xref: /dragonfly/sys/dev/netif/sk/if_sk.c (revision cc93b0eb)
1 /*
2  * Copyright (c) 1997, 1998, 1999, 2000
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $OpenBSD: if_sk.c,v 1.129 2006/10/16 12:30:08 tom Exp $
33  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
34  * $DragonFly: src/sys/dev/netif/sk/if_sk.c,v 1.56 2008/05/14 11:59:22 sephe Exp $
35  */
36 
37 /*
38  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
39  *
40  * Permission to use, copy, modify, and distribute this software for any
41  * purpose with or without fee is hereby granted, provided that the above
42  * copyright notice and this permission notice appear in all copies.
43  *
44  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
45  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
46  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
47  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
48  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
49  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
50  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
51  */
52 
53 /*
54  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
55  * the SK-984x series adapters, both single port and dual port.
56  * References:
57  * 	The XaQti XMAC II datasheet,
58  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
59  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
60  *
61  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
62  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
63  * convenience to others until Vitesse corrects this problem:
64  *
65  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
66  *
67  * Written by Bill Paul <wpaul@ee.columbia.edu>
68  * Department of Electrical Engineering
69  * Columbia University, New York City
70  */
71 
72 /*
73  * The SysKonnect gigabit ethernet adapters consist of two main
74  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
75  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
76  * components and a PHY while the GEnesis controller provides a PCI
77  * interface with DMA support. Each card may have between 512K and
78  * 2MB of SRAM on board depending on the configuration.
79  *
80  * The SysKonnect GEnesis controller can have either one or two XMAC
81  * chips connected to it, allowing single or dual port NIC configurations.
82  * SysKonnect has the distinction of being the only vendor on the market
83  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
84  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
85  * XMAC registers. This driver takes advantage of these features to allow
86  * both XMACs to operate as independent interfaces.
87  */
88 
89 #include <sys/param.h>
90 #include <sys/bus.h>
91 #include <sys/endian.h>
92 #include <sys/in_cksum.h>
93 #include <sys/kernel.h>
94 #include <sys/interrupt.h>
95 #include <sys/mbuf.h>
96 #include <sys/malloc.h>
97 #include <sys/queue.h>
98 #include <sys/rman.h>
99 #include <sys/serialize.h>
100 #include <sys/socket.h>
101 #include <sys/sockio.h>
102 #include <sys/sysctl.h>
103 
104 #include <net/bpf.h>
105 #include <net/ethernet.h>
106 #include <net/if.h>
107 #include <net/if_arp.h>
108 #include <net/if_dl.h>
109 #include <net/if_media.h>
110 #include <net/ifq_var.h>
111 #include <net/vlan/if_vlan_var.h>
112 
113 #include <netinet/ip.h>
114 #include <netinet/udp.h>
115 
116 #include <dev/netif/mii_layer/mii.h>
117 #include <dev/netif/mii_layer/miivar.h>
118 #include <dev/netif/mii_layer/brgphyreg.h>
119 
120 #include <bus/pci/pcireg.h>
121 #include <bus/pci/pcivar.h>
122 #include <bus/pci/pcidevs.h>
123 
124 #include <dev/netif/sk/if_skreg.h>
125 #include <dev/netif/sk/yukonreg.h>
126 #include <dev/netif/sk/xmaciireg.h>
127 #include <dev/netif/sk/if_skvar.h>
128 
129 #include "miibus_if.h"
130 
131 #if 0
132 #define SK_DEBUG
133 #endif
134 
135 #if 0
136 #define SK_RXCSUM
137 #endif
138 
139 /* supported device vendors */
140 static const struct skc_type {
141 	uint16_t	skc_vid;
142 	uint16_t	skc_did;
143 	const char	*skc_name;
144 } skc_devs[] = {
145 	{ PCI_VENDOR_3COM,		PCI_PRODUCT_3COM_3C940,
146 	  "3Com 3C940" },
147 	{ PCI_VENDOR_3COM,		PCI_PRODUCT_3COM_3C940B,
148 	  "3Com 3C940B" },
149 
150 	{ PCI_VENDOR_CNET,		PCI_PRODUCT_CNET_GIGACARD,
151 	  "CNet GigaCard" },
152 
153 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE530T_A1,
154 	  "D-Link DGE-530T A1" },
155 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE530T_B1,
156 	  "D-Link DGE-530T B1" },
157 
158 	{ PCI_VENDOR_LINKSYS,		PCI_PRODUCT_LINKSYS_EG1032,
159 	  "Linksys EG1032 v2" },
160 	{ PCI_VENDOR_LINKSYS,		PCI_PRODUCT_LINKSYS_EG1064,
161 	  "Linksys EG1064" },
162 
163 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON,
164 	  "Marvell Yukon 88E8001/8003/8010" },
165 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_BELKIN,
166 	  "Belkin F5D5005" },
167 
168 	{ PCI_VENDOR_SCHNEIDERKOCH,	PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE,
169 	  "SysKonnect SK-NET" },
170 	{ PCI_VENDOR_SCHNEIDERKOCH,	PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2,
171 	  "SysKonnect SK9821 v2" },
172 
173 	{ 0, 0, NULL }
174 };
175 
176 static int	skc_probe(device_t);
177 static int	skc_attach(device_t);
178 static int	skc_detach(device_t);
179 static void	skc_shutdown(device_t);
180 static int	skc_sysctl_imtime(SYSCTL_HANDLER_ARGS);
181 
182 static int	sk_probe(device_t);
183 static int	sk_attach(device_t);
184 static int	sk_detach(device_t);
185 static void	sk_tick(void *);
186 static void	sk_yukon_tick(void *);
187 static void	sk_intr(void *);
188 static void	sk_intr_bcom(struct sk_if_softc *);
189 static void	sk_intr_xmac(struct sk_if_softc *);
190 static void	sk_intr_yukon(struct sk_if_softc *);
191 static void	sk_rxeof(struct sk_if_softc *);
192 static void	sk_txeof(struct sk_if_softc *);
193 static int	sk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
194 static void	sk_start(struct ifnet *);
195 static int	sk_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
196 static void	sk_init(void *);
197 static void	sk_init_xmac(struct sk_if_softc *);
198 static void	sk_init_yukon(struct sk_if_softc *);
199 static void	sk_stop(struct sk_if_softc *);
200 static void	sk_watchdog(struct ifnet *);
201 static int	sk_ifmedia_upd(struct ifnet *);
202 static void	sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
203 static void	sk_reset(struct sk_softc *);
204 static int	sk_newbuf_jumbo(struct sk_if_softc *, int, int);
205 static int	sk_newbuf_std(struct sk_if_softc *, int, int);
206 static int	sk_jpool_alloc(device_t);
207 static void	sk_jpool_free(struct sk_if_softc *);
208 static struct sk_jpool_entry
209 		*sk_jalloc(struct sk_if_softc *);
210 static void	sk_jfree(void *);
211 static void	sk_jref(void *);
212 static int	sk_init_rx_ring(struct sk_if_softc *);
213 static int	sk_init_tx_ring(struct sk_if_softc *);
214 
215 static int	sk_miibus_readreg(device_t, int, int);
216 static int	sk_miibus_writereg(device_t, int, int, int);
217 static void	sk_miibus_statchg(device_t);
218 
219 static int	sk_xmac_miibus_readreg(struct sk_if_softc *, int, int);
220 static int	sk_xmac_miibus_writereg(struct sk_if_softc *, int, int, int);
221 static void	sk_xmac_miibus_statchg(struct sk_if_softc *);
222 
223 static int	sk_marv_miibus_readreg(struct sk_if_softc *, int, int);
224 static int	sk_marv_miibus_writereg(struct sk_if_softc *, int, int, int);
225 static void	sk_marv_miibus_statchg(struct sk_if_softc *);
226 
227 static void	sk_setfilt(struct sk_if_softc *, caddr_t, int);
228 static void	sk_setmulti(struct sk_if_softc *);
229 static void	sk_setpromisc(struct sk_if_softc *);
230 
231 #ifdef SK_RXCSUM
232 static void	sk_rxcsum(struct ifnet *, struct mbuf *, const uint16_t,
233 			  const uint16_t);
234 #endif
235 static int	sk_dma_alloc(device_t);
236 static void	sk_dma_free(device_t);
237 
238 static void	sk_buf_dma_addr(void *, bus_dma_segment_t *, int, bus_size_t,
239 				int);
240 static void	sk_dmamem_addr(void *, bus_dma_segment_t *, int, int);
241 
242 #ifdef SK_DEBUG
243 #define DPRINTF(x)	if (skdebug) kprintf x
244 #define DPRINTFN(n,x)	if (skdebug >= (n)) kprintf x
245 static int	skdebug = 2;
246 
247 static void	sk_dump_txdesc(struct sk_tx_desc *, int);
248 static void	sk_dump_mbuf(struct mbuf *);
249 static void	sk_dump_bytes(const char *, int);
250 #else
251 #define DPRINTF(x)
252 #define DPRINTFN(n,x)
253 #endif
254 
255 /* Interrupt moderation time. */
256 static int	skc_imtime = SK_IMTIME_DEFAULT;
257 TUNABLE_INT("hw.skc.imtime", &skc_imtime);
258 
259 /*
260  * Note that we have newbus methods for both the GEnesis controller
261  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
262  * the miibus code is a child of the XMACs. We need to do it this way
263  * so that the miibus drivers can access the PHY registers on the
264  * right PHY. It's not quite what I had in mind, but it's the only
265  * design that achieves the desired effect.
266  */
267 static device_method_t skc_methods[] = {
268 	/* Device interface */
269 	DEVMETHOD(device_probe,		skc_probe),
270 	DEVMETHOD(device_attach,	skc_attach),
271 	DEVMETHOD(device_detach,	skc_detach),
272 	DEVMETHOD(device_shutdown,	skc_shutdown),
273 
274 	/* bus interface */
275 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
276 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
277 
278 	{ 0, 0 }
279 };
280 
281 static DEFINE_CLASS_0(skc, skc_driver, skc_methods, sizeof(struct sk_softc));
282 static devclass_t skc_devclass;
283 
284 static device_method_t sk_methods[] = {
285 	/* Device interface */
286 	DEVMETHOD(device_probe,		sk_probe),
287 	DEVMETHOD(device_attach,	sk_attach),
288 	DEVMETHOD(device_detach,	sk_detach),
289 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
290 
291 	/* bus interface */
292 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
293 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
294 
295 	/* MII interface */
296 	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
297 	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
298 	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
299 
300 	{ 0, 0 }
301 };
302 
303 static DEFINE_CLASS_0(sk, sk_driver, sk_methods, sizeof(struct sk_if_softc));
304 static devclass_t sk_devclass;
305 
306 DECLARE_DUMMY_MODULE(if_sk);
307 DRIVER_MODULE(if_sk, pci, skc_driver, skc_devclass, 0, 0);
308 DRIVER_MODULE(if_sk, skc, sk_driver, sk_devclass, 0, 0);
309 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0);
310 
311 static __inline uint32_t
312 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
313 {
314 	return CSR_READ_4(sc, reg);
315 }
316 
317 static __inline uint16_t
318 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
319 {
320 	return CSR_READ_2(sc, reg);
321 }
322 
323 static __inline uint8_t
324 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
325 {
326 	return CSR_READ_1(sc, reg);
327 }
328 
329 static __inline void
330 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
331 {
332 	CSR_WRITE_4(sc, reg, x);
333 }
334 
335 static __inline void
336 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
337 {
338 	CSR_WRITE_2(sc, reg, x);
339 }
340 
341 static __inline void
342 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
343 {
344 	CSR_WRITE_1(sc, reg, x);
345 }
346 
347 static __inline int
348 sk_newbuf(struct sk_if_softc *sc_if, int idx, int wait)
349 {
350 	int ret;
351 
352 	if (sc_if->sk_use_jumbo)
353 		ret = sk_newbuf_jumbo(sc_if, idx, wait);
354 	else
355 		ret = sk_newbuf_std(sc_if, idx, wait);
356 	return ret;
357 }
358 
359 static int
360 sk_miibus_readreg(device_t dev, int phy, int reg)
361 {
362 	struct sk_if_softc *sc_if = device_get_softc(dev);
363 
364 	if (SK_IS_GENESIS(sc_if->sk_softc))
365 		return sk_xmac_miibus_readreg(sc_if, phy, reg);
366 	else
367 		return sk_marv_miibus_readreg(sc_if, phy, reg);
368 }
369 
370 static int
371 sk_miibus_writereg(device_t dev, int phy, int reg, int val)
372 {
373 	struct sk_if_softc *sc_if = device_get_softc(dev);
374 
375 	if (SK_IS_GENESIS(sc_if->sk_softc))
376 		return sk_xmac_miibus_writereg(sc_if, phy, reg, val);
377 	else
378 		return sk_marv_miibus_writereg(sc_if, phy, reg, val);
379 }
380 
381 static void
382 sk_miibus_statchg(device_t dev)
383 {
384 	struct sk_if_softc *sc_if = device_get_softc(dev);
385 
386 	if (SK_IS_GENESIS(sc_if->sk_softc))
387 		sk_xmac_miibus_statchg(sc_if);
388 	else
389 		sk_marv_miibus_statchg(sc_if);
390 }
391 
392 static int
393 sk_xmac_miibus_readreg(struct sk_if_softc *sc_if, int phy, int reg)
394 {
395 	int i;
396 
397 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
398 
399 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
400 		return(0);
401 
402 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
403 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
404 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
405 		for (i = 0; i < SK_TIMEOUT; i++) {
406 			DELAY(1);
407 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
408 			    XM_MMUCMD_PHYDATARDY)
409 				break;
410 		}
411 
412 		if (i == SK_TIMEOUT) {
413 			if_printf(&sc_if->arpcom.ac_if,
414 				  "phy failed to come ready\n");
415 			return(0);
416 		}
417 	}
418 	DELAY(1);
419 	return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
420 }
421 
422 static int
423 sk_xmac_miibus_writereg(struct sk_if_softc *sc_if, int phy, int reg, int val)
424 {
425 	int i;
426 
427 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
428 
429 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
430 	for (i = 0; i < SK_TIMEOUT; i++) {
431 		if ((SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY) == 0)
432 			break;
433 	}
434 
435 	if (i == SK_TIMEOUT) {
436 		if_printf(&sc_if->arpcom.ac_if, "phy failed to come ready\n");
437 		return(ETIMEDOUT);
438 	}
439 
440 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
441 	for (i = 0; i < SK_TIMEOUT; i++) {
442 		DELAY(1);
443 		if ((SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY) == 0)
444 			break;
445 	}
446 
447 	if (i == SK_TIMEOUT)
448 		if_printf(&sc_if->arpcom.ac_if, "phy write timed out\n");
449 	return(0);
450 }
451 
452 static void
453 sk_xmac_miibus_statchg(struct sk_if_softc *sc_if)
454 {
455 	struct mii_data *mii;
456 
457 	mii = device_get_softc(sc_if->sk_miibus);
458 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
459 
460 	/*
461 	 * If this is a GMII PHY, manually set the XMAC's
462 	 * duplex mode accordingly.
463 	 */
464 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
465 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
466 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
467 		else
468 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
469 	}
470 }
471 
472 static int
473 sk_marv_miibus_readreg(struct sk_if_softc *sc_if, int phy, int reg)
474 {
475 	uint16_t val;
476 	int i;
477 
478 	if (phy != 0 ||
479 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
480 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
481 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
482 			     phy, reg));
483 		return(0);
484 	}
485 
486         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
487 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
488 
489 	for (i = 0; i < SK_TIMEOUT; i++) {
490 		DELAY(1);
491 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
492 		if (val & YU_SMICR_READ_VALID)
493 			break;
494 	}
495 
496 	if (i == SK_TIMEOUT) {
497 		if_printf(&sc_if->arpcom.ac_if, "phy failed to come ready\n");
498 		return(0);
499 	}
500 
501  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
502 		     SK_TIMEOUT));
503 
504 	val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
505 
506 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
507 		     phy, reg, val));
508 
509 	return(val);
510 }
511 
512 static int
513 sk_marv_miibus_writereg(struct sk_if_softc *sc_if, int phy, int reg, int val)
514 {
515 	int i;
516 
517 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
518 		     phy, reg, val));
519 
520 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
521 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
522 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
523 
524 	for (i = 0; i < SK_TIMEOUT; i++) {
525 		DELAY(1);
526 		if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
527 			break;
528 	}
529 
530 	if (i == SK_TIMEOUT)
531 		if_printf(&sc_if->arpcom.ac_if, "phy write timed out\n");
532 
533 	return(0);
534 }
535 
536 static void
537 sk_marv_miibus_statchg(struct sk_if_softc *sc_if)
538 {
539 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
540 		     SK_YU_READ_2(sc_if, YUKON_GPCR)));
541 }
542 
543 #define HASH_BITS	6
544 
545 static uint32_t
546 sk_xmac_hash(caddr_t addr)
547 {
548 	uint32_t crc;
549 
550 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
551 	return (~crc & ((1 << HASH_BITS) - 1));
552 }
553 
554 static uint32_t
555 sk_yukon_hash(caddr_t addr)
556 {
557 	uint32_t crc;
558 
559 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
560 	return (crc & ((1 << HASH_BITS) - 1));
561 }
562 
563 static void
564 sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
565 {
566 	int base;
567 
568 	base = XM_RXFILT_ENTRY(slot);
569 
570 	SK_XM_WRITE_2(sc_if, base, *(uint16_t *)(&addr[0]));
571 	SK_XM_WRITE_2(sc_if, base + 2, *(uint16_t *)(&addr[2]));
572 	SK_XM_WRITE_2(sc_if, base + 4, *(uint16_t *)(&addr[4]));
573 }
574 
575 static void
576 sk_setmulti(struct sk_if_softc *sc_if)
577 {
578 	struct sk_softc *sc = sc_if->sk_softc;
579 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
580 	uint32_t hashes[2] = { 0, 0 };
581 	int h = 0, i;
582 	struct ifmultiaddr *ifma;
583 	uint8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
584 
585 	/* First, zot all the existing filters. */
586 	switch(sc->sk_type) {
587 	case SK_GENESIS:
588 		for (i = 1; i < XM_RXFILT_MAX; i++)
589 			sk_setfilt(sc_if, (caddr_t)&dummy, i);
590 
591 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
592 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
593 		break;
594 	case SK_YUKON:
595 	case SK_YUKON_LITE:
596 	case SK_YUKON_LP:
597 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
598 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
599 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
600 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
601 		break;
602 	}
603 
604 	/* Now program new ones. */
605 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
606 		hashes[0] = 0xFFFFFFFF;
607 		hashes[1] = 0xFFFFFFFF;
608 	} else {
609 		i = 1;
610 		/* First find the tail of the list. */
611 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
612 			if (ifma->ifma_link.le_next == NULL)
613 				break;
614 		}
615 		/* Now traverse the list backwards. */
616 		for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
617 			ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
618 			caddr_t maddr;
619 
620 			if (ifma->ifma_addr->sa_family != AF_LINK)
621 				continue;
622 
623 			maddr = LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
624 
625 			/*
626 			 * Program the first XM_RXFILT_MAX multicast groups
627 			 * into the perfect filter. For all others,
628 			 * use the hash table.
629 			 */
630 			if (SK_IS_GENESIS(sc) && i < XM_RXFILT_MAX) {
631 				sk_setfilt(sc_if, maddr, i);
632 				i++;
633 				continue;
634 			}
635 
636 			switch(sc->sk_type) {
637 			case SK_GENESIS:
638 				h = sk_xmac_hash(maddr);
639 				break;
640 
641 			case SK_YUKON:
642 			case SK_YUKON_LITE:
643 			case SK_YUKON_LP:
644 				h = sk_yukon_hash(maddr);
645 				break;
646 			}
647 			if (h < 32)
648 				hashes[0] |= (1 << h);
649 			else
650 				hashes[1] |= (1 << (h - 32));
651 		}
652 	}
653 
654 	switch(sc->sk_type) {
655 	case SK_GENESIS:
656 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
657 			       XM_MODE_RX_USE_PERFECT);
658 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
659 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
660 		break;
661 	case SK_YUKON:
662 	case SK_YUKON_LITE:
663 	case SK_YUKON_LP:
664 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
665 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
666 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
667 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
668 		break;
669 	}
670 }
671 
672 static void
673 sk_setpromisc(struct sk_if_softc *sc_if)
674 {
675 	struct sk_softc	*sc = sc_if->sk_softc;
676 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
677 
678 	switch(sc->sk_type) {
679 	case SK_GENESIS:
680 		if (ifp->if_flags & IFF_PROMISC)
681 			SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
682 		else
683 			SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
684 		break;
685 	case SK_YUKON:
686 	case SK_YUKON_LITE:
687 	case SK_YUKON_LP:
688 		if (ifp->if_flags & IFF_PROMISC) {
689 			SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
690 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
691 		} else {
692 			SK_YU_SETBIT_2(sc_if, YUKON_RCR,
693 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
694 		}
695 		break;
696 	}
697 }
698 
699 static int
700 sk_init_rx_ring(struct sk_if_softc *sc_if)
701 {
702 	struct sk_chain_data *cd = &sc_if->sk_cdata;
703 	struct sk_ring_data *rd = sc_if->sk_rdata;
704 	int i, nexti, error;
705 
706 	bzero(rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
707 
708 	for (i = 0; i < SK_RX_RING_CNT; i++) {
709 		if (i == (SK_RX_RING_CNT - 1))
710 			nexti = 0;
711 		else
712 			nexti = i + 1;
713 		rd->sk_rx_ring[i].sk_next =
714 			htole32(SK_RX_RING_ADDR(sc_if, nexti));
715 		rd->sk_rx_ring[i].sk_csum1_start = htole16(ETHER_HDR_LEN);
716 		rd->sk_rx_ring[i].sk_csum2_start =
717 			htole16(ETHER_HDR_LEN + sizeof(struct ip));
718 
719 		error = sk_newbuf(sc_if, i, 1);
720 		if (error) {
721 			if_printf(&sc_if->arpcom.ac_if,
722 				  "failed alloc of %dth mbuf\n", i);
723 			return error;
724 		}
725 	}
726 
727 	cd->sk_rx_prod = 0;
728 	cd->sk_rx_cons = 0;
729 
730 	bus_dmamap_sync(sc_if->sk_rdata_dtag, sc_if->sk_rdata_dmap,
731 			BUS_DMASYNC_PREWRITE);
732 
733 	return (0);
734 }
735 
736 static int
737 sk_init_tx_ring(struct sk_if_softc *sc_if)
738 {
739 	struct sk_ring_data *rd = sc_if->sk_rdata;
740 	int i, nexti;
741 
742 	bzero(rd->sk_tx_ring, sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
743 
744 	for (i = 0; i < SK_TX_RING_CNT; i++) {
745 		if (i == (SK_TX_RING_CNT - 1))
746 			nexti = 0;
747 		else
748 			nexti = i + 1;
749 		rd->sk_tx_ring[i].sk_next = htole32(SK_TX_RING_ADDR(sc_if, nexti));
750 	}
751 
752 	sc_if->sk_cdata.sk_tx_prod = 0;
753 	sc_if->sk_cdata.sk_tx_cons = 0;
754 	sc_if->sk_cdata.sk_tx_cnt = 0;
755 
756 	bus_dmamap_sync(sc_if->sk_rdata_dtag, sc_if->sk_rdata_dmap,
757 			BUS_DMASYNC_PREWRITE);
758 
759 	return (0);
760 }
761 
762 static int
763 sk_newbuf_jumbo(struct sk_if_softc *sc_if, int idx, int wait)
764 {
765 	struct sk_jpool_entry *entry;
766 	struct mbuf *m_new = NULL;
767 	struct sk_rx_desc *r;
768 
769 	KKASSERT(idx < SK_RX_RING_CNT && idx >= 0);
770 
771 	MGETHDR(m_new, wait ? MB_WAIT : MB_DONTWAIT, MT_DATA);
772 	if (m_new == NULL)
773 		return ENOBUFS;
774 
775 	/* Allocate the jumbo buffer */
776 	entry = sk_jalloc(sc_if);
777 	if (entry == NULL) {
778 		m_freem(m_new);
779 		DPRINTFN(1, ("%s jumbo allocation failed -- packet "
780 		    "dropped!\n", sc_if->arpcom.ac_if.if_xname));
781 		return ENOBUFS;
782 	}
783 
784 	m_new->m_ext.ext_arg = entry;
785 	m_new->m_ext.ext_buf = entry->buf;
786 	m_new->m_ext.ext_free = sk_jfree;
787 	m_new->m_ext.ext_ref = sk_jref;
788 	m_new->m_ext.ext_size = SK_JLEN;
789 
790 	m_new->m_flags |= M_EXT;
791 
792 	m_new->m_data = m_new->m_ext.ext_buf;
793 	m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
794 
795 	/*
796 	 * Adjust alignment so packet payload begins on a
797 	 * longword boundary. Mandatory for Alpha, useful on
798 	 * x86 too.
799 	 */
800 	m_adj(m_new, ETHER_ALIGN);
801 
802 	sc_if->sk_cdata.sk_rx_mbuf[idx] = m_new;
803 
804 	r = &sc_if->sk_rdata->sk_rx_ring[idx];
805 	r->sk_data_lo = htole32(entry->paddr + ETHER_ALIGN);
806 	r->sk_ctl = htole32(m_new->m_pkthdr.len | SK_RXSTAT);
807 
808 	return 0;
809 }
810 
811 static int
812 sk_newbuf_std(struct sk_if_softc *sc_if, int idx, int wait)
813 {
814 	struct mbuf *m_new = NULL;
815 	struct sk_chain_data *cd = &sc_if->sk_cdata;
816 	struct sk_rx_desc *r;
817 	struct sk_dma_ctx ctx;
818 	bus_dma_segment_t seg;
819 	bus_dmamap_t map;
820 	int error;
821 
822 	KKASSERT(idx < SK_RX_RING_CNT && idx >= 0);
823 
824 	m_new = m_getcl(wait ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
825 	if (m_new == NULL)
826 		return ENOBUFS;
827 
828 	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
829 
830 	/*
831 	 * Adjust alignment so packet payload begins on a
832 	 * longword boundary. Mandatory for Alpha, useful on
833 	 * x86 too.
834 	 */
835 	m_adj(m_new, ETHER_ALIGN);
836 
837 	bzero(&ctx, sizeof(ctx));
838 	ctx.nsegs = 1;
839 	ctx.segs = &seg;
840 	error = bus_dmamap_load_mbuf(cd->sk_rx_dtag, cd->sk_rx_dmap_tmp,
841 				     m_new, sk_buf_dma_addr, &ctx,
842 				     wait ? BUS_DMA_WAITOK : BUS_DMA_NOWAIT);
843 	if (error) {
844 		if_printf(&sc_if->arpcom.ac_if, "could not map RX mbuf\n");
845 		m_freem(m_new);
846 		return error;
847 	}
848 
849 	/* Unload originally mapped mbuf */
850 	if (cd->sk_rx_mbuf[idx] != NULL)
851 		bus_dmamap_unload(cd->sk_rx_dtag, cd->sk_rx_dmap[idx]);
852 
853 	/* Switch DMA map with tmp DMA map */
854 	map = cd->sk_rx_dmap_tmp;
855 	cd->sk_rx_dmap_tmp = cd->sk_rx_dmap[idx];
856 	cd->sk_rx_dmap[idx] = map;
857 
858 	cd->sk_rx_mbuf[idx] = m_new;
859 
860 	r = &sc_if->sk_rdata->sk_rx_ring[idx];
861 	r->sk_data_lo = htole32(seg.ds_addr);
862 	r->sk_ctl = htole32(m_new->m_pkthdr.len | SK_RXSTAT);
863 
864 	return 0;
865 }
866 
867 /*
868  * Allocate a jumbo buffer.
869  */
870 struct sk_jpool_entry *
871 sk_jalloc(struct sk_if_softc *sc_if)
872 {
873 	struct sk_chain_data *cd = &sc_if->sk_cdata;
874 	struct sk_jpool_entry *entry;
875 
876 	lwkt_serialize_enter(&cd->sk_jpool_serializer);
877 
878 	entry = SLIST_FIRST(&cd->sk_jpool_free_ent);
879 	if (entry != NULL) {
880 		SLIST_REMOVE_HEAD(&cd->sk_jpool_free_ent, entry_next);
881 		entry->inuse = 1;
882 	} else {
883 		DPRINTF(("no free jumbo buffer\n"));
884 	}
885 
886 	lwkt_serialize_exit(&cd->sk_jpool_serializer);
887 	return entry;
888 }
889 
890 /*
891  * Release a jumbo buffer.
892  */
893 void
894 sk_jfree(void *arg)
895 {
896 	struct sk_jpool_entry *entry = arg;
897 	struct sk_chain_data *cd = &entry->sc_if->sk_cdata;
898 
899 	if (&cd->sk_jpool_ent[entry->slot] != entry)
900 		panic("%s: free wrong jumbo buffer\n", __func__);
901 	else if (entry->inuse == 0)
902 		panic("%s: jumbo buffer already freed\n", __func__);
903 
904 	lwkt_serialize_enter(&cd->sk_jpool_serializer);
905 
906 	atomic_subtract_int(&entry->inuse, 1);
907 	if (entry->inuse == 0)
908 		SLIST_INSERT_HEAD(&cd->sk_jpool_free_ent, entry, entry_next);
909 
910 	lwkt_serialize_exit(&cd->sk_jpool_serializer);
911 }
912 
913 static void
914 sk_jref(void *arg)
915 {
916 	struct sk_jpool_entry *entry = arg;
917 	struct sk_chain_data *cd = &entry->sc_if->sk_cdata;
918 
919 	if (&cd->sk_jpool_ent[entry->slot] != entry)
920 		panic("%s: free wrong jumbo buffer\n", __func__);
921 	else if (entry->inuse == 0)
922 		panic("%s: jumbo buffer already freed\n", __func__);
923 
924 	atomic_add_int(&entry->inuse, 1);
925 }
926 
927 /*
928  * Set media options.
929  */
930 static int
931 sk_ifmedia_upd(struct ifnet *ifp)
932 {
933 	struct sk_if_softc *sc_if = ifp->if_softc;
934 	struct mii_data *mii;
935 
936 	mii = device_get_softc(sc_if->sk_miibus);
937 	sk_init(sc_if);
938 	mii_mediachg(mii);
939 
940 	return(0);
941 }
942 
943 /*
944  * Report current media status.
945  */
946 static void
947 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
948 {
949 	struct sk_if_softc *sc_if;
950 	struct mii_data *mii;
951 
952 	sc_if = ifp->if_softc;
953 	mii = device_get_softc(sc_if->sk_miibus);
954 
955 	mii_pollstat(mii);
956 	ifmr->ifm_active = mii->mii_media_active;
957 	ifmr->ifm_status = mii->mii_media_status;
958 }
959 
960 static int
961 sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
962 {
963 	struct sk_if_softc *sc_if = ifp->if_softc;
964 	struct ifreq *ifr = (struct ifreq *)data;
965 	struct mii_data *mii;
966 	int error = 0;
967 
968 	ASSERT_SERIALIZED(ifp->if_serializer);
969 
970 	switch(command) {
971 	case SIOCSIFMTU:
972 		if (ifr->ifr_mtu > SK_JUMBO_MTU)
973 			error = EINVAL;
974 		else {
975 			ifp->if_mtu = ifr->ifr_mtu;
976 			ifp->if_flags &= ~IFF_RUNNING;
977 			sk_init(sc_if);
978 		}
979 		break;
980 	case SIOCSIFFLAGS:
981 		if (ifp->if_flags & IFF_UP) {
982 			if (ifp->if_flags & IFF_RUNNING) {
983 				if ((ifp->if_flags ^ sc_if->sk_if_flags)
984 				    & IFF_PROMISC) {
985 					sk_setpromisc(sc_if);
986 					sk_setmulti(sc_if);
987 				}
988 			} else
989 				sk_init(sc_if);
990 		} else {
991 			if (ifp->if_flags & IFF_RUNNING)
992 				sk_stop(sc_if);
993 		}
994 		sc_if->sk_if_flags = ifp->if_flags;
995 		break;
996 	case SIOCADDMULTI:
997 	case SIOCDELMULTI:
998 		sk_setmulti(sc_if);
999 		break;
1000 	case SIOCGIFMEDIA:
1001 	case SIOCSIFMEDIA:
1002 		mii = device_get_softc(sc_if->sk_miibus);
1003 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1004 		break;
1005 	default:
1006 		error = ether_ioctl(ifp, command, data);
1007 		break;
1008 	}
1009 
1010 	return(error);
1011 }
1012 
1013 /*
1014  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1015  * IDs against our list and return a device name if we find a match.
1016  */
1017 static int
1018 skc_probe(device_t dev)
1019 {
1020 	const struct skc_type *t;
1021 	uint16_t vid, did;
1022 
1023 	vid = pci_get_vendor(dev);
1024 	did = pci_get_device(dev);
1025 
1026 	/*
1027 	 * Only attach to rev.2 of the Linksys EG1032 adapter.
1028 	 * Rev.3 is supported by re(4).
1029 	 */
1030 	if (vid == PCI_VENDOR_LINKSYS &&
1031 	    did == PCI_PRODUCT_LINKSYS_EG1032 &&
1032 	    pci_get_subdevice(dev) != SUBDEVICEID_LINKSYS_EG1032_REV2)
1033 		return ENXIO;
1034 
1035 	for (t = skc_devs; t->skc_name != NULL; t++) {
1036 		if (vid == t->skc_vid && did == t->skc_did) {
1037 			device_set_desc(dev, t->skc_name);
1038 			return 0;
1039 		}
1040 	}
1041 	return ENXIO;
1042 }
1043 
1044 /*
1045  * Force the GEnesis into reset, then bring it out of reset.
1046  */
1047 static void
1048 sk_reset(struct sk_softc *sc)
1049 {
1050 	DPRINTFN(2, ("sk_reset\n"));
1051 
1052 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1053 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1054 	if (SK_IS_YUKON(sc))
1055 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1056 
1057 	DELAY(1000);
1058 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1059 	DELAY(2);
1060 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1061 	if (SK_IS_YUKON(sc))
1062 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1063 
1064 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1065 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1066 		     CSR_READ_2(sc, SK_LINK_CTRL)));
1067 
1068 	if (SK_IS_GENESIS(sc)) {
1069 		/* Configure packet arbiter */
1070 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1071 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1072 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1073 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1074 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1075 	}
1076 
1077 	/* Enable RAM interface */
1078 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1079 
1080 	/*
1081 	 * Configure interrupt moderation. The moderation timer
1082 	 * defers interrupts specified in the interrupt moderation
1083 	 * timer mask based on the timeout specified in the interrupt
1084 	 * moderation timer init register. Each bit in the timer
1085 	 * register represents one tick, so to specify a timeout in
1086 	 * microseconds, we have to multiply by the correct number of
1087 	 * ticks-per-microsecond.
1088 	 */
1089 	KKASSERT(sc->sk_imtimer_ticks != 0 && sc->sk_imtime != 0);
1090 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc, sc->sk_imtime));
1091 	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1092 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1093 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1094 }
1095 
1096 static int
1097 sk_probe(device_t dev)
1098 {
1099 	struct sk_softc *sc = device_get_softc(device_get_parent(dev));
1100 	const char *revstr = "", *name = NULL;
1101 	char devname[80];
1102 
1103 	switch (sc->sk_type) {
1104 	case SK_GENESIS:
1105 		name = "SysKonnect GEnesis";
1106 		break;
1107 	case SK_YUKON:
1108 		name = "Marvell Yukon";
1109 		break;
1110 	case SK_YUKON_LITE:
1111 		name = "Marvell Yukon Lite";
1112 		switch (sc->sk_rev) {
1113 		case SK_YUKON_LITE_REV_A0:
1114 			revstr = " rev.A0";
1115 			break;
1116 		case SK_YUKON_LITE_REV_A1:
1117 			revstr = " rev.A1";
1118 			break;
1119 		case SK_YUKON_LITE_REV_A3:
1120 			revstr = " rev.A3";
1121 			break;
1122 		}
1123 		break;
1124 	case SK_YUKON_LP:
1125 		name = "Marvell Yukon LP";
1126 		break;
1127 	default:
1128 		return ENXIO;
1129 	}
1130 
1131 	ksnprintf(devname, sizeof(devname), "%s%s (0x%x)",
1132 		 name, revstr, sc->sk_rev);
1133 	device_set_desc_copy(dev, devname);
1134 	return 0;
1135 }
1136 
1137 /*
1138  * Each XMAC chip is attached as a separate logical IP interface.
1139  * Single port cards will have only one logical interface of course.
1140  */
1141 static int
1142 sk_attach(device_t dev)
1143 {
1144 	struct sk_softc *sc = device_get_softc(device_get_parent(dev));
1145 	struct sk_if_softc *sc_if = device_get_softc(dev);
1146 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
1147 	int i, error;
1148 
1149 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1150 
1151 	sc_if->sk_port = *(int *)device_get_ivars(dev);
1152 	KKASSERT(sc_if->sk_port == SK_PORT_A || sc_if->sk_port == SK_PORT_B);
1153 
1154 	sc_if->sk_softc = sc;
1155 	sc->sk_if[sc_if->sk_port] = sc_if;
1156 
1157 	kfree(device_get_ivars(dev), M_DEVBUF);
1158 	device_set_ivars(dev, NULL);
1159 
1160 	if (sc_if->sk_port == SK_PORT_A)
1161 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1162 	if (sc_if->sk_port == SK_PORT_B)
1163 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1164 
1165 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1166 
1167 	/*
1168 	 * Get station address for this interface. Note that
1169 	 * dual port cards actually come with three station
1170 	 * addresses: one for each port, plus an extra. The
1171 	 * extra one is used by the SysKonnect driver software
1172 	 * as a 'virtual' station address for when both ports
1173 	 * are operating in failover mode. Currently we don't
1174 	 * use this extra address.
1175 	 */
1176 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
1177 		/* XXX */
1178 		sc_if->arpcom.ac_enaddr[i] =
1179 		    sk_win_read_1(sc, SK_MAC0_0 + (sc_if->sk_port * 8) + i);
1180 	}
1181 
1182 	/*
1183 	 * Set up RAM buffer addresses. The NIC will have a certain
1184 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1185 	 * need to divide this up a) between the transmitter and
1186  	 * receiver and b) between the two XMACs, if this is a
1187 	 * dual port NIC. Our algorithm is to divide up the memory
1188 	 * evenly so that everyone gets a fair share.
1189 	 */
1190 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1191 		uint32_t chunk, val;
1192 
1193 		chunk = sc->sk_ramsize / 2;
1194 		val = sc->sk_rboff / sizeof(uint64_t);
1195 		sc_if->sk_rx_ramstart = val;
1196 		val += (chunk / sizeof(uint64_t));
1197 		sc_if->sk_rx_ramend = val - 1;
1198 		sc_if->sk_tx_ramstart = val;
1199 		val += (chunk / sizeof(uint64_t));
1200 		sc_if->sk_tx_ramend = val - 1;
1201 	} else {
1202 		uint32_t chunk, val;
1203 
1204 		chunk = sc->sk_ramsize / 4;
1205 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1206 		    sizeof(uint64_t);
1207 		sc_if->sk_rx_ramstart = val;
1208 		val += (chunk / sizeof(uint64_t));
1209 		sc_if->sk_rx_ramend = val - 1;
1210 		sc_if->sk_tx_ramstart = val;
1211 		val += (chunk / sizeof(uint64_t));
1212 		sc_if->sk_tx_ramend = val - 1;
1213 	}
1214 
1215 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1216 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
1217 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1218 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1219 
1220 	/* Read and save PHY type */
1221 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1222 
1223 	/* Set PHY address */
1224 	if (SK_IS_GENESIS(sc)) {
1225 		switch (sc_if->sk_phytype) {
1226 		case SK_PHYTYPE_XMAC:
1227 			sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1228 			break;
1229 		case SK_PHYTYPE_BCOM:
1230 			sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1231 			break;
1232 		default:
1233 			device_printf(dev, "unsupported PHY type: %d\n",
1234 			    sc_if->sk_phytype);
1235 			error = ENXIO;
1236 			goto fail;
1237 		}
1238 	}
1239 
1240 	if (SK_IS_YUKON(sc)) {
1241 		if ((sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER &&
1242 		    sc->sk_pmd != 'L' && sc->sk_pmd != 'S')) {
1243 			/* not initialized, punt */
1244 			sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER;
1245 			sc->sk_coppertype = 1;
1246 		}
1247 
1248 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1249 
1250 		if (!(sc->sk_coppertype))
1251 			sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER;
1252 	}
1253 
1254 	error = sk_dma_alloc(dev);
1255 	if (error)
1256 		goto fail;
1257 
1258 	ifp->if_softc = sc_if;
1259 	ifp->if_mtu = ETHERMTU;
1260 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1261 	ifp->if_ioctl = sk_ioctl;
1262 	ifp->if_start = sk_start;
1263 	ifp->if_watchdog = sk_watchdog;
1264 	ifp->if_init = sk_init;
1265 	ifp->if_baudrate = 1000000000;
1266 	ifq_set_maxlen(&ifp->if_snd, SK_TX_RING_CNT - 1);
1267 	ifq_set_ready(&ifp->if_snd);
1268 
1269 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1270 
1271 	/* Don't use jumbo buffers by default */
1272 	sc_if->sk_use_jumbo = 0;
1273 
1274 	/*
1275 	 * Do miibus setup.
1276 	 */
1277 	switch (sc->sk_type) {
1278 	case SK_GENESIS:
1279 		sk_init_xmac(sc_if);
1280 		break;
1281 	case SK_YUKON:
1282 	case SK_YUKON_LITE:
1283 	case SK_YUKON_LP:
1284 		sk_init_yukon(sc_if);
1285 		break;
1286 	default:
1287 		device_printf(dev, "unknown device type %d\n", sc->sk_type);
1288 		error = ENXIO;
1289 		goto fail;
1290 	}
1291 
1292  	DPRINTFN(2, ("sk_attach: 1\n"));
1293 
1294 	error = mii_phy_probe(dev, &sc_if->sk_miibus,
1295 			      sk_ifmedia_upd, sk_ifmedia_sts);
1296 	if (error) {
1297 		device_printf(dev, "no PHY found!\n");
1298 		goto fail;
1299 	}
1300 
1301 	callout_init(&sc_if->sk_tick_timer);
1302 
1303 	/*
1304 	 * Call MI attach routines.
1305 	 */
1306 	ether_ifattach(ifp, sc_if->arpcom.ac_enaddr, &sc->sk_serializer);
1307 
1308 	DPRINTFN(2, ("sk_attach: end\n"));
1309 	return 0;
1310 fail:
1311 	sk_detach(dev);
1312 	sc->sk_if[sc_if->sk_port] = NULL;
1313 	return error;
1314 }
1315 
1316 /*
1317  * Attach the interface. Allocate softc structures, do ifmedia
1318  * setup and ethernet/BPF attach.
1319  */
1320 static int
1321 skc_attach(device_t dev)
1322 {
1323 	struct sk_softc *sc = device_get_softc(dev);
1324 	uint8_t skrs;
1325 	int *port;
1326 	int error, cpuid;
1327 
1328 	DPRINTFN(2, ("begin skc_attach\n"));
1329 
1330 	sc->sk_dev = dev;
1331 	lwkt_serialize_init(&sc->sk_serializer);
1332 
1333 #ifndef BURN_BRIDGES
1334 	/*
1335 	 * Handle power management nonsense.
1336 	 */
1337 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1338 		uint32_t iobase, membase, irq;
1339 
1340 		/* Save important PCI config data. */
1341 		iobase = pci_read_config(dev, SK_PCI_LOIO, 4);
1342 		membase = pci_read_config(dev, SK_PCI_LOMEM, 4);
1343 		irq = pci_read_config(dev, SK_PCI_INTLINE, 4);
1344 
1345 		/* Reset the power state. */
1346 		device_printf(dev, "chip is in D%d power mode "
1347 			      "-- setting to D0\n", pci_get_powerstate(dev));
1348 
1349 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1350 
1351 		/* Restore PCI config data. */
1352 		pci_write_config(dev, SK_PCI_LOIO, iobase, 4);
1353 		pci_write_config(dev, SK_PCI_LOMEM, membase, 4);
1354 		pci_write_config(dev, SK_PCI_INTLINE, irq, 4);
1355 	}
1356 #endif	/* BURN_BRIDGES */
1357 
1358 	/*
1359 	 * Map control/status registers.
1360 	 */
1361 	pci_enable_busmaster(dev);
1362 
1363 	sc->sk_res_rid = SK_PCI_LOMEM;
1364 	sc->sk_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1365 					    &sc->sk_res_rid, RF_ACTIVE);
1366 	if (sc->sk_res == NULL) {
1367 		device_printf(dev, "couldn't map memory\n");
1368 		error = ENXIO;
1369 		goto fail;
1370 	}
1371 	sc->sk_btag = rman_get_bustag(sc->sk_res);
1372 	sc->sk_bhandle = rman_get_bushandle(sc->sk_res);
1373 
1374 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1375 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1376 
1377 	/* Bail out here if chip is not recognized */
1378 	if (!SK_IS_GENESIS(sc) && !SK_IS_YUKON(sc)) {
1379 		device_printf(dev, "unknown chip type: %d\n", sc->sk_type);
1380 		error = ENXIO;
1381 		goto fail;
1382 	}
1383 
1384 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1385 
1386 	/* Allocate interrupt */
1387 	sc->sk_irq_rid = 0;
1388 	sc->sk_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->sk_irq_rid,
1389 					    RF_SHAREABLE | RF_ACTIVE);
1390 	if (sc->sk_irq == NULL) {
1391 		device_printf(dev, "couldn't map interrupt\n");
1392 		error = ENXIO;
1393 		goto fail;
1394 	}
1395 
1396 	switch (sc->sk_type) {
1397 	case SK_GENESIS:
1398 		sc->sk_imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1399 		break;
1400 	default:
1401 		sc->sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1402 		break;
1403 	}
1404 	sc->sk_imtime = skc_imtime;
1405 
1406 	/* Reset the adapter. */
1407 	sk_reset(sc);
1408 
1409 	skrs = sk_win_read_1(sc, SK_EPROM0);
1410 	if (SK_IS_GENESIS(sc)) {
1411 		/* Read and save RAM size and RAMbuffer offset */
1412 		switch(skrs) {
1413 		case SK_RAMSIZE_512K_64:
1414 			sc->sk_ramsize = 0x80000;
1415 			sc->sk_rboff = SK_RBOFF_0;
1416 			break;
1417 		case SK_RAMSIZE_1024K_64:
1418 			sc->sk_ramsize = 0x100000;
1419 			sc->sk_rboff = SK_RBOFF_80000;
1420 			break;
1421 		case SK_RAMSIZE_1024K_128:
1422 			sc->sk_ramsize = 0x100000;
1423 			sc->sk_rboff = SK_RBOFF_0;
1424 			break;
1425 		case SK_RAMSIZE_2048K_128:
1426 			sc->sk_ramsize = 0x200000;
1427 			sc->sk_rboff = SK_RBOFF_0;
1428 			break;
1429 		default:
1430 			device_printf(dev, "unknown ram size: %d\n", skrs);
1431 			error = ENXIO;
1432 			goto fail;
1433 		}
1434 	} else {
1435 		if (skrs == 0x00)
1436 			sc->sk_ramsize = 0x20000;
1437 		else
1438 			sc->sk_ramsize = skrs * (1<<12);
1439 		sc->sk_rboff = SK_RBOFF_0;
1440 	}
1441 
1442 	DPRINTFN(2, ("skc_attach: ramsize=%d (%dk), rboff=%d\n",
1443 		     sc->sk_ramsize, sc->sk_ramsize / 1024,
1444 		     sc->sk_rboff));
1445 
1446 	/* Read and save physical media type */
1447 	sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE);
1448 
1449 	if (sc->sk_pmd == 'T' || sc->sk_pmd == '1')
1450 		sc->sk_coppertype = 1;
1451 	else
1452 		sc->sk_coppertype = 0;
1453 
1454 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1455 	if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) {
1456 		uint32_t flashaddr;
1457 		uint8_t testbyte;
1458 
1459 		flashaddr = sk_win_read_4(sc, SK_EP_ADDR);
1460 
1461 		/* Test Flash-Address Register */
1462 		sk_win_write_1(sc, SK_EP_ADDR+3, 0xff);
1463 		testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1464 
1465 		if (testbyte != 0) {
1466 			/* This is a Yukon Lite Rev A0 */
1467 			sc->sk_type = SK_YUKON_LITE;
1468 			sc->sk_rev = SK_YUKON_LITE_REV_A0;
1469 			/* Restore Flash-Address Register */
1470 			sk_win_write_4(sc, SK_EP_ADDR, flashaddr);
1471 		}
1472 	}
1473 
1474 	/*
1475 	 * Create sysctl nodes.
1476 	 */
1477 	sysctl_ctx_init(&sc->sk_sysctl_ctx);
1478 	sc->sk_sysctl_tree = SYSCTL_ADD_NODE(&sc->sk_sysctl_ctx,
1479 					     SYSCTL_STATIC_CHILDREN(_hw),
1480 					     OID_AUTO,
1481 					     device_get_nameunit(dev),
1482 					     CTLFLAG_RD, 0, "");
1483 	if (sc->sk_sysctl_tree == NULL) {
1484 		device_printf(dev, "can't add sysctl node\n");
1485 		error = ENXIO;
1486 		goto fail;
1487 	}
1488 	SYSCTL_ADD_PROC(&sc->sk_sysctl_ctx,
1489 			SYSCTL_CHILDREN(sc->sk_sysctl_tree),
1490 			OID_AUTO, "imtime", CTLTYPE_INT | CTLFLAG_RW,
1491 			sc, 0, skc_sysctl_imtime, "I",
1492 			"Interrupt moderation time (usec).");
1493 
1494 	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1495 	port = kmalloc(sizeof(*port), M_DEVBUF, M_WAITOK);
1496 	*port = SK_PORT_A;
1497 	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1498 
1499 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1500 		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1501 		port = kmalloc(sizeof(*port), M_DEVBUF, M_WAITOK);
1502 		*port = SK_PORT_B;
1503 		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1504 	}
1505 
1506 	/* Turn on the 'driver is loaded' LED. */
1507 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1508 
1509 	bus_generic_attach(dev);
1510 
1511 	error = bus_setup_intr(dev, sc->sk_irq, INTR_NETSAFE, sk_intr, sc,
1512 			       &sc->sk_intrhand, &sc->sk_serializer);
1513 	if (error) {
1514 		device_printf(dev, "couldn't set up irq\n");
1515 		goto fail;
1516 	}
1517 
1518 	cpuid = ithread_cpuid(rman_get_start(sc->sk_irq));
1519 	KKASSERT(cpuid >= 0 && cpuid < ncpus);
1520 
1521 	if (sc->sk_if[0] != NULL)
1522 		sc->sk_if[0]->arpcom.ac_if.if_cpuid = cpuid;
1523 	if (sc->sk_if[1] != NULL)
1524 		sc->sk_if[1]->arpcom.ac_if.if_cpuid = cpuid;
1525 
1526 	return 0;
1527 fail:
1528 	skc_detach(dev);
1529 	return error;
1530 }
1531 
1532 static int
1533 sk_detach(device_t dev)
1534 {
1535 	struct sk_if_softc *sc_if = device_get_softc(dev);
1536 
1537 	if (device_is_attached(dev)) {
1538 		struct sk_softc *sc = sc_if->sk_softc;
1539 		struct ifnet *ifp = &sc_if->arpcom.ac_if;
1540 
1541 		lwkt_serialize_enter(ifp->if_serializer);
1542 
1543 		if (sc->sk_intrhand != NULL) {
1544 			if (sc->sk_if[SK_PORT_A] != NULL)
1545 				sk_stop(sc->sk_if[SK_PORT_A]);
1546 			if (sc->sk_if[SK_PORT_B] != NULL)
1547 				sk_stop(sc->sk_if[SK_PORT_B]);
1548 
1549 			bus_teardown_intr(sc->sk_dev, sc->sk_irq,
1550 					  sc->sk_intrhand);
1551 			sc->sk_intrhand = NULL;
1552 		}
1553 
1554 		lwkt_serialize_exit(ifp->if_serializer);
1555 
1556 		ether_ifdetach(ifp);
1557 	}
1558 
1559 	if (sc_if->sk_miibus != NULL)
1560 		device_delete_child(dev, sc_if->sk_miibus);
1561 
1562 	sk_dma_free(dev);
1563 	return 0;
1564 }
1565 
1566 static int
1567 skc_detach(device_t dev)
1568 {
1569 	struct sk_softc *sc = device_get_softc(dev);
1570 	int *port;
1571 
1572 #ifdef INVARIANTS
1573 	if (device_is_attached(dev)) {
1574 		KASSERT(sc->sk_intrhand == NULL,
1575 			("intr has not been torn down yet"));
1576 	}
1577 #endif
1578 
1579 	if (sc->sk_devs[SK_PORT_A] != NULL) {
1580 		port = device_get_ivars(sc->sk_devs[SK_PORT_A]);
1581 		if (port != NULL) {
1582 			kfree(port, M_DEVBUF);
1583 			device_set_ivars(sc->sk_devs[SK_PORT_A], NULL);
1584 		}
1585 		device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1586 	}
1587 	if (sc->sk_devs[SK_PORT_B] != NULL) {
1588 		port = device_get_ivars(sc->sk_devs[SK_PORT_B]);
1589 		if (port != NULL) {
1590 			kfree(port, M_DEVBUF);
1591 			device_set_ivars(sc->sk_devs[SK_PORT_B], NULL);
1592 		}
1593 		device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1594 	}
1595 
1596 	if (sc->sk_irq != NULL) {
1597 		bus_release_resource(dev, SYS_RES_IRQ, sc->sk_irq_rid,
1598 				     sc->sk_irq);
1599 	}
1600 	if (sc->sk_res != NULL) {
1601 		bus_release_resource(dev, SYS_RES_MEMORY, sc->sk_res_rid,
1602 				     sc->sk_res);
1603 	}
1604 
1605 	if (sc->sk_sysctl_tree != NULL)
1606 		sysctl_ctx_free(&sc->sk_sysctl_ctx);
1607 
1608 	return 0;
1609 }
1610 
1611 static int
1612 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
1613 {
1614 	struct sk_chain_data *cd = &sc_if->sk_cdata;
1615 	struct sk_ring_data *rd = sc_if->sk_rdata;
1616 	struct sk_tx_desc *f = NULL;
1617 	uint32_t frag, cur, sk_ctl;
1618 	struct sk_dma_ctx ctx;
1619 	bus_dma_segment_t segs[SK_NTXSEG];
1620 	bus_dmamap_t map;
1621 	int i, error;
1622 
1623 	DPRINTFN(2, ("sk_encap\n"));
1624 
1625 	cur = frag = *txidx;
1626 
1627 #ifdef SK_DEBUG
1628 	if (skdebug >= 2)
1629 		sk_dump_mbuf(m_head);
1630 #endif
1631 
1632 	map = cd->sk_tx_dmap[*txidx];
1633 
1634 	/*
1635 	 * Start packing the mbufs in this chain into
1636 	 * the fragment pointers. Stop when we run out
1637 	 * of fragments or hit the end of the mbuf chain.
1638 	 */
1639 	ctx.nsegs = SK_NTXSEG;
1640 	ctx.segs = segs;
1641 	error = bus_dmamap_load_mbuf(cd->sk_tx_dtag, map, m_head,
1642 				     sk_buf_dma_addr, &ctx, BUS_DMA_NOWAIT);
1643 	if (error) {
1644 		if_printf(&sc_if->arpcom.ac_if, "could not map TX mbuf\n");
1645 		return ENOBUFS;
1646 	}
1647 
1648 	if ((SK_TX_RING_CNT - (cd->sk_tx_cnt + ctx.nsegs)) < 2) {
1649 		bus_dmamap_unload(cd->sk_tx_dtag, map);
1650 		DPRINTFN(2, ("sk_encap: too few descriptors free\n"));
1651 		return ENOBUFS;
1652 	}
1653 
1654 	DPRINTFN(2, ("sk_encap: nsegs=%d\n", ctx.nsegs));
1655 
1656 	/* Sync the DMA map. */
1657 	bus_dmamap_sync(cd->sk_tx_dtag, map, BUS_DMASYNC_PREWRITE);
1658 
1659 	for (i = 0; i < ctx.nsegs; i++) {
1660 		f = &rd->sk_tx_ring[frag];
1661 		f->sk_data_lo = htole32(segs[i].ds_addr);
1662 		sk_ctl = segs[i].ds_len | SK_OPCODE_DEFAULT;
1663 		if (i == 0)
1664 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
1665 		else
1666 			sk_ctl |= SK_TXCTL_OWN;
1667 		f->sk_ctl = htole32(sk_ctl);
1668 		cur = frag;
1669 		SK_INC(frag, SK_TX_RING_CNT);
1670 	}
1671 
1672 	cd->sk_tx_mbuf[cur] = m_head;
1673 	/* Switch DMA map */
1674 	cd->sk_tx_dmap[*txidx] = cd->sk_tx_dmap[cur];
1675 	cd->sk_tx_dmap[cur] = map;
1676 
1677 	rd->sk_tx_ring[cur].sk_ctl |=
1678 		htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1679 	rd->sk_tx_ring[*txidx].sk_ctl |= htole32(SK_TXCTL_OWN);
1680 
1681 	/* Sync first descriptor to hand it off */
1682 	bus_dmamap_sync(sc_if->sk_rdata_dtag, sc_if->sk_rdata_dmap,
1683 			BUS_DMASYNC_PREWRITE);
1684 
1685 	sc_if->sk_cdata.sk_tx_cnt += ctx.nsegs;
1686 
1687 #ifdef SK_DEBUG
1688 	if (skdebug >= 2) {
1689 		struct sk_tx_desc *desc;
1690 		uint32_t idx;
1691 
1692 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1693 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1694 			sk_dump_txdesc(desc, idx);
1695 		}
1696 	}
1697 #endif
1698 
1699 	*txidx = frag;
1700 
1701 	DPRINTFN(2, ("sk_encap: completed successfully\n"));
1702 
1703 	return (0);
1704 }
1705 
1706 static void
1707 sk_start(struct ifnet *ifp)
1708 {
1709         struct sk_if_softc *sc_if = ifp->if_softc;
1710         struct sk_softc *sc = sc_if->sk_softc;
1711         struct mbuf *m_head = NULL;
1712 	uint32_t idx = sc_if->sk_cdata.sk_tx_prod;
1713 	int pkts = 0;
1714 
1715 	DPRINTFN(2, ("sk_start\n"));
1716 
1717 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1718 		return;
1719 
1720 	while (sc_if->sk_cdata.sk_tx_mbuf[idx] == NULL) {
1721 		if ((SK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt) <= 2) {
1722 			ifp->if_flags |= IFF_OACTIVE;
1723 			break;
1724 		}
1725 
1726 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1727 		if (m_head == NULL)
1728 			break;
1729 
1730 		/*
1731 		 * Pack the data into the transmit ring. If we
1732 		 * don't have room, set the OACTIVE flag and wait
1733 		 * for the NIC to drain the ring.
1734 		 */
1735 		if (sk_encap(sc_if, m_head, &idx)) {
1736 			ifp->if_flags |= IFF_OACTIVE;
1737 			ifq_prepend(&ifp->if_snd, m_head);
1738 			break;
1739 		}
1740 
1741 		pkts++;
1742 		BPF_MTAP(ifp, m_head);
1743 	}
1744 	if (pkts == 0)
1745 		return;
1746 
1747 	/* Transmit */
1748 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
1749 		sc_if->sk_cdata.sk_tx_prod = idx;
1750 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1751 
1752 		/* Set a timeout in case the chip goes out to lunch. */
1753 		ifp->if_timer = 5;
1754 	}
1755 }
1756 
1757 static void
1758 sk_watchdog(struct ifnet *ifp)
1759 {
1760 	struct sk_if_softc *sc_if = ifp->if_softc;
1761 
1762 	ASSERT_SERIALIZED(ifp->if_serializer);
1763 	/*
1764 	 * Reclaim first as there is a possibility of losing Tx completion
1765 	 * interrupts.
1766 	 */
1767 	sk_txeof(sc_if);
1768 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1769 		if_printf(&sc_if->arpcom.ac_if, "watchdog timeout\n");
1770 		ifp->if_oerrors++;
1771 		ifp->if_flags &= ~IFF_RUNNING;
1772 		sk_init(sc_if);
1773 	}
1774 }
1775 
1776 static void
1777 skc_shutdown(device_t dev)
1778 {
1779 	struct sk_softc *sc = device_get_softc(dev);
1780 
1781 	DPRINTFN(2, ("sk_shutdown\n"));
1782 
1783 	lwkt_serialize_enter(&sc->sk_serializer);
1784 
1785 	/* Turn off the 'driver is loaded' LED. */
1786 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1787 
1788 	/*
1789 	 * Reset the GEnesis controller. Doing this should also
1790 	 * assert the resets on the attached XMAC(s).
1791 	 */
1792 	sk_reset(sc);
1793 
1794 	lwkt_serialize_exit(&sc->sk_serializer);
1795 }
1796 
1797 static __inline int
1798 sk_rxvalid(struct sk_softc *sc, uint32_t stat, uint32_t len)
1799 {
1800 	if (sc->sk_type == SK_GENESIS) {
1801 		if ((stat & XM_RXSTAT_ERRFRAME) == XM_RXSTAT_ERRFRAME ||
1802 		    XM_RXSTAT_BYTES(stat) != len)
1803 			return (0);
1804 	} else {
1805 		if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
1806 		    YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
1807 		    YU_RXSTAT_JABBER)) != 0 ||
1808 		    (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
1809 		    YU_RXSTAT_BYTES(stat) != len)
1810 			return (0);
1811 	}
1812 
1813 	return (1);
1814 }
1815 
1816 static void
1817 sk_rxeof(struct sk_if_softc *sc_if)
1818 {
1819 	struct sk_softc *sc = sc_if->sk_softc;
1820 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
1821 	struct sk_chain_data *cd = &sc_if->sk_cdata;
1822 	struct sk_ring_data *rd = sc_if->sk_rdata;
1823 	int i, reap, max_frmlen;
1824 
1825 	DPRINTFN(2, ("sk_rxeof\n"));
1826 
1827 	i = cd->sk_rx_prod;
1828 
1829 	bus_dmamap_sync(sc_if->sk_rdata_dtag, sc_if->sk_rdata_dmap,
1830 			BUS_DMASYNC_POSTREAD);
1831 	if (sc_if->sk_use_jumbo) {
1832 		bus_dmamap_sync(cd->sk_jpool_dtag, cd->sk_jpool_dmap,
1833 				BUS_DMASYNC_POSTREAD);
1834 		max_frmlen = SK_JUMBO_FRAMELEN;
1835 	} else {
1836 		max_frmlen = ETHER_MAX_LEN;
1837 	}
1838 
1839 	reap = 0;
1840 	for (;;) {
1841 		struct sk_rx_desc *cur_desc;
1842 		uint32_t rxstat, sk_ctl;
1843 #ifdef SK_RXCSUM
1844 		uint16_t csum1, csum2;
1845 #endif
1846 		int cur, total_len;
1847 		struct mbuf *m;
1848 
1849 		cur = i;
1850 		cur_desc = &rd->sk_rx_ring[cur];
1851 
1852 		sk_ctl = le32toh(cur_desc->sk_ctl);
1853 		if (sk_ctl & SK_RXCTL_OWN) {
1854 			/* Invalidate the descriptor -- it's not ready yet */
1855 			cd->sk_rx_prod = cur;
1856 			break;
1857 		}
1858 
1859 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
1860 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
1861 
1862 #ifdef SK_RXCSUM
1863 		csum1 = le16toh(cur_desc->sk_csum1);
1864 		csum2 = le16toh(cur_desc->sk_csum2);
1865 #endif
1866 
1867 		m = cd->sk_rx_mbuf[cur];
1868 
1869 		/*
1870 		 * Bump 'i' here, so we can keep going, even if the current
1871 		 * RX descriptor reaping fails later.  'i' shoult NOT be used
1872 		 * in the following processing any more.
1873 		 */
1874 		SK_INC(i, SK_RX_RING_CNT);
1875 		reap = 1;
1876 
1877 		if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
1878 		    SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
1879 		    SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
1880 		    total_len < SK_MIN_FRAMELEN || total_len > max_frmlen ||
1881 		    sk_rxvalid(sc, rxstat, total_len) == 0) {
1882 			ifp->if_ierrors++;
1883 			cur_desc->sk_ctl = htole32(m->m_pkthdr.len | SK_RXSTAT);
1884 			continue;
1885 		}
1886 
1887 		if (!sc_if->sk_use_jumbo) {
1888 			bus_dmamap_sync(cd->sk_rx_dtag, cd->sk_rx_dmap[cur],
1889 					BUS_DMASYNC_POSTREAD);
1890 		}
1891 
1892 		/*
1893 		 * Try to allocate a new RX buffer. If that fails,
1894 		 * copy the packet to mbufs and put the RX buffer
1895 		 * back in the ring so it can be re-used. If
1896 		 * allocating mbufs fails, then we have to drop
1897 		 * the packet.
1898 		 */
1899 		if (sk_newbuf(sc_if, cur, 0)) {
1900 			struct mbuf *m0;
1901 
1902 			cur_desc->sk_ctl = htole32(m->m_pkthdr.len | SK_RXSTAT);
1903 
1904 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1905 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
1906 			if (m0 == NULL) {
1907 				ifp->if_ierrors++;
1908 				continue;
1909 			}
1910 			m_adj(m0, ETHER_ALIGN);
1911 			m = m0;
1912 		} else {
1913 			m->m_pkthdr.rcvif = ifp;
1914 			m->m_pkthdr.len = m->m_len = total_len;
1915 		}
1916 
1917 #ifdef SK_RXCSUM
1918 		sk_rxcsum(ifp, m, csum1, csum2);
1919 #endif
1920 
1921 		ifp->if_ipackets++;
1922 		ifp->if_input(ifp, m);
1923 	}
1924 
1925 	if (reap) {
1926 		bus_dmamap_sync(sc_if->sk_rdata_dtag, sc_if->sk_rdata_dmap,
1927 				BUS_DMASYNC_PREWRITE);
1928 	}
1929 }
1930 
1931 #ifdef SK_RXCSUM
1932 static void
1933 sk_rxcsum(struct ifnet *ifp, struct mbuf *m,
1934 	  const uint16_t csum1, const uint16_t csum2)
1935 {
1936 	struct ether_header *eh;
1937 	struct ip *ip;
1938 	uint8_t *pp;
1939 	int hlen, len, plen;
1940 	uint16_t iph_csum, ipo_csum, ipd_csum, csum;
1941 
1942 	pp = mtod(m, uint8_t *);
1943 	plen = m->m_pkthdr.len;
1944 	if (plen < sizeof(*eh))
1945 		return;
1946 	eh = (struct ether_header *)pp;
1947 	iph_csum = in_addword(csum1, (~csum2 & 0xffff));
1948 
1949 	if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1950 		uint16_t *xp = (uint16_t *)pp;
1951 
1952 		xp = (uint16_t *)pp;
1953 		if (xp[1] != htons(ETHERTYPE_IP))
1954 			return;
1955 		iph_csum = in_addword(iph_csum, (~xp[0] & 0xffff));
1956 		iph_csum = in_addword(iph_csum, (~xp[1] & 0xffff));
1957 		xp = (uint16_t *)(pp + sizeof(struct ip));
1958 		iph_csum = in_addword(iph_csum, xp[0]);
1959 		iph_csum = in_addword(iph_csum, xp[1]);
1960 		pp += EVL_ENCAPLEN;
1961 	} else if (eh->ether_type != htons(ETHERTYPE_IP)) {
1962 		return;
1963 	}
1964 
1965 	pp += sizeof(*eh);
1966 	plen -= sizeof(*eh);
1967 
1968 	ip = (struct ip *)pp;
1969 
1970 	if (ip->ip_v != IPVERSION)
1971 		return;
1972 
1973 	hlen = ip->ip_hl << 2;
1974 	if (hlen < sizeof(struct ip))
1975 		return;
1976 	if (hlen > ntohs(ip->ip_len))
1977 		return;
1978 
1979 	/* Don't deal with truncated or padded packets. */
1980 	if (plen != ntohs(ip->ip_len))
1981 		return;
1982 
1983 	len = hlen - sizeof(struct ip);
1984 	if (len > 0) {
1985 		uint16_t *p;
1986 
1987 		p = (uint16_t *)(ip + 1);
1988 		ipo_csum = 0;
1989 		for (ipo_csum = 0; len > 0; len -= sizeof(*p), p++)
1990 			ipo_csum = in_addword(ipo_csum, *p);
1991 		iph_csum = in_addword(iph_csum, ipo_csum);
1992 		ipd_csum = in_addword(csum2, (~ipo_csum & 0xffff));
1993 	} else {
1994 		ipd_csum = csum2;
1995 	}
1996 
1997 	if (iph_csum != 0xffff)
1998 		return;
1999 	m->m_pkthdr.csum_flags = CSUM_IP_CHECKED | CSUM_IP_VALID;
2000 
2001 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
2002 		return;                 /* ip frag, we're done for now */
2003 
2004 	pp += hlen;
2005 
2006 	/* Only know checksum protocol for udp/tcp */
2007 	if (ip->ip_p == IPPROTO_UDP) {
2008 		struct udphdr *uh = (struct udphdr *)pp;
2009 
2010 		if (uh->uh_sum == 0)    /* udp with no checksum */
2011 			return;
2012 	} else if (ip->ip_p != IPPROTO_TCP) {
2013 		return;
2014 	}
2015 
2016 	csum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2017 	    htonl(ntohs(ip->ip_len) - hlen + ip->ip_p) + ipd_csum);
2018 	if (csum == 0xffff) {
2019 		m->m_pkthdr.csum_data = csum;
2020 		m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
2021 	}
2022 }
2023 #endif
2024 
2025 static void
2026 sk_txeof(struct sk_if_softc *sc_if)
2027 {
2028 	struct sk_chain_data *cd = &sc_if->sk_cdata;
2029 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2030 	uint32_t idx;
2031 	int reap = 0;
2032 
2033 	DPRINTFN(2, ("sk_txeof\n"));
2034 
2035 	bus_dmamap_sync(sc_if->sk_rdata_dtag, sc_if->sk_rdata_dmap,
2036 			BUS_DMASYNC_POSTREAD);
2037 
2038 	/*
2039 	 * Go through our tx ring and free mbufs for those
2040 	 * frames that have been sent.
2041 	 */
2042 	idx = cd->sk_tx_cons;
2043 	while (idx != cd->sk_tx_prod) {
2044 		struct sk_tx_desc *cur_tx;
2045 		uint32_t sk_ctl;
2046 
2047 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2048 		sk_ctl = le32toh(cur_tx->sk_ctl);
2049 #ifdef SK_DEBUG
2050 		if (skdebug >= 2)
2051 			sk_dump_txdesc(cur_tx, idx);
2052 #endif
2053 		if (sk_ctl & SK_TXCTL_OWN)
2054 			break;
2055 		if (sk_ctl & SK_TXCTL_LASTFRAG)
2056 			ifp->if_opackets++;
2057 		if (cd->sk_tx_mbuf[idx] != NULL) {
2058 			bus_dmamap_unload(cd->sk_tx_dtag, cd->sk_tx_dmap[idx]);
2059 			m_freem(cd->sk_tx_mbuf[idx]);
2060 			cd->sk_tx_mbuf[idx] = NULL;
2061 		}
2062 		sc_if->sk_cdata.sk_tx_cnt--;
2063 		reap = 1;
2064 		SK_INC(idx, SK_TX_RING_CNT);
2065 	}
2066 	ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2067 
2068 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2069 		ifp->if_flags &= ~IFF_OACTIVE;
2070 
2071 	sc_if->sk_cdata.sk_tx_cons = idx;
2072 
2073 	if (reap) {
2074 		bus_dmamap_sync(sc_if->sk_rdata_dtag, sc_if->sk_rdata_dmap,
2075 				BUS_DMASYNC_PREWRITE);
2076 	}
2077 }
2078 
2079 static void
2080 sk_tick(void *xsc_if)
2081 {
2082 	struct sk_if_softc *sc_if = xsc_if;
2083 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2084 	struct mii_data *mii = device_get_softc(sc_if->sk_miibus);
2085 	int i;
2086 
2087 	DPRINTFN(2, ("sk_tick\n"));
2088 
2089 	lwkt_serialize_enter(ifp->if_serializer);
2090 
2091 	if ((ifp->if_flags & IFF_UP) == 0) {
2092 		lwkt_serialize_exit(ifp->if_serializer);
2093 		return;
2094 	}
2095 
2096 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2097 		sk_intr_bcom(sc_if);
2098 		lwkt_serialize_exit(ifp->if_serializer);
2099 		return;
2100 	}
2101 
2102 	/*
2103 	 * According to SysKonnect, the correct way to verify that
2104 	 * the link has come back up is to poll bit 0 of the GPIO
2105 	 * register three times. This pin has the signal from the
2106 	 * link sync pin connected to it; if we read the same link
2107 	 * state 3 times in a row, we know the link is up.
2108 	 */
2109 	for (i = 0; i < 3; i++) {
2110 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2111 			break;
2112 	}
2113 
2114 	if (i != 3) {
2115 		callout_reset(&sc_if->sk_tick_timer, hz, sk_tick, sc_if);
2116 		lwkt_serialize_exit(ifp->if_serializer);
2117 		return;
2118 	}
2119 
2120 	/* Turn the GP0 interrupt back on. */
2121 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2122 	SK_XM_READ_2(sc_if, XM_ISR);
2123 	mii_tick(mii);
2124 	callout_stop(&sc_if->sk_tick_timer);
2125 	lwkt_serialize_exit(ifp->if_serializer);
2126 }
2127 
2128 static void
2129 sk_yukon_tick(void *xsc_if)
2130 {
2131 	struct sk_if_softc *sc_if = xsc_if;
2132 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2133 	struct mii_data *mii = device_get_softc(sc_if->sk_miibus);
2134 
2135 	lwkt_serialize_enter(ifp->if_serializer);
2136 	mii_tick(mii);
2137 	callout_reset(&sc_if->sk_tick_timer, hz, sk_yukon_tick, sc_if);
2138 	lwkt_serialize_exit(ifp->if_serializer);
2139 }
2140 
2141 static void
2142 sk_intr_bcom(struct sk_if_softc *sc_if)
2143 {
2144 	struct mii_data *mii = device_get_softc(sc_if->sk_miibus);
2145 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2146 	int status;
2147 
2148 	DPRINTFN(2, ("sk_intr_bcom\n"));
2149 
2150 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2151 
2152 	/*
2153 	 * Read the PHY interrupt register to make sure
2154 	 * we clear any pending interrupts.
2155 	 */
2156 	status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2157 
2158 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
2159 		sk_init_xmac(sc_if);
2160 		return;
2161 	}
2162 
2163 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2164 		int lstat;
2165 
2166 		lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
2167 		    BRGPHY_MII_AUXSTS);
2168 
2169 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2170 			mii_mediachg(mii);
2171 			/* Turn off the link LED. */
2172 			SK_IF_WRITE_1(sc_if, 0,
2173 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
2174 			sc_if->sk_link = 0;
2175 		} else if (status & BRGPHY_ISR_LNK_CHG) {
2176 			sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2177 			    BRGPHY_MII_IMR, 0xFF00);
2178 			mii_tick(mii);
2179 			sc_if->sk_link = 1;
2180 			/* Turn on the link LED. */
2181 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2182 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2183 			    SK_LINKLED_BLINK_OFF);
2184 		} else {
2185 			mii_tick(mii);
2186 			callout_reset(&sc_if->sk_tick_timer, hz,
2187 				      sk_tick, sc_if);
2188 		}
2189 	}
2190 
2191 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2192 }
2193 
2194 static void
2195 sk_intr_xmac(struct sk_if_softc *sc_if)
2196 {
2197 	uint16_t status;
2198 
2199 	status = SK_XM_READ_2(sc_if, XM_ISR);
2200 	DPRINTFN(2, ("sk_intr_xmac\n"));
2201 
2202 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC &&
2203 	    (status & (XM_ISR_GP0_SET | XM_ISR_AUTONEG_DONE))) {
2204 		if (status & XM_ISR_GP0_SET)
2205 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2206 
2207 		callout_reset(&sc_if->sk_tick_timer, hz,
2208 			      sk_tick, sc_if);
2209 	}
2210 
2211 	if (status & XM_IMR_TX_UNDERRUN)
2212 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2213 
2214 	if (status & XM_IMR_RX_OVERRUN)
2215 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2216 }
2217 
2218 static void
2219 sk_intr_yukon(struct sk_if_softc *sc_if)
2220 {
2221 	uint8_t status;
2222 
2223 	status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
2224 	/* RX overrun */
2225 	if ((status & SK_GMAC_INT_RX_OVER) != 0) {
2226 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2227 		    SK_RFCTL_RX_FIFO_OVER);
2228 	}
2229 	/* TX underrun */
2230 	if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
2231 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2232 		    SK_TFCTL_TX_FIFO_UNDER);
2233 	}
2234 
2235 	DPRINTFN(2, ("sk_intr_yukon status=%#x\n", status));
2236 }
2237 
2238 static void
2239 sk_intr(void *xsc)
2240 {
2241 	struct sk_softc *sc = xsc;
2242 	struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2243 	struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2244 	struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2245 	uint32_t status;
2246 
2247 	ASSERT_SERIALIZED(&sc->sk_serializer);
2248 
2249 	status = CSR_READ_4(sc, SK_ISSR);
2250 	if (status == 0 || status == 0xffffffff)
2251 		return;
2252 
2253 	if (sc_if0 != NULL)
2254 		ifp0 = &sc_if0->arpcom.ac_if;
2255 	if (sc_if1 != NULL)
2256 		ifp1 = &sc_if1->arpcom.ac_if;
2257 
2258 	for (; (status &= sc->sk_intrmask) != 0;) {
2259 		/* Handle receive interrupts first. */
2260 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2261 			sk_rxeof(sc_if0);
2262 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2263 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2264 		}
2265 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2266 			sk_rxeof(sc_if1);
2267 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2268 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2269 		}
2270 
2271 		/* Then transmit interrupts. */
2272 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2273 			sk_txeof(sc_if0);
2274 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2275 			    SK_TXBMU_CLR_IRQ_EOF);
2276 		}
2277 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2278 			sk_txeof(sc_if1);
2279 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2280 			    SK_TXBMU_CLR_IRQ_EOF);
2281 		}
2282 
2283 		/* Then MAC interrupts. */
2284 		if (sc_if0 && (status & SK_ISR_MAC1) &&
2285 		    (ifp0->if_flags & IFF_RUNNING)) {
2286 			if (SK_IS_GENESIS(sc))
2287 				sk_intr_xmac(sc_if0);
2288 			else
2289 				sk_intr_yukon(sc_if0);
2290 		}
2291 
2292 		if (sc_if1 && (status & SK_ISR_MAC2) &&
2293 		    (ifp1->if_flags & IFF_RUNNING)) {
2294 			if (SK_IS_GENESIS(sc))
2295 				sk_intr_xmac(sc_if1);
2296 			else
2297 				sk_intr_yukon(sc_if1);
2298 		}
2299 
2300 		if (status & SK_ISR_EXTERNAL_REG) {
2301 			if (sc_if0 != NULL &&
2302 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2303 				sk_intr_bcom(sc_if0);
2304 
2305 			if (sc_if1 != NULL &&
2306 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2307 				sk_intr_bcom(sc_if1);
2308 		}
2309 		status = CSR_READ_4(sc, SK_ISSR);
2310 	}
2311 
2312 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2313 
2314 	if (ifp0 != NULL && !ifq_is_empty(&ifp0->if_snd))
2315 		if_devstart(ifp0);
2316 	if (ifp1 != NULL && !ifq_is_empty(&ifp1->if_snd))
2317 		if_devstart(ifp1);
2318 }
2319 
2320 static void
2321 sk_init_xmac(struct sk_if_softc	*sc_if)
2322 {
2323 	struct sk_softc *sc = sc_if->sk_softc;
2324 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2325 	static const struct sk_bcom_hack bhack[] = {
2326 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2327 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2328 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2329 	{ 0, 0 } };
2330 
2331 	DPRINTFN(2, ("sk_init_xmac\n"));
2332 
2333 	/* Unreset the XMAC. */
2334 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2335 	DELAY(1000);
2336 
2337 	/* Reset the XMAC's internal state. */
2338 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2339 
2340 	/* Save the XMAC II revision */
2341 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2342 
2343 	/*
2344 	 * Perform additional initialization for external PHYs,
2345 	 * namely for the 1000baseT cards that use the XMAC's
2346 	 * GMII mode.
2347 	 */
2348 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2349 		int i = 0;
2350 		uint32_t val;
2351 
2352 		/* Take PHY out of reset. */
2353 		val = sk_win_read_4(sc, SK_GPIO);
2354 		if (sc_if->sk_port == SK_PORT_A)
2355 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2356 		else
2357 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2358 		sk_win_write_4(sc, SK_GPIO, val);
2359 
2360 		/* Enable GMII mode on the XMAC. */
2361 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2362 
2363 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2364 		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
2365 		DELAY(10000);
2366 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2367 		    BRGPHY_MII_IMR, 0xFFF0);
2368 
2369 		/*
2370 		 * Early versions of the BCM5400 apparently have
2371 		 * a bug that requires them to have their reserved
2372 		 * registers initialized to some magic values. I don't
2373 		 * know what the numbers do, I'm just the messenger.
2374 		 */
2375 		if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
2376 		    == 0x6041) {
2377 			while(bhack[i].reg) {
2378 				sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2379 				    bhack[i].reg, bhack[i].val);
2380 				i++;
2381 			}
2382 		}
2383 	}
2384 
2385 	/* Set station address */
2386 	SK_XM_WRITE_2(sc_if, XM_PAR0,
2387 	    *(uint16_t *)(&sc_if->arpcom.ac_enaddr[0]));
2388 	SK_XM_WRITE_2(sc_if, XM_PAR1,
2389 	    *(uint16_t *)(&sc_if->arpcom.ac_enaddr[2]));
2390 	SK_XM_WRITE_2(sc_if, XM_PAR2,
2391 	    *(uint16_t *)(&sc_if->arpcom.ac_enaddr[4]));
2392 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2393 
2394 	if (ifp->if_flags & IFF_BROADCAST)
2395 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2396 	else
2397 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2398 
2399 	/* We don't need the FCS appended to the packet. */
2400 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2401 
2402 	/* We want short frames padded to 60 bytes. */
2403 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2404 
2405 	/*
2406 	 * Enable the reception of all error frames. This is
2407 	 * a necessary evil due to the design of the XMAC. The
2408 	 * XMAC's receive FIFO is only 8K in size, however jumbo
2409 	 * frames can be up to 9000 bytes in length. When bad
2410 	 * frame filtering is enabled, the XMAC's RX FIFO operates
2411 	 * in 'store and forward' mode. For this to work, the
2412 	 * entire frame has to fit into the FIFO, but that means
2413 	 * that jumbo frames larger than 8192 bytes will be
2414 	 * truncated. Disabling all bad frame filtering causes
2415 	 * the RX FIFO to operate in streaming mode, in which
2416 	 * case the XMAC will start transfering frames out of the
2417 	 * RX FIFO as soon as the FIFO threshold is reached.
2418 	 */
2419 	if (sc_if->sk_use_jumbo) {
2420 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2421 		    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2422 		    XM_MODE_RX_INRANGELEN);
2423 	}
2424 
2425 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2426 
2427 	/*
2428 	 * Bump up the transmit threshold. This helps hold off transmit
2429 	 * underruns when we're blasting traffic from both ports at once.
2430 	 */
2431 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2432 
2433 	/* Set promiscuous mode */
2434 	sk_setpromisc(sc_if);
2435 
2436 	/* Set multicast filter */
2437 	sk_setmulti(sc_if);
2438 
2439 	/* Clear and enable interrupts */
2440 	SK_XM_READ_2(sc_if, XM_ISR);
2441 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2442 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2443 	else
2444 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2445 
2446 	/* Configure MAC arbiter */
2447 	switch(sc_if->sk_xmac_rev) {
2448 	case XM_XMAC_REV_B2:
2449 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2450 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2451 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2452 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2453 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2454 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2455 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2456 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2457 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2458 		break;
2459 	case XM_XMAC_REV_C1:
2460 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2461 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2462 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2463 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2464 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2465 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2466 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2467 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2468 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2469 		break;
2470 	default:
2471 		break;
2472 	}
2473 	sk_win_write_2(sc, SK_MACARB_CTL,
2474 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2475 
2476 	sc_if->sk_link = 1;
2477 }
2478 
2479 static void
2480 sk_init_yukon(struct sk_if_softc *sc_if)
2481 {
2482 	uint32_t phy, v;
2483 	uint16_t reg;
2484 	struct sk_softc *sc;
2485 	int i;
2486 
2487 	sc = sc_if->sk_softc;
2488 
2489 	DPRINTFN(2, ("sk_init_yukon: start: sk_csr=%#x\n",
2490 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2491 
2492 	if (sc->sk_type == SK_YUKON_LITE &&
2493 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2494 		/*
2495 		 * Workaround code for COMA mode, set PHY reset.
2496 		 * Otherwise it will not correctly take chip out of
2497 		 * powerdown (coma)
2498 		 */
2499 		v = sk_win_read_4(sc, SK_GPIO);
2500 		v |= SK_GPIO_DIR9 | SK_GPIO_DAT9;
2501 		sk_win_write_4(sc, SK_GPIO, v);
2502 	}
2503 
2504 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
2505 
2506 	/* GMAC and GPHY Reset */
2507 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2508 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2509 	DELAY(1000);
2510 
2511 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
2512 
2513 	if (sc->sk_type == SK_YUKON_LITE &&
2514 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2515 		/*
2516 		 * Workaround code for COMA mode, clear PHY reset
2517 		 */
2518 		v = sk_win_read_4(sc, SK_GPIO);
2519 		v |= SK_GPIO_DIR9;
2520 		v &= ~SK_GPIO_DAT9;
2521 		sk_win_write_4(sc, SK_GPIO, v);
2522 	}
2523 
2524 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2525 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2526 
2527 	if (sc->sk_coppertype)
2528 		phy |= SK_GPHY_COPPER;
2529 	else
2530 		phy |= SK_GPHY_FIBER;
2531 
2532 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2533 
2534 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2535 	DELAY(1000);
2536 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2537 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2538 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2539 
2540 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2541 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2542 
2543 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
2544 
2545 	/* unused read of the interrupt source register */
2546 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
2547 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2548 
2549 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2550 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2551 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2552 
2553 	/* MIB Counter Clear Mode set */
2554 	reg |= YU_PAR_MIB_CLR;
2555 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2556 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2557 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2558 
2559 	/* MIB Counter Clear Mode clear */
2560 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
2561 	reg &= ~YU_PAR_MIB_CLR;
2562 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2563 
2564 	/* receive control reg */
2565 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
2566 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2567 
2568 	/* transmit parameter register */
2569 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
2570 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2571 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2572 
2573 	/* serial mode register */
2574 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
2575 	reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
2576 	if (sc_if->sk_use_jumbo)
2577 		reg |= YU_SMR_MFL_JUMBO;
2578 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2579 
2580 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
2581 	/* Setup Yukon's address */
2582 	for (i = 0; i < 3; i++) {
2583 		/* Write Source Address 1 (unicast filter) */
2584 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2585 			      sc_if->arpcom.ac_enaddr[i * 2] |
2586 			      sc_if->arpcom.ac_enaddr[i * 2 + 1] << 8);
2587 	}
2588 
2589 	for (i = 0; i < 3; i++) {
2590 		reg = sk_win_read_2(sc_if->sk_softc,
2591 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2592 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2593 	}
2594 
2595 	/* Set promiscuous mode */
2596 	sk_setpromisc(sc_if);
2597 
2598 	/* Set multicast filter */
2599 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
2600 	sk_setmulti(sc_if);
2601 
2602 	/* enable interrupt mask for counter overflows */
2603 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
2604 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2605 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2606 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2607 
2608 	/* Configure RX MAC FIFO Flush Mask */
2609 	v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2610 	    YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2611 	    YU_RXSTAT_JABBER;
2612 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2613 
2614 	/* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */
2615 	if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0)
2616 		v = SK_TFCTL_OPERATION_ON;
2617 	else
2618 		v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
2619 	/* Configure RX MAC FIFO */
2620 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2621 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
2622 
2623 	/* Increase flush threshould to 64 bytes */
2624 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
2625 	    SK_RFCTL_FIFO_THRESHOLD + 1);
2626 
2627 	/* Configure TX MAC FIFO */
2628 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2629 	SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2630 
2631 	DPRINTFN(6, ("sk_init_yukon: end\n"));
2632 }
2633 
2634 /*
2635  * Note that to properly initialize any part of the GEnesis chip,
2636  * you first have to take it out of reset mode.
2637  */
2638 static void
2639 sk_init(void *xsc_if)
2640 {
2641 	struct sk_if_softc *sc_if = xsc_if;
2642 	struct sk_softc *sc = sc_if->sk_softc;
2643 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2644 	struct mii_data *mii = device_get_softc(sc_if->sk_miibus);
2645 
2646 	DPRINTFN(2, ("sk_init\n"));
2647 
2648 	ASSERT_SERIALIZED(ifp->if_serializer);
2649 
2650 	if (ifp->if_flags & IFF_RUNNING)
2651 		return;
2652 
2653 	/* Cancel pending I/O and free all RX/TX buffers. */
2654 	sk_stop(sc_if);
2655 
2656 	/*
2657 	 * NOTE: Change sk_use_jumbo after sk_stop(),
2658 	 *       but before real initialization.
2659 	 */
2660 	if (ifp->if_mtu > ETHER_MAX_LEN)
2661 		sc_if->sk_use_jumbo = 1;
2662 	else
2663 		sc_if->sk_use_jumbo = 0;
2664 	DPRINTF(("use jumbo buffer: %s\n", sc_if->sk_use_jumbo ? "YES" : "NO"));
2665 
2666 	if (SK_IS_GENESIS(sc)) {
2667 		/* Configure LINK_SYNC LED */
2668 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2669 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2670 			SK_LINKLED_LINKSYNC_ON);
2671 
2672 		/* Configure RX LED */
2673 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2674 			SK_RXLEDCTL_COUNTER_START);
2675 
2676 		/* Configure TX LED */
2677 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2678 			SK_TXLEDCTL_COUNTER_START);
2679 	}
2680 
2681 	/*
2682 	 * Configure descriptor poll timer
2683 	 *
2684 	 * SK-NET GENESIS data sheet says that possibility of losing Start
2685 	 * transmit command due to CPU/cache related interim storage problems
2686 	 * under certain conditions. The document recommends a polling
2687 	 * mechanism to send a Start transmit command to initiate transfer
2688 	 * of ready descriptors regulary. To cope with this issue sk(4) now
2689 	 * enables descriptor poll timer to initiate descriptor processing
2690 	 * periodically as defined by SK_DPT_TIMER_MAX. However sk(4) still
2691 	 * issue SK_TXBMU_TX_START to Tx BMU to get fast execution of Tx
2692 	 * command instead of waiting for next descriptor polling time.
2693 	 * The same rule may apply to Rx side too but it seems that is not
2694 	 * needed at the moment.
2695 	 * Since sk(4) uses descriptor polling as a last resort there is no
2696 	 * need to set smaller polling time than maximum allowable one.
2697 	 */
2698 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_INIT, SK_DPT_TIMER_MAX);
2699 
2700 	/* Configure I2C registers */
2701 
2702 	/* Configure XMAC(s) */
2703 	switch (sc->sk_type) {
2704 	case SK_GENESIS:
2705 		sk_init_xmac(sc_if);
2706 		break;
2707 	case SK_YUKON:
2708 	case SK_YUKON_LITE:
2709 	case SK_YUKON_LP:
2710 		sk_init_yukon(sc_if);
2711 		break;
2712 	}
2713 	mii_mediachg(mii);
2714 
2715 	if (SK_IS_GENESIS(sc)) {
2716 		/* Configure MAC FIFOs */
2717 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2718 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2719 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2720 
2721 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2722 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2723 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2724 	}
2725 
2726 	/* Configure transmit arbiter(s) */
2727 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2728 	    SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON);
2729 
2730 	/* Configure RAMbuffers */
2731 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2732 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2733 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2734 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2735 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2736 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2737 
2738 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2739 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2740 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2741 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2742 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2743 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2744 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2745 
2746 	/* Configure BMUs */
2747 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2748 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2749 	    SK_RX_RING_ADDR(sc_if, 0));
2750 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2751 
2752 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2753 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2754 	    SK_TX_RING_ADDR(sc_if, 0));
2755 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2756 
2757 	/* Init descriptors */
2758 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2759 		if_printf(ifp, "initialization failed: "
2760 			  "no memory for rx buffers\n");
2761 		sk_stop(sc_if);
2762 		return;
2763 	}
2764 
2765 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2766 		if_printf(ifp, "initialization failed: "
2767 			  "no memory for tx buffers\n");
2768 		sk_stop(sc_if);
2769 		return;
2770 	}
2771 
2772 	/* Configure interrupt handling */
2773 	CSR_READ_4(sc, SK_ISSR);
2774 	if (sc_if->sk_port == SK_PORT_A)
2775 		sc->sk_intrmask |= SK_INTRS1;
2776 	else
2777 		sc->sk_intrmask |= SK_INTRS2;
2778 
2779 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2780 
2781 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2782 
2783 	/* Start BMUs. */
2784 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2785 
2786 	if (SK_IS_GENESIS(sc)) {
2787 		/* Enable XMACs TX and RX state machines */
2788 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2789 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2790 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2791 	}
2792 
2793 	if (SK_IS_YUKON(sc)) {
2794 		uint16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2795 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2796 #if 0
2797 		/* XXX disable 100Mbps and full duplex mode? */
2798 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_DIS);
2799 #endif
2800 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2801 	}
2802 
2803 	/* Activate descriptor polling timer */
2804 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_START);
2805 	/* Start transfer of Tx descriptors */
2806 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2807 
2808 	ifp->if_flags |= IFF_RUNNING;
2809 	ifp->if_flags &= ~IFF_OACTIVE;
2810 
2811 	if (SK_IS_YUKON(sc))
2812 		callout_reset(&sc_if->sk_tick_timer, hz, sk_yukon_tick, sc_if);
2813 }
2814 
2815 static void
2816 sk_stop(struct sk_if_softc *sc_if)
2817 {
2818 	struct sk_softc *sc = sc_if->sk_softc;
2819 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2820 	struct sk_chain_data *cd = &sc_if->sk_cdata;
2821 	uint32_t val;
2822 	int i;
2823 
2824 	ASSERT_SERIALIZED(ifp->if_serializer);
2825 
2826 	DPRINTFN(2, ("sk_stop\n"));
2827 
2828 	callout_stop(&sc_if->sk_tick_timer);
2829 
2830 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2831 
2832 	/* Stop Tx descriptor polling timer */
2833 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
2834 
2835 	/* Stop transfer of Tx descriptors */
2836 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_STOP);
2837 	for (i = 0; i < SK_TIMEOUT; i++) {
2838 		val = CSR_READ_4(sc, sc_if->sk_tx_bmu);
2839 		if (!(val & SK_TXBMU_TX_STOP))
2840 			break;
2841 		DELAY(1);
2842 	}
2843 	if (i == SK_TIMEOUT)
2844 		if_printf(ifp, "cannot stop transfer of Tx descriptors\n");
2845 
2846 	/* Stop transfer of Rx descriptors */
2847 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_STOP);
2848 	for (i = 0; i < SK_TIMEOUT; i++) {
2849 		val = SK_IF_READ_4(sc_if, 0, SK_RXQ1_BMU_CSR);
2850 		if (!(val & SK_RXBMU_RX_STOP))
2851 			break;
2852 		DELAY(1);
2853 	}
2854 	if (i == SK_TIMEOUT)
2855 		if_printf(ifp, "cannot stop transfer of Rx descriptors\n");
2856 
2857 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2858 		/* Put PHY back into reset. */
2859 		val = sk_win_read_4(sc, SK_GPIO);
2860 		if (sc_if->sk_port == SK_PORT_A) {
2861 			val |= SK_GPIO_DIR0;
2862 			val &= ~SK_GPIO_DAT0;
2863 		} else {
2864 			val |= SK_GPIO_DIR2;
2865 			val &= ~SK_GPIO_DAT2;
2866 		}
2867 		sk_win_write_4(sc, SK_GPIO, val);
2868 	}
2869 
2870 	/* Turn off various components of this interface. */
2871 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2872 	switch (sc->sk_type) {
2873 	case SK_GENESIS:
2874 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
2875 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2876 		break;
2877 	case SK_YUKON:
2878 	case SK_YUKON_LITE:
2879 	case SK_YUKON_LP:
2880 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2881 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2882 		break;
2883 	}
2884 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2885 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2886 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2887 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST,
2888 	    SK_RBCTL_RESET | SK_RBCTL_OFF);
2889 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2890 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2891 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2892 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2893 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2894 
2895 	/* Disable interrupts */
2896 	if (sc_if->sk_port == SK_PORT_A)
2897 		sc->sk_intrmask &= ~SK_INTRS1;
2898 	else
2899 		sc->sk_intrmask &= ~SK_INTRS2;
2900 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2901 
2902 	SK_XM_READ_2(sc_if, XM_ISR);
2903 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2904 
2905 	/* Free RX and TX mbufs still in the queues. */
2906 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2907 		if (cd->sk_rx_mbuf[i] != NULL) {
2908 			if (!sc_if->sk_use_jumbo) {
2909 				bus_dmamap_unload(cd->sk_rx_dtag,
2910 						  cd->sk_rx_dmap[i]);
2911 			}
2912 			m_freem(cd->sk_rx_mbuf[i]);
2913 			cd->sk_rx_mbuf[i] = NULL;
2914 		}
2915 	}
2916 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2917 		if (cd->sk_tx_mbuf[i] != NULL) {
2918 			bus_dmamap_unload(cd->sk_tx_dtag, cd->sk_tx_dmap[i]);
2919 			m_freem(cd->sk_tx_mbuf[i]);
2920 			cd->sk_tx_mbuf[i] = NULL;
2921 		}
2922 	}
2923 }
2924 
2925 #ifdef SK_DEBUG
2926 static void
2927 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2928 {
2929 #define DESC_PRINT(X)					\
2930 	if (X)					\
2931 		kprintf("txdesc[%d]." #X "=%#x\n",	\
2932 		       idx, X);
2933 
2934 	DESC_PRINT(le32toh(desc->sk_ctl));
2935 	DESC_PRINT(le32toh(desc->sk_next));
2936 	DESC_PRINT(le32toh(desc->sk_data_lo));
2937 	DESC_PRINT(le32toh(desc->sk_data_hi));
2938 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
2939 	DESC_PRINT(le16toh(desc->sk_rsvd0));
2940 	DESC_PRINT(le16toh(desc->sk_csum_startval));
2941 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
2942 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
2943 	DESC_PRINT(le16toh(desc->sk_rsvd1));
2944 #undef PRINT
2945 }
2946 
2947 static void
2948 sk_dump_bytes(const char *data, int len)
2949 {
2950 	int c, i, j;
2951 
2952 	for (i = 0; i < len; i += 16) {
2953 		kprintf("%08x  ", i);
2954 		c = len - i;
2955 		if (c > 16) c = 16;
2956 
2957 		for (j = 0; j < c; j++) {
2958 			kprintf("%02x ", data[i + j] & 0xff);
2959 			if ((j & 0xf) == 7 && j > 0)
2960 				kprintf(" ");
2961 		}
2962 
2963 		for (; j < 16; j++)
2964 			kprintf("   ");
2965 		kprintf("  ");
2966 
2967 		for (j = 0; j < c; j++) {
2968 			int ch = data[i + j] & 0xff;
2969 			kprintf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2970 		}
2971 
2972 		kprintf("\n");
2973 
2974 		if (c < 16)
2975 			break;
2976 	}
2977 }
2978 
2979 static void
2980 sk_dump_mbuf(struct mbuf *m)
2981 {
2982 	int count = m->m_pkthdr.len;
2983 
2984 	kprintf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2985 
2986 	while (count > 0 && m) {
2987 		kprintf("m=%p, m->m_data=%p, m->m_len=%d\n",
2988 		       m, m->m_data, m->m_len);
2989 		sk_dump_bytes(mtod(m, char *), m->m_len);
2990 
2991 		count -= m->m_len;
2992 		m = m->m_next;
2993 	}
2994 }
2995 #endif
2996 
2997 /*
2998  * Allocate jumbo buffer storage. The SysKonnect adapters support
2999  * "jumbograms" (9K frames), although SysKonnect doesn't currently
3000  * use them in their drivers. In order for us to use them, we need
3001  * large 9K receive buffers, however standard mbuf clusters are only
3002  * 2048 bytes in size. Consequently, we need to allocate and manage
3003  * our own jumbo buffer pool. Fortunately, this does not require an
3004  * excessive amount of additional code.
3005  */
3006 static int
3007 sk_jpool_alloc(device_t dev)
3008 {
3009 	struct sk_if_softc *sc_if = device_get_softc(dev);
3010 	struct sk_chain_data *cd = &sc_if->sk_cdata;
3011 	bus_addr_t paddr;
3012 	caddr_t buf;
3013 	int error, i;
3014 
3015 	lwkt_serialize_init(&cd->sk_jpool_serializer);
3016 
3017 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0,
3018 				   BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
3019 				   NULL, NULL, SK_JMEM, 1, SK_JMEM,
3020 				   0, &cd->sk_jpool_dtag);
3021 	if (error) {
3022 		device_printf(dev, "can't create jpool DMA tag\n");
3023 		return error;
3024 	}
3025 
3026 	error = bus_dmamem_alloc(cd->sk_jpool_dtag, &cd->sk_jpool,
3027 				 BUS_DMA_WAITOK, &cd->sk_jpool_dmap);
3028 	if (error) {
3029 		device_printf(dev, "can't alloc jpool DMA mem\n");
3030 		bus_dma_tag_destroy(cd->sk_jpool_dtag);
3031 		cd->sk_jpool_dtag = NULL;
3032 		return error;
3033 	}
3034 
3035 	error = bus_dmamap_load(cd->sk_jpool_dtag, cd->sk_jpool_dmap,
3036 				cd->sk_jpool, SK_JMEM,
3037 				sk_dmamem_addr, &paddr, BUS_DMA_WAITOK);
3038 	if (error) {
3039 		device_printf(dev, "can't load DMA mem\n");
3040 		bus_dmamem_free(cd->sk_jpool_dtag, cd->sk_jpool,
3041 				cd->sk_jpool_dmap);
3042 		bus_dma_tag_destroy(cd->sk_jpool_dtag);
3043 		cd->sk_jpool_dtag = NULL;
3044 		return error;
3045 	}
3046 
3047 	SLIST_INIT(&cd->sk_jpool_free_ent);
3048 	buf = cd->sk_jpool;
3049 
3050 	/*
3051 	 * Now divide it up into SK_JLEN pieces.
3052 	 */
3053 	for (i = 0; i < SK_JSLOTS; i++) {
3054 		struct sk_jpool_entry *entry = &cd->sk_jpool_ent[i];
3055 
3056 		entry->sc_if = sc_if;
3057 		entry->inuse = 0;
3058 		entry->slot = i;
3059 		entry->buf = buf;
3060 		entry->paddr = paddr;
3061 
3062 		SLIST_INSERT_HEAD(&cd->sk_jpool_free_ent, entry, entry_next);
3063 
3064 		buf += SK_JLEN;
3065 		paddr += SK_JLEN;
3066 	}
3067 	return 0;
3068 }
3069 
3070 static void
3071 sk_jpool_free(struct sk_if_softc *sc_if)
3072 {
3073 	struct sk_chain_data *cd = &sc_if->sk_cdata;
3074 
3075 	if (cd->sk_jpool_dtag != NULL) {
3076 		bus_dmamap_unload(cd->sk_jpool_dtag, cd->sk_jpool_dmap);
3077 		bus_dmamem_free(cd->sk_jpool_dtag, cd->sk_jpool,
3078 				cd->sk_jpool_dmap);
3079 		bus_dma_tag_destroy(cd->sk_jpool_dtag);
3080 		cd->sk_jpool_dtag = NULL;
3081 	}
3082 }
3083 
3084 static int
3085 sk_dma_alloc(device_t dev)
3086 {
3087 	struct sk_if_softc *sc_if = device_get_softc(dev);
3088 	struct sk_chain_data *cd = &sc_if->sk_cdata;
3089 	int i, j, error;
3090 
3091 	/*
3092 	 * Allocate the descriptor queues.
3093 	 * TODO: split into RX/TX rings
3094 	 */
3095 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0,
3096 				   BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
3097 				   NULL, NULL,
3098 				   sizeof(struct sk_ring_data), 1,
3099 				   sizeof(struct sk_ring_data), 0,
3100 				   &sc_if->sk_rdata_dtag);
3101 	if (error) {
3102 		device_printf(dev, "can't create desc DMA tag\n");
3103 		return error;
3104 	}
3105 
3106 	error = bus_dmamem_alloc(sc_if->sk_rdata_dtag,
3107 				 (void **)&sc_if->sk_rdata,
3108 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
3109 				 &sc_if->sk_rdata_dmap);
3110 	if (error) {
3111 		device_printf(dev, "can't alloc desc DMA mem\n");
3112 		bus_dma_tag_destroy(sc_if->sk_rdata_dtag);
3113 		sc_if->sk_rdata_dtag = NULL;
3114 		return error;
3115 	}
3116 
3117 	error = bus_dmamap_load(sc_if->sk_rdata_dtag, sc_if->sk_rdata_dmap,
3118 				sc_if->sk_rdata, sizeof(struct sk_ring_data),
3119 				sk_dmamem_addr, &sc_if->sk_rdata_paddr,
3120 				BUS_DMA_WAITOK);
3121 	if (error) {
3122 		device_printf(dev, "can't load desc DMA mem\n");
3123 		bus_dmamem_free(sc_if->sk_rdata_dtag, sc_if->sk_rdata,
3124 				sc_if->sk_rdata_dmap);
3125 		bus_dma_tag_destroy(sc_if->sk_rdata_dtag);
3126 		sc_if->sk_rdata_dtag = NULL;
3127 		return error;
3128 	}
3129 
3130 	/* Try to allocate memory for jumbo buffers. */
3131 	error = sk_jpool_alloc(dev);
3132 	if (error) {
3133 		device_printf(dev, "jumbo buffer allocation failed\n");
3134 		return error;
3135 	}
3136 
3137 	/* Create DMA tag for TX. */
3138 	error = bus_dma_tag_create(NULL, 1, 0,
3139 				   BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
3140 				   NULL, NULL,
3141 				   SK_JLEN, SK_NTXSEG, SK_JLEN,
3142 				   0, &cd->sk_tx_dtag);
3143 	if (error) {
3144 		device_printf(dev, "can't create TX DMA tag\n");
3145 		return error;
3146 	}
3147 
3148 	/* Create DMA maps for TX. */
3149 	for (i = 0; i < SK_TX_RING_CNT; i++) {
3150 		error = bus_dmamap_create(cd->sk_tx_dtag, 0,
3151 					  &cd->sk_tx_dmap[i]);
3152 		if (error) {
3153 			device_printf(dev, "can't create %dth TX DMA map\n", i);
3154 
3155 			for (j = 0; j < i; ++j) {
3156 				bus_dmamap_destroy(cd->sk_tx_dtag,
3157 						   cd->sk_tx_dmap[i]);
3158 			}
3159 			bus_dma_tag_destroy(cd->sk_tx_dtag);
3160 			cd->sk_tx_dtag = NULL;
3161 			return error;
3162 		}
3163 	}
3164 
3165 	/* Create DMA tag for RX. */
3166 	error = bus_dma_tag_create(NULL, 1, 0,
3167 				   BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
3168 				   NULL, NULL, MCLBYTES, 1, MCLBYTES,
3169 				   0, &cd->sk_rx_dtag);
3170 	if (error) {
3171 		device_printf(dev, "can't create RX DMA tag\n");
3172 		return error;
3173 	}
3174 
3175 	/* Create a spare RX DMA map. */
3176 	error = bus_dmamap_create(cd->sk_rx_dtag, 0, &cd->sk_rx_dmap_tmp);
3177 	if (error) {
3178 		device_printf(dev, "can't create spare RX DMA map\n");
3179 		bus_dma_tag_destroy(cd->sk_rx_dtag);
3180 		cd->sk_rx_dtag = NULL;
3181 		return error;
3182 	}
3183 
3184 	/* Create DMA maps for RX. */
3185 	for (i = 0; i < SK_RX_RING_CNT; ++i) {
3186 		error = bus_dmamap_create(cd->sk_rx_dtag, 0,
3187 					  &cd->sk_rx_dmap[i]);
3188 		if (error) {
3189 			device_printf(dev, "can't create %dth RX DMA map\n", i);
3190 
3191 			for (j = 0; j < i; ++j) {
3192 				bus_dmamap_destroy(cd->sk_rx_dtag,
3193 						   cd->sk_rx_dmap[i]);
3194 			}
3195 			bus_dmamap_destroy(cd->sk_rx_dtag, cd->sk_rx_dmap_tmp);
3196 			bus_dma_tag_destroy(cd->sk_rx_dtag);
3197 			cd->sk_rx_dtag = NULL;
3198 			return error;
3199 		}
3200 	}
3201 	return 0;
3202 }
3203 
3204 static void
3205 sk_dma_free(device_t dev)
3206 {
3207 	struct sk_if_softc *sc_if = device_get_softc(dev);
3208 	struct sk_chain_data *cd = &sc_if->sk_cdata;
3209 	int i;
3210 
3211 	if (cd->sk_tx_dtag != NULL) {
3212 		for (i = 0; i < SK_TX_RING_CNT; ++i) {
3213 			KASSERT(cd->sk_tx_mbuf[i] == NULL,
3214 				("sk_stop() is not called before %s()",
3215 				 __func__));
3216 			bus_dmamap_destroy(cd->sk_tx_dtag, cd->sk_tx_dmap[i]);
3217 		}
3218 		bus_dma_tag_destroy(cd->sk_tx_dtag);
3219 		cd->sk_tx_dtag = NULL;
3220 	}
3221 
3222 	if (cd->sk_rx_dtag != NULL) {
3223 		for (i = 0; i < SK_RX_RING_CNT; ++i) {
3224 			KASSERT(cd->sk_rx_mbuf[i] == NULL,
3225 				("sk_stop() is not called before %s()",
3226 				 __func__));
3227 			bus_dmamap_destroy(cd->sk_rx_dtag, cd->sk_rx_dmap[i]);
3228 		}
3229 		bus_dmamap_destroy(cd->sk_rx_dtag, cd->sk_rx_dmap_tmp);
3230 		bus_dma_tag_destroy(cd->sk_rx_dtag);
3231 		cd->sk_rx_dtag = NULL;
3232 	}
3233 
3234 	sk_jpool_free(sc_if);
3235 
3236 	if (sc_if->sk_rdata_dtag != NULL) {
3237 		bus_dmamap_unload(sc_if->sk_rdata_dtag, sc_if->sk_rdata_dmap);
3238 		bus_dmamem_free(sc_if->sk_rdata_dtag, sc_if->sk_rdata,
3239 				sc_if->sk_rdata_dmap);
3240 		bus_dma_tag_destroy(sc_if->sk_rdata_dtag);
3241 		sc_if->sk_rdata_dtag = NULL;
3242 	}
3243 }
3244 
3245 static void
3246 sk_buf_dma_addr(void *arg, bus_dma_segment_t *segs, int nsegs,
3247 		bus_size_t mapsz __unused, int error)
3248 {
3249 	struct sk_dma_ctx *ctx = arg;
3250 	int i;
3251 
3252 	if (error)
3253 		return;
3254 
3255 	KASSERT(nsegs <= ctx->nsegs,
3256 		("too many segments(%d), should be <= %d\n",
3257 		 nsegs, ctx->nsegs));
3258 
3259 	ctx->nsegs = nsegs;
3260 	for (i = 0; i < nsegs; ++i)
3261 		ctx->segs[i] = segs[i];
3262 }
3263 
3264 static void
3265 sk_dmamem_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error)
3266 {
3267 	KASSERT(nseg == 1, ("too many segments %d", nseg));
3268 	*((bus_addr_t *)arg) = seg->ds_addr;
3269 }
3270 
3271 static int
3272 skc_sysctl_imtime(SYSCTL_HANDLER_ARGS)
3273 {
3274 	struct sk_softc *sc = arg1;
3275 	struct lwkt_serialize *slize = &sc->sk_serializer;
3276 	int error = 0, v;
3277 
3278 	lwkt_serialize_enter(slize);
3279 
3280 	v = sc->sk_imtime;
3281 	error = sysctl_handle_int(oidp, &v, 0, req);
3282 	if (error || req->newptr == NULL)
3283 		goto back;
3284 	if (v <= 0) {
3285 		error = EINVAL;
3286 		goto back;
3287 	}
3288 
3289 	if (sc->sk_imtime != v) {
3290 		sc->sk_imtime = v;
3291 		sk_win_write_4(sc, SK_IMTIMERINIT,
3292 			       SK_IM_USECS(sc, sc->sk_imtime));
3293 
3294 		/*
3295 		 * Force interrupt moderation timer to
3296 		 * reload new value.
3297 		 */
3298 		sk_win_write_4(sc, SK_IMTIMER, 0);
3299 	}
3300 back:
3301 	lwkt_serialize_exit(slize);
3302 	return error;
3303 }
3304