xref: /dragonfly/sys/dev/netif/sn/if_sn.c (revision 2ee85085)
1 /*
2  * Copyright (c) 1996 Gardner Buchanan <gbuchanan@shl.com>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *      This product includes software developed by Gardner Buchanan.
16  * 4. The name of Gardner Buchanan may not be used to endorse or promote
17  *    products derived from this software without specific prior written
18  *    permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *   $FreeBSD: src/sys/dev/sn/if_sn.c,v 1.7.2.3 2001/02/04 04:38:38 toshi Exp $
32  *   $DragonFly: src/sys/dev/netif/sn/if_sn.c,v 1.21 2005/06/20 15:10:41 joerg Exp $
33  */
34 
35 /*
36  * This is a driver for SMC's 9000 series of Ethernet adapters.
37  *
38  * This FreeBSD driver is derived from the smc9194 Linux driver by
39  * Erik Stahlman and is Copyright (C) 1996 by Erik Stahlman.
40  * This driver also shamelessly borrows from the FreeBSD ep driver
41  * which is Copyright (C) 1994 Herb Peyerl <hpeyerl@novatel.ca>
42  * All rights reserved.
43  *
44  * It is set up for my SMC91C92 equipped Ampro LittleBoard embedded
45  * PC.  It is adapted from Erik Stahlman's Linux driver which worked
46  * with his EFA Info*Express SVC VLB adaptor.  According to SMC's databook,
47  * it will work for the entire SMC 9xxx series. (Ha Ha)
48  *
49  * "Features" of the SMC chip:
50  *   4608 byte packet memory. (for the 91C92.  Others have more)
51  *   EEPROM for configuration
52  *   AUI/TP selection
53  *
54  * Authors:
55  *      Erik Stahlman                   erik@vt.edu
56  *      Herb Peyerl                     hpeyerl@novatel.ca
57  *      Andres Vega Garcia              avega@sophia.inria.fr
58  *      Serge Babkin                    babkin@hq.icb.chel.su
59  *      Gardner Buchanan                gbuchanan@shl.com
60  *
61  * Sources:
62  *    o   SMC databook
63  *    o   "smc9194.c:v0.10(FIXED) 02/15/96 by Erik Stahlman (erik@vt.edu)"
64  *    o   "if_ep.c,v 1.19 1995/01/24 20:53:45 davidg Exp"
65  *
66  * Known Bugs:
67  *    o   The hardware multicast filter isn't used yet.
68  *    o   Setting of the hardware address isn't supported.
69  *    o   Hardware padding isn't used.
70  */
71 
72 /*
73  * Modifications for Megahertz X-Jack Ethernet Card (XJ-10BT)
74  *
75  * Copyright (c) 1996 by Tatsumi Hosokawa <hosokawa@jp.FreeBSD.org>
76  *                       BSD-nomads, Tokyo, Japan.
77  */
78 /*
79  * Multicast support by Kei TANAKA <kei@pal.xerox.com>
80  * Special thanks to itojun@itojun.org
81  */
82 
83 #undef	SN_DEBUG	/* (by hosokawa) */
84 
85 #include <sys/param.h>
86 #include <sys/systm.h>
87 #include <sys/kernel.h>
88 #include <sys/errno.h>
89 #include <sys/sockio.h>
90 #include <sys/malloc.h>
91 #include <sys/mbuf.h>
92 #include <sys/socket.h>
93 #include <sys/syslog.h>
94 #include <sys/thread2.h>
95 
96 #include <sys/module.h>
97 #include <sys/bus.h>
98 
99 #include <machine/bus.h>
100 #include <machine/resource.h>
101 #include <sys/rman.h>
102 
103 #include <net/ethernet.h>
104 #include <net/if.h>
105 #include <net/ifq_var.h>
106 #include <net/if_arp.h>
107 #include <net/if_dl.h>
108 #include <net/if_types.h>
109 #include <net/if_mib.h>
110 
111 #ifdef INET
112 #include <netinet/in.h>
113 #include <netinet/in_systm.h>
114 #include <netinet/in_var.h>
115 #include <netinet/ip.h>
116 #endif
117 
118 #ifdef NS
119 #include <netns/ns.h>
120 #include <netns/ns_if.h>
121 #endif
122 
123 #include <net/bpf.h>
124 #include <net/bpfdesc.h>
125 
126 #include <machine/clock.h>
127 
128 #include "if_snreg.h"
129 #include "if_snvar.h"
130 
131 /* Exported variables */
132 devclass_t sn_devclass;
133 
134 static int snioctl(struct ifnet * ifp, u_long, caddr_t, struct ucred *);
135 
136 static void snresume(struct ifnet *);
137 
138 void sninit(void *);
139 void snread(struct ifnet *);
140 void snreset(struct sn_softc *);
141 void snstart(struct ifnet *);
142 void snstop(struct sn_softc *);
143 void snwatchdog(struct ifnet *);
144 
145 static void sn_setmcast(struct sn_softc *);
146 static int sn_getmcf(struct arpcom *ac, u_char *mcf);
147 static u_int smc_crc(u_char *);
148 
149 DECLARE_DUMMY_MODULE(if_sn);
150 
151 /* I (GB) have been unlucky getting the hardware padding
152  * to work properly.
153  */
154 #define SW_PAD
155 
156 static const char *chip_ids[15] = {
157 	NULL, NULL, NULL,
158 	 /* 3 */ "SMC91C90/91C92",
159 	 /* 4 */ "SMC91C94",
160 	 /* 5 */ "SMC91C95",
161 	NULL,
162 	 /* 7 */ "SMC91C100",
163 	 /* 8 */ "SMC91C100FD",
164 	NULL, NULL, NULL,
165 	NULL, NULL, NULL
166 };
167 
168 int
169 sn_attach(device_t dev)
170 {
171 	struct sn_softc *sc = device_get_softc(dev);
172 	struct ifnet   *ifp = &sc->arpcom.ac_if;
173 	u_short         i;
174 	u_char         *p;
175 	int             rev;
176 	u_short         address;
177 	int		j;
178 
179 	sn_activate(dev);
180 
181 	snstop(sc);
182 
183 	sc->dev = dev;
184 	sc->pages_wanted = -1;
185 
186 	device_printf(dev, " ");
187 
188 	SMC_SELECT_BANK(3);
189 	rev = inw(BASE + REVISION_REG_W);
190 	if (chip_ids[(rev >> 4) & 0xF])
191 		printf("%s ", chip_ids[(rev >> 4) & 0xF]);
192 
193 	SMC_SELECT_BANK(1);
194 	i = inw(BASE + CONFIG_REG_W);
195 	printf("%s\n", i & CR_AUI_SELECT ? "AUI" : "UTP");
196 
197 	if (sc->pccard_enaddr)
198 		for (j = 0; j < 3; j++) {
199 			u_short	w;
200 
201 			w = (u_short)sc->arpcom.ac_enaddr[j * 2] |
202 				(((u_short)sc->arpcom.ac_enaddr[j * 2 + 1]) << 8);
203 			outw(BASE + IAR_ADDR0_REG_W + j * 2, w);
204 		}
205 
206 	/*
207 	 * Read the station address from the chip. The MAC address is bank 1,
208 	 * regs 4 - 9
209 	 */
210 	SMC_SELECT_BANK(1);
211 	p = (u_char *) & sc->arpcom.ac_enaddr;
212 	for (i = 0; i < 6; i += 2) {
213 		address = inw(BASE + IAR_ADDR0_REG_W + i);
214 		p[i + 1] = address >> 8;
215 		p[i] = address & 0xFF;
216 	}
217 	ifp->if_softc = sc;
218 	if_initname(ifp, "sn", device_get_unit(dev));
219 	ifp->if_mtu = ETHERMTU;
220 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
221 	ifp->if_start = snstart;
222 	ifp->if_ioctl = snioctl;
223 	ifp->if_watchdog = snwatchdog;
224 	ifp->if_init = sninit;
225 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
226 	ifq_set_ready(&ifp->if_snd);
227 	ifp->if_timer = 0;
228 
229 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
230 
231 	return 0;
232 }
233 
234 
235 /*
236  * Reset and initialize the chip
237  */
238 void
239 sninit(void *xsc)
240 {
241 	struct sn_softc *sc = xsc;
242 	struct ifnet *ifp = &sc->arpcom.ac_if;
243 	int             flags;
244 	int             mask;
245 
246 	crit_enter();
247 
248 	/*
249 	 * This resets the registers mostly to defaults, but doesn't affect
250 	 * EEPROM.  After the reset cycle, we pause briefly for the chip to
251 	 * be happy.
252 	 */
253 	SMC_SELECT_BANK(0);
254 	outw(BASE + RECV_CONTROL_REG_W, RCR_SOFTRESET);
255 	SMC_DELAY();
256 	outw(BASE + RECV_CONTROL_REG_W, 0x0000);
257 	SMC_DELAY();
258 	SMC_DELAY();
259 
260 	outw(BASE + TXMIT_CONTROL_REG_W, 0x0000);
261 
262 	/*
263 	 * Set the control register to automatically release succesfully
264 	 * transmitted packets (making the best use out of our limited
265 	 * memory) and to enable the EPH interrupt on certain TX errors.
266 	 */
267 	SMC_SELECT_BANK(1);
268 	outw(BASE + CONTROL_REG_W, (CTR_AUTO_RELEASE | CTR_TE_ENABLE |
269 				    CTR_CR_ENABLE | CTR_LE_ENABLE));
270 
271 	/* Set squelch level to 240mV (default 480mV) */
272 	flags = inw(BASE + CONFIG_REG_W);
273 	flags |= CR_SET_SQLCH;
274 	outw(BASE + CONFIG_REG_W, flags);
275 
276 	/*
277 	 * Reset the MMU and wait for it to be un-busy.
278 	 */
279 	SMC_SELECT_BANK(2);
280 	outw(BASE + MMU_CMD_REG_W, MMUCR_RESET);
281 	while (inw(BASE + MMU_CMD_REG_W) & MMUCR_BUSY)	/* NOTHING */
282 		;
283 
284 	/*
285 	 * Disable all interrupts
286 	 */
287 	outb(BASE + INTR_MASK_REG_B, 0x00);
288 
289 	sn_setmcast(sc);
290 
291 	/*
292 	 * Set the transmitter control.  We want it enabled.
293 	 */
294 	flags = TCR_ENABLE;
295 
296 #ifndef SW_PAD
297 	/*
298 	 * I (GB) have been unlucky getting this to work.
299 	 */
300 	flags |= TCR_PAD_ENABLE;
301 #endif	/* SW_PAD */
302 
303 	outw(BASE + TXMIT_CONTROL_REG_W, flags);
304 
305 
306 	/*
307 	 * Now, enable interrupts
308 	 */
309 	SMC_SELECT_BANK(2);
310 
311 	mask = IM_EPH_INT |
312 		IM_RX_OVRN_INT |
313 		IM_RCV_INT |
314 		IM_TX_INT;
315 
316 	outb(BASE + INTR_MASK_REG_B, mask);
317 	sc->intr_mask = mask;
318 	sc->pages_wanted = -1;
319 
320 
321 	/*
322 	 * Mark the interface running but not active.
323 	 */
324 	ifp->if_flags |= IFF_RUNNING;
325 	ifp->if_flags &= ~IFF_OACTIVE;
326 
327 	/*
328 	 * Attempt to push out any waiting packets.
329 	 */
330 	snstart(ifp);
331 
332 	crit_exit();
333 }
334 
335 
336 void
337 snstart(struct ifnet *ifp)
338 {
339 	struct sn_softc *sc = ifp->if_softc;
340 	u_int  len;
341 	struct mbuf *m;
342 	struct mbuf    *top;
343 	int             pad;
344 	int             mask;
345 	u_short         length;
346 	u_short         numPages;
347 	u_char          packet_no;
348 	int             time_out;
349 
350 	crit_enter();
351 
352 	if (ifp->if_flags & IFF_OACTIVE) {
353 		crit_exit();
354 		return;
355 	}
356 	if (sc->pages_wanted != -1) {
357 		crit_exit();
358 		printf("%s: snstart() while memory allocation pending\n",
359 		       ifp->if_xname);
360 		return;
361 	}
362 startagain:
363 
364 	/*
365 	 * Sneak a peek at the next packet
366 	 */
367 	m = ifq_poll(&ifp->if_snd);
368 	if (m == 0) {
369 		crit_exit();
370 		return;
371 	}
372 	/*
373 	 * Compute the frame length and set pad to give an overall even
374 	 * number of bytes.  Below we assume that the packet length is even.
375 	 */
376 	for (len = 0, top = m; m; m = m->m_next)
377 		len += m->m_len;
378 
379 	pad = (len & 1);
380 
381 	/*
382 	 * We drop packets that are too large. Perhaps we should truncate
383 	 * them instead?
384 	 */
385 	if (len + pad > ETHER_MAX_LEN - ETHER_CRC_LEN) {
386 		printf("%s: large packet discarded (A)\n", ifp->if_xname);
387 		++sc->arpcom.ac_if.if_oerrors;
388 		m = ifq_dequeue(&ifp->if_snd);
389 		m_freem(m);
390 		goto readcheck;
391 	}
392 #ifdef SW_PAD
393 
394 	/*
395 	 * If HW padding is not turned on, then pad to ETHER_MIN_LEN.
396 	 */
397 	if (len < ETHER_MIN_LEN - ETHER_CRC_LEN)
398 		pad = ETHER_MIN_LEN - ETHER_CRC_LEN - len;
399 
400 #endif	/* SW_PAD */
401 
402 	length = pad + len;
403 
404 	/*
405 	 * The MMU wants the number of pages to be the number of 256 byte
406 	 * 'pages', minus 1 (A packet can't ever have 0 pages. We also
407 	 * include space for the status word, byte count and control bytes in
408 	 * the allocation request.
409 	 */
410 	numPages = (length + 6) >> 8;
411 
412 
413 	/*
414 	 * Now, try to allocate the memory
415 	 */
416 	SMC_SELECT_BANK(2);
417 	outw(BASE + MMU_CMD_REG_W, MMUCR_ALLOC | numPages);
418 
419 	/*
420 	 * Wait a short amount of time to see if the allocation request
421 	 * completes.  Otherwise, I enable the interrupt and wait for
422 	 * completion asyncronously.
423 	 */
424 
425 	time_out = MEMORY_WAIT_TIME;
426 	do {
427 		if (inb(BASE + INTR_STAT_REG_B) & IM_ALLOC_INT)
428 			break;
429 	} while (--time_out);
430 
431 	if (!time_out) {
432 
433 		/*
434 		 * No memory now.  Oh well, wait until the chip finds memory
435 		 * later.   Remember how many pages we were asking for and
436 		 * enable the allocation completion interrupt. Also set a
437 		 * watchdog in case  we miss the interrupt. We mark the
438 		 * interface active since there is no point in attempting an
439 		 * snstart() until after the memory is available.
440 		 */
441 		mask = inb(BASE + INTR_MASK_REG_B) | IM_ALLOC_INT;
442 		outb(BASE + INTR_MASK_REG_B, mask);
443 		sc->intr_mask = mask;
444 
445 		ifp->if_timer = 1;
446 		ifp->if_flags |= IFF_OACTIVE;
447 		sc->pages_wanted = numPages;
448 
449 		crit_exit();
450 		return;
451 	}
452 	/*
453 	 * The memory allocation completed.  Check the results.
454 	 */
455 	packet_no = inb(BASE + ALLOC_RESULT_REG_B);
456 	if (packet_no & ARR_FAILED) {
457 		printf("%s: Memory allocation failed\n", ifp->if_xname);
458 		goto startagain;
459 	}
460 	/*
461 	 * We have a packet number, so tell the card to use it.
462 	 */
463 	outb(BASE + PACKET_NUM_REG_B, packet_no);
464 
465 	/*
466 	 * Point to the beginning of the packet
467 	 */
468 	outw(BASE + POINTER_REG_W, PTR_AUTOINC | 0x0000);
469 
470 	/*
471 	 * Send the packet length (+6 for status, length and control byte)
472 	 * and the status word (set to zeros)
473 	 */
474 	outw(BASE + DATA_REG_W, 0);
475 	outb(BASE + DATA_REG_B, (length + 6) & 0xFF);
476 	outb(BASE + DATA_REG_B, (length + 6) >> 8);
477 
478 	/*
479 	 * Get the packet from the kernel.  This will include the Ethernet
480 	 * frame header, MAC Addresses etc.
481 	 */
482 	m = ifq_dequeue(&ifp->if_snd);
483 
484 	/*
485 	 * Push out the data to the card.
486 	 */
487 	for (top = m; m != 0; m = m->m_next) {
488 
489 		/*
490 		 * Push out words.
491 		 */
492 		outsw(BASE + DATA_REG_W, mtod(m, caddr_t), m->m_len / 2);
493 
494 		/*
495 		 * Push out remaining byte.
496 		 */
497 		if (m->m_len & 1)
498 			outb(BASE + DATA_REG_B, *(mtod(m, caddr_t) + m->m_len - 1));
499 	}
500 
501 	/*
502 	 * Push out padding.
503 	 */
504 	while (pad > 1) {
505 		outw(BASE + DATA_REG_W, 0);
506 		pad -= 2;
507 	}
508 	if (pad)
509 		outb(BASE + DATA_REG_B, 0);
510 
511 	/*
512 	 * Push out control byte and unused packet byte The control byte is 0
513 	 * meaning the packet is even lengthed and no special CRC handling is
514 	 * desired.
515 	 */
516 	outw(BASE + DATA_REG_W, 0);
517 
518 	/*
519 	 * Enable the interrupts and let the chipset deal with it Also set a
520 	 * watchdog in case we miss the interrupt.
521 	 */
522 	mask = inb(BASE + INTR_MASK_REG_B) | (IM_TX_INT | IM_TX_EMPTY_INT);
523 	outb(BASE + INTR_MASK_REG_B, mask);
524 	sc->intr_mask = mask;
525 
526 	outw(BASE + MMU_CMD_REG_W, MMUCR_ENQUEUE);
527 
528 	ifp->if_flags |= IFF_OACTIVE;
529 	ifp->if_timer = 1;
530 
531 	BPF_MTAP(ifp, top);
532 
533 	ifp->if_opackets++;
534 	m_freem(top);
535 
536 readcheck:
537 
538 	/*
539 	 * Is another packet coming in?  We don't want to overflow the tiny
540 	 * RX FIFO.  If nothing has arrived then attempt to queue another
541 	 * transmit packet.
542 	 */
543 	if (inw(BASE + FIFO_PORTS_REG_W) & FIFO_REMPTY)
544 		goto startagain;
545 
546 	crit_exit();
547 }
548 
549 
550 
551 /* Resume a packet transmit operation after a memory allocation
552  * has completed.
553  *
554  * This is basically a hacked up copy of snstart() which handles
555  * a completed memory allocation the same way snstart() does.
556  * It then passes control to snstart to handle any other queued
557  * packets.
558  */
559 static void
560 snresume(struct ifnet *ifp)
561 {
562 	struct sn_softc *sc = ifp->if_softc;
563 	u_int  len;
564 	struct mbuf *m;
565 	struct mbuf    *top;
566 	int             pad;
567 	int             mask;
568 	u_short         length;
569 	u_short         numPages;
570 	u_short         pages_wanted;
571 	u_char          packet_no;
572 
573 	if (sc->pages_wanted < 0)
574 		return;
575 
576 	pages_wanted = sc->pages_wanted;
577 	sc->pages_wanted = -1;
578 
579 	/*
580 	 * Sneak a peek at the next packet
581 	 */
582 	m = ifq_poll(&ifp->if_snd);
583 	if (m == 0) {
584 		printf("%s: snresume() with nothing to send\n", ifp->if_xname);
585 		return;
586 	}
587 	/*
588 	 * Compute the frame length and set pad to give an overall even
589 	 * number of bytes.  Below we assume that the packet length is even.
590 	 */
591 	for (len = 0, top = m; m; m = m->m_next)
592 		len += m->m_len;
593 
594 	pad = (len & 1);
595 
596 	/*
597 	 * We drop packets that are too large. Perhaps we should truncate
598 	 * them instead?
599 	 */
600 	if (len + pad > ETHER_MAX_LEN - ETHER_CRC_LEN) {
601 		printf("%s: large packet discarded (B)\n", ifp->if_xname);
602 		++ifp->if_oerrors;
603 		ifq_dequeue(&ifp->if_snd);
604 		m_freem(m);
605 		return;
606 	}
607 #ifdef SW_PAD
608 
609 	/*
610 	 * If HW padding is not turned on, then pad to ETHER_MIN_LEN.
611 	 */
612 	if (len < ETHER_MIN_LEN - ETHER_CRC_LEN)
613 		pad = ETHER_MIN_LEN - ETHER_CRC_LEN - len;
614 
615 #endif	/* SW_PAD */
616 
617 	length = pad + len;
618 
619 
620 	/*
621 	 * The MMU wants the number of pages to be the number of 256 byte
622 	 * 'pages', minus 1 (A packet can't ever have 0 pages. We also
623 	 * include space for the status word, byte count and control bytes in
624 	 * the allocation request.
625 	 */
626 	numPages = (length + 6) >> 8;
627 
628 
629 	SMC_SELECT_BANK(2);
630 
631 	/*
632 	 * The memory allocation completed.  Check the results. If it failed,
633 	 * we simply set a watchdog timer and hope for the best.
634 	 */
635 	packet_no = inb(BASE + ALLOC_RESULT_REG_B);
636 	if (packet_no & ARR_FAILED) {
637 		printf("%s: Memory allocation failed.  Weird.\n", ifp->if_xname);
638 		ifp->if_timer = 1;
639 		goto try_start;
640 	}
641 	/*
642 	 * We have a packet number, so tell the card to use it.
643 	 */
644 	outb(BASE + PACKET_NUM_REG_B, packet_no);
645 
646 	/*
647 	 * Now, numPages should match the pages_wanted recorded when the
648 	 * memory allocation was initiated.
649 	 */
650 	if (pages_wanted != numPages) {
651 		printf("%s: memory allocation wrong size.  Weird.\n", ifp->if_xname);
652 		/*
653 		 * If the allocation was the wrong size we simply release the
654 		 * memory once it is granted. Wait for the MMU to be un-busy.
655 		 */
656 		while (inw(BASE + MMU_CMD_REG_W) & MMUCR_BUSY)	/* NOTHING */
657 			;
658 		outw(BASE + MMU_CMD_REG_W, MMUCR_FREEPKT);
659 
660 		return;
661 	}
662 	/*
663 	 * Point to the beginning of the packet
664 	 */
665 	outw(BASE + POINTER_REG_W, PTR_AUTOINC | 0x0000);
666 
667 	/*
668 	 * Send the packet length (+6 for status, length and control byte)
669 	 * and the status word (set to zeros)
670 	 */
671 	outw(BASE + DATA_REG_W, 0);
672 	outb(BASE + DATA_REG_B, (length + 6) & 0xFF);
673 	outb(BASE + DATA_REG_B, (length + 6) >> 8);
674 
675 	/*
676 	 * Get the packet from the kernel.  This will include the Ethernet
677 	 * frame header, MAC Addresses etc.
678 	 */
679 	m = ifq_dequeue(&ifp->if_snd);
680 
681 	/*
682 	 * Push out the data to the card.
683 	 */
684 	for (top = m; m != 0; m = m->m_next) {
685 
686 		/*
687 		 * Push out words.
688 		 */
689 		outsw(BASE + DATA_REG_W, mtod(m, caddr_t), m->m_len / 2);
690 
691 		/*
692 		 * Push out remaining byte.
693 		 */
694 		if (m->m_len & 1)
695 			outb(BASE + DATA_REG_B, *(mtod(m, caddr_t) + m->m_len - 1));
696 	}
697 
698 	/*
699 	 * Push out padding.
700 	 */
701 	while (pad > 1) {
702 		outw(BASE + DATA_REG_W, 0);
703 		pad -= 2;
704 	}
705 	if (pad)
706 		outb(BASE + DATA_REG_B, 0);
707 
708 	/*
709 	 * Push out control byte and unused packet byte The control byte is 0
710 	 * meaning the packet is even lengthed and no special CRC handling is
711 	 * desired.
712 	 */
713 	outw(BASE + DATA_REG_W, 0);
714 
715 	/*
716 	 * Enable the interrupts and let the chipset deal with it Also set a
717 	 * watchdog in case we miss the interrupt.
718 	 */
719 	mask = inb(BASE + INTR_MASK_REG_B) | (IM_TX_INT | IM_TX_EMPTY_INT);
720 	outb(BASE + INTR_MASK_REG_B, mask);
721 	sc->intr_mask = mask;
722 	outw(BASE + MMU_CMD_REG_W, MMUCR_ENQUEUE);
723 
724 	BPF_MTAP(ifp, top);
725 
726 	ifp->if_opackets++;
727 	m_freem(top);
728 
729 try_start:
730 
731 	/*
732 	 * Now pass control to snstart() to queue any additional packets
733 	 */
734 	ifp->if_flags &= ~IFF_OACTIVE;
735 	snstart(ifp);
736 
737 	/*
738 	 * We've sent something, so we're active.  Set a watchdog in case the
739 	 * TX_EMPTY interrupt is lost.
740 	 */
741 	ifp->if_flags |= IFF_OACTIVE;
742 	ifp->if_timer = 1;
743 }
744 
745 
746 void
747 sn_intr(void *arg)
748 {
749 	int             status, interrupts;
750 	struct sn_softc *sc = (struct sn_softc *) arg;
751 	struct ifnet   *ifp = &sc->arpcom.ac_if;
752 
753 	/*
754 	 * Chip state registers
755 	 */
756 	u_char          mask;
757 	u_char          packet_no;
758 	u_short         tx_status;
759 	u_short         card_stats;
760 
761 	crit_enter();
762 
763 	/*
764 	 * Clear the watchdog.
765 	 */
766 	ifp->if_timer = 0;
767 
768 	SMC_SELECT_BANK(2);
769 
770 	/*
771 	 * Obtain the current interrupt mask and clear the hardware mask
772 	 * while servicing interrupts.
773 	 */
774 	mask = inb(BASE + INTR_MASK_REG_B);
775 	outb(BASE + INTR_MASK_REG_B, 0x00);
776 
777 	/*
778 	 * Get the set of interrupts which occurred and eliminate any which
779 	 * are masked.
780 	 */
781 	interrupts = inb(BASE + INTR_STAT_REG_B);
782 	status = interrupts & mask;
783 
784 	/*
785 	 * Now, process each of the interrupt types.
786 	 */
787 
788 	/*
789 	 * Receive Overrun.
790 	 */
791 	if (status & IM_RX_OVRN_INT) {
792 
793 		/*
794 		 * Acknowlege Interrupt
795 		 */
796 		SMC_SELECT_BANK(2);
797 		outb(BASE + INTR_ACK_REG_B, IM_RX_OVRN_INT);
798 
799 		++sc->arpcom.ac_if.if_ierrors;
800 	}
801 	/*
802 	 * Got a packet.
803 	 */
804 	if (status & IM_RCV_INT) {
805 #if 1
806 		int             packet_number;
807 
808 		SMC_SELECT_BANK(2);
809 		packet_number = inw(BASE + FIFO_PORTS_REG_W);
810 
811 		if (packet_number & FIFO_REMPTY) {
812 
813 			/*
814 			 * we got called , but nothing was on the FIFO
815 			 */
816 			printf("sn: Receive interrupt with nothing on FIFO\n");
817 
818 			goto out;
819 		}
820 #endif
821 		snread(ifp);
822 	}
823 	/*
824 	 * An on-card memory allocation came through.
825 	 */
826 	if (status & IM_ALLOC_INT) {
827 
828 		/*
829 		 * Disable this interrupt.
830 		 */
831 		mask &= ~IM_ALLOC_INT;
832 		sc->arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
833 		snresume(&sc->arpcom.ac_if);
834 	}
835 	/*
836 	 * TX Completion.  Handle a transmit error message. This will only be
837 	 * called when there is an error, because of the AUTO_RELEASE mode.
838 	 */
839 	if (status & IM_TX_INT) {
840 
841 		/*
842 		 * Acknowlege Interrupt
843 		 */
844 		SMC_SELECT_BANK(2);
845 		outb(BASE + INTR_ACK_REG_B, IM_TX_INT);
846 
847 		packet_no = inw(BASE + FIFO_PORTS_REG_W);
848 		packet_no &= FIFO_TX_MASK;
849 
850 		/*
851 		 * select this as the packet to read from
852 		 */
853 		outb(BASE + PACKET_NUM_REG_B, packet_no);
854 
855 		/*
856 		 * Position the pointer to the first word from this packet
857 		 */
858 		outw(BASE + POINTER_REG_W, PTR_AUTOINC | PTR_READ | 0x0000);
859 
860 		/*
861 		 * Fetch the TX status word.  The value found here will be a
862 		 * copy of the EPH_STATUS_REG_W at the time the transmit
863 		 * failed.
864 		 */
865 		tx_status = inw(BASE + DATA_REG_W);
866 
867 		if (tx_status & EPHSR_TX_SUC) {
868 			device_printf(sc->dev,
869 			    "Successful packet caused interrupt\n");
870 		} else {
871 			++sc->arpcom.ac_if.if_oerrors;
872 		}
873 
874 		if (tx_status & EPHSR_LATCOL)
875 			++sc->arpcom.ac_if.if_collisions;
876 
877 		/*
878 		 * Some of these errors will have disabled transmit.
879 		 * Re-enable transmit now.
880 		 */
881 		SMC_SELECT_BANK(0);
882 
883 #ifdef SW_PAD
884 		outw(BASE + TXMIT_CONTROL_REG_W, TCR_ENABLE);
885 #else
886 		outw(BASE + TXMIT_CONTROL_REG_W, TCR_ENABLE | TCR_PAD_ENABLE);
887 #endif	/* SW_PAD */
888 
889 		/*
890 		 * kill the failed packet. Wait for the MMU to be un-busy.
891 		 */
892 		SMC_SELECT_BANK(2);
893 		while (inw(BASE + MMU_CMD_REG_W) & MMUCR_BUSY)	/* NOTHING */
894 			;
895 		outw(BASE + MMU_CMD_REG_W, MMUCR_FREEPKT);
896 
897 		/*
898 		 * Attempt to queue more transmits.
899 		 */
900 		sc->arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
901 		snstart(&sc->arpcom.ac_if);
902 	}
903 	/*
904 	 * Transmit underrun.  We use this opportunity to update transmit
905 	 * statistics from the card.
906 	 */
907 	if (status & IM_TX_EMPTY_INT) {
908 
909 		/*
910 		 * Acknowlege Interrupt
911 		 */
912 		SMC_SELECT_BANK(2);
913 		outb(BASE + INTR_ACK_REG_B, IM_TX_EMPTY_INT);
914 
915 		/*
916 		 * Disable this interrupt.
917 		 */
918 		mask &= ~IM_TX_EMPTY_INT;
919 
920 		SMC_SELECT_BANK(0);
921 		card_stats = inw(BASE + COUNTER_REG_W);
922 
923 		/*
924 		 * Single collisions
925 		 */
926 		sc->arpcom.ac_if.if_collisions += card_stats & ECR_COLN_MASK;
927 
928 		/*
929 		 * Multiple collisions
930 		 */
931 		sc->arpcom.ac_if.if_collisions += (card_stats & ECR_MCOLN_MASK) >> 4;
932 
933 		SMC_SELECT_BANK(2);
934 
935 		/*
936 		 * Attempt to enqueue some more stuff.
937 		 */
938 		sc->arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
939 		snstart(&sc->arpcom.ac_if);
940 	}
941 	/*
942 	 * Some other error.  Try to fix it by resetting the adapter.
943 	 */
944 	if (status & IM_EPH_INT) {
945 		snstop(sc);
946 		sninit(sc);
947 	}
948 
949 out:
950 	/*
951 	 * Handled all interrupt sources.
952 	 */
953 
954 	SMC_SELECT_BANK(2);
955 
956 	/*
957 	 * Reestablish interrupts from mask which have not been deselected
958 	 * during this interrupt.  Note that the hardware mask, which was set
959 	 * to 0x00 at the start of this service routine, may have been
960 	 * updated by one or more of the interrupt handers and we must let
961 	 * those new interrupts stay enabled here.
962 	 */
963 	mask |= inb(BASE + INTR_MASK_REG_B);
964 	outb(BASE + INTR_MASK_REG_B, mask);
965 	sc->intr_mask = mask;
966 
967 	crit_exit();
968 }
969 
970 void
971 snread(struct ifnet *ifp)
972 {
973         struct sn_softc *sc = ifp->if_softc;
974 	struct mbuf    *m;
975 	short           status;
976 	int             packet_number;
977 	u_short         packet_length;
978 	u_char         *data;
979 
980 	SMC_SELECT_BANK(2);
981 #if 0
982 	packet_number = inw(BASE + FIFO_PORTS_REG_W);
983 
984 	if (packet_number & FIFO_REMPTY) {
985 
986 		/*
987 		 * we got called , but nothing was on the FIFO
988 		 */
989 		printf("sn: Receive interrupt with nothing on FIFO\n");
990 		return;
991 	}
992 #endif
993 read_another:
994 
995 	/*
996 	 * Start reading from the start of the packet. Since PTR_RCV is set,
997 	 * packet number is found in FIFO_PORTS_REG_W, FIFO_RX_MASK.
998 	 */
999 	outw(BASE + POINTER_REG_W, PTR_READ | PTR_RCV | PTR_AUTOINC | 0x0000);
1000 
1001 	/*
1002 	 * First two words are status and packet_length
1003 	 */
1004 	status = inw(BASE + DATA_REG_W);
1005 	packet_length = inw(BASE + DATA_REG_W) & RLEN_MASK;
1006 
1007 	/*
1008 	 * The packet length contains 3 extra words: status, length, and a
1009 	 * extra word with the control byte.
1010 	 */
1011 	packet_length -= 6;
1012 
1013 	/*
1014 	 * Account for receive errors and discard.
1015 	 */
1016 	if (status & RS_ERRORS) {
1017 		++ifp->if_ierrors;
1018 		goto out;
1019 	}
1020 	/*
1021 	 * A packet is received.
1022 	 */
1023 
1024 	/*
1025 	 * Adjust for odd-length packet.
1026 	 */
1027 	if (status & RS_ODDFRAME)
1028 		packet_length++;
1029 
1030 	/*
1031 	 * Allocate a header mbuf from the kernel.
1032 	 */
1033 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
1034 	if (m == NULL)
1035 		goto out;
1036 
1037 	m->m_pkthdr.rcvif = ifp;
1038 	m->m_pkthdr.len = m->m_len = packet_length;
1039 
1040 	/*
1041 	 * Attach an mbuf cluster
1042 	 */
1043 	MCLGET(m, MB_DONTWAIT);
1044 
1045 	/*
1046 	 * Insist on getting a cluster
1047 	 */
1048 	if ((m->m_flags & M_EXT) == 0) {
1049 		m_freem(m);
1050 		++ifp->if_ierrors;
1051 		printf("sn: snread() kernel memory allocation problem\n");
1052 		goto out;
1053 	}
1054 
1055 	/*
1056 	 * Get packet, including link layer address, from interface.
1057 	 */
1058 
1059 	data = mtod(m, u_char *);
1060 	insw(BASE + DATA_REG_W, data, packet_length >> 1);
1061 	if (packet_length & 1) {
1062 		data += packet_length & ~1;
1063 		*data = inb(BASE + DATA_REG_B);
1064 	}
1065 	++ifp->if_ipackets;
1066 
1067 	m->m_pkthdr.len = m->m_len = packet_length;
1068 
1069 	(*ifp->if_input)(ifp, m);
1070 
1071 out:
1072 
1073 	/*
1074 	 * Error or good, tell the card to get rid of this packet Wait for
1075 	 * the MMU to be un-busy.
1076 	 */
1077 	SMC_SELECT_BANK(2);
1078 	while (inw(BASE + MMU_CMD_REG_W) & MMUCR_BUSY)	/* NOTHING */
1079 		;
1080 	outw(BASE + MMU_CMD_REG_W, MMUCR_RELEASE);
1081 
1082 	/*
1083 	 * Check whether another packet is ready
1084 	 */
1085 	packet_number = inw(BASE + FIFO_PORTS_REG_W);
1086 	if (packet_number & FIFO_REMPTY) {
1087 		return;
1088 	}
1089 	goto read_another;
1090 }
1091 
1092 
1093 /*
1094  * Handle IOCTLS.  This function is completely stolen from if_ep.c
1095  * As with its progenitor, it does not handle hardware address
1096  * changes.
1097  */
1098 static int
1099 snioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1100 {
1101 	struct sn_softc *sc = ifp->if_softc;
1102 	int error = 0;
1103 
1104 	crit_enter();
1105 
1106 	switch (cmd) {
1107 	case SIOCSIFFLAGS:
1108 		if ((ifp->if_flags & IFF_UP) == 0 && ifp->if_flags & IFF_RUNNING) {
1109 			ifp->if_flags &= ~IFF_RUNNING;
1110 			snstop(sc);
1111 			break;
1112 		} else {
1113 			/* reinitialize card on any parameter change */
1114 			sninit(sc);
1115 			break;
1116 		}
1117 		break;
1118 
1119 #ifdef notdef
1120 	case SIOCGHWADDR:
1121 		bcopy((caddr_t) sc->sc_addr, (caddr_t) & ifr->ifr_data,
1122 		      sizeof(sc->sc_addr));
1123 		break;
1124 #endif
1125 
1126 	case SIOCADDMULTI:
1127 	    /* update multicast filter list. */
1128 	    sn_setmcast(sc);
1129 	    error = 0;
1130 	    break;
1131 	case SIOCDELMULTI:
1132 	    /* update multicast filter list. */
1133 	    sn_setmcast(sc);
1134 	    error = 0;
1135 	    break;
1136 	default:
1137 		error = ether_ioctl(ifp, cmd, data);
1138 		break;
1139 	}
1140 
1141 	crit_exit();
1142 
1143 	return (error);
1144 }
1145 
1146 void
1147 snreset(struct sn_softc *sc)
1148 {
1149 	crit_enter();
1150 
1151 	snstop(sc);
1152 	sninit(sc);
1153 
1154 	crit_exit();
1155 }
1156 
1157 void
1158 snwatchdog(struct ifnet *ifp)
1159 {
1160 	crit_enter();
1161 
1162 	sn_intr(ifp->if_softc);
1163 
1164 	crit_exit();
1165 }
1166 
1167 
1168 /* 1. zero the interrupt mask
1169  * 2. clear the enable receive flag
1170  * 3. clear the enable xmit flags
1171  */
1172 void
1173 snstop(struct sn_softc *sc)
1174 {
1175 
1176 	struct ifnet   *ifp = &sc->arpcom.ac_if;
1177 
1178 	/*
1179 	 * Clear interrupt mask; disable all interrupts.
1180 	 */
1181 	SMC_SELECT_BANK(2);
1182 	outb(BASE + INTR_MASK_REG_B, 0x00);
1183 
1184 	/*
1185 	 * Disable transmitter and Receiver
1186 	 */
1187 	SMC_SELECT_BANK(0);
1188 	outw(BASE + RECV_CONTROL_REG_W, 0x0000);
1189 	outw(BASE + TXMIT_CONTROL_REG_W, 0x0000);
1190 
1191 	/*
1192 	 * Cancel watchdog.
1193 	 */
1194 	ifp->if_timer = 0;
1195 }
1196 
1197 
1198 int
1199 sn_activate(device_t dev)
1200 {
1201 	struct sn_softc *sc = device_get_softc(dev);
1202 	int err;
1203 
1204 	sc->port_rid = 0;
1205 	sc->port_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &sc->port_rid,
1206 	    0, ~0, SMC_IO_EXTENT, RF_ACTIVE);
1207 	if (!sc->port_res) {
1208 #ifdef SN_DEBUG
1209 		device_printf(dev, "Cannot allocate ioport\n");
1210 #endif
1211 		return ENOMEM;
1212 	}
1213 
1214 	sc->irq_rid = 0;
1215 	sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
1216 	    RF_ACTIVE);
1217 	if (!sc->irq_res) {
1218 #ifdef SN_DEBUG
1219 		device_printf(dev, "Cannot allocate irq\n");
1220 #endif
1221 		sn_deactivate(dev);
1222 		return ENOMEM;
1223 	}
1224 	err = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_NET, sn_intr, sc,
1225 			     &sc->intrhand, NULL);
1226 	if (err) {
1227 		sn_deactivate(dev);
1228 		return err;
1229 	}
1230 
1231 	sc->sn_io_addr = rman_get_start(sc->port_res);
1232 	return (0);
1233 }
1234 
1235 void
1236 sn_deactivate(device_t dev)
1237 {
1238 	struct sn_softc *sc = device_get_softc(dev);
1239 
1240 	if (sc->intrhand)
1241 		bus_teardown_intr(dev, sc->irq_res, sc->intrhand);
1242 	sc->intrhand = 0;
1243 	if (sc->port_res)
1244 		bus_release_resource(dev, SYS_RES_IOPORT, sc->port_rid,
1245 		    sc->port_res);
1246 	sc->port_res = 0;
1247 	if (sc->irq_res)
1248 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid,
1249 		    sc->irq_res);
1250 	sc->irq_res = 0;
1251 	return;
1252 }
1253 
1254 /*
1255  * Function: sn_probe( device_t dev, int pccard )
1256  *
1257  * Purpose:
1258  *      Tests to see if a given ioaddr points to an SMC9xxx chip.
1259  *      Tries to cause as little damage as possible if it's not a SMC chip.
1260  *      Returns a 0 on success
1261  *
1262  * Algorithm:
1263  *      (1) see if the high byte of BANK_SELECT is 0x33
1264  *      (2) compare the ioaddr with the base register's address
1265  *      (3) see if I recognize the chip ID in the appropriate register
1266  *
1267  *
1268  */
1269 int
1270 sn_probe(device_t dev, int pccard)
1271 {
1272 	struct sn_softc *sc = device_get_softc(dev);
1273 	u_int           bank;
1274 	u_short         revision_register;
1275 	u_short         base_address_register;
1276 	u_short		ioaddr;
1277 	int		err;
1278 
1279 	if ((err = sn_activate(dev)) != 0)
1280 		return err;
1281 
1282 	ioaddr = sc->sn_io_addr;
1283 
1284 	/*
1285 	 * First, see if the high byte is 0x33
1286 	 */
1287 	bank = inw(ioaddr + BANK_SELECT_REG_W);
1288 	if ((bank & BSR_DETECT_MASK) != BSR_DETECT_VALUE) {
1289 #ifdef	SN_DEBUG
1290 		device_printf(dev, "test1 failed\n");
1291 #endif
1292 		goto error;
1293 	}
1294 	/*
1295 	 * The above MIGHT indicate a device, but I need to write to further
1296 	 * test this.  Go to bank 0, then test that the register still
1297 	 * reports the high byte is 0x33.
1298 	 */
1299 	outw(ioaddr + BANK_SELECT_REG_W, 0x0000);
1300 	bank = inw(ioaddr + BANK_SELECT_REG_W);
1301 	if ((bank & BSR_DETECT_MASK) != BSR_DETECT_VALUE) {
1302 #ifdef	SN_DEBUG
1303 		device_printf(dev, "test2 failed\n");
1304 #endif
1305 		goto error;
1306 	}
1307 	/*
1308 	 * well, we've already written once, so hopefully another time won't
1309 	 * hurt.  This time, I need to switch the bank register to bank 1, so
1310 	 * I can access the base address register.  The contents of the
1311 	 * BASE_ADDR_REG_W register, after some jiggery pokery, is expected
1312 	 * to match the I/O port address where the adapter is being probed.
1313 	 */
1314 	outw(ioaddr + BANK_SELECT_REG_W, 0x0001);
1315 	base_address_register = inw(ioaddr + BASE_ADDR_REG_W);
1316 
1317 	/*
1318 	 * This test is nonsence on PC-card architecture, so if
1319 	 * pccard == 1, skip this test. (hosokawa)
1320 	 */
1321 	if (!pccard && (ioaddr != (base_address_register >> 3 & 0x3E0))) {
1322 
1323 		/*
1324 		 * Well, the base address register didn't match.  Must not
1325 		 * have been a SMC chip after all.
1326 		 */
1327 		/*
1328 		 * printf("sn: ioaddr %x doesn't match card configuration
1329 		 * (%x)\n", ioaddr, base_address_register >> 3 & 0x3E0 );
1330 		 */
1331 
1332 #ifdef	SN_DEBUG
1333 		device_printf(dev, "test3 failed ioaddr = 0x%x, "
1334 		    "base_address_register = 0x%x\n", ioaddr,
1335 		    base_address_register >> 3 & 0x3E0);
1336 #endif
1337 		goto error;
1338 	}
1339 	/*
1340 	 * Check if the revision register is something that I recognize.
1341 	 * These might need to be added to later, as future revisions could
1342 	 * be added.
1343 	 */
1344 	outw(ioaddr + BANK_SELECT_REG_W, 0x3);
1345 	revision_register = inw(ioaddr + REVISION_REG_W);
1346 	if (!chip_ids[(revision_register >> 4) & 0xF]) {
1347 
1348 		/*
1349 		 * I don't regonize this chip, so...
1350 		 */
1351 #ifdef	SN_DEBUG
1352 		device_printf(dev, "test4 failed\n");
1353 #endif
1354 		goto error;
1355 	}
1356 	/*
1357 	 * at this point I'll assume that the chip is an SMC9xxx. It might be
1358 	 * prudent to check a listing of MAC addresses against the hardware
1359 	 * address, or do some other tests.
1360 	 */
1361 	sn_deactivate(dev);
1362 	return 0;
1363  error:
1364 	sn_deactivate(dev);
1365 	return ENXIO;
1366 }
1367 
1368 #define MCFSZ 8
1369 
1370 static void
1371 sn_setmcast(struct sn_softc *sc)
1372 {
1373 	struct ifnet *ifp = (struct ifnet *)sc;
1374 	int flags;
1375 
1376 	/*
1377 	 * Set the receiver filter.  We want receive enabled and auto strip
1378 	 * of CRC from received packet.  If we are promiscuous then set that
1379 	 * bit too.
1380 	 */
1381 	flags = RCR_ENABLE | RCR_STRIP_CRC;
1382 
1383 	if (ifp->if_flags & IFF_PROMISC) {
1384 		flags |= RCR_PROMISC | RCR_ALMUL;
1385 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1386 		flags |= RCR_ALMUL;
1387 	} else {
1388 		u_char mcf[MCFSZ];
1389 		if (sn_getmcf(&sc->arpcom, mcf)) {
1390 			/* set filter */
1391 			SMC_SELECT_BANK(3);
1392 			outw(BASE + MULTICAST1_REG_W,
1393 			    ((u_short)mcf[1] << 8) |  mcf[0]);
1394 			outw(BASE + MULTICAST2_REG_W,
1395 			    ((u_short)mcf[3] << 8) |  mcf[2]);
1396 			outw(BASE + MULTICAST3_REG_W,
1397 			    ((u_short)mcf[5] << 8) |  mcf[4]);
1398 			outw(BASE + MULTICAST4_REG_W,
1399 			    ((u_short)mcf[7] << 8) |  mcf[6]);
1400 		} else {
1401 			flags |= RCR_ALMUL;
1402 		}
1403 	}
1404 	SMC_SELECT_BANK(0);
1405 	outw(BASE + RECV_CONTROL_REG_W, flags);
1406 }
1407 
1408 static int
1409 sn_getmcf(struct arpcom *ac, u_char *mcf)
1410 {
1411 	int i;
1412 	u_int index, index2;
1413 	u_char *af = (u_char *) mcf;
1414 	struct ifmultiaddr *ifma;
1415 
1416 	bzero(mcf, MCFSZ);
1417 
1418 	LIST_FOREACH(ifma, &ac->ac_if.if_multiaddrs, ifma_link) {
1419 	    if (ifma->ifma_addr->sa_family != AF_LINK)
1420 		return 0;
1421 	    index = smc_crc(LLADDR((struct sockaddr_dl *)ifma->ifma_addr)) & 0x3f;
1422 	    index2 = 0;
1423 	    for (i = 0; i < 6; i++) {
1424 		index2 <<= 1;
1425 		index2 |= (index & 0x01);
1426 		index >>= 1;
1427 	    }
1428 	    af[index2 >> 3] |= 1 << (index2 & 7);
1429 	}
1430 	return 1;  /* use multicast filter */
1431 }
1432 
1433 static u_int
1434 smc_crc(u_char *s)
1435 {
1436 	int perByte;
1437 	int perBit;
1438 	const u_int poly = 0xedb88320;
1439 	u_int v = 0xffffffff;
1440 	u_char c;
1441 
1442 	for (perByte = 0; perByte < ETHER_ADDR_LEN; perByte++) {
1443 		c = s[perByte];
1444 		for (perBit = 0; perBit < 8; perBit++) {
1445 			v = (v >> 1)^(((v ^ c) & 0x01) ? poly : 0);
1446 			c >>= 1;
1447 		}
1448 	}
1449 	return v;
1450 }
1451