xref: /dragonfly/sys/dev/netif/sf/if_sf.c (revision 86fe9e07)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_sf.c,v 1.18.2.8 2001/12/16 15:46:07 luigi Exp $
33  * $DragonFly: src/sys/dev/netif/sf/if_sf.c,v 1.11 2004/07/23 07:16:28 joerg Exp $
34  *
35  * $FreeBSD: src/sys/pci/if_sf.c,v 1.18.2.8 2001/12/16 15:46:07 luigi Exp $
36  */
37 
38 /*
39  * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
40  * Programming manual is available from:
41  * ftp.adaptec.com:/pub/BBS/userguides/aic6915_pg.pdf.
42  *
43  * Written by Bill Paul <wpaul@ctr.columbia.edu>
44  * Department of Electical Engineering
45  * Columbia University, New York City
46  */
47 
48 /*
49  * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
50  * controller designed with flexibility and reducing CPU load in mind.
51  * The Starfire offers high and low priority buffer queues, a
52  * producer/consumer index mechanism and several different buffer
53  * queue and completion queue descriptor types. Any one of a number
54  * of different driver designs can be used, depending on system and
55  * OS requirements. This driver makes use of type0 transmit frame
56  * descriptors (since BSD fragments packets across an mbuf chain)
57  * and two RX buffer queues prioritized on size (one queue for small
58  * frames that will fit into a single mbuf, another with full size
59  * mbuf clusters for everything else). The producer/consumer indexes
60  * and completion queues are also used.
61  *
62  * One downside to the Starfire has to do with alignment: buffer
63  * queues must be aligned on 256-byte boundaries, and receive buffers
64  * must be aligned on longword boundaries. The receive buffer alignment
65  * causes problems on the Alpha platform, where the packet payload
66  * should be longword aligned. There is no simple way around this.
67  *
68  * For receive filtering, the Starfire offers 16 perfect filter slots
69  * and a 512-bit hash table.
70  *
71  * The Starfire has no internal transceiver, relying instead on an
72  * external MII-based transceiver. Accessing registers on external
73  * PHYs is done through a special register map rather than with the
74  * usual bitbang MDIO method.
75  *
76  * Acesssing the registers on the Starfire is a little tricky. The
77  * Starfire has a 512K internal register space. When programmed for
78  * PCI memory mapped mode, the entire register space can be accessed
79  * directly. However in I/O space mode, only 256 bytes are directly
80  * mapped into PCI I/O space. The other registers can be accessed
81  * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
82  * registers inside the 256-byte I/O window.
83  */
84 
85 #include <sys/param.h>
86 #include <sys/systm.h>
87 #include <sys/sockio.h>
88 #include <sys/mbuf.h>
89 #include <sys/malloc.h>
90 #include <sys/kernel.h>
91 #include <sys/socket.h>
92 
93 #include <net/if.h>
94 #include <net/if_arp.h>
95 #include <net/ethernet.h>
96 #include <net/if_dl.h>
97 #include <net/if_media.h>
98 
99 #include <net/bpf.h>
100 
101 #include <vm/vm.h>              /* for vtophys */
102 #include <vm/pmap.h>            /* for vtophys */
103 #include <machine/clock.h>      /* for DELAY */
104 #include <machine/bus_pio.h>
105 #include <machine/bus_memio.h>
106 #include <machine/bus.h>
107 #include <machine/resource.h>
108 #include <sys/bus.h>
109 #include <sys/rman.h>
110 
111 #include "../mii_layer/mii.h"
112 #include "../mii_layer/miivar.h"
113 
114 /* "controller miibus0" required.  See GENERIC if you get errors here. */
115 #include "miibus_if.h"
116 
117 #include <bus/pci/pcireg.h>
118 #include <bus/pci/pcivar.h>
119 
120 #define SF_USEIOSPACE
121 
122 #include "if_sfreg.h"
123 
124 static struct sf_type sf_devs[] = {
125 	{ AD_VENDORID, AD_DEVICEID_STARFIRE,
126 		"Adaptec AIC-6915 10/100BaseTX" },
127 	{ 0, 0, NULL }
128 };
129 
130 static int sf_probe		(device_t);
131 static int sf_attach		(device_t);
132 static int sf_detach		(device_t);
133 static void sf_intr		(void *);
134 static void sf_stats_update	(void *);
135 static void sf_rxeof		(struct sf_softc *);
136 static void sf_txeof		(struct sf_softc *);
137 static int sf_encap		(struct sf_softc *,
138 					struct sf_tx_bufdesc_type0 *,
139 					struct mbuf *);
140 static void sf_start		(struct ifnet *);
141 static int sf_ioctl		(struct ifnet *, u_long, caddr_t,
142 					struct ucred *);
143 static void sf_init		(void *);
144 static void sf_stop		(struct sf_softc *);
145 static void sf_watchdog		(struct ifnet *);
146 static void sf_shutdown		(device_t);
147 static int sf_ifmedia_upd	(struct ifnet *);
148 static void sf_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
149 static void sf_reset		(struct sf_softc *);
150 static int sf_init_rx_ring	(struct sf_softc *);
151 static void sf_init_tx_ring	(struct sf_softc *);
152 static int sf_newbuf		(struct sf_softc *,
153 					struct sf_rx_bufdesc_type0 *,
154 					struct mbuf *);
155 static void sf_setmulti		(struct sf_softc *);
156 static int sf_setperf		(struct sf_softc *, int, caddr_t);
157 static int sf_sethash		(struct sf_softc *, caddr_t, int);
158 #ifdef notdef
159 static int sf_setvlan		(struct sf_softc *, int, u_int32_t);
160 #endif
161 
162 static u_int8_t sf_read_eeprom	(struct sf_softc *, int);
163 static u_int32_t sf_calchash	(caddr_t);
164 
165 static int sf_miibus_readreg	(device_t, int, int);
166 static int sf_miibus_writereg	(device_t, int, int, int);
167 static void sf_miibus_statchg	(device_t);
168 
169 static u_int32_t csr_read_4	(struct sf_softc *, int);
170 static void csr_write_4		(struct sf_softc *, int, u_int32_t);
171 static void sf_txthresh_adjust	(struct sf_softc *);
172 
173 #ifdef SF_USEIOSPACE
174 #define SF_RES			SYS_RES_IOPORT
175 #define SF_RID			SF_PCI_LOIO
176 #else
177 #define SF_RES			SYS_RES_MEMORY
178 #define SF_RID			SF_PCI_LOMEM
179 #endif
180 
181 static device_method_t sf_methods[] = {
182 	/* Device interface */
183 	DEVMETHOD(device_probe,		sf_probe),
184 	DEVMETHOD(device_attach,	sf_attach),
185 	DEVMETHOD(device_detach,	sf_detach),
186 	DEVMETHOD(device_shutdown,	sf_shutdown),
187 
188 	/* bus interface */
189 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
190 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
191 
192 	/* MII interface */
193 	DEVMETHOD(miibus_readreg,	sf_miibus_readreg),
194 	DEVMETHOD(miibus_writereg,	sf_miibus_writereg),
195 	DEVMETHOD(miibus_statchg,	sf_miibus_statchg),
196 
197 	{ 0, 0 }
198 };
199 
200 static driver_t sf_driver = {
201 	"sf",
202 	sf_methods,
203 	sizeof(struct sf_softc),
204 };
205 
206 static devclass_t sf_devclass;
207 
208 DECLARE_DUMMY_MODULE(if_sf);
209 DRIVER_MODULE(if_sf, pci, sf_driver, sf_devclass, 0, 0);
210 DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
211 
212 #define SF_SETBIT(sc, reg, x)	\
213 	csr_write_4(sc, reg, csr_read_4(sc, reg) | x)
214 
215 #define SF_CLRBIT(sc, reg, x)				\
216 	csr_write_4(sc, reg, csr_read_4(sc, reg) & ~x)
217 
218 static u_int32_t csr_read_4(sc, reg)
219 	struct sf_softc		*sc;
220 	int			reg;
221 {
222 	u_int32_t		val;
223 
224 #ifdef SF_USEIOSPACE
225 	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
226 	val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
227 #else
228 	val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
229 #endif
230 
231 	return(val);
232 }
233 
234 static u_int8_t sf_read_eeprom(sc, reg)
235 	struct sf_softc		*sc;
236 	int			reg;
237 {
238 	u_int8_t		val;
239 
240 	val = (csr_read_4(sc, SF_EEADDR_BASE +
241 	    (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
242 
243 	return(val);
244 }
245 
246 static void csr_write_4(sc, reg, val)
247 	struct sf_softc		*sc;
248 	int			reg;
249 	u_int32_t		val;
250 {
251 #ifdef SF_USEIOSPACE
252 	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
253 	CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
254 #else
255 	CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
256 #endif
257 	return;
258 }
259 
260 static u_int32_t sf_calchash(addr)
261 	caddr_t			addr;
262 {
263 	u_int32_t		crc, carry;
264 	int			i, j;
265 	u_int8_t		c;
266 
267 	/* Compute CRC for the address value. */
268 	crc = 0xFFFFFFFF; /* initial value */
269 
270 	for (i = 0; i < 6; i++) {
271 		c = *(addr + i);
272 		for (j = 0; j < 8; j++) {
273 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
274 			crc <<= 1;
275 			c >>= 1;
276 			if (carry)
277 				crc = (crc ^ 0x04c11db6) | carry;
278 		}
279 	}
280 
281 	/* return the filter bit position */
282 	return(crc >> 23 & 0x1FF);
283 }
284 
285 /*
286  * Copy the address 'mac' into the perfect RX filter entry at
287  * offset 'idx.' The perfect filter only has 16 entries so do
288  * some sanity tests.
289  */
290 static int sf_setperf(sc, idx, mac)
291 	struct sf_softc		*sc;
292 	int			idx;
293 	caddr_t			mac;
294 {
295 	u_int16_t		*p;
296 
297 	if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
298 		return(EINVAL);
299 
300 	if (mac == NULL)
301 		return(EINVAL);
302 
303 	p = (u_int16_t *)mac;
304 
305 	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
306 	    (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
307 	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
308 	    (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
309 	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
310 	    (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
311 
312 	return(0);
313 }
314 
315 /*
316  * Set the bit in the 512-bit hash table that corresponds to the
317  * specified mac address 'mac.' If 'prio' is nonzero, update the
318  * priority hash table instead of the filter hash table.
319  */
320 static int sf_sethash(sc, mac, prio)
321 	struct sf_softc		*sc;
322 	caddr_t			mac;
323 	int			prio;
324 {
325 	u_int32_t		h = 0;
326 
327 	if (mac == NULL)
328 		return(EINVAL);
329 
330 	h = sf_calchash(mac);
331 
332 	if (prio) {
333 		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
334 		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
335 	} else {
336 		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
337 		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
338 	}
339 
340 	return(0);
341 }
342 
343 #ifdef notdef
344 /*
345  * Set a VLAN tag in the receive filter.
346  */
347 static int sf_setvlan(sc, idx, vlan)
348 	struct sf_softc		*sc;
349 	int			idx;
350 	u_int32_t		vlan;
351 {
352 	if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
353 		return(EINVAL);
354 
355 	csr_write_4(sc, SF_RXFILT_HASH_BASE +
356 	    (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
357 
358 	return(0);
359 }
360 #endif
361 
362 static int sf_miibus_readreg(dev, phy, reg)
363 	device_t		dev;
364 	int			phy, reg;
365 {
366 	struct sf_softc		*sc;
367 	int			i;
368 	u_int32_t		val = 0;
369 
370 	sc = device_get_softc(dev);
371 
372 	for (i = 0; i < SF_TIMEOUT; i++) {
373 		val = csr_read_4(sc, SF_PHY_REG(phy, reg));
374 		if (val & SF_MII_DATAVALID)
375 			break;
376 	}
377 
378 	if (i == SF_TIMEOUT)
379 		return(0);
380 
381 	if ((val & 0x0000FFFF) == 0xFFFF)
382 		return(0);
383 
384 	return(val & 0x0000FFFF);
385 }
386 
387 static int sf_miibus_writereg(dev, phy, reg, val)
388 	device_t		dev;
389 	int			phy, reg, val;
390 {
391 	struct sf_softc		*sc;
392 	int			i;
393 	int			busy;
394 
395 	sc = device_get_softc(dev);
396 
397 	csr_write_4(sc, SF_PHY_REG(phy, reg), val);
398 
399 	for (i = 0; i < SF_TIMEOUT; i++) {
400 		busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
401 		if (!(busy & SF_MII_BUSY))
402 			break;
403 	}
404 
405 	return(0);
406 }
407 
408 static void sf_miibus_statchg(dev)
409 	device_t		dev;
410 {
411 	struct sf_softc		*sc;
412 	struct mii_data		*mii;
413 
414 	sc = device_get_softc(dev);
415 	mii = device_get_softc(sc->sf_miibus);
416 
417 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
418 		SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
419 		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
420 	} else {
421 		SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
422 		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
423 	}
424 
425 	return;
426 }
427 
428 static void sf_setmulti(sc)
429 	struct sf_softc		*sc;
430 {
431 	struct ifnet		*ifp;
432 	int			i;
433 	struct ifmultiaddr	*ifma;
434 	u_int8_t		dummy[] = { 0, 0, 0, 0, 0, 0 };
435 
436 	ifp = &sc->arpcom.ac_if;
437 
438 	/* First zot all the existing filters. */
439 	for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
440 		sf_setperf(sc, i, (char *)&dummy);
441 	for (i = SF_RXFILT_HASH_BASE;
442 	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
443 		csr_write_4(sc, i, 0);
444 	SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
445 
446 	/* Now program new ones. */
447 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
448 		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
449 	} else {
450 		i = 1;
451 		/* First find the tail of the list. */
452 		for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
453 					ifma = ifma->ifma_link.le_next) {
454 			if (ifma->ifma_link.le_next == NULL)
455 				break;
456 		}
457 		/* Now traverse the list backwards. */
458 		for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
459 			ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
460 			if (ifma->ifma_addr->sa_family != AF_LINK)
461 				continue;
462 			/*
463 			 * Program the first 15 multicast groups
464 			 * into the perfect filter. For all others,
465 			 * use the hash table.
466 			 */
467 			if (i < SF_RXFILT_PERFECT_CNT) {
468 				sf_setperf(sc, i,
469 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
470 				i++;
471 				continue;
472 			}
473 
474 			sf_sethash(sc,
475 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
476 		}
477 	}
478 
479 	return;
480 }
481 
482 /*
483  * Set media options.
484  */
485 static int sf_ifmedia_upd(ifp)
486 	struct ifnet		*ifp;
487 {
488 	struct sf_softc		*sc;
489 	struct mii_data		*mii;
490 
491 	sc = ifp->if_softc;
492 	mii = device_get_softc(sc->sf_miibus);
493 	sc->sf_link = 0;
494 	if (mii->mii_instance) {
495 		struct mii_softc        *miisc;
496 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
497 		    miisc = LIST_NEXT(miisc, mii_list))
498 			mii_phy_reset(miisc);
499 	}
500 	mii_mediachg(mii);
501 
502 	return(0);
503 }
504 
505 /*
506  * Report current media status.
507  */
508 static void sf_ifmedia_sts(ifp, ifmr)
509 	struct ifnet		*ifp;
510 	struct ifmediareq	*ifmr;
511 {
512 	struct sf_softc		*sc;
513 	struct mii_data		*mii;
514 
515 	sc = ifp->if_softc;
516 	mii = device_get_softc(sc->sf_miibus);
517 
518 	mii_pollstat(mii);
519 	ifmr->ifm_active = mii->mii_media_active;
520 	ifmr->ifm_status = mii->mii_media_status;
521 
522 	return;
523 }
524 
525 static int sf_ioctl(ifp, command, data, cr)
526 	struct ifnet		*ifp;
527 	u_long			command;
528 	caddr_t			data;
529 	struct ucred		*cr;
530 {
531 	struct sf_softc		*sc = ifp->if_softc;
532 	struct ifreq		*ifr = (struct ifreq *) data;
533 	struct mii_data		*mii;
534 	int			s, error = 0;
535 
536 	s = splimp();
537 
538 	switch(command) {
539 	case SIOCSIFADDR:
540 	case SIOCGIFADDR:
541 	case SIOCSIFMTU:
542 		error = ether_ioctl(ifp, command, data);
543 		break;
544 	case SIOCSIFFLAGS:
545 		if (ifp->if_flags & IFF_UP) {
546 			if (ifp->if_flags & IFF_RUNNING &&
547 			    ifp->if_flags & IFF_PROMISC &&
548 			    !(sc->sf_if_flags & IFF_PROMISC)) {
549 				SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
550 			} else if (ifp->if_flags & IFF_RUNNING &&
551 			    !(ifp->if_flags & IFF_PROMISC) &&
552 			    sc->sf_if_flags & IFF_PROMISC) {
553 				SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
554 			} else if (!(ifp->if_flags & IFF_RUNNING))
555 				sf_init(sc);
556 		} else {
557 			if (ifp->if_flags & IFF_RUNNING)
558 				sf_stop(sc);
559 		}
560 		sc->sf_if_flags = ifp->if_flags;
561 		error = 0;
562 		break;
563 	case SIOCADDMULTI:
564 	case SIOCDELMULTI:
565 		sf_setmulti(sc);
566 		error = 0;
567 		break;
568 	case SIOCGIFMEDIA:
569 	case SIOCSIFMEDIA:
570 		mii = device_get_softc(sc->sf_miibus);
571 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
572 		break;
573 	default:
574 		error = EINVAL;
575 		break;
576 	}
577 
578 	(void)splx(s);
579 
580 	return(error);
581 }
582 
583 static void sf_reset(sc)
584 	struct sf_softc		*sc;
585 {
586 	register int		i;
587 
588 	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
589 	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
590 	DELAY(1000);
591 	SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
592 
593 	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
594 
595 	for (i = 0; i < SF_TIMEOUT; i++) {
596 		DELAY(10);
597 		if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
598 			break;
599 	}
600 
601 	if (i == SF_TIMEOUT)
602 		printf("sf%d: reset never completed!\n", sc->sf_unit);
603 
604 	/* Wait a little while for the chip to get its brains in order. */
605 	DELAY(1000);
606 	return;
607 }
608 
609 /*
610  * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
611  * IDs against our list and return a device name if we find a match.
612  * We also check the subsystem ID so that we can identify exactly which
613  * NIC has been found, if possible.
614  */
615 static int sf_probe(dev)
616 	device_t		dev;
617 {
618 	struct sf_type		*t;
619 
620 	t = sf_devs;
621 
622 	while(t->sf_name != NULL) {
623 		if ((pci_get_vendor(dev) == t->sf_vid) &&
624 		    (pci_get_device(dev) == t->sf_did)) {
625 			switch((pci_read_config(dev,
626 			    SF_PCI_SUBVEN_ID, 4) >> 16) & 0xFFFF) {
627 			case AD_SUBSYSID_62011_REV0:
628 			case AD_SUBSYSID_62011_REV1:
629 				device_set_desc(dev,
630 				    "Adaptec ANA-62011 10/100BaseTX");
631 				return(0);
632 				break;
633 			case AD_SUBSYSID_62022:
634 				device_set_desc(dev,
635 				    "Adaptec ANA-62022 10/100BaseTX");
636 				return(0);
637 				break;
638 			case AD_SUBSYSID_62044_REV0:
639 			case AD_SUBSYSID_62044_REV1:
640 				device_set_desc(dev,
641 				    "Adaptec ANA-62044 10/100BaseTX");
642 				return(0);
643 				break;
644 			case AD_SUBSYSID_62020:
645 				device_set_desc(dev,
646 				    "Adaptec ANA-62020 10/100BaseFX");
647 				return(0);
648 				break;
649 			case AD_SUBSYSID_69011:
650 				device_set_desc(dev,
651 				    "Adaptec ANA-69011 10/100BaseTX");
652 				return(0);
653 				break;
654 			default:
655 				device_set_desc(dev, t->sf_name);
656 				return(0);
657 				break;
658 			}
659 		}
660 		t++;
661 	}
662 
663 	return(ENXIO);
664 }
665 
666 /*
667  * Attach the interface. Allocate softc structures, do ifmedia
668  * setup and ethernet/BPF attach.
669  */
670 static int sf_attach(dev)
671 	device_t		dev;
672 {
673 	int			s, i;
674 	u_int32_t		command;
675 	struct sf_softc		*sc;
676 	struct ifnet		*ifp;
677 	int			unit, rid, error = 0;
678 
679 	s = splimp();
680 
681 	sc = device_get_softc(dev);
682 	unit = device_get_unit(dev);
683 	bzero(sc, sizeof(struct sf_softc));
684 
685 	/*
686 	 * Handle power management nonsense.
687 	 */
688 	command = pci_read_config(dev, SF_PCI_CAPID, 4) & 0x000000FF;
689 	if (command == 0x01) {
690 
691 		command = pci_read_config(dev, SF_PCI_PWRMGMTCTRL, 4);
692 		if (command & SF_PSTATE_MASK) {
693 			u_int32_t		iobase, membase, irq;
694 
695 			/* Save important PCI config data. */
696 			iobase = pci_read_config(dev, SF_PCI_LOIO, 4);
697 			membase = pci_read_config(dev, SF_PCI_LOMEM, 4);
698 			irq = pci_read_config(dev, SF_PCI_INTLINE, 4);
699 
700 			/* Reset the power state. */
701 			printf("sf%d: chip is in D%d power mode "
702 			"-- setting to D0\n", unit, command & SF_PSTATE_MASK);
703 			command &= 0xFFFFFFFC;
704 			pci_write_config(dev, SF_PCI_PWRMGMTCTRL, command, 4);
705 
706 			/* Restore PCI config data. */
707 			pci_write_config(dev, SF_PCI_LOIO, iobase, 4);
708 			pci_write_config(dev, SF_PCI_LOMEM, membase, 4);
709 			pci_write_config(dev, SF_PCI_INTLINE, irq, 4);
710 		}
711 	}
712 
713 	/*
714 	 * Map control/status registers.
715 	 */
716 	command = pci_read_config(dev, PCIR_COMMAND, 4);
717 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
718 	pci_write_config(dev, PCIR_COMMAND, command, 4);
719 	command = pci_read_config(dev, PCIR_COMMAND, 4);
720 
721 #ifdef SF_USEIOSPACE
722 	if (!(command & PCIM_CMD_PORTEN)) {
723 		printf("sf%d: failed to enable I/O ports!\n", unit);
724 		error = ENXIO;
725 		goto fail;
726 	}
727 #else
728 	if (!(command & PCIM_CMD_MEMEN)) {
729 		printf("sf%d: failed to enable memory mapping!\n", unit);
730 		error = ENXIO;
731 		goto fail;
732 	}
733 #endif
734 
735 	rid = SF_RID;
736 	sc->sf_res = bus_alloc_resource(dev, SF_RES, &rid,
737 	    0, ~0, 1, RF_ACTIVE);
738 
739 	if (sc->sf_res == NULL) {
740 		printf ("sf%d: couldn't map ports\n", unit);
741 		error = ENXIO;
742 		goto fail;
743 	}
744 
745 	sc->sf_btag = rman_get_bustag(sc->sf_res);
746 	sc->sf_bhandle = rman_get_bushandle(sc->sf_res);
747 
748 	/* Allocate interrupt */
749 	rid = 0;
750 	sc->sf_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
751 	    RF_SHAREABLE | RF_ACTIVE);
752 
753 	if (sc->sf_irq == NULL) {
754 		printf("sf%d: couldn't map interrupt\n", unit);
755 		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
756 		error = ENXIO;
757 		goto fail;
758 	}
759 
760 	error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET,
761 	    sf_intr, sc, &sc->sf_intrhand);
762 
763 	if (error) {
764 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_res);
765 		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
766 		printf("sf%d: couldn't set up irq\n", unit);
767 		goto fail;
768 	}
769 
770 	callout_handle_init(&sc->sf_stat_ch);
771 
772 	/* Reset the adapter. */
773 	sf_reset(sc);
774 
775 	/*
776 	 * Get station address from the EEPROM.
777 	 */
778 	for (i = 0; i < ETHER_ADDR_LEN; i++)
779 		sc->arpcom.ac_enaddr[i] =
780 		    sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
781 
782 	sc->sf_unit = unit;
783 
784 	/* Allocate the descriptor queues. */
785 	sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF,
786 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
787 
788 	if (sc->sf_ldata == NULL) {
789 		printf("sf%d: no memory for list buffers!\n", unit);
790 		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
791 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
792 		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
793 		error = ENXIO;
794 		goto fail;
795 	}
796 
797 	bzero(sc->sf_ldata, sizeof(struct sf_list_data));
798 
799 	/* Do MII setup. */
800 	if (mii_phy_probe(dev, &sc->sf_miibus,
801 	    sf_ifmedia_upd, sf_ifmedia_sts)) {
802 		printf("sf%d: MII without any phy!\n", sc->sf_unit);
803 		contigfree(sc->sf_ldata,sizeof(struct sf_list_data),M_DEVBUF);
804 		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
805 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
806 		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
807 		error = ENXIO;
808 		goto fail;
809 	}
810 
811 	ifp = &sc->arpcom.ac_if;
812 	ifp->if_softc = sc;
813 	if_initname(ifp, "sf", unit);
814 	ifp->if_mtu = ETHERMTU;
815 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
816 	ifp->if_ioctl = sf_ioctl;
817 	ifp->if_start = sf_start;
818 	ifp->if_watchdog = sf_watchdog;
819 	ifp->if_init = sf_init;
820 	ifp->if_baudrate = 10000000;
821 	ifp->if_snd.ifq_maxlen = SF_TX_DLIST_CNT - 1;
822 
823 	/*
824 	 * Call MI attach routine.
825 	 */
826 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
827 
828 fail:
829 	splx(s);
830 	return(error);
831 }
832 
833 static int sf_detach(dev)
834 	device_t		dev;
835 {
836 	struct sf_softc		*sc;
837 	struct ifnet		*ifp;
838 	int			s;
839 
840 	s = splimp();
841 
842 	sc = device_get_softc(dev);
843 	ifp = &sc->arpcom.ac_if;
844 
845 	ether_ifdetach(ifp);
846 	sf_stop(sc);
847 
848 	bus_generic_detach(dev);
849 	device_delete_child(dev, sc->sf_miibus);
850 
851 	bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
852 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
853 	bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
854 
855 	contigfree(sc->sf_ldata, sizeof(struct sf_list_data), M_DEVBUF);
856 
857 	splx(s);
858 
859 	return(0);
860 }
861 
862 static int sf_init_rx_ring(sc)
863 	struct sf_softc		*sc;
864 {
865 	struct sf_list_data	*ld;
866 	int			i;
867 
868 	ld = sc->sf_ldata;
869 
870 	bzero((char *)ld->sf_rx_dlist_big,
871 	    sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
872 	bzero((char *)ld->sf_rx_clist,
873 	    sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
874 
875 	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
876 		if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
877 			return(ENOBUFS);
878 	}
879 
880 	return(0);
881 }
882 
883 static void sf_init_tx_ring(sc)
884 	struct sf_softc		*sc;
885 {
886 	struct sf_list_data	*ld;
887 	int			i;
888 
889 	ld = sc->sf_ldata;
890 
891 	bzero((char *)ld->sf_tx_dlist,
892 	    sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
893 	bzero((char *)ld->sf_tx_clist,
894 	    sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
895 
896 	for (i = 0; i < SF_TX_DLIST_CNT; i++)
897 		ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
898 	for (i = 0; i < SF_TX_CLIST_CNT; i++)
899 		ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
900 
901 	ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
902 	sc->sf_tx_cnt = 0;
903 
904 	return;
905 }
906 
907 static int sf_newbuf(sc, c, m)
908 	struct sf_softc		*sc;
909 	struct sf_rx_bufdesc_type0	*c;
910 	struct mbuf		*m;
911 {
912 	struct mbuf		*m_new = NULL;
913 
914 	if (m == NULL) {
915 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
916 		if (m_new == NULL)
917 			return(ENOBUFS);
918 
919 		MCLGET(m_new, MB_DONTWAIT);
920 		if (!(m_new->m_flags & M_EXT)) {
921 			m_freem(m_new);
922 			return(ENOBUFS);
923 		}
924 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
925 	} else {
926 		m_new = m;
927 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
928 		m_new->m_data = m_new->m_ext.ext_buf;
929 	}
930 
931 	m_adj(m_new, sizeof(u_int64_t));
932 
933 	c->sf_mbuf = m_new;
934 	c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
935 	c->sf_valid = 1;
936 
937 	return(0);
938 }
939 
940 /*
941  * The starfire is programmed to use 'normal' mode for packet reception,
942  * which means we use the consumer/producer model for both the buffer
943  * descriptor queue and the completion descriptor queue. The only problem
944  * with this is that it involves a lot of register accesses: we have to
945  * read the RX completion consumer and producer indexes and the RX buffer
946  * producer index, plus the RX completion consumer and RX buffer producer
947  * indexes have to be updated. It would have been easier if Adaptec had
948  * put each index in a separate register, especially given that the damn
949  * NIC has a 512K register space.
950  *
951  * In spite of all the lovely features that Adaptec crammed into the 6915,
952  * it is marred by one truly stupid design flaw, which is that receive
953  * buffer addresses must be aligned on a longword boundary. This forces
954  * the packet payload to be unaligned, which is suboptimal on the x86 and
955  * completely unuseable on the Alpha. Our only recourse is to copy received
956  * packets into properly aligned buffers before handing them off.
957  */
958 
959 static void sf_rxeof(sc)
960 	struct sf_softc		*sc;
961 {
962 	struct mbuf		*m;
963 	struct ifnet		*ifp;
964 	struct sf_rx_bufdesc_type0	*desc;
965 	struct sf_rx_cmpdesc_type3	*cur_rx;
966 	u_int32_t		rxcons, rxprod;
967 	int			cmpprodidx, cmpconsidx, bufprodidx;
968 
969 	ifp = &sc->arpcom.ac_if;
970 
971 	rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
972 	rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
973 	cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
974 	cmpconsidx = SF_IDX_LO(rxcons);
975 	bufprodidx = SF_IDX_LO(rxprod);
976 
977 	while (cmpconsidx != cmpprodidx) {
978 		struct mbuf		*m0;
979 
980 		cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
981 		desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
982 		m = desc->sf_mbuf;
983 		SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
984 		SF_INC(bufprodidx, SF_RX_DLIST_CNT);
985 
986 		if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
987 			ifp->if_ierrors++;
988 			sf_newbuf(sc, desc, m);
989 			continue;
990 		}
991 
992 		m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
993 		    cur_rx->sf_len + ETHER_ALIGN, 0, ifp, NULL);
994 		sf_newbuf(sc, desc, m);
995 		if (m0 == NULL) {
996 			ifp->if_ierrors++;
997 			continue;
998 		}
999 		m_adj(m0, ETHER_ALIGN);
1000 		m = m0;
1001 
1002 		ifp->if_ipackets++;
1003 
1004 		(*ifp->if_input)(ifp, m);
1005 	}
1006 
1007 	csr_write_4(sc, SF_CQ_CONSIDX,
1008 	    (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
1009 	csr_write_4(sc, SF_RXDQ_PTR_Q1,
1010 	    (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
1011 
1012 	return;
1013 }
1014 
1015 /*
1016  * Read the transmit status from the completion queue and release
1017  * mbufs. Note that the buffer descriptor index in the completion
1018  * descriptor is an offset from the start of the transmit buffer
1019  * descriptor list in bytes. This is important because the manual
1020  * gives the impression that it should match the producer/consumer
1021  * index, which is the offset in 8 byte blocks.
1022  */
1023 static void sf_txeof(sc)
1024 	struct sf_softc		*sc;
1025 {
1026 	int			txcons, cmpprodidx, cmpconsidx;
1027 	struct sf_tx_cmpdesc_type1 *cur_cmp;
1028 	struct sf_tx_bufdesc_type0 *cur_tx;
1029 	struct ifnet		*ifp;
1030 
1031 	ifp = &sc->arpcom.ac_if;
1032 
1033 	txcons = csr_read_4(sc, SF_CQ_CONSIDX);
1034 	cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
1035 	cmpconsidx = SF_IDX_HI(txcons);
1036 
1037 	while (cmpconsidx != cmpprodidx) {
1038 		cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
1039 		cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
1040 
1041 		if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
1042 			ifp->if_opackets++;
1043 		else {
1044 			if (cur_cmp->sf_txstat & SF_TXSTAT_TX_UNDERRUN)
1045 				sf_txthresh_adjust(sc);
1046 			ifp->if_oerrors++;
1047 		}
1048 
1049 		sc->sf_tx_cnt--;
1050 		if (cur_tx->sf_mbuf != NULL) {
1051 			m_freem(cur_tx->sf_mbuf);
1052 			cur_tx->sf_mbuf = NULL;
1053 		} else
1054 			break;
1055 		SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
1056 	}
1057 
1058 	ifp->if_timer = 0;
1059 	ifp->if_flags &= ~IFF_OACTIVE;
1060 
1061 	csr_write_4(sc, SF_CQ_CONSIDX,
1062 	    (txcons & ~SF_CQ_CONSIDX_TXQ) |
1063 	    ((cmpconsidx << 16) & 0xFFFF0000));
1064 
1065 	return;
1066 }
1067 
1068 static void sf_txthresh_adjust(sc)
1069 	struct sf_softc		*sc;
1070 {
1071 	u_int32_t		txfctl;
1072 	u_int8_t		txthresh;
1073 
1074 	txfctl = csr_read_4(sc, SF_TX_FRAMCTL);
1075 	txthresh = txfctl & SF_TXFRMCTL_TXTHRESH;
1076 	if (txthresh < 0xFF) {
1077 		txthresh++;
1078 		txfctl &= ~SF_TXFRMCTL_TXTHRESH;
1079 		txfctl |= txthresh;
1080 #ifdef DIAGNOSTIC
1081 		printf("sf%d: tx underrun, increasing "
1082 		    "tx threshold to %d bytes\n",
1083 		    sc->sf_unit, txthresh * 4);
1084 #endif
1085 		csr_write_4(sc, SF_TX_FRAMCTL, txfctl);
1086 	}
1087 
1088 	return;
1089 }
1090 
1091 static void sf_intr(arg)
1092 	void			*arg;
1093 {
1094 	struct sf_softc		*sc;
1095 	struct ifnet		*ifp;
1096 	u_int32_t		status;
1097 
1098 	sc = arg;
1099 	ifp = &sc->arpcom.ac_if;
1100 
1101 	if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED))
1102 		return;
1103 
1104 	/* Disable interrupts. */
1105 	csr_write_4(sc, SF_IMR, 0x00000000);
1106 
1107 	for (;;) {
1108 		status = csr_read_4(sc, SF_ISR);
1109 		if (status)
1110 			csr_write_4(sc, SF_ISR, status);
1111 
1112 		if (!(status & SF_INTRS))
1113 			break;
1114 
1115 		if (status & SF_ISR_RXDQ1_DMADONE)
1116 			sf_rxeof(sc);
1117 
1118 		if (status & SF_ISR_TX_TXDONE ||
1119 		    status & SF_ISR_TX_DMADONE ||
1120 		    status & SF_ISR_TX_QUEUEDONE)
1121 			sf_txeof(sc);
1122 
1123 		if (status & SF_ISR_TX_LOFIFO)
1124 			sf_txthresh_adjust(sc);
1125 
1126 		if (status & SF_ISR_ABNORMALINTR) {
1127 			if (status & SF_ISR_STATSOFLOW) {
1128 				untimeout(sf_stats_update, sc,
1129 				    sc->sf_stat_ch);
1130 				sf_stats_update(sc);
1131 			} else
1132 				sf_init(sc);
1133 		}
1134 	}
1135 
1136 	/* Re-enable interrupts. */
1137 	csr_write_4(sc, SF_IMR, SF_INTRS);
1138 
1139 	if (ifp->if_snd.ifq_head != NULL)
1140 		sf_start(ifp);
1141 
1142 	return;
1143 }
1144 
1145 static void sf_init(xsc)
1146 	void			*xsc;
1147 {
1148 	struct sf_softc		*sc;
1149 	struct ifnet		*ifp;
1150 	struct mii_data		*mii;
1151 	int			i, s;
1152 
1153 	s = splimp();
1154 
1155 	sc = xsc;
1156 	ifp = &sc->arpcom.ac_if;
1157 	mii = device_get_softc(sc->sf_miibus);
1158 
1159 	sf_stop(sc);
1160 	sf_reset(sc);
1161 
1162 	/* Init all the receive filter registers */
1163 	for (i = SF_RXFILT_PERFECT_BASE;
1164 	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
1165 		csr_write_4(sc, i, 0);
1166 
1167 	/* Empty stats counter registers. */
1168 	for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
1169 		csr_write_4(sc, SF_STATS_BASE +
1170 		    (i + sizeof(u_int32_t)), 0);
1171 
1172 	/* Init our MAC address */
1173 	csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1174 	csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1175 	sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr);
1176 
1177 	if (sf_init_rx_ring(sc) == ENOBUFS) {
1178 		printf("sf%d: initialization failed: no "
1179 		    "memory for rx buffers\n", sc->sf_unit);
1180 		(void)splx(s);
1181 		return;
1182 	}
1183 
1184 	sf_init_tx_ring(sc);
1185 
1186 	csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
1187 
1188 	/* If we want promiscuous mode, set the allframes bit. */
1189 	if (ifp->if_flags & IFF_PROMISC) {
1190 		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1191 	} else {
1192 		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1193 	}
1194 
1195 	if (ifp->if_flags & IFF_BROADCAST) {
1196 		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1197 	} else {
1198 		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1199 	}
1200 
1201 	/*
1202 	 * Load the multicast filter.
1203 	 */
1204 	sf_setmulti(sc);
1205 
1206 	/* Init the completion queue indexes */
1207 	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1208 	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1209 
1210 	/* Init the RX completion queue */
1211 	csr_write_4(sc, SF_RXCQ_CTL_1,
1212 	    vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
1213 	SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
1214 
1215 	/* Init RX DMA control. */
1216 	SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
1217 
1218 	/* Init the RX buffer descriptor queue. */
1219 	csr_write_4(sc, SF_RXDQ_ADDR_Q1,
1220 	    vtophys(sc->sf_ldata->sf_rx_dlist_big));
1221 	csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
1222 	csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
1223 
1224 	/* Init the TX completion queue */
1225 	csr_write_4(sc, SF_TXCQ_CTL,
1226 	    vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
1227 
1228 	/* Init the TX buffer descriptor queue. */
1229 	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
1230 		vtophys(sc->sf_ldata->sf_tx_dlist));
1231 	SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
1232 	csr_write_4(sc, SF_TXDQ_CTL,
1233 	    SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
1234 	SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
1235 
1236 	/* Enable autopadding of short TX frames. */
1237 	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
1238 
1239 	/* Enable interrupts. */
1240 	csr_write_4(sc, SF_IMR, SF_INTRS);
1241 	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
1242 
1243 	/* Enable the RX and TX engines. */
1244 	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
1245 	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
1246 
1247 	/*mii_mediachg(mii);*/
1248 	sf_ifmedia_upd(ifp);
1249 
1250 	ifp->if_flags |= IFF_RUNNING;
1251 	ifp->if_flags &= ~IFF_OACTIVE;
1252 
1253 	sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
1254 
1255 	splx(s);
1256 
1257 	return;
1258 }
1259 
1260 static int sf_encap(sc, c, m_head)
1261 	struct sf_softc		*sc;
1262 	struct sf_tx_bufdesc_type0 *c;
1263 	struct mbuf		*m_head;
1264 {
1265 	int			frag = 0;
1266 	struct sf_frag		*f = NULL;
1267 	struct mbuf		*m;
1268 
1269 	m = m_head;
1270 
1271 	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1272 		if (m->m_len != 0) {
1273 			if (frag == SF_MAXFRAGS)
1274 				break;
1275 			f = &c->sf_frags[frag];
1276 			if (frag == 0)
1277 				f->sf_pktlen = m_head->m_pkthdr.len;
1278 			f->sf_fraglen = m->m_len;
1279 			f->sf_addr = vtophys(mtod(m, vm_offset_t));
1280 			frag++;
1281 		}
1282 	}
1283 
1284 	if (m != NULL) {
1285 		struct mbuf		*m_new = NULL;
1286 
1287 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1288 		if (m_new == NULL) {
1289 			printf("sf%d: no memory for tx list", sc->sf_unit);
1290 			return(1);
1291 		}
1292 
1293 		if (m_head->m_pkthdr.len > MHLEN) {
1294 			MCLGET(m_new, MB_DONTWAIT);
1295 			if (!(m_new->m_flags & M_EXT)) {
1296 				m_freem(m_new);
1297 				printf("sf%d: no memory for tx list",
1298 				    sc->sf_unit);
1299 				return(1);
1300 			}
1301 		}
1302 		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1303 		    mtod(m_new, caddr_t));
1304 		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1305 		m_freem(m_head);
1306 		m_head = m_new;
1307 		f = &c->sf_frags[0];
1308 		f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len;
1309 		f->sf_addr = vtophys(mtod(m_head, caddr_t));
1310 		frag = 1;
1311 	}
1312 
1313 	c->sf_mbuf = m_head;
1314 	c->sf_id = SF_TX_BUFDESC_ID;
1315 	c->sf_fragcnt = frag;
1316 	c->sf_intr = 1;
1317 	c->sf_caltcp = 0;
1318 	c->sf_crcen = 1;
1319 
1320 	return(0);
1321 }
1322 
1323 static void sf_start(ifp)
1324 	struct ifnet		*ifp;
1325 {
1326 	struct sf_softc		*sc;
1327 	struct sf_tx_bufdesc_type0 *cur_tx = NULL;
1328 	struct mbuf		*m_head = NULL;
1329 	int			i, txprod;
1330 
1331 	sc = ifp->if_softc;
1332 
1333 	if (!sc->sf_link && ifp->if_snd.ifq_len < 10)
1334 		return;
1335 
1336 	if (ifp->if_flags & IFF_OACTIVE)
1337 		return;
1338 
1339 	txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1340 	i = SF_IDX_HI(txprod) >> 4;
1341 
1342 	if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1343 		printf("sf%d: TX ring full, resetting\n", sc->sf_unit);
1344 		sf_init(sc);
1345 		txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1346 		i = SF_IDX_HI(txprod) >> 4;
1347 	}
1348 
1349 	while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
1350 		if (sc->sf_tx_cnt >= (SF_TX_DLIST_CNT - 5)) {
1351 			ifp->if_flags |= IFF_OACTIVE;
1352 			cur_tx = NULL;
1353 			break;
1354 		}
1355 		IF_DEQUEUE(&ifp->if_snd, m_head);
1356 		if (m_head == NULL)
1357 			break;
1358 
1359 		cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
1360 		if (sf_encap(sc, cur_tx, m_head)) {
1361 			IF_PREPEND(&ifp->if_snd, m_head);
1362 			ifp->if_flags |= IFF_OACTIVE;
1363 			cur_tx = NULL;
1364 			break;
1365 		}
1366 
1367 
1368 		/*
1369 		 * If there's a BPF listener, bounce a copy of this frame
1370 		 * to him.
1371 		 */
1372 		if (ifp->if_bpf)
1373 			bpf_mtap(ifp, m_head);
1374 
1375 		SF_INC(i, SF_TX_DLIST_CNT);
1376 		sc->sf_tx_cnt++;
1377 		/*
1378 		 * Don't get the TX DMA queue get too full.
1379 		 */
1380 		if (sc->sf_tx_cnt > 64)
1381 			break;
1382 	}
1383 
1384 	if (cur_tx == NULL)
1385 		return;
1386 
1387 	/* Transmit */
1388 	csr_write_4(sc, SF_TXDQ_PRODIDX,
1389 	    (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
1390 	    ((i << 20) & 0xFFFF0000));
1391 
1392 	ifp->if_timer = 5;
1393 
1394 	return;
1395 }
1396 
1397 static void sf_stop(sc)
1398 	struct sf_softc		*sc;
1399 {
1400 	int			i;
1401 	struct ifnet		*ifp;
1402 
1403 	ifp = &sc->arpcom.ac_if;
1404 
1405 	untimeout(sf_stats_update, sc, sc->sf_stat_ch);
1406 
1407 	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
1408 	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1409 	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1410 	csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
1411 	csr_write_4(sc, SF_RXDQ_CTL_1, 0);
1412 	csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
1413 	csr_write_4(sc, SF_TXCQ_CTL, 0);
1414 	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
1415 	csr_write_4(sc, SF_TXDQ_CTL, 0);
1416 	sf_reset(sc);
1417 
1418 	sc->sf_link = 0;
1419 
1420 	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1421 		if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
1422 			m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
1423 			sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
1424 		}
1425 	}
1426 
1427 	for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1428 		if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1429 			m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
1430 			sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
1431 		}
1432 	}
1433 
1434 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1435 
1436 	return;
1437 }
1438 
1439 /*
1440  * Note: it is important that this function not be interrupted. We
1441  * use a two-stage register access scheme: if we are interrupted in
1442  * between setting the indirect address register and reading from the
1443  * indirect data register, the contents of the address register could
1444  * be changed out from under us.
1445  */
1446 static void sf_stats_update(xsc)
1447 	void			*xsc;
1448 {
1449 	struct sf_softc		*sc;
1450 	struct ifnet		*ifp;
1451 	struct mii_data		*mii;
1452 	struct sf_stats		stats;
1453 	u_int32_t		*ptr;
1454 	int			i, s;
1455 
1456 	s = splimp();
1457 
1458 	sc = xsc;
1459 	ifp = &sc->arpcom.ac_if;
1460 	mii = device_get_softc(sc->sf_miibus);
1461 
1462 	ptr = (u_int32_t *)&stats;
1463 	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1464 		ptr[i] = csr_read_4(sc, SF_STATS_BASE +
1465 		    (i + sizeof(u_int32_t)));
1466 
1467 	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1468 		csr_write_4(sc, SF_STATS_BASE +
1469 		    (i + sizeof(u_int32_t)), 0);
1470 
1471 	ifp->if_collisions += stats.sf_tx_single_colls +
1472 	    stats.sf_tx_multi_colls + stats.sf_tx_excess_colls;
1473 
1474 	mii_tick(mii);
1475 	if (!sc->sf_link) {
1476 		mii_pollstat(mii);
1477 		if (mii->mii_media_status & IFM_ACTIVE &&
1478 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1479 			sc->sf_link++;
1480 			if (ifp->if_snd.ifq_head != NULL)
1481 				sf_start(ifp);
1482 	}
1483 
1484 	sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
1485 
1486 	splx(s);
1487 
1488 	return;
1489 }
1490 
1491 static void sf_watchdog(ifp)
1492 	struct ifnet		*ifp;
1493 {
1494 	struct sf_softc		*sc;
1495 
1496 	sc = ifp->if_softc;
1497 
1498 	ifp->if_oerrors++;
1499 	printf("sf%d: watchdog timeout\n", sc->sf_unit);
1500 
1501 	sf_stop(sc);
1502 	sf_reset(sc);
1503 	sf_init(sc);
1504 
1505 	if (ifp->if_snd.ifq_head != NULL)
1506 		sf_start(ifp);
1507 
1508 	return;
1509 }
1510 
1511 static void sf_shutdown(dev)
1512 	device_t		dev;
1513 {
1514 	struct sf_softc		*sc;
1515 
1516 	sc = device_get_softc(dev);
1517 
1518 	sf_stop(sc);
1519 
1520 	return;
1521 }
1522