/* Allocate TX descriptor list. */
1123 	error = bus_dmamem_coherent(sc->re_parent_tag,
1124 			RE_RING_ALIGN, 0,
1125 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1126 			RE_TX_LIST_SZ(sc), BUS_DMA_WAITOK | BUS_DMA_ZERO,
1127 			&dmem);
1128 	if (error) {
1129 		device_printf(dev, "could not allocate TX ring\n");
1130 		return error;
1131 	}
1132 	sc->re_ldata.re_tx_list_tag = dmem.dmem_tag;
1133 	sc->re_ldata.re_tx_list_map = dmem.dmem_map;
1134 	sc->re_ldata.re_tx_list = dmem.dmem_addr;
1135 	sc->re_ldata.re_tx_list_addr = dmem.dmem_busaddr;
1136 
1137 	/* Allocate RX descriptor list. */
1138 	error = bus_dmamem_coherent(sc->re_parent_tag,
1139 			RE_RING_ALIGN, 0,
1140 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1141 			RE_RX_LIST_SZ(sc), BUS_DMA_WAITOK | BUS_DMA_ZERO,
1142 			&dmem);
1143 	if (error) {
1144 		device_printf(dev, "could not allocate RX ring\n");
1145 		return error;
1146 	}
1147 	sc->re_ldata.re_rx_list_tag = dmem.dmem_tag;
1148 	sc->re_ldata.re_rx_list_map = dmem.dmem_map;
1149 	sc->re_ldata.re_rx_list = dmem.dmem_addr;
1150 	sc->re_ldata.re_rx_list_addr = dmem.dmem_busaddr;
1151 
1152 	/* Allocate maps for TX mbufs. */
1153 	error = bus_dma_tag_create(sc->re_parent_tag,
1154 			1, 0,
1155 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1156 			NULL, NULL,
1157 			RE_FRAMELEN_MAX, RE_MAXSEGS, MCLBYTES,
1158 			BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1159 			&sc->re_ldata.re_tx_mtag);
1160 	if (error) {
1161 		device_printf(dev, "could not allocate TX buf dma tag\n");
1162 		return(error);
1163 	}
1164 
1165 	/* Create DMA maps for TX buffers */
1166 	for (i = 0; i < sc->re_tx_desc_cnt; i++) {
1167 		error = bus_dmamap_create(sc->re_ldata.re_tx_mtag,
1168 				BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1169 				&sc->re_ldata.re_tx_dmamap[i]);
1170 		if (error) {
1171 			device_printf(dev, "can't create DMA map for TX buf\n");
1172 			re_freebufmem(sc, i, 0);
1173 			return(error);
1174 		}
1175 	}
1176 
1177 	/* Allocate maps for RX mbufs. */
1178 	error = bus_dma_tag_create(sc->re_parent_tag,
1179 			RE_RXBUF_ALIGN, 0,
1180 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1181 			NULL, NULL,
1182 			MCLBYTES, 1, MCLBYTES,
1183 			BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ALIGNED,
1184 			&sc->re_ldata.re_rx_mtag);
1185 	if (error) {
1186 		device_printf(dev, "could not allocate RX buf dma tag\n");
1187 		return(error);
1188 	}
1189 
1190 	/* Create spare DMA map for RX */
1191 	error = bus_dmamap_create(sc->re_ldata.re_rx_mtag, BUS_DMA_WAITOK,
1192 			&sc->re_ldata.re_rx_spare);
1193 	if (error) {
1194 		device_printf(dev, "can't create spare DMA map for RX\n");
1195 		bus_dma_tag_destroy(sc->re_ldata.re_rx_mtag);
1196 		sc->re_ldata.re_rx_mtag = NULL;
1197 		return error;
1198 	}
1199 
1200 	/* Create DMA maps for RX buffers */
1201 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1202 		error = bus_dmamap_create(sc->re_ldata.re_rx_mtag,
1203 				BUS_DMA_WAITOK, &sc->re_ldata.re_rx_dmamap[i]);
1204 		if (error) {
1205 			device_printf(dev, "can't create DMA map for RX buf\n");
1206 			re_freebufmem(sc, sc->re_tx_desc_cnt, i);
1207 			return(error);
1208 		}
1209 	}
1210 
1211 	/* Create jumbo buffer pool for RX if required */
1212 	if (sc->re_caps & RE_C_CONTIGRX) {
1213 		error = re_jpool_alloc(sc);
1214 		if (error) {
1215 			re_jpool_free(sc);
1216 			/* Disable jumbo frame support */
1217 			sc->re_maxmtu = ETHERMTU;
1218 		}
1219 	}
1220 	return(0);
1221 }
1222 
1223 static void
1224 re_freebufmem(struct re_softc *sc, int tx_cnt, int rx_cnt)
1225 {
1226 	int i;
1227 
1228 	/* Destroy all the RX and TX buffer maps */
1229 	if (sc->re_ldata.re_tx_mtag) {
1230 		for (i = 0; i < tx_cnt; i++) {
1231 			bus_dmamap_destroy(sc->re_ldata.re_tx_mtag,
1232 					   sc->re_ldata.re_tx_dmamap[i]);
1233 		}
1234 		bus_dma_tag_destroy(sc->re_ldata.re_tx_mtag);
1235 		sc->re_ldata.re_tx_mtag = NULL;
1236 	}
1237 
1238 	if (sc->re_ldata.re_rx_mtag) {
1239 		for (i = 0; i < rx_cnt; i++) {
1240 			bus_dmamap_destroy(sc->re_ldata.re_rx_mtag,
1241 					   sc->re_ldata.re_rx_dmamap[i]);
1242 		}
1243 		bus_dmamap_destroy(sc->re_ldata.re_rx_mtag,
1244 				   sc->re_ldata.re_rx_spare);
1245 		bus_dma_tag_destroy(sc->re_ldata.re_rx_mtag);
1246 		sc->re_ldata.re_rx_mtag = NULL;
1247 	}
1248 }
1249 
1250 static void
1251 re_freemem(device_t dev)
1252 {
1253 	struct re_softc *sc = device_get_softc(dev);
1254 
1255 	/* Unload and free the RX DMA ring memory and map */
1256 	if (sc->re_ldata.re_rx_list_tag) {
1257 		bus_dmamap_unload(sc->re_ldata.re_rx_list_tag,
1258 				  sc->re_ldata.re_rx_list_map);
1259 		bus_dmamem_free(sc->re_ldata.re_rx_list_tag,
1260 				sc->re_ldata.re_rx_list,
1261 				sc->re_ldata.re_rx_list_map);
1262 		bus_dma_tag_destroy(sc->re_ldata.re_rx_list_tag);
1263 	}
1264 
1265 	/* Unload and free the TX DMA ring memory and map */
1266 	if (sc->re_ldata.re_tx_list_tag) {
1267 		bus_dmamap_unload(sc->re_ldata.re_tx_list_tag,
1268 				  sc->re_ldata.re_tx_list_map);
1269 		bus_dmamem_free(sc->re_ldata.re_tx_list_tag,
1270 				sc->re_ldata.re_tx_list,
1271 				sc->re_ldata.re_tx_list_map);
1272 		bus_dma_tag_destroy(sc->re_ldata.re_tx_list_tag);
1273 	}
1274 
1275 	/* Free RX/TX buf DMA stuffs */
1276 	re_freebufmem(sc, sc->re_tx_desc_cnt, sc->re_rx_desc_cnt);
1277 
1278 	/* Unload and free the stats buffer and map */
1279 	if (sc->re_ldata.re_stag) {
1280 		bus_dmamap_unload(sc->re_ldata.re_stag, sc->re_ldata.re_smap);
1281 		bus_dmamem_free(sc->re_ldata.re_stag,
1282 				sc->re_ldata.re_stats,
1283 				sc->re_ldata.re_smap);
1284 		bus_dma_tag_destroy(sc->re_ldata.re_stag);
1285 	}
1286 
1287 	if (sc->re_caps & RE_C_CONTIGRX)
1288 		re_jpool_free(sc);
1289 
1290 	if (sc->re_parent_tag)
1291 		bus_dma_tag_destroy(sc->re_parent_tag);
1292 
1293 	if (sc->re_ldata.re_tx_mbuf != NULL)
1294 		kfree(sc->re_ldata.re_tx_mbuf, M_DEVBUF);
1295 	if (sc->re_ldata.re_rx_mbuf != NULL)
1296 		kfree(sc->re_ldata.re_rx_mbuf, M_DEVBUF);
1297 	if (sc->re_ldata.re_rx_paddr != NULL)
1298 		kfree(sc->re_ldata.re_rx_paddr, M_DEVBUF);
1299 	if (sc->re_ldata.re_tx_dmamap != NULL)
1300 		kfree(sc->re_ldata.re_tx_dmamap, M_DEVBUF);
1301 	if (sc->re_ldata.re_rx_dmamap != NULL)
1302 		kfree(sc->re_ldata.re_rx_dmamap, M_DEVBUF);
1303 }
1304 
1305 /*
1306  * Attach the interface. Allocate softc structures, do ifmedia
1307  * setup and ethernet/BPF attach.
1308  */
1309 static int
1310 re_attach(device_t dev)
1311 {
1312 	struct re_softc	*sc = device_get_softc(dev);
1313 	struct ifnet *ifp;
1314 	uint8_t eaddr[ETHER_ADDR_LEN];
1315 	int error = 0, qlen, msi_enable;
1316 	u_int irq_flags;
1317 
1318 	callout_init(&sc->re_timer);
1319 	sc->re_dev = dev;
1320 
1321 	if (RE_IS_8139CP(sc)) {
1322 		sc->re_rx_desc_cnt = RE_RX_DESC_CNT_8139CP;
1323 		sc->re_tx_desc_cnt = RE_TX_DESC_CNT_8139CP;
1324 	} else {
1325 		sc->re_rx_desc_cnt = re_rx_desc_count;
1326 		if (sc->re_rx_desc_cnt > RE_RX_DESC_CNT_MAX)
1327 			sc->re_rx_desc_cnt = RE_RX_DESC_CNT_MAX;
1328 
1329 		sc->re_tx_desc_cnt = re_tx_desc_count;
1330 		if (sc->re_tx_desc_cnt > RE_TX_DESC_CNT_MAX)
1331 			sc->re_tx_desc_cnt = RE_TX_DESC_CNT_MAX;
1332 	}
1333 
1334 	qlen = RE_IFQ_MAXLEN;
1335 	if (sc->re_tx_desc_cnt > qlen)
1336 		qlen = sc->re_tx_desc_cnt;
1337 
1338 	sc->re_rxbuf_size = MCLBYTES;
1339 	sc->re_newbuf = re_newbuf_std;
1340 
1341 	sc->re_tx_time = 5;		/* 125us */
1342 	sc->re_rx_time = 2;		/* 50us */
1343 	if (sc->re_caps & RE_C_PCIE)
1344 		sc->re_sim_time = 75;	/* 75us */
1345 	else
1346 		sc->re_sim_time = 125;	/* 125us */
1347 	if (!RE_IS_8139CP(sc)) {
1348 		/* simulated interrupt moderation */
1349 		sc->re_imtype = RE_IMTYPE_SIM;
1350 	} else {
1351 		sc->re_imtype = RE_IMTYPE_NONE;
1352 	}
1353 	re_config_imtype(sc, sc->re_imtype);
1354 
1355 	sysctl_ctx_init(&sc->re_sysctl_ctx);
1356 	sc->re_sysctl_tree = SYSCTL_ADD_NODE(&sc->re_sysctl_ctx,
1357 					     SYSCTL_STATIC_CHILDREN(_hw),
1358 					     OID_AUTO,
1359 					     device_get_nameunit(dev),
1360 					     CTLFLAG_RD, 0, "");
1361 	if (sc->re_sysctl_tree == NULL) {
1362 		device_printf(dev, "can't add sysctl node\n");
1363 		error = ENXIO;
1364 		goto fail;
1365 	}
1366 	SYSCTL_ADD_INT(&sc->re_sysctl_ctx,
1367 		       SYSCTL_CHILDREN(sc->re_sysctl_tree), OID_AUTO,
1368 		       "rx_desc_count", CTLFLAG_RD, &sc->re_rx_desc_cnt,
1369 		       0, "RX desc count");
1370 	SYSCTL_ADD_INT(&sc->re_sysctl_ctx,
1371 		       SYSCTL_CHILDREN(sc->re_sysctl_tree), OID_AUTO,
1372 		       "tx_desc_count", CTLFLAG_RD, &sc->re_tx_desc_cnt,
1373 		       0, "TX desc count");
1374 	SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1375 			SYSCTL_CHILDREN(sc->re_sysctl_tree),
1376 			OID_AUTO, "sim_time",
1377 			CTLTYPE_INT | CTLFLAG_RW,
1378 			sc, 0, re_sysctl_simtime, "I",
1379 			"Simulated interrupt moderation time (usec).");
1380 	SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1381 			SYSCTL_CHILDREN(sc->re_sysctl_tree),
1382 			OID_AUTO, "imtype",
1383 			CTLTYPE_INT | CTLFLAG_RW,
1384 			sc, 0, re_sysctl_imtype, "I",
1385 			"Interrupt moderation type -- "
1386 			"0:disable, 1:simulated, "
1387 			"2:hardware(if supported)");
1388 	if (sc->re_caps & RE_C_HWIM) {
1389 		SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1390 				SYSCTL_CHILDREN(sc->re_sysctl_tree),
1391 				OID_AUTO, "hw_rxtime",
1392 				CTLTYPE_INT | CTLFLAG_RW,
1393 				sc, 0, re_sysctl_rxtime, "I",
1394 				"Hardware interrupt moderation time "
1395 				"(unit: 25usec).");
1396 		SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1397 				SYSCTL_CHILDREN(sc->re_sysctl_tree),
1398 				OID_AUTO, "hw_txtime",
1399 				CTLTYPE_INT | CTLFLAG_RW,
1400 				sc, 0, re_sysctl_txtime, "I",
1401 				"Hardware interrupt moderation time "
1402 				"(unit: 25usec).");
1403 	}
1404 
1405 #ifndef BURN_BRIDGES
1406 	/*
1407 	 * Handle power management nonsense.
1408 	 */
1409 
1410 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1411 		uint32_t membase, irq;
1412 
1413 		/* Save important PCI config data. */
1414 		membase = pci_read_config(dev, RE_PCI_LOMEM, 4);
1415 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
1416 
1417 		/* Reset the power state. */
1418 		device_printf(dev, "chip is in D%d power mode "
1419 		    "-- setting to D0\n", pci_get_powerstate(dev));
1420 
1421 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1422 
1423 		/* Restore PCI config data. */
1424 		pci_write_config(dev, RE_PCI_LOMEM, membase, 4);
1425 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
1426 	}
1427 #endif
1428 	/*
1429 	 * Map control/status registers.
1430 	 */
1431 	pci_enable_busmaster(dev);
1432 
1433 	if (pci_is_pcie(dev)) {
1434 		sc->re_res_rid = PCIR_BAR(2);
1435 		sc->re_res_type = SYS_RES_MEMORY;
1436 	} else {
1437 		sc->re_res_rid = PCIR_BAR(0);
1438 		sc->re_res_type = SYS_RES_IOPORT;
1439 	}
1440 	sc->re_res = bus_alloc_resource_any(dev, sc->re_res_type,
1441 	    &sc->re_res_rid, RF_ACTIVE);
1442 	if (sc->re_res == NULL) {
1443 		device_printf(dev, "couldn't map IO\n");
1444 		error = ENXIO;
1445 		goto fail;
1446 	}
1447 
1448 	sc->re_btag = rman_get_bustag(sc->re_res);
1449 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
1450 
1451 	/*
1452 	 * Allocate interrupt
1453 	 */
1454 	if (pci_is_pcie(dev))
1455 		msi_enable = re_msi_enable;
1456 	else
1457 		msi_enable = 0;
1458 	sc->re_irq_type = pci_alloc_1intr(dev, msi_enable,
1459 	    &sc->re_irq_rid, &irq_flags);
1460 
1461 	sc->re_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->re_irq_rid,
1462 					    irq_flags);
1463 	if (sc->re_irq == NULL) {
1464 		device_printf(dev, "couldn't map interrupt\n");
1465 		error = ENXIO;
1466 		goto fail;
1467 	}
1468 
1469 	/* Reset the adapter. */
1470 	re_reset(sc, 0);
1471 
1472 	if (RE_IS_8139CP(sc)) {
1473 		sc->re_bus_speed = 33; /* XXX */
1474 	} else if (sc->re_caps & RE_C_PCIE) {
1475 		sc->re_bus_speed = 125;
1476 	} else {
1477 		uint8_t cfg2;
1478 
1479 		cfg2 = CSR_READ_1(sc, RE_CFG2);
1480 		switch (cfg2 & RE_CFG2_PCICLK_MASK) {
1481 		case RE_CFG2_PCICLK_33MHZ:
1482 			sc->re_bus_speed = 33;
1483 			break;
1484 		case RE_CFG2_PCICLK_66MHZ:
1485 			sc->re_bus_speed = 66;
1486 			break;
1487 		default:
1488 			device_printf(dev, "unknown bus speed, assume 33MHz\n");
1489 			sc->re_bus_speed = 33;
1490 			break;
1491 		}
1492 		if (cfg2 & RE_CFG2_PCI64)
1493 			sc->re_caps |= RE_C_PCI64;
1494 	}
1495 	device_printf(dev, "Hardware rev. 0x%08x; MAC ver. 0x%02x; "
1496 		      "PCI%s %dMHz\n",
1497 		      sc->re_hwrev, sc->re_macver,
1498 		      (sc->re_caps & RE_C_PCIE) ?
1499 		      "-E" : ((sc->re_caps & RE_C_PCI64) ? "64" : "32"),
1500 		      sc->re_bus_speed);
1501 
1502 	/*
1503 	 * NOTE:
1504 	 * DO NOT try to adjust config1 and config5 which was spotted in
1505 	 * Realtek's Linux drivers.  It will _permanently_ damage certain
1506 	 * cards EEPROM, e.g. one of my 8168B (0x38000000) card ...
1507 	 */
1508 
1509 	re_get_eaddr(sc, eaddr);
1510 
1511 	if (!RE_IS_8139CP(sc)) {
1512 		/* Set RX length mask */
1513 		sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
1514 		sc->re_txstart = RE_GTXSTART;
1515 	} else {
1516 		/* Set RX length mask */
1517 		sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
1518 		sc->re_txstart = RE_TXSTART;
1519 	}
1520 
1521 	/* Allocate DMA stuffs */
1522 	error = re_allocmem(dev);
1523 	if (error)
1524 		goto fail;
1525 
1526 	/*
1527 	 * Apply some magic PCI settings from Realtek ...
1528 	 */
1529 	if (RE_IS_8169(sc)) {
1530 		CSR_WRITE_1(sc, 0x82, 1);
1531 		pci_write_config(dev, PCIR_CACHELNSZ, 0x8, 1);
1532 	}
1533 	pci_write_config(dev, PCIR_LATTIMER, 0x40, 1);
1534 
1535 	if (sc->re_caps & RE_C_MAC2) {
1536 		/*
1537 		 * Following part is extracted from Realtek BSD driver v176.
1538 		 * However, this does _not_ make much/any sense:
1539 		 * 8168C's PCI Express device control is located at 0x78,
1540 		 * so the reading from 0x79 (higher part of 0x78) and setting
1541 		 * the 4~6bits intend to enlarge the "max read request size"
1542 		 * (we will do it).  The content of the rest part of this
1543 		 * register is not meaningful to other PCI registers, so
1544 		 * writing the value to 0x54 could be completely wrong.
1545 		 * 0x80 is the lower part of PCI Express device status, non-
1546 		 * reserved bits are RW1C, writing 0 to them will not have
1547 		 * any effect at all.
1548 		 */
1549 #ifdef foo
1550 		uint8_t val;
1551 
1552 		val = pci_read_config(dev, 0x79, 1);
1553 		val = (val & ~0x70) | 0x50;
1554 		pci_write_config(dev, 0x54, val, 1);
1555 		pci_write_config(dev, 0x80, 0, 1);
1556 #endif
1557 	}
1558 
1559 	/*
1560 	 * Apply some PHY fixup from Realtek ...
1561 	 */
1562 	if (sc->re_hwrev == RE_HWREV_8110S) {
1563 		CSR_WRITE_1(sc, 0x82, 1);
1564 		re_miibus_writereg(dev, 1, 0xb, 0);
1565 	}
1566 	if (sc->re_caps & RE_C_PHYPMGT) {
1567 		/* Power up PHY */
1568 		re_miibus_writereg(dev, 1, 0x1f, 0);
1569 		re_miibus_writereg(dev, 1, 0xe, 0);
1570 	}
1571 
1572 	/* Do MII setup */
1573 	if (mii_phy_probe(dev, &sc->re_miibus,
1574 	    re_ifmedia_upd, re_ifmedia_sts)) {
1575 		device_printf(dev, "MII without any phy!\n");
1576 		error = ENXIO;
1577 		goto fail;
1578 	}
1579 
1580 	ifp = &sc->arpcom.ac_if;
1581 	ifp->if_softc = sc;
1582 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1583 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1584 	ifp->if_ioctl = re_ioctl;
1585 	ifp->if_start = re_start;
1586 #ifdef IFPOLL_ENABLE
1587 	ifp->if_npoll = re_npoll;
1588 #endif
1589 	ifp->if_watchdog = re_watchdog;
1590 	ifp->if_init = re_init;
1591 	if (!RE_IS_8139CP(sc)) /* XXX */
1592 		ifp->if_baudrate = 1000000000;
1593 	else
1594 		ifp->if_baudrate = 100000000;
1595 	ifq_set_maxlen(&ifp->if_snd, qlen);
1596 	ifq_set_ready(&ifp->if_snd);
1597 
1598 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1599 	if (sc->re_caps & RE_C_HWCSUM)
1600 		ifp->if_capabilities |= IFCAP_HWCSUM;
1601 
1602 	ifp->if_capenable = ifp->if_capabilities;
1603 	if (ifp->if_capabilities & IFCAP_HWCSUM) {
1604 		/*
1605 		 * RTL8168/8111C generates wrong IP checksummed frame if the
1606 		 * packet has IP options so disable TX IP checksum offloading.
1607 		 */
1608 		if (sc->re_hwrev == RE_HWREV_8168CP ||
1609 		    sc->re_hwrev == RE_HWREV_8168C)
1610 			sc->re_hwassist = CSUM_TCP | CSUM_UDP;
1611 		else
1612 			sc->re_hwassist = CSUM_IP | CSUM_TCP | CSUM_UDP;
1613 	}
1614 	ifp->if_hwassist = sc->re_hwassist;
1615 
1616 	/*
1617 	 * Call MI attach routine.
1618 	 */
1619 	ether_ifattach(ifp, eaddr, NULL);
1620 
1621 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->re_irq));
1622 
1623 #ifdef IFPOLL_ENABLE
1624 	ifpoll_compat_setup(&sc->re_npoll,
1625 	    &sc->re_sysctl_ctx, sc->re_sysctl_tree, device_get_unit(dev),
1626 	    ifp->if_serializer);
1627 #endif
1628 
1629 #ifdef RE_DIAG
1630 	/*
1631 	 * Perform hardware diagnostic on the original RTL8169.
1632 	 * Some 32-bit cards were incorrectly wired and would
1633 	 * malfunction if plugged into a 64-bit slot.
1634 	 */
1635 	if (sc->re_hwrev == RE_HWREV_8169) {
1636 		lwkt_serialize_enter(ifp->if_serializer);
1637 		error = re_diag(sc);
1638 		lwkt_serialize_exit(ifp->if_serializer);
1639 
1640 		if (error) {
1641 			device_printf(dev, "hardware diagnostic failure\n");
1642 			ether_ifdetach(ifp);
1643 			goto fail;
1644 		}
1645 	}
1646 #endif	/* RE_DIAG */
1647 
1648 	/* Hook interrupt last to avoid having to lock softc */
1649 	error = bus_setup_intr(dev, sc->re_irq, INTR_MPSAFE, re_intr, sc,
1650 			       &sc->re_intrhand, ifp->if_serializer);
1651 
1652 	if (error) {
1653 		device_printf(dev, "couldn't set up irq\n");
1654 		ether_ifdetach(ifp);
1655 		goto fail;
1656 	}
1657 
1658 fail:
1659 	if (error)
1660 		re_detach(dev);
1661 
1662 	return (error);
1663 }
1664 
1665 /*
1666  * Shutdown hardware and free up resources. This can be called any
1667  * time after the mutex has been initialized. It is called in both
1668  * the error case in attach and the normal detach case so it needs
1669  * to be careful about only freeing resources that have actually been
1670  * allocated.
1671  */
1672 static int
1673 re_detach(device_t dev)
1674 {
1675 	struct re_softc *sc = device_get_softc(dev);
1676 	struct ifnet *ifp = &sc->arpcom.ac_if;
1677 
1678 	/* These should only be active if attach succeeded */
1679 	if (device_is_attached(dev)) {
1680 		lwkt_serialize_enter(ifp->if_serializer);
1681 		re_stop(sc);
1682 		bus_teardown_intr(dev, sc->re_irq, sc->re_intrhand);
1683 		lwkt_serialize_exit(ifp->if_serializer);
1684 
1685 		ether_ifdetach(ifp);
1686 	}
1687 	if (sc->re_miibus)
1688 		device_delete_child(dev, sc->re_miibus);
1689 	bus_generic_detach(dev);
1690 
1691 	if (sc->re_sysctl_tree != NULL)
1692 		sysctl_ctx_free(&sc->re_sysctl_ctx);
1693 
1694 	if (sc->re_irq)
1695 		bus_release_resource(dev, SYS_RES_IRQ, sc->re_irq_rid,
1696 				     sc->re_irq);
1697 
1698 	if (sc->re_irq_type == PCI_INTR_TYPE_MSI)
1699 		pci_release_msi(dev);
1700 
1701 	if (sc->re_res) {
1702 		bus_release_resource(dev, sc->re_res_type, sc->re_res_rid,
1703 		    sc->re_res);
1704 	}
1705 
1706 	/* Free DMA stuffs */
1707 	re_freemem(dev);
1708 
1709 	return(0);
1710 }
1711 
1712 static void
1713 re_setup_rxdesc(struct re_softc *sc, int idx)
1714 {
1715 	bus_addr_t paddr;
1716 	uint32_t cmdstat;
1717 	struct re_desc *d;
1718 
1719 	paddr = sc->re_ldata.re_rx_paddr[idx];
1720 	d = &sc->re_ldata.re_rx_list[idx];
1721 
1722 	d->re_bufaddr_lo = htole32(RE_ADDR_LO(paddr));
1723 	d->re_bufaddr_hi = htole32(RE_ADDR_HI(paddr));
1724 
1725 	cmdstat = sc->re_rxbuf_size | RE_RDESC_CMD_OWN;
1726 	if (idx == (sc->re_rx_desc_cnt - 1))
1727 		cmdstat |= RE_RDESC_CMD_EOR;
1728 	d->re_cmdstat = htole32(cmdstat);
1729 }
1730 
1731 static int
1732 re_newbuf_std(struct re_softc *sc, int idx, int init)
1733 {
1734 	bus_dma_segment_t seg;
1735 	bus_dmamap_t map;
1736 	struct mbuf *m;
1737 	int error, nsegs;
1738 
1739 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
1740 	if (m == NULL) {
1741 		error = ENOBUFS;
1742 
1743 		if (init) {
1744 			if_printf(&sc->arpcom.ac_if, "m_getcl failed\n");
1745 			return error;
1746 		} else {
1747 			goto back;
1748 		}
1749 	}
1750 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1751 
1752 	/*
1753 	 * NOTE:
1754 	 * re(4) chips need address of the receive buffer to be 8-byte
1755 	 * aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1756 	 */
1757 
1758 	error = bus_dmamap_load_mbuf_segment(sc->re_ldata.re_rx_mtag,
1759 			sc->re_ldata.re_rx_spare, m,
1760 			&seg, 1, &nsegs, BUS_DMA_NOWAIT);
1761 	if (error) {
1762 		m_freem(m);
1763 		if (init) {
1764 			if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n");
1765 			return error;
1766 		} else {
1767 			goto back;
1768 		}
1769 	}
1770 
1771 	if (!init) {
1772 		bus_dmamap_sync(sc->re_ldata.re_rx_mtag,
1773 				sc->re_ldata.re_rx_dmamap[idx],
1774 				BUS_DMASYNC_POSTREAD);
1775 		bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
1776 				  sc->re_ldata.re_rx_dmamap[idx]);
1777 	}
1778 	sc->re_ldata.re_rx_mbuf[idx] = m;
1779 	sc->re_ldata.re_rx_paddr[idx] = seg.ds_addr;
1780 
1781 	map = sc->re_ldata.re_rx_dmamap[idx];
1782 	sc->re_ldata.re_rx_dmamap[idx] = sc->re_ldata.re_rx_spare;
1783 	sc->re_ldata.re_rx_spare = map;
1784 back:
1785 	re_setup_rxdesc(sc, idx);
1786 	return error;
1787 }
1788 
1789 static int
1790 re_newbuf_jumbo(struct re_softc *sc, int idx, int init)
1791 {
1792 	struct mbuf *m;
1793 	struct re_jbuf *jbuf;
1794 	int error = 0;
1795 
1796 	MGETHDR(m, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1797 	if (m == NULL) {
1798 		error = ENOBUFS;
1799 		if (init) {
1800 			if_printf(&sc->arpcom.ac_if, "MGETHDR failed\n");
1801 			return error;
1802 		} else {
1803 			goto back;
1804 		}
1805 	}
1806 
1807 	jbuf = re_jbuf_alloc(sc);
1808 	if (jbuf == NULL) {
1809 		m_freem(m);
1810 
1811 		error = ENOBUFS;
1812 		if (init) {
1813 			if_printf(&sc->arpcom.ac_if, "jpool is empty\n");
1814 			return error;
1815 		} else {
1816 			goto back;
1817 		}
1818 	}
1819 
1820 	m->m_ext.ext_arg = jbuf;
1821 	m->m_ext.ext_buf = jbuf->re_buf;
1822 	m->m_ext.ext_free = re_jbuf_free;
1823 	m->m_ext.ext_ref = re_jbuf_ref;
1824 	m->m_ext.ext_size = sc->re_rxbuf_size;
1825 
1826 	m->m_data = m->m_ext.ext_buf;
1827 	m->m_flags |= M_EXT;
1828 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1829 
1830 	/*
1831 	 * NOTE:
1832 	 * Some re(4) chips(e.g. RTL8101E) need address of the receive buffer
1833 	 * to be 8-byte aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1834 	 */
1835 
1836 	sc->re_ldata.re_rx_mbuf[idx] = m;
1837 	sc->re_ldata.re_rx_paddr[idx] = jbuf->re_paddr;
1838 back:
1839 	re_setup_rxdesc(sc, idx);
1840 	return error;
1841 }
1842 
1843 static int
1844 re_tx_list_init(struct re_softc *sc)
1845 {
1846 	bzero(sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
1847 
1848 	sc->re_ldata.re_tx_prodidx = 0;
1849 	sc->re_ldata.re_tx_considx = 0;
1850 	sc->re_ldata.re_tx_free = sc->re_tx_desc_cnt;
1851 
1852 	return(0);
1853 }
1854 
1855 static int
1856 re_rx_list_init(struct re_softc *sc)
1857 {
1858 	int i, error;
1859 
1860 	bzero(sc->re_ldata.re_rx_list, RE_RX_LIST_SZ(sc));
1861 
1862 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1863 		error = sc->re_newbuf(sc, i, 1);
1864 		if (error)
1865 			return(error);
1866 	}
1867 
1868 	sc->re_ldata.re_rx_prodidx = 0;
1869 	sc->re_head = sc->re_tail = NULL;
1870 
1871 	return(0);
1872 }
1873 
1874 #define RE_IP4_PACKET	0x1
1875 #define RE_TCP_PACKET	0x2
1876 #define RE_UDP_PACKET	0x4
1877 
1878 static __inline uint8_t
1879 re_packet_type(struct re_softc *sc, uint32_t rxstat, uint32_t rxctrl)
1880 {
1881 	uint8_t packet_type = 0;
1882 
1883 	if (sc->re_caps & RE_C_MAC2) {
1884 		if (rxctrl & RE_RDESC_CTL_PROTOIP4)
1885 			packet_type |= RE_IP4_PACKET;
1886 	} else {
1887 		if (rxstat & RE_RDESC_STAT_PROTOID)
1888 			packet_type |= RE_IP4_PACKET;
1889 	}
1890 	if (RE_TCPPKT(rxstat))
1891 		packet_type |= RE_TCP_PACKET;
1892 	else if (RE_UDPPKT(rxstat))
1893 		packet_type |= RE_UDP_PACKET;
1894 	return packet_type;
1895 }
1896 
1897 /*
1898  * RX handler for C+ and 8169. For the gigE chips, we support
1899  * the reception of jumbo frames that have been fragmented
1900  * across multiple 2K mbuf cluster buffers.
1901  */
1902 static int
1903 re_rxeof(struct re_softc *sc)
1904 {
1905 	struct ifnet *ifp = &sc->arpcom.ac_if;
1906 	struct mbuf *m;
1907 	struct re_desc 	*cur_rx;
1908 	uint32_t rxstat, rxctrl;
1909 	int i, total_len, rx = 0;
1910 
1911 	for (i = sc->re_ldata.re_rx_prodidx;
1912 	     RE_OWN(&sc->re_ldata.re_rx_list[i]) == 0; RE_RXDESC_INC(sc, i)) {
1913 		cur_rx = &sc->re_ldata.re_rx_list[i];
1914 		m = sc->re_ldata.re_rx_mbuf[i];
1915 		total_len = RE_RXBYTES(cur_rx);
1916 		rxstat = le32toh(cur_rx->re_cmdstat);
1917 		rxctrl = le32toh(cur_rx->re_control);
1918 
1919 		rx = 1;
1920 
1921 #ifdef INVARIANTS
1922 		if (sc->re_flags & RE_F_USE_JPOOL)
1923 			KKASSERT(rxstat & RE_RDESC_STAT_EOF);
1924 #endif
1925 
1926 		if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1927 			if (sc->re_flags & RE_F_DROP_RXFRAG) {
1928 				re_setup_rxdesc(sc, i);
1929 				continue;
1930 			}
1931 
1932 			if (sc->re_newbuf(sc, i, 0)) {
1933 				/* Drop upcoming fragments */
1934 				sc->re_flags |= RE_F_DROP_RXFRAG;
1935 				continue;
1936 			}
1937 
1938 			m->m_len = MCLBYTES;
1939 			if (sc->re_head == NULL) {
1940 				sc->re_head = sc->re_tail = m;
1941 			} else {
1942 				sc->re_tail->m_next = m;
1943 				sc->re_tail = m;
1944 			}
1945 			continue;
1946 		} else if (sc->re_flags & RE_F_DROP_RXFRAG) {
1947 			/*
1948 			 * Last fragment of a multi-fragment packet.
1949 			 *
1950 			 * Since error already happened, this fragment
1951 			 * must be dropped as well as the fragment chain.
1952 			 */
1953 			re_setup_rxdesc(sc, i);
1954 			re_free_rxchain(sc);
1955 			sc->re_flags &= ~RE_F_DROP_RXFRAG;
1956 			continue;
1957 		}
1958 
1959 		/*
1960 		 * NOTE: for the 8139C+, the frame length field
1961 		 * is always 12 bits in size, but for the gigE chips,
1962 		 * it is 13 bits (since the max RX frame length is 16K).
1963 		 * Unfortunately, all 32 bits in the status word
1964 		 * were already used, so to make room for the extra
1965 		 * length bit, RealTek took out the 'frame alignment
1966 		 * error' bit and shifted the other status bits
1967 		 * over one slot. The OWN, EOR, FS and LS bits are
1968 		 * still in the same places. We have already extracted
1969 		 * the frame length and checked the OWN bit, so rather
1970 		 * than using an alternate bit mapping, we shift the
1971 		 * status bits one space to the right so we can evaluate
1972 		 * them using the 8169 status as though it was in the
1973 		 * same format as that of the 8139C+.
1974 		 */
1975 		if (!RE_IS_8139CP(sc))
1976 			rxstat >>= 1;
1977 
1978 		if (rxstat & RE_RDESC_STAT_RXERRSUM) {
1979 			IFNET_STAT_INC(ifp, ierrors, 1);
1980 			/*
1981 			 * If this is part of a multi-fragment packet,
1982 			 * discard all the pieces.
1983 			 */
1984 			re_free_rxchain(sc);
1985 			re_setup_rxdesc(sc, i);
1986 			continue;
1987 		}
1988 
1989 		/*
1990 		 * If allocating a replacement mbuf fails,
1991 		 * reload the current one.
1992 		 */
1993 
1994 		if (sc->re_newbuf(sc, i, 0)) {
1995 			IFNET_STAT_INC(ifp, ierrors, 1);
1996 			continue;
1997 		}
1998 
1999 		if (sc->re_head != NULL) {
2000 			m->m_len = total_len % MCLBYTES;
2001 			/*
2002 			 * Special case: if there's 4 bytes or less
2003 			 * in this buffer, the mbuf can be discarded:
2004 			 * the last 4 bytes is the CRC, which we don't
2005 			 * care about anyway.
2006 			 */
2007 			if (m->m_len <= ETHER_CRC_LEN) {
2008 				sc->re_tail->m_len -=
2009 				    (ETHER_CRC_LEN - m->m_len);
2010 				m_freem(m);
2011 			} else {
2012 				m->m_len -= ETHER_CRC_LEN;
2013 				sc->re_tail->m_next = m;
2014 			}
2015 			m = sc->re_head;
2016 			sc->re_head = sc->re_tail = NULL;
2017 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
2018 		} else {
2019 			m->m_pkthdr.len = m->m_len =
2020 			    (total_len - ETHER_CRC_LEN);
2021 		}
2022 
2023 		IFNET_STAT_INC(ifp, ipackets, 1);
2024 		m->m_pkthdr.rcvif = ifp;
2025 
2026 		/* Do RX checksumming if enabled */
2027 
2028 		if (ifp->if_capenable & IFCAP_RXCSUM) {
2029 			uint8_t packet_type;
2030 
2031 			packet_type = re_packet_type(sc, rxstat, rxctrl);
2032 
2033 			/* Check IP header checksum */
2034 			if (packet_type & RE_IP4_PACKET) {
2035 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2036 				if ((rxstat & RE_RDESC_STAT_IPSUMBAD) == 0)
2037 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2038 			}
2039 
2040 			/* Check TCP/UDP checksum */
2041 			if (((packet_type & RE_TCP_PACKET) &&
2042 			     (rxstat & RE_RDESC_STAT_TCPSUMBAD) == 0) ||
2043 			    ((packet_type & RE_UDP_PACKET) &&
2044 			     (rxstat & RE_RDESC_STAT_UDPSUMBAD) == 0)) {
2045 				m->m_pkthdr.csum_flags |=
2046 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
2047 				    CSUM_FRAG_NOT_CHECKED;
2048 				m->m_pkthdr.csum_data = 0xffff;
2049 			}
2050 		}
2051 
2052 		if (rxctrl & RE_RDESC_CTL_HASTAG) {
2053 			m->m_flags |= M_VLANTAG;
2054 			m->m_pkthdr.ether_vlantag =
2055 				be16toh((rxctrl & RE_RDESC_CTL_TAGDATA));
2056 		}
2057 		ifp->if_input(ifp, m);
2058 	}
2059 
2060 	sc->re_ldata.re_rx_prodidx = i;
2061 
2062 	return rx;
2063 }
2064 
2065 #undef RE_IP4_PACKET
2066 #undef RE_TCP_PACKET
2067 #undef RE_UDP_PACKET
2068 
2069 static int
2070 re_tx_collect(struct re_softc *sc)
2071 {
2072 	struct ifnet *ifp = &sc->arpcom.ac_if;
2073 	uint32_t txstat;
2074 	int idx, tx = 0;
2075 
2076 	for (idx = sc->re_ldata.re_tx_considx;
2077 	     sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt;
2078 	     RE_TXDESC_INC(sc, idx)) {
2079 		txstat = le32toh(sc->re_ldata.re_tx_list[idx].re_cmdstat);
2080 		if (txstat & RE_TDESC_CMD_OWN)
2081 			break;
2082 
2083 		tx = 1;
2084 
2085 		sc->re_ldata.re_tx_list[idx].re_bufaddr_lo = 0;
2086 
2087 		/*
2088 		 * We only stash mbufs in the last descriptor
2089 		 * in a fragment chain, which also happens to
2090 		 * be the only place where the TX status bits
2091 		 * are valid.
2092 		 */
2093 		if (txstat & RE_TDESC_CMD_EOF) {
2094 			bus_dmamap_unload(sc->re_ldata.re_tx_mtag,
2095 			    sc->re_ldata.re_tx_dmamap[idx]);
2096 			m_freem(sc->re_ldata.re_tx_mbuf[idx]);
2097 			sc->re_ldata.re_tx_mbuf[idx] = NULL;
2098 			if (txstat & (RE_TDESC_STAT_EXCESSCOL|
2099 			    RE_TDESC_STAT_COLCNT))
2100 				IFNET_STAT_INC(ifp, collisions, 1);
2101 			if (txstat & RE_TDESC_STAT_TXERRSUM)
2102 				IFNET_STAT_INC(ifp, oerrors, 1);
2103 			else
2104 				IFNET_STAT_INC(ifp, opackets, 1);
2105 		}
2106 		sc->re_ldata.re_tx_free++;
2107 	}
2108 	sc->re_ldata.re_tx_considx = idx;
2109 
2110 	return tx;
2111 }
2112 
2113 static int
2114 re_txeof(struct re_softc *sc)
2115 {
2116 	struct ifnet *ifp = &sc->arpcom.ac_if;
2117 	int tx;
2118 
2119 	tx = re_tx_collect(sc);
2120 
2121 	/* There is enough free TX descs */
2122 	if (sc->re_ldata.re_tx_free > RE_TXDESC_SPARE)
2123 		ifq_clr_oactive(&ifp->if_snd);
2124 
2125 	/*
2126 	 * Some chips will ignore a second TX request issued while an
2127 	 * existing transmission is in progress. If the transmitter goes
2128 	 * idle but there are still packets waiting to be sent, we need
2129 	 * to restart the channel here to flush them out. This only seems
2130 	 * to be required with the PCIe devices.
2131 	 */
2132 	if (sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt)
2133 		CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2134 	else
2135 		ifp->if_timer = 0;
2136 
2137 	return tx;
2138 }
2139 
2140 static void
2141 re_tick(void *xsc)
2142 {
2143 	struct re_softc *sc = xsc;
2144 
2145 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
2146 	re_tick_serialized(xsc);
2147 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
2148 }
2149 
2150 static void
2151 re_tick_serialized(void *xsc)
2152 {
2153 	struct re_softc *sc = xsc;
2154 	struct ifnet *ifp = &sc->arpcom.ac_if;
2155 	struct mii_data *mii;
2156 
2157 	ASSERT_SERIALIZED(ifp->if_serializer);
2158 
2159 	mii = device_get_softc(sc->re_miibus);
2160 	mii_tick(mii);
2161 	if (sc->re_flags & RE_F_LINKED) {
2162 		if (!(mii->mii_media_status & IFM_ACTIVE))
2163 			sc->re_flags &= ~RE_F_LINKED;
2164 	} else {
2165 		if (mii->mii_media_status & IFM_ACTIVE &&
2166 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2167 			sc->re_flags |= RE_F_LINKED;
2168 			if (!ifq_is_empty(&ifp->if_snd))
2169 				if_devstart(ifp);
2170 		}
2171 	}
2172 
2173 	callout_reset(&sc->re_timer, hz, re_tick, sc);
2174 }
2175 
2176 #ifdef IFPOLL_ENABLE
2177 
2178 static void
2179 re_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
2180 {
2181 	struct re_softc *sc = ifp->if_softc;
2182 
2183 	ASSERT_SERIALIZED(ifp->if_serializer);
2184 
2185 	if (sc->re_npoll.ifpc_stcount-- == 0) {
2186 		uint16_t       status;
2187 
2188 		sc->re_npoll.ifpc_stcount = sc->re_npoll.ifpc_stfrac;
2189 
2190 		status = CSR_READ_2(sc, RE_ISR);
2191 		if (status == 0xffff)
2192 			return;
2193 		if (status)
2194 			CSR_WRITE_2(sc, RE_ISR, status);
2195 
2196 		/*
2197 		 * XXX check behaviour on receiver stalls.
2198 		 */
2199 
2200 		if (status & RE_ISR_SYSTEM_ERR)
2201 			re_init(sc);
2202 	}
2203 
2204 	sc->rxcycles = count;
2205 	re_rxeof(sc);
2206 	re_txeof(sc);
2207 
2208 	if (!ifq_is_empty(&ifp->if_snd))
2209 		if_devstart(ifp);
2210 }
2211 
2212 static void
2213 re_npoll(struct ifnet *ifp, struct ifpoll_info *info)
2214 {
2215 	struct re_softc *sc = ifp->if_softc;
2216 
2217 	ASSERT_SERIALIZED(ifp->if_serializer);
2218 
2219 	if (info != NULL) {
2220 		int cpuid = sc->re_npoll.ifpc_cpuid;
2221 
2222 		info->ifpi_rx[cpuid].poll_func = re_npoll_compat;
2223 		info->ifpi_rx[cpuid].arg = NULL;
2224 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
2225 
2226 		if (ifp->if_flags & IFF_RUNNING)
2227 			re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2228 		ifq_set_cpuid(&ifp->if_snd, cpuid);
2229 	} else {
2230 		if (ifp->if_flags & IFF_RUNNING)
2231 			re_setup_intr(sc, 1, sc->re_imtype);
2232 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->re_irq));
2233 	}
2234 }
2235 #endif /* IFPOLL_ENABLE */
2236 
2237 static void
2238 re_intr(void *arg)
2239 {
2240 	struct re_softc	*sc = arg;
2241 	struct ifnet *ifp = &sc->arpcom.ac_if;
2242 	uint16_t status;
2243 	int rx, tx;
2244 
2245 	ASSERT_SERIALIZED(ifp->if_serializer);
2246 
2247 	if ((sc->re_flags & RE_F_SUSPENDED) ||
2248 	    (ifp->if_flags & IFF_RUNNING) == 0)
2249 		return;
2250 
2251 	rx = tx = 0;
2252 
2253 	status = CSR_READ_2(sc, RE_ISR);
2254 	/* If the card has gone away the read returns 0xffff. */
2255 	if (status == 0xffff)
2256 		goto reload;
2257 	if (status)
2258 		CSR_WRITE_2(sc, RE_ISR, status);
2259 
2260 	if ((status & sc->re_intrs) == 0)
2261 		goto reload;
2262 
2263 	if (status & (sc->re_rx_ack | RE_ISR_RX_ERR))
2264 		rx |= re_rxeof(sc);
2265 
2266 	if (status & (sc->re_tx_ack | RE_ISR_TX_ERR))
2267 		tx |= re_txeof(sc);
2268 
2269 	if (status & RE_ISR_SYSTEM_ERR)
2270 		re_init(sc);
2271 
2272 	if (status & RE_ISR_LINKCHG) {
2273 		callout_stop(&sc->re_timer);
2274 		re_tick_serialized(sc);
2275 	}
2276 
2277 reload:
2278 	if (sc->re_imtype == RE_IMTYPE_SIM) {
2279 		if ((sc->re_flags & RE_F_TIMER_INTR)) {
2280 			if ((tx | rx) == 0) {
2281 				/*
2282 				 * Nothing needs to be processed, fallback
2283 				 * to use TX/RX interrupts.
2284 				 */
2285 				re_setup_intr(sc, 1, RE_IMTYPE_NONE);
2286 
2287 				/*
2288 				 * Recollect, mainly to avoid the possible
2289 				 * race introduced by changing interrupt
2290 				 * masks.
2291 				 */
2292 				re_rxeof(sc);
2293 				tx = re_txeof(sc);
2294 			} else {
2295 				CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
2296 			}
2297 		} else if (tx | rx) {
2298 			/*
2299 			 * Assume that using simulated interrupt moderation
2300 			 * (hardware timer based) could reduce the interript
2301 			 * rate.
2302 			 */
2303 			re_setup_intr(sc, 1, RE_IMTYPE_SIM);
2304 		}
2305 	}
2306 
2307 	if (tx && !ifq_is_empty(&ifp->if_snd))
2308 		if_devstart(ifp);
2309 }
2310 
2311 static int
2312 re_encap(struct re_softc *sc, struct mbuf **m_head, int *idx0)
2313 {
2314 	struct mbuf *m = *m_head;
2315 	bus_dma_segment_t segs[RE_MAXSEGS];
2316 	bus_dmamap_t map;
2317 	int error, maxsegs, idx, i, nsegs;
2318 	struct re_desc *d, *tx_ring;
2319 	uint32_t cmd_csum, ctl_csum, vlantag;
2320 
2321 	KASSERT(sc->re_ldata.re_tx_free > RE_TXDESC_SPARE,
2322 		("not enough free TX desc"));
2323 
2324 	map = sc->re_ldata.re_tx_dmamap[*idx0];
2325 
2326 	/*
2327 	 * Set up checksum offload. Note: checksum offload bits must
2328 	 * appear in all descriptors of a multi-descriptor transmit
2329 	 * attempt. (This is according to testing done with an 8169
2330 	 * chip. I'm not sure if this is a requirement or a bug.)
2331 	 */
2332 	cmd_csum = ctl_csum = 0;
2333 	if (m->m_pkthdr.csum_flags & CSUM_IP) {
2334 		cmd_csum |= RE_TDESC_CMD_IPCSUM;
2335 		ctl_csum |= RE_TDESC_CTL_IPCSUM;
2336 	}
2337 	if (m->m_pkthdr.csum_flags & CSUM_TCP) {
2338 		cmd_csum |= RE_TDESC_CMD_TCPCSUM;
2339 		ctl_csum |= RE_TDESC_CTL_TCPCSUM;
2340 	}
2341 	if (m->m_pkthdr.csum_flags & CSUM_UDP) {
2342 		cmd_csum |= RE_TDESC_CMD_UDPCSUM;
2343 		ctl_csum |= RE_TDESC_CTL_UDPCSUM;
2344 	}
2345 
2346 	/* For MAC2 chips, csum flags are set on re_control */
2347 	if (sc->re_caps & RE_C_MAC2)
2348 		cmd_csum = 0;
2349 	else
2350 		ctl_csum = 0;
2351 
2352 	if ((sc->re_caps & RE_C_AUTOPAD) == 0) {
2353 		/*
2354 		 * With some of the RealTek chips, using the checksum offload
2355 		 * support in conjunction with the autopadding feature results
2356 		 * in the transmission of corrupt frames. For example, if we
2357 		 * need to send a really small IP fragment that's less than 60
2358 		 * bytes in size, and IP header checksumming is enabled, the
2359 		 * resulting ethernet frame that appears on the wire will
2360 		 * have garbled payload. To work around this, if TX checksum
2361 		 * offload is enabled, we always manually pad short frames out
2362 		 * to the minimum ethernet frame size.
2363 		 *
2364 		 * Note: this appears unnecessary for TCP, and doing it for TCP
2365 		 * with PCIe adapters seems to result in bad checksums.
2366 		 */
2367 		if ((m->m_pkthdr.csum_flags &
2368 		     (CSUM_DELAY_IP | CSUM_DELAY_DATA)) &&
2369 		    (m->m_pkthdr.csum_flags & CSUM_TCP) == 0 &&
2370 		    m->m_pkthdr.len < RE_MIN_FRAMELEN) {
2371 			error = m_devpad(m, RE_MIN_FRAMELEN);
2372 			if (error)
2373 				goto back;
2374 		}
2375 	}
2376 
2377 	vlantag = 0;
2378 	if (m->m_flags & M_VLANTAG) {
2379 		vlantag = htobe16(m->m_pkthdr.ether_vlantag) |
2380 			  RE_TDESC_CTL_INSTAG;
2381 	}
2382 
2383 	maxsegs = sc->re_ldata.re_tx_free;
2384 	if (maxsegs > RE_MAXSEGS)
2385 		maxsegs = RE_MAXSEGS;
2386 
2387 	error = bus_dmamap_load_mbuf_defrag(sc->re_ldata.re_tx_mtag, map,
2388 			m_head, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
2389 	if (error)
2390 		goto back;
2391 
2392 	m = *m_head;
2393 	bus_dmamap_sync(sc->re_ldata.re_tx_mtag, map, BUS_DMASYNC_PREWRITE);
2394 
2395 	/*
2396 	 * Map the segment array into descriptors.  We also keep track
2397 	 * of the end of the ring and set the end-of-ring bits as needed,
2398 	 * and we set the ownership bits in all except the very first
2399 	 * descriptor, whose ownership bits will be turned on later.
2400 	 */
2401 	tx_ring = sc->re_ldata.re_tx_list;
2402 	idx = *idx0;
2403 	i = 0;
2404 	for (;;) {
2405 		uint32_t cmdstat;
2406 
2407 		d = &tx_ring[idx];
2408 
2409 		cmdstat = segs[i].ds_len;
2410 		d->re_bufaddr_lo = htole32(RE_ADDR_LO(segs[i].ds_addr));
2411 		d->re_bufaddr_hi = htole32(RE_ADDR_HI(segs[i].ds_addr));
2412 		if (i == 0)
2413 			cmdstat |= RE_TDESC_CMD_SOF;
2414 		else
2415 			cmdstat |= RE_TDESC_CMD_OWN;
2416 		if (idx == (sc->re_tx_desc_cnt - 1))
2417 			cmdstat |= RE_TDESC_CMD_EOR;
2418 		d->re_cmdstat = htole32(cmdstat | cmd_csum);
2419 		d->re_control = htole32(ctl_csum | vlantag);
2420 
2421 		i++;
2422 		if (i == nsegs)
2423 			break;
2424 		RE_TXDESC_INC(sc, idx);
2425 	}
2426 	d->re_cmdstat |= htole32(RE_TDESC_CMD_EOF);
2427 
2428 	/* Transfer ownership of packet to the chip. */
2429 	d->re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2430 	if (*idx0 != idx)
2431 		tx_ring[*idx0].re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2432 
2433 	/*
2434 	 * Insure that the map for this transmission
2435 	 * is placed at the array index of the last descriptor
2436 	 * in this chain.
2437 	 */
2438 	sc->re_ldata.re_tx_dmamap[*idx0] = sc->re_ldata.re_tx_dmamap[idx];
2439 	sc->re_ldata.re_tx_dmamap[idx] = map;
2440 
2441 	sc->re_ldata.re_tx_mbuf[idx] = m;
2442 	sc->re_ldata.re_tx_free -= nsegs;
2443 
2444 	RE_TXDESC_INC(sc, idx);
2445 	*idx0 = idx;
2446 back:
2447 	if (error) {
2448 		m_freem(*m_head);
2449 		*m_head = NULL;
2450 	}
2451 	return error;
2452 }
2453 
2454 /*
2455  * Main transmit routine for C+ and gigE NICs.
2456  */
2457 
2458 static void
2459 re_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
2460 {
2461 	struct re_softc	*sc = ifp->if_softc;
2462 	struct mbuf *m_head;
2463 	int idx, need_trans, oactive, error;
2464 
2465 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
2466 	ASSERT_SERIALIZED(ifp->if_serializer);
2467 
2468 	if ((sc->re_flags & RE_F_LINKED) == 0) {
2469 		ifq_purge(&ifp->if_snd);
2470 		return;
2471 	}
2472 
2473 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
2474 		return;
2475 
2476 	idx = sc->re_ldata.re_tx_prodidx;
2477 
2478 	need_trans = 0;
2479 	oactive = 0;
2480 	while (sc->re_ldata.re_tx_mbuf[idx] == NULL) {
2481 		if (sc->re_ldata.re_tx_free <= RE_TXDESC_SPARE) {
2482 			if (!oactive) {
2483 				if (re_tx_collect(sc)) {
2484 					oactive = 1;
2485 					continue;
2486 				}
2487 			}
2488 			ifq_set_oactive(&ifp->if_snd);
2489 			break;
2490 		}
2491 
2492 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
2493 		if (m_head == NULL)
2494 			break;
2495 
2496 		error = re_encap(sc, &m_head, &idx);
2497 		if (error) {
2498 			/* m_head is freed by re_encap(), if we reach here */
2499 			IFNET_STAT_INC(ifp, oerrors, 1);
2500 
2501 			if (error == EFBIG && !oactive) {
2502 				if (re_tx_collect(sc)) {
2503 					oactive = 1;
2504 					continue;
2505 				}
2506 			}
2507 			ifq_set_oactive(&ifp->if_snd);
2508 			break;
2509 		}
2510 
2511 		oactive = 0;
2512 		need_trans = 1;
2513 
2514 		/*
2515 		 * If there's a BPF listener, bounce a copy of this frame
2516 		 * to him.
2517 		 */
2518 		ETHER_BPF_MTAP(ifp, m_head);
2519 	}
2520 
2521 	/*
2522 	 * If sc->re_ldata.re_tx_mbuf[idx] is not NULL it is possible
2523 	 * for OACTIVE to not be properly set when we also do not
2524 	 * have sufficient free tx descriptors, leaving packet in
2525 	 * ifp->if_snd.  This can cause if_start_dispatch() to loop
2526 	 * infinitely so make sure OACTIVE is set properly.
2527 	 */
2528 	if (sc->re_ldata.re_tx_free <= RE_TXDESC_SPARE) {
2529 		if (!ifq_is_oactive(&ifp->if_snd)) {
2530 			if_printf(ifp, "Debug: OACTIVE was not set when "
2531 			    "re_tx_free was below minimum!\n");
2532 			ifq_set_oactive(&ifp->if_snd);
2533 		}
2534 	}
2535 	if (!need_trans)
2536 		return;
2537 
2538 	sc->re_ldata.re_tx_prodidx = idx;
2539 
2540 	/*
2541 	 * RealTek put the TX poll request register in a different
2542 	 * location on the 8169 gigE chip. I don't know why.
2543 	 */
2544 	CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2545 
2546 	/*
2547 	 * Set a timeout in case the chip goes out to lunch.
2548 	 */
2549 	ifp->if_timer = 5;
2550 }
2551 
2552 static void
2553 re_init(void *xsc)
2554 {
2555 	struct re_softc *sc = xsc;
2556 	struct ifnet *ifp = &sc->arpcom.ac_if;
2557 	struct mii_data *mii;
2558 	int error, framelen;
2559 
2560 	ASSERT_SERIALIZED(ifp->if_serializer);
2561 
2562 	mii = device_get_softc(sc->re_miibus);
2563 
2564 	/*
2565 	 * Cancel pending I/O and free all RX/TX buffers.
2566 	 */
2567 	re_stop(sc);
2568 
2569 	if (sc->re_caps & RE_C_CONTIGRX) {
2570 		if (ifp->if_mtu > ETHERMTU) {
2571 			KKASSERT(sc->re_ldata.re_jbuf != NULL);
2572 			sc->re_flags |= RE_F_USE_JPOOL;
2573 			sc->re_rxbuf_size = RE_FRAMELEN_MAX;
2574 			sc->re_newbuf = re_newbuf_jumbo;
2575 		} else {
2576 			sc->re_flags &= ~RE_F_USE_JPOOL;
2577 			sc->re_rxbuf_size = MCLBYTES;
2578 			sc->re_newbuf = re_newbuf_std;
2579 		}
2580 	}
2581 
2582 	/*
2583 	 * Adjust max read request size according to MTU; mainly to
2584 	 * improve TX performance for common case (ETHERMTU) on GigE
2585 	 * NICs.  However, this could _not_ be done on 10/100 only
2586 	 * NICs; their DMA engines will malfunction using non-default
2587 	 * max read request size.
2588 	 */
2589 	if ((sc->re_caps & (RE_C_PCIE | RE_C_FASTE)) == RE_C_PCIE) {
2590 		if (ifp->if_mtu > ETHERMTU) {
2591 			/*
2592 			 * 512 seems to be the only value that works
2593 			 * reliably with jumbo frame
2594 			 */
2595 			pcie_set_max_readrq(sc->re_dev,
2596 				PCIEM_DEVCTL_MAX_READRQ_512);
2597 		} else {
2598 			pcie_set_max_readrq(sc->re_dev,
2599 				PCIEM_DEVCTL_MAX_READRQ_4096);
2600 		}
2601 	}
2602 
2603 	/*
2604 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2605 	 * RX checksum offload. We must configure the C+ register
2606 	 * before all others.
2607 	 */
2608 	CSR_WRITE_2(sc, RE_CPLUS_CMD, RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB |
2609 		    RE_CPLUSCMD_PCI_MRW |
2610 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING ?
2611 		     RE_CPLUSCMD_VLANSTRIP : 0) |
2612 		    (ifp->if_capenable & IFCAP_RXCSUM ?
2613 		     RE_CPLUSCMD_RXCSUM_ENB : 0));
2614 
2615 	/*
2616 	 * Init our MAC address.  Even though the chipset
2617 	 * documentation doesn't mention it, we need to enter "Config
2618 	 * register write enable" mode to modify the ID registers.
2619 	 */
2620 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_WRITECFG);
2621 	CSR_WRITE_4(sc, RE_IDR0,
2622 	    htole32(*(uint32_t *)(&sc->arpcom.ac_enaddr[0])));
2623 	CSR_WRITE_2(sc, RE_IDR4,
2624 	    htole16(*(uint16_t *)(&sc->arpcom.ac_enaddr[4])));
2625 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_OFF);
2626 
2627 	/*
2628 	 * For C+ mode, initialize the RX descriptors and mbufs.
2629 	 */
2630 	error = re_rx_list_init(sc);
2631 	if (error) {
2632 		re_stop(sc);
2633 		return;
2634 	}
2635 	error = re_tx_list_init(sc);
2636 	if (error) {
2637 		re_stop(sc);
2638 		return;
2639 	}
2640 
2641 	/*
2642 	 * Load the addresses of the RX and TX lists into the chip.
2643 	 */
2644 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_HI,
2645 	    RE_ADDR_HI(sc->re_ldata.re_rx_list_addr));
2646 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_LO,
2647 	    RE_ADDR_LO(sc->re_ldata.re_rx_list_addr));
2648 
2649 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_HI,
2650 	    RE_ADDR_HI(sc->re_ldata.re_tx_list_addr));
2651 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_LO,
2652 	    RE_ADDR_LO(sc->re_ldata.re_tx_list_addr));
2653 
2654 	/*
2655 	 * Enable transmit and receive.
2656 	 */
2657 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2658 
2659 	/*
2660 	 * Set the initial TX and RX configuration.
2661 	 */
2662 	if (sc->re_flags & RE_F_TESTMODE) {
2663 		if (!RE_IS_8139CP(sc))
2664 			CSR_WRITE_4(sc, RE_TXCFG,
2665 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON);
2666 		else
2667 			CSR_WRITE_4(sc, RE_TXCFG,
2668 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON_CPLUS);
2669 	} else
2670 		CSR_WRITE_4(sc, RE_TXCFG, RE_TXCFG_CONFIG);
2671 
2672 	framelen = RE_FRAMELEN(ifp->if_mtu);
2673 	if (framelen < MCLBYTES)
2674 		CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(MCLBYTES, 128));
2675 	else
2676 		CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(framelen, 128));
2677 
2678 	CSR_WRITE_4(sc, RE_RXCFG, RE_RXCFG_CONFIG);
2679 
2680 	/*
2681 	 * Program the multicast filter, if necessary.
2682 	 */
2683 	re_setmulti(sc);
2684 
2685 #ifdef IFPOLL_ENABLE
2686 	/*
2687 	 * Disable interrupts if we are polling.
2688 	 */
2689 	if (ifp->if_flags & IFF_NPOLLING)
2690 		re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2691 	else	/* otherwise ... */
2692 #endif /* IFPOLL_ENABLE */
2693 	/*
2694 	 * Enable interrupts.
2695 	 */
2696 	if (sc->re_flags & RE_F_TESTMODE)
2697 		CSR_WRITE_2(sc, RE_IMR, 0);
2698 	else
2699 		re_setup_intr(sc, 1, sc->re_imtype);
2700 	CSR_WRITE_2(sc, RE_ISR, sc->re_intrs);
2701 
2702 	/* Start RX/TX process. */
2703 	CSR_WRITE_4(sc, RE_MISSEDPKT, 0);
2704 
2705 #ifdef notdef
2706 	/* Enable receiver and transmitter. */
2707 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2708 #endif
2709 
2710 	/*
2711 	 * For 8169 gigE NICs, set the max allowed RX packet
2712 	 * size so we can receive jumbo frames.
2713 	 */
2714 	if (!RE_IS_8139CP(sc)) {
2715 		if (sc->re_caps & RE_C_CONTIGRX)
2716 			CSR_WRITE_2(sc, RE_MAXRXPKTLEN, sc->re_rxbuf_size);
2717 		else
2718 			CSR_WRITE_2(sc, RE_MAXRXPKTLEN, 16383);
2719 	}
2720 
2721 	if (sc->re_flags & RE_F_TESTMODE)
2722 		return;
2723 
2724 	mii_mediachg(mii);
2725 
2726 	CSR_WRITE_1(sc, RE_CFG1, RE_CFG1_DRVLOAD|RE_CFG1_FULLDUPLEX);
2727 
2728 	ifp->if_flags |= IFF_RUNNING;
2729 	ifq_clr_oactive(&ifp->if_snd);
2730 
2731 	callout_reset(&sc->re_timer, hz, re_tick, sc);
2732 }
2733 
2734 /*
2735  * Set media options.
2736  */
2737 static int
2738 re_ifmedia_upd(struct ifnet *ifp)
2739 {
2740 	struct re_softc *sc = ifp->if_softc;
2741 	struct mii_data *mii;
2742 
2743 	ASSERT_SERIALIZED(ifp->if_serializer);
2744 
2745 	mii = device_get_softc(sc->re_miibus);
2746 	mii_mediachg(mii);
2747 
2748 	return(0);
2749 }
2750 
2751 /*
2752  * Report current media status.
2753  */
2754 static void
2755 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2756 {
2757 	struct re_softc *sc = ifp->if_softc;
2758 	struct mii_data *mii;
2759 
2760 	ASSERT_SERIALIZED(ifp->if_serializer);
2761 
2762 	mii = device_get_softc(sc->re_miibus);
2763 
2764 	mii_pollstat(mii);
2765 	ifmr->ifm_active = mii->mii_media_active;
2766 	ifmr->ifm_status = mii->mii_media_status;
2767 }
2768 
2769 static int
2770 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2771 {
2772 	struct re_softc *sc = ifp->if_softc;
2773 	struct ifreq *ifr = (struct ifreq *) data;
2774 	struct mii_data *mii;
2775 	int error = 0, mask;
2776 
2777 	ASSERT_SERIALIZED(ifp->if_serializer);
2778 
2779 	switch(command) {
2780 	case SIOCSIFMTU:
2781 		if (ifr->ifr_mtu > sc->re_maxmtu) {
2782 			error = EINVAL;
2783 		} else if (ifp->if_mtu != ifr->ifr_mtu) {
2784 			ifp->if_mtu = ifr->ifr_mtu;
2785 			if (ifp->if_flags & IFF_RUNNING)
2786 				ifp->if_init(sc);
2787 		}
2788 		break;
2789 
2790 	case SIOCSIFFLAGS:
2791 		if (ifp->if_flags & IFF_UP) {
2792 			if (ifp->if_flags & IFF_RUNNING) {
2793 				if ((ifp->if_flags ^ sc->re_if_flags) &
2794 				    (IFF_PROMISC | IFF_ALLMULTI))
2795 					re_setmulti(sc);
2796 			} else {
2797 				re_init(sc);
2798 			}
2799 		} else if (ifp->if_flags & IFF_RUNNING) {
2800 			re_stop(sc);
2801 		}
2802 		sc->re_if_flags = ifp->if_flags;
2803 		break;
2804 
2805 	case SIOCADDMULTI:
2806 	case SIOCDELMULTI:
2807 		re_setmulti(sc);
2808 		break;
2809 
2810 	case SIOCGIFMEDIA:
2811 	case SIOCSIFMEDIA:
2812 		mii = device_get_softc(sc->re_miibus);
2813 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2814 		break;
2815 
2816 	case SIOCSIFCAP:
2817 		mask = (ifr->ifr_reqcap ^ ifp->if_capenable) &
2818 		       ifp->if_capabilities;
2819 		ifp->if_capenable ^= mask;
2820 
2821 		if (mask & IFCAP_HWCSUM) {
2822 			if (ifp->if_capenable & IFCAP_TXCSUM)
2823 				ifp->if_hwassist = sc->re_hwassist;
2824 			else
2825 				ifp->if_hwassist = 0;
2826 		}
2827 		if (mask && (ifp->if_flags & IFF_RUNNING))
2828 			re_init(sc);
2829 		break;
2830 
2831 	default:
2832 		error = ether_ioctl(ifp, command, data);
2833 		break;
2834 	}
2835 	return(error);
2836 }
2837 
2838 static void
2839 re_watchdog(struct ifnet *ifp)
2840 {
2841 	struct re_softc *sc = ifp->if_softc;
2842 
2843 	ASSERT_SERIALIZED(ifp->if_serializer);
2844 
2845 	if_printf(ifp, "watchdog timeout\n");
2846 
2847 	IFNET_STAT_INC(ifp, oerrors, 1);
2848 
2849 	re_txeof(sc);
2850 	re_rxeof(sc);
2851 
2852 	re_init(sc);
2853 
2854 	if (!ifq_is_empty(&ifp->if_snd))
2855 		if_devstart(ifp);
2856 }
2857 
2858 /*
2859  * Stop the adapter and free any mbufs allocated to the
2860  * RX and TX lists.
2861  */
2862 static void
2863 re_stop(struct re_softc *sc)
2864 {
2865 	struct ifnet *ifp = &sc->arpcom.ac_if;
2866 	int i;
2867 
2868 	ASSERT_SERIALIZED(ifp->if_serializer);
2869 
2870 	/* Reset the adapter. */
2871 	re_reset(sc, ifp->if_flags & IFF_RUNNING);
2872 
2873 	ifp->if_timer = 0;
2874 	callout_stop(&sc->re_timer);
2875 
2876 	ifp->if_flags &= ~IFF_RUNNING;
2877 	ifq_clr_oactive(&ifp->if_snd);
2878 	sc->re_flags &= ~(RE_F_TIMER_INTR | RE_F_DROP_RXFRAG | RE_F_LINKED);
2879 
2880 	CSR_WRITE_1(sc, RE_COMMAND, 0x00);
2881 	CSR_WRITE_2(sc, RE_IMR, 0x0000);
2882 	CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
2883 
2884 	re_free_rxchain(sc);
2885 
2886 	/* Free the TX list buffers. */
2887 	for (i = 0; i < sc->re_tx_desc_cnt; i++) {
2888 		if (sc->re_ldata.re_tx_mbuf[i] != NULL) {
2889 			bus_dmamap_unload(sc->re_ldata.re_tx_mtag,
2890 					  sc->re_ldata.re_tx_dmamap[i]);
2891 			m_freem(sc->re_ldata.re_tx_mbuf[i]);
2892 			sc->re_ldata.re_tx_mbuf[i] = NULL;
2893 		}
2894 	}
2895 
2896 	/* Free the RX list buffers. */
2897 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
2898 		if (sc->re_ldata.re_rx_mbuf[i] != NULL) {
2899 			if ((sc->re_flags & RE_F_USE_JPOOL) == 0) {
2900 				bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
2901 						  sc->re_ldata.re_rx_dmamap[i]);
2902 			}
2903 			m_freem(sc->re_ldata.re_rx_mbuf[i]);
2904 			sc->re_ldata.re_rx_mbuf[i] = NULL;
2905 		}
2906 	}
2907 }
2908 
2909 /*
2910  * Device suspend routine.  Stop the interface and save some PCI
2911  * settings in case the BIOS doesn't restore them properly on
2912  * resume.
2913  */
2914 static int
2915 re_suspend(device_t dev)
2916 {
2917 #ifndef BURN_BRIDGES
2918 	int i;
2919 #endif
2920 	struct re_softc *sc = device_get_softc(dev);
2921 	struct ifnet *ifp = &sc->arpcom.ac_if;
2922 
2923 	lwkt_serialize_enter(ifp->if_serializer);
2924 
2925 	re_stop(sc);
2926 
2927 #ifndef BURN_BRIDGES
2928 	for (i = 0; i < 5; i++)
2929 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2930 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2931 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2932 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2933 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2934 #endif
2935 
2936 	sc->re_flags |= RE_F_SUSPENDED;
2937 
2938 	lwkt_serialize_exit(ifp->if_serializer);
2939 
2940 	return (0);
2941 }
2942 
2943 /*
2944  * Device resume routine.  Restore some PCI settings in case the BIOS
2945  * doesn't, re-enable busmastering, and restart the interface if
2946  * appropriate.
2947  */
2948 static int
2949 re_resume(device_t dev)
2950 {
2951 	struct re_softc *sc = device_get_softc(dev);
2952 	struct ifnet *ifp = &sc->arpcom.ac_if;
2953 #ifndef BURN_BRIDGES
2954 	int i;
2955 #endif
2956 
2957 	lwkt_serialize_enter(ifp->if_serializer);
2958 
2959 #ifndef BURN_BRIDGES
2960 	/* better way to do this? */
2961 	for (i = 0; i < 5; i++)
2962 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2963 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2964 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2965 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2966 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2967 
2968 	/* reenable busmastering */
2969 	pci_enable_busmaster(dev);
2970 	pci_enable_io(dev, SYS_RES_IOPORT);
2971 #endif
2972 
2973 	/* reinitialize interface if necessary */
2974 	if (ifp->if_flags & IFF_UP)
2975 		re_init(sc);
2976 
2977 	sc->re_flags &= ~RE_F_SUSPENDED;
2978 
2979 	lwkt_serialize_exit(ifp->if_serializer);
2980 
2981 	return (0);
2982 }
2983 
2984 /*
2985  * Stop all chip I/O so that the kernel's probe routines don't
2986  * get confused by errant DMAs when rebooting.
2987  */
2988 static void
2989 re_shutdown(device_t dev)
2990 {
2991 	struct re_softc *sc = device_get_softc(dev);
2992 	struct ifnet *ifp = &sc->arpcom.ac_if;
2993 
2994 	lwkt_serialize_enter(ifp->if_serializer);
2995 	re_stop(sc);
2996 	lwkt_serialize_exit(ifp->if_serializer);
2997 }
2998 
2999 static int
3000 re_sysctl_rxtime(SYSCTL_HANDLER_ARGS)
3001 {
3002 	struct re_softc *sc = arg1;
3003 
3004 	return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_rx_time);
3005 }
3006 
3007 static int
3008 re_sysctl_txtime(SYSCTL_HANDLER_ARGS)
3009 {
3010 	struct re_softc *sc = arg1;
3011 
3012 	return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_tx_time);
3013 }
3014 
3015 static int
3016 re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *hwtime)
3017 {
3018 	struct re_softc *sc = arg1;
3019 	struct ifnet *ifp = &sc->arpcom.ac_if;
3020 	int error, v;
3021 
3022 	lwkt_serialize_enter(ifp->if_serializer);
3023 
3024 	v = *hwtime;
3025 	error = sysctl_handle_int(oidp, &v, 0, req);
3026 	if (error || req->newptr == NULL)
3027 		goto back;
3028 
3029 	if (v <= 0) {
3030 		error = EINVAL;
3031 		goto back;
3032 	}
3033 
3034 	if (v != *hwtime) {
3035 		*hwtime = v;
3036 
3037 		if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) ==
3038 		    IFF_RUNNING && sc->re_imtype == RE_IMTYPE_HW)
3039 			re_setup_hw_im(sc);
3040 	}
3041 back:
3042 	lwkt_serialize_exit(ifp->if_serializer);
3043 	return error;
3044 }
3045 
3046 static int
3047 re_sysctl_simtime(SYSCTL_HANDLER_ARGS)
3048 {
3049 	struct re_softc *sc = arg1;
3050 	struct ifnet *ifp = &sc->arpcom.ac_if;
3051 	int error, v;
3052 
3053 	lwkt_serialize_enter(ifp->if_serializer);
3054 
3055 	v = sc->re_sim_time;
3056 	error = sysctl_handle_int(oidp, &v, 0, req);
3057 	if (error || req->newptr == NULL)
3058 		goto back;
3059 
3060 	if (v <= 0) {
3061 		error = EINVAL;
3062 		goto back;
3063 	}
3064 
3065 	if (v != sc->re_sim_time) {
3066 		sc->re_sim_time = v;
3067 
3068 		if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) ==
3069 		    IFF_RUNNING && sc->re_imtype == RE_IMTYPE_SIM) {
3070 #ifdef foo
3071 			int reg;
3072 
3073 			/*
3074 			 * Following code causes various strange
3075 			 * performance problems.  Hmm ...
3076 			 */
3077 			CSR_WRITE_2(sc, RE_IMR, 0);
3078 			if (!RE_IS_8139CP(sc))
3079 				reg = RE_TIMERINT_8169;
3080 			else
3081 				reg = RE_TIMERINT;
3082 			CSR_WRITE_4(sc, reg, 0);
3083 			CSR_READ_4(sc, reg); /* flush */
3084 
3085 			CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
3086 			re_setup_sim_im(sc);
3087 #else
3088 			re_setup_intr(sc, 0, RE_IMTYPE_NONE);
3089 			DELAY(10);
3090 			re_setup_intr(sc, 1, RE_IMTYPE_SIM);
3091 #endif
3092 		}
3093 	}
3094 back:
3095 	lwkt_serialize_exit(ifp->if_serializer);
3096 	return error;
3097 }
3098 
3099 static int
3100 re_sysctl_imtype(SYSCTL_HANDLER_ARGS)
3101 {
3102 	struct re_softc *sc = arg1;
3103 	struct ifnet *ifp = &sc->arpcom.ac_if;
3104 	int error, v;
3105 
3106 	lwkt_serialize_enter(ifp->if_serializer);
3107 
3108 	v = sc->re_imtype;
3109 	error = sysctl_handle_int(oidp, &v, 0, req);
3110 	if (error || req->newptr == NULL)
3111 		goto back;
3112 
3113 	if (v != RE_IMTYPE_HW && v != RE_IMTYPE_SIM && v != RE_IMTYPE_NONE) {
3114 		error = EINVAL;
3115 		goto back;
3116 	}
3117 	if (v == RE_IMTYPE_HW && (sc->re_caps & RE_C_HWIM) == 0) {
3118 		/* Can't do hardware interrupt moderation */
3119 		error = EOPNOTSUPP;
3120 		goto back;
3121 	}
3122 
3123 	if (v != sc->re_imtype) {
3124 		sc->re_imtype = v;
3125 		if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) ==
3126 		    IFF_RUNNING)
3127 			re_setup_intr(sc, 1, sc->re_imtype);
3128 	}
3129 back:
3130 	lwkt_serialize_exit(ifp->if_serializer);
3131 	return error;
3132 }
3133 
3134 static void
3135 re_setup_hw_im(struct re_softc *sc)
3136 {
3137 	KKASSERT(sc->re_caps & RE_C_HWIM);
3138 
3139 	/*
3140 	 * Interrupt moderation
3141 	 *
3142 	 * 0xABCD
3143 	 * A - unknown (maybe TX related)
3144 	 * B - TX timer (unit: 25us)
3145 	 * C - unknown (maybe RX related)
3146 	 * D - RX timer (unit: 25us)
3147 	 *
3148 	 *
3149 	 * re(4)'s interrupt moderation is actually controlled by
3150 	 * two variables, like most other NICs (bge, bce etc.)
3151 	 * o  timer
3152 	 * o  number of packets [P]
3153 	 *
3154 	 * The logic relationship between these two variables is
3155 	 * similar to other NICs too:
3156 	 * if (timer expire || packets > [P])
3157 	 *     Interrupt is delivered
3158 	 *
3159 	 * Currently we only know how to set 'timer', but not
3160 	 * 'number of packets', which should be ~30, as far as I
3161 	 * tested (sink ~900Kpps, interrupt rate is 30KHz)
3162 	 */
3163 	CSR_WRITE_2(sc, RE_IM,
3164 		    RE_IM_RXTIME(sc->re_rx_time) |
3165 		    RE_IM_TXTIME(sc->re_tx_time) |
3166 		    RE_IM_MAGIC);
3167 }
3168 
3169 static void
3170 re_disable_hw_im(struct re_softc *sc)
3171 {
3172 	if (sc->re_caps & RE_C_HWIM)
3173 		CSR_WRITE_2(sc, RE_IM, 0);
3174 }
3175 
3176 static void
3177 re_setup_sim_im(struct re_softc *sc)
3178 {
3179 	if (!RE_IS_8139CP(sc)) {
3180 		uint32_t ticks;
3181 
3182 		/*
3183 		 * Datasheet says tick decreases at bus speed,
3184 		 * but it seems the clock runs a little bit
3185 		 * faster, so we do some compensation here.
3186 		 */
3187 		ticks = (sc->re_sim_time * sc->re_bus_speed * 8) / 5;
3188 		CSR_WRITE_4(sc, RE_TIMERINT_8169, ticks);
3189 	} else {
3190 		CSR_WRITE_4(sc, RE_TIMERINT, 0x400); /* XXX */
3191 	}
3192 	CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
3193 	sc->re_flags |= RE_F_TIMER_INTR;
3194 }
3195 
3196 static void
3197 re_disable_sim_im(struct re_softc *sc)
3198 {
3199 	if (!RE_IS_8139CP(sc))
3200 		CSR_WRITE_4(sc, RE_TIMERINT_8169, 0);
3201 	else
3202 		CSR_WRITE_4(sc, RE_TIMERINT, 0);
3203 	sc->re_flags &= ~RE_F_TIMER_INTR;
3204 }
3205 
3206 static void
3207 re_config_imtype(struct re_softc *sc, int imtype)
3208 {
3209 	switch (imtype) {
3210 	case RE_IMTYPE_HW:
3211 		KKASSERT(sc->re_caps & RE_C_HWIM);
3212 		/* FALL THROUGH */
3213 	case RE_IMTYPE_NONE:
3214 		sc->re_intrs = RE_INTRS;
3215 		sc->re_rx_ack = RE_ISR_RX_OK | RE_ISR_FIFO_OFLOW |
3216 				RE_ISR_RX_OVERRUN;
3217 		sc->re_tx_ack = RE_ISR_TX_OK;
3218 		break;
3219 
3220 	case RE_IMTYPE_SIM:
3221 		sc->re_intrs = RE_INTRS_TIMER;
3222 		sc->re_rx_ack = RE_ISR_TIMEOUT_EXPIRED;
3223 		sc->re_tx_ack = RE_ISR_TIMEOUT_EXPIRED;
3224 		break;
3225 
3226 	default:
3227 		panic("%s: unknown imtype %d",
3228 		      sc->arpcom.ac_if.if_xname, imtype);
3229 	}
3230 }
3231 
3232 static void
3233 re_setup_intr(struct re_softc *sc, int enable_intrs, int imtype)
3234 {
3235 	re_config_imtype(sc, imtype);
3236 
3237 	if (enable_intrs)
3238 		CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
3239 	else
3240 		CSR_WRITE_2(sc, RE_IMR, 0);
3241 
3242 	sc->re_npoll.ifpc_stcount = 0;
3243 
3244 	switch (imtype) {
3245 	case RE_IMTYPE_NONE:
3246 		re_disable_sim_im(sc);
3247 		re_disable_hw_im(sc);
3248 		break;
3249 
3250 	case RE_IMTYPE_HW:
3251 		KKASSERT(sc->re_caps & RE_C_HWIM);
3252 		re_disable_sim_im(sc);
3253 		re_setup_hw_im(sc);
3254 		break;
3255 
3256 	case RE_IMTYPE_SIM:
3257 		re_disable_hw_im(sc);
3258 		re_setup_sim_im(sc);
3259 		break;
3260 
3261 	default:
3262 		panic("%s: unknown imtype %d",
3263 		      sc->arpcom.ac_if.if_xname, imtype);
3264 	}
3265 }
3266 
3267 static void
3268 re_get_eaddr(struct re_softc *sc, uint8_t *eaddr)
3269 {
3270 	int i;
3271 
3272 	if (sc->re_macver == RE_MACVER_11 ||
3273 	    sc->re_macver == RE_MACVER_12 ||
3274 	    sc->re_macver == RE_MACVER_30 ||
3275 	    sc->re_macver == RE_MACVER_31) {
3276 		uint16_t re_did;
3277 
3278 		re_get_eewidth(sc);
3279 		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
3280 		if (re_did == 0x8128) {
3281 			uint16_t as[ETHER_ADDR_LEN / 2];
3282 			int eaddr_off;
3283 
3284 			if (sc->re_macver == RE_MACVER_30 ||
3285 			    sc->re_macver == RE_MACVER_31)
3286 				eaddr_off = RE_EE_EADDR1;
3287 			else
3288 				eaddr_off = RE_EE_EADDR0;
3289 
3290 			/*
3291 			 * Get station address from the EEPROM.
3292 			 */
3293 			re_read_eeprom(sc, (caddr_t)as, eaddr_off, 3);
3294 			for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
3295 				as[i] = le16toh(as[i]);
3296 			bcopy(as, eaddr, ETHER_ADDR_LEN);
3297 			return;
3298 		}
3299 	}
3300 
3301 	/*
3302 	 * Get station address from IDRx.
3303 	 */
3304 	for (i = 0; i < ETHER_ADDR_LEN; ++i)
3305 		eaddr[i] = CSR_READ_1(sc, RE_IDR0 + i);
3306 }
3307 
3308 static int
3309 re_jpool_alloc(struct re_softc *sc)
3310 {
3311 	struct re_list_data *ldata = &sc->re_ldata;
3312 	struct re_jbuf *jbuf;
3313 	bus_addr_t paddr;
3314 	bus_size_t jpool_size;
3315 	bus_dmamem_t dmem;
3316 	caddr_t buf;
3317 	int i, error;
3318 
3319 	lwkt_serialize_init(&ldata->re_jbuf_serializer);
3320 
3321 	ldata->re_jbuf = kmalloc(sizeof(struct re_jbuf) * RE_JBUF_COUNT(sc),
3322 				 M_DEVBUF, M_WAITOK | M_ZERO);
3323 
3324 	jpool_size = RE_JBUF_COUNT(sc) * RE_JBUF_SIZE;
3325 
3326 	error = bus_dmamem_coherent(sc->re_parent_tag,
3327 			RE_RXBUF_ALIGN, 0,
3328 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3329 			jpool_size, BUS_DMA_WAITOK, &dmem);
3330 	if (error) {
3331 		device_printf(sc->re_dev, "could not allocate jumbo memory\n");
3332 		return error;
3333 	}
3334 	ldata->re_jpool_tag = dmem.dmem_tag;
3335 	ldata->re_jpool_map = dmem.dmem_map;
3336 	ldata->re_jpool = dmem.dmem_addr;
3337 	paddr = dmem.dmem_busaddr;
3338 
3339 	/* ..and split it into 9KB chunks */
3340 	SLIST_INIT(&ldata->re_jbuf_free);
3341 
3342 	buf = ldata->re_jpool;
3343 	for (i = 0; i < RE_JBUF_COUNT(sc); i++) {
3344 		jbuf = &ldata->re_jbuf[i];
3345 
3346 		jbuf->re_sc = sc;
3347 		jbuf->re_inuse = 0;
3348 		jbuf->re_slot = i;
3349 		jbuf->re_buf = buf;
3350 		jbuf->re_paddr = paddr;
3351 
3352 		SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3353 
3354 		buf += RE_JBUF_SIZE;
3355 		paddr += RE_JBUF_SIZE;
3356 	}
3357 	return 0;
3358 }
3359 
3360 static void
3361 re_jpool_free(struct re_softc *sc)
3362 {
3363 	struct re_list_data *ldata = &sc->re_ldata;
3364 
3365 	if (ldata->re_jpool_tag != NULL) {
3366 		bus_dmamap_unload(ldata->re_jpool_tag, ldata->re_jpool_map);
3367 		bus_dmamem_free(ldata->re_jpool_tag, ldata->re_jpool,
3368 				ldata->re_jpool_map);
3369 		bus_dma_tag_destroy(ldata->re_jpool_tag);
3370 		ldata->re_jpool_tag = NULL;
3371 	}
3372 
3373 	if (ldata->re_jbuf != NULL) {
3374 		kfree(ldata->re_jbuf, M_DEVBUF);
3375 		ldata->re_jbuf = NULL;
3376 	}
3377 }
3378 
3379 static struct re_jbuf *
3380 re_jbuf_alloc(struct re_softc *sc)
3381 {
3382 	struct re_list_data *ldata = &sc->re_ldata;
3383 	struct re_jbuf *jbuf;
3384 
3385 	lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3386 
3387 	jbuf = SLIST_FIRST(&ldata->re_jbuf_free);
3388 	if (jbuf != NULL) {
3389 		SLIST_REMOVE_HEAD(&ldata->re_jbuf_free, re_link);
3390 		jbuf->re_inuse = 1;
3391 	}
3392 
3393 	lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3394 
3395 	return jbuf;
3396 }
3397 
3398 static void
3399 re_jbuf_free(void *arg)
3400 {
3401 	struct re_jbuf *jbuf = arg;
3402 	struct re_softc *sc = jbuf->re_sc;
3403 	struct re_list_data *ldata = &sc->re_ldata;
3404 
3405 	if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3406 		panic("%s: free wrong jumbo buffer",
3407 		      sc->arpcom.ac_if.if_xname);
3408 	} else if (jbuf->re_inuse == 0) {
3409 		panic("%s: jumbo buffer already freed",
3410 		      sc->arpcom.ac_if.if_xname);
3411 	}
3412 
3413 	lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3414 	atomic_subtract_int(&jbuf->re_inuse, 1);
3415 	if (jbuf->re_inuse == 0)
3416 		SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3417 	lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3418 }
3419 
3420 static void
3421 re_jbuf_ref(void *arg)
3422 {
3423 	struct re_jbuf *jbuf = arg;
3424 	struct re_softc *sc = jbuf->re_sc;
3425 	struct re_list_data *ldata = &sc->re_ldata;
3426 
3427 	if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3428 		panic("%s: ref wrong jumbo buffer",
3429 		      sc->arpcom.ac_if.if_xname);
3430 	} else if (jbuf->re_inuse == 0) {
3431 		panic("%s: jumbo buffer already freed",
3432 		      sc->arpcom.ac_if.if_xname);
3433 	}
3434 	atomic_add_int(&jbuf->re_inuse, 1);
3435 }
3436