xref: /dragonfly/sys/dev/netif/sf/if_sf.c (revision 25a2db75)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_sf.c,v 1.18.2.8 2001/12/16 15:46:07 luigi Exp $
33  */
34 
35 /*
36  * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
37  * Programming manual is available from:
38  * ftp.adaptec.com:/pub/BBS/userguides/aic6915_pg.pdf.
39  *
40  * Written by Bill Paul <wpaul@ctr.columbia.edu>
41  * Department of Electical Engineering
42  * Columbia University, New York City
43  */
44 
45 /*
46  * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
47  * controller designed with flexibility and reducing CPU load in mind.
48  * The Starfire offers high and low priority buffer queues, a
49  * producer/consumer index mechanism and several different buffer
50  * queue and completion queue descriptor types. Any one of a number
51  * of different driver designs can be used, depending on system and
52  * OS requirements. This driver makes use of type0 transmit frame
53  * descriptors (since BSD fragments packets across an mbuf chain)
54  * and two RX buffer queues prioritized on size (one queue for small
55  * frames that will fit into a single mbuf, another with full size
56  * mbuf clusters for everything else). The producer/consumer indexes
57  * and completion queues are also used.
58  *
59  * One downside to the Starfire has to do with alignment: buffer
60  * queues must be aligned on 256-byte boundaries, and receive buffers
61  * must be aligned on longword boundaries. The receive buffer alignment
62  * causes problems on the Alpha platform, where the packet payload
63  * should be longword aligned. There is no simple way around this.
64  *
65  * For receive filtering, the Starfire offers 16 perfect filter slots
66  * and a 512-bit hash table.
67  *
68  * The Starfire has no internal transceiver, relying instead on an
69  * external MII-based transceiver. Accessing registers on external
70  * PHYs is done through a special register map rather than with the
71  * usual bitbang MDIO method.
72  *
73  * Acesssing the registers on the Starfire is a little tricky. The
74  * Starfire has a 512K internal register space. When programmed for
75  * PCI memory mapped mode, the entire register space can be accessed
76  * directly. However in I/O space mode, only 256 bytes are directly
77  * mapped into PCI I/O space. The other registers can be accessed
78  * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
79  * registers inside the 256-byte I/O window.
80  */
81 
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/sockio.h>
85 #include <sys/mbuf.h>
86 #include <sys/malloc.h>
87 #include <sys/kernel.h>
88 #include <sys/interrupt.h>
89 #include <sys/socket.h>
90 #include <sys/serialize.h>
91 #include <sys/bus.h>
92 #include <sys/rman.h>
93 #include <sys/thread2.h>
94 
95 #include <net/if.h>
96 #include <net/ifq_var.h>
97 #include <net/if_arp.h>
98 #include <net/ethernet.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 
102 #include <net/bpf.h>
103 
104 #include <vm/vm.h>              /* for vtophys */
105 #include <vm/pmap.h>            /* for vtophys */
106 
107 #include <machine/clock.h>      /* for DELAY */
108 
109 #include "../mii_layer/mii.h"
110 #include "../mii_layer/miivar.h"
111 
112 /* "controller miibus0" required.  See GENERIC if you get errors here. */
113 #include "miibus_if.h"
114 
115 #include <bus/pci/pcidevs.h>
116 #include <bus/pci/pcireg.h>
117 #include <bus/pci/pcivar.h>
118 
119 #define SF_USEIOSPACE
120 
121 #include "if_sfreg.h"
122 
123 static struct sf_type sf_devs[] = {
124 	{ PCI_VENDOR_ADP, PCI_PRODUCT_ADP_AIC6915,
125 		"Adaptec AIC-6915 10/100BaseTX" },
126 	{ 0, 0, NULL }
127 };
128 
129 static int sf_probe		(device_t);
130 static int sf_attach		(device_t);
131 static int sf_detach		(device_t);
132 static void sf_intr		(void *);
133 static void sf_stats_update	(void *);
134 static void sf_rxeof		(struct sf_softc *);
135 static void sf_txeof		(struct sf_softc *);
136 static int sf_encap		(struct sf_softc *,
137 					struct sf_tx_bufdesc_type0 *,
138 					struct mbuf *);
139 static void sf_start		(struct ifnet *, struct ifaltq_subque *);
140 static int sf_ioctl		(struct ifnet *, u_long, caddr_t,
141 					struct ucred *);
142 static void sf_init		(void *);
143 static void sf_stop		(struct sf_softc *);
144 static void sf_watchdog		(struct ifnet *);
145 static void sf_shutdown		(device_t);
146 static int sf_ifmedia_upd	(struct ifnet *);
147 static void sf_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
148 static void sf_reset		(struct sf_softc *);
149 static int sf_init_rx_ring	(struct sf_softc *);
150 static void sf_init_tx_ring	(struct sf_softc *);
151 static int sf_newbuf		(struct sf_softc *,
152 					struct sf_rx_bufdesc_type0 *,
153 					struct mbuf *);
154 static void sf_setmulti		(struct sf_softc *);
155 static int sf_setperf		(struct sf_softc *, int, caddr_t);
156 static int sf_sethash		(struct sf_softc *, caddr_t, int);
157 #ifdef notdef
158 static int sf_setvlan		(struct sf_softc *, int, u_int32_t);
159 #endif
160 
161 static u_int8_t sf_read_eeprom	(struct sf_softc *, int);
162 static u_int32_t sf_calchash	(caddr_t);
163 
164 static int sf_miibus_readreg	(device_t, int, int);
165 static int sf_miibus_writereg	(device_t, int, int, int);
166 static void sf_miibus_statchg	(device_t);
167 
168 static u_int32_t csr_read_4	(struct sf_softc *, int);
169 static void csr_write_4		(struct sf_softc *, int, u_int32_t);
170 static void sf_txthresh_adjust	(struct sf_softc *);
171 
172 #ifdef SF_USEIOSPACE
173 #define SF_RES			SYS_RES_IOPORT
174 #define SF_RID			SF_PCI_LOIO
175 #else
176 #define SF_RES			SYS_RES_MEMORY
177 #define SF_RID			SF_PCI_LOMEM
178 #endif
179 
180 static device_method_t sf_methods[] = {
181 	/* Device interface */
182 	DEVMETHOD(device_probe,		sf_probe),
183 	DEVMETHOD(device_attach,	sf_attach),
184 	DEVMETHOD(device_detach,	sf_detach),
185 	DEVMETHOD(device_shutdown,	sf_shutdown),
186 
187 	/* bus interface */
188 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
189 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
190 
191 	/* MII interface */
192 	DEVMETHOD(miibus_readreg,	sf_miibus_readreg),
193 	DEVMETHOD(miibus_writereg,	sf_miibus_writereg),
194 	DEVMETHOD(miibus_statchg,	sf_miibus_statchg),
195 
196 	DEVMETHOD_END
197 };
198 
199 static driver_t sf_driver = {
200 	"sf",
201 	sf_methods,
202 	sizeof(struct sf_softc),
203 };
204 
205 static devclass_t sf_devclass;
206 
207 DECLARE_DUMMY_MODULE(if_sf);
208 DRIVER_MODULE(if_sf, pci, sf_driver, sf_devclass, NULL, NULL);
209 DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, NULL, NULL);
210 
211 #define SF_SETBIT(sc, reg, x)	\
212 	csr_write_4(sc, reg, csr_read_4(sc, reg) | x)
213 
214 #define SF_CLRBIT(sc, reg, x)				\
215 	csr_write_4(sc, reg, csr_read_4(sc, reg) & ~x)
216 
217 static u_int32_t
218 csr_read_4(struct sf_softc *sc, int reg)
219 {
220 	u_int32_t		val;
221 
222 #ifdef SF_USEIOSPACE
223 	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
224 	val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
225 #else
226 	val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
227 #endif
228 
229 	return(val);
230 }
231 
232 static u_int8_t
233 sf_read_eeprom(struct sf_softc *sc, int reg)
234 {
235 	u_int8_t		val;
236 
237 	val = (csr_read_4(sc, SF_EEADDR_BASE +
238 	    (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
239 
240 	return(val);
241 }
242 
243 static void
244 csr_write_4(struct sf_softc *sc, int reg, u_int32_t val)
245 {
246 #ifdef SF_USEIOSPACE
247 	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
248 	CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
249 #else
250 	CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
251 #endif
252 	return;
253 }
254 
255 static u_int32_t
256 sf_calchash(caddr_t addr)
257 {
258 	u_int32_t		crc, carry;
259 	int			i, j;
260 	u_int8_t		c;
261 
262 	/* Compute CRC for the address value. */
263 	crc = 0xFFFFFFFF; /* initial value */
264 
265 	for (i = 0; i < 6; i++) {
266 		c = *(addr + i);
267 		for (j = 0; j < 8; j++) {
268 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
269 			crc <<= 1;
270 			c >>= 1;
271 			if (carry)
272 				crc = (crc ^ 0x04c11db6) | carry;
273 		}
274 	}
275 
276 	/* return the filter bit position */
277 	return(crc >> 23 & 0x1FF);
278 }
279 
280 /*
281  * Copy the address 'mac' into the perfect RX filter entry at
282  * offset 'idx.' The perfect filter only has 16 entries so do
283  * some sanity tests.
284  */
285 static int
286 sf_setperf(struct sf_softc *sc, int idx, caddr_t mac)
287 {
288 	u_int16_t		*p;
289 
290 	if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
291 		return(EINVAL);
292 
293 	if (mac == NULL)
294 		return(EINVAL);
295 
296 	p = (u_int16_t *)mac;
297 
298 	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
299 	    (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
300 	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
301 	    (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
302 	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
303 	    (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
304 
305 	return(0);
306 }
307 
308 /*
309  * Set the bit in the 512-bit hash table that corresponds to the
310  * specified mac address 'mac.' If 'prio' is nonzero, update the
311  * priority hash table instead of the filter hash table.
312  */
313 static int
314 sf_sethash(struct sf_softc *sc, caddr_t mac, int prio)
315 {
316 	u_int32_t		h = 0;
317 
318 	if (mac == NULL)
319 		return(EINVAL);
320 
321 	h = sf_calchash(mac);
322 
323 	if (prio) {
324 		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
325 		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
326 	} else {
327 		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
328 		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
329 	}
330 
331 	return(0);
332 }
333 
334 #ifdef notdef
335 /*
336  * Set a VLAN tag in the receive filter.
337  */
338 static int
339 sf_setvlan(struct sf_softc *sc, int idx, u_int32_t vlan)
340 {
341 	if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
342 		return(EINVAL);
343 
344 	csr_write_4(sc, SF_RXFILT_HASH_BASE +
345 	    (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
346 
347 	return(0);
348 }
349 #endif
350 
351 static int
352 sf_miibus_readreg(device_t dev, int phy, int reg)
353 {
354 	struct sf_softc		*sc;
355 	int			i;
356 	u_int32_t		val = 0;
357 
358 	sc = device_get_softc(dev);
359 
360 	for (i = 0; i < SF_TIMEOUT; i++) {
361 		val = csr_read_4(sc, SF_PHY_REG(phy, reg));
362 		if (val & SF_MII_DATAVALID)
363 			break;
364 	}
365 
366 	if (i == SF_TIMEOUT)
367 		return(0);
368 
369 	if ((val & 0x0000FFFF) == 0xFFFF)
370 		return(0);
371 
372 	return(val & 0x0000FFFF);
373 }
374 
375 static int
376 sf_miibus_writereg(device_t dev, int phy, int reg, int val)
377 {
378 	struct sf_softc		*sc;
379 	int			i;
380 	int			busy;
381 
382 	sc = device_get_softc(dev);
383 
384 	csr_write_4(sc, SF_PHY_REG(phy, reg), val);
385 
386 	for (i = 0; i < SF_TIMEOUT; i++) {
387 		busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
388 		if (!(busy & SF_MII_BUSY))
389 			break;
390 	}
391 
392 	return(0);
393 }
394 
395 static void
396 sf_miibus_statchg(device_t dev)
397 {
398 	struct sf_softc		*sc;
399 	struct mii_data		*mii;
400 
401 	sc = device_get_softc(dev);
402 	mii = device_get_softc(sc->sf_miibus);
403 
404 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
405 		SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
406 		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
407 	} else {
408 		SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
409 		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
410 	}
411 
412 	return;
413 }
414 
415 static void
416 sf_setmulti(struct sf_softc *sc)
417 {
418 	struct ifnet		*ifp;
419 	int			i;
420 	struct ifmultiaddr	*ifma;
421 	u_int8_t		dummy[] = { 0, 0, 0, 0, 0, 0 };
422 
423 	ifp = &sc->arpcom.ac_if;
424 
425 	/* First zot all the existing filters. */
426 	for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
427 		sf_setperf(sc, i, (char *)&dummy);
428 	for (i = SF_RXFILT_HASH_BASE;
429 	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
430 		csr_write_4(sc, i, 0);
431 	SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
432 
433 	/* Now program new ones. */
434 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
435 		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
436 	} else {
437 		i = 1;
438 		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
439 			if (ifma->ifma_addr->sa_family != AF_LINK)
440 				continue;
441 			/*
442 			 * Program the first 15 multicast groups
443 			 * into the perfect filter. For all others,
444 			 * use the hash table.
445 			 */
446 			if (i < SF_RXFILT_PERFECT_CNT) {
447 				sf_setperf(sc, i,
448 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
449 				i++;
450 				continue;
451 			}
452 
453 			sf_sethash(sc,
454 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
455 		}
456 	}
457 
458 	return;
459 }
460 
461 /*
462  * Set media options.
463  */
464 static int
465 sf_ifmedia_upd(struct ifnet *ifp)
466 {
467 	struct sf_softc		*sc;
468 	struct mii_data		*mii;
469 
470 	sc = ifp->if_softc;
471 	mii = device_get_softc(sc->sf_miibus);
472 	sc->sf_link = 0;
473 	if (mii->mii_instance) {
474 		struct mii_softc        *miisc;
475 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
476 		    miisc = LIST_NEXT(miisc, mii_list))
477 			mii_phy_reset(miisc);
478 	}
479 	mii_mediachg(mii);
480 
481 	return(0);
482 }
483 
484 /*
485  * Report current media status.
486  */
487 static void
488 sf_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
489 {
490 	struct sf_softc		*sc;
491 	struct mii_data		*mii;
492 
493 	sc = ifp->if_softc;
494 	mii = device_get_softc(sc->sf_miibus);
495 
496 	mii_pollstat(mii);
497 	ifmr->ifm_active = mii->mii_media_active;
498 	ifmr->ifm_status = mii->mii_media_status;
499 
500 	return;
501 }
502 
503 static int
504 sf_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
505 {
506 	struct sf_softc		*sc = ifp->if_softc;
507 	struct ifreq		*ifr = (struct ifreq *) data;
508 	struct mii_data		*mii;
509 	int error = 0;
510 
511 	switch(command) {
512 	case SIOCSIFFLAGS:
513 		if (ifp->if_flags & IFF_UP) {
514 			if (ifp->if_flags & IFF_RUNNING &&
515 			    ifp->if_flags & IFF_PROMISC &&
516 			    !(sc->sf_if_flags & IFF_PROMISC)) {
517 				SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
518 			} else if (ifp->if_flags & IFF_RUNNING &&
519 			    !(ifp->if_flags & IFF_PROMISC) &&
520 			    sc->sf_if_flags & IFF_PROMISC) {
521 				SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
522 			} else if (!(ifp->if_flags & IFF_RUNNING))
523 				sf_init(sc);
524 		} else {
525 			if (ifp->if_flags & IFF_RUNNING)
526 				sf_stop(sc);
527 		}
528 		sc->sf_if_flags = ifp->if_flags;
529 		error = 0;
530 		break;
531 	case SIOCADDMULTI:
532 	case SIOCDELMULTI:
533 		sf_setmulti(sc);
534 		error = 0;
535 		break;
536 	case SIOCGIFMEDIA:
537 	case SIOCSIFMEDIA:
538 		mii = device_get_softc(sc->sf_miibus);
539 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
540 		break;
541 	default:
542 		error = ether_ioctl(ifp, command, data);
543 		break;
544 	}
545 
546 	return(error);
547 }
548 
549 static void
550 sf_reset(struct sf_softc *sc)
551 {
552 	int		i;
553 
554 	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
555 	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
556 	DELAY(1000);
557 	SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
558 
559 	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
560 
561 	for (i = 0; i < SF_TIMEOUT; i++) {
562 		DELAY(10);
563 		if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
564 			break;
565 	}
566 
567 	if (i == SF_TIMEOUT)
568 		kprintf("sf%d: reset never completed!\n", sc->sf_unit);
569 
570 	/* Wait a little while for the chip to get its brains in order. */
571 	DELAY(1000);
572 	return;
573 }
574 
575 /*
576  * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
577  * IDs against our list and return a device name if we find a match.
578  * We also check the subsystem ID so that we can identify exactly which
579  * NIC has been found, if possible.
580  */
581 static int
582 sf_probe(device_t dev)
583 {
584 	struct sf_type		*t;
585 
586 	t = sf_devs;
587 
588 	while(t->sf_name != NULL) {
589 		if ((pci_get_vendor(dev) == t->sf_vid) &&
590 		    (pci_get_device(dev) == t->sf_did)) {
591 			switch((pci_read_config(dev,
592 			    SF_PCI_SUBVEN_ID, 4) >> 16) & 0xFFFF) {
593 			case AD_SUBSYSID_62011_REV0:
594 			case AD_SUBSYSID_62011_REV1:
595 				device_set_desc(dev,
596 				    "Adaptec ANA-62011 10/100BaseTX");
597 				return(0);
598 				break;
599 			case AD_SUBSYSID_62022:
600 				device_set_desc(dev,
601 				    "Adaptec ANA-62022 10/100BaseTX");
602 				return(0);
603 				break;
604 			case AD_SUBSYSID_62044_REV0:
605 			case AD_SUBSYSID_62044_REV1:
606 				device_set_desc(dev,
607 				    "Adaptec ANA-62044 10/100BaseTX");
608 				return(0);
609 				break;
610 			case AD_SUBSYSID_62020:
611 				device_set_desc(dev,
612 				    "Adaptec ANA-62020 10/100BaseFX");
613 				return(0);
614 				break;
615 			case AD_SUBSYSID_69011:
616 				device_set_desc(dev,
617 				    "Adaptec ANA-69011 10/100BaseTX");
618 				return(0);
619 				break;
620 			default:
621 				device_set_desc(dev, t->sf_name);
622 				return(0);
623 				break;
624 			}
625 		}
626 		t++;
627 	}
628 
629 	return(ENXIO);
630 }
631 
632 /*
633  * Attach the interface. Allocate softc structures, do ifmedia
634  * setup and ethernet/BPF attach.
635  */
636 static int
637 sf_attach(device_t dev)
638 {
639 	int			i;
640 	u_int32_t		command;
641 	struct sf_softc		*sc;
642 	struct ifnet		*ifp;
643 	int			unit, rid, error = 0;
644 
645 	sc = device_get_softc(dev);
646 	unit = device_get_unit(dev);
647 
648 	/*
649 	 * Handle power management nonsense.
650 	 */
651 	command = pci_read_config(dev, SF_PCI_CAPID, 4) & 0x000000FF;
652 	if (command == 0x01) {
653 
654 		command = pci_read_config(dev, SF_PCI_PWRMGMTCTRL, 4);
655 		if (command & SF_PSTATE_MASK) {
656 			u_int32_t		iobase, membase, irq;
657 
658 			/* Save important PCI config data. */
659 			iobase = pci_read_config(dev, SF_PCI_LOIO, 4);
660 			membase = pci_read_config(dev, SF_PCI_LOMEM, 4);
661 			irq = pci_read_config(dev, SF_PCI_INTLINE, 4);
662 
663 			/* Reset the power state. */
664 			kprintf("sf%d: chip is in D%d power mode "
665 			"-- setting to D0\n", unit, command & SF_PSTATE_MASK);
666 			command &= 0xFFFFFFFC;
667 			pci_write_config(dev, SF_PCI_PWRMGMTCTRL, command, 4);
668 
669 			/* Restore PCI config data. */
670 			pci_write_config(dev, SF_PCI_LOIO, iobase, 4);
671 			pci_write_config(dev, SF_PCI_LOMEM, membase, 4);
672 			pci_write_config(dev, SF_PCI_INTLINE, irq, 4);
673 		}
674 	}
675 
676 	/*
677 	 * Map control/status registers.
678 	 */
679 	command = pci_read_config(dev, PCIR_COMMAND, 4);
680 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
681 	pci_write_config(dev, PCIR_COMMAND, command, 4);
682 	command = pci_read_config(dev, PCIR_COMMAND, 4);
683 
684 #ifdef SF_USEIOSPACE
685 	if (!(command & PCIM_CMD_PORTEN)) {
686 		kprintf("sf%d: failed to enable I/O ports!\n", unit);
687 		error = ENXIO;
688 		return(error);
689 	}
690 #else
691 	if (!(command & PCIM_CMD_MEMEN)) {
692 		kprintf("sf%d: failed to enable memory mapping!\n", unit);
693 		error = ENXIO;
694 		return(error);
695 	}
696 #endif
697 
698 	rid = SF_RID;
699 	sc->sf_res = bus_alloc_resource_any(dev, SF_RES, &rid, RF_ACTIVE);
700 
701 	if (sc->sf_res == NULL) {
702 		kprintf ("sf%d: couldn't map ports\n", unit);
703 		error = ENXIO;
704 		return(error);
705 	}
706 
707 	sc->sf_btag = rman_get_bustag(sc->sf_res);
708 	sc->sf_bhandle = rman_get_bushandle(sc->sf_res);
709 
710 	/* Allocate interrupt */
711 	rid = 0;
712 	sc->sf_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
713 	    RF_SHAREABLE | RF_ACTIVE);
714 
715 	if (sc->sf_irq == NULL) {
716 		kprintf("sf%d: couldn't map interrupt\n", unit);
717 		error = ENXIO;
718 		goto fail;
719 	}
720 
721 	callout_init(&sc->sf_stat_timer);
722 
723 	/* Reset the adapter. */
724 	sf_reset(sc);
725 
726 	/*
727 	 * Get station address from the EEPROM.
728 	 */
729 	for (i = 0; i < ETHER_ADDR_LEN; i++)
730 		sc->arpcom.ac_enaddr[i] =
731 		    sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
732 
733 	sc->sf_unit = unit;
734 
735 	/* Allocate the descriptor queues. */
736 	sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF,
737 	    M_WAITOK | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
738 
739 	if (sc->sf_ldata == NULL) {
740 		kprintf("sf%d: no memory for list buffers!\n", unit);
741 		error = ENXIO;
742 		goto fail;
743 	}
744 
745 	/* Do MII setup. */
746 	if (mii_phy_probe(dev, &sc->sf_miibus,
747 	    sf_ifmedia_upd, sf_ifmedia_sts)) {
748 		kprintf("sf%d: MII without any phy!\n", sc->sf_unit);
749 		error = ENXIO;
750 		goto fail;
751 	}
752 
753 	ifp = &sc->arpcom.ac_if;
754 	ifp->if_softc = sc;
755 	if_initname(ifp, "sf", unit);
756 	ifp->if_mtu = ETHERMTU;
757 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
758 	ifp->if_ioctl = sf_ioctl;
759 	ifp->if_start = sf_start;
760 	ifp->if_watchdog = sf_watchdog;
761 	ifp->if_init = sf_init;
762 	ifp->if_baudrate = 10000000;
763 	ifq_set_maxlen(&ifp->if_snd, SF_TX_DLIST_CNT - 1);
764 	ifq_set_ready(&ifp->if_snd);
765 
766 	/*
767 	 * Call MI attach routine.
768 	 */
769 	ether_ifattach(ifp, sc->arpcom.ac_enaddr, NULL);
770 
771 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->sf_irq));
772 
773 	error = bus_setup_intr(dev, sc->sf_irq, INTR_MPSAFE,
774 			       sf_intr, sc, &sc->sf_intrhand,
775 			       ifp->if_serializer);
776 
777 	if (error) {
778 		ether_ifdetach(ifp);
779 		device_printf(dev, "couldn't set up irq\n");
780 		goto fail;
781 	}
782 
783 	return(0);
784 
785 fail:
786 	sf_detach(dev);
787 	return(error);
788 }
789 
790 static int
791 sf_detach(device_t dev)
792 {
793 	struct sf_softc *sc = device_get_softc(dev);
794 	struct ifnet *ifp = &sc->arpcom.ac_if;
795 
796 	if (device_is_attached(dev)) {
797 		lwkt_serialize_enter(ifp->if_serializer);
798 		sf_stop(sc);
799 		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
800 		lwkt_serialize_exit(ifp->if_serializer);
801 
802 		ether_ifdetach(ifp);
803 	}
804 
805 	if (sc->sf_miibus)
806 		device_delete_child(dev, sc->sf_miibus);
807 	bus_generic_detach(dev);
808 
809 	if (sc->sf_irq)
810 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
811 	if(sc->sf_res)
812 		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
813 
814 	if (sc->sf_ldata) {
815 		contigfree(sc->sf_ldata, sizeof(struct sf_list_data),
816 			   M_DEVBUF);
817 	}
818 
819 	return(0);
820 }
821 
822 static int
823 sf_init_rx_ring(struct sf_softc *sc)
824 {
825 	struct sf_list_data	*ld;
826 	int			i;
827 
828 	ld = sc->sf_ldata;
829 
830 	bzero((char *)ld->sf_rx_dlist_big,
831 	    sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
832 	bzero((char *)ld->sf_rx_clist,
833 	    sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
834 
835 	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
836 		if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
837 			return(ENOBUFS);
838 	}
839 
840 	return(0);
841 }
842 
843 static void
844 sf_init_tx_ring(struct sf_softc *sc)
845 {
846 	struct sf_list_data	*ld;
847 	int			i;
848 
849 	ld = sc->sf_ldata;
850 
851 	bzero((char *)ld->sf_tx_dlist,
852 	    sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
853 	bzero((char *)ld->sf_tx_clist,
854 	    sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
855 
856 	for (i = 0; i < SF_TX_DLIST_CNT; i++)
857 		ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
858 	for (i = 0; i < SF_TX_CLIST_CNT; i++)
859 		ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
860 
861 	ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
862 	sc->sf_tx_cnt = 0;
863 
864 	return;
865 }
866 
867 static int
868 sf_newbuf(struct sf_softc *sc, struct sf_rx_bufdesc_type0 *c,
869 	  struct mbuf *m)
870 {
871 	struct mbuf		*m_new = NULL;
872 
873 	if (m == NULL) {
874 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
875 		if (m_new == NULL)
876 			return(ENOBUFS);
877 
878 		MCLGET(m_new, MB_DONTWAIT);
879 		if (!(m_new->m_flags & M_EXT)) {
880 			m_freem(m_new);
881 			return(ENOBUFS);
882 		}
883 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
884 	} else {
885 		m_new = m;
886 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
887 		m_new->m_data = m_new->m_ext.ext_buf;
888 	}
889 
890 	m_adj(m_new, sizeof(u_int64_t));
891 
892 	c->sf_mbuf = m_new;
893 	c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
894 	c->sf_valid = 1;
895 
896 	return(0);
897 }
898 
899 /*
900  * The starfire is programmed to use 'normal' mode for packet reception,
901  * which means we use the consumer/producer model for both the buffer
902  * descriptor queue and the completion descriptor queue. The only problem
903  * with this is that it involves a lot of register accesses: we have to
904  * read the RX completion consumer and producer indexes and the RX buffer
905  * producer index, plus the RX completion consumer and RX buffer producer
906  * indexes have to be updated. It would have been easier if Adaptec had
907  * put each index in a separate register, especially given that the damn
908  * NIC has a 512K register space.
909  *
910  * In spite of all the lovely features that Adaptec crammed into the 6915,
911  * it is marred by one truly stupid design flaw, which is that receive
912  * buffer addresses must be aligned on a longword boundary. This forces
913  * the packet payload to be unaligned, which is suboptimal on the x86 and
914  * completely unuseable on the Alpha. Our only recourse is to copy received
915  * packets into properly aligned buffers before handing them off.
916  */
917 
918 static void
919 sf_rxeof(struct sf_softc *sc)
920 {
921 	struct mbuf		*m;
922 	struct ifnet		*ifp;
923 	struct sf_rx_bufdesc_type0	*desc;
924 	struct sf_rx_cmpdesc_type3	*cur_rx;
925 	u_int32_t		rxcons, rxprod;
926 	int			cmpprodidx, cmpconsidx, bufprodidx;
927 
928 	ifp = &sc->arpcom.ac_if;
929 
930 	rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
931 	rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
932 	cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
933 	cmpconsidx = SF_IDX_LO(rxcons);
934 	bufprodidx = SF_IDX_LO(rxprod);
935 
936 	while (cmpconsidx != cmpprodidx) {
937 		struct mbuf		*m0;
938 
939 		cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
940 		desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
941 		m = desc->sf_mbuf;
942 		SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
943 		SF_INC(bufprodidx, SF_RX_DLIST_CNT);
944 
945 		if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
946 			IFNET_STAT_INC(ifp, ierrors, 1);
947 			sf_newbuf(sc, desc, m);
948 			continue;
949 		}
950 
951 		m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
952 		    cur_rx->sf_len + ETHER_ALIGN, 0, ifp, NULL);
953 		sf_newbuf(sc, desc, m);
954 		if (m0 == NULL) {
955 			IFNET_STAT_INC(ifp, ierrors, 1);
956 			continue;
957 		}
958 		m_adj(m0, ETHER_ALIGN);
959 		m = m0;
960 
961 		IFNET_STAT_INC(ifp, ipackets, 1);
962 
963 		ifp->if_input(ifp, m);
964 	}
965 
966 	csr_write_4(sc, SF_CQ_CONSIDX,
967 	    (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
968 	csr_write_4(sc, SF_RXDQ_PTR_Q1,
969 	    (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
970 
971 	return;
972 }
973 
974 /*
975  * Read the transmit status from the completion queue and release
976  * mbufs. Note that the buffer descriptor index in the completion
977  * descriptor is an offset from the start of the transmit buffer
978  * descriptor list in bytes. This is important because the manual
979  * gives the impression that it should match the producer/consumer
980  * index, which is the offset in 8 byte blocks.
981  */
982 static void
983 sf_txeof(struct sf_softc *sc)
984 {
985 	int			txcons, cmpprodidx, cmpconsidx;
986 	struct sf_tx_cmpdesc_type1 *cur_cmp;
987 	struct sf_tx_bufdesc_type0 *cur_tx;
988 	struct ifnet		*ifp;
989 
990 	ifp = &sc->arpcom.ac_if;
991 
992 	txcons = csr_read_4(sc, SF_CQ_CONSIDX);
993 	cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
994 	cmpconsidx = SF_IDX_HI(txcons);
995 
996 	while (cmpconsidx != cmpprodidx) {
997 		cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
998 		cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
999 
1000 		if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
1001 			IFNET_STAT_INC(ifp, opackets, 1);
1002 		else {
1003 			if (cur_cmp->sf_txstat & SF_TXSTAT_TX_UNDERRUN)
1004 				sf_txthresh_adjust(sc);
1005 			IFNET_STAT_INC(ifp, oerrors, 1);
1006 		}
1007 
1008 		sc->sf_tx_cnt--;
1009 		if (cur_tx->sf_mbuf != NULL) {
1010 			m_freem(cur_tx->sf_mbuf);
1011 			cur_tx->sf_mbuf = NULL;
1012 		} else
1013 			break;
1014 		SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
1015 	}
1016 
1017 	ifp->if_timer = 0;
1018 	ifq_clr_oactive(&ifp->if_snd);
1019 
1020 	csr_write_4(sc, SF_CQ_CONSIDX,
1021 	    (txcons & ~SF_CQ_CONSIDX_TXQ) |
1022 	    ((cmpconsidx << 16) & 0xFFFF0000));
1023 
1024 	return;
1025 }
1026 
1027 static void
1028 sf_txthresh_adjust(struct sf_softc *sc)
1029 {
1030 	u_int32_t		txfctl;
1031 	u_int8_t		txthresh;
1032 
1033 	txfctl = csr_read_4(sc, SF_TX_FRAMCTL);
1034 	txthresh = txfctl & SF_TXFRMCTL_TXTHRESH;
1035 	if (txthresh < 0xFF) {
1036 		txthresh++;
1037 		txfctl &= ~SF_TXFRMCTL_TXTHRESH;
1038 		txfctl |= txthresh;
1039 #ifdef DIAGNOSTIC
1040 		kprintf("sf%d: tx underrun, increasing "
1041 		    "tx threshold to %d bytes\n",
1042 		    sc->sf_unit, txthresh * 4);
1043 #endif
1044 		csr_write_4(sc, SF_TX_FRAMCTL, txfctl);
1045 	}
1046 
1047 	return;
1048 }
1049 
1050 static void
1051 sf_intr(void *arg)
1052 {
1053 	struct sf_softc		*sc;
1054 	struct ifnet		*ifp;
1055 	u_int32_t		status;
1056 
1057 	sc = arg;
1058 	ifp = &sc->arpcom.ac_if;
1059 
1060 	if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED))
1061 		return;
1062 
1063 	/* Disable interrupts. */
1064 	csr_write_4(sc, SF_IMR, 0x00000000);
1065 
1066 	for (;;) {
1067 		status = csr_read_4(sc, SF_ISR);
1068 		if (status)
1069 			csr_write_4(sc, SF_ISR, status);
1070 
1071 		if (!(status & SF_INTRS))
1072 			break;
1073 
1074 		if (status & SF_ISR_RXDQ1_DMADONE)
1075 			sf_rxeof(sc);
1076 
1077 		if (status & SF_ISR_TX_TXDONE ||
1078 		    status & SF_ISR_TX_DMADONE ||
1079 		    status & SF_ISR_TX_QUEUEDONE)
1080 			sf_txeof(sc);
1081 
1082 		if (status & SF_ISR_TX_LOFIFO)
1083 			sf_txthresh_adjust(sc);
1084 
1085 		if (status & SF_ISR_ABNORMALINTR) {
1086 			if (status & SF_ISR_STATSOFLOW) {
1087 				callout_stop(&sc->sf_stat_timer);
1088 				sf_stats_update(sc);
1089 			} else
1090 				sf_init(sc);
1091 		}
1092 	}
1093 
1094 	/* Re-enable interrupts. */
1095 	csr_write_4(sc, SF_IMR, SF_INTRS);
1096 
1097 	if (!ifq_is_empty(&ifp->if_snd))
1098 		if_devstart(ifp);
1099 }
1100 
1101 static void
1102 sf_init(void *xsc)
1103 {
1104 	struct sf_softc *sc = xsc;
1105 	struct ifnet *ifp = &sc->arpcom.ac_if;
1106 	int i;
1107 
1108 	sf_stop(sc);
1109 	sf_reset(sc);
1110 
1111 	/* Init all the receive filter registers */
1112 	for (i = SF_RXFILT_PERFECT_BASE;
1113 	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
1114 		csr_write_4(sc, i, 0);
1115 
1116 	/* Empty stats counter registers. */
1117 	for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
1118 		csr_write_4(sc, SF_STATS_BASE +
1119 		    (i + sizeof(u_int32_t)), 0);
1120 
1121 	/* Init our MAC address */
1122 	csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1123 	csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1124 	sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr);
1125 
1126 	if (sf_init_rx_ring(sc) == ENOBUFS) {
1127 		kprintf("sf%d: initialization failed: no "
1128 		    "memory for rx buffers\n", sc->sf_unit);
1129 		return;
1130 	}
1131 
1132 	sf_init_tx_ring(sc);
1133 
1134 	csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
1135 
1136 	/* If we want promiscuous mode, set the allframes bit. */
1137 	if (ifp->if_flags & IFF_PROMISC) {
1138 		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1139 	} else {
1140 		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1141 	}
1142 
1143 	if (ifp->if_flags & IFF_BROADCAST) {
1144 		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1145 	} else {
1146 		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1147 	}
1148 
1149 	/*
1150 	 * Load the multicast filter.
1151 	 */
1152 	sf_setmulti(sc);
1153 
1154 	/* Init the completion queue indexes */
1155 	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1156 	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1157 
1158 	/* Init the RX completion queue */
1159 	csr_write_4(sc, SF_RXCQ_CTL_1,
1160 	    vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
1161 	SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
1162 
1163 	/* Init RX DMA control. */
1164 	SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
1165 
1166 	/* Init the RX buffer descriptor queue. */
1167 	csr_write_4(sc, SF_RXDQ_ADDR_Q1,
1168 	    vtophys(sc->sf_ldata->sf_rx_dlist_big));
1169 	csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
1170 	csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
1171 
1172 	/* Init the TX completion queue */
1173 	csr_write_4(sc, SF_TXCQ_CTL,
1174 	    vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
1175 
1176 	/* Init the TX buffer descriptor queue. */
1177 	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
1178 		vtophys(sc->sf_ldata->sf_tx_dlist));
1179 	SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
1180 	csr_write_4(sc, SF_TXDQ_CTL,
1181 	    SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
1182 	SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
1183 
1184 	/* Enable autopadding of short TX frames. */
1185 	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
1186 
1187 	/* Enable interrupts. */
1188 	csr_write_4(sc, SF_IMR, SF_INTRS);
1189 	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
1190 
1191 	/* Enable the RX and TX engines. */
1192 	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
1193 	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
1194 
1195 	/*mii_mediachg(mii);*/
1196 	sf_ifmedia_upd(ifp);
1197 
1198 	ifp->if_flags |= IFF_RUNNING;
1199 	ifq_clr_oactive(&ifp->if_snd);
1200 
1201 	callout_reset(&sc->sf_stat_timer, hz, sf_stats_update, sc);
1202 }
1203 
1204 static int
1205 sf_encap(struct sf_softc *sc, struct sf_tx_bufdesc_type0 *c,
1206 	 struct mbuf *m_head)
1207 {
1208 	int			frag = 0;
1209 	struct sf_frag		*f = NULL;
1210 	struct mbuf		*m;
1211 
1212 	for (m = m_head; m != NULL; m = m->m_next) {
1213 		if (m->m_len != 0) {
1214 			if (frag == SF_MAXFRAGS)
1215 				break;
1216 			f = &c->sf_frags[frag];
1217 			if (frag == 0)
1218 				f->sf_pktlen = m_head->m_pkthdr.len;
1219 			f->sf_fraglen = m->m_len;
1220 			f->sf_addr = vtophys(mtod(m, vm_offset_t));
1221 			frag++;
1222 		}
1223 	}
1224 	/* Caller should make sure that 'm_head' is not excessive fragmented */
1225 	KASSERT(m == NULL, ("too many fragments"));
1226 
1227 	c->sf_mbuf = m_head;
1228 	c->sf_id = SF_TX_BUFDESC_ID;
1229 	c->sf_fragcnt = frag;
1230 	c->sf_intr = 1;
1231 	c->sf_caltcp = 0;
1232 	c->sf_crcen = 1;
1233 
1234 	return(0);
1235 }
1236 
1237 static void
1238 sf_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1239 {
1240 	struct sf_softc		*sc;
1241 	struct sf_tx_bufdesc_type0 *cur_tx = NULL;
1242 	struct mbuf		*m_head = NULL, *m_defragged;
1243 	int			i, txprod, need_trans = 0;
1244 
1245 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1246 
1247 	sc = ifp->if_softc;
1248 
1249 	if (!sc->sf_link) {
1250 		ifq_purge(&ifp->if_snd);
1251 		return;
1252 	}
1253 
1254 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1255 		return;
1256 
1257 	txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1258 	i = SF_IDX_HI(txprod) >> 4;
1259 
1260 	if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1261 		kprintf("sf%d: TX ring full, resetting\n", sc->sf_unit);
1262 		sf_init(sc);
1263 		txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1264 		i = SF_IDX_HI(txprod) >> 4;
1265 	}
1266 
1267 	while (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
1268 		struct mbuf *m;
1269 		int frag;
1270 
1271 		/*
1272 		 * Don't get the TX DMA queue get too full.
1273 		 */
1274 		if (sc->sf_tx_cnt > 64) {
1275 			ifq_set_oactive(&ifp->if_snd);
1276 			break;
1277 		}
1278 #ifdef foo
1279 		if (sc->sf_tx_cnt >= (SF_TX_DLIST_CNT - 5)) {
1280 			ifq_set_oactive(&ifp->if_snd);
1281 			break;
1282 		}
1283 #endif
1284 
1285 		m_defragged = NULL;
1286 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1287 		if (m_head == NULL)
1288 			break;
1289 
1290 again:
1291 		frag = 0;
1292 		for (m = m_head; m != NULL; m = m->m_next)
1293 			++frag;
1294 		if (frag > SF_MAXFRAGS) {
1295 			if (m_defragged != NULL) {
1296 				/*
1297 				 * Even after defragmentation, there
1298 				 * are still too many fragments, so
1299 				 * drop this packet.
1300 				 */
1301 				m_freem(m_head);
1302 				continue;
1303 			}
1304 
1305 			m_defragged = m_defrag(m_head, MB_DONTWAIT);
1306 			if (m_defragged == NULL) {
1307 				m_freem(m_head);
1308 				continue;
1309 			}
1310 			m_head = m_defragged;
1311 
1312 			/* Recount # of fragments */
1313 			goto again;
1314 		}
1315 
1316 		cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
1317 		sf_encap(sc, cur_tx, m_head);
1318 		BPF_MTAP(ifp, cur_tx->sf_mbuf);
1319 
1320 		SF_INC(i, SF_TX_DLIST_CNT);
1321 		sc->sf_tx_cnt++;
1322 		need_trans = 1;
1323 	}
1324 
1325 	if (!need_trans)
1326 		return;
1327 
1328 	/* Transmit */
1329 	csr_write_4(sc, SF_TXDQ_PRODIDX,
1330 	    (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
1331 	    ((i << 20) & 0xFFFF0000));
1332 
1333 	ifp->if_timer = 5;
1334 }
1335 
1336 static void
1337 sf_stop(struct sf_softc *sc)
1338 {
1339 	int			i;
1340 	struct ifnet		*ifp;
1341 
1342 	ifp = &sc->arpcom.ac_if;
1343 
1344 	callout_stop(&sc->sf_stat_timer);
1345 
1346 	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
1347 	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1348 	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1349 	csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
1350 	csr_write_4(sc, SF_RXDQ_CTL_1, 0);
1351 	csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
1352 	csr_write_4(sc, SF_TXCQ_CTL, 0);
1353 	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
1354 	csr_write_4(sc, SF_TXDQ_CTL, 0);
1355 	sf_reset(sc);
1356 
1357 	sc->sf_link = 0;
1358 
1359 	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1360 		if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
1361 			m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
1362 			sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
1363 		}
1364 	}
1365 
1366 	for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1367 		if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1368 			m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
1369 			sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
1370 		}
1371 	}
1372 
1373 	ifp->if_flags &= ~IFF_RUNNING;
1374 	ifq_clr_oactive(&ifp->if_snd);
1375 
1376 	return;
1377 }
1378 
1379 /*
1380  * Note: it is important that this function not be interrupted. We
1381  * use a two-stage register access scheme: if we are interrupted in
1382  * between setting the indirect address register and reading from the
1383  * indirect data register, the contents of the address register could
1384  * be changed out from under us.
1385  */
1386 static void
1387 sf_stats_update(void *xsc)
1388 {
1389 	struct sf_softc *sc = xsc;
1390 	struct ifnet *ifp = &sc->arpcom.ac_if;
1391 	struct mii_data *mii = device_get_softc(sc->sf_miibus);
1392 	struct sf_stats		stats;
1393 	u_int32_t		*ptr;
1394 	int			i;
1395 
1396 	lwkt_serialize_enter(ifp->if_serializer);
1397 
1398 	ptr = (u_int32_t *)&stats;
1399 	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1400 		ptr[i] = csr_read_4(sc, SF_STATS_BASE +
1401 		    (i + sizeof(u_int32_t)));
1402 
1403 	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1404 		csr_write_4(sc, SF_STATS_BASE +
1405 		    (i + sizeof(u_int32_t)), 0);
1406 
1407 	IFNET_STAT_INC(ifp, collisions, stats.sf_tx_single_colls +
1408 	    stats.sf_tx_multi_colls + stats.sf_tx_excess_colls);
1409 
1410 	mii_tick(mii);
1411 	if (!sc->sf_link) {
1412 		mii_pollstat(mii);
1413 		if (mii->mii_media_status & IFM_ACTIVE &&
1414 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1415 			sc->sf_link++;
1416 			if (!ifq_is_empty(&ifp->if_snd))
1417 				if_devstart(ifp);
1418 		}
1419 	}
1420 
1421 	callout_reset(&sc->sf_stat_timer, hz, sf_stats_update, sc);
1422 
1423 	lwkt_serialize_exit(ifp->if_serializer);
1424 }
1425 
1426 static void
1427 sf_watchdog(struct ifnet *ifp)
1428 {
1429 	struct sf_softc		*sc;
1430 
1431 	sc = ifp->if_softc;
1432 
1433 	IFNET_STAT_INC(ifp, oerrors, 1);
1434 	kprintf("sf%d: watchdog timeout\n", sc->sf_unit);
1435 
1436 	sf_stop(sc);
1437 	sf_reset(sc);
1438 	sf_init(sc);
1439 
1440 	if (!ifq_is_empty(&ifp->if_snd))
1441 		if_devstart(ifp);
1442 }
1443 
1444 static void
1445 sf_shutdown(device_t dev)
1446 {
1447 	struct sf_softc	*sc;
1448 	struct ifnet *ifp;
1449 
1450 	sc = device_get_softc(dev);
1451 	ifp = &sc->arpcom.ac_if;
1452 	lwkt_serialize_enter(ifp->if_serializer);
1453 	sf_stop(sc);
1454 	lwkt_serialize_exit(ifp->if_serializer);
1455 
1456 	return;
1457 }
1458