1 /* $OpenBSD: if_sk.c,v 1.33 2003/08/12 05:23:06 nate Exp $ */ 2 3 /* 4 * Copyright (c) 1997, 1998, 1999, 2000 5 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by Bill Paul. 18 * 4. Neither the name of the author nor the names of any co-contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 32 * THE POSSIBILITY OF SUCH DAMAGE. 33 * 34 * $FreeBSD: src/sys/pci/if_sk.c,v 1.19.2.9 2003/03/05 18:42:34 njl Exp $ 35 * $DragonFly: src/sys/dev/netif/sk/if_sk.c,v 1.20 2004/09/23 23:18:01 dillon Exp $ 36 * 37 * $FreeBSD: src/sys/pci/if_sk.c,v 1.19.2.9 2003/03/05 18:42:34 njl Exp $ 38 */ 39 40 /* 41 * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu> 42 * 43 * Permission to use, copy, modify, and distribute this software for any 44 * purpose with or without fee is hereby granted, provided that the above 45 * copyright notice and this permission notice appear in all copies. 46 * 47 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 48 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 49 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 50 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 51 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 52 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 53 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 54 */ 55 56 /* 57 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports 58 * the SK-984x series adapters, both single port and dual port. 59 * References: 60 * The XaQti XMAC II datasheet, 61 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf 62 * The SysKonnect GEnesis manual, http://www.syskonnect.com 63 * 64 * Note: XaQti has been aquired by Vitesse, and Vitesse does not have the 65 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a 66 * convenience to others until Vitesse corrects this problem: 67 * 68 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf 69 * 70 * Written by Bill Paul <wpaul@ee.columbia.edu> 71 * Department of Electrical Engineering 72 * Columbia University, New York City 73 */ 74 75 /* 76 * The SysKonnect gigabit ethernet adapters consist of two main 77 * components: the SysKonnect GEnesis controller chip and the XaQti Corp. 78 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC 79 * components and a PHY while the GEnesis controller provides a PCI 80 * interface with DMA support. Each card may have between 512K and 81 * 2MB of SRAM on board depending on the configuration. 82 * 83 * The SysKonnect GEnesis controller can have either one or two XMAC 84 * chips connected to it, allowing single or dual port NIC configurations. 85 * SysKonnect has the distinction of being the only vendor on the market 86 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs, 87 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the 88 * XMAC registers. This driver takes advantage of these features to allow 89 * both XMACs to operate as independent interfaces. 90 */ 91 92 #include <sys/param.h> 93 #include <sys/systm.h> 94 #include <sys/sockio.h> 95 #include <sys/mbuf.h> 96 #include <sys/malloc.h> 97 #include <sys/kernel.h> 98 #include <sys/socket.h> 99 #include <sys/queue.h> 100 101 #include <net/if.h> 102 #include <net/if_arp.h> 103 #include <net/ethernet.h> 104 #include <net/if_dl.h> 105 #include <net/if_media.h> 106 107 #include <net/bpf.h> 108 109 #include <vm/vm.h> /* for vtophys */ 110 #include <vm/pmap.h> /* for vtophys */ 111 #include <machine/clock.h> /* for DELAY */ 112 #include <machine/bus_pio.h> 113 #include <machine/bus_memio.h> 114 #include <machine/bus.h> 115 #include <machine/resource.h> 116 #include <sys/bus.h> 117 #include <sys/rman.h> 118 119 #include "../mii_layer/mii.h" 120 #include "../mii_layer/miivar.h" 121 #include "../mii_layer/brgphyreg.h" 122 123 #include <bus/pci/pcireg.h> 124 #include <bus/pci/pcivar.h> 125 126 #if 0 127 #define SK_USEIOSPACE 128 #endif 129 130 #include "if_skreg.h" 131 #include "xmaciireg.h" 132 #include "yukonreg.h" 133 134 /* "controller miibus0" required. See GENERIC if you get errors here. */ 135 #include "miibus_if.h" 136 137 static struct sk_type sk_devs[] = { 138 { 139 VENDORID_SK, 140 DEVICEID_SK_V1, 141 "SysKonnect Gigabit Ethernet (V1.0)" 142 }, 143 { 144 VENDORID_SK, 145 DEVICEID_SK_V2, 146 "SysKonnect Gigabit Ethernet (V2.0)" 147 }, 148 { 149 VENDORID_MARVELL, 150 DEVICEID_SK_V2, 151 "Marvell Gigabit Ethernet" 152 }, 153 { 154 VENDORID_3COM, 155 DEVICEID_3COM_3C940, 156 "3Com 3C940 Gigabit Ethernet" 157 }, 158 { 159 VENDORID_LINKSYS, 160 DEVICEID_LINKSYS_EG1032, 161 "Linksys EG1032 Gigabit Ethernet" 162 }, 163 { 164 VENDORID_DLINK, 165 DEVICEID_DLINK_DGE530T, 166 "D-Link DGE-530T Gigabit Ethernet" 167 }, 168 { 0, 0, NULL } 169 }; 170 171 static int skc_probe (device_t); 172 static int skc_attach (device_t); 173 static int skc_detach (device_t); 174 static void skc_shutdown (device_t); 175 static int sk_probe (device_t); 176 static int sk_attach (device_t); 177 static int sk_detach (device_t); 178 static void sk_tick (void *); 179 static void sk_intr (void *); 180 static void sk_intr_bcom (struct sk_if_softc *); 181 static void sk_intr_xmac (struct sk_if_softc *); 182 static void sk_intr_yukon (struct sk_if_softc *); 183 static void sk_rxeof (struct sk_if_softc *); 184 static void sk_txeof (struct sk_if_softc *); 185 static int sk_encap (struct sk_if_softc *, struct mbuf *, 186 u_int32_t *); 187 static void sk_start (struct ifnet *); 188 static int sk_ioctl (struct ifnet *, u_long, caddr_t, 189 struct ucred *); 190 static void sk_init (void *); 191 static void sk_init_xmac (struct sk_if_softc *); 192 static void sk_init_yukon (struct sk_if_softc *); 193 static void sk_stop (struct sk_if_softc *); 194 static void sk_watchdog (struct ifnet *); 195 static int sk_ifmedia_upd (struct ifnet *); 196 static void sk_ifmedia_sts (struct ifnet *, struct ifmediareq *); 197 static void sk_reset (struct sk_softc *); 198 static int sk_newbuf (struct sk_if_softc *, 199 struct sk_chain *, struct mbuf *); 200 static int sk_alloc_jumbo_mem (struct sk_if_softc *); 201 static void *sk_jalloc (struct sk_if_softc *); 202 static void sk_jfree (caddr_t, u_int); 203 static void sk_jref (caddr_t, u_int); 204 static int sk_init_rx_ring (struct sk_if_softc *); 205 static void sk_init_tx_ring (struct sk_if_softc *); 206 static u_int32_t sk_win_read_4 (struct sk_softc *, int); 207 static u_int16_t sk_win_read_2 (struct sk_softc *, int); 208 static u_int8_t sk_win_read_1 (struct sk_softc *, int); 209 static void sk_win_write_4 (struct sk_softc *, int, u_int32_t); 210 static void sk_win_write_2 (struct sk_softc *, int, u_int32_t); 211 static void sk_win_write_1 (struct sk_softc *, int, u_int32_t); 212 static u_int8_t sk_vpd_readbyte (struct sk_softc *, int); 213 static void sk_vpd_read_res (struct sk_softc *, 214 struct vpd_res *, int); 215 static void sk_vpd_read (struct sk_softc *); 216 217 static int sk_miibus_readreg (device_t, int, int); 218 static int sk_miibus_writereg (device_t, int, int, int); 219 static void sk_miibus_statchg (device_t); 220 221 static int sk_xmac_miibus_readreg (struct sk_if_softc *, int, int); 222 static int sk_xmac_miibus_writereg (struct sk_if_softc *, int, int, int); 223 static void sk_xmac_miibus_statchg (struct sk_if_softc *); 224 225 static int sk_marv_miibus_readreg (struct sk_if_softc *, int, int); 226 static int sk_marv_miibus_writereg (struct sk_if_softc *, int, int, int); 227 static void sk_marv_miibus_statchg (struct sk_if_softc *); 228 229 static u_int32_t xmac_calchash (caddr_t); 230 static u_int32_t gmac_calchash (caddr_t); 231 static void sk_setfilt (struct sk_if_softc *, caddr_t, int); 232 static void sk_setmulti (struct sk_if_softc *); 233 static void sk_setpromisc (struct sk_if_softc *); 234 235 #ifdef SK_USEIOSPACE 236 #define SK_RES SYS_RES_IOPORT 237 #define SK_RID SK_PCI_LOIO 238 #else 239 #define SK_RES SYS_RES_MEMORY 240 #define SK_RID SK_PCI_LOMEM 241 #endif 242 243 /* 244 * Note that we have newbus methods for both the GEnesis controller 245 * itself and the XMAC(s). The XMACs are children of the GEnesis, and 246 * the miibus code is a child of the XMACs. We need to do it this way 247 * so that the miibus drivers can access the PHY registers on the 248 * right PHY. It's not quite what I had in mind, but it's the only 249 * design that achieves the desired effect. 250 */ 251 static device_method_t skc_methods[] = { 252 /* Device interface */ 253 DEVMETHOD(device_probe, skc_probe), 254 DEVMETHOD(device_attach, skc_attach), 255 DEVMETHOD(device_detach, skc_detach), 256 DEVMETHOD(device_shutdown, skc_shutdown), 257 258 /* bus interface */ 259 DEVMETHOD(bus_print_child, bus_generic_print_child), 260 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 261 262 { 0, 0 } 263 }; 264 265 static driver_t skc_driver = { 266 "skc", 267 skc_methods, 268 sizeof(struct sk_softc) 269 }; 270 271 static devclass_t skc_devclass; 272 273 static device_method_t sk_methods[] = { 274 /* Device interface */ 275 DEVMETHOD(device_probe, sk_probe), 276 DEVMETHOD(device_attach, sk_attach), 277 DEVMETHOD(device_detach, sk_detach), 278 DEVMETHOD(device_shutdown, bus_generic_shutdown), 279 280 /* bus interface */ 281 DEVMETHOD(bus_print_child, bus_generic_print_child), 282 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 283 284 /* MII interface */ 285 DEVMETHOD(miibus_readreg, sk_miibus_readreg), 286 DEVMETHOD(miibus_writereg, sk_miibus_writereg), 287 DEVMETHOD(miibus_statchg, sk_miibus_statchg), 288 289 { 0, 0 } 290 }; 291 292 static driver_t sk_driver = { 293 "sk", 294 sk_methods, 295 sizeof(struct sk_if_softc) 296 }; 297 298 static devclass_t sk_devclass; 299 300 DECLARE_DUMMY_MODULE(if_sk); 301 DRIVER_MODULE(if_sk, pci, skc_driver, skc_devclass, 0, 0); 302 DRIVER_MODULE(if_sk, skc, sk_driver, sk_devclass, 0, 0); 303 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0); 304 305 #define SK_SETBIT(sc, reg, x) \ 306 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x) 307 308 #define SK_CLRBIT(sc, reg, x) \ 309 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x) 310 311 #define SK_WIN_SETBIT_4(sc, reg, x) \ 312 sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x) 313 314 #define SK_WIN_CLRBIT_4(sc, reg, x) \ 315 sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x) 316 317 #define SK_WIN_SETBIT_2(sc, reg, x) \ 318 sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x) 319 320 #define SK_WIN_CLRBIT_2(sc, reg, x) \ 321 sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x) 322 323 static u_int32_t sk_win_read_4(sc, reg) 324 struct sk_softc *sc; 325 int reg; 326 { 327 #ifdef SK_USEIOSPACE 328 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 329 return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg))); 330 #else 331 return(CSR_READ_4(sc, reg)); 332 #endif 333 } 334 335 static u_int16_t sk_win_read_2(sc, reg) 336 struct sk_softc *sc; 337 int reg; 338 { 339 #ifdef SK_USEIOSPACE 340 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 341 return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg))); 342 #else 343 return(CSR_READ_2(sc, reg)); 344 #endif 345 } 346 347 static u_int8_t sk_win_read_1(sc, reg) 348 struct sk_softc *sc; 349 int reg; 350 { 351 #ifdef SK_USEIOSPACE 352 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 353 return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg))); 354 #else 355 return(CSR_READ_1(sc, reg)); 356 #endif 357 } 358 359 static void sk_win_write_4(sc, reg, val) 360 struct sk_softc *sc; 361 int reg; 362 u_int32_t val; 363 { 364 #ifdef SK_USEIOSPACE 365 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 366 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val); 367 #else 368 CSR_WRITE_4(sc, reg, val); 369 #endif 370 return; 371 } 372 373 static void sk_win_write_2(sc, reg, val) 374 struct sk_softc *sc; 375 int reg; 376 u_int32_t val; 377 { 378 #ifdef SK_USEIOSPACE 379 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 380 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val); 381 #else 382 CSR_WRITE_2(sc, reg, val); 383 #endif 384 return; 385 } 386 387 static void sk_win_write_1(sc, reg, val) 388 struct sk_softc *sc; 389 int reg; 390 u_int32_t val; 391 { 392 #ifdef SK_USEIOSPACE 393 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 394 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val); 395 #else 396 CSR_WRITE_1(sc, reg, val); 397 #endif 398 return; 399 } 400 401 /* 402 * The VPD EEPROM contains Vital Product Data, as suggested in 403 * the PCI 2.1 specification. The VPD data is separared into areas 404 * denoted by resource IDs. The SysKonnect VPD contains an ID string 405 * resource (the name of the adapter), a read-only area resource 406 * containing various key/data fields and a read/write area which 407 * can be used to store asset management information or log messages. 408 * We read the ID string and read-only into buffers attached to 409 * the controller softc structure for later use. At the moment, 410 * we only use the ID string during sk_attach(). 411 */ 412 static u_int8_t sk_vpd_readbyte(sc, addr) 413 struct sk_softc *sc; 414 int addr; 415 { 416 int i; 417 418 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr); 419 for (i = 0; i < SK_TIMEOUT; i++) { 420 DELAY(1); 421 if (sk_win_read_2(sc, 422 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG) 423 break; 424 } 425 426 if (i == SK_TIMEOUT) 427 return(0); 428 429 return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA))); 430 } 431 432 static void sk_vpd_read_res(sc, res, addr) 433 struct sk_softc *sc; 434 struct vpd_res *res; 435 int addr; 436 { 437 int i; 438 u_int8_t *ptr; 439 440 ptr = (u_int8_t *)res; 441 for (i = 0; i < sizeof(struct vpd_res); i++) 442 ptr[i] = sk_vpd_readbyte(sc, i + addr); 443 444 return; 445 } 446 447 static void sk_vpd_read(sc) 448 struct sk_softc *sc; 449 { 450 int pos = 0, i; 451 struct vpd_res res; 452 453 if (sc->sk_vpd_prodname != NULL) 454 free(sc->sk_vpd_prodname, M_DEVBUF); 455 if (sc->sk_vpd_readonly != NULL) 456 free(sc->sk_vpd_readonly, M_DEVBUF); 457 sc->sk_vpd_prodname = NULL; 458 sc->sk_vpd_readonly = NULL; 459 460 sk_vpd_read_res(sc, &res, pos); 461 462 if (res.vr_id != VPD_RES_ID) { 463 printf("skc%d: bad VPD resource id: expected %x got %x\n", 464 sc->sk_unit, VPD_RES_ID, res.vr_id); 465 return; 466 } 467 468 pos += sizeof(res); 469 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_INTWAIT); 470 for (i = 0; i < res.vr_len; i++) 471 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos); 472 sc->sk_vpd_prodname[i] = '\0'; 473 pos += i; 474 475 sk_vpd_read_res(sc, &res, pos); 476 477 if (res.vr_id != VPD_RES_READ) { 478 printf("skc%d: bad VPD resource id: expected %x got %x\n", 479 sc->sk_unit, VPD_RES_READ, res.vr_id); 480 return; 481 } 482 483 pos += sizeof(res); 484 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_INTWAIT); 485 for (i = 0; i < res.vr_len + 1; i++) 486 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos); 487 488 return; 489 } 490 491 static int sk_miibus_readreg(dev, phy, reg) 492 device_t dev; 493 int phy, reg; 494 { 495 struct sk_if_softc *sc_if; 496 497 sc_if = device_get_softc(dev); 498 499 switch(sc_if->sk_softc->sk_type) { 500 case SK_GENESIS: 501 return(sk_xmac_miibus_readreg(sc_if, phy, reg)); 502 case SK_YUKON: 503 return(sk_marv_miibus_readreg(sc_if, phy, reg)); 504 } 505 506 return(0); 507 } 508 509 static int sk_miibus_writereg(dev, phy, reg, val) 510 device_t dev; 511 int phy, reg, val; 512 { 513 struct sk_if_softc *sc_if; 514 515 sc_if = device_get_softc(dev); 516 517 switch(sc_if->sk_softc->sk_type) { 518 case SK_GENESIS: 519 return(sk_xmac_miibus_writereg(sc_if, phy, reg, val)); 520 case SK_YUKON: 521 return(sk_marv_miibus_writereg(sc_if, phy, reg, val)); 522 } 523 524 return(0); 525 } 526 527 static void sk_miibus_statchg(dev) 528 device_t dev; 529 { 530 struct sk_if_softc *sc_if; 531 532 sc_if = device_get_softc(dev); 533 534 switch(sc_if->sk_softc->sk_type) { 535 case SK_GENESIS: 536 sk_xmac_miibus_statchg(sc_if); 537 break; 538 case SK_YUKON: 539 sk_marv_miibus_statchg(sc_if); 540 break; 541 } 542 543 return; 544 } 545 546 static int sk_xmac_miibus_readreg(sc_if, phy, reg) 547 struct sk_if_softc *sc_if; 548 int phy, reg; 549 { 550 int i; 551 552 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0) 553 return(0); 554 555 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8)); 556 SK_XM_READ_2(sc_if, XM_PHY_DATA); 557 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) { 558 for (i = 0; i < SK_TIMEOUT; i++) { 559 DELAY(1); 560 if (SK_XM_READ_2(sc_if, XM_MMUCMD) & 561 XM_MMUCMD_PHYDATARDY) 562 break; 563 } 564 565 if (i == SK_TIMEOUT) { 566 printf("sk%d: phy failed to come ready\n", 567 sc_if->sk_unit); 568 return(0); 569 } 570 } 571 DELAY(1); 572 return(SK_XM_READ_2(sc_if, XM_PHY_DATA)); 573 } 574 575 static int sk_xmac_miibus_writereg(sc_if, phy, reg, val) 576 struct sk_if_softc *sc_if; 577 int phy, reg, val; 578 { 579 int i; 580 581 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8)); 582 for (i = 0; i < SK_TIMEOUT; i++) { 583 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY)) 584 break; 585 } 586 587 if (i == SK_TIMEOUT) { 588 printf("sk%d: phy failed to come ready\n", sc_if->sk_unit); 589 return(ETIMEDOUT); 590 } 591 592 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val); 593 for (i = 0; i < SK_TIMEOUT; i++) { 594 DELAY(1); 595 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY)) 596 break; 597 } 598 599 if (i == SK_TIMEOUT) 600 printf("sk%d: phy write timed out\n", sc_if->sk_unit); 601 602 return(0); 603 } 604 605 static void sk_xmac_miibus_statchg(sc_if) 606 struct sk_if_softc *sc_if; 607 { 608 struct mii_data *mii; 609 610 mii = device_get_softc(sc_if->sk_miibus); 611 612 /* 613 * If this is a GMII PHY, manually set the XMAC's 614 * duplex mode accordingly. 615 */ 616 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) { 617 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { 618 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX); 619 } else { 620 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX); 621 } 622 } 623 624 return; 625 } 626 627 static int sk_marv_miibus_readreg(sc_if, phy, reg) 628 struct sk_if_softc *sc_if; 629 int phy, reg; 630 { 631 u_int16_t val; 632 int i; 633 634 if (phy != 0 || 635 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER && 636 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) { 637 return(0); 638 } 639 640 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) | 641 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ); 642 643 for (i = 0; i < SK_TIMEOUT; i++) { 644 DELAY(1); 645 val = SK_YU_READ_2(sc_if, YUKON_SMICR); 646 if (val & YU_SMICR_READ_VALID) 647 break; 648 } 649 650 if (i == SK_TIMEOUT) { 651 printf("sk%d: phy failed to come ready\n", 652 sc_if->sk_unit); 653 return(0); 654 } 655 656 val = SK_YU_READ_2(sc_if, YUKON_SMIDR); 657 658 return(val); 659 } 660 661 static int sk_marv_miibus_writereg(sc_if, phy, reg, val) 662 struct sk_if_softc *sc_if; 663 int phy, reg, val; 664 { 665 int i; 666 667 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val); 668 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) | 669 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE); 670 671 for (i = 0; i < SK_TIMEOUT; i++) { 672 DELAY(1); 673 if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY) 674 break; 675 } 676 677 return(0); 678 } 679 680 static void sk_marv_miibus_statchg(sc_if) 681 struct sk_if_softc *sc_if; 682 { 683 return; 684 } 685 686 #define XMAC_POLY 0xEDB88320 687 #define GMAC_POLY 0x04C11DB7L 688 #define HASH_BITS 6 689 690 static u_int32_t xmac_calchash(addr) 691 caddr_t addr; 692 { 693 u_int32_t idx, bit, data, crc; 694 695 /* Compute CRC for the address value. */ 696 crc = 0xFFFFFFFF; /* initial value */ 697 698 for (idx = 0; idx < 6; idx++) { 699 for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) 700 crc = (crc >> 1) ^ (((crc ^ data) & 1) ? XMAC_POLY : 0); 701 } 702 703 return (~crc & ((1 << HASH_BITS) - 1)); 704 } 705 706 static u_int32_t gmac_calchash(addr) 707 caddr_t addr; 708 { 709 u_int32_t idx, bit, crc, tmpData, data; 710 711 /* Compute CRC for the address value. */ 712 crc = 0xFFFFFFFF; /* initial value */ 713 714 for (idx = 0; idx < 6; idx++) { 715 data = *addr++; 716 717 /* Change bit order in byte. */ 718 tmpData = data; 719 for (bit = 0; bit < 8; bit++) { 720 if (tmpData & 1) { 721 data |= 1 << (7 - bit); 722 } 723 else { 724 data &= ~(1 << (7 - bit)); 725 } 726 727 tmpData >>= 1; 728 } 729 730 crc ^= (data << 24); 731 for (bit = 0; bit < 8; bit++) { 732 if (crc & 0x80000000) { 733 crc = (crc << 1) ^ GMAC_POLY; 734 } else { 735 crc <<= 1; 736 } 737 } 738 } 739 740 return (crc & ((1 << HASH_BITS) - 1)); 741 } 742 743 static void sk_setfilt(sc_if, addr, slot) 744 struct sk_if_softc *sc_if; 745 caddr_t addr; 746 int slot; 747 { 748 int base; 749 750 base = XM_RXFILT_ENTRY(slot); 751 752 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0])); 753 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2])); 754 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4])); 755 756 return; 757 } 758 759 static void sk_setmulti(sc_if) 760 struct sk_if_softc *sc_if; 761 { 762 struct sk_softc *sc = sc_if->sk_softc; 763 struct ifnet *ifp = &sc_if->arpcom.ac_if; 764 u_int32_t hashes[2] = { 0, 0 }; 765 int h, i; 766 struct ifmultiaddr *ifma; 767 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 }; 768 769 770 /* First, zot all the existing filters. */ 771 switch(sc->sk_type) { 772 case SK_GENESIS: 773 for (i = 1; i < XM_RXFILT_MAX; i++) 774 sk_setfilt(sc_if, (caddr_t)&dummy, i); 775 776 SK_XM_WRITE_4(sc_if, XM_MAR0, 0); 777 SK_XM_WRITE_4(sc_if, XM_MAR2, 0); 778 break; 779 case SK_YUKON: 780 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0); 781 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0); 782 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0); 783 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0); 784 break; 785 } 786 787 /* Now program new ones. */ 788 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 789 hashes[0] = 0xFFFFFFFF; 790 hashes[1] = 0xFFFFFFFF; 791 } else { 792 i = 1; 793 /* First find the tail of the list. */ 794 for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL; 795 ifma = ifma->ifma_link.le_next) { 796 if (ifma->ifma_link.le_next == NULL) 797 break; 798 } 799 /* Now traverse the list backwards. */ 800 for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs; 801 ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) { 802 if (ifma->ifma_addr->sa_family != AF_LINK) 803 continue; 804 /* 805 * Program the first XM_RXFILT_MAX multicast groups 806 * into the perfect filter. For all others, 807 * use the hash table. 808 */ 809 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) { 810 sk_setfilt(sc_if, 811 LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i); 812 i++; 813 continue; 814 } 815 816 switch(sc->sk_type) { 817 case SK_GENESIS: 818 h = xmac_calchash( 819 LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); 820 if (h < 32) 821 hashes[0] |= (1 << h); 822 else 823 hashes[1] |= (1 << (h - 32)); 824 break; 825 826 case SK_YUKON: 827 h = gmac_calchash( 828 LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); 829 if (h < 32) 830 hashes[0] |= (1 << h); 831 else 832 hashes[1] |= (1 << (h - 32)); 833 break; 834 } 835 } 836 } 837 838 switch(sc->sk_type) { 839 case SK_GENESIS: 840 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH| 841 XM_MODE_RX_USE_PERFECT); 842 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]); 843 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]); 844 break; 845 case SK_YUKON: 846 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff); 847 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff); 848 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff); 849 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff); 850 break; 851 } 852 853 return; 854 } 855 856 static void sk_setpromisc(sc_if) 857 struct sk_if_softc *sc_if; 858 { 859 struct sk_softc *sc = sc_if->sk_softc; 860 struct ifnet *ifp = &sc_if->arpcom.ac_if; 861 862 switch(sc->sk_type) { 863 case SK_GENESIS: 864 if (ifp->if_flags & IFF_PROMISC) { 865 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC); 866 } else { 867 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC); 868 } 869 break; 870 case SK_YUKON: 871 if (ifp->if_flags & IFF_PROMISC) { 872 SK_YU_CLRBIT_2(sc_if, YUKON_RCR, 873 YU_RCR_UFLEN | YU_RCR_MUFLEN); 874 } else { 875 SK_YU_SETBIT_2(sc_if, YUKON_RCR, 876 YU_RCR_UFLEN | YU_RCR_MUFLEN); 877 } 878 break; 879 } 880 881 return; 882 } 883 884 static int sk_init_rx_ring(sc_if) 885 struct sk_if_softc *sc_if; 886 { 887 struct sk_chain_data *cd = &sc_if->sk_cdata; 888 struct sk_ring_data *rd = sc_if->sk_rdata; 889 int i; 890 891 bzero((char *)rd->sk_rx_ring, 892 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT); 893 894 for (i = 0; i < SK_RX_RING_CNT; i++) { 895 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i]; 896 if (sk_newbuf(sc_if, &cd->sk_rx_chain[i], NULL) == ENOBUFS) 897 return(ENOBUFS); 898 if (i == (SK_RX_RING_CNT - 1)) { 899 cd->sk_rx_chain[i].sk_next = 900 &cd->sk_rx_chain[0]; 901 rd->sk_rx_ring[i].sk_next = 902 vtophys(&rd->sk_rx_ring[0]); 903 } else { 904 cd->sk_rx_chain[i].sk_next = 905 &cd->sk_rx_chain[i + 1]; 906 rd->sk_rx_ring[i].sk_next = 907 vtophys(&rd->sk_rx_ring[i + 1]); 908 } 909 } 910 911 sc_if->sk_cdata.sk_rx_prod = 0; 912 sc_if->sk_cdata.sk_rx_cons = 0; 913 914 return(0); 915 } 916 917 static void sk_init_tx_ring(sc_if) 918 struct sk_if_softc *sc_if; 919 { 920 struct sk_chain_data *cd = &sc_if->sk_cdata; 921 struct sk_ring_data *rd = sc_if->sk_rdata; 922 int i; 923 924 bzero((char *)sc_if->sk_rdata->sk_tx_ring, 925 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT); 926 927 for (i = 0; i < SK_TX_RING_CNT; i++) { 928 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i]; 929 if (i == (SK_TX_RING_CNT - 1)) { 930 cd->sk_tx_chain[i].sk_next = 931 &cd->sk_tx_chain[0]; 932 rd->sk_tx_ring[i].sk_next = 933 vtophys(&rd->sk_tx_ring[0]); 934 } else { 935 cd->sk_tx_chain[i].sk_next = 936 &cd->sk_tx_chain[i + 1]; 937 rd->sk_tx_ring[i].sk_next = 938 vtophys(&rd->sk_tx_ring[i + 1]); 939 } 940 } 941 942 sc_if->sk_cdata.sk_tx_prod = 0; 943 sc_if->sk_cdata.sk_tx_cons = 0; 944 sc_if->sk_cdata.sk_tx_cnt = 0; 945 946 return; 947 } 948 949 static int sk_newbuf(sc_if, c, m) 950 struct sk_if_softc *sc_if; 951 struct sk_chain *c; 952 struct mbuf *m; 953 { 954 struct mbuf *m_new = NULL; 955 struct sk_rx_desc *r; 956 957 if (m == NULL) { 958 caddr_t *buf = NULL; 959 960 MGETHDR(m_new, MB_DONTWAIT, MT_DATA); 961 if (m_new == NULL) 962 return(ENOBUFS); 963 964 /* Allocate the jumbo buffer */ 965 buf = sk_jalloc(sc_if); 966 if (buf == NULL) { 967 m_freem(m_new); 968 #ifdef SK_VERBOSE 969 printf("sk%d: jumbo allocation failed " 970 "-- packet dropped!\n", sc_if->sk_unit); 971 #endif 972 return(ENOBUFS); 973 } 974 975 /* Attach the buffer to the mbuf */ 976 m_new->m_data = m_new->m_ext.ext_buf = (void *)buf; 977 m_new->m_flags |= M_EXT | M_EXT_OLD; 978 m_new->m_ext.ext_size = m_new->m_pkthdr.len = 979 m_new->m_len = SK_MCLBYTES; 980 m_new->m_ext.ext_nfree.old = sk_jfree; 981 m_new->m_ext.ext_nref.old = sk_jref; 982 } else { 983 /* 984 * We're re-using a previously allocated mbuf; 985 * be sure to re-init pointers and lengths to 986 * default values. 987 */ 988 m_new = m; 989 m_new->m_len = m_new->m_pkthdr.len = SK_MCLBYTES; 990 m_new->m_data = m_new->m_ext.ext_buf; 991 } 992 993 /* 994 * Adjust alignment so packet payload begins on a 995 * longword boundary. Mandatory for Alpha, useful on 996 * x86 too. 997 */ 998 m_adj(m_new, ETHER_ALIGN); 999 1000 r = c->sk_desc; 1001 c->sk_mbuf = m_new; 1002 r->sk_data_lo = vtophys(mtod(m_new, caddr_t)); 1003 r->sk_ctl = m_new->m_len | SK_RXSTAT; 1004 1005 return(0); 1006 } 1007 1008 /* 1009 * Allocate jumbo buffer storage. The SysKonnect adapters support 1010 * "jumbograms" (9K frames), although SysKonnect doesn't currently 1011 * use them in their drivers. In order for us to use them, we need 1012 * large 9K receive buffers, however standard mbuf clusters are only 1013 * 2048 bytes in size. Consequently, we need to allocate and manage 1014 * our own jumbo buffer pool. Fortunately, this does not require an 1015 * excessive amount of additional code. 1016 */ 1017 static int sk_alloc_jumbo_mem(sc_if) 1018 struct sk_if_softc *sc_if; 1019 { 1020 caddr_t ptr; 1021 int i; 1022 struct sk_jpool_entry *entry; 1023 1024 /* Grab a big chunk o' storage. */ 1025 sc_if->sk_cdata.sk_jumbo_buf = contigmalloc(SK_JMEM, M_DEVBUF, 1026 M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); 1027 1028 if (sc_if->sk_cdata.sk_jumbo_buf == NULL) { 1029 printf("sk%d: no memory for jumbo buffers!\n", sc_if->sk_unit); 1030 return(ENOBUFS); 1031 } 1032 1033 SLIST_INIT(&sc_if->sk_jfree_listhead); 1034 SLIST_INIT(&sc_if->sk_jinuse_listhead); 1035 1036 /* 1037 * Now divide it up into 9K pieces and save the addresses 1038 * in an array. Note that we play an evil trick here by using 1039 * the first few bytes in the buffer to hold the the address 1040 * of the softc structure for this interface. This is because 1041 * sk_jfree() needs it, but it is called by the mbuf management 1042 * code which will not pass it to us explicitly. 1043 */ 1044 ptr = sc_if->sk_cdata.sk_jumbo_buf; 1045 for (i = 0; i < SK_JSLOTS; i++) { 1046 u_int64_t **aptr; 1047 aptr = (u_int64_t **)ptr; 1048 aptr[0] = (u_int64_t *)sc_if; 1049 ptr += sizeof(u_int64_t); 1050 sc_if->sk_cdata.sk_jslots[i].sk_buf = ptr; 1051 sc_if->sk_cdata.sk_jslots[i].sk_inuse = 0; 1052 ptr += SK_MCLBYTES; 1053 entry = malloc(sizeof(struct sk_jpool_entry), 1054 M_DEVBUF, M_WAITOK); 1055 if (entry == NULL) { 1056 free(sc_if->sk_cdata.sk_jumbo_buf, M_DEVBUF); 1057 sc_if->sk_cdata.sk_jumbo_buf = NULL; 1058 printf("sk%d: no memory for jumbo " 1059 "buffer queue!\n", sc_if->sk_unit); 1060 return(ENOBUFS); 1061 } 1062 entry->slot = i; 1063 SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, 1064 entry, jpool_entries); 1065 } 1066 1067 return(0); 1068 } 1069 1070 /* 1071 * Allocate a jumbo buffer. 1072 */ 1073 static void *sk_jalloc(sc_if) 1074 struct sk_if_softc *sc_if; 1075 { 1076 struct sk_jpool_entry *entry; 1077 1078 entry = SLIST_FIRST(&sc_if->sk_jfree_listhead); 1079 1080 if (entry == NULL) { 1081 #ifdef SK_VERBOSE 1082 printf("sk%d: no free jumbo buffers\n", sc_if->sk_unit); 1083 #endif 1084 return(NULL); 1085 } 1086 1087 SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jpool_entries); 1088 SLIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries); 1089 sc_if->sk_cdata.sk_jslots[entry->slot].sk_inuse = 1; 1090 return(sc_if->sk_cdata.sk_jslots[entry->slot].sk_buf); 1091 } 1092 1093 /* 1094 * Adjust usage count on a jumbo buffer. In general this doesn't 1095 * get used much because our jumbo buffers don't get passed around 1096 * a lot, but it's implemented for correctness. 1097 */ 1098 static void sk_jref(buf, size) 1099 caddr_t buf; 1100 u_int size; 1101 { 1102 struct sk_if_softc *sc_if; 1103 u_int64_t **aptr; 1104 int i; 1105 1106 /* Extract the softc struct pointer. */ 1107 aptr = (u_int64_t **)(buf - sizeof(u_int64_t)); 1108 sc_if = (struct sk_if_softc *)(aptr[0]); 1109 1110 if (sc_if == NULL) 1111 panic("sk_jref: can't find softc pointer!"); 1112 1113 if (size != SK_MCLBYTES) 1114 panic("sk_jref: adjusting refcount of buf of wrong size!"); 1115 1116 /* calculate the slot this buffer belongs to */ 1117 1118 i = ((vm_offset_t)aptr 1119 - (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN; 1120 1121 if ((i < 0) || (i >= SK_JSLOTS)) 1122 panic("sk_jref: asked to reference buffer " 1123 "that we don't manage!"); 1124 else if (sc_if->sk_cdata.sk_jslots[i].sk_inuse == 0) 1125 panic("sk_jref: buffer already free!"); 1126 else 1127 sc_if->sk_cdata.sk_jslots[i].sk_inuse++; 1128 1129 return; 1130 } 1131 1132 /* 1133 * Release a jumbo buffer. 1134 */ 1135 static void sk_jfree(buf, size) 1136 caddr_t buf; 1137 u_int size; 1138 { 1139 struct sk_if_softc *sc_if; 1140 u_int64_t **aptr; 1141 int i; 1142 struct sk_jpool_entry *entry; 1143 1144 /* Extract the softc struct pointer. */ 1145 aptr = (u_int64_t **)(buf - sizeof(u_int64_t)); 1146 sc_if = (struct sk_if_softc *)(aptr[0]); 1147 1148 if (sc_if == NULL) 1149 panic("sk_jfree: can't find softc pointer!"); 1150 1151 if (size != SK_MCLBYTES) 1152 panic("sk_jfree: freeing buffer of wrong size!"); 1153 1154 /* calculate the slot this buffer belongs to */ 1155 1156 i = ((vm_offset_t)aptr 1157 - (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN; 1158 1159 if ((i < 0) || (i >= SK_JSLOTS)) 1160 panic("sk_jfree: asked to free buffer that we don't manage!"); 1161 else if (sc_if->sk_cdata.sk_jslots[i].sk_inuse == 0) 1162 panic("sk_jfree: buffer already free!"); 1163 else { 1164 sc_if->sk_cdata.sk_jslots[i].sk_inuse--; 1165 if(sc_if->sk_cdata.sk_jslots[i].sk_inuse == 0) { 1166 entry = SLIST_FIRST(&sc_if->sk_jinuse_listhead); 1167 if (entry == NULL) 1168 panic("sk_jfree: buffer not in use!"); 1169 entry->slot = i; 1170 SLIST_REMOVE_HEAD(&sc_if->sk_jinuse_listhead, 1171 jpool_entries); 1172 SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, 1173 entry, jpool_entries); 1174 } 1175 } 1176 1177 return; 1178 } 1179 1180 /* 1181 * Set media options. 1182 */ 1183 static int sk_ifmedia_upd(ifp) 1184 struct ifnet *ifp; 1185 { 1186 struct sk_if_softc *sc_if = ifp->if_softc; 1187 struct mii_data *mii; 1188 1189 mii = device_get_softc(sc_if->sk_miibus); 1190 sk_init(sc_if); 1191 mii_mediachg(mii); 1192 1193 return(0); 1194 } 1195 1196 /* 1197 * Report current media status. 1198 */ 1199 static void sk_ifmedia_sts(ifp, ifmr) 1200 struct ifnet *ifp; 1201 struct ifmediareq *ifmr; 1202 { 1203 struct sk_if_softc *sc_if; 1204 struct mii_data *mii; 1205 1206 sc_if = ifp->if_softc; 1207 mii = device_get_softc(sc_if->sk_miibus); 1208 1209 mii_pollstat(mii); 1210 ifmr->ifm_active = mii->mii_media_active; 1211 ifmr->ifm_status = mii->mii_media_status; 1212 1213 return; 1214 } 1215 1216 static int sk_ioctl(ifp, command, data, cr) 1217 struct ifnet *ifp; 1218 u_long command; 1219 caddr_t data; 1220 struct ucred *cr; 1221 { 1222 struct sk_if_softc *sc_if = ifp->if_softc; 1223 struct ifreq *ifr = (struct ifreq *) data; 1224 int s, error = 0; 1225 struct mii_data *mii; 1226 1227 s = splimp(); 1228 1229 switch(command) { 1230 case SIOCSIFADDR: 1231 case SIOCGIFADDR: 1232 error = ether_ioctl(ifp, command, data); 1233 break; 1234 case SIOCSIFMTU: 1235 if (ifr->ifr_mtu > SK_JUMBO_MTU) 1236 error = EINVAL; 1237 else { 1238 ifp->if_mtu = ifr->ifr_mtu; 1239 sk_init(sc_if); 1240 } 1241 break; 1242 case SIOCSIFFLAGS: 1243 if (ifp->if_flags & IFF_UP) { 1244 if (ifp->if_flags & IFF_RUNNING) { 1245 if ((ifp->if_flags ^ sc_if->sk_if_flags) 1246 & IFF_PROMISC) { 1247 sk_setpromisc(sc_if); 1248 sk_setmulti(sc_if); 1249 } 1250 } else 1251 sk_init(sc_if); 1252 } else { 1253 if (ifp->if_flags & IFF_RUNNING) 1254 sk_stop(sc_if); 1255 } 1256 sc_if->sk_if_flags = ifp->if_flags; 1257 error = 0; 1258 break; 1259 case SIOCADDMULTI: 1260 case SIOCDELMULTI: 1261 sk_setmulti(sc_if); 1262 error = 0; 1263 break; 1264 case SIOCGIFMEDIA: 1265 case SIOCSIFMEDIA: 1266 mii = device_get_softc(sc_if->sk_miibus); 1267 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 1268 break; 1269 default: 1270 error = EINVAL; 1271 break; 1272 } 1273 1274 (void)splx(s); 1275 1276 return(error); 1277 } 1278 1279 /* 1280 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device 1281 * IDs against our list and return a device name if we find a match. 1282 */ 1283 static int skc_probe(dev) 1284 device_t dev; 1285 { 1286 struct sk_softc *sc; 1287 struct sk_type *t = sk_devs; 1288 1289 sc = device_get_softc(dev); 1290 1291 while(t->sk_name != NULL) { 1292 if ((pci_get_vendor(dev) == t->sk_vid) && 1293 (pci_get_device(dev) == t->sk_did)) { 1294 device_set_desc(dev, t->sk_name); 1295 return(0); 1296 } 1297 t++; 1298 } 1299 1300 return(ENXIO); 1301 } 1302 1303 /* 1304 * Force the GEnesis into reset, then bring it out of reset. 1305 */ 1306 static void sk_reset(sc) 1307 struct sk_softc *sc; 1308 { 1309 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET); 1310 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET); 1311 if (sc->sk_type == SK_YUKON) 1312 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET); 1313 1314 DELAY(1000); 1315 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET); 1316 DELAY(2); 1317 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET); 1318 if (sc->sk_type == SK_YUKON) 1319 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR); 1320 1321 if (sc->sk_type == SK_GENESIS) { 1322 /* Configure packet arbiter */ 1323 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET); 1324 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT); 1325 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT); 1326 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT); 1327 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT); 1328 } 1329 1330 /* Enable RAM interface */ 1331 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET); 1332 1333 /* 1334 * Configure interrupt moderation. The moderation timer 1335 * defers interrupts specified in the interrupt moderation 1336 * timer mask based on the timeout specified in the interrupt 1337 * moderation timer init register. Each bit in the timer 1338 * register represents 18.825ns, so to specify a timeout in 1339 * microseconds, we have to multiply by 54. 1340 */ 1341 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200)); 1342 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF| 1343 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF); 1344 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START); 1345 1346 return; 1347 } 1348 1349 static int sk_probe(dev) 1350 device_t dev; 1351 { 1352 struct sk_softc *sc; 1353 1354 sc = device_get_softc(device_get_parent(dev)); 1355 1356 /* 1357 * Not much to do here. We always know there will be 1358 * at least one XMAC present, and if there are two, 1359 * skc_attach() will create a second device instance 1360 * for us. 1361 */ 1362 switch (sc->sk_type) { 1363 case SK_GENESIS: 1364 device_set_desc(dev, "XaQti Corp. XMAC II"); 1365 break; 1366 case SK_YUKON: 1367 device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon"); 1368 break; 1369 } 1370 1371 return(0); 1372 } 1373 1374 /* 1375 * Each XMAC chip is attached as a separate logical IP interface. 1376 * Single port cards will have only one logical interface of course. 1377 */ 1378 static int sk_attach(dev) 1379 device_t dev; 1380 { 1381 struct sk_softc *sc; 1382 struct sk_if_softc *sc_if; 1383 struct ifnet *ifp; 1384 int i, port; 1385 1386 if (dev == NULL) 1387 return(EINVAL); 1388 1389 sc_if = device_get_softc(dev); 1390 sc = device_get_softc(device_get_parent(dev)); 1391 port = *(int *)device_get_ivars(dev); 1392 free(device_get_ivars(dev), M_DEVBUF); 1393 device_set_ivars(dev, NULL); 1394 sc_if->sk_dev = dev; 1395 callout_init(&sc_if->sk_tick_timer); 1396 1397 bzero((char *)sc_if, sizeof(struct sk_if_softc)); 1398 1399 sc_if->sk_dev = dev; 1400 sc_if->sk_unit = device_get_unit(dev); 1401 sc_if->sk_port = port; 1402 sc_if->sk_softc = sc; 1403 sc->sk_if[port] = sc_if; 1404 if (port == SK_PORT_A) 1405 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0; 1406 if (port == SK_PORT_B) 1407 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1; 1408 1409 /* 1410 * Get station address for this interface. Note that 1411 * dual port cards actually come with three station 1412 * addresses: one for each port, plus an extra. The 1413 * extra one is used by the SysKonnect driver software 1414 * as a 'virtual' station address for when both ports 1415 * are operating in failover mode. Currently we don't 1416 * use this extra address. 1417 */ 1418 for (i = 0; i < ETHER_ADDR_LEN; i++) 1419 sc_if->arpcom.ac_enaddr[i] = 1420 sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i); 1421 1422 /* 1423 * Set up RAM buffer addresses. The NIC will have a certain 1424 * amount of SRAM on it, somewhere between 512K and 2MB. We 1425 * need to divide this up a) between the transmitter and 1426 * receiver and b) between the two XMACs, if this is a 1427 * dual port NIC. Our algotithm is to divide up the memory 1428 * evenly so that everyone gets a fair share. 1429 */ 1430 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) { 1431 u_int32_t chunk, val; 1432 1433 chunk = sc->sk_ramsize / 2; 1434 val = sc->sk_rboff / sizeof(u_int64_t); 1435 sc_if->sk_rx_ramstart = val; 1436 val += (chunk / sizeof(u_int64_t)); 1437 sc_if->sk_rx_ramend = val - 1; 1438 sc_if->sk_tx_ramstart = val; 1439 val += (chunk / sizeof(u_int64_t)); 1440 sc_if->sk_tx_ramend = val - 1; 1441 } else { 1442 u_int32_t chunk, val; 1443 1444 chunk = sc->sk_ramsize / 4; 1445 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) / 1446 sizeof(u_int64_t); 1447 sc_if->sk_rx_ramstart = val; 1448 val += (chunk / sizeof(u_int64_t)); 1449 sc_if->sk_rx_ramend = val - 1; 1450 sc_if->sk_tx_ramstart = val; 1451 val += (chunk / sizeof(u_int64_t)); 1452 sc_if->sk_tx_ramend = val - 1; 1453 } 1454 1455 /* Read and save PHY type and set PHY address */ 1456 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF; 1457 switch(sc_if->sk_phytype) { 1458 case SK_PHYTYPE_XMAC: 1459 sc_if->sk_phyaddr = SK_PHYADDR_XMAC; 1460 break; 1461 case SK_PHYTYPE_BCOM: 1462 sc_if->sk_phyaddr = SK_PHYADDR_BCOM; 1463 break; 1464 case SK_PHYTYPE_MARV_COPPER: 1465 sc_if->sk_phyaddr = SK_PHYADDR_MARV; 1466 break; 1467 default: 1468 printf("skc%d: unsupported PHY type: %d\n", 1469 sc->sk_unit, sc_if->sk_phytype); 1470 return(ENODEV); 1471 } 1472 1473 /* Allocate the descriptor queues. */ 1474 sc_if->sk_rdata = contigmalloc(sizeof(struct sk_ring_data), M_DEVBUF, 1475 M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); 1476 1477 if (sc_if->sk_rdata == NULL) { 1478 printf("sk%d: no memory for list buffers!\n", sc_if->sk_unit); 1479 sc->sk_if[port] = NULL; 1480 return(ENOMEM); 1481 } 1482 1483 bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data)); 1484 1485 /* Try to allocate memory for jumbo buffers. */ 1486 if (sk_alloc_jumbo_mem(sc_if)) { 1487 printf("sk%d: jumbo buffer allocation failed\n", 1488 sc_if->sk_unit); 1489 contigfree(sc_if->sk_rdata, 1490 sizeof(struct sk_ring_data), M_DEVBUF); 1491 sc->sk_if[port] = NULL; 1492 return(ENOMEM); 1493 } 1494 1495 ifp = &sc_if->arpcom.ac_if; 1496 ifp->if_softc = sc_if; 1497 if_initname(ifp, "sk", sc_if->sk_unit); 1498 ifp->if_mtu = ETHERMTU; 1499 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1500 ifp->if_ioctl = sk_ioctl; 1501 ifp->if_start = sk_start; 1502 ifp->if_watchdog = sk_watchdog; 1503 ifp->if_init = sk_init; 1504 ifp->if_baudrate = 1000000000; 1505 ifp->if_snd.ifq_maxlen = SK_TX_RING_CNT - 1; 1506 1507 /* 1508 * Do miibus setup. 1509 */ 1510 switch (sc->sk_type) { 1511 case SK_GENESIS: 1512 sk_init_xmac(sc_if); 1513 break; 1514 case SK_YUKON: 1515 sk_init_yukon(sc_if); 1516 break; 1517 } 1518 1519 if (mii_phy_probe(dev, &sc_if->sk_miibus, 1520 sk_ifmedia_upd, sk_ifmedia_sts)) { 1521 printf("skc%d: no PHY found!\n", sc_if->sk_unit); 1522 contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM, 1523 M_DEVBUF); 1524 contigfree(sc_if->sk_rdata, 1525 sizeof(struct sk_ring_data), M_DEVBUF); 1526 return(ENXIO); 1527 } 1528 1529 /* 1530 * Call MI attach routine. 1531 */ 1532 ether_ifattach(ifp, sc_if->arpcom.ac_enaddr); 1533 callout_init(&sc_if->sk_tick_timer); 1534 1535 return(0); 1536 } 1537 1538 /* 1539 * Attach the interface. Allocate softc structures, do ifmedia 1540 * setup and ethernet/BPF attach. 1541 */ 1542 static int skc_attach(dev) 1543 device_t dev; 1544 { 1545 int s; 1546 u_int32_t command; 1547 struct sk_softc *sc; 1548 int unit, error = 0, rid, *port; 1549 1550 s = splimp(); 1551 1552 sc = device_get_softc(dev); 1553 unit = device_get_unit(dev); 1554 bzero(sc, sizeof(struct sk_softc)); 1555 switch (pci_get_device(dev)) { 1556 case DEVICEID_SK_V1: 1557 sc->sk_type = SK_GENESIS; 1558 break; 1559 case DEVICEID_SK_V2: 1560 case DEVICEID_3COM_3C940: 1561 case DEVICEID_LINKSYS_EG1032: 1562 case DEVICEID_DLINK_DGE530T: 1563 sc->sk_type = SK_YUKON; 1564 break; 1565 } 1566 1567 /* 1568 * Handle power management nonsense. 1569 */ 1570 command = pci_read_config(dev, SK_PCI_CAPID, 4) & 0x000000FF; 1571 if (command == 0x01) { 1572 command = pci_read_config(dev, SK_PCI_PWRMGMTCTRL, 4); 1573 if (command & SK_PSTATE_MASK) { 1574 u_int32_t iobase, membase, irq; 1575 1576 /* Save important PCI config data. */ 1577 iobase = pci_read_config(dev, SK_PCI_LOIO, 4); 1578 membase = pci_read_config(dev, SK_PCI_LOMEM, 4); 1579 irq = pci_read_config(dev, SK_PCI_INTLINE, 4); 1580 1581 /* Reset the power state. */ 1582 printf("skc%d: chip is in D%d power mode " 1583 "-- setting to D0\n", unit, command & SK_PSTATE_MASK); 1584 command &= 0xFFFFFFFC; 1585 pci_write_config(dev, SK_PCI_PWRMGMTCTRL, command, 4); 1586 1587 /* Restore PCI config data. */ 1588 pci_write_config(dev, SK_PCI_LOIO, iobase, 4); 1589 pci_write_config(dev, SK_PCI_LOMEM, membase, 4); 1590 pci_write_config(dev, SK_PCI_INTLINE, irq, 4); 1591 } 1592 } 1593 1594 /* 1595 * Map control/status registers. 1596 */ 1597 command = pci_read_config(dev, PCIR_COMMAND, 4); 1598 command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN); 1599 pci_write_config(dev, PCIR_COMMAND, command, 4); 1600 command = pci_read_config(dev, PCIR_COMMAND, 4); 1601 1602 #ifdef SK_USEIOSPACE 1603 if (!(command & PCIM_CMD_PORTEN)) { 1604 printf("skc%d: failed to enable I/O ports!\n", unit); 1605 error = ENXIO; 1606 goto fail; 1607 } 1608 #else 1609 if (!(command & PCIM_CMD_MEMEN)) { 1610 printf("skc%d: failed to enable memory mapping!\n", unit); 1611 error = ENXIO; 1612 goto fail; 1613 } 1614 #endif 1615 1616 rid = SK_RID; 1617 sc->sk_res = bus_alloc_resource(dev, SK_RES, &rid, 1618 0, ~0, 1, RF_ACTIVE); 1619 1620 if (sc->sk_res == NULL) { 1621 printf("sk%d: couldn't map ports/memory\n", unit); 1622 error = ENXIO; 1623 goto fail; 1624 } 1625 1626 sc->sk_btag = rman_get_bustag(sc->sk_res); 1627 sc->sk_bhandle = rman_get_bushandle(sc->sk_res); 1628 1629 /* Allocate interrupt */ 1630 rid = 0; 1631 sc->sk_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1, 1632 RF_SHAREABLE | RF_ACTIVE); 1633 1634 if (sc->sk_irq == NULL) { 1635 printf("skc%d: couldn't map interrupt\n", unit); 1636 bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res); 1637 error = ENXIO; 1638 goto fail; 1639 } 1640 1641 error = bus_setup_intr(dev, sc->sk_irq, INTR_TYPE_NET, 1642 sk_intr, sc, &sc->sk_intrhand); 1643 1644 if (error) { 1645 printf("skc%d: couldn't set up irq\n", unit); 1646 bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res); 1647 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq); 1648 goto fail; 1649 } 1650 1651 /* Reset the adapter. */ 1652 sk_reset(sc); 1653 1654 sc->sk_unit = unit; 1655 1656 /* Read and save vital product data from EEPROM. */ 1657 sk_vpd_read(sc); 1658 1659 if (sc->sk_type == SK_GENESIS) { 1660 /* Read and save RAM size and RAMbuffer offset */ 1661 switch(sk_win_read_1(sc, SK_EPROM0)) { 1662 case SK_RAMSIZE_512K_64: 1663 sc->sk_ramsize = 0x80000; 1664 sc->sk_rboff = SK_RBOFF_0; 1665 break; 1666 case SK_RAMSIZE_1024K_64: 1667 sc->sk_ramsize = 0x100000; 1668 sc->sk_rboff = SK_RBOFF_80000; 1669 break; 1670 case SK_RAMSIZE_1024K_128: 1671 sc->sk_ramsize = 0x100000; 1672 sc->sk_rboff = SK_RBOFF_0; 1673 break; 1674 case SK_RAMSIZE_2048K_128: 1675 sc->sk_ramsize = 0x200000; 1676 sc->sk_rboff = SK_RBOFF_0; 1677 break; 1678 default: 1679 printf("skc%d: unknown ram size: %d\n", 1680 sc->sk_unit, sk_win_read_1(sc, SK_EPROM0)); 1681 bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand); 1682 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq); 1683 bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res); 1684 error = ENXIO; 1685 goto fail; 1686 break; 1687 } 1688 } else { 1689 sc->sk_ramsize = 0x20000; 1690 sc->sk_rboff = SK_RBOFF_0; 1691 } 1692 1693 /* Read and save physical media type */ 1694 switch(sk_win_read_1(sc, SK_PMDTYPE)) { 1695 case SK_PMD_1000BASESX: 1696 sc->sk_pmd = IFM_1000_SX; 1697 break; 1698 case SK_PMD_1000BASELX: 1699 sc->sk_pmd = IFM_1000_LX; 1700 break; 1701 case SK_PMD_1000BASECX: 1702 sc->sk_pmd = IFM_1000_CX; 1703 break; 1704 case SK_PMD_1000BASETX: 1705 sc->sk_pmd = IFM_1000_TX; 1706 break; 1707 default: 1708 printf("skc%d: unknown media type: 0x%x\n", 1709 sc->sk_unit, sk_win_read_1(sc, SK_PMDTYPE)); 1710 bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand); 1711 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq); 1712 bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res); 1713 error = ENXIO; 1714 goto fail; 1715 } 1716 1717 /* Announce the product name. */ 1718 printf("skc%d: %s\n", sc->sk_unit, sc->sk_vpd_prodname); 1719 sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1); 1720 port = malloc(sizeof(int), M_DEVBUF, M_WAITOK); 1721 *port = SK_PORT_A; 1722 device_set_ivars(sc->sk_devs[SK_PORT_A], port); 1723 1724 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) { 1725 sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1); 1726 port = malloc(sizeof(int), M_DEVBUF, M_WAITOK); 1727 *port = SK_PORT_B; 1728 device_set_ivars(sc->sk_devs[SK_PORT_B], port); 1729 } 1730 1731 /* Turn on the 'driver is loaded' LED. */ 1732 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON); 1733 1734 bus_generic_attach(dev); 1735 1736 fail: 1737 splx(s); 1738 return(error); 1739 } 1740 1741 static int sk_detach(dev) 1742 device_t dev; 1743 { 1744 struct sk_softc *sc; 1745 struct sk_if_softc *sc_if; 1746 struct ifnet *ifp; 1747 int s; 1748 1749 s = splimp(); 1750 1751 sc = device_get_softc(device_get_parent(dev)); 1752 sc_if = device_get_softc(dev); 1753 ifp = &sc_if->arpcom.ac_if; 1754 sk_stop(sc_if); 1755 ether_ifdetach(ifp); 1756 bus_generic_detach(dev); 1757 if (sc_if->sk_miibus != NULL) 1758 device_delete_child(dev, sc_if->sk_miibus); 1759 contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM, M_DEVBUF); 1760 contigfree(sc_if->sk_rdata, sizeof(struct sk_ring_data), M_DEVBUF); 1761 1762 return(0); 1763 } 1764 1765 static int skc_detach(dev) 1766 device_t dev; 1767 { 1768 struct sk_softc *sc; 1769 int s; 1770 1771 s = splimp(); 1772 1773 sc = device_get_softc(dev); 1774 1775 bus_generic_detach(dev); 1776 if (sc->sk_devs[SK_PORT_A] != NULL) 1777 device_delete_child(dev, sc->sk_devs[SK_PORT_A]); 1778 if (sc->sk_devs[SK_PORT_B] != NULL) 1779 device_delete_child(dev, sc->sk_devs[SK_PORT_B]); 1780 1781 bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand); 1782 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq); 1783 bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res); 1784 1785 splx(s); 1786 1787 return(0); 1788 } 1789 1790 static int sk_encap(sc_if, m_head, txidx) 1791 struct sk_if_softc *sc_if; 1792 struct mbuf *m_head; 1793 u_int32_t *txidx; 1794 { 1795 struct sk_tx_desc *f = NULL; 1796 struct mbuf *m; 1797 u_int32_t frag, cur, cnt = 0; 1798 1799 m = m_head; 1800 cur = frag = *txidx; 1801 1802 /* 1803 * Start packing the mbufs in this chain into 1804 * the fragment pointers. Stop when we run out 1805 * of fragments or hit the end of the mbuf chain. 1806 */ 1807 for (m = m_head; m != NULL; m = m->m_next) { 1808 if (m->m_len != 0) { 1809 if ((SK_TX_RING_CNT - 1810 (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) 1811 return(ENOBUFS); 1812 f = &sc_if->sk_rdata->sk_tx_ring[frag]; 1813 f->sk_data_lo = vtophys(mtod(m, vm_offset_t)); 1814 f->sk_ctl = m->m_len | SK_OPCODE_DEFAULT; 1815 if (cnt == 0) 1816 f->sk_ctl |= SK_TXCTL_FIRSTFRAG; 1817 else 1818 f->sk_ctl |= SK_TXCTL_OWN; 1819 cur = frag; 1820 SK_INC(frag, SK_TX_RING_CNT); 1821 cnt++; 1822 } 1823 } 1824 1825 if (m != NULL) 1826 return(ENOBUFS); 1827 1828 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= 1829 SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR; 1830 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head; 1831 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN; 1832 sc_if->sk_cdata.sk_tx_cnt += cnt; 1833 1834 *txidx = frag; 1835 1836 return(0); 1837 } 1838 1839 static void sk_start(ifp) 1840 struct ifnet *ifp; 1841 { 1842 struct sk_softc *sc; 1843 struct sk_if_softc *sc_if; 1844 struct mbuf *m_head = NULL; 1845 u_int32_t idx; 1846 1847 sc_if = ifp->if_softc; 1848 sc = sc_if->sk_softc; 1849 1850 idx = sc_if->sk_cdata.sk_tx_prod; 1851 1852 while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) { 1853 IF_DEQUEUE(&ifp->if_snd, m_head); 1854 if (m_head == NULL) 1855 break; 1856 1857 /* 1858 * Pack the data into the transmit ring. If we 1859 * don't have room, set the OACTIVE flag and wait 1860 * for the NIC to drain the ring. 1861 */ 1862 if (sk_encap(sc_if, m_head, &idx)) { 1863 IF_PREPEND(&ifp->if_snd, m_head); 1864 ifp->if_flags |= IFF_OACTIVE; 1865 break; 1866 } 1867 1868 /* 1869 * If there's a BPF listener, bounce a copy of this frame 1870 * to him. 1871 */ 1872 if (ifp->if_bpf) 1873 bpf_mtap(ifp, m_head); 1874 } 1875 1876 /* Transmit */ 1877 sc_if->sk_cdata.sk_tx_prod = idx; 1878 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START); 1879 1880 /* Set a timeout in case the chip goes out to lunch. */ 1881 ifp->if_timer = 5; 1882 1883 return; 1884 } 1885 1886 1887 static void sk_watchdog(ifp) 1888 struct ifnet *ifp; 1889 { 1890 struct sk_if_softc *sc_if; 1891 1892 sc_if = ifp->if_softc; 1893 1894 printf("sk%d: watchdog timeout\n", sc_if->sk_unit); 1895 sk_init(sc_if); 1896 1897 return; 1898 } 1899 1900 static void skc_shutdown(dev) 1901 device_t dev; 1902 { 1903 struct sk_softc *sc; 1904 1905 sc = device_get_softc(dev); 1906 1907 /* Turn off the 'driver is loaded' LED. */ 1908 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF); 1909 1910 /* 1911 * Reset the GEnesis controller. Doing this should also 1912 * assert the resets on the attached XMAC(s). 1913 */ 1914 sk_reset(sc); 1915 1916 return; 1917 } 1918 1919 static void sk_rxeof(sc_if) 1920 struct sk_if_softc *sc_if; 1921 { 1922 struct mbuf *m; 1923 struct ifnet *ifp; 1924 struct sk_chain *cur_rx; 1925 int total_len = 0; 1926 int i; 1927 u_int32_t rxstat; 1928 1929 ifp = &sc_if->arpcom.ac_if; 1930 i = sc_if->sk_cdata.sk_rx_prod; 1931 cur_rx = &sc_if->sk_cdata.sk_rx_chain[i]; 1932 1933 while(!(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl & SK_RXCTL_OWN)) { 1934 1935 cur_rx = &sc_if->sk_cdata.sk_rx_chain[i]; 1936 rxstat = sc_if->sk_rdata->sk_rx_ring[i].sk_xmac_rxstat; 1937 m = cur_rx->sk_mbuf; 1938 cur_rx->sk_mbuf = NULL; 1939 total_len = SK_RXBYTES(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl); 1940 SK_INC(i, SK_RX_RING_CNT); 1941 1942 if (rxstat & XM_RXSTAT_ERRFRAME) { 1943 ifp->if_ierrors++; 1944 sk_newbuf(sc_if, cur_rx, m); 1945 continue; 1946 } 1947 1948 /* 1949 * Try to allocate a new jumbo buffer. If that 1950 * fails, copy the packet to mbufs and put the 1951 * jumbo buffer back in the ring so it can be 1952 * re-used. If allocating mbufs fails, then we 1953 * have to drop the packet. 1954 */ 1955 if (sk_newbuf(sc_if, cur_rx, NULL) == ENOBUFS) { 1956 struct mbuf *m0; 1957 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN, 1958 total_len + ETHER_ALIGN, 0, ifp, NULL); 1959 sk_newbuf(sc_if, cur_rx, m); 1960 if (m0 == NULL) { 1961 printf("sk%d: no receive buffers " 1962 "available -- packet dropped!\n", 1963 sc_if->sk_unit); 1964 ifp->if_ierrors++; 1965 continue; 1966 } 1967 m_adj(m0, ETHER_ALIGN); 1968 m = m0; 1969 } else { 1970 m->m_pkthdr.rcvif = ifp; 1971 m->m_pkthdr.len = m->m_len = total_len; 1972 } 1973 1974 ifp->if_ipackets++; 1975 (*ifp->if_input)(ifp, m); 1976 } 1977 1978 sc_if->sk_cdata.sk_rx_prod = i; 1979 1980 return; 1981 } 1982 1983 static void sk_txeof(sc_if) 1984 struct sk_if_softc *sc_if; 1985 { 1986 struct sk_tx_desc *cur_tx = NULL; 1987 struct ifnet *ifp; 1988 u_int32_t idx; 1989 1990 ifp = &sc_if->arpcom.ac_if; 1991 1992 /* 1993 * Go through our tx ring and free mbufs for those 1994 * frames that have been sent. 1995 */ 1996 idx = sc_if->sk_cdata.sk_tx_cons; 1997 while(idx != sc_if->sk_cdata.sk_tx_prod) { 1998 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx]; 1999 if (cur_tx->sk_ctl & SK_TXCTL_OWN) 2000 break; 2001 if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG) 2002 ifp->if_opackets++; 2003 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) { 2004 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf); 2005 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL; 2006 } 2007 sc_if->sk_cdata.sk_tx_cnt--; 2008 SK_INC(idx, SK_TX_RING_CNT); 2009 ifp->if_timer = 0; 2010 } 2011 2012 sc_if->sk_cdata.sk_tx_cons = idx; 2013 2014 if (cur_tx != NULL) 2015 ifp->if_flags &= ~IFF_OACTIVE; 2016 2017 return; 2018 } 2019 2020 static void sk_tick(xsc_if) 2021 void *xsc_if; 2022 { 2023 struct sk_if_softc *sc_if; 2024 struct mii_data *mii; 2025 struct ifnet *ifp; 2026 int i; 2027 2028 sc_if = xsc_if; 2029 ifp = &sc_if->arpcom.ac_if; 2030 mii = device_get_softc(sc_if->sk_miibus); 2031 2032 if (!(ifp->if_flags & IFF_UP)) 2033 return; 2034 2035 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { 2036 sk_intr_bcom(sc_if); 2037 return; 2038 } 2039 2040 /* 2041 * According to SysKonnect, the correct way to verify that 2042 * the link has come back up is to poll bit 0 of the GPIO 2043 * register three times. This pin has the signal from the 2044 * link_sync pin connected to it; if we read the same link 2045 * state 3 times in a row, we know the link is up. 2046 */ 2047 for (i = 0; i < 3; i++) { 2048 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET) 2049 break; 2050 } 2051 2052 if (i != 3) { 2053 callout_reset(&sc_if->sk_tick_timer, hz, sk_tick, sc_if); 2054 return; 2055 } 2056 2057 /* Turn the GP0 interrupt back on. */ 2058 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET); 2059 SK_XM_READ_2(sc_if, XM_ISR); 2060 mii_tick(mii); 2061 mii_pollstat(mii); 2062 callout_stop(&sc_if->sk_tick_timer); 2063 2064 return; 2065 } 2066 2067 static void sk_intr_bcom(sc_if) 2068 struct sk_if_softc *sc_if; 2069 { 2070 struct sk_softc *sc; 2071 struct mii_data *mii; 2072 struct ifnet *ifp; 2073 int status; 2074 2075 sc = sc_if->sk_softc; 2076 mii = device_get_softc(sc_if->sk_miibus); 2077 ifp = &sc_if->arpcom.ac_if; 2078 2079 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); 2080 2081 /* 2082 * Read the PHY interrupt register to make sure 2083 * we clear any pending interrupts. 2084 */ 2085 status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR); 2086 2087 if (!(ifp->if_flags & IFF_RUNNING)) { 2088 sk_init_xmac(sc_if); 2089 return; 2090 } 2091 2092 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) { 2093 int lstat; 2094 lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 2095 BRGPHY_MII_AUXSTS); 2096 2097 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) { 2098 mii_mediachg(mii); 2099 /* Turn off the link LED. */ 2100 SK_IF_WRITE_1(sc_if, 0, 2101 SK_LINKLED1_CTL, SK_LINKLED_OFF); 2102 sc_if->sk_link = 0; 2103 } else if (status & BRGPHY_ISR_LNK_CHG) { 2104 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM, 2105 BRGPHY_MII_IMR, 0xFF00); 2106 mii_tick(mii); 2107 sc_if->sk_link = 1; 2108 /* Turn on the link LED. */ 2109 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, 2110 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF| 2111 SK_LINKLED_BLINK_OFF); 2112 mii_pollstat(mii); 2113 } else { 2114 mii_tick(mii); 2115 callout_reset(&sc_if->sk_tick_timer, hz, 2116 sk_tick, sc_if); 2117 } 2118 } 2119 2120 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); 2121 2122 return; 2123 } 2124 2125 static void sk_intr_xmac(sc_if) 2126 struct sk_if_softc *sc_if; 2127 { 2128 struct sk_softc *sc; 2129 u_int16_t status; 2130 struct mii_data *mii; 2131 2132 sc = sc_if->sk_softc; 2133 mii = device_get_softc(sc_if->sk_miibus); 2134 status = SK_XM_READ_2(sc_if, XM_ISR); 2135 2136 /* 2137 * Link has gone down. Start MII tick timeout to 2138 * watch for link resync. 2139 */ 2140 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) { 2141 if (status & XM_ISR_GP0_SET) { 2142 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET); 2143 callout_reset(&sc_if->sk_tick_timer, hz, 2144 sk_tick, sc_if); 2145 } 2146 2147 if (status & XM_ISR_AUTONEG_DONE) { 2148 callout_reset(&sc_if->sk_tick_timer, hz, 2149 sk_tick, sc_if); 2150 } 2151 } 2152 2153 if (status & XM_IMR_TX_UNDERRUN) 2154 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO); 2155 2156 if (status & XM_IMR_RX_OVERRUN) 2157 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO); 2158 2159 status = SK_XM_READ_2(sc_if, XM_ISR); 2160 2161 return; 2162 } 2163 2164 static void sk_intr_yukon(sc_if) 2165 struct sk_if_softc *sc_if; 2166 { 2167 int status; 2168 2169 status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR); 2170 2171 return; 2172 } 2173 2174 static void sk_intr(xsc) 2175 void *xsc; 2176 { 2177 struct sk_softc *sc = xsc; 2178 struct sk_if_softc *sc_if0 = NULL, *sc_if1 = NULL; 2179 struct ifnet *ifp0 = NULL, *ifp1 = NULL; 2180 u_int32_t status; 2181 2182 sc_if0 = sc->sk_if[SK_PORT_A]; 2183 sc_if1 = sc->sk_if[SK_PORT_B]; 2184 2185 if (sc_if0 != NULL) 2186 ifp0 = &sc_if0->arpcom.ac_if; 2187 if (sc_if1 != NULL) 2188 ifp1 = &sc_if1->arpcom.ac_if; 2189 2190 for (;;) { 2191 status = CSR_READ_4(sc, SK_ISSR); 2192 if (!(status & sc->sk_intrmask)) 2193 break; 2194 2195 /* Handle receive interrupts first. */ 2196 if (status & SK_ISR_RX1_EOF) { 2197 sk_rxeof(sc_if0); 2198 CSR_WRITE_4(sc, SK_BMU_RX_CSR0, 2199 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START); 2200 } 2201 if (status & SK_ISR_RX2_EOF) { 2202 sk_rxeof(sc_if1); 2203 CSR_WRITE_4(sc, SK_BMU_RX_CSR1, 2204 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START); 2205 } 2206 2207 /* Then transmit interrupts. */ 2208 if (status & SK_ISR_TX1_S_EOF) { 2209 sk_txeof(sc_if0); 2210 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, 2211 SK_TXBMU_CLR_IRQ_EOF); 2212 } 2213 if (status & SK_ISR_TX2_S_EOF) { 2214 sk_txeof(sc_if1); 2215 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, 2216 SK_TXBMU_CLR_IRQ_EOF); 2217 } 2218 2219 /* Then MAC interrupts. */ 2220 if (status & SK_ISR_MAC1 && ifp0->if_flags & IFF_RUNNING) { 2221 if (sc->sk_type == SK_GENESIS) 2222 sk_intr_xmac(sc_if0); 2223 else 2224 sk_intr_yukon(sc_if0); 2225 } 2226 2227 if (status & SK_ISR_MAC2 && ifp1->if_flags & IFF_RUNNING) { 2228 if (sc->sk_type == SK_GENESIS) 2229 sk_intr_xmac(sc_if1); 2230 else 2231 sk_intr_yukon(sc_if0); 2232 } 2233 2234 if (status & SK_ISR_EXTERNAL_REG) { 2235 if (ifp0 != NULL && 2236 sc_if0->sk_phytype == SK_PHYTYPE_BCOM) 2237 sk_intr_bcom(sc_if0); 2238 if (ifp1 != NULL && 2239 sc_if1->sk_phytype == SK_PHYTYPE_BCOM) 2240 sk_intr_bcom(sc_if1); 2241 } 2242 } 2243 2244 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); 2245 2246 if (ifp0 != NULL && ifp0->if_snd.ifq_head != NULL) 2247 sk_start(ifp0); 2248 if (ifp1 != NULL && ifp1->if_snd.ifq_head != NULL) 2249 sk_start(ifp1); 2250 2251 return; 2252 } 2253 2254 static void sk_init_xmac(sc_if) 2255 struct sk_if_softc *sc_if; 2256 { 2257 struct sk_softc *sc; 2258 struct ifnet *ifp; 2259 struct sk_bcom_hack bhack[] = { 2260 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 }, 2261 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 }, 2262 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 }, 2263 { 0, 0 } }; 2264 2265 sc = sc_if->sk_softc; 2266 ifp = &sc_if->arpcom.ac_if; 2267 2268 /* Unreset the XMAC. */ 2269 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET); 2270 DELAY(1000); 2271 2272 /* Reset the XMAC's internal state. */ 2273 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC); 2274 2275 /* Save the XMAC II revision */ 2276 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID)); 2277 2278 /* 2279 * Perform additional initialization for external PHYs, 2280 * namely for the 1000baseTX cards that use the XMAC's 2281 * GMII mode. 2282 */ 2283 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { 2284 int i = 0; 2285 u_int32_t val; 2286 2287 /* Take PHY out of reset. */ 2288 val = sk_win_read_4(sc, SK_GPIO); 2289 if (sc_if->sk_port == SK_PORT_A) 2290 val |= SK_GPIO_DIR0|SK_GPIO_DAT0; 2291 else 2292 val |= SK_GPIO_DIR2|SK_GPIO_DAT2; 2293 sk_win_write_4(sc, SK_GPIO, val); 2294 2295 /* Enable GMII mode on the XMAC. */ 2296 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE); 2297 2298 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM, 2299 BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET); 2300 DELAY(10000); 2301 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM, 2302 BRGPHY_MII_IMR, 0xFFF0); 2303 2304 /* 2305 * Early versions of the BCM5400 apparently have 2306 * a bug that requires them to have their reserved 2307 * registers initialized to some magic values. I don't 2308 * know what the numbers do, I'm just the messenger. 2309 */ 2310 if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03) 2311 == 0x6041) { 2312 while(bhack[i].reg) { 2313 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM, 2314 bhack[i].reg, bhack[i].val); 2315 i++; 2316 } 2317 } 2318 } 2319 2320 /* Set station address */ 2321 SK_XM_WRITE_2(sc_if, XM_PAR0, 2322 *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[0])); 2323 SK_XM_WRITE_2(sc_if, XM_PAR1, 2324 *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[2])); 2325 SK_XM_WRITE_2(sc_if, XM_PAR2, 2326 *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[4])); 2327 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION); 2328 2329 if (ifp->if_flags & IFF_BROADCAST) { 2330 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD); 2331 } else { 2332 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD); 2333 } 2334 2335 /* We don't need the FCS appended to the packet. */ 2336 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS); 2337 2338 /* We want short frames padded to 60 bytes. */ 2339 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD); 2340 2341 /* 2342 * Enable the reception of all error frames. This is is 2343 * a necessary evil due to the design of the XMAC. The 2344 * XMAC's receive FIFO is only 8K in size, however jumbo 2345 * frames can be up to 9000 bytes in length. When bad 2346 * frame filtering is enabled, the XMAC's RX FIFO operates 2347 * in 'store and forward' mode. For this to work, the 2348 * entire frame has to fit into the FIFO, but that means 2349 * that jumbo frames larger than 8192 bytes will be 2350 * truncated. Disabling all bad frame filtering causes 2351 * the RX FIFO to operate in streaming mode, in which 2352 * case the XMAC will start transfering frames out of the 2353 * RX FIFO as soon as the FIFO threshold is reached. 2354 */ 2355 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES| 2356 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS| 2357 XM_MODE_RX_INRANGELEN); 2358 2359 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) 2360 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK); 2361 else 2362 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK); 2363 2364 /* 2365 * Bump up the transmit threshold. This helps hold off transmit 2366 * underruns when we're blasting traffic from both ports at once. 2367 */ 2368 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH); 2369 2370 /* Set promiscuous mode */ 2371 sk_setpromisc(sc_if); 2372 2373 /* Set multicast filter */ 2374 sk_setmulti(sc_if); 2375 2376 /* Clear and enable interrupts */ 2377 SK_XM_READ_2(sc_if, XM_ISR); 2378 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) 2379 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS); 2380 else 2381 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF); 2382 2383 /* Configure MAC arbiter */ 2384 switch(sc_if->sk_xmac_rev) { 2385 case XM_XMAC_REV_B2: 2386 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2); 2387 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2); 2388 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2); 2389 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2); 2390 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2); 2391 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2); 2392 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2); 2393 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2); 2394 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2); 2395 break; 2396 case XM_XMAC_REV_C1: 2397 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1); 2398 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1); 2399 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1); 2400 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1); 2401 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1); 2402 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1); 2403 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1); 2404 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1); 2405 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2); 2406 break; 2407 default: 2408 break; 2409 } 2410 sk_win_write_2(sc, SK_MACARB_CTL, 2411 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF); 2412 2413 sc_if->sk_link = 1; 2414 2415 return; 2416 } 2417 2418 static void sk_init_yukon(sc_if) 2419 struct sk_if_softc *sc_if; 2420 { 2421 u_int32_t phy; 2422 u_int16_t reg; 2423 int i; 2424 2425 /* GMAC and GPHY Reset */ 2426 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET); 2427 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET); 2428 DELAY(1000); 2429 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR); 2430 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET); 2431 DELAY(1000); 2432 2433 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP | 2434 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE; 2435 2436 switch(sc_if->sk_softc->sk_pmd) { 2437 case IFM_1000_SX: 2438 case IFM_1000_LX: 2439 phy |= SK_GPHY_FIBER; 2440 break; 2441 2442 case IFM_1000_CX: 2443 case IFM_1000_TX: 2444 phy |= SK_GPHY_COPPER; 2445 break; 2446 } 2447 2448 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET); 2449 DELAY(1000); 2450 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR); 2451 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF | 2452 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR); 2453 2454 /* unused read of the interrupt source register */ 2455 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR); 2456 2457 reg = SK_YU_READ_2(sc_if, YUKON_PAR); 2458 2459 /* MIB Counter Clear Mode set */ 2460 reg |= YU_PAR_MIB_CLR; 2461 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg); 2462 2463 /* MIB Counter Clear Mode clear */ 2464 reg &= ~YU_PAR_MIB_CLR; 2465 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg); 2466 2467 /* receive control reg */ 2468 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR); 2469 2470 /* transmit parameter register */ 2471 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) | 2472 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) ); 2473 2474 /* serial mode register */ 2475 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) | 2476 YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e)); 2477 2478 /* Setup Yukon's address */ 2479 for (i = 0; i < 3; i++) { 2480 /* Write Source Address 1 (unicast filter) */ 2481 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4, 2482 sc_if->arpcom.ac_enaddr[i * 2] | 2483 sc_if->arpcom.ac_enaddr[i * 2 + 1] << 8); 2484 } 2485 2486 for (i = 0; i < 3; i++) { 2487 reg = sk_win_read_2(sc_if->sk_softc, 2488 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8); 2489 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg); 2490 } 2491 2492 /* Set promiscuous mode */ 2493 sk_setpromisc(sc_if); 2494 2495 /* Set multicast filter */ 2496 sk_setmulti(sc_if); 2497 2498 /* enable interrupt mask for counter overflows */ 2499 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0); 2500 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0); 2501 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0); 2502 2503 /* Configure RX MAC FIFO */ 2504 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR); 2505 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON); 2506 2507 /* Configure TX MAC FIFO */ 2508 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR); 2509 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON); 2510 } 2511 2512 /* 2513 * Note that to properly initialize any part of the GEnesis chip, 2514 * you first have to take it out of reset mode. 2515 */ 2516 static void sk_init(xsc) 2517 void *xsc; 2518 { 2519 struct sk_if_softc *sc_if = xsc; 2520 struct sk_softc *sc; 2521 struct ifnet *ifp; 2522 struct mii_data *mii; 2523 int s; 2524 u_int16_t reg; 2525 2526 s = splimp(); 2527 2528 ifp = &sc_if->arpcom.ac_if; 2529 sc = sc_if->sk_softc; 2530 mii = device_get_softc(sc_if->sk_miibus); 2531 2532 /* Cancel pending I/O and free all RX/TX buffers. */ 2533 sk_stop(sc_if); 2534 2535 if (sc->sk_type == SK_GENESIS) { 2536 /* Configure LINK_SYNC LED */ 2537 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON); 2538 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, 2539 SK_LINKLED_LINKSYNC_ON); 2540 2541 /* Configure RX LED */ 2542 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, 2543 SK_RXLEDCTL_COUNTER_START); 2544 2545 /* Configure TX LED */ 2546 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, 2547 SK_TXLEDCTL_COUNTER_START); 2548 } 2549 2550 /* Configure I2C registers */ 2551 2552 /* Configure XMAC(s) */ 2553 switch (sc->sk_type) { 2554 case SK_GENESIS: 2555 sk_init_xmac(sc_if); 2556 break; 2557 case SK_YUKON: 2558 sk_init_yukon(sc_if); 2559 break; 2560 } 2561 mii_mediachg(mii); 2562 2563 if (sc->sk_type == SK_GENESIS) { 2564 /* Configure MAC FIFOs */ 2565 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET); 2566 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END); 2567 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON); 2568 2569 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET); 2570 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END); 2571 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON); 2572 } 2573 2574 /* Configure transmit arbiter(s) */ 2575 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, 2576 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON); 2577 2578 /* Configure RAMbuffers */ 2579 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET); 2580 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart); 2581 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart); 2582 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart); 2583 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend); 2584 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON); 2585 2586 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET); 2587 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON); 2588 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart); 2589 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart); 2590 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart); 2591 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend); 2592 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON); 2593 2594 /* Configure BMUs */ 2595 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE); 2596 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO, 2597 vtophys(&sc_if->sk_rdata->sk_rx_ring[0])); 2598 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0); 2599 2600 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE); 2601 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO, 2602 vtophys(&sc_if->sk_rdata->sk_tx_ring[0])); 2603 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0); 2604 2605 /* Init descriptors */ 2606 if (sk_init_rx_ring(sc_if) == ENOBUFS) { 2607 printf("sk%d: initialization failed: no " 2608 "memory for rx buffers\n", sc_if->sk_unit); 2609 sk_stop(sc_if); 2610 (void)splx(s); 2611 return; 2612 } 2613 sk_init_tx_ring(sc_if); 2614 2615 /* Configure interrupt handling */ 2616 CSR_READ_4(sc, SK_ISSR); 2617 if (sc_if->sk_port == SK_PORT_A) 2618 sc->sk_intrmask |= SK_INTRS1; 2619 else 2620 sc->sk_intrmask |= SK_INTRS2; 2621 2622 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG; 2623 2624 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); 2625 2626 /* Start BMUs. */ 2627 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START); 2628 2629 switch(sc->sk_type) { 2630 case SK_GENESIS: 2631 /* Enable XMACs TX and RX state machines */ 2632 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE); 2633 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); 2634 break; 2635 case SK_YUKON: 2636 reg = SK_YU_READ_2(sc_if, YUKON_GPCR); 2637 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN; 2638 reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN); 2639 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg); 2640 } 2641 2642 ifp->if_flags |= IFF_RUNNING; 2643 ifp->if_flags &= ~IFF_OACTIVE; 2644 2645 splx(s); 2646 2647 return; 2648 } 2649 2650 static void sk_stop(sc_if) 2651 struct sk_if_softc *sc_if; 2652 { 2653 int i; 2654 struct sk_softc *sc; 2655 struct ifnet *ifp; 2656 2657 sc = sc_if->sk_softc; 2658 ifp = &sc_if->arpcom.ac_if; 2659 2660 callout_stop(&sc_if->sk_tick_timer); 2661 2662 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { 2663 u_int32_t val; 2664 2665 /* Put PHY back into reset. */ 2666 val = sk_win_read_4(sc, SK_GPIO); 2667 if (sc_if->sk_port == SK_PORT_A) { 2668 val |= SK_GPIO_DIR0; 2669 val &= ~SK_GPIO_DAT0; 2670 } else { 2671 val |= SK_GPIO_DIR2; 2672 val &= ~SK_GPIO_DAT2; 2673 } 2674 sk_win_write_4(sc, SK_GPIO, val); 2675 } 2676 2677 /* Turn off various components of this interface. */ 2678 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC); 2679 switch (sc->sk_type) { 2680 case SK_GENESIS: 2681 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET); 2682 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET); 2683 break; 2684 case SK_YUKON: 2685 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET); 2686 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET); 2687 break; 2688 } 2689 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE); 2690 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF); 2691 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE); 2692 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF); 2693 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF); 2694 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP); 2695 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP); 2696 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF); 2697 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF); 2698 2699 /* Disable interrupts */ 2700 if (sc_if->sk_port == SK_PORT_A) 2701 sc->sk_intrmask &= ~SK_INTRS1; 2702 else 2703 sc->sk_intrmask &= ~SK_INTRS2; 2704 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); 2705 2706 SK_XM_READ_2(sc_if, XM_ISR); 2707 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF); 2708 2709 /* Free RX and TX mbufs still in the queues. */ 2710 for (i = 0; i < SK_RX_RING_CNT; i++) { 2711 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) { 2712 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf); 2713 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL; 2714 } 2715 } 2716 2717 for (i = 0; i < SK_TX_RING_CNT; i++) { 2718 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) { 2719 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf); 2720 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL; 2721 } 2722 } 2723 2724 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE); 2725 2726 return; 2727 } 2728