xref: /dragonfly/sys/dev/netif/sk/if_sk.c (revision 2ee85085)
1 /*	$OpenBSD: if_sk.c,v 1.33 2003/08/12 05:23:06 nate Exp $	*/
2 
3 /*
4  * Copyright (c) 1997, 1998, 1999, 2000
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * $FreeBSD: src/sys/pci/if_sk.c,v 1.19.2.9 2003/03/05 18:42:34 njl Exp $
35  * $DragonFly: src/sys/dev/netif/sk/if_sk.c,v 1.36 2005/06/14 11:27:28 joerg Exp $
36  */
37 
38 /*
39  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
40  *
41  * Permission to use, copy, modify, and distribute this software for any
42  * purpose with or without fee is hereby granted, provided that the above
43  * copyright notice and this permission notice appear in all copies.
44  *
45  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52  */
53 
54 /*
55  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
56  * the SK-984x series adapters, both single port and dual port.
57  * References:
58  * 	The XaQti XMAC II datasheet,
59  *  http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
60  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
61  *
62  * Note: XaQti has been aquired by Vitesse, and Vitesse does not have the
63  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
64  * convenience to others until Vitesse corrects this problem:
65  *
66  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
67  *
68  * Written by Bill Paul <wpaul@ee.columbia.edu>
69  * Department of Electrical Engineering
70  * Columbia University, New York City
71  */
72 
73 /*
74  * The SysKonnect gigabit ethernet adapters consist of two main
75  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
76  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
77  * components and a PHY while the GEnesis controller provides a PCI
78  * interface with DMA support. Each card may have between 512K and
79  * 2MB of SRAM on board depending on the configuration.
80  *
81  * The SysKonnect GEnesis controller can have either one or two XMAC
82  * chips connected to it, allowing single or dual port NIC configurations.
83  * SysKonnect has the distinction of being the only vendor on the market
84  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
85  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
86  * XMAC registers. This driver takes advantage of these features to allow
87  * both XMACs to operate as independent interfaces.
88  */
89 
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/socket.h>
97 #include <sys/thread2.h>
98 #include <sys/queue.h>
99 
100 #include <net/if.h>
101 #include <net/ifq_var.h>
102 #include <net/if_arp.h>
103 #include <net/ethernet.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 
107 #include <net/bpf.h>
108 
109 #include <vm/vm.h>              /* for vtophys */
110 #include <vm/pmap.h>            /* for vtophys */
111 #include <machine/bus.h>
112 #include <machine/resource.h>
113 #include <sys/bus.h>
114 #include <sys/rman.h>
115 
116 #include <dev/netif/mii_layer/mii.h>
117 #include <dev/netif/mii_layer/miivar.h>
118 #include <dev/netif/mii_layer/brgphyreg.h>
119 
120 #include <bus/pci/pcireg.h>
121 #include <bus/pci/pcivar.h>
122 
123 #if 0
124 #define SK_USEIOSPACE
125 #endif
126 
127 #include "if_skreg.h"
128 #include "xmaciireg.h"
129 #include "yukonreg.h"
130 
131 /* "controller miibus0" required.  See GENERIC if you get errors here. */
132 #include "miibus_if.h"
133 
134 static struct sk_type sk_devs[] = {
135 	{ VENDORID_SK, DEVICEID_SK_V1,
136 	  "SysKonnect Gigabit Ethernet (V1.0)" },
137 	{ VENDORID_SK, DEVICEID_SK_V2,
138 	  "SysKonnect Gigabit Ethernet (V2.0)" },
139 	{ VENDORID_MARVELL, DEVICEID_SK_V2,
140 	  "Marvell Gigabit Ethernet" },
141 	{ VENDORID_3COM, DEVICEID_3COM_3C940,
142 	  "3Com 3C940 Gigabit Ethernet" },
143 	{ VENDORID_LINKSYS, DEVICEID_LINKSYS_EG1032,
144 	  "Linksys EG1032 Gigabit Ethernet" },
145 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE530T,
146 	  "D-Link DGE-530T Gigabit Ethernet" },
147 	{ 0, 0, NULL }
148 };
149 
150 static int	skc_probe(device_t);
151 static int	skc_attach(device_t);
152 static int	skc_detach(device_t);
153 static void	skc_shutdown(device_t);
154 static int	sk_probe(device_t);
155 static int	sk_attach(device_t);
156 static int	sk_detach(device_t);
157 static void	sk_tick(void *);
158 static void	sk_intr(void *);
159 static void	sk_intr_bcom(struct sk_if_softc *);
160 static void	sk_intr_xmac(struct sk_if_softc *);
161 static void	sk_intr_yukon(struct sk_if_softc *);
162 static void	sk_rxeof(struct sk_if_softc *);
163 static void	sk_txeof(struct sk_if_softc *);
164 static int	sk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
165 static void	sk_start(struct ifnet *);
166 static int	sk_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
167 static void	sk_init(void *);
168 static void	sk_init_xmac(struct sk_if_softc *);
169 static void	sk_init_yukon(struct sk_if_softc *);
170 static void	sk_stop(struct sk_if_softc *);
171 static void	sk_watchdog(struct ifnet *);
172 static int	sk_ifmedia_upd(struct ifnet *);
173 static void	sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
174 static void	sk_reset(struct sk_softc *);
175 static int	sk_newbuf(struct sk_if_softc *, struct sk_chain *,
176 			  struct mbuf *);
177 static int	sk_alloc_jumbo_mem(struct sk_if_softc *);
178 static struct sk_jslot
179 		*sk_jalloc(struct sk_if_softc *);
180 static void	sk_jfree(void *);
181 static void	sk_jref(void *);
182 static int	sk_init_rx_ring(struct sk_if_softc *);
183 static void	sk_init_tx_ring(struct sk_if_softc *);
184 static uint32_t	sk_win_read_4(struct sk_softc *, int);
185 static uint16_t	sk_win_read_2(struct sk_softc *, int);
186 static uint8_t	sk_win_read_1(struct sk_softc *, int);
187 static void	sk_win_write_4(struct sk_softc *, int, uint32_t);
188 static void	sk_win_write_2(struct sk_softc *, int, uint32_t);
189 static void	sk_win_write_1(struct sk_softc *, int, uint32_t);
190 static uint8_t	sk_vpd_readbyte(struct sk_softc *, int);
191 static void	sk_vpd_read_res(struct sk_softc *, struct vpd_res *, int);
192 static void	sk_vpd_read(struct sk_softc *);
193 
194 static int	sk_miibus_readreg(device_t, int, int);
195 static int	sk_miibus_writereg(device_t, int, int, int);
196 static void	sk_miibus_statchg(device_t);
197 
198 static int	sk_xmac_miibus_readreg(struct sk_if_softc *, int, int);
199 static int	sk_xmac_miibus_writereg(struct sk_if_softc *, int, int, int);
200 static void	sk_xmac_miibus_statchg(struct sk_if_softc *);
201 
202 static int	sk_marv_miibus_readreg(struct sk_if_softc *, int, int);
203 static int	sk_marv_miibus_writereg(struct sk_if_softc *, int, int, int);
204 static void	sk_marv_miibus_statchg(struct sk_if_softc *);
205 
206 static void	sk_setfilt(struct sk_if_softc *, caddr_t, int);
207 static void	sk_setmulti(struct sk_if_softc *);
208 static void	sk_setpromisc(struct sk_if_softc *);
209 
210 #ifdef SK_USEIOSPACE
211 #define SK_RES		SYS_RES_IOPORT
212 #define SK_RID		SK_PCI_LOIO
213 #else
214 #define SK_RES		SYS_RES_MEMORY
215 #define SK_RID		SK_PCI_LOMEM
216 #endif
217 
218 /*
219  * Note that we have newbus methods for both the GEnesis controller
220  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
221  * the miibus code is a child of the XMACs. We need to do it this way
222  * so that the miibus drivers can access the PHY registers on the
223  * right PHY. It's not quite what I had in mind, but it's the only
224  * design that achieves the desired effect.
225  */
226 static device_method_t skc_methods[] = {
227 	/* Device interface */
228 	DEVMETHOD(device_probe,		skc_probe),
229 	DEVMETHOD(device_attach,	skc_attach),
230 	DEVMETHOD(device_detach,	skc_detach),
231 	DEVMETHOD(device_shutdown,	skc_shutdown),
232 
233 	/* bus interface */
234 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
235 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
236 
237 	{ 0, 0 }
238 };
239 
240 static DEFINE_CLASS_0(skc, skc_driver, skc_methods, sizeof(struct sk_softc));
241 static devclass_t skc_devclass;
242 
243 static device_method_t sk_methods[] = {
244 	/* Device interface */
245 	DEVMETHOD(device_probe,		sk_probe),
246 	DEVMETHOD(device_attach,	sk_attach),
247 	DEVMETHOD(device_detach,	sk_detach),
248 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
249 
250 	/* bus interface */
251 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
252 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
253 
254 	/* MII interface */
255 	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
256 	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
257 	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
258 
259 	{ 0, 0 }
260 };
261 
262 static DEFINE_CLASS_0(sk, sk_driver, sk_methods, sizeof(struct sk_if_softc));
263 static devclass_t sk_devclass;
264 
265 DECLARE_DUMMY_MODULE(if_sk);
266 DRIVER_MODULE(if_sk, pci, skc_driver, skc_devclass, 0, 0);
267 DRIVER_MODULE(if_sk, skc, sk_driver, sk_devclass, 0, 0);
268 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0);
269 
270 #define SK_SETBIT(sc, reg, x)		\
271 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
272 
273 #define SK_CLRBIT(sc, reg, x)		\
274 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
275 
276 #define SK_WIN_SETBIT_4(sc, reg, x)	\
277 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
278 
279 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
280 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
281 
282 #define SK_WIN_SETBIT_2(sc, reg, x)	\
283 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
284 
285 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
286 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
287 
288 static uint32_t
289 sk_win_read_4(struct sk_softc *sc, int reg)
290 {
291 #ifdef SK_USEIOSPACE
292 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
293 	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
294 #else
295 	return(CSR_READ_4(sc, reg));
296 #endif
297 }
298 
299 static uint16_t
300 sk_win_read_2(struct sk_softc *sc, int reg)
301 {
302 #ifdef SK_USEIOSPACE
303 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
304 	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
305 #else
306 	return(CSR_READ_2(sc, reg));
307 #endif
308 }
309 
310 static uint8_t
311 sk_win_read_1(struct sk_softc *sc, int reg)
312 {
313 #ifdef SK_USEIOSPACE
314 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
315 	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
316 #else
317 	return(CSR_READ_1(sc, reg));
318 #endif
319 }
320 
321 static void
322 sk_win_write_4(struct sk_softc *sc, int reg, uint32_t val)
323 {
324 #ifdef SK_USEIOSPACE
325 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
326 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
327 #else
328 	CSR_WRITE_4(sc, reg, val);
329 #endif
330 }
331 
332 static void
333 sk_win_write_2(struct sk_softc *sc, int reg, uint32_t val)
334 {
335 #ifdef SK_USEIOSPACE
336 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
337 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
338 #else
339 	CSR_WRITE_2(sc, reg, val);
340 #endif
341 }
342 
343 static void
344 sk_win_write_1(struct sk_softc *sc, int reg, uint32_t val)
345 {
346 #ifdef SK_USEIOSPACE
347 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
348 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
349 #else
350 	CSR_WRITE_1(sc, reg, val);
351 #endif
352 }
353 
354 /*
355  * The VPD EEPROM contains Vital Product Data, as suggested in
356  * the PCI 2.1 specification. The VPD data is separared into areas
357  * denoted by resource IDs. The SysKonnect VPD contains an ID string
358  * resource (the name of the adapter), a read-only area resource
359  * containing various key/data fields and a read/write area which
360  * can be used to store asset management information or log messages.
361  * We read the ID string and read-only into buffers attached to
362  * the controller softc structure for later use. At the moment,
363  * we only use the ID string during sk_attach().
364  */
365 static uint8_t
366 sk_vpd_readbyte(struct sk_softc *sc, int addr)
367 {
368 	int i;
369 
370 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
371 	for (i = 0; i < SK_TIMEOUT; i++) {
372 		DELAY(1);
373 		if (sk_win_read_2(sc,
374 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
375 			break;
376 	}
377 
378 	if (i == SK_TIMEOUT)
379 		return(0);
380 
381 	return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
382 }
383 
384 static void
385 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
386 {
387 	int i;
388 	uint8_t *ptr;
389 
390 	ptr = (uint8_t *)res;
391 	for (i = 0; i < sizeof(struct vpd_res); i++)
392 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
393 }
394 
395 static void
396 sk_vpd_read(struct sk_softc *sc)
397 {
398 	struct vpd_res res;
399 	int i, pos = 0;
400 
401 	if (sc->sk_vpd_prodname != NULL)
402 		free(sc->sk_vpd_prodname, M_DEVBUF);
403 	if (sc->sk_vpd_readonly != NULL)
404 		free(sc->sk_vpd_readonly, M_DEVBUF);
405 	sc->sk_vpd_prodname = NULL;
406 	sc->sk_vpd_readonly = NULL;
407 
408 	sk_vpd_read_res(sc, &res, pos);
409 
410 	if (res.vr_id != VPD_RES_ID) {
411 		printf("skc%d: bad VPD resource id: expected %x got %x\n",
412 		    sc->sk_unit, VPD_RES_ID, res.vr_id);
413 		return;
414 	}
415 
416 	pos += sizeof(res);
417 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_INTWAIT);
418 	for (i = 0; i < res.vr_len; i++)
419 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
420 	sc->sk_vpd_prodname[i] = '\0';
421 	pos += i;
422 
423 	sk_vpd_read_res(sc, &res, pos);
424 
425 	if (res.vr_id != VPD_RES_READ) {
426 		printf("skc%d: bad VPD resource id: expected %x got %x\n",
427 		    sc->sk_unit, VPD_RES_READ, res.vr_id);
428 		return;
429 	}
430 
431 	pos += sizeof(res);
432 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_INTWAIT);
433 	for (i = 0; i < res.vr_len + 1; i++)
434 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
435 }
436 
437 static int
438 sk_miibus_readreg(device_t dev, int phy, int reg)
439 {
440 	struct sk_if_softc *sc_if = device_get_softc(dev);
441 
442 	switch(sc_if->sk_softc->sk_type) {
443 	case SK_GENESIS:
444 		return(sk_xmac_miibus_readreg(sc_if, phy, reg));
445 	case SK_YUKON:
446 		return(sk_marv_miibus_readreg(sc_if, phy, reg));
447 	}
448 
449 	return(0);
450 }
451 
452 static int
453 sk_miibus_writereg(device_t dev, int phy, int reg, int val)
454 {
455 	struct sk_if_softc *sc_if = device_get_softc(dev);
456 
457 	switch(sc_if->sk_softc->sk_type) {
458 	case SK_GENESIS:
459 		return(sk_xmac_miibus_writereg(sc_if, phy, reg, val));
460 	case SK_YUKON:
461 		return(sk_marv_miibus_writereg(sc_if, phy, reg, val));
462 	}
463 
464 	return(0);
465 }
466 
467 static void
468 sk_miibus_statchg(device_t dev)
469 {
470 	struct sk_if_softc *sc_if = device_get_softc(dev);
471 
472 	switch(sc_if->sk_softc->sk_type) {
473 	case SK_GENESIS:
474 		sk_xmac_miibus_statchg(sc_if);
475 		break;
476 	case SK_YUKON:
477 		sk_marv_miibus_statchg(sc_if);
478 		break;
479 	}
480 }
481 
482 static int
483 sk_xmac_miibus_readreg(struct sk_if_softc *sc_if, int phy, int reg)
484 {
485 	int i;
486 
487 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
488 		return(0);
489 
490 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
491 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
492 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
493 		for (i = 0; i < SK_TIMEOUT; i++) {
494 			DELAY(1);
495 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
496 			    XM_MMUCMD_PHYDATARDY)
497 				break;
498 		}
499 
500 		if (i == SK_TIMEOUT) {
501 			printf("sk%d: phy failed to come ready\n",
502 			    sc_if->sk_unit);
503 			return(0);
504 		}
505 	}
506 	DELAY(1);
507 	return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
508 }
509 
510 static int
511 sk_xmac_miibus_writereg(struct sk_if_softc *sc_if, int phy, int reg, int val)
512 {
513 	int i;
514 
515 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
516 	for (i = 0; i < SK_TIMEOUT; i++) {
517 		if ((SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY) == 0)
518 			break;
519 	}
520 
521 	if (i == SK_TIMEOUT) {
522 		printf("sk%d: phy failed to come ready\n", sc_if->sk_unit);
523 		return(ETIMEDOUT);
524 	}
525 
526 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
527 	for (i = 0; i < SK_TIMEOUT; i++) {
528 		DELAY(1);
529 		if ((SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY) == 0)
530 			break;
531 	}
532 
533 	if (i == SK_TIMEOUT)
534 		printf("sk%d: phy write timed out\n", sc_if->sk_unit);
535 
536 	return(0);
537 }
538 
539 static void
540 sk_xmac_miibus_statchg(struct sk_if_softc *sc_if)
541 {
542 	struct mii_data *mii;
543 
544 	mii = device_get_softc(sc_if->sk_miibus);
545 
546 	/*
547 	 * If this is a GMII PHY, manually set the XMAC's
548 	 * duplex mode accordingly.
549 	 */
550 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
551 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
552 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
553 		else
554 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
555 	}
556 }
557 
558 static int
559 sk_marv_miibus_readreg(struct sk_if_softc *sc_if, int phy, int reg)
560 {
561 	uint16_t val;
562 	int i;
563 
564 	if (phy != 0 ||
565 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
566 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
567 		return(0);
568 	}
569 
570         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
571 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
572 
573 	for (i = 0; i < SK_TIMEOUT; i++) {
574 		DELAY(1);
575 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
576 		if (val & YU_SMICR_READ_VALID)
577 			break;
578 	}
579 
580 	if (i == SK_TIMEOUT) {
581 		printf("sk%d: phy failed to come ready\n",
582 		    sc_if->sk_unit);
583 		return(0);
584 	}
585 
586 	val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
587 
588 	return(val);
589 }
590 
591 static int
592 sk_marv_miibus_writereg(struct sk_if_softc *sc_if, int phy, int reg, int val)
593 {
594 	int i;
595 
596 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
597 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
598 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
599 
600 	for (i = 0; i < SK_TIMEOUT; i++) {
601 		DELAY(1);
602 		if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
603 			break;
604 	}
605 
606 	return(0);
607 }
608 
609 static void
610 sk_marv_miibus_statchg(struct sk_if_softc *sc_if)
611 {
612 }
613 
614 #define	HASH_BITS		6
615 
616 static void sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
617 {
618 	int base;
619 
620 	base = XM_RXFILT_ENTRY(slot);
621 
622 	SK_XM_WRITE_2(sc_if, base, *(uint16_t *)(&addr[0]));
623 	SK_XM_WRITE_2(sc_if, base + 2, *(uint16_t *)(&addr[2]));
624 	SK_XM_WRITE_2(sc_if, base + 4, *(uint16_t *)(&addr[4]));
625 }
626 
627 static void
628 sk_setmulti(struct sk_if_softc *sc_if)
629 {
630 	struct sk_softc *sc = sc_if->sk_softc;
631 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
632 	uint32_t hashes[2] = { 0, 0 };
633 	int h, i;
634 	struct ifmultiaddr *ifma;
635 	uint8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
636 
637 	/* First, zot all the existing filters. */
638 	switch(sc->sk_type) {
639 	case SK_GENESIS:
640 		for (i = 1; i < XM_RXFILT_MAX; i++)
641 			sk_setfilt(sc_if, (caddr_t)&dummy, i);
642 
643 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
644 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
645 		break;
646 	case SK_YUKON:
647 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
648 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
649 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
650 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
651 		break;
652 	}
653 
654 	/* Now program new ones. */
655 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
656 		hashes[0] = 0xFFFFFFFF;
657 		hashes[1] = 0xFFFFFFFF;
658 	} else {
659 		i = 1;
660 		/* First find the tail of the list. */
661 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
662 			if (ifma->ifma_link.le_next == NULL)
663 				break;
664 		}
665 		/* Now traverse the list backwards. */
666 		for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
667 			ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
668 			if (ifma->ifma_addr->sa_family != AF_LINK)
669 				continue;
670 			/*
671 			 * Program the first XM_RXFILT_MAX multicast groups
672 			 * into the perfect filter. For all others,
673 			 * use the hash table.
674 			 */
675 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
676 				sk_setfilt(sc_if,
677 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
678 				i++;
679 				continue;
680 			}
681 
682                         switch(sc->sk_type) {
683                         case SK_GENESIS:
684 			    h = ~ether_crc32_le(LLADDR((struct sockaddr_dl *)
685 				ifma->ifma_addr), ETHER_ADDR_LEN) &
686 				((1 << HASH_BITS) -1 );
687                             if (h < 32)
688                                 hashes[0] |= (1 << h);
689                             else
690                                 hashes[1] |= (1 << (h - 32));
691                             break;
692 
693                         case SK_YUKON:
694 			    h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
695 				ifma->ifma_addr), ETHER_ADDR_LEN) &
696 				((1 << HASH_BITS) -1 );
697                             if (h < 32)
698                                 hashes[0] |= (1 << h);
699                             else
700                                 hashes[1] |= (1 << (h - 32));
701                             break;
702                         }
703 		}
704 	}
705 
706 	switch(sc->sk_type) {
707 	case SK_GENESIS:
708 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
709 			       XM_MODE_RX_USE_PERFECT);
710 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
711 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
712 		break;
713 	case SK_YUKON:
714 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
715 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
716 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
717 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
718 		break;
719 	}
720 }
721 
722 static void
723 sk_setpromisc(struct sk_if_softc *sc_if)
724 {
725 	struct sk_softc *sc = sc_if->sk_softc;
726 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
727 
728 	switch(sc->sk_type) {
729 	case SK_GENESIS:
730 		if (ifp->if_flags & IFF_PROMISC) {
731 			SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
732 		} else {
733 			SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
734 		}
735 		break;
736 	case SK_YUKON:
737 		if (ifp->if_flags & IFF_PROMISC) {
738 			SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
739 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
740 		} else {
741 			SK_YU_SETBIT_2(sc_if, YUKON_RCR,
742 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
743 		}
744 		break;
745 	}
746 }
747 
748 static int
749 sk_init_rx_ring(struct sk_if_softc *sc_if)
750 {
751 	struct sk_chain_data *cd = &sc_if->sk_cdata;
752 	struct sk_ring_data *rd = sc_if->sk_rdata;
753 	int i;
754 
755 	bzero(rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
756 
757 	for (i = 0; i < SK_RX_RING_CNT; i++) {
758 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
759 		if (sk_newbuf(sc_if, &cd->sk_rx_chain[i], NULL) == ENOBUFS)
760 			return(ENOBUFS);
761 		if (i == (SK_RX_RING_CNT - 1)) {
762 			cd->sk_rx_chain[i].sk_next =
763 			    &cd->sk_rx_chain[0];
764 			rd->sk_rx_ring[i].sk_next =
765 			    vtophys(&rd->sk_rx_ring[0]);
766 		} else {
767 			cd->sk_rx_chain[i].sk_next =
768 			    &cd->sk_rx_chain[i + 1];
769 			rd->sk_rx_ring[i].sk_next =
770 			    vtophys(&rd->sk_rx_ring[i + 1]);
771 		}
772 	}
773 
774 	sc_if->sk_cdata.sk_rx_prod = 0;
775 	sc_if->sk_cdata.sk_rx_cons = 0;
776 
777 	return(0);
778 }
779 
780 static void
781 sk_init_tx_ring(struct sk_if_softc *sc_if)
782 {
783 	struct sk_chain_data *cd = &sc_if->sk_cdata;
784 	struct sk_ring_data *rd = sc_if->sk_rdata;
785 	int i, nexti;
786 
787 	bzero(sc_if->sk_rdata->sk_tx_ring,
788 	      sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
789 
790 	for (i = 0; i < SK_TX_RING_CNT; i++) {
791 		nexti = (i == (SK_TX_RING_CNT - 1)) ? 0 : i + 1;
792 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
793 		cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
794 		rd->sk_tx_ring[i].sk_next = vtophys(&rd->sk_tx_ring[nexti]);
795 	}
796 
797 	sc_if->sk_cdata.sk_tx_prod = 0;
798 	sc_if->sk_cdata.sk_tx_cons = 0;
799 	sc_if->sk_cdata.sk_tx_cnt = 0;
800 }
801 
802 static int
803 sk_newbuf(struct sk_if_softc *sc_if, struct sk_chain *c, struct mbuf *m)
804 {
805 	struct mbuf *m_new = NULL;
806 	struct sk_rx_desc *r;
807 	struct sk_jslot *buf;
808 
809 	if (m == NULL) {
810 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
811 		if (m_new == NULL)
812 			return(ENOBUFS);
813 
814 		/* Allocate the jumbo buffer */
815 		buf = sk_jalloc(sc_if);
816 		if (buf == NULL) {
817 			m_freem(m_new);
818 #ifdef SK_VERBOSE
819 			printf("sk%d: jumbo allocation failed "
820 			    "-- packet dropped!\n", sc_if->sk_unit);
821 #endif
822 			return(ENOBUFS);
823 		}
824 
825 		/* Attach the buffer to the mbuf */
826 		m_new->m_ext.ext_arg = buf;
827 		m_new->m_ext.ext_buf = buf->sk_buf;
828 		m_new->m_ext.ext_free = sk_jfree;
829 		m_new->m_ext.ext_ref = sk_jref;
830 		m_new->m_ext.ext_size = SK_JUMBO_FRAMELEN;
831 
832 		m_new->m_data = m_new->m_ext.ext_buf;
833 		m_new->m_flags |= M_EXT;
834 		m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
835 	} else {
836 		/*
837 	 	 * We're re-using a previously allocated mbuf;
838 		 * be sure to re-init pointers and lengths to
839 		 * default values.
840 		 */
841 		m_new = m;
842 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
843 		m_new->m_data = m_new->m_ext.ext_buf;
844 	}
845 
846 	/*
847 	 * Adjust alignment so packet payload begins on a
848 	 * longword boundary. Mandatory for Alpha, useful on
849 	 * x86 too.
850 	 */
851 	m_adj(m_new, ETHER_ALIGN);
852 
853 	r = c->sk_desc;
854 	c->sk_mbuf = m_new;
855 	r->sk_data_lo = vtophys(mtod(m_new, caddr_t));
856 	r->sk_ctl = m_new->m_len | SK_RXSTAT;
857 
858 	return(0);
859 }
860 
861 /*
862  * Allocate jumbo buffer storage. The SysKonnect adapters support
863  * "jumbograms" (9K frames), although SysKonnect doesn't currently
864  * use them in their drivers. In order for us to use them, we need
865  * large 9K receive buffers, however standard mbuf clusters are only
866  * 2048 bytes in size. Consequently, we need to allocate and manage
867  * our own jumbo buffer pool. Fortunately, this does not require an
868  * excessive amount of additional code.
869  */
870 static int
871 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
872 {
873 	caddr_t ptr;
874 	int i;
875 	struct sk_jslot *entry;
876 
877 	/* Grab a big chunk o' storage. */
878 	sc_if->sk_cdata.sk_jumbo_buf = contigmalloc(SK_JMEM, M_DEVBUF,
879 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
880 
881 	if (sc_if->sk_cdata.sk_jumbo_buf == NULL) {
882 		printf("sk%d: no memory for jumbo buffers!\n", sc_if->sk_unit);
883 		return(ENOBUFS);
884 	}
885 
886 	SLIST_INIT(&sc_if->sk_jfree_listhead);
887 
888 	/*
889 	 * Now divide it up into 9K pieces and save the addresses
890 	 * in an array. Note that we play an evil trick here by using
891 	 * the first few bytes in the buffer to hold the the address
892 	 * of the softc structure for this interface. This is because
893 	 * sk_jfree() needs it, but it is called by the mbuf management
894 	 * code which will not pass it to us explicitly.
895 	 */
896 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
897 	for (i = 0; i < SK_JSLOTS; i++) {
898 		entry = &sc_if->sk_cdata.sk_jslots[i];
899 		entry->sk_sc = sc_if;
900 		entry->sk_buf = ptr;
901 		entry->sk_inuse = 0;
902 		entry->sk_slot = i;
903 		SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, entry, jslot_link);
904 		ptr += SK_JLEN;
905 	}
906 
907 	return(0);
908 }
909 
910 /*
911  * Allocate a jumbo buffer.
912  */
913 static struct sk_jslot *
914 sk_jalloc(struct sk_if_softc *sc_if)
915 {
916 	struct sk_jslot *entry;
917 
918 	entry = SLIST_FIRST(&sc_if->sk_jfree_listhead);
919 
920 	if (entry == NULL) {
921 #ifdef SK_VERBOSE
922 		printf("sk%d: no free jumbo buffers\n", sc_if->sk_unit);
923 #endif
924 		return(NULL);
925 	}
926 
927 	SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jslot_link);
928 	entry->sk_inuse = 1;
929 
930 	return(entry);
931 }
932 
933 /*
934  * Adjust usage count on a jumbo buffer. In general this doesn't
935  * get used much because our jumbo buffers don't get passed around
936  * a lot, but it's implemented for correctness.
937  */
938 static void
939 sk_jref(void *arg)
940 {
941 	struct sk_jslot *entry = (struct sk_jslot *)arg;
942 	struct sk_if_softc *sc = entry->sk_sc;
943 
944 	if (sc == NULL)
945 		panic("sk_jref: can't find softc pointer!");
946 
947 	if (&sc->sk_cdata.sk_jslots[entry->sk_slot] != entry)
948 		panic("sk_jref: asked to reference buffer "
949 		    "that we don't manage!");
950 	if (entry->sk_inuse == 0)
951 		panic("sk_jref: buffer already free!");
952 	entry->sk_inuse++;
953 }
954 
955 /*
956  * Release a jumbo buffer.
957  */
958 static void
959 sk_jfree(void *arg)
960 {
961 	struct sk_jslot *entry = (struct sk_jslot *)arg;
962 	struct sk_if_softc *sc = entry->sk_sc;
963 
964 	if (sc == NULL)
965 		panic("sk_jref: can't find softc pointer!");
966 
967 	if (&sc->sk_cdata.sk_jslots[entry->sk_slot] != entry)
968 		panic("sk_jref: asked to reference buffer "
969 		    "that we don't manage!");
970 	if (entry->sk_inuse == 0)
971 		panic("sk_jref: buffer already free!");
972 	if (--entry->sk_inuse == 0)
973 		SLIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jslot_link);
974 }
975 
976 /*
977  * Set media options.
978  */
979 static int
980 sk_ifmedia_upd(struct ifnet *ifp)
981 {
982 	struct sk_if_softc *sc_if = ifp->if_softc;
983 	struct mii_data *mii;
984 
985 	mii = device_get_softc(sc_if->sk_miibus);
986 	sk_init(sc_if);
987 	mii_mediachg(mii);
988 
989 	return(0);
990 }
991 
992 /*
993  * Report current media status.
994  */
995 static void
996 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
997 {
998 	struct sk_if_softc *sc_if;
999 	struct mii_data *mii;
1000 
1001 	sc_if = ifp->if_softc;
1002 	mii = device_get_softc(sc_if->sk_miibus);
1003 
1004 	mii_pollstat(mii);
1005 	ifmr->ifm_active = mii->mii_media_active;
1006 	ifmr->ifm_status = mii->mii_media_status;
1007 }
1008 
1009 static int
1010 sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1011 {
1012 	struct sk_if_softc *sc_if = ifp->if_softc;
1013 	struct ifreq *ifr = (struct ifreq *)data;
1014 	struct mii_data *mii;
1015 	int error = 0;
1016 
1017 	crit_enter();
1018 
1019 	switch(command) {
1020 	case SIOCSIFMTU:
1021 		if (ifr->ifr_mtu > SK_JUMBO_MTU)
1022 			error = EINVAL;
1023 		else {
1024 			ifp->if_mtu = ifr->ifr_mtu;
1025 			sk_init(sc_if);
1026 		}
1027 		break;
1028 	case SIOCSIFFLAGS:
1029 		if (ifp->if_flags & IFF_UP) {
1030 			if (ifp->if_flags & IFF_RUNNING) {
1031 				if ((ifp->if_flags ^ sc_if->sk_if_flags)
1032 				    & IFF_PROMISC) {
1033 					sk_setpromisc(sc_if);
1034 					sk_setmulti(sc_if);
1035 				}
1036 			} else
1037 				sk_init(sc_if);
1038 		} else {
1039 			if (ifp->if_flags & IFF_RUNNING)
1040 				sk_stop(sc_if);
1041 		}
1042 		sc_if->sk_if_flags = ifp->if_flags;
1043 		error = 0;
1044 		break;
1045 	case SIOCADDMULTI:
1046 	case SIOCDELMULTI:
1047 		sk_setmulti(sc_if);
1048 		error = 0;
1049 		break;
1050 	case SIOCGIFMEDIA:
1051 	case SIOCSIFMEDIA:
1052 		mii = device_get_softc(sc_if->sk_miibus);
1053 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1054 		break;
1055 	default:
1056 		error = ether_ioctl(ifp, command, data);
1057 		break;
1058 	}
1059 
1060 	crit_exit();
1061 
1062 	return(error);
1063 }
1064 
1065 /*
1066  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1067  * IDs against our list and return a device name if we find a match.
1068  */
1069 static int
1070 skc_probe(device_t dev)
1071 {
1072 	struct sk_type *t;
1073 	uint16_t vendor, product;
1074 
1075 	vendor = pci_get_vendor(dev);
1076 	product = pci_get_device(dev);
1077 
1078 	for (t = sk_devs; t->sk_name != NULL; t++) {
1079 		if (vendor == t->sk_vid && product == t->sk_did) {
1080 			device_set_desc(dev, t->sk_name);
1081 			return(0);
1082 		}
1083 	}
1084 
1085 	return(ENXIO);
1086 }
1087 
1088 /*
1089  * Force the GEnesis into reset, then bring it out of reset.
1090  */
1091 static void
1092 sk_reset(struct sk_softc *sc)
1093 {
1094 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1095 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1096 	if (sc->sk_type == SK_YUKON)
1097 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1098 
1099 	DELAY(1000);
1100 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1101 	DELAY(2);
1102 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1103 	if (sc->sk_type == SK_YUKON)
1104 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1105 
1106 	if (sc->sk_type == SK_GENESIS) {
1107 		/* Configure packet arbiter */
1108 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1109 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1110 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1111 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1112 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1113 	}
1114 
1115 	/* Enable RAM interface */
1116 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1117 
1118 	/*
1119          * Configure interrupt moderation. The moderation timer
1120 	 * defers interrupts specified in the interrupt moderation
1121 	 * timer mask based on the timeout specified in the interrupt
1122 	 * moderation timer init register. Each bit in the timer
1123 	 * register represents 18.825ns, so to specify a timeout in
1124 	 * microseconds, we have to multiply by 54.
1125 	 */
1126         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200));
1127         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1128 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1129         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1130 }
1131 
1132 static int
1133 sk_probe(device_t dev)
1134 {
1135 	struct sk_softc *sc = device_get_softc(device_get_parent(dev));
1136 
1137 	/*
1138 	 * Not much to do here. We always know there will be
1139 	 * at least one XMAC present, and if there are two,
1140 	 * skc_attach() will create a second device instance
1141 	 * for us.
1142 	 */
1143 	switch (sc->sk_type) {
1144 	case SK_GENESIS:
1145 		device_set_desc(dev, "XaQti Corp. XMAC II");
1146 		break;
1147 	case SK_YUKON:
1148 		device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1149 		break;
1150 	}
1151 
1152 	return(0);
1153 }
1154 
1155 /*
1156  * Each XMAC chip is attached as a separate logical IP interface.
1157  * Single port cards will have only one logical interface of course.
1158  */
1159 static int
1160 sk_attach(device_t dev)
1161 {
1162 	struct sk_softc *sc = device_get_softc(device_get_parent(dev));
1163 	struct sk_if_softc *sc_if = device_get_softc(dev);
1164 	struct ifnet *ifp;
1165 	int i, port;
1166 
1167 	port = *(int *)device_get_ivars(dev);
1168 	free(device_get_ivars(dev), M_DEVBUF);
1169 	device_set_ivars(dev, NULL);
1170 	sc_if->sk_dev = dev;
1171 	callout_init(&sc_if->sk_tick_timer);
1172 
1173 	sc_if->sk_dev = dev;
1174 	sc_if->sk_unit = device_get_unit(dev);
1175 	sc_if->sk_port = port;
1176 	sc_if->sk_softc = sc;
1177 	sc->sk_if[port] = sc_if;
1178 	if (port == SK_PORT_A)
1179 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1180 	if (port == SK_PORT_B)
1181 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1182 
1183 	/*
1184 	 * Get station address for this interface. Note that
1185 	 * dual port cards actually come with three station
1186 	 * addresses: one for each port, plus an extra. The
1187 	 * extra one is used by the SysKonnect driver software
1188 	 * as a 'virtual' station address for when both ports
1189 	 * are operating in failover mode. Currently we don't
1190 	 * use this extra address.
1191 	 */
1192 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1193 		sc_if->arpcom.ac_enaddr[i] =
1194 		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1195 
1196 	/*
1197 	 * Set up RAM buffer addresses. The NIC will have a certain
1198 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1199 	 * need to divide this up a) between the transmitter and
1200  	 * receiver and b) between the two XMACs, if this is a
1201 	 * dual port NIC. Our algotithm is to divide up the memory
1202 	 * evenly so that everyone gets a fair share.
1203 	 */
1204 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1205 		uint32_t chunk, val;
1206 
1207 		chunk = sc->sk_ramsize / 2;
1208 		val = sc->sk_rboff / sizeof(uint64_t);
1209 		sc_if->sk_rx_ramstart = val;
1210 		val += (chunk / sizeof(uint64_t));
1211 		sc_if->sk_rx_ramend = val - 1;
1212 		sc_if->sk_tx_ramstart = val;
1213 		val += (chunk / sizeof(uint64_t));
1214 		sc_if->sk_tx_ramend = val - 1;
1215 	} else {
1216 		uint32_t chunk, val;
1217 
1218 		chunk = sc->sk_ramsize / 4;
1219 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1220 		    sizeof(uint64_t);
1221 		sc_if->sk_rx_ramstart = val;
1222 		val += (chunk / sizeof(uint64_t));
1223 		sc_if->sk_rx_ramend = val - 1;
1224 		sc_if->sk_tx_ramstart = val;
1225 		val += (chunk / sizeof(uint64_t));
1226 		sc_if->sk_tx_ramend = val - 1;
1227 	}
1228 
1229 	/* Read and save PHY type and set PHY address */
1230 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1231 	switch(sc_if->sk_phytype) {
1232 	case SK_PHYTYPE_XMAC:
1233 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1234 		break;
1235 	case SK_PHYTYPE_BCOM:
1236 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1237 		break;
1238 	case SK_PHYTYPE_MARV_COPPER:
1239 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1240 		break;
1241 	default:
1242 		printf("skc%d: unsupported PHY type: %d\n",
1243 		    sc->sk_unit, sc_if->sk_phytype);
1244 		return(ENODEV);
1245 	}
1246 
1247 	/* Allocate the descriptor queues. */
1248 	sc_if->sk_rdata = contigmalloc(sizeof(struct sk_ring_data), M_DEVBUF,
1249 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1250 
1251 	if (sc_if->sk_rdata == NULL) {
1252 		printf("sk%d: no memory for list buffers!\n", sc_if->sk_unit);
1253 		sc->sk_if[port] = NULL;
1254 		return(ENOMEM);
1255 	}
1256 
1257 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1258 
1259 	/* Try to allocate memory for jumbo buffers. */
1260 	if (sk_alloc_jumbo_mem(sc_if)) {
1261 		printf("sk%d: jumbo buffer allocation failed\n",
1262 		    sc_if->sk_unit);
1263 		contigfree(sc_if->sk_rdata,
1264 		    sizeof(struct sk_ring_data), M_DEVBUF);
1265 		sc->sk_if[port] = NULL;
1266 		return(ENOMEM);
1267 	}
1268 
1269 	ifp = &sc_if->arpcom.ac_if;
1270 	ifp->if_softc = sc_if;
1271 	if_initname(ifp, "sk", sc_if->sk_unit);
1272 	ifp->if_mtu = ETHERMTU;
1273 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1274 	ifp->if_ioctl = sk_ioctl;
1275 	ifp->if_start = sk_start;
1276 	ifp->if_watchdog = sk_watchdog;
1277 	ifp->if_init = sk_init;
1278 	ifp->if_baudrate = 1000000000;
1279 	ifq_set_maxlen(&ifp->if_snd, SK_TX_RING_CNT - 1);
1280 	ifq_set_ready(&ifp->if_snd);
1281 
1282 	/*
1283 	 * Do miibus setup.
1284 	 */
1285 	switch (sc->sk_type) {
1286 	case SK_GENESIS:
1287 		sk_init_xmac(sc_if);
1288 		break;
1289 	case SK_YUKON:
1290 		sk_init_yukon(sc_if);
1291 		break;
1292 	}
1293 
1294 	if (mii_phy_probe(dev, &sc_if->sk_miibus,
1295 	    sk_ifmedia_upd, sk_ifmedia_sts)) {
1296 		printf("skc%d: no PHY found!\n", sc_if->sk_unit);
1297 		contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM,
1298 		    M_DEVBUF);
1299 		contigfree(sc_if->sk_rdata,
1300 		    sizeof(struct sk_ring_data), M_DEVBUF);
1301 		return(ENXIO);
1302 	}
1303 
1304 	/*
1305 	 * Call MI attach routine.
1306 	 */
1307 	ether_ifattach(ifp, sc_if->arpcom.ac_enaddr);
1308 	callout_init(&sc_if->sk_tick_timer);
1309 
1310 	return(0);
1311 }
1312 
1313 /*
1314  * Attach the interface. Allocate softc structures, do ifmedia
1315  * setup and ethernet/BPF attach.
1316  */
1317 static int
1318 skc_attach(device_t dev)
1319 {
1320 	struct sk_softc *sc;
1321 	int error = 0, *port, rid, unit;
1322 	uint32_t command;
1323 	uint8_t skrs;
1324 
1325 	crit_enter();
1326 
1327 	sc = device_get_softc(dev);
1328 	unit = device_get_unit(dev);
1329 	switch (pci_get_device(dev)) {
1330 	case DEVICEID_SK_V1:
1331 		sc->sk_type = SK_GENESIS;
1332 		break;
1333 	case DEVICEID_SK_V2:
1334 	case DEVICEID_3COM_3C940:
1335 	case DEVICEID_LINKSYS_EG1032:
1336 	case DEVICEID_DLINK_DGE530T:
1337 		sc->sk_type = SK_YUKON;
1338 		break;
1339 	}
1340 
1341 	/*
1342 	 * Handle power management nonsense.
1343 	 */
1344 	command = pci_read_config(dev, SK_PCI_CAPID, 4) & 0x000000FF;
1345 	if (command == 0x01) {
1346 		command = pci_read_config(dev, SK_PCI_PWRMGMTCTRL, 4);
1347 		if (command & SK_PSTATE_MASK) {
1348 			uint32_t iobase, membase, irq;
1349 
1350 			/* Save important PCI config data. */
1351 			iobase = pci_read_config(dev, SK_PCI_LOIO, 4);
1352 			membase = pci_read_config(dev, SK_PCI_LOMEM, 4);
1353 			irq = pci_read_config(dev, SK_PCI_INTLINE, 4);
1354 
1355 			/* Reset the power state. */
1356 			printf("skc%d: chip is in D%d power mode "
1357 			"-- setting to D0\n", unit, command & SK_PSTATE_MASK);
1358 			command &= 0xFFFFFFFC;
1359 			pci_write_config(dev, SK_PCI_PWRMGMTCTRL, command, 4);
1360 
1361 			/* Restore PCI config data. */
1362 			pci_write_config(dev, SK_PCI_LOIO, iobase, 4);
1363 			pci_write_config(dev, SK_PCI_LOMEM, membase, 4);
1364 			pci_write_config(dev, SK_PCI_INTLINE, irq, 4);
1365 		}
1366 	}
1367 
1368 	/*
1369 	 * Map control/status registers.
1370 	 */
1371 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1372 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1373 	pci_write_config(dev, PCIR_COMMAND, command, 4);
1374 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1375 
1376 #ifdef SK_USEIOSPACE
1377 	if ((command & PCIM_CMD_PORTEN) == 0) {
1378 		printf("skc%d: failed to enable I/O ports!\n", unit);
1379 		error = ENXIO;
1380 		goto fail;
1381 	}
1382 #else
1383 	if ((command & PCIM_CMD_MEMEN) == 0) {
1384 		printf("skc%d: failed to enable memory mapping!\n", unit);
1385 		error = ENXIO;
1386 		goto fail;
1387 	}
1388 #endif
1389 
1390 	rid = SK_RID;
1391 	sc->sk_res = bus_alloc_resource_any(dev, SK_RES, &rid, RF_ACTIVE);
1392 
1393 	if (sc->sk_res == NULL) {
1394 		printf("sk%d: couldn't map ports/memory\n", unit);
1395 		error = ENXIO;
1396 		goto fail;
1397 	}
1398 
1399 	sc->sk_btag = rman_get_bustag(sc->sk_res);
1400 	sc->sk_bhandle = rman_get_bushandle(sc->sk_res);
1401 
1402 	/* Allocate interrupt */
1403 	rid = 0;
1404 	sc->sk_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1405 	    RF_SHAREABLE | RF_ACTIVE);
1406 
1407 	if (sc->sk_irq == NULL) {
1408 		printf("skc%d: couldn't map interrupt\n", unit);
1409 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1410 		error = ENXIO;
1411 		goto fail;
1412 	}
1413 
1414 	error = bus_setup_intr(dev, sc->sk_irq, INTR_TYPE_NET,
1415 			       sk_intr, sc,
1416 			       &sc->sk_intrhand, NULL);
1417 
1418 	if (error) {
1419 		printf("skc%d: couldn't set up irq\n", unit);
1420 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1421 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1422 		goto fail;
1423 	}
1424 
1425 	/* Reset the adapter. */
1426 	sk_reset(sc);
1427 
1428 	sc->sk_unit = unit;
1429 
1430 	/* Read and save vital product data from EEPROM. */
1431 	sk_vpd_read(sc);
1432 
1433 	skrs = sk_win_read_1(sc, SK_EPROM0);
1434 	if (sc->sk_type == SK_GENESIS) {
1435 		/* Read and save RAM size and RAMbuffer offset */
1436 		switch(skrs) {
1437 		case SK_RAMSIZE_512K_64:
1438 			sc->sk_ramsize = 0x80000;
1439 			sc->sk_rboff = SK_RBOFF_0;
1440 			break;
1441 		case SK_RAMSIZE_1024K_64:
1442 			sc->sk_ramsize = 0x100000;
1443 			sc->sk_rboff = SK_RBOFF_80000;
1444 			break;
1445 		case SK_RAMSIZE_1024K_128:
1446 			sc->sk_ramsize = 0x100000;
1447 			sc->sk_rboff = SK_RBOFF_0;
1448 			break;
1449 		case SK_RAMSIZE_2048K_128:
1450 			sc->sk_ramsize = 0x200000;
1451 			sc->sk_rboff = SK_RBOFF_0;
1452 			break;
1453 		default:
1454 			printf("skc%d: unknown ram size: %d\n",
1455 			    sc->sk_unit, sk_win_read_1(sc, SK_EPROM0));
1456 			bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1457 			bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1458 			bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1459 			error = ENXIO;
1460 			goto fail;
1461 			break;
1462 		}
1463 	} else { /* SK_YUKON */
1464 		if (skrs == 0x00) {
1465 			sc->sk_ramsize = 0x20000;
1466 		} else {
1467 			sc->sk_ramsize = skrs * (1<<12);
1468 		}
1469 		sc->sk_rboff = SK_RBOFF_0;
1470 	}
1471 
1472 	/* Read and save physical media type */
1473 	switch(sk_win_read_1(sc, SK_PMDTYPE)) {
1474 	case SK_PMD_1000BASESX:
1475 		sc->sk_pmd = IFM_1000_SX;
1476 		break;
1477 	case SK_PMD_1000BASELX:
1478 		sc->sk_pmd = IFM_1000_LX;
1479 		break;
1480 	case SK_PMD_1000BASECX:
1481 		sc->sk_pmd = IFM_1000_CX;
1482 		break;
1483 	case SK_PMD_1000BASETX:
1484 		sc->sk_pmd = IFM_1000_T;
1485 		break;
1486 	default:
1487 		printf("skc%d: unknown media type: 0x%x\n",
1488 		    sc->sk_unit, sk_win_read_1(sc, SK_PMDTYPE));
1489 		bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1490 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1491 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1492 		error = ENXIO;
1493 		goto fail;
1494 	}
1495 
1496 	/* Announce the product name. */
1497 	printf("skc%d: %s\n", sc->sk_unit, sc->sk_vpd_prodname);
1498 	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1499 	port = malloc(sizeof(int), M_DEVBUF, M_WAITOK);
1500 	*port = SK_PORT_A;
1501 	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1502 
1503 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1504 		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1505 		port = malloc(sizeof(int), M_DEVBUF, M_WAITOK);
1506 		*port = SK_PORT_B;
1507 		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1508 	}
1509 
1510 	/* Turn on the 'driver is loaded' LED. */
1511 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1512 
1513 	bus_generic_attach(dev);
1514 
1515 fail:
1516 	crit_exit();
1517 	return(error);
1518 }
1519 
1520 static int
1521 sk_detach(device_t dev)
1522 {
1523 	struct sk_if_softc *sc_if = device_get_softc(dev);
1524 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
1525 
1526 	crit_enter();
1527 
1528 	sk_stop(sc_if);
1529 	ether_ifdetach(ifp);
1530 	bus_generic_detach(dev);
1531 	if (sc_if->sk_miibus != NULL)
1532 		device_delete_child(dev, sc_if->sk_miibus);
1533 	contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM, M_DEVBUF);
1534 	contigfree(sc_if->sk_rdata, sizeof(struct sk_ring_data), M_DEVBUF);
1535 
1536 	crit_exit();
1537 
1538 	return(0);
1539 }
1540 
1541 static int
1542 skc_detach(device_t dev)
1543 {
1544 	struct sk_softc *sc;
1545 
1546 	crit_enter();
1547 
1548 	sc = device_get_softc(dev);
1549 
1550 	bus_generic_detach(dev);
1551 	if (sc->sk_devs[SK_PORT_A] != NULL)
1552 		device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1553 	if (sc->sk_devs[SK_PORT_B] != NULL)
1554 		device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1555 
1556 	bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1557 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1558 	bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1559 
1560 	crit_exit();
1561 
1562 	return(0);
1563 }
1564 
1565 static int
1566 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
1567 {
1568 	struct sk_tx_desc *f = NULL;
1569 	struct mbuf *m;
1570 	uint32_t cnt = 0, cur, frag;
1571 
1572 	m = m_head;
1573 	cur = frag = *txidx;
1574 
1575 	/*
1576 	 * Start packing the mbufs in this chain into
1577 	 * the fragment pointers. Stop when we run out
1578 	 * of fragments or hit the end of the mbuf chain.
1579 	 */
1580 	for (m = m_head; m != NULL; m = m->m_next) {
1581 		if (m->m_len != 0) {
1582 			if ((SK_TX_RING_CNT -
1583 			    (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2)
1584 				return(ENOBUFS);
1585 			f = &sc_if->sk_rdata->sk_tx_ring[frag];
1586 			f->sk_data_lo = vtophys(mtod(m, vm_offset_t));
1587 			f->sk_ctl = m->m_len | SK_OPCODE_DEFAULT;
1588 			if (cnt == 0)
1589 				f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
1590 			else
1591 				f->sk_ctl |= SK_TXCTL_OWN;
1592 			cur = frag;
1593 			SK_INC(frag, SK_TX_RING_CNT);
1594 			cnt++;
1595 		}
1596 	}
1597 
1598 	if (m != NULL)
1599 		return(ENOBUFS);
1600 
1601 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1602 		SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
1603 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1604 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
1605 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1606 
1607 	*txidx = frag;
1608 
1609 	return(0);
1610 }
1611 
1612 static void
1613 sk_start(struct ifnet *ifp)
1614 {
1615         struct sk_if_softc *sc_if = ifp->if_softc;
1616         struct sk_softc *sc = sc_if->sk_softc;
1617         struct mbuf *m_head = NULL;
1618         uint32_t idx;
1619 
1620 	idx = sc_if->sk_cdata.sk_tx_prod;
1621 
1622 	while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1623 		m_head = ifq_poll(&ifp->if_snd);
1624 		if (m_head == NULL)
1625 			break;
1626 
1627 		/*
1628 		 * Pack the data into the transmit ring. If we
1629 		 * don't have room, set the OACTIVE flag and wait
1630 		 * for the NIC to drain the ring.
1631 		 */
1632 		if (sk_encap(sc_if, m_head, &idx)) {
1633 			ifp->if_flags |= IFF_OACTIVE;
1634 			break;
1635 		}
1636 		m_head = ifq_dequeue(&ifp->if_snd);
1637 
1638 		BPF_MTAP(ifp, m_head);
1639 	}
1640 
1641 	/* Transmit */
1642 	sc_if->sk_cdata.sk_tx_prod = idx;
1643 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1644 
1645 	/* Set a timeout in case the chip goes out to lunch. */
1646 	ifp->if_timer = 5;
1647 }
1648 
1649 
1650 static void
1651 sk_watchdog(struct ifnet *ifp)
1652 {
1653 	struct sk_if_softc *sc_if;
1654 
1655 	sc_if = ifp->if_softc;
1656 
1657 	printf("sk%d: watchdog timeout\n", sc_if->sk_unit);
1658 	sk_init(sc_if);
1659 }
1660 
1661 static void
1662 skc_shutdown(device_t dev)
1663 {
1664 	struct sk_softc *sc = device_get_softc(dev);
1665 
1666 	/* Turn off the 'driver is loaded' LED. */
1667 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1668 
1669 	/*
1670 	 * Reset the GEnesis controller. Doing this should also
1671 	 * assert the resets on the attached XMAC(s).
1672 	 */
1673 	sk_reset(sc);
1674 }
1675 
1676 static void
1677 sk_rxeof(struct sk_if_softc *sc_if)
1678 {
1679 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
1680 	struct mbuf *m;
1681 	struct sk_chain	*cur_rx;
1682 	int i, total_len = 0;
1683 	uint32_t rxstat;
1684 
1685 	i = sc_if->sk_cdata.sk_rx_prod;
1686 	cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1687 
1688 	while(!(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl & SK_RXCTL_OWN)) {
1689 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1690 		rxstat = sc_if->sk_rdata->sk_rx_ring[i].sk_xmac_rxstat;
1691 		m = cur_rx->sk_mbuf;
1692 		cur_rx->sk_mbuf = NULL;
1693 		total_len = SK_RXBYTES(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl);
1694 		SK_INC(i, SK_RX_RING_CNT);
1695 
1696 		if (rxstat & XM_RXSTAT_ERRFRAME) {
1697 			ifp->if_ierrors++;
1698 			sk_newbuf(sc_if, cur_rx, m);
1699 			continue;
1700 		}
1701 
1702 		/*
1703 		 * Try to allocate a new jumbo buffer. If that
1704 		 * fails, copy the packet to mbufs and put the
1705 		 * jumbo buffer back in the ring so it can be
1706 		 * re-used. If allocating mbufs fails, then we
1707 		 * have to drop the packet.
1708 		 */
1709 		if (sk_newbuf(sc_if, cur_rx, NULL) == ENOBUFS) {
1710 			struct mbuf *m0;
1711 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1712 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
1713 			sk_newbuf(sc_if, cur_rx, m);
1714 			if (m0 == NULL) {
1715 				printf("sk%d: no receive buffers "
1716 				    "available -- packet dropped!\n",
1717 				    sc_if->sk_unit);
1718 				ifp->if_ierrors++;
1719 				continue;
1720 			}
1721 			m_adj(m0, ETHER_ALIGN);
1722 			m = m0;
1723 		} else {
1724 			m->m_pkthdr.rcvif = ifp;
1725 			m->m_pkthdr.len = m->m_len = total_len;
1726 		}
1727 
1728 		ifp->if_ipackets++;
1729 		(*ifp->if_input)(ifp, m);
1730 	}
1731 
1732 	sc_if->sk_cdata.sk_rx_prod = i;
1733 }
1734 
1735 static void
1736 sk_txeof(struct sk_if_softc *sc_if)
1737 {
1738 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
1739 	struct sk_tx_desc *cur_tx = NULL;
1740 	uint32_t idx;
1741 
1742 	/*
1743 	 * Go through our tx ring and free mbufs for those
1744 	 * frames that have been sent.
1745 	 */
1746 	idx = sc_if->sk_cdata.sk_tx_cons;
1747 	while(idx != sc_if->sk_cdata.sk_tx_prod) {
1748 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
1749 		if (cur_tx->sk_ctl & SK_TXCTL_OWN)
1750 			break;
1751 		if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
1752 			ifp->if_opackets++;
1753 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
1754 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
1755 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
1756 		}
1757 		sc_if->sk_cdata.sk_tx_cnt--;
1758 		SK_INC(idx, SK_TX_RING_CNT);
1759 		ifp->if_timer = 0;
1760 	}
1761 
1762 	sc_if->sk_cdata.sk_tx_cons = idx;
1763 
1764 	if (cur_tx != NULL)
1765 		ifp->if_flags &= ~IFF_OACTIVE;
1766 }
1767 
1768 static void
1769 sk_tick(void *xsc_if)
1770 {
1771 	struct sk_if_softc *sc_if = xsc_if;
1772 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
1773 	struct mii_data *mii = device_get_softc(sc_if->sk_miibus);
1774 	int i;
1775 
1776 	if ((ifp->if_flags & IFF_UP) == 0)
1777 		return;
1778 
1779 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
1780 		sk_intr_bcom(sc_if);
1781 		return;
1782 	}
1783 
1784 	/*
1785 	 * According to SysKonnect, the correct way to verify that
1786 	 * the link has come back up is to poll bit 0 of the GPIO
1787 	 * register three times. This pin has the signal from the
1788 	 * link_sync pin connected to it; if we read the same link
1789 	 * state 3 times in a row, we know the link is up.
1790 	 */
1791 	for (i = 0; i < 3; i++) {
1792 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
1793 			break;
1794 	}
1795 
1796 	if (i != 3) {
1797 		callout_reset(&sc_if->sk_tick_timer, hz, sk_tick, sc_if);
1798 		return;
1799 	}
1800 
1801 	/* Turn the GP0 interrupt back on. */
1802 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
1803 	SK_XM_READ_2(sc_if, XM_ISR);
1804 	mii_tick(mii);
1805 	mii_pollstat(mii);
1806 	callout_stop(&sc_if->sk_tick_timer);
1807 }
1808 
1809 static void
1810 sk_intr_bcom(struct sk_if_softc *sc_if)
1811 {
1812 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
1813 	struct mii_data *mii = device_get_softc(sc_if->sk_miibus);
1814 	int status;
1815 
1816 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
1817 
1818 	/*
1819 	 * Read the PHY interrupt register to make sure
1820 	 * we clear any pending interrupts.
1821 	 */
1822 	status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
1823 
1824 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
1825 		sk_init_xmac(sc_if);
1826 		return;
1827 	}
1828 
1829 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
1830 		int lstat;
1831 		lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
1832 		    BRGPHY_MII_AUXSTS);
1833 
1834 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
1835 			mii_mediachg(mii);
1836 			/* Turn off the link LED. */
1837 			SK_IF_WRITE_1(sc_if, 0,
1838 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
1839 			sc_if->sk_link = 0;
1840 		} else if (status & BRGPHY_ISR_LNK_CHG) {
1841 			sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
1842 	    		    BRGPHY_MII_IMR, 0xFF00);
1843 			mii_tick(mii);
1844 			sc_if->sk_link = 1;
1845 			/* Turn on the link LED. */
1846 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
1847 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
1848 			    SK_LINKLED_BLINK_OFF);
1849 			mii_pollstat(mii);
1850 		} else {
1851 			mii_tick(mii);
1852 			callout_reset(&sc_if->sk_tick_timer, hz,
1853 				      sk_tick, sc_if);
1854 		}
1855 	}
1856 
1857 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
1858 }
1859 
1860 static void
1861 sk_intr_xmac(struct sk_if_softc *sc_if)
1862 {
1863 	uint16_t status;
1864 
1865 	status = SK_XM_READ_2(sc_if, XM_ISR);
1866 
1867 	/*
1868 	 * Link has gone down. Start MII tick timeout to
1869 	 * watch for link resync.
1870 	 */
1871 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
1872 		if (status & XM_ISR_GP0_SET) {
1873 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
1874 			callout_reset(&sc_if->sk_tick_timer, hz,
1875 				      sk_tick, sc_if);
1876 		}
1877 
1878 		if (status & XM_ISR_AUTONEG_DONE) {
1879 			callout_reset(&sc_if->sk_tick_timer, hz,
1880 				      sk_tick, sc_if);
1881 		}
1882 	}
1883 
1884 	if (status & XM_IMR_TX_UNDERRUN)
1885 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
1886 
1887 	if (status & XM_IMR_RX_OVERRUN)
1888 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
1889 
1890 	status = SK_XM_READ_2(sc_if, XM_ISR);
1891 }
1892 
1893 static void
1894 sk_intr_yukon(struct sk_if_softc *sc_if)
1895 {
1896 	int status;
1897 
1898 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
1899 }
1900 
1901 static void
1902 sk_intr(void *xsc)
1903 {
1904 	struct sk_softc *sc = xsc;
1905 	struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
1906 	struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_A];
1907 	struct ifnet *ifp0 = NULL, *ifp1 = NULL;
1908 	uint32_t status;
1909 
1910 	if (sc_if0 != NULL)
1911 		ifp0 = &sc_if0->arpcom.ac_if;
1912 	if (sc_if1 != NULL)
1913 		ifp1 = &sc_if1->arpcom.ac_if;
1914 
1915 	for (;;) {
1916 		status = CSR_READ_4(sc, SK_ISSR);
1917 		if ((status & sc->sk_intrmask) == 0)
1918 			break;
1919 
1920 		/* Handle receive interrupts first. */
1921 		if (status & SK_ISR_RX1_EOF) {
1922 			sk_rxeof(sc_if0);
1923 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
1924 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
1925 		}
1926 		if (status & SK_ISR_RX2_EOF) {
1927 			sk_rxeof(sc_if1);
1928 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
1929 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
1930 		}
1931 
1932 		/* Then transmit interrupts. */
1933 		if (status & SK_ISR_TX1_S_EOF) {
1934 			sk_txeof(sc_if0);
1935 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
1936 			    SK_TXBMU_CLR_IRQ_EOF);
1937 		}
1938 		if (status & SK_ISR_TX2_S_EOF) {
1939 			sk_txeof(sc_if1);
1940 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
1941 			    SK_TXBMU_CLR_IRQ_EOF);
1942 		}
1943 
1944 		/* Then MAC interrupts. */
1945 		if (status & SK_ISR_MAC1 && ifp0->if_flags & IFF_RUNNING) {
1946 			if (sc->sk_type == SK_GENESIS)
1947 				sk_intr_xmac(sc_if0);
1948 			else
1949 				sk_intr_yukon(sc_if0);
1950 		}
1951 
1952 		if (status & SK_ISR_MAC2 && ifp1->if_flags & IFF_RUNNING) {
1953 			if (sc->sk_type == SK_GENESIS)
1954 				sk_intr_xmac(sc_if1);
1955 			else
1956 				sk_intr_yukon(sc_if0);
1957 		}
1958 
1959 		if (status & SK_ISR_EXTERNAL_REG) {
1960 			if (ifp0 != NULL &&
1961 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
1962 				sk_intr_bcom(sc_if0);
1963 			if (ifp1 != NULL &&
1964 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
1965 				sk_intr_bcom(sc_if1);
1966 		}
1967 	}
1968 
1969 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
1970 
1971 	if (ifp0 != NULL && !ifq_is_empty(&ifp0->if_snd))
1972 		sk_start(ifp0);
1973 	if (ifp1 != NULL && !ifq_is_empty(&ifp0->if_snd))
1974 		sk_start(ifp1);
1975 }
1976 
1977 static void
1978 sk_init_xmac(struct sk_if_softc *sc_if)
1979 {
1980 	struct sk_softc *sc = sc_if->sk_softc;
1981 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
1982 	struct sk_bcom_hack bhack[] = {
1983 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
1984 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
1985 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1986 	{ 0, 0 } };
1987 
1988 	/* Unreset the XMAC. */
1989 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
1990 	DELAY(1000);
1991 
1992 	/* Reset the XMAC's internal state. */
1993 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
1994 
1995 	/* Save the XMAC II revision */
1996 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
1997 
1998 	/*
1999 	 * Perform additional initialization for external PHYs,
2000 	 * namely for the 1000baseTX cards that use the XMAC's
2001 	 * GMII mode.
2002 	 */
2003 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2004 		int i = 0;
2005 		uint32_t val;
2006 
2007 		/* Take PHY out of reset. */
2008 		val = sk_win_read_4(sc, SK_GPIO);
2009 		if (sc_if->sk_port == SK_PORT_A)
2010 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2011 		else
2012 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2013 		sk_win_write_4(sc, SK_GPIO, val);
2014 
2015 		/* Enable GMII mode on the XMAC. */
2016 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2017 
2018 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2019 		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
2020 		DELAY(10000);
2021 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2022 		    BRGPHY_MII_IMR, 0xFFF0);
2023 
2024 		/*
2025 		 * Early versions of the BCM5400 apparently have
2026 		 * a bug that requires them to have their reserved
2027 		 * registers initialized to some magic values. I don't
2028 		 * know what the numbers do, I'm just the messenger.
2029 		 */
2030 		if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
2031 		    == 0x6041) {
2032 			while(bhack[i].reg) {
2033 				sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2034 				    bhack[i].reg, bhack[i].val);
2035 				i++;
2036 			}
2037 		}
2038 	}
2039 
2040 	/* Set station address */
2041 	SK_XM_WRITE_2(sc_if, XM_PAR0,
2042 	    *(uint16_t *)(&sc_if->arpcom.ac_enaddr[0]));
2043 	SK_XM_WRITE_2(sc_if, XM_PAR1,
2044 	    *(uint16_t *)(&sc_if->arpcom.ac_enaddr[2]));
2045 	SK_XM_WRITE_2(sc_if, XM_PAR2,
2046 	    *(uint16_t *)(&sc_if->arpcom.ac_enaddr[4]));
2047 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2048 
2049 	if (ifp->if_flags & IFF_BROADCAST)
2050 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2051 	else
2052 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2053 
2054 	/* We don't need the FCS appended to the packet. */
2055 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2056 
2057 	/* We want short frames padded to 60 bytes. */
2058 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2059 
2060 	/*
2061 	 * Enable the reception of all error frames. This is is
2062 	 * a necessary evil due to the design of the XMAC. The
2063 	 * XMAC's receive FIFO is only 8K in size, however jumbo
2064 	 * frames can be up to 9000 bytes in length. When bad
2065 	 * frame filtering is enabled, the XMAC's RX FIFO operates
2066 	 * in 'store and forward' mode. For this to work, the
2067 	 * entire frame has to fit into the FIFO, but that means
2068 	 * that jumbo frames larger than 8192 bytes will be
2069 	 * truncated. Disabling all bad frame filtering causes
2070 	 * the RX FIFO to operate in streaming mode, in which
2071 	 * case the XMAC will start transfering frames out of the
2072 	 * RX FIFO as soon as the FIFO threshold is reached.
2073 	 */
2074 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2075 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2076 	    XM_MODE_RX_INRANGELEN);
2077 
2078 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2079 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2080 	else
2081 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2082 
2083 	/*
2084 	 * Bump up the transmit threshold. This helps hold off transmit
2085 	 * underruns when we're blasting traffic from both ports at once.
2086 	 */
2087 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2088 
2089 	/* Set promiscuous mode */
2090 	sk_setpromisc(sc_if);
2091 
2092 	/* Set multicast filter */
2093 	sk_setmulti(sc_if);
2094 
2095 	/* Clear and enable interrupts */
2096 	SK_XM_READ_2(sc_if, XM_ISR);
2097 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2098 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2099 	else
2100 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2101 
2102 	/* Configure MAC arbiter */
2103 	switch(sc_if->sk_xmac_rev) {
2104 	case XM_XMAC_REV_B2:
2105 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2106 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2107 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2108 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2109 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2110 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2111 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2112 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2113 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2114 		break;
2115 	case XM_XMAC_REV_C1:
2116 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2117 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2118 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2119 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2120 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2121 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2122 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2123 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2124 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2125 		break;
2126 	default:
2127 		break;
2128 	}
2129 	sk_win_write_2(sc, SK_MACARB_CTL,
2130 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2131 
2132 	sc_if->sk_link = 1;
2133 }
2134 
2135 static void
2136 sk_init_yukon(struct sk_if_softc *sc_if)
2137 {
2138 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2139 	uint32_t phy;
2140 	uint16_t reg;
2141 	int i;
2142 
2143 	/* GMAC and GPHY Reset */
2144 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2145 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2146 	DELAY(1000);
2147 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2148 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2149 	DELAY(1000);
2150 
2151 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2152 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2153 
2154 	switch(sc_if->sk_softc->sk_pmd) {
2155 	case IFM_1000_SX:
2156 	case IFM_1000_LX:
2157 		phy |= SK_GPHY_FIBER;
2158 		break;
2159 
2160 	case IFM_1000_CX:
2161 	case IFM_1000_T:
2162 		phy |= SK_GPHY_COPPER;
2163 		break;
2164 	}
2165 
2166 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2167 	DELAY(1000);
2168 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2169 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2170 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2171 
2172 	/* unused read of the interrupt source register */
2173 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2174 
2175 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2176 
2177 	/* MIB Counter Clear Mode set */
2178 	reg |= YU_PAR_MIB_CLR;
2179 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2180 
2181 	/* MIB Counter Clear Mode clear */
2182 	reg &= ~YU_PAR_MIB_CLR;
2183 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2184 
2185 	/* receive control reg */
2186 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2187 
2188 	/* transmit parameter register */
2189 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2190 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2191 
2192 	/* serial mode register */
2193 	reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
2194 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2195 		reg |= YU_SMR_MFL_JUMBO;
2196 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2197 
2198 	/* Setup Yukon's address */
2199 	for (i = 0; i < 3; i++) {
2200 		/* Write Source Address 1 (unicast filter) */
2201 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2202 			      sc_if->arpcom.ac_enaddr[i * 2] |
2203 			      sc_if->arpcom.ac_enaddr[i * 2 + 1] << 8);
2204 	}
2205 
2206 	for (i = 0; i < 3; i++) {
2207 		reg = sk_win_read_2(sc_if->sk_softc,
2208 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2209 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2210 	}
2211 
2212 	/* Set promiscuous mode */
2213 	sk_setpromisc(sc_if);
2214 
2215 	/* Set multicast filter */
2216 	sk_setmulti(sc_if);
2217 
2218 	/* enable interrupt mask for counter overflows */
2219 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2220 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2221 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2222 
2223 	/* Configure RX MAC FIFO */
2224 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2225 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2226 
2227 	/* Configure TX MAC FIFO */
2228 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2229 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2230 }
2231 
2232 /*
2233  * Note that to properly initialize any part of the GEnesis chip,
2234  * you first have to take it out of reset mode.
2235  */
2236 static void
2237 sk_init(void *xsc)
2238 {
2239 	struct sk_if_softc *sc_if = xsc;
2240 	struct sk_softc *sc = sc_if->sk_softc;
2241 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2242 	struct mii_data *mii = device_get_softc(sc_if->sk_miibus);
2243 	uint16_t reg;
2244 
2245 	crit_enter();
2246 
2247 	/* Cancel pending I/O and free all RX/TX buffers. */
2248 	sk_stop(sc_if);
2249 
2250 	if (sc->sk_type == SK_GENESIS) {
2251 		/* Configure LINK_SYNC LED */
2252 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2253 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2254 			SK_LINKLED_LINKSYNC_ON);
2255 
2256 		/* Configure RX LED */
2257 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2258 			SK_RXLEDCTL_COUNTER_START);
2259 
2260 		/* Configure TX LED */
2261 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2262 			SK_TXLEDCTL_COUNTER_START);
2263 	}
2264 
2265 	/* Configure I2C registers */
2266 
2267 	/* Configure XMAC(s) */
2268 	switch (sc->sk_type) {
2269 	case SK_GENESIS:
2270 		sk_init_xmac(sc_if);
2271 		break;
2272 	case SK_YUKON:
2273 		sk_init_yukon(sc_if);
2274 		break;
2275 	}
2276 	mii_mediachg(mii);
2277 
2278 	if (sc->sk_type == SK_GENESIS) {
2279 		/* Configure MAC FIFOs */
2280 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2281 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2282 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2283 
2284 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2285 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2286 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2287 	}
2288 
2289 	/* Configure transmit arbiter(s) */
2290 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2291 	    SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON);
2292 
2293 	/* Configure RAMbuffers */
2294 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2295 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2296 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2297 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2298 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2299 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2300 
2301 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2302 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2303 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2304 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2305 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2306 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2307 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2308 
2309 	/* Configure BMUs */
2310 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2311 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2312 	    vtophys(&sc_if->sk_rdata->sk_rx_ring[0]));
2313 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2314 
2315 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2316 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2317 	    vtophys(&sc_if->sk_rdata->sk_tx_ring[0]));
2318 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2319 
2320 	/* Init descriptors */
2321 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2322 		printf("sk%d: initialization failed: no "
2323 		    "memory for rx buffers\n", sc_if->sk_unit);
2324 		sk_stop(sc_if);
2325 		crit_exit();
2326 		return;
2327 	}
2328 	sk_init_tx_ring(sc_if);
2329 
2330 	/* Configure interrupt handling */
2331 	CSR_READ_4(sc, SK_ISSR);
2332 	if (sc_if->sk_port == SK_PORT_A)
2333 		sc->sk_intrmask |= SK_INTRS1;
2334 	else
2335 		sc->sk_intrmask |= SK_INTRS2;
2336 
2337 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2338 
2339 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2340 
2341 	/* Start BMUs. */
2342 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2343 
2344 	switch(sc->sk_type) {
2345 	case SK_GENESIS:
2346 		/* Enable XMACs TX and RX state machines */
2347 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2348 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2349 		    XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
2350 		break;
2351 	case SK_YUKON:
2352 		reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2353 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2354 		reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
2355 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2356 	}
2357 
2358 	ifp->if_flags |= IFF_RUNNING;
2359 	ifp->if_flags &= ~IFF_OACTIVE;
2360 
2361 	crit_exit();
2362 }
2363 
2364 static void
2365 sk_stop(struct sk_if_softc *sc_if)
2366 {
2367 	int i;
2368 	struct sk_softc *sc = sc_if->sk_softc;
2369 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2370 
2371 	callout_stop(&sc_if->sk_tick_timer);
2372 
2373 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2374 		uint32_t val;
2375 
2376 		/* Put PHY back into reset. */
2377 		val = sk_win_read_4(sc, SK_GPIO);
2378 		if (sc_if->sk_port == SK_PORT_A) {
2379 			val |= SK_GPIO_DIR0;
2380 			val &= ~SK_GPIO_DAT0;
2381 		} else {
2382 			val |= SK_GPIO_DIR2;
2383 			val &= ~SK_GPIO_DAT2;
2384 		}
2385 		sk_win_write_4(sc, SK_GPIO, val);
2386 	}
2387 
2388 	/* Turn off various components of this interface. */
2389 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2390 	switch (sc->sk_type) {
2391 	case SK_GENESIS:
2392 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
2393 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2394 		break;
2395 	case SK_YUKON:
2396 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2397 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2398 		break;
2399 	}
2400 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2401 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2402 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2403 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST,
2404 	    SK_RBCTL_RESET | SK_RBCTL_OFF);
2405 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2406 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2407 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2408 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2409 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2410 
2411 	/* Disable interrupts */
2412 	if (sc_if->sk_port == SK_PORT_A)
2413 		sc->sk_intrmask &= ~SK_INTRS1;
2414 	else
2415 		sc->sk_intrmask &= ~SK_INTRS2;
2416 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2417 
2418 	SK_XM_READ_2(sc_if, XM_ISR);
2419 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2420 
2421 	/* Free RX and TX mbufs still in the queues. */
2422 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2423 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2424 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2425 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2426 		}
2427 	}
2428 
2429 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2430 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2431 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2432 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2433 		}
2434 	}
2435 
2436 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2437 }
2438