xref: /dragonfly/sys/dev/netif/sf/if_sf.c (revision bcb3e04d)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_sf.c,v 1.18.2.8 2001/12/16 15:46:07 luigi Exp $
33  * $DragonFly: src/sys/dev/netif/sf/if_sf.c,v 1.33 2008/08/17 04:32:34 sephe Exp $
34  */
35 
36 /*
37  * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
38  * Programming manual is available from:
39  * ftp.adaptec.com:/pub/BBS/userguides/aic6915_pg.pdf.
40  *
41  * Written by Bill Paul <wpaul@ctr.columbia.edu>
42  * Department of Electical Engineering
43  * Columbia University, New York City
44  */
45 
46 /*
47  * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
48  * controller designed with flexibility and reducing CPU load in mind.
49  * The Starfire offers high and low priority buffer queues, a
50  * producer/consumer index mechanism and several different buffer
51  * queue and completion queue descriptor types. Any one of a number
52  * of different driver designs can be used, depending on system and
53  * OS requirements. This driver makes use of type0 transmit frame
54  * descriptors (since BSD fragments packets across an mbuf chain)
55  * and two RX buffer queues prioritized on size (one queue for small
56  * frames that will fit into a single mbuf, another with full size
57  * mbuf clusters for everything else). The producer/consumer indexes
58  * and completion queues are also used.
59  *
60  * One downside to the Starfire has to do with alignment: buffer
61  * queues must be aligned on 256-byte boundaries, and receive buffers
62  * must be aligned on longword boundaries. The receive buffer alignment
63  * causes problems on the Alpha platform, where the packet payload
64  * should be longword aligned. There is no simple way around this.
65  *
66  * For receive filtering, the Starfire offers 16 perfect filter slots
67  * and a 512-bit hash table.
68  *
69  * The Starfire has no internal transceiver, relying instead on an
70  * external MII-based transceiver. Accessing registers on external
71  * PHYs is done through a special register map rather than with the
72  * usual bitbang MDIO method.
73  *
74  * Acesssing the registers on the Starfire is a little tricky. The
75  * Starfire has a 512K internal register space. When programmed for
76  * PCI memory mapped mode, the entire register space can be accessed
77  * directly. However in I/O space mode, only 256 bytes are directly
78  * mapped into PCI I/O space. The other registers can be accessed
79  * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
80  * registers inside the 256-byte I/O window.
81  */
82 
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/sockio.h>
86 #include <sys/mbuf.h>
87 #include <sys/malloc.h>
88 #include <sys/kernel.h>
89 #include <sys/interrupt.h>
90 #include <sys/socket.h>
91 #include <sys/serialize.h>
92 #include <sys/bus.h>
93 #include <sys/rman.h>
94 #include <sys/thread2.h>
95 
96 #include <net/if.h>
97 #include <net/ifq_var.h>
98 #include <net/if_arp.h>
99 #include <net/ethernet.h>
100 #include <net/if_dl.h>
101 #include <net/if_media.h>
102 
103 #include <net/bpf.h>
104 
105 #include <vm/vm.h>              /* for vtophys */
106 #include <vm/pmap.h>            /* for vtophys */
107 
108 #include <machine/clock.h>      /* for DELAY */
109 
110 #include "../mii_layer/mii.h"
111 #include "../mii_layer/miivar.h"
112 
113 /* "controller miibus0" required.  See GENERIC if you get errors here. */
114 #include "miibus_if.h"
115 
116 #include <bus/pci/pcidevs.h>
117 #include <bus/pci/pcireg.h>
118 #include <bus/pci/pcivar.h>
119 
120 #define SF_USEIOSPACE
121 
122 #include "if_sfreg.h"
123 
124 static struct sf_type sf_devs[] = {
125 	{ PCI_VENDOR_ADP, PCI_PRODUCT_ADP_AIC6915,
126 		"Adaptec AIC-6915 10/100BaseTX" },
127 	{ 0, 0, NULL }
128 };
129 
130 static int sf_probe		(device_t);
131 static int sf_attach		(device_t);
132 static int sf_detach		(device_t);
133 static void sf_intr		(void *);
134 static void sf_stats_update	(void *);
135 static void sf_rxeof		(struct sf_softc *);
136 static void sf_txeof		(struct sf_softc *);
137 static int sf_encap		(struct sf_softc *,
138 					struct sf_tx_bufdesc_type0 *,
139 					struct mbuf *);
140 static void sf_start		(struct ifnet *);
141 static int sf_ioctl		(struct ifnet *, u_long, caddr_t,
142 					struct ucred *);
143 static void sf_init		(void *);
144 static void sf_stop		(struct sf_softc *);
145 static void sf_watchdog		(struct ifnet *);
146 static void sf_shutdown		(device_t);
147 static int sf_ifmedia_upd	(struct ifnet *);
148 static void sf_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
149 static void sf_reset		(struct sf_softc *);
150 static int sf_init_rx_ring	(struct sf_softc *);
151 static void sf_init_tx_ring	(struct sf_softc *);
152 static int sf_newbuf		(struct sf_softc *,
153 					struct sf_rx_bufdesc_type0 *,
154 					struct mbuf *);
155 static void sf_setmulti		(struct sf_softc *);
156 static int sf_setperf		(struct sf_softc *, int, caddr_t);
157 static int sf_sethash		(struct sf_softc *, caddr_t, int);
158 #ifdef notdef
159 static int sf_setvlan		(struct sf_softc *, int, u_int32_t);
160 #endif
161 
162 static u_int8_t sf_read_eeprom	(struct sf_softc *, int);
163 static u_int32_t sf_calchash	(caddr_t);
164 
165 static int sf_miibus_readreg	(device_t, int, int);
166 static int sf_miibus_writereg	(device_t, int, int, int);
167 static void sf_miibus_statchg	(device_t);
168 
169 static u_int32_t csr_read_4	(struct sf_softc *, int);
170 static void csr_write_4		(struct sf_softc *, int, u_int32_t);
171 static void sf_txthresh_adjust	(struct sf_softc *);
172 
173 #ifdef SF_USEIOSPACE
174 #define SF_RES			SYS_RES_IOPORT
175 #define SF_RID			SF_PCI_LOIO
176 #else
177 #define SF_RES			SYS_RES_MEMORY
178 #define SF_RID			SF_PCI_LOMEM
179 #endif
180 
181 static device_method_t sf_methods[] = {
182 	/* Device interface */
183 	DEVMETHOD(device_probe,		sf_probe),
184 	DEVMETHOD(device_attach,	sf_attach),
185 	DEVMETHOD(device_detach,	sf_detach),
186 	DEVMETHOD(device_shutdown,	sf_shutdown),
187 
188 	/* bus interface */
189 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
190 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
191 
192 	/* MII interface */
193 	DEVMETHOD(miibus_readreg,	sf_miibus_readreg),
194 	DEVMETHOD(miibus_writereg,	sf_miibus_writereg),
195 	DEVMETHOD(miibus_statchg,	sf_miibus_statchg),
196 
197 	{ 0, 0 }
198 };
199 
200 static driver_t sf_driver = {
201 	"sf",
202 	sf_methods,
203 	sizeof(struct sf_softc),
204 };
205 
206 static devclass_t sf_devclass;
207 
208 DECLARE_DUMMY_MODULE(if_sf);
209 DRIVER_MODULE(if_sf, pci, sf_driver, sf_devclass, 0, 0);
210 DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
211 
212 #define SF_SETBIT(sc, reg, x)	\
213 	csr_write_4(sc, reg, csr_read_4(sc, reg) | x)
214 
215 #define SF_CLRBIT(sc, reg, x)				\
216 	csr_write_4(sc, reg, csr_read_4(sc, reg) & ~x)
217 
218 static u_int32_t
219 csr_read_4(struct sf_softc *sc, int reg)
220 {
221 	u_int32_t		val;
222 
223 #ifdef SF_USEIOSPACE
224 	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
225 	val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
226 #else
227 	val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
228 #endif
229 
230 	return(val);
231 }
232 
233 static u_int8_t
234 sf_read_eeprom(struct sf_softc *sc, int reg)
235 {
236 	u_int8_t		val;
237 
238 	val = (csr_read_4(sc, SF_EEADDR_BASE +
239 	    (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
240 
241 	return(val);
242 }
243 
244 static void
245 csr_write_4(struct sf_softc *sc, int reg, u_int32_t val)
246 {
247 #ifdef SF_USEIOSPACE
248 	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
249 	CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
250 #else
251 	CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
252 #endif
253 	return;
254 }
255 
256 static u_int32_t
257 sf_calchash(caddr_t addr)
258 {
259 	u_int32_t		crc, carry;
260 	int			i, j;
261 	u_int8_t		c;
262 
263 	/* Compute CRC for the address value. */
264 	crc = 0xFFFFFFFF; /* initial value */
265 
266 	for (i = 0; i < 6; i++) {
267 		c = *(addr + i);
268 		for (j = 0; j < 8; j++) {
269 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
270 			crc <<= 1;
271 			c >>= 1;
272 			if (carry)
273 				crc = (crc ^ 0x04c11db6) | carry;
274 		}
275 	}
276 
277 	/* return the filter bit position */
278 	return(crc >> 23 & 0x1FF);
279 }
280 
281 /*
282  * Copy the address 'mac' into the perfect RX filter entry at
283  * offset 'idx.' The perfect filter only has 16 entries so do
284  * some sanity tests.
285  */
286 static int
287 sf_setperf(struct sf_softc *sc, int idx, caddr_t mac)
288 {
289 	u_int16_t		*p;
290 
291 	if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
292 		return(EINVAL);
293 
294 	if (mac == NULL)
295 		return(EINVAL);
296 
297 	p = (u_int16_t *)mac;
298 
299 	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
300 	    (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
301 	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
302 	    (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
303 	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
304 	    (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
305 
306 	return(0);
307 }
308 
309 /*
310  * Set the bit in the 512-bit hash table that corresponds to the
311  * specified mac address 'mac.' If 'prio' is nonzero, update the
312  * priority hash table instead of the filter hash table.
313  */
314 static int
315 sf_sethash(struct sf_softc *sc, caddr_t mac, int prio)
316 {
317 	u_int32_t		h = 0;
318 
319 	if (mac == NULL)
320 		return(EINVAL);
321 
322 	h = sf_calchash(mac);
323 
324 	if (prio) {
325 		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
326 		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
327 	} else {
328 		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
329 		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
330 	}
331 
332 	return(0);
333 }
334 
335 #ifdef notdef
336 /*
337  * Set a VLAN tag in the receive filter.
338  */
339 static int
340 sf_setvlan(struct sf_softc *sc, int idx, u_int32_t vlan)
341 {
342 	if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
343 		return(EINVAL);
344 
345 	csr_write_4(sc, SF_RXFILT_HASH_BASE +
346 	    (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
347 
348 	return(0);
349 }
350 #endif
351 
352 static int
353 sf_miibus_readreg(device_t dev, int phy, int reg)
354 {
355 	struct sf_softc		*sc;
356 	int			i;
357 	u_int32_t		val = 0;
358 
359 	sc = device_get_softc(dev);
360 
361 	for (i = 0; i < SF_TIMEOUT; i++) {
362 		val = csr_read_4(sc, SF_PHY_REG(phy, reg));
363 		if (val & SF_MII_DATAVALID)
364 			break;
365 	}
366 
367 	if (i == SF_TIMEOUT)
368 		return(0);
369 
370 	if ((val & 0x0000FFFF) == 0xFFFF)
371 		return(0);
372 
373 	return(val & 0x0000FFFF);
374 }
375 
376 static int
377 sf_miibus_writereg(device_t dev, int phy, int reg, int val)
378 {
379 	struct sf_softc		*sc;
380 	int			i;
381 	int			busy;
382 
383 	sc = device_get_softc(dev);
384 
385 	csr_write_4(sc, SF_PHY_REG(phy, reg), val);
386 
387 	for (i = 0; i < SF_TIMEOUT; i++) {
388 		busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
389 		if (!(busy & SF_MII_BUSY))
390 			break;
391 	}
392 
393 	return(0);
394 }
395 
396 static void
397 sf_miibus_statchg(device_t dev)
398 {
399 	struct sf_softc		*sc;
400 	struct mii_data		*mii;
401 
402 	sc = device_get_softc(dev);
403 	mii = device_get_softc(sc->sf_miibus);
404 
405 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
406 		SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
407 		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
408 	} else {
409 		SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
410 		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
411 	}
412 
413 	return;
414 }
415 
416 static void
417 sf_setmulti(struct sf_softc *sc)
418 {
419 	struct ifnet		*ifp;
420 	int			i;
421 	struct ifmultiaddr	*ifma;
422 	u_int8_t		dummy[] = { 0, 0, 0, 0, 0, 0 };
423 
424 	ifp = &sc->arpcom.ac_if;
425 
426 	/* First zot all the existing filters. */
427 	for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
428 		sf_setperf(sc, i, (char *)&dummy);
429 	for (i = SF_RXFILT_HASH_BASE;
430 	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
431 		csr_write_4(sc, i, 0);
432 	SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
433 
434 	/* Now program new ones. */
435 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
436 		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
437 	} else {
438 		i = 1;
439 		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
440 			if (ifma->ifma_addr->sa_family != AF_LINK)
441 				continue;
442 			/*
443 			 * Program the first 15 multicast groups
444 			 * into the perfect filter. For all others,
445 			 * use the hash table.
446 			 */
447 			if (i < SF_RXFILT_PERFECT_CNT) {
448 				sf_setperf(sc, i,
449 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
450 				i++;
451 				continue;
452 			}
453 
454 			sf_sethash(sc,
455 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
456 		}
457 	}
458 
459 	return;
460 }
461 
462 /*
463  * Set media options.
464  */
465 static int
466 sf_ifmedia_upd(struct ifnet *ifp)
467 {
468 	struct sf_softc		*sc;
469 	struct mii_data		*mii;
470 
471 	sc = ifp->if_softc;
472 	mii = device_get_softc(sc->sf_miibus);
473 	sc->sf_link = 0;
474 	if (mii->mii_instance) {
475 		struct mii_softc        *miisc;
476 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
477 		    miisc = LIST_NEXT(miisc, mii_list))
478 			mii_phy_reset(miisc);
479 	}
480 	mii_mediachg(mii);
481 
482 	return(0);
483 }
484 
485 /*
486  * Report current media status.
487  */
488 static void
489 sf_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
490 {
491 	struct sf_softc		*sc;
492 	struct mii_data		*mii;
493 
494 	sc = ifp->if_softc;
495 	mii = device_get_softc(sc->sf_miibus);
496 
497 	mii_pollstat(mii);
498 	ifmr->ifm_active = mii->mii_media_active;
499 	ifmr->ifm_status = mii->mii_media_status;
500 
501 	return;
502 }
503 
504 static int
505 sf_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
506 {
507 	struct sf_softc		*sc = ifp->if_softc;
508 	struct ifreq		*ifr = (struct ifreq *) data;
509 	struct mii_data		*mii;
510 	int error = 0;
511 
512 	switch(command) {
513 	case SIOCSIFFLAGS:
514 		if (ifp->if_flags & IFF_UP) {
515 			if (ifp->if_flags & IFF_RUNNING &&
516 			    ifp->if_flags & IFF_PROMISC &&
517 			    !(sc->sf_if_flags & IFF_PROMISC)) {
518 				SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
519 			} else if (ifp->if_flags & IFF_RUNNING &&
520 			    !(ifp->if_flags & IFF_PROMISC) &&
521 			    sc->sf_if_flags & IFF_PROMISC) {
522 				SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
523 			} else if (!(ifp->if_flags & IFF_RUNNING))
524 				sf_init(sc);
525 		} else {
526 			if (ifp->if_flags & IFF_RUNNING)
527 				sf_stop(sc);
528 		}
529 		sc->sf_if_flags = ifp->if_flags;
530 		error = 0;
531 		break;
532 	case SIOCADDMULTI:
533 	case SIOCDELMULTI:
534 		sf_setmulti(sc);
535 		error = 0;
536 		break;
537 	case SIOCGIFMEDIA:
538 	case SIOCSIFMEDIA:
539 		mii = device_get_softc(sc->sf_miibus);
540 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
541 		break;
542 	default:
543 		error = ether_ioctl(ifp, command, data);
544 		break;
545 	}
546 
547 	return(error);
548 }
549 
550 static void
551 sf_reset(struct sf_softc *sc)
552 {
553 	int		i;
554 
555 	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
556 	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
557 	DELAY(1000);
558 	SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
559 
560 	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
561 
562 	for (i = 0; i < SF_TIMEOUT; i++) {
563 		DELAY(10);
564 		if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
565 			break;
566 	}
567 
568 	if (i == SF_TIMEOUT)
569 		kprintf("sf%d: reset never completed!\n", sc->sf_unit);
570 
571 	/* Wait a little while for the chip to get its brains in order. */
572 	DELAY(1000);
573 	return;
574 }
575 
576 /*
577  * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
578  * IDs against our list and return a device name if we find a match.
579  * We also check the subsystem ID so that we can identify exactly which
580  * NIC has been found, if possible.
581  */
582 static int
583 sf_probe(device_t dev)
584 {
585 	struct sf_type		*t;
586 
587 	t = sf_devs;
588 
589 	while(t->sf_name != NULL) {
590 		if ((pci_get_vendor(dev) == t->sf_vid) &&
591 		    (pci_get_device(dev) == t->sf_did)) {
592 			switch((pci_read_config(dev,
593 			    SF_PCI_SUBVEN_ID, 4) >> 16) & 0xFFFF) {
594 			case AD_SUBSYSID_62011_REV0:
595 			case AD_SUBSYSID_62011_REV1:
596 				device_set_desc(dev,
597 				    "Adaptec ANA-62011 10/100BaseTX");
598 				return(0);
599 				break;
600 			case AD_SUBSYSID_62022:
601 				device_set_desc(dev,
602 				    "Adaptec ANA-62022 10/100BaseTX");
603 				return(0);
604 				break;
605 			case AD_SUBSYSID_62044_REV0:
606 			case AD_SUBSYSID_62044_REV1:
607 				device_set_desc(dev,
608 				    "Adaptec ANA-62044 10/100BaseTX");
609 				return(0);
610 				break;
611 			case AD_SUBSYSID_62020:
612 				device_set_desc(dev,
613 				    "Adaptec ANA-62020 10/100BaseFX");
614 				return(0);
615 				break;
616 			case AD_SUBSYSID_69011:
617 				device_set_desc(dev,
618 				    "Adaptec ANA-69011 10/100BaseTX");
619 				return(0);
620 				break;
621 			default:
622 				device_set_desc(dev, t->sf_name);
623 				return(0);
624 				break;
625 			}
626 		}
627 		t++;
628 	}
629 
630 	return(ENXIO);
631 }
632 
633 /*
634  * Attach the interface. Allocate softc structures, do ifmedia
635  * setup and ethernet/BPF attach.
636  */
637 static int
638 sf_attach(device_t dev)
639 {
640 	int			i;
641 	u_int32_t		command;
642 	struct sf_softc		*sc;
643 	struct ifnet		*ifp;
644 	int			unit, rid, error = 0;
645 
646 	sc = device_get_softc(dev);
647 	unit = device_get_unit(dev);
648 
649 	/*
650 	 * Handle power management nonsense.
651 	 */
652 	command = pci_read_config(dev, SF_PCI_CAPID, 4) & 0x000000FF;
653 	if (command == 0x01) {
654 
655 		command = pci_read_config(dev, SF_PCI_PWRMGMTCTRL, 4);
656 		if (command & SF_PSTATE_MASK) {
657 			u_int32_t		iobase, membase, irq;
658 
659 			/* Save important PCI config data. */
660 			iobase = pci_read_config(dev, SF_PCI_LOIO, 4);
661 			membase = pci_read_config(dev, SF_PCI_LOMEM, 4);
662 			irq = pci_read_config(dev, SF_PCI_INTLINE, 4);
663 
664 			/* Reset the power state. */
665 			kprintf("sf%d: chip is in D%d power mode "
666 			"-- setting to D0\n", unit, command & SF_PSTATE_MASK);
667 			command &= 0xFFFFFFFC;
668 			pci_write_config(dev, SF_PCI_PWRMGMTCTRL, command, 4);
669 
670 			/* Restore PCI config data. */
671 			pci_write_config(dev, SF_PCI_LOIO, iobase, 4);
672 			pci_write_config(dev, SF_PCI_LOMEM, membase, 4);
673 			pci_write_config(dev, SF_PCI_INTLINE, irq, 4);
674 		}
675 	}
676 
677 	/*
678 	 * Map control/status registers.
679 	 */
680 	command = pci_read_config(dev, PCIR_COMMAND, 4);
681 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
682 	pci_write_config(dev, PCIR_COMMAND, command, 4);
683 	command = pci_read_config(dev, PCIR_COMMAND, 4);
684 
685 #ifdef SF_USEIOSPACE
686 	if (!(command & PCIM_CMD_PORTEN)) {
687 		kprintf("sf%d: failed to enable I/O ports!\n", unit);
688 		error = ENXIO;
689 		return(error);
690 	}
691 #else
692 	if (!(command & PCIM_CMD_MEMEN)) {
693 		kprintf("sf%d: failed to enable memory mapping!\n", unit);
694 		error = ENXIO;
695 		return(error);
696 	}
697 #endif
698 
699 	rid = SF_RID;
700 	sc->sf_res = bus_alloc_resource_any(dev, SF_RES, &rid, RF_ACTIVE);
701 
702 	if (sc->sf_res == NULL) {
703 		kprintf ("sf%d: couldn't map ports\n", unit);
704 		error = ENXIO;
705 		return(error);
706 	}
707 
708 	sc->sf_btag = rman_get_bustag(sc->sf_res);
709 	sc->sf_bhandle = rman_get_bushandle(sc->sf_res);
710 
711 	/* Allocate interrupt */
712 	rid = 0;
713 	sc->sf_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
714 	    RF_SHAREABLE | RF_ACTIVE);
715 
716 	if (sc->sf_irq == NULL) {
717 		kprintf("sf%d: couldn't map interrupt\n", unit);
718 		error = ENXIO;
719 		goto fail;
720 	}
721 
722 	callout_init(&sc->sf_stat_timer);
723 
724 	/* Reset the adapter. */
725 	sf_reset(sc);
726 
727 	/*
728 	 * Get station address from the EEPROM.
729 	 */
730 	for (i = 0; i < ETHER_ADDR_LEN; i++)
731 		sc->arpcom.ac_enaddr[i] =
732 		    sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
733 
734 	sc->sf_unit = unit;
735 
736 	/* Allocate the descriptor queues. */
737 	sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF,
738 	    M_WAITOK | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
739 
740 	if (sc->sf_ldata == NULL) {
741 		kprintf("sf%d: no memory for list buffers!\n", unit);
742 		error = ENXIO;
743 		goto fail;
744 	}
745 
746 	/* Do MII setup. */
747 	if (mii_phy_probe(dev, &sc->sf_miibus,
748 	    sf_ifmedia_upd, sf_ifmedia_sts)) {
749 		kprintf("sf%d: MII without any phy!\n", sc->sf_unit);
750 		error = ENXIO;
751 		goto fail;
752 	}
753 
754 	ifp = &sc->arpcom.ac_if;
755 	ifp->if_softc = sc;
756 	if_initname(ifp, "sf", unit);
757 	ifp->if_mtu = ETHERMTU;
758 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
759 	ifp->if_ioctl = sf_ioctl;
760 	ifp->if_start = sf_start;
761 	ifp->if_watchdog = sf_watchdog;
762 	ifp->if_init = sf_init;
763 	ifp->if_baudrate = 10000000;
764 	ifq_set_maxlen(&ifp->if_snd, SF_TX_DLIST_CNT - 1);
765 	ifq_set_ready(&ifp->if_snd);
766 
767 	/*
768 	 * Call MI attach routine.
769 	 */
770 	ether_ifattach(ifp, sc->arpcom.ac_enaddr, NULL);
771 
772 	error = bus_setup_intr(dev, sc->sf_irq, INTR_MPSAFE,
773 			       sf_intr, sc, &sc->sf_intrhand,
774 			       ifp->if_serializer);
775 
776 	if (error) {
777 		ether_ifdetach(ifp);
778 		device_printf(dev, "couldn't set up irq\n");
779 		goto fail;
780 	}
781 
782 	ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->sf_irq));
783 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
784 
785 	return(0);
786 
787 fail:
788 	sf_detach(dev);
789 	return(error);
790 }
791 
792 static int
793 sf_detach(device_t dev)
794 {
795 	struct sf_softc *sc = device_get_softc(dev);
796 	struct ifnet *ifp = &sc->arpcom.ac_if;
797 
798 	if (device_is_attached(dev)) {
799 		lwkt_serialize_enter(ifp->if_serializer);
800 		sf_stop(sc);
801 		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
802 		lwkt_serialize_exit(ifp->if_serializer);
803 
804 		ether_ifdetach(ifp);
805 	}
806 
807 	if (sc->sf_miibus)
808 		device_delete_child(dev, sc->sf_miibus);
809 	bus_generic_detach(dev);
810 
811 	if (sc->sf_irq)
812 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
813 	if(sc->sf_res)
814 		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
815 
816 	if (sc->sf_ldata) {
817 		contigfree(sc->sf_ldata, sizeof(struct sf_list_data),
818 			   M_DEVBUF);
819 	}
820 
821 	return(0);
822 }
823 
824 static int
825 sf_init_rx_ring(struct sf_softc *sc)
826 {
827 	struct sf_list_data	*ld;
828 	int			i;
829 
830 	ld = sc->sf_ldata;
831 
832 	bzero((char *)ld->sf_rx_dlist_big,
833 	    sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
834 	bzero((char *)ld->sf_rx_clist,
835 	    sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
836 
837 	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
838 		if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
839 			return(ENOBUFS);
840 	}
841 
842 	return(0);
843 }
844 
845 static void
846 sf_init_tx_ring(struct sf_softc *sc)
847 {
848 	struct sf_list_data	*ld;
849 	int			i;
850 
851 	ld = sc->sf_ldata;
852 
853 	bzero((char *)ld->sf_tx_dlist,
854 	    sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
855 	bzero((char *)ld->sf_tx_clist,
856 	    sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
857 
858 	for (i = 0; i < SF_TX_DLIST_CNT; i++)
859 		ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
860 	for (i = 0; i < SF_TX_CLIST_CNT; i++)
861 		ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
862 
863 	ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
864 	sc->sf_tx_cnt = 0;
865 
866 	return;
867 }
868 
869 static int
870 sf_newbuf(struct sf_softc *sc, struct sf_rx_bufdesc_type0 *c,
871 	  struct mbuf *m)
872 {
873 	struct mbuf		*m_new = NULL;
874 
875 	if (m == NULL) {
876 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
877 		if (m_new == NULL)
878 			return(ENOBUFS);
879 
880 		MCLGET(m_new, MB_DONTWAIT);
881 		if (!(m_new->m_flags & M_EXT)) {
882 			m_freem(m_new);
883 			return(ENOBUFS);
884 		}
885 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
886 	} else {
887 		m_new = m;
888 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
889 		m_new->m_data = m_new->m_ext.ext_buf;
890 	}
891 
892 	m_adj(m_new, sizeof(u_int64_t));
893 
894 	c->sf_mbuf = m_new;
895 	c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
896 	c->sf_valid = 1;
897 
898 	return(0);
899 }
900 
901 /*
902  * The starfire is programmed to use 'normal' mode for packet reception,
903  * which means we use the consumer/producer model for both the buffer
904  * descriptor queue and the completion descriptor queue. The only problem
905  * with this is that it involves a lot of register accesses: we have to
906  * read the RX completion consumer and producer indexes and the RX buffer
907  * producer index, plus the RX completion consumer and RX buffer producer
908  * indexes have to be updated. It would have been easier if Adaptec had
909  * put each index in a separate register, especially given that the damn
910  * NIC has a 512K register space.
911  *
912  * In spite of all the lovely features that Adaptec crammed into the 6915,
913  * it is marred by one truly stupid design flaw, which is that receive
914  * buffer addresses must be aligned on a longword boundary. This forces
915  * the packet payload to be unaligned, which is suboptimal on the x86 and
916  * completely unuseable on the Alpha. Our only recourse is to copy received
917  * packets into properly aligned buffers before handing them off.
918  */
919 
920 static void
921 sf_rxeof(struct sf_softc *sc)
922 {
923 	struct mbuf		*m;
924 	struct ifnet		*ifp;
925 	struct sf_rx_bufdesc_type0	*desc;
926 	struct sf_rx_cmpdesc_type3	*cur_rx;
927 	u_int32_t		rxcons, rxprod;
928 	int			cmpprodidx, cmpconsidx, bufprodidx;
929 
930 	ifp = &sc->arpcom.ac_if;
931 
932 	rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
933 	rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
934 	cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
935 	cmpconsidx = SF_IDX_LO(rxcons);
936 	bufprodidx = SF_IDX_LO(rxprod);
937 
938 	while (cmpconsidx != cmpprodidx) {
939 		struct mbuf		*m0;
940 
941 		cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
942 		desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
943 		m = desc->sf_mbuf;
944 		SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
945 		SF_INC(bufprodidx, SF_RX_DLIST_CNT);
946 
947 		if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
948 			ifp->if_ierrors++;
949 			sf_newbuf(sc, desc, m);
950 			continue;
951 		}
952 
953 		m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
954 		    cur_rx->sf_len + ETHER_ALIGN, 0, ifp, NULL);
955 		sf_newbuf(sc, desc, m);
956 		if (m0 == NULL) {
957 			ifp->if_ierrors++;
958 			continue;
959 		}
960 		m_adj(m0, ETHER_ALIGN);
961 		m = m0;
962 
963 		ifp->if_ipackets++;
964 
965 		ifp->if_input(ifp, m);
966 	}
967 
968 	csr_write_4(sc, SF_CQ_CONSIDX,
969 	    (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
970 	csr_write_4(sc, SF_RXDQ_PTR_Q1,
971 	    (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
972 
973 	return;
974 }
975 
976 /*
977  * Read the transmit status from the completion queue and release
978  * mbufs. Note that the buffer descriptor index in the completion
979  * descriptor is an offset from the start of the transmit buffer
980  * descriptor list in bytes. This is important because the manual
981  * gives the impression that it should match the producer/consumer
982  * index, which is the offset in 8 byte blocks.
983  */
984 static void
985 sf_txeof(struct sf_softc *sc)
986 {
987 	int			txcons, cmpprodidx, cmpconsidx;
988 	struct sf_tx_cmpdesc_type1 *cur_cmp;
989 	struct sf_tx_bufdesc_type0 *cur_tx;
990 	struct ifnet		*ifp;
991 
992 	ifp = &sc->arpcom.ac_if;
993 
994 	txcons = csr_read_4(sc, SF_CQ_CONSIDX);
995 	cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
996 	cmpconsidx = SF_IDX_HI(txcons);
997 
998 	while (cmpconsidx != cmpprodidx) {
999 		cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
1000 		cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
1001 
1002 		if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
1003 			ifp->if_opackets++;
1004 		else {
1005 			if (cur_cmp->sf_txstat & SF_TXSTAT_TX_UNDERRUN)
1006 				sf_txthresh_adjust(sc);
1007 			ifp->if_oerrors++;
1008 		}
1009 
1010 		sc->sf_tx_cnt--;
1011 		if (cur_tx->sf_mbuf != NULL) {
1012 			m_freem(cur_tx->sf_mbuf);
1013 			cur_tx->sf_mbuf = NULL;
1014 		} else
1015 			break;
1016 		SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
1017 	}
1018 
1019 	ifp->if_timer = 0;
1020 	ifp->if_flags &= ~IFF_OACTIVE;
1021 
1022 	csr_write_4(sc, SF_CQ_CONSIDX,
1023 	    (txcons & ~SF_CQ_CONSIDX_TXQ) |
1024 	    ((cmpconsidx << 16) & 0xFFFF0000));
1025 
1026 	return;
1027 }
1028 
1029 static void
1030 sf_txthresh_adjust(struct sf_softc *sc)
1031 {
1032 	u_int32_t		txfctl;
1033 	u_int8_t		txthresh;
1034 
1035 	txfctl = csr_read_4(sc, SF_TX_FRAMCTL);
1036 	txthresh = txfctl & SF_TXFRMCTL_TXTHRESH;
1037 	if (txthresh < 0xFF) {
1038 		txthresh++;
1039 		txfctl &= ~SF_TXFRMCTL_TXTHRESH;
1040 		txfctl |= txthresh;
1041 #ifdef DIAGNOSTIC
1042 		kprintf("sf%d: tx underrun, increasing "
1043 		    "tx threshold to %d bytes\n",
1044 		    sc->sf_unit, txthresh * 4);
1045 #endif
1046 		csr_write_4(sc, SF_TX_FRAMCTL, txfctl);
1047 	}
1048 
1049 	return;
1050 }
1051 
1052 static void
1053 sf_intr(void *arg)
1054 {
1055 	struct sf_softc		*sc;
1056 	struct ifnet		*ifp;
1057 	u_int32_t		status;
1058 
1059 	sc = arg;
1060 	ifp = &sc->arpcom.ac_if;
1061 
1062 	if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED))
1063 		return;
1064 
1065 	/* Disable interrupts. */
1066 	csr_write_4(sc, SF_IMR, 0x00000000);
1067 
1068 	for (;;) {
1069 		status = csr_read_4(sc, SF_ISR);
1070 		if (status)
1071 			csr_write_4(sc, SF_ISR, status);
1072 
1073 		if (!(status & SF_INTRS))
1074 			break;
1075 
1076 		if (status & SF_ISR_RXDQ1_DMADONE)
1077 			sf_rxeof(sc);
1078 
1079 		if (status & SF_ISR_TX_TXDONE ||
1080 		    status & SF_ISR_TX_DMADONE ||
1081 		    status & SF_ISR_TX_QUEUEDONE)
1082 			sf_txeof(sc);
1083 
1084 		if (status & SF_ISR_TX_LOFIFO)
1085 			sf_txthresh_adjust(sc);
1086 
1087 		if (status & SF_ISR_ABNORMALINTR) {
1088 			if (status & SF_ISR_STATSOFLOW) {
1089 				callout_stop(&sc->sf_stat_timer);
1090 				sf_stats_update(sc);
1091 			} else
1092 				sf_init(sc);
1093 		}
1094 	}
1095 
1096 	/* Re-enable interrupts. */
1097 	csr_write_4(sc, SF_IMR, SF_INTRS);
1098 
1099 	if (!ifq_is_empty(&ifp->if_snd))
1100 		if_devstart(ifp);
1101 }
1102 
1103 static void
1104 sf_init(void *xsc)
1105 {
1106 	struct sf_softc *sc = xsc;
1107 	struct ifnet *ifp = &sc->arpcom.ac_if;
1108 	int i;
1109 
1110 	sf_stop(sc);
1111 	sf_reset(sc);
1112 
1113 	/* Init all the receive filter registers */
1114 	for (i = SF_RXFILT_PERFECT_BASE;
1115 	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
1116 		csr_write_4(sc, i, 0);
1117 
1118 	/* Empty stats counter registers. */
1119 	for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
1120 		csr_write_4(sc, SF_STATS_BASE +
1121 		    (i + sizeof(u_int32_t)), 0);
1122 
1123 	/* Init our MAC address */
1124 	csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1125 	csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1126 	sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr);
1127 
1128 	if (sf_init_rx_ring(sc) == ENOBUFS) {
1129 		kprintf("sf%d: initialization failed: no "
1130 		    "memory for rx buffers\n", sc->sf_unit);
1131 		return;
1132 	}
1133 
1134 	sf_init_tx_ring(sc);
1135 
1136 	csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
1137 
1138 	/* If we want promiscuous mode, set the allframes bit. */
1139 	if (ifp->if_flags & IFF_PROMISC) {
1140 		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1141 	} else {
1142 		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1143 	}
1144 
1145 	if (ifp->if_flags & IFF_BROADCAST) {
1146 		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1147 	} else {
1148 		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1149 	}
1150 
1151 	/*
1152 	 * Load the multicast filter.
1153 	 */
1154 	sf_setmulti(sc);
1155 
1156 	/* Init the completion queue indexes */
1157 	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1158 	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1159 
1160 	/* Init the RX completion queue */
1161 	csr_write_4(sc, SF_RXCQ_CTL_1,
1162 	    vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
1163 	SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
1164 
1165 	/* Init RX DMA control. */
1166 	SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
1167 
1168 	/* Init the RX buffer descriptor queue. */
1169 	csr_write_4(sc, SF_RXDQ_ADDR_Q1,
1170 	    vtophys(sc->sf_ldata->sf_rx_dlist_big));
1171 	csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
1172 	csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
1173 
1174 	/* Init the TX completion queue */
1175 	csr_write_4(sc, SF_TXCQ_CTL,
1176 	    vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
1177 
1178 	/* Init the TX buffer descriptor queue. */
1179 	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
1180 		vtophys(sc->sf_ldata->sf_tx_dlist));
1181 	SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
1182 	csr_write_4(sc, SF_TXDQ_CTL,
1183 	    SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
1184 	SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
1185 
1186 	/* Enable autopadding of short TX frames. */
1187 	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
1188 
1189 	/* Enable interrupts. */
1190 	csr_write_4(sc, SF_IMR, SF_INTRS);
1191 	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
1192 
1193 	/* Enable the RX and TX engines. */
1194 	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
1195 	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
1196 
1197 	/*mii_mediachg(mii);*/
1198 	sf_ifmedia_upd(ifp);
1199 
1200 	ifp->if_flags |= IFF_RUNNING;
1201 	ifp->if_flags &= ~IFF_OACTIVE;
1202 
1203 	callout_reset(&sc->sf_stat_timer, hz, sf_stats_update, sc);
1204 }
1205 
1206 static int
1207 sf_encap(struct sf_softc *sc, struct sf_tx_bufdesc_type0 *c,
1208 	 struct mbuf *m_head)
1209 {
1210 	int			frag = 0;
1211 	struct sf_frag		*f = NULL;
1212 	struct mbuf		*m;
1213 
1214 	for (m = m_head; m != NULL; m = m->m_next) {
1215 		if (m->m_len != 0) {
1216 			if (frag == SF_MAXFRAGS)
1217 				break;
1218 			f = &c->sf_frags[frag];
1219 			if (frag == 0)
1220 				f->sf_pktlen = m_head->m_pkthdr.len;
1221 			f->sf_fraglen = m->m_len;
1222 			f->sf_addr = vtophys(mtod(m, vm_offset_t));
1223 			frag++;
1224 		}
1225 	}
1226 	/* Caller should make sure that 'm_head' is not excessive fragmented */
1227 	KASSERT(m == NULL, ("too many fragments\n"));
1228 
1229 	c->sf_mbuf = m_head;
1230 	c->sf_id = SF_TX_BUFDESC_ID;
1231 	c->sf_fragcnt = frag;
1232 	c->sf_intr = 1;
1233 	c->sf_caltcp = 0;
1234 	c->sf_crcen = 1;
1235 
1236 	return(0);
1237 }
1238 
1239 static void
1240 sf_start(struct ifnet *ifp)
1241 {
1242 	struct sf_softc		*sc;
1243 	struct sf_tx_bufdesc_type0 *cur_tx = NULL;
1244 	struct mbuf		*m_head = NULL, *m_defragged;
1245 	int			i, txprod, need_trans = 0;
1246 
1247 	sc = ifp->if_softc;
1248 
1249 	if (!sc->sf_link) {
1250 		ifq_purge(&ifp->if_snd);
1251 		return;
1252 	}
1253 
1254 	if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
1255 		return;
1256 
1257 	txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1258 	i = SF_IDX_HI(txprod) >> 4;
1259 
1260 	if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1261 		kprintf("sf%d: TX ring full, resetting\n", sc->sf_unit);
1262 		sf_init(sc);
1263 		txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1264 		i = SF_IDX_HI(txprod) >> 4;
1265 	}
1266 
1267 	while (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
1268 		struct mbuf *m;
1269 		int frag;
1270 
1271 		/*
1272 		 * Don't get the TX DMA queue get too full.
1273 		 */
1274 		if (sc->sf_tx_cnt > 64) {
1275 			ifp->if_flags |= IFF_OACTIVE;
1276 			break;
1277 		}
1278 #ifdef foo
1279 		if (sc->sf_tx_cnt >= (SF_TX_DLIST_CNT - 5)) {
1280 			ifp->if_flags |= IFF_OACTIVE;
1281 			break;
1282 		}
1283 #endif
1284 
1285 		m_defragged = NULL;
1286 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1287 		if (m_head == NULL)
1288 			break;
1289 
1290 again:
1291 		frag = 0;
1292 		for (m = m_head; m != NULL; m = m->m_next)
1293 			++frag;
1294 		if (frag > SF_MAXFRAGS) {
1295 			if (m_defragged != NULL) {
1296 				/*
1297 				 * Even after defragmentation, there
1298 				 * are still too many fragments, so
1299 				 * drop this packet.
1300 				 */
1301 				m_freem(m_head);
1302 				continue;
1303 			}
1304 
1305 			m_defragged = m_defrag(m_head, MB_DONTWAIT);
1306 			if (m_defragged == NULL) {
1307 				m_freem(m_head);
1308 				continue;
1309 			}
1310 			m_head = m_defragged;
1311 
1312 			/* Recount # of fragments */
1313 			goto again;
1314 		}
1315 
1316 		cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
1317 		sf_encap(sc, cur_tx, m_head);
1318 		BPF_MTAP(ifp, cur_tx->sf_mbuf);
1319 
1320 		SF_INC(i, SF_TX_DLIST_CNT);
1321 		sc->sf_tx_cnt++;
1322 		need_trans = 1;
1323 	}
1324 
1325 	if (!need_trans)
1326 		return;
1327 
1328 	/* Transmit */
1329 	csr_write_4(sc, SF_TXDQ_PRODIDX,
1330 	    (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
1331 	    ((i << 20) & 0xFFFF0000));
1332 
1333 	ifp->if_timer = 5;
1334 }
1335 
1336 static void
1337 sf_stop(struct sf_softc *sc)
1338 {
1339 	int			i;
1340 	struct ifnet		*ifp;
1341 
1342 	ifp = &sc->arpcom.ac_if;
1343 
1344 	callout_stop(&sc->sf_stat_timer);
1345 
1346 	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
1347 	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1348 	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1349 	csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
1350 	csr_write_4(sc, SF_RXDQ_CTL_1, 0);
1351 	csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
1352 	csr_write_4(sc, SF_TXCQ_CTL, 0);
1353 	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
1354 	csr_write_4(sc, SF_TXDQ_CTL, 0);
1355 	sf_reset(sc);
1356 
1357 	sc->sf_link = 0;
1358 
1359 	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1360 		if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
1361 			m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
1362 			sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
1363 		}
1364 	}
1365 
1366 	for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1367 		if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1368 			m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
1369 			sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
1370 		}
1371 	}
1372 
1373 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1374 
1375 	return;
1376 }
1377 
1378 /*
1379  * Note: it is important that this function not be interrupted. We
1380  * use a two-stage register access scheme: if we are interrupted in
1381  * between setting the indirect address register and reading from the
1382  * indirect data register, the contents of the address register could
1383  * be changed out from under us.
1384  */
1385 static void
1386 sf_stats_update(void *xsc)
1387 {
1388 	struct sf_softc *sc = xsc;
1389 	struct ifnet *ifp = &sc->arpcom.ac_if;
1390 	struct mii_data *mii = device_get_softc(sc->sf_miibus);
1391 	struct sf_stats		stats;
1392 	u_int32_t		*ptr;
1393 	int			i;
1394 
1395 	lwkt_serialize_enter(ifp->if_serializer);
1396 
1397 	ptr = (u_int32_t *)&stats;
1398 	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1399 		ptr[i] = csr_read_4(sc, SF_STATS_BASE +
1400 		    (i + sizeof(u_int32_t)));
1401 
1402 	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1403 		csr_write_4(sc, SF_STATS_BASE +
1404 		    (i + sizeof(u_int32_t)), 0);
1405 
1406 	ifp->if_collisions += stats.sf_tx_single_colls +
1407 	    stats.sf_tx_multi_colls + stats.sf_tx_excess_colls;
1408 
1409 	mii_tick(mii);
1410 	if (!sc->sf_link) {
1411 		mii_pollstat(mii);
1412 		if (mii->mii_media_status & IFM_ACTIVE &&
1413 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1414 			sc->sf_link++;
1415 			if (!ifq_is_empty(&ifp->if_snd))
1416 				if_devstart(ifp);
1417 		}
1418 	}
1419 
1420 	callout_reset(&sc->sf_stat_timer, hz, sf_stats_update, sc);
1421 
1422 	lwkt_serialize_exit(ifp->if_serializer);
1423 }
1424 
1425 static void
1426 sf_watchdog(struct ifnet *ifp)
1427 {
1428 	struct sf_softc		*sc;
1429 
1430 	sc = ifp->if_softc;
1431 
1432 	ifp->if_oerrors++;
1433 	kprintf("sf%d: watchdog timeout\n", sc->sf_unit);
1434 
1435 	sf_stop(sc);
1436 	sf_reset(sc);
1437 	sf_init(sc);
1438 
1439 	if (!ifq_is_empty(&ifp->if_snd))
1440 		if_devstart(ifp);
1441 }
1442 
1443 static void
1444 sf_shutdown(device_t dev)
1445 {
1446 	struct sf_softc	*sc;
1447 	struct ifnet *ifp;
1448 
1449 	sc = device_get_softc(dev);
1450 	ifp = &sc->arpcom.ac_if;
1451 	lwkt_serialize_enter(ifp->if_serializer);
1452 	sf_stop(sc);
1453 	lwkt_serialize_exit(ifp->if_serializer);
1454 
1455 	return;
1456 }
1457