xref: /dragonfly/sys/dev/netif/sk/if_sk.c (revision 984263bc)
1 /*
2  * Copyright (c) 1997, 1998, 1999, 2000
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_sk.c,v 1.19.2.9 2003/03/05 18:42:34 njl Exp $
33  */
34 
35 /*
36  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
37  * the SK-984x series adapters, both single port and dual port.
38  * References:
39  * 	The XaQti XMAC II datasheet,
40  *  http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
41  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
42  *
43  * Note: XaQti has been aquired by Vitesse, and Vitesse does not have the
44  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
45  * convenience to others until Vitesse corrects this problem:
46  *
47  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
48  *
49  * Written by Bill Paul <wpaul@ee.columbia.edu>
50  * Department of Electrical Engineering
51  * Columbia University, New York City
52  */
53 
54 /*
55  * The SysKonnect gigabit ethernet adapters consist of two main
56  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
57  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
58  * components and a PHY while the GEnesis controller provides a PCI
59  * interface with DMA support. Each card may have between 512K and
60  * 2MB of SRAM on board depending on the configuration.
61  *
62  * The SysKonnect GEnesis controller can have either one or two XMAC
63  * chips connected to it, allowing single or dual port NIC configurations.
64  * SysKonnect has the distinction of being the only vendor on the market
65  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
66  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
67  * XMAC registers. This driver takes advantage of these features to allow
68  * both XMACs to operate as independent interfaces.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/sockio.h>
74 #include <sys/mbuf.h>
75 #include <sys/malloc.h>
76 #include <sys/kernel.h>
77 #include <sys/socket.h>
78 #include <sys/queue.h>
79 
80 #include <net/if.h>
81 #include <net/if_arp.h>
82 #include <net/ethernet.h>
83 #include <net/if_dl.h>
84 #include <net/if_media.h>
85 
86 #include <net/bpf.h>
87 
88 #include <vm/vm.h>              /* for vtophys */
89 #include <vm/pmap.h>            /* for vtophys */
90 #include <machine/clock.h>      /* for DELAY */
91 #include <machine/bus_pio.h>
92 #include <machine/bus_memio.h>
93 #include <machine/bus.h>
94 #include <machine/resource.h>
95 #include <sys/bus.h>
96 #include <sys/rman.h>
97 
98 #include <dev/mii/mii.h>
99 #include <dev/mii/miivar.h>
100 #include <dev/mii/brgphyreg.h>
101 
102 #include <pci/pcireg.h>
103 #include <pci/pcivar.h>
104 
105 #define SK_USEIOSPACE
106 
107 #include <pci/if_skreg.h>
108 #include <pci/xmaciireg.h>
109 
110 /* "controller miibus0" required.  See GENERIC if you get errors here. */
111 #include "miibus_if.h"
112 
113 #ifndef lint
114 static const char rcsid[] =
115   "$FreeBSD: src/sys/pci/if_sk.c,v 1.19.2.9 2003/03/05 18:42:34 njl Exp $";
116 #endif
117 
118 static struct sk_type sk_devs[] = {
119 	{ SK_VENDORID, SK_DEVICEID_GE, "SysKonnect Gigabit Ethernet" },
120 	{ 0, 0, NULL }
121 };
122 
123 static int sk_probe		__P((device_t));
124 static int sk_attach		__P((device_t));
125 static int sk_detach		__P((device_t));
126 static int sk_detach_xmac	__P((device_t));
127 static int sk_probe_xmac	__P((device_t));
128 static int sk_attach_xmac	__P((device_t));
129 static void sk_tick		__P((void *));
130 static void sk_intr		__P((void *));
131 static void sk_intr_xmac	__P((struct sk_if_softc *));
132 static void sk_intr_bcom	__P((struct sk_if_softc *));
133 static void sk_rxeof		__P((struct sk_if_softc *));
134 static void sk_txeof		__P((struct sk_if_softc *));
135 static int sk_encap		__P((struct sk_if_softc *, struct mbuf *,
136 					u_int32_t *));
137 static void sk_start		__P((struct ifnet *));
138 static int sk_ioctl		__P((struct ifnet *, u_long, caddr_t));
139 static void sk_init		__P((void *));
140 static void sk_init_xmac	__P((struct sk_if_softc *));
141 static void sk_stop		__P((struct sk_if_softc *));
142 static void sk_watchdog		__P((struct ifnet *));
143 static void sk_shutdown		__P((device_t));
144 static int sk_ifmedia_upd	__P((struct ifnet *));
145 static void sk_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
146 static void sk_reset		__P((struct sk_softc *));
147 static int sk_newbuf		__P((struct sk_if_softc *,
148 					struct sk_chain *, struct mbuf *));
149 static int sk_alloc_jumbo_mem	__P((struct sk_if_softc *));
150 static void *sk_jalloc		__P((struct sk_if_softc *));
151 static void sk_jfree		__P((caddr_t, u_int));
152 static void sk_jref		__P((caddr_t, u_int));
153 static int sk_init_rx_ring	__P((struct sk_if_softc *));
154 static void sk_init_tx_ring	__P((struct sk_if_softc *));
155 static u_int32_t sk_win_read_4	__P((struct sk_softc *, int));
156 static u_int16_t sk_win_read_2	__P((struct sk_softc *, int));
157 static u_int8_t sk_win_read_1	__P((struct sk_softc *, int));
158 static void sk_win_write_4	__P((struct sk_softc *, int, u_int32_t));
159 static void sk_win_write_2	__P((struct sk_softc *, int, u_int32_t));
160 static void sk_win_write_1	__P((struct sk_softc *, int, u_int32_t));
161 static u_int8_t sk_vpd_readbyte	__P((struct sk_softc *, int));
162 static void sk_vpd_read_res	__P((struct sk_softc *,
163 					struct vpd_res *, int));
164 static void sk_vpd_read		__P((struct sk_softc *));
165 
166 static int sk_miibus_readreg	__P((device_t, int, int));
167 static int sk_miibus_writereg	__P((device_t, int, int, int));
168 static void sk_miibus_statchg	__P((device_t));
169 
170 static u_int32_t sk_calchash	__P((caddr_t));
171 static void sk_setfilt		__P((struct sk_if_softc *, caddr_t, int));
172 static void sk_setmulti		__P((struct sk_if_softc *));
173 
174 #ifdef SK_USEIOSPACE
175 #define SK_RES		SYS_RES_IOPORT
176 #define SK_RID		SK_PCI_LOIO
177 #else
178 #define SK_RES		SYS_RES_MEMORY
179 #define SK_RID		SK_PCI_LOMEM
180 #endif
181 
182 /*
183  * Note that we have newbus methods for both the GEnesis controller
184  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
185  * the miibus code is a child of the XMACs. We need to do it this way
186  * so that the miibus drivers can access the PHY registers on the
187  * right PHY. It's not quite what I had in mind, but it's the only
188  * design that achieves the desired effect.
189  */
190 static device_method_t skc_methods[] = {
191 	/* Device interface */
192 	DEVMETHOD(device_probe,		sk_probe),
193 	DEVMETHOD(device_attach,	sk_attach),
194 	DEVMETHOD(device_detach,	sk_detach),
195 	DEVMETHOD(device_shutdown,	sk_shutdown),
196 
197 	/* bus interface */
198 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
199 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
200 
201 	{ 0, 0 }
202 };
203 
204 static driver_t skc_driver = {
205 	"skc",
206 	skc_methods,
207 	sizeof(struct sk_softc)
208 };
209 
210 static devclass_t skc_devclass;
211 
212 static device_method_t sk_methods[] = {
213 	/* Device interface */
214 	DEVMETHOD(device_probe,		sk_probe_xmac),
215 	DEVMETHOD(device_attach,	sk_attach_xmac),
216 	DEVMETHOD(device_detach,	sk_detach_xmac),
217 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
218 
219 	/* bus interface */
220 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
221 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
222 
223 	/* MII interface */
224 	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
225 	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
226 	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
227 
228 	{ 0, 0 }
229 };
230 
231 static driver_t sk_driver = {
232 	"sk",
233 	sk_methods,
234 	sizeof(struct sk_if_softc)
235 };
236 
237 static devclass_t sk_devclass;
238 
239 DRIVER_MODULE(if_sk, pci, skc_driver, skc_devclass, 0, 0);
240 DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, 0, 0);
241 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0);
242 
243 #define SK_SETBIT(sc, reg, x)		\
244 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
245 
246 #define SK_CLRBIT(sc, reg, x)		\
247 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
248 
249 #define SK_WIN_SETBIT_4(sc, reg, x)	\
250 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
251 
252 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
253 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
254 
255 #define SK_WIN_SETBIT_2(sc, reg, x)	\
256 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
257 
258 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
259 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
260 
261 static u_int32_t sk_win_read_4(sc, reg)
262 	struct sk_softc		*sc;
263 	int			reg;
264 {
265 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
266 	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
267 }
268 
269 static u_int16_t sk_win_read_2(sc, reg)
270 	struct sk_softc		*sc;
271 	int			reg;
272 {
273 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
274 	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
275 }
276 
277 static u_int8_t sk_win_read_1(sc, reg)
278 	struct sk_softc		*sc;
279 	int			reg;
280 {
281 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
282 	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
283 }
284 
285 static void sk_win_write_4(sc, reg, val)
286 	struct sk_softc		*sc;
287 	int			reg;
288 	u_int32_t		val;
289 {
290 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
291 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
292 	return;
293 }
294 
295 static void sk_win_write_2(sc, reg, val)
296 	struct sk_softc		*sc;
297 	int			reg;
298 	u_int32_t		val;
299 {
300 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
301 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), (u_int32_t)val);
302 	return;
303 }
304 
305 static void sk_win_write_1(sc, reg, val)
306 	struct sk_softc		*sc;
307 	int			reg;
308 	u_int32_t		val;
309 {
310 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
311 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
312 	return;
313 }
314 
315 /*
316  * The VPD EEPROM contains Vital Product Data, as suggested in
317  * the PCI 2.1 specification. The VPD data is separared into areas
318  * denoted by resource IDs. The SysKonnect VPD contains an ID string
319  * resource (the name of the adapter), a read-only area resource
320  * containing various key/data fields and a read/write area which
321  * can be used to store asset management information or log messages.
322  * We read the ID string and read-only into buffers attached to
323  * the controller softc structure for later use. At the moment,
324  * we only use the ID string during sk_attach().
325  */
326 static u_int8_t sk_vpd_readbyte(sc, addr)
327 	struct sk_softc		*sc;
328 	int			addr;
329 {
330 	int			i;
331 
332 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
333 	for (i = 0; i < SK_TIMEOUT; i++) {
334 		DELAY(1);
335 		if (sk_win_read_2(sc,
336 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
337 			break;
338 	}
339 
340 	if (i == SK_TIMEOUT)
341 		return(0);
342 
343 	return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
344 }
345 
346 static void sk_vpd_read_res(sc, res, addr)
347 	struct sk_softc		*sc;
348 	struct vpd_res		*res;
349 	int			addr;
350 {
351 	int			i;
352 	u_int8_t		*ptr;
353 
354 	ptr = (u_int8_t *)res;
355 	for (i = 0; i < sizeof(struct vpd_res); i++)
356 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
357 
358 	return;
359 }
360 
361 static void sk_vpd_read(sc)
362 	struct sk_softc		*sc;
363 {
364 	int			pos = 0, i;
365 	struct vpd_res		res;
366 
367 	if (sc->sk_vpd_prodname != NULL)
368 		free(sc->sk_vpd_prodname, M_DEVBUF);
369 	if (sc->sk_vpd_readonly != NULL)
370 		free(sc->sk_vpd_readonly, M_DEVBUF);
371 	sc->sk_vpd_prodname = NULL;
372 	sc->sk_vpd_readonly = NULL;
373 
374 	sk_vpd_read_res(sc, &res, pos);
375 
376 	if (res.vr_id != VPD_RES_ID) {
377 		printf("skc%d: bad VPD resource id: expected %x got %x\n",
378 		    sc->sk_unit, VPD_RES_ID, res.vr_id);
379 		return;
380 	}
381 
382 	pos += sizeof(res);
383 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
384 	for (i = 0; i < res.vr_len; i++)
385 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
386 	sc->sk_vpd_prodname[i] = '\0';
387 	pos += i;
388 
389 	sk_vpd_read_res(sc, &res, pos);
390 
391 	if (res.vr_id != VPD_RES_READ) {
392 		printf("skc%d: bad VPD resource id: expected %x got %x\n",
393 		    sc->sk_unit, VPD_RES_READ, res.vr_id);
394 		return;
395 	}
396 
397 	pos += sizeof(res);
398 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
399 	for (i = 0; i < res.vr_len + 1; i++)
400 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
401 
402 	return;
403 }
404 
405 static int sk_miibus_readreg(dev, phy, reg)
406 	device_t		dev;
407 	int			phy, reg;
408 {
409 	struct sk_if_softc	*sc_if;
410 	int			i;
411 
412 	sc_if = device_get_softc(dev);
413 
414 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
415 		return(0);
416 
417 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
418 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
419 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
420 		for (i = 0; i < SK_TIMEOUT; i++) {
421 			DELAY(1);
422 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
423 			    XM_MMUCMD_PHYDATARDY)
424 				break;
425 		}
426 
427 		if (i == SK_TIMEOUT) {
428 			printf("sk%d: phy failed to come ready\n",
429 			    sc_if->sk_unit);
430 			return(0);
431 		}
432 	}
433 	DELAY(1);
434 	return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
435 }
436 
437 static int sk_miibus_writereg(dev, phy, reg, val)
438 	device_t		dev;
439 	int			phy, reg, val;
440 {
441 	struct sk_if_softc	*sc_if;
442 	int			i;
443 
444 	sc_if = device_get_softc(dev);
445 
446 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
447 	for (i = 0; i < SK_TIMEOUT; i++) {
448 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
449 			break;
450 	}
451 
452 	if (i == SK_TIMEOUT) {
453 		printf("sk%d: phy failed to come ready\n", sc_if->sk_unit);
454 		return(ETIMEDOUT);
455 	}
456 
457 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
458 	for (i = 0; i < SK_TIMEOUT; i++) {
459 		DELAY(1);
460 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
461 			break;
462 	}
463 
464 	if (i == SK_TIMEOUT)
465 		printf("sk%d: phy write timed out\n", sc_if->sk_unit);
466 
467 	return(0);
468 }
469 
470 static void sk_miibus_statchg(dev)
471 	device_t		dev;
472 {
473 	struct sk_if_softc	*sc_if;
474 	struct mii_data		*mii;
475 
476 	sc_if = device_get_softc(dev);
477 	mii = device_get_softc(sc_if->sk_miibus);
478 
479 	/*
480 	 * If this is a GMII PHY, manually set the XMAC's
481 	 * duplex mode accordingly.
482 	 */
483 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
484 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
485 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
486 		} else {
487 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
488 		}
489 	}
490 
491 	return;
492 }
493 
494 #define SK_POLY		0xEDB88320
495 #define SK_BITS		6
496 
497 static u_int32_t sk_calchash(addr)
498 	caddr_t			addr;
499 {
500 	u_int32_t		idx, bit, data, crc;
501 
502 	/* Compute CRC for the address value. */
503 	crc = 0xFFFFFFFF; /* initial value */
504 
505 	for (idx = 0; idx < 6; idx++) {
506 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
507 			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? SK_POLY : 0);
508 	}
509 
510 	return (~crc & ((1 << SK_BITS) - 1));
511 }
512 
513 static void sk_setfilt(sc_if, addr, slot)
514 	struct sk_if_softc	*sc_if;
515 	caddr_t			addr;
516 	int			slot;
517 {
518 	int			base;
519 
520 	base = XM_RXFILT_ENTRY(slot);
521 
522 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
523 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
524 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
525 
526 	return;
527 }
528 
529 static void sk_setmulti(sc_if)
530 	struct sk_if_softc	*sc_if;
531 {
532 	struct ifnet		*ifp;
533 	u_int32_t		hashes[2] = { 0, 0 };
534 	int			h, i;
535 	struct ifmultiaddr	*ifma;
536 	u_int8_t		dummy[] = { 0, 0, 0, 0, 0 ,0 };
537 
538 	ifp = &sc_if->arpcom.ac_if;
539 
540 	/* First, zot all the existing filters. */
541 	for (i = 1; i < XM_RXFILT_MAX; i++)
542 		sk_setfilt(sc_if, (caddr_t)&dummy, i);
543 	SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
544 	SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
545 
546 	/* Now program new ones. */
547 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
548 		hashes[0] = 0xFFFFFFFF;
549 		hashes[1] = 0xFFFFFFFF;
550 	} else {
551 		i = 1;
552 		/* First find the tail of the list. */
553 		for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
554 					ifma = ifma->ifma_link.le_next) {
555 			if (ifma->ifma_link.le_next == NULL)
556 				break;
557 		}
558 		/* Now traverse the list backwards. */
559 		for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
560 			ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
561 			if (ifma->ifma_addr->sa_family != AF_LINK)
562 				continue;
563 			/*
564 			 * Program the first XM_RXFILT_MAX multicast groups
565 			 * into the perfect filter. For all others,
566 			 * use the hash table.
567 			 */
568 			if (i < XM_RXFILT_MAX) {
569 				sk_setfilt(sc_if,
570 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
571 				i++;
572 				continue;
573 			}
574 
575 			h = sk_calchash(
576 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
577 			if (h < 32)
578 				hashes[0] |= (1 << h);
579 			else
580 				hashes[1] |= (1 << (h - 32));
581 		}
582 	}
583 
584 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
585 	    XM_MODE_RX_USE_PERFECT);
586 	SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
587 	SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
588 
589 	return;
590 }
591 
592 static int sk_init_rx_ring(sc_if)
593 	struct sk_if_softc	*sc_if;
594 {
595 	struct sk_chain_data	*cd;
596 	struct sk_ring_data	*rd;
597 	int			i;
598 
599 	cd = &sc_if->sk_cdata;
600 	rd = sc_if->sk_rdata;
601 
602 	bzero((char *)rd->sk_rx_ring,
603 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
604 
605 	for (i = 0; i < SK_RX_RING_CNT; i++) {
606 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
607 		if (sk_newbuf(sc_if, &cd->sk_rx_chain[i], NULL) == ENOBUFS)
608 			return(ENOBUFS);
609 		if (i == (SK_RX_RING_CNT - 1)) {
610 			cd->sk_rx_chain[i].sk_next =
611 			    &cd->sk_rx_chain[0];
612 			rd->sk_rx_ring[i].sk_next =
613 			    vtophys(&rd->sk_rx_ring[0]);
614 		} else {
615 			cd->sk_rx_chain[i].sk_next =
616 			    &cd->sk_rx_chain[i + 1];
617 			rd->sk_rx_ring[i].sk_next =
618 			    vtophys(&rd->sk_rx_ring[i + 1]);
619 		}
620 	}
621 
622 	sc_if->sk_cdata.sk_rx_prod = 0;
623 	sc_if->sk_cdata.sk_rx_cons = 0;
624 
625 	return(0);
626 }
627 
628 static void sk_init_tx_ring(sc_if)
629 	struct sk_if_softc	*sc_if;
630 {
631 	struct sk_chain_data	*cd;
632 	struct sk_ring_data	*rd;
633 	int			i;
634 
635 	cd = &sc_if->sk_cdata;
636 	rd = sc_if->sk_rdata;
637 
638 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
639 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
640 
641 	for (i = 0; i < SK_TX_RING_CNT; i++) {
642 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
643 		if (i == (SK_TX_RING_CNT - 1)) {
644 			cd->sk_tx_chain[i].sk_next =
645 			    &cd->sk_tx_chain[0];
646 			rd->sk_tx_ring[i].sk_next =
647 			    vtophys(&rd->sk_tx_ring[0]);
648 		} else {
649 			cd->sk_tx_chain[i].sk_next =
650 			    &cd->sk_tx_chain[i + 1];
651 			rd->sk_tx_ring[i].sk_next =
652 			    vtophys(&rd->sk_tx_ring[i + 1]);
653 		}
654 	}
655 
656 	sc_if->sk_cdata.sk_tx_prod = 0;
657 	sc_if->sk_cdata.sk_tx_cons = 0;
658 	sc_if->sk_cdata.sk_tx_cnt = 0;
659 
660 	return;
661 }
662 
663 static int sk_newbuf(sc_if, c, m)
664 	struct sk_if_softc	*sc_if;
665 	struct sk_chain		*c;
666 	struct mbuf		*m;
667 {
668 	struct mbuf		*m_new = NULL;
669 	struct sk_rx_desc	*r;
670 
671 	if (m == NULL) {
672 		caddr_t			*buf = NULL;
673 
674 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
675 		if (m_new == NULL)
676 			return(ENOBUFS);
677 
678 		/* Allocate the jumbo buffer */
679 		buf = sk_jalloc(sc_if);
680 		if (buf == NULL) {
681 			m_freem(m_new);
682 #ifdef SK_VERBOSE
683 			printf("sk%d: jumbo allocation failed "
684 			    "-- packet dropped!\n", sc_if->sk_unit);
685 #endif
686 			return(ENOBUFS);
687 		}
688 
689 		/* Attach the buffer to the mbuf */
690 		m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
691 		m_new->m_flags |= M_EXT;
692 		m_new->m_ext.ext_size = m_new->m_pkthdr.len =
693 		    m_new->m_len = SK_MCLBYTES;
694 		m_new->m_ext.ext_free = sk_jfree;
695 		m_new->m_ext.ext_ref = sk_jref;
696 	} else {
697 		/*
698 	 	 * We're re-using a previously allocated mbuf;
699 		 * be sure to re-init pointers and lengths to
700 		 * default values.
701 		 */
702 		m_new = m;
703 		m_new->m_len = m_new->m_pkthdr.len = SK_MCLBYTES;
704 		m_new->m_data = m_new->m_ext.ext_buf;
705 	}
706 
707 	/*
708 	 * Adjust alignment so packet payload begins on a
709 	 * longword boundary. Mandatory for Alpha, useful on
710 	 * x86 too.
711 	 */
712 	m_adj(m_new, ETHER_ALIGN);
713 
714 	r = c->sk_desc;
715 	c->sk_mbuf = m_new;
716 	r->sk_data_lo = vtophys(mtod(m_new, caddr_t));
717 	r->sk_ctl = m_new->m_len | SK_RXSTAT;
718 
719 	return(0);
720 }
721 
722 /*
723  * Allocate jumbo buffer storage. The SysKonnect adapters support
724  * "jumbograms" (9K frames), although SysKonnect doesn't currently
725  * use them in their drivers. In order for us to use them, we need
726  * large 9K receive buffers, however standard mbuf clusters are only
727  * 2048 bytes in size. Consequently, we need to allocate and manage
728  * our own jumbo buffer pool. Fortunately, this does not require an
729  * excessive amount of additional code.
730  */
731 static int sk_alloc_jumbo_mem(sc_if)
732 	struct sk_if_softc	*sc_if;
733 {
734 	caddr_t			ptr;
735 	register int		i;
736 	struct sk_jpool_entry   *entry;
737 
738 	/* Grab a big chunk o' storage. */
739 	sc_if->sk_cdata.sk_jumbo_buf = contigmalloc(SK_JMEM, M_DEVBUF,
740 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
741 
742 	if (sc_if->sk_cdata.sk_jumbo_buf == NULL) {
743 		printf("sk%d: no memory for jumbo buffers!\n", sc_if->sk_unit);
744 		return(ENOBUFS);
745 	}
746 
747 	SLIST_INIT(&sc_if->sk_jfree_listhead);
748 	SLIST_INIT(&sc_if->sk_jinuse_listhead);
749 
750 	/*
751 	 * Now divide it up into 9K pieces and save the addresses
752 	 * in an array. Note that we play an evil trick here by using
753 	 * the first few bytes in the buffer to hold the the address
754 	 * of the softc structure for this interface. This is because
755 	 * sk_jfree() needs it, but it is called by the mbuf management
756 	 * code which will not pass it to us explicitly.
757 	 */
758 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
759 	for (i = 0; i < SK_JSLOTS; i++) {
760 		u_int64_t		**aptr;
761 		aptr = (u_int64_t **)ptr;
762 		aptr[0] = (u_int64_t *)sc_if;
763 		ptr += sizeof(u_int64_t);
764 		sc_if->sk_cdata.sk_jslots[i].sk_buf = ptr;
765 		sc_if->sk_cdata.sk_jslots[i].sk_inuse = 0;
766 		ptr += SK_MCLBYTES;
767 		entry = malloc(sizeof(struct sk_jpool_entry),
768 		    M_DEVBUF, M_NOWAIT);
769 		if (entry == NULL) {
770 			free(sc_if->sk_cdata.sk_jumbo_buf, M_DEVBUF);
771 			sc_if->sk_cdata.sk_jumbo_buf = NULL;
772 			printf("sk%d: no memory for jumbo "
773 			    "buffer queue!\n", sc_if->sk_unit);
774 			return(ENOBUFS);
775 		}
776 		entry->slot = i;
777 		SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
778 		    entry, jpool_entries);
779 	}
780 
781 	return(0);
782 }
783 
784 /*
785  * Allocate a jumbo buffer.
786  */
787 static void *sk_jalloc(sc_if)
788 	struct sk_if_softc	*sc_if;
789 {
790 	struct sk_jpool_entry   *entry;
791 
792 	entry = SLIST_FIRST(&sc_if->sk_jfree_listhead);
793 
794 	if (entry == NULL) {
795 #ifdef SK_VERBOSE
796 		printf("sk%d: no free jumbo buffers\n", sc_if->sk_unit);
797 #endif
798 		return(NULL);
799 	}
800 
801 	SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jpool_entries);
802 	SLIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
803 	sc_if->sk_cdata.sk_jslots[entry->slot].sk_inuse = 1;
804 	return(sc_if->sk_cdata.sk_jslots[entry->slot].sk_buf);
805 }
806 
807 /*
808  * Adjust usage count on a jumbo buffer. In general this doesn't
809  * get used much because our jumbo buffers don't get passed around
810  * a lot, but it's implemented for correctness.
811  */
812 static void sk_jref(buf, size)
813 	caddr_t			buf;
814 	u_int			size;
815 {
816 	struct sk_if_softc	*sc_if;
817 	u_int64_t		**aptr;
818 	register int		i;
819 
820 	/* Extract the softc struct pointer. */
821 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
822 	sc_if = (struct sk_if_softc *)(aptr[0]);
823 
824 	if (sc_if == NULL)
825 		panic("sk_jref: can't find softc pointer!");
826 
827 	if (size != SK_MCLBYTES)
828 		panic("sk_jref: adjusting refcount of buf of wrong size!");
829 
830 	/* calculate the slot this buffer belongs to */
831 
832 	i = ((vm_offset_t)aptr
833 	     - (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN;
834 
835 	if ((i < 0) || (i >= SK_JSLOTS))
836 		panic("sk_jref: asked to reference buffer "
837 		    "that we don't manage!");
838 	else if (sc_if->sk_cdata.sk_jslots[i].sk_inuse == 0)
839 		panic("sk_jref: buffer already free!");
840 	else
841 		sc_if->sk_cdata.sk_jslots[i].sk_inuse++;
842 
843 	return;
844 }
845 
846 /*
847  * Release a jumbo buffer.
848  */
849 static void sk_jfree(buf, size)
850 	caddr_t			buf;
851 	u_int			size;
852 {
853 	struct sk_if_softc	*sc_if;
854 	u_int64_t		**aptr;
855 	int		        i;
856 	struct sk_jpool_entry   *entry;
857 
858 	/* Extract the softc struct pointer. */
859 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
860 	sc_if = (struct sk_if_softc *)(aptr[0]);
861 
862 	if (sc_if == NULL)
863 		panic("sk_jfree: can't find softc pointer!");
864 
865 	if (size != SK_MCLBYTES)
866 		panic("sk_jfree: freeing buffer of wrong size!");
867 
868 	/* calculate the slot this buffer belongs to */
869 
870 	i = ((vm_offset_t)aptr
871 	     - (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN;
872 
873 	if ((i < 0) || (i >= SK_JSLOTS))
874 		panic("sk_jfree: asked to free buffer that we don't manage!");
875 	else if (sc_if->sk_cdata.sk_jslots[i].sk_inuse == 0)
876 		panic("sk_jfree: buffer already free!");
877 	else {
878 		sc_if->sk_cdata.sk_jslots[i].sk_inuse--;
879 		if(sc_if->sk_cdata.sk_jslots[i].sk_inuse == 0) {
880 			entry = SLIST_FIRST(&sc_if->sk_jinuse_listhead);
881 			if (entry == NULL)
882 				panic("sk_jfree: buffer not in use!");
883 			entry->slot = i;
884 			SLIST_REMOVE_HEAD(&sc_if->sk_jinuse_listhead,
885 					  jpool_entries);
886 			SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
887 					  entry, jpool_entries);
888 		}
889 	}
890 
891 	return;
892 }
893 
894 /*
895  * Set media options.
896  */
897 static int sk_ifmedia_upd(ifp)
898 	struct ifnet		*ifp;
899 {
900 	struct sk_if_softc	*sc_if;
901 	struct mii_data		*mii;
902 
903 	sc_if = ifp->if_softc;
904 	mii = device_get_softc(sc_if->sk_miibus);
905 	sk_init(sc_if);
906 	mii_mediachg(mii);
907 
908 	return(0);
909 }
910 
911 /*
912  * Report current media status.
913  */
914 static void sk_ifmedia_sts(ifp, ifmr)
915 	struct ifnet		*ifp;
916 	struct ifmediareq	*ifmr;
917 {
918 	struct sk_if_softc	*sc_if;
919 	struct mii_data		*mii;
920 
921 	sc_if = ifp->if_softc;
922 	mii = device_get_softc(sc_if->sk_miibus);
923 
924 	mii_pollstat(mii);
925 	ifmr->ifm_active = mii->mii_media_active;
926 	ifmr->ifm_status = mii->mii_media_status;
927 
928 	return;
929 }
930 
931 static int sk_ioctl(ifp, command, data)
932 	struct ifnet		*ifp;
933 	u_long			command;
934 	caddr_t			data;
935 {
936 	struct sk_if_softc	*sc_if = ifp->if_softc;
937 	struct ifreq		*ifr = (struct ifreq *) data;
938 	int			s, error = 0;
939 	struct mii_data		*mii;
940 
941 	s = splimp();
942 
943 	switch(command) {
944 	case SIOCSIFADDR:
945 	case SIOCGIFADDR:
946 		error = ether_ioctl(ifp, command, data);
947 		break;
948 	case SIOCSIFMTU:
949 		if (ifr->ifr_mtu > SK_JUMBO_MTU)
950 			error = EINVAL;
951 		else {
952 			ifp->if_mtu = ifr->ifr_mtu;
953 			sk_init(sc_if);
954 		}
955 		break;
956 	case SIOCSIFFLAGS:
957 		if (ifp->if_flags & IFF_UP) {
958 			if (ifp->if_flags & IFF_RUNNING &&
959 			    ifp->if_flags & IFF_PROMISC &&
960 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
961 				SK_XM_SETBIT_4(sc_if, XM_MODE,
962 				    XM_MODE_RX_PROMISC);
963 				sk_setmulti(sc_if);
964 			} else if (ifp->if_flags & IFF_RUNNING &&
965 			    !(ifp->if_flags & IFF_PROMISC) &&
966 			    sc_if->sk_if_flags & IFF_PROMISC) {
967 				SK_XM_CLRBIT_4(sc_if, XM_MODE,
968 				    XM_MODE_RX_PROMISC);
969 				sk_setmulti(sc_if);
970 			} else
971 				sk_init(sc_if);
972 		} else {
973 			if (ifp->if_flags & IFF_RUNNING)
974 				sk_stop(sc_if);
975 		}
976 		sc_if->sk_if_flags = ifp->if_flags;
977 		error = 0;
978 		break;
979 	case SIOCADDMULTI:
980 	case SIOCDELMULTI:
981 		sk_setmulti(sc_if);
982 		error = 0;
983 		break;
984 	case SIOCGIFMEDIA:
985 	case SIOCSIFMEDIA:
986 		mii = device_get_softc(sc_if->sk_miibus);
987 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
988 		break;
989 	default:
990 		error = EINVAL;
991 		break;
992 	}
993 
994 	(void)splx(s);
995 
996 	return(error);
997 }
998 
999 /*
1000  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1001  * IDs against our list and return a device name if we find a match.
1002  */
1003 static int sk_probe(dev)
1004 	device_t		dev;
1005 {
1006 	struct sk_type		*t;
1007 
1008 	t = sk_devs;
1009 
1010 	while(t->sk_name != NULL) {
1011 		if ((pci_get_vendor(dev) == t->sk_vid) &&
1012 		    (pci_get_device(dev) == t->sk_did)) {
1013 			device_set_desc(dev, t->sk_name);
1014 			return(0);
1015 		}
1016 		t++;
1017 	}
1018 
1019 	return(ENXIO);
1020 }
1021 
1022 /*
1023  * Force the GEnesis into reset, then bring it out of reset.
1024  */
1025 static void sk_reset(sc)
1026 	struct sk_softc		*sc;
1027 {
1028 	CSR_WRITE_4(sc, SK_CSR, SK_CSR_SW_RESET);
1029 	CSR_WRITE_4(sc, SK_CSR, SK_CSR_MASTER_RESET);
1030 	DELAY(1000);
1031 	CSR_WRITE_4(sc, SK_CSR, SK_CSR_SW_UNRESET);
1032 	CSR_WRITE_4(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1033 
1034 	/* Configure packet arbiter */
1035 	sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1036 	sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1037 	sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1038 	sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1039 	sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1040 
1041 	/* Enable RAM interface */
1042 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1043 
1044 	/*
1045          * Configure interrupt moderation. The moderation timer
1046 	 * defers interrupts specified in the interrupt moderation
1047 	 * timer mask based on the timeout specified in the interrupt
1048 	 * moderation timer init register. Each bit in the timer
1049 	 * register represents 18.825ns, so to specify a timeout in
1050 	 * microseconds, we have to multiply by 54.
1051 	 */
1052         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200));
1053         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1054 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1055         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1056 
1057 	return;
1058 }
1059 
1060 static int sk_probe_xmac(dev)
1061 	device_t		dev;
1062 {
1063 	/*
1064 	 * Not much to do here. We always know there will be
1065 	 * at least one XMAC present, and if there are two,
1066 	 * sk_attach() will create a second device instance
1067 	 * for us.
1068 	 */
1069 	device_set_desc(dev, "XaQti Corp. XMAC II");
1070 
1071 	return(0);
1072 }
1073 
1074 /*
1075  * Each XMAC chip is attached as a separate logical IP interface.
1076  * Single port cards will have only one logical interface of course.
1077  */
1078 static int sk_attach_xmac(dev)
1079 	device_t		dev;
1080 {
1081 	struct sk_softc		*sc;
1082 	struct sk_if_softc	*sc_if;
1083 	struct ifnet		*ifp;
1084 	int			i, port;
1085 
1086 	if (dev == NULL)
1087 		return(EINVAL);
1088 
1089 	sc_if = device_get_softc(dev);
1090 	sc = device_get_softc(device_get_parent(dev));
1091 	port = *(int *)device_get_ivars(dev);
1092 	free(device_get_ivars(dev), M_DEVBUF);
1093 	device_set_ivars(dev, NULL);
1094 	sc_if->sk_dev = dev;
1095 
1096 	bzero((char *)sc_if, sizeof(struct sk_if_softc));
1097 
1098 	sc_if->sk_dev = dev;
1099 	sc_if->sk_unit = device_get_unit(dev);
1100 	sc_if->sk_port = port;
1101 	sc_if->sk_softc = sc;
1102 	sc->sk_if[port] = sc_if;
1103 	if (port == SK_PORT_A)
1104 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1105 	if (port == SK_PORT_B)
1106 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1107 
1108 	/*
1109 	 * Get station address for this interface. Note that
1110 	 * dual port cards actually come with three station
1111 	 * addresses: one for each port, plus an extra. The
1112 	 * extra one is used by the SysKonnect driver software
1113 	 * as a 'virtual' station address for when both ports
1114 	 * are operating in failover mode. Currently we don't
1115 	 * use this extra address.
1116 	 */
1117 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1118 		sc_if->arpcom.ac_enaddr[i] =
1119 		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1120 
1121 	printf("sk%d: Ethernet address: %6D\n",
1122 	    sc_if->sk_unit, sc_if->arpcom.ac_enaddr, ":");
1123 
1124 	/*
1125 	 * Set up RAM buffer addresses. The NIC will have a certain
1126 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1127 	 * need to divide this up a) between the transmitter and
1128  	 * receiver and b) between the two XMACs, if this is a
1129 	 * dual port NIC. Our algotithm is to divide up the memory
1130 	 * evenly so that everyone gets a fair share.
1131 	 */
1132 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1133 		u_int32_t		chunk, val;
1134 
1135 		chunk = sc->sk_ramsize / 2;
1136 		val = sc->sk_rboff / sizeof(u_int64_t);
1137 		sc_if->sk_rx_ramstart = val;
1138 		val += (chunk / sizeof(u_int64_t));
1139 		sc_if->sk_rx_ramend = val - 1;
1140 		sc_if->sk_tx_ramstart = val;
1141 		val += (chunk / sizeof(u_int64_t));
1142 		sc_if->sk_tx_ramend = val - 1;
1143 	} else {
1144 		u_int32_t		chunk, val;
1145 
1146 		chunk = sc->sk_ramsize / 4;
1147 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1148 		    sizeof(u_int64_t);
1149 		sc_if->sk_rx_ramstart = val;
1150 		val += (chunk / sizeof(u_int64_t));
1151 		sc_if->sk_rx_ramend = val - 1;
1152 		sc_if->sk_tx_ramstart = val;
1153 		val += (chunk / sizeof(u_int64_t));
1154 		sc_if->sk_tx_ramend = val - 1;
1155 	}
1156 
1157 	/* Read and save PHY type and set PHY address */
1158 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1159 	switch(sc_if->sk_phytype) {
1160 	case SK_PHYTYPE_XMAC:
1161 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1162 		break;
1163 	case SK_PHYTYPE_BCOM:
1164 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1165 		break;
1166 	default:
1167 		printf("skc%d: unsupported PHY type: %d\n",
1168 		    sc->sk_unit, sc_if->sk_phytype);
1169 		return(ENODEV);
1170 	}
1171 
1172 	/* Allocate the descriptor queues. */
1173 	sc_if->sk_rdata = contigmalloc(sizeof(struct sk_ring_data), M_DEVBUF,
1174 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1175 
1176 	if (sc_if->sk_rdata == NULL) {
1177 		printf("sk%d: no memory for list buffers!\n", sc_if->sk_unit);
1178 		sc->sk_if[port] = NULL;
1179 		return(ENOMEM);
1180 	}
1181 
1182 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1183 
1184 	/* Try to allocate memory for jumbo buffers. */
1185 	if (sk_alloc_jumbo_mem(sc_if)) {
1186 		printf("sk%d: jumbo buffer allocation failed\n",
1187 		    sc_if->sk_unit);
1188 		contigfree(sc_if->sk_rdata,
1189 		    sizeof(struct sk_ring_data), M_DEVBUF);
1190 		sc->sk_if[port] = NULL;
1191 		return(ENOMEM);
1192 	}
1193 
1194 	ifp = &sc_if->arpcom.ac_if;
1195 	ifp->if_softc = sc_if;
1196 	ifp->if_unit = sc_if->sk_unit;
1197 	ifp->if_name = "sk";
1198 	ifp->if_mtu = ETHERMTU;
1199 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1200 	ifp->if_ioctl = sk_ioctl;
1201 	ifp->if_output = ether_output;
1202 	ifp->if_start = sk_start;
1203 	ifp->if_watchdog = sk_watchdog;
1204 	ifp->if_init = sk_init;
1205 	ifp->if_baudrate = 1000000000;
1206 	ifp->if_snd.ifq_maxlen = SK_TX_RING_CNT - 1;
1207 
1208 	/*
1209 	 * Do miibus setup.
1210 	 */
1211 	sk_init_xmac(sc_if);
1212 	if (mii_phy_probe(dev, &sc_if->sk_miibus,
1213 	    sk_ifmedia_upd, sk_ifmedia_sts)) {
1214 		printf("skc%d: no PHY found!\n", sc_if->sk_unit);
1215 		contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM,
1216 		    M_DEVBUF);
1217 		contigfree(sc_if->sk_rdata,
1218 		    sizeof(struct sk_ring_data), M_DEVBUF);
1219 		return(ENXIO);
1220 	}
1221 
1222 	/*
1223 	 * Call MI attach routine.
1224 	 */
1225 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
1226 	callout_handle_init(&sc_if->sk_tick_ch);
1227 
1228 	return(0);
1229 }
1230 
1231 /*
1232  * Attach the interface. Allocate softc structures, do ifmedia
1233  * setup and ethernet/BPF attach.
1234  */
1235 static int sk_attach(dev)
1236 	device_t		dev;
1237 {
1238 	int			s;
1239 	u_int32_t		command;
1240 	struct sk_softc		*sc;
1241 	int			unit, error = 0, rid, *port;
1242 
1243 	s = splimp();
1244 
1245 	sc = device_get_softc(dev);
1246 	unit = device_get_unit(dev);
1247 	bzero(sc, sizeof(struct sk_softc));
1248 
1249 	/*
1250 	 * Handle power management nonsense.
1251 	 */
1252 	command = pci_read_config(dev, SK_PCI_CAPID, 4) & 0x000000FF;
1253 	if (command == 0x01) {
1254 
1255 		command = pci_read_config(dev, SK_PCI_PWRMGMTCTRL, 4);
1256 		if (command & SK_PSTATE_MASK) {
1257 			u_int32_t		iobase, membase, irq;
1258 
1259 			/* Save important PCI config data. */
1260 			iobase = pci_read_config(dev, SK_PCI_LOIO, 4);
1261 			membase = pci_read_config(dev, SK_PCI_LOMEM, 4);
1262 			irq = pci_read_config(dev, SK_PCI_INTLINE, 4);
1263 
1264 			/* Reset the power state. */
1265 			printf("skc%d: chip is in D%d power mode "
1266 			"-- setting to D0\n", unit, command & SK_PSTATE_MASK);
1267 			command &= 0xFFFFFFFC;
1268 			pci_write_config(dev, SK_PCI_PWRMGMTCTRL, command, 4);
1269 
1270 			/* Restore PCI config data. */
1271 			pci_write_config(dev, SK_PCI_LOIO, iobase, 4);
1272 			pci_write_config(dev, SK_PCI_LOMEM, membase, 4);
1273 			pci_write_config(dev, SK_PCI_INTLINE, irq, 4);
1274 		}
1275 	}
1276 
1277 	/*
1278 	 * Map control/status registers.
1279 	 */
1280 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1281 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1282 	pci_write_config(dev, PCIR_COMMAND, command, 4);
1283 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1284 
1285 #ifdef SK_USEIOSPACE
1286 	if (!(command & PCIM_CMD_PORTEN)) {
1287 		printf("skc%d: failed to enable I/O ports!\n", unit);
1288 		error = ENXIO;
1289 		goto fail;
1290 	}
1291 #else
1292 	if (!(command & PCIM_CMD_MEMEN)) {
1293 		printf("skc%d: failed to enable memory mapping!\n", unit);
1294 		error = ENXIO;
1295 		goto fail;
1296 	}
1297 #endif
1298 
1299 	rid = SK_RID;
1300 	sc->sk_res = bus_alloc_resource(dev, SK_RES, &rid,
1301 	    0, ~0, 1, RF_ACTIVE);
1302 
1303 	if (sc->sk_res == NULL) {
1304 		printf("sk%d: couldn't map ports/memory\n", unit);
1305 		error = ENXIO;
1306 		goto fail;
1307 	}
1308 
1309 	sc->sk_btag = rman_get_bustag(sc->sk_res);
1310 	sc->sk_bhandle = rman_get_bushandle(sc->sk_res);
1311 
1312 	/* Allocate interrupt */
1313 	rid = 0;
1314 	sc->sk_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1315 	    RF_SHAREABLE | RF_ACTIVE);
1316 
1317 	if (sc->sk_irq == NULL) {
1318 		printf("skc%d: couldn't map interrupt\n", unit);
1319 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1320 		error = ENXIO;
1321 		goto fail;
1322 	}
1323 
1324 	error = bus_setup_intr(dev, sc->sk_irq, INTR_TYPE_NET,
1325 	    sk_intr, sc, &sc->sk_intrhand);
1326 
1327 	if (error) {
1328 		printf("skc%d: couldn't set up irq\n", unit);
1329 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1330 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1331 		goto fail;
1332 	}
1333 
1334 	/* Reset the adapter. */
1335 	sk_reset(sc);
1336 
1337 	sc->sk_unit = unit;
1338 
1339 	/* Read and save vital product data from EEPROM. */
1340 	sk_vpd_read(sc);
1341 
1342 	/* Read and save RAM size and RAMbuffer offset */
1343 	switch(sk_win_read_1(sc, SK_EPROM0)) {
1344 	case SK_RAMSIZE_512K_64:
1345 		sc->sk_ramsize = 0x80000;
1346 		sc->sk_rboff = SK_RBOFF_0;
1347 		break;
1348 	case SK_RAMSIZE_1024K_64:
1349 		sc->sk_ramsize = 0x100000;
1350 		sc->sk_rboff = SK_RBOFF_80000;
1351 		break;
1352 	case SK_RAMSIZE_1024K_128:
1353 		sc->sk_ramsize = 0x100000;
1354 		sc->sk_rboff = SK_RBOFF_0;
1355 		break;
1356 	case SK_RAMSIZE_2048K_128:
1357 		sc->sk_ramsize = 0x200000;
1358 		sc->sk_rboff = SK_RBOFF_0;
1359 		break;
1360 	default:
1361 		printf("skc%d: unknown ram size: %d\n",
1362 		    sc->sk_unit, sk_win_read_1(sc, SK_EPROM0));
1363 		bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1364 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1365 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1366 		error = ENXIO;
1367 		goto fail;
1368 		break;
1369 	}
1370 
1371 	/* Read and save physical media type */
1372 	switch(sk_win_read_1(sc, SK_PMDTYPE)) {
1373 	case SK_PMD_1000BASESX:
1374 		sc->sk_pmd = IFM_1000_SX;
1375 		break;
1376 	case SK_PMD_1000BASELX:
1377 		sc->sk_pmd = IFM_1000_LX;
1378 		break;
1379 	case SK_PMD_1000BASECX:
1380 		sc->sk_pmd = IFM_1000_CX;
1381 		break;
1382 	case SK_PMD_1000BASETX:
1383 		sc->sk_pmd = IFM_1000_TX;
1384 		break;
1385 	default:
1386 		printf("skc%d: unknown media type: 0x%x\n",
1387 		    sc->sk_unit, sk_win_read_1(sc, SK_PMDTYPE));
1388 		bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1389 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1390 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1391 		error = ENXIO;
1392 		goto fail;
1393 	}
1394 
1395 	/* Announce the product name. */
1396 	printf("skc%d: %s\n", sc->sk_unit, sc->sk_vpd_prodname);
1397 	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1398 	port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1399 	*port = SK_PORT_A;
1400 	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1401 
1402 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1403 		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1404 		port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1405 		*port = SK_PORT_B;
1406 		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1407 	}
1408 
1409 	/* Turn on the 'driver is loaded' LED. */
1410 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1411 
1412 	bus_generic_attach(dev);
1413 
1414 fail:
1415 	splx(s);
1416 	return(error);
1417 }
1418 
1419 static int sk_detach_xmac(dev)
1420 	device_t		dev;
1421 {
1422 	struct sk_softc		*sc;
1423 	struct sk_if_softc	*sc_if;
1424 	struct ifnet		*ifp;
1425 	int			s;
1426 
1427 	s = splimp();
1428 
1429 	sc = device_get_softc(device_get_parent(dev));
1430 	sc_if = device_get_softc(dev);
1431 	ifp = &sc_if->arpcom.ac_if;
1432 	sk_stop(sc_if);
1433 	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
1434 	bus_generic_detach(dev);
1435 	if (sc_if->sk_miibus != NULL)
1436 		device_delete_child(dev, sc_if->sk_miibus);
1437 	contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM, M_DEVBUF);
1438 	contigfree(sc_if->sk_rdata, sizeof(struct sk_ring_data), M_DEVBUF);
1439 
1440 	return(0);
1441 }
1442 
1443 static int sk_detach(dev)
1444 	device_t		dev;
1445 {
1446 	struct sk_softc		*sc;
1447 	int			s;
1448 
1449 	s = splimp();
1450 
1451 	sc = device_get_softc(dev);
1452 
1453 	bus_generic_detach(dev);
1454 	if (sc->sk_devs[SK_PORT_A] != NULL)
1455 		device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1456 	if (sc->sk_devs[SK_PORT_B] != NULL)
1457 		device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1458 
1459 	bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1460 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1461 	bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1462 
1463 	splx(s);
1464 
1465 	return(0);
1466 }
1467 
1468 static int sk_encap(sc_if, m_head, txidx)
1469         struct sk_if_softc	*sc_if;
1470         struct mbuf		*m_head;
1471         u_int32_t		*txidx;
1472 {
1473 	struct sk_tx_desc	*f = NULL;
1474 	struct mbuf		*m;
1475 	u_int32_t		frag, cur, cnt = 0;
1476 
1477 	m = m_head;
1478 	cur = frag = *txidx;
1479 
1480 	/*
1481 	 * Start packing the mbufs in this chain into
1482 	 * the fragment pointers. Stop when we run out
1483 	 * of fragments or hit the end of the mbuf chain.
1484 	 */
1485 	for (m = m_head; m != NULL; m = m->m_next) {
1486 		if (m->m_len != 0) {
1487 			if ((SK_TX_RING_CNT -
1488 			    (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2)
1489 				return(ENOBUFS);
1490 			f = &sc_if->sk_rdata->sk_tx_ring[frag];
1491 			f->sk_data_lo = vtophys(mtod(m, vm_offset_t));
1492 			f->sk_ctl = m->m_len | SK_OPCODE_DEFAULT;
1493 			if (cnt == 0)
1494 				f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
1495 			else
1496 				f->sk_ctl |= SK_TXCTL_OWN;
1497 			cur = frag;
1498 			SK_INC(frag, SK_TX_RING_CNT);
1499 			cnt++;
1500 		}
1501 	}
1502 
1503 	if (m != NULL)
1504 		return(ENOBUFS);
1505 
1506 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1507 		SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
1508 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1509 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
1510 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1511 
1512 	*txidx = frag;
1513 
1514 	return(0);
1515 }
1516 
1517 static void sk_start(ifp)
1518 	struct ifnet		*ifp;
1519 {
1520         struct sk_softc		*sc;
1521         struct sk_if_softc	*sc_if;
1522         struct mbuf		*m_head = NULL;
1523         u_int32_t		idx;
1524 
1525 	sc_if = ifp->if_softc;
1526 	sc = sc_if->sk_softc;
1527 
1528 	idx = sc_if->sk_cdata.sk_tx_prod;
1529 
1530 	while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1531 		IF_DEQUEUE(&ifp->if_snd, m_head);
1532 		if (m_head == NULL)
1533 			break;
1534 
1535 		/*
1536 		 * Pack the data into the transmit ring. If we
1537 		 * don't have room, set the OACTIVE flag and wait
1538 		 * for the NIC to drain the ring.
1539 		 */
1540 		if (sk_encap(sc_if, m_head, &idx)) {
1541 			IF_PREPEND(&ifp->if_snd, m_head);
1542 			ifp->if_flags |= IFF_OACTIVE;
1543 			break;
1544 		}
1545 
1546 		/*
1547 		 * If there's a BPF listener, bounce a copy of this frame
1548 		 * to him.
1549 		 */
1550 		if (ifp->if_bpf)
1551 			bpf_mtap(ifp, m_head);
1552 	}
1553 
1554 	/* Transmit */
1555 	sc_if->sk_cdata.sk_tx_prod = idx;
1556 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1557 
1558 	/* Set a timeout in case the chip goes out to lunch. */
1559 	ifp->if_timer = 5;
1560 
1561 	return;
1562 }
1563 
1564 
1565 static void sk_watchdog(ifp)
1566 	struct ifnet		*ifp;
1567 {
1568 	struct sk_if_softc	*sc_if;
1569 
1570 	sc_if = ifp->if_softc;
1571 
1572 	printf("sk%d: watchdog timeout\n", sc_if->sk_unit);
1573 	sk_init(sc_if);
1574 
1575 	return;
1576 }
1577 
1578 static void sk_shutdown(dev)
1579 	device_t		dev;
1580 {
1581 	struct sk_softc		*sc;
1582 
1583 	sc = device_get_softc(dev);
1584 
1585 	/* Turn off the 'driver is loaded' LED. */
1586 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1587 
1588 	/*
1589 	 * Reset the GEnesis controller. Doing this should also
1590 	 * assert the resets on the attached XMAC(s).
1591 	 */
1592 	sk_reset(sc);
1593 
1594 	return;
1595 }
1596 
1597 static void sk_rxeof(sc_if)
1598 	struct sk_if_softc	*sc_if;
1599 {
1600 	struct ether_header	*eh;
1601 	struct mbuf		*m;
1602 	struct ifnet		*ifp;
1603 	struct sk_chain		*cur_rx;
1604 	int			total_len = 0;
1605 	int			i;
1606 	u_int32_t		rxstat;
1607 
1608 	ifp = &sc_if->arpcom.ac_if;
1609 	i = sc_if->sk_cdata.sk_rx_prod;
1610 	cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1611 
1612 	while(!(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl & SK_RXCTL_OWN)) {
1613 
1614 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1615 		rxstat = sc_if->sk_rdata->sk_rx_ring[i].sk_xmac_rxstat;
1616 		m = cur_rx->sk_mbuf;
1617 		cur_rx->sk_mbuf = NULL;
1618 		total_len = SK_RXBYTES(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl);
1619 		SK_INC(i, SK_RX_RING_CNT);
1620 
1621 		if (rxstat & XM_RXSTAT_ERRFRAME) {
1622 			ifp->if_ierrors++;
1623 			sk_newbuf(sc_if, cur_rx, m);
1624 			continue;
1625 		}
1626 
1627 		/*
1628 		 * Try to allocate a new jumbo buffer. If that
1629 		 * fails, copy the packet to mbufs and put the
1630 		 * jumbo buffer back in the ring so it can be
1631 		 * re-used. If allocating mbufs fails, then we
1632 		 * have to drop the packet.
1633 		 */
1634 		if (sk_newbuf(sc_if, cur_rx, NULL) == ENOBUFS) {
1635 			struct mbuf		*m0;
1636 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1637 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
1638 			sk_newbuf(sc_if, cur_rx, m);
1639 			if (m0 == NULL) {
1640 				printf("sk%d: no receive buffers "
1641 				    "available -- packet dropped!\n",
1642 				    sc_if->sk_unit);
1643 				ifp->if_ierrors++;
1644 				continue;
1645 			}
1646 			m_adj(m0, ETHER_ALIGN);
1647 			m = m0;
1648 		} else {
1649 			m->m_pkthdr.rcvif = ifp;
1650 			m->m_pkthdr.len = m->m_len = total_len;
1651 		}
1652 
1653 		ifp->if_ipackets++;
1654 		eh = mtod(m, struct ether_header *);
1655 
1656 		/* Remove header from mbuf and pass it on. */
1657 		m_adj(m, sizeof(struct ether_header));
1658 		ether_input(ifp, eh, m);
1659 	}
1660 
1661 	sc_if->sk_cdata.sk_rx_prod = i;
1662 
1663 	return;
1664 }
1665 
1666 static void sk_txeof(sc_if)
1667 	struct sk_if_softc	*sc_if;
1668 {
1669 	struct sk_tx_desc	*cur_tx = NULL;
1670 	struct ifnet		*ifp;
1671 	u_int32_t		idx;
1672 
1673 	ifp = &sc_if->arpcom.ac_if;
1674 
1675 	/*
1676 	 * Go through our tx ring and free mbufs for those
1677 	 * frames that have been sent.
1678 	 */
1679 	idx = sc_if->sk_cdata.sk_tx_cons;
1680 	while(idx != sc_if->sk_cdata.sk_tx_prod) {
1681 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
1682 		if (cur_tx->sk_ctl & SK_TXCTL_OWN)
1683 			break;
1684 		if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
1685 			ifp->if_opackets++;
1686 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
1687 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
1688 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
1689 		}
1690 		sc_if->sk_cdata.sk_tx_cnt--;
1691 		SK_INC(idx, SK_TX_RING_CNT);
1692 		ifp->if_timer = 0;
1693 	}
1694 
1695 	sc_if->sk_cdata.sk_tx_cons = idx;
1696 
1697 	if (cur_tx != NULL)
1698 		ifp->if_flags &= ~IFF_OACTIVE;
1699 
1700 	return;
1701 }
1702 
1703 static void sk_tick(xsc_if)
1704 	void			*xsc_if;
1705 {
1706 	struct sk_if_softc	*sc_if;
1707 	struct mii_data		*mii;
1708 	struct ifnet		*ifp;
1709 	int			i;
1710 
1711 	sc_if = xsc_if;
1712 	ifp = &sc_if->arpcom.ac_if;
1713 	mii = device_get_softc(sc_if->sk_miibus);
1714 
1715 	if (!(ifp->if_flags & IFF_UP))
1716 		return;
1717 
1718 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
1719 		sk_intr_bcom(sc_if);
1720 		return;
1721 	}
1722 
1723 	/*
1724 	 * According to SysKonnect, the correct way to verify that
1725 	 * the link has come back up is to poll bit 0 of the GPIO
1726 	 * register three times. This pin has the signal from the
1727 	 * link_sync pin connected to it; if we read the same link
1728 	 * state 3 times in a row, we know the link is up.
1729 	 */
1730 	for (i = 0; i < 3; i++) {
1731 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
1732 			break;
1733 	}
1734 
1735 	if (i != 3) {
1736 		sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
1737 		return;
1738 	}
1739 
1740 	/* Turn the GP0 interrupt back on. */
1741 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
1742 	SK_XM_READ_2(sc_if, XM_ISR);
1743 	mii_tick(mii);
1744 	mii_pollstat(mii);
1745 	untimeout(sk_tick, sc_if, sc_if->sk_tick_ch);
1746 
1747 	return;
1748 }
1749 
1750 static void sk_intr_bcom(sc_if)
1751 	struct sk_if_softc	*sc_if;
1752 {
1753 	struct sk_softc		*sc;
1754 	struct mii_data		*mii;
1755 	struct ifnet		*ifp;
1756 	int			status;
1757 
1758 	sc = sc_if->sk_softc;
1759 	mii = device_get_softc(sc_if->sk_miibus);
1760 	ifp = &sc_if->arpcom.ac_if;
1761 
1762 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
1763 
1764 	/*
1765 	 * Read the PHY interrupt register to make sure
1766 	 * we clear any pending interrupts.
1767 	 */
1768 	status = sk_miibus_readreg(sc_if->sk_dev,
1769 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
1770 
1771 	if (!(ifp->if_flags & IFF_RUNNING)) {
1772 		sk_init_xmac(sc_if);
1773 		return;
1774 	}
1775 
1776 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
1777 		int			lstat;
1778 		lstat = sk_miibus_readreg(sc_if->sk_dev,
1779 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
1780 
1781 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
1782 			mii_mediachg(mii);
1783 			/* Turn off the link LED. */
1784 			SK_IF_WRITE_1(sc_if, 0,
1785 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
1786 			sc_if->sk_link = 0;
1787 		} else if (status & BRGPHY_ISR_LNK_CHG) {
1788 			sk_miibus_writereg(sc_if->sk_dev, SK_PHYADDR_BCOM,
1789 	    		    BRGPHY_MII_IMR, 0xFF00);
1790 			mii_tick(mii);
1791 			sc_if->sk_link = 1;
1792 			/* Turn on the link LED. */
1793 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
1794 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
1795 			    SK_LINKLED_BLINK_OFF);
1796 			mii_pollstat(mii);
1797 		} else {
1798 			mii_tick(mii);
1799 			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
1800 		}
1801 	}
1802 
1803 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
1804 
1805 	return;
1806 }
1807 
1808 static void sk_intr_xmac(sc_if)
1809 	struct sk_if_softc	*sc_if;
1810 {
1811 	struct sk_softc		*sc;
1812 	u_int16_t		status;
1813 	struct mii_data		*mii;
1814 
1815 	sc = sc_if->sk_softc;
1816 	mii = device_get_softc(sc_if->sk_miibus);
1817 	status = SK_XM_READ_2(sc_if, XM_ISR);
1818 
1819 	/*
1820 	 * Link has gone down. Start MII tick timeout to
1821 	 * watch for link resync.
1822 	 */
1823 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
1824 		if (status & XM_ISR_GP0_SET) {
1825 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
1826 			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
1827 		}
1828 
1829 		if (status & XM_ISR_AUTONEG_DONE) {
1830 			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
1831 		}
1832 	}
1833 
1834 	if (status & XM_IMR_TX_UNDERRUN)
1835 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
1836 
1837 	if (status & XM_IMR_RX_OVERRUN)
1838 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
1839 
1840 	status = SK_XM_READ_2(sc_if, XM_ISR);
1841 
1842 	return;
1843 }
1844 
1845 static void sk_intr(xsc)
1846 	void			*xsc;
1847 {
1848 	struct sk_softc		*sc = xsc;
1849 	struct sk_if_softc	*sc_if0 = NULL, *sc_if1 = NULL;
1850 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
1851 	u_int32_t		status;
1852 
1853 	sc_if0 = sc->sk_if[SK_PORT_A];
1854 	sc_if1 = sc->sk_if[SK_PORT_B];
1855 
1856 	if (sc_if0 != NULL)
1857 		ifp0 = &sc_if0->arpcom.ac_if;
1858 	if (sc_if1 != NULL)
1859 		ifp1 = &sc_if1->arpcom.ac_if;
1860 
1861 	for (;;) {
1862 		status = CSR_READ_4(sc, SK_ISSR);
1863 		if (!(status & sc->sk_intrmask))
1864 			break;
1865 
1866 		/* Handle receive interrupts first. */
1867 		if (status & SK_ISR_RX1_EOF) {
1868 			sk_rxeof(sc_if0);
1869 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
1870 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
1871 		}
1872 		if (status & SK_ISR_RX2_EOF) {
1873 			sk_rxeof(sc_if1);
1874 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
1875 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
1876 		}
1877 
1878 		/* Then transmit interrupts. */
1879 		if (status & SK_ISR_TX1_S_EOF) {
1880 			sk_txeof(sc_if0);
1881 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
1882 			    SK_TXBMU_CLR_IRQ_EOF);
1883 		}
1884 		if (status & SK_ISR_TX2_S_EOF) {
1885 			sk_txeof(sc_if1);
1886 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
1887 			    SK_TXBMU_CLR_IRQ_EOF);
1888 		}
1889 
1890 		/* Then MAC interrupts. */
1891 		if (status & SK_ISR_MAC1 &&
1892 		    ifp0->if_flags & IFF_RUNNING)
1893 			sk_intr_xmac(sc_if0);
1894 
1895 		if (status & SK_ISR_MAC2 &&
1896 		    ifp1->if_flags & IFF_RUNNING)
1897 			sk_intr_xmac(sc_if1);
1898 
1899 		if (status & SK_ISR_EXTERNAL_REG) {
1900 			if (ifp0 != NULL)
1901 				sk_intr_bcom(sc_if0);
1902 			if (ifp1 != NULL)
1903 				sk_intr_bcom(sc_if1);
1904 		}
1905 	}
1906 
1907 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
1908 
1909 	if (ifp0 != NULL && ifp0->if_snd.ifq_head != NULL)
1910 		sk_start(ifp0);
1911 	if (ifp1 != NULL && ifp1->if_snd.ifq_head != NULL)
1912 		sk_start(ifp1);
1913 
1914 	return;
1915 }
1916 
1917 static void sk_init_xmac(sc_if)
1918 	struct sk_if_softc	*sc_if;
1919 {
1920 	struct sk_softc		*sc;
1921 	struct ifnet		*ifp;
1922 	struct sk_bcom_hack	bhack[] = {
1923 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
1924 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
1925 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1926 	{ 0, 0 } };
1927 
1928 	sc = sc_if->sk_softc;
1929 	ifp = &sc_if->arpcom.ac_if;
1930 
1931 	/* Unreset the XMAC. */
1932 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
1933 	DELAY(1000);
1934 
1935 	/* Reset the XMAC's internal state. */
1936 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
1937 
1938 	/* Save the XMAC II revision */
1939 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
1940 
1941 	/*
1942 	 * Perform additional initialization for external PHYs,
1943 	 * namely for the 1000baseTX cards that use the XMAC's
1944 	 * GMII mode.
1945 	 */
1946 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
1947 		int			i = 0;
1948 		u_int32_t		val;
1949 
1950 		/* Take PHY out of reset. */
1951 		val = sk_win_read_4(sc, SK_GPIO);
1952 		if (sc_if->sk_port == SK_PORT_A)
1953 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
1954 		else
1955 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
1956 		sk_win_write_4(sc, SK_GPIO, val);
1957 
1958 		/* Enable GMII mode on the XMAC. */
1959 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
1960 
1961 		sk_miibus_writereg(sc_if->sk_dev, SK_PHYADDR_BCOM,
1962 		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
1963 		DELAY(10000);
1964 		sk_miibus_writereg(sc_if->sk_dev, SK_PHYADDR_BCOM,
1965 		    BRGPHY_MII_IMR, 0xFFF0);
1966 
1967 		/*
1968 		 * Early versions of the BCM5400 apparently have
1969 		 * a bug that requires them to have their reserved
1970 		 * registers initialized to some magic values. I don't
1971 		 * know what the numbers do, I'm just the messenger.
1972 		 */
1973 		if (sk_miibus_readreg(sc_if->sk_dev,
1974 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
1975 			while(bhack[i].reg) {
1976 				sk_miibus_writereg(sc_if->sk_dev,
1977 				    SK_PHYADDR_BCOM, bhack[i].reg,
1978 				    bhack[i].val);
1979 				i++;
1980 			}
1981 		}
1982 	}
1983 
1984 	/* Set station address */
1985 	SK_XM_WRITE_2(sc_if, XM_PAR0,
1986 	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[0]));
1987 	SK_XM_WRITE_2(sc_if, XM_PAR1,
1988 	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[2]));
1989 	SK_XM_WRITE_2(sc_if, XM_PAR2,
1990 	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[4]));
1991 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
1992 
1993 	if (ifp->if_flags & IFF_PROMISC) {
1994 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
1995 	} else {
1996 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
1997 	}
1998 
1999 	if (ifp->if_flags & IFF_BROADCAST) {
2000 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2001 	} else {
2002 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2003 	}
2004 
2005 	/* We don't need the FCS appended to the packet. */
2006 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2007 
2008 	/* We want short frames padded to 60 bytes. */
2009 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2010 
2011 	/*
2012 	 * Enable the reception of all error frames. This is is
2013 	 * a necessary evil due to the design of the XMAC. The
2014 	 * XMAC's receive FIFO is only 8K in size, however jumbo
2015 	 * frames can be up to 9000 bytes in length. When bad
2016 	 * frame filtering is enabled, the XMAC's RX FIFO operates
2017 	 * in 'store and forward' mode. For this to work, the
2018 	 * entire frame has to fit into the FIFO, but that means
2019 	 * that jumbo frames larger than 8192 bytes will be
2020 	 * truncated. Disabling all bad frame filtering causes
2021 	 * the RX FIFO to operate in streaming mode, in which
2022 	 * case the XMAC will start transfering frames out of the
2023 	 * RX FIFO as soon as the FIFO threshold is reached.
2024 	 */
2025 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2026 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2027 	    XM_MODE_RX_INRANGELEN);
2028 
2029 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2030 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2031 	else
2032 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2033 
2034 	/*
2035 	 * Bump up the transmit threshold. This helps hold off transmit
2036 	 * underruns when we're blasting traffic from both ports at once.
2037 	 */
2038 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2039 
2040 	/* Set multicast filter */
2041 	sk_setmulti(sc_if);
2042 
2043 	/* Clear and enable interrupts */
2044 	SK_XM_READ_2(sc_if, XM_ISR);
2045 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2046 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2047 	else
2048 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2049 
2050 	/* Configure MAC arbiter */
2051 	switch(sc_if->sk_xmac_rev) {
2052 	case XM_XMAC_REV_B2:
2053 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2054 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2055 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2056 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2057 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2058 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2059 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2060 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2061 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2062 		break;
2063 	case XM_XMAC_REV_C1:
2064 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2065 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2066 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2067 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2068 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2069 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2070 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2071 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2072 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2073 		break;
2074 	default:
2075 		break;
2076 	}
2077 	sk_win_write_2(sc, SK_MACARB_CTL,
2078 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2079 
2080 	sc_if->sk_link = 1;
2081 
2082 	return;
2083 }
2084 
2085 /*
2086  * Note that to properly initialize any part of the GEnesis chip,
2087  * you first have to take it out of reset mode.
2088  */
2089 static void sk_init(xsc)
2090 	void			*xsc;
2091 {
2092 	struct sk_if_softc	*sc_if = xsc;
2093 	struct sk_softc		*sc;
2094 	struct ifnet		*ifp;
2095 	struct mii_data		*mii;
2096 	int			s;
2097 
2098 	s = splimp();
2099 
2100 	ifp = &sc_if->arpcom.ac_if;
2101 	sc = sc_if->sk_softc;
2102 	mii = device_get_softc(sc_if->sk_miibus);
2103 
2104 	/* Cancel pending I/O and free all RX/TX buffers. */
2105 	sk_stop(sc_if);
2106 
2107 	/* Configure LINK_SYNC LED */
2108 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2109 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_ON);
2110 
2111 	/* Configure RX LED */
2112 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_START);
2113 
2114 	/* Configure TX LED */
2115 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_START);
2116 
2117 	/* Configure I2C registers */
2118 
2119 	/* Configure XMAC(s) */
2120 	sk_init_xmac(sc_if);
2121 	mii_mediachg(mii);
2122 
2123 	/* Configure MAC FIFOs */
2124 	SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2125 	SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2126 	SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2127 
2128 	SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2129 	SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2130 	SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2131 
2132 	/* Configure transmit arbiter(s) */
2133 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2134 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2135 
2136 	/* Configure RAMbuffers */
2137 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2138 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2139 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2140 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2141 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2142 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2143 
2144 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2145 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2146 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2147 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2148 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2149 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2150 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2151 
2152 	/* Configure BMUs */
2153 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2154 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2155 	    vtophys(&sc_if->sk_rdata->sk_rx_ring[0]));
2156 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2157 
2158 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2159 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2160 	    vtophys(&sc_if->sk_rdata->sk_tx_ring[0]));
2161 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2162 
2163 	/* Init descriptors */
2164 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2165 		printf("sk%d: initialization failed: no "
2166 		    "memory for rx buffers\n", sc_if->sk_unit);
2167 		sk_stop(sc_if);
2168 		(void)splx(s);
2169 		return;
2170 	}
2171 	sk_init_tx_ring(sc_if);
2172 
2173 	/* Configure interrupt handling */
2174 	CSR_READ_4(sc, SK_ISSR);
2175 	if (sc_if->sk_port == SK_PORT_A)
2176 		sc->sk_intrmask |= SK_INTRS1;
2177 	else
2178 		sc->sk_intrmask |= SK_INTRS2;
2179 
2180 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2181 
2182 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2183 
2184 	/* Start BMUs. */
2185 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2186 
2187 	/* Enable XMACs TX and RX state machines */
2188 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2189 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2190 
2191 	ifp->if_flags |= IFF_RUNNING;
2192 	ifp->if_flags &= ~IFF_OACTIVE;
2193 
2194 	splx(s);
2195 
2196 	return;
2197 }
2198 
2199 static void sk_stop(sc_if)
2200 	struct sk_if_softc	*sc_if;
2201 {
2202 	int			i;
2203 	struct sk_softc		*sc;
2204 	struct ifnet		*ifp;
2205 
2206 	sc = sc_if->sk_softc;
2207 	ifp = &sc_if->arpcom.ac_if;
2208 
2209 	untimeout(sk_tick, sc_if, sc_if->sk_tick_ch);
2210 
2211 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2212 		u_int32_t		val;
2213 
2214 		/* Put PHY back into reset. */
2215 		val = sk_win_read_4(sc, SK_GPIO);
2216 		if (sc_if->sk_port == SK_PORT_A) {
2217 			val |= SK_GPIO_DIR0;
2218 			val &= ~SK_GPIO_DAT0;
2219 		} else {
2220 			val |= SK_GPIO_DIR2;
2221 			val &= ~SK_GPIO_DAT2;
2222 		}
2223 		sk_win_write_4(sc, SK_GPIO, val);
2224 	}
2225 
2226 	/* Turn off various components of this interface. */
2227 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2228 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
2229 	SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2230 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2231 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2232 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2233 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2234 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2235 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2236 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2237 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2238 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2239 
2240 	/* Disable interrupts */
2241 	if (sc_if->sk_port == SK_PORT_A)
2242 		sc->sk_intrmask &= ~SK_INTRS1;
2243 	else
2244 		sc->sk_intrmask &= ~SK_INTRS2;
2245 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2246 
2247 	SK_XM_READ_2(sc_if, XM_ISR);
2248 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2249 
2250 	/* Free RX and TX mbufs still in the queues. */
2251 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2252 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2253 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2254 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2255 		}
2256 	}
2257 
2258 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2259 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2260 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2261 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2262 		}
2263 	}
2264 
2265 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2266 
2267 	return;
2268 }
2269