xref: /dragonfly/sys/dev/netif/sn/if_sn.c (revision 984263bc)
1 /*
2  * Copyright (c) 1996 Gardner Buchanan <gbuchanan@shl.com>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *      This product includes software developed by Gardner Buchanan.
16  * 4. The name of Gardner Buchanan may not be used to endorse or promote
17  *    products derived from this software without specific prior written
18  *    permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *   $FreeBSD: src/sys/dev/sn/if_sn.c,v 1.7.2.3 2001/02/04 04:38:38 toshi Exp $
32  */
33 
34 /*
35  * This is a driver for SMC's 9000 series of Ethernet adapters.
36  *
37  * This FreeBSD driver is derived from the smc9194 Linux driver by
38  * Erik Stahlman and is Copyright (C) 1996 by Erik Stahlman.
39  * This driver also shamelessly borrows from the FreeBSD ep driver
40  * which is Copyright (C) 1994 Herb Peyerl <hpeyerl@novatel.ca>
41  * All rights reserved.
42  *
43  * It is set up for my SMC91C92 equipped Ampro LittleBoard embedded
44  * PC.  It is adapted from Erik Stahlman's Linux driver which worked
45  * with his EFA Info*Express SVC VLB adaptor.  According to SMC's databook,
46  * it will work for the entire SMC 9xxx series. (Ha Ha)
47  *
48  * "Features" of the SMC chip:
49  *   4608 byte packet memory. (for the 91C92.  Others have more)
50  *   EEPROM for configuration
51  *   AUI/TP selection
52  *
53  * Authors:
54  *      Erik Stahlman                   erik@vt.edu
55  *      Herb Peyerl                     hpeyerl@novatel.ca
56  *      Andres Vega Garcia              avega@sophia.inria.fr
57  *      Serge Babkin                    babkin@hq.icb.chel.su
58  *      Gardner Buchanan                gbuchanan@shl.com
59  *
60  * Sources:
61  *    o   SMC databook
62  *    o   "smc9194.c:v0.10(FIXED) 02/15/96 by Erik Stahlman (erik@vt.edu)"
63  *    o   "if_ep.c,v 1.19 1995/01/24 20:53:45 davidg Exp"
64  *
65  * Known Bugs:
66  *    o   The hardware multicast filter isn't used yet.
67  *    o   Setting of the hardware address isn't supported.
68  *    o   Hardware padding isn't used.
69  */
70 
71 /*
72  * Modifications for Megahertz X-Jack Ethernet Card (XJ-10BT)
73  *
74  * Copyright (c) 1996 by Tatsumi Hosokawa <hosokawa@jp.FreeBSD.org>
75  *                       BSD-nomads, Tokyo, Japan.
76  */
77 /*
78  * Multicast support by Kei TANAKA <kei@pal.xerox.com>
79  * Special thanks to itojun@itojun.org
80  */
81 
82 #undef	SN_DEBUG	/* (by hosokawa) */
83 
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/kernel.h>
87 #include <sys/errno.h>
88 #include <sys/sockio.h>
89 #include <sys/malloc.h>
90 #include <sys/mbuf.h>
91 #include <sys/socket.h>
92 #include <sys/syslog.h>
93 
94 #include <sys/module.h>
95 #include <sys/bus.h>
96 
97 #include <machine/bus.h>
98 #include <machine/resource.h>
99 #include <sys/rman.h>
100 
101 #include <net/ethernet.h>
102 #include <net/if.h>
103 #include <net/if_arp.h>
104 #include <net/if_dl.h>
105 #include <net/if_types.h>
106 #include <net/if_mib.h>
107 
108 #ifdef INET
109 #include <netinet/in.h>
110 #include <netinet/in_systm.h>
111 #include <netinet/in_var.h>
112 #include <netinet/ip.h>
113 #endif
114 
115 #ifdef NS
116 #include <netns/ns.h>
117 #include <netns/ns_if.h>
118 #endif
119 
120 #include <net/bpf.h>
121 #include <net/bpfdesc.h>
122 
123 #include <machine/clock.h>
124 
125 #include <dev/sn/if_snreg.h>
126 #include <dev/sn/if_snvar.h>
127 
128 /* Exported variables */
129 devclass_t sn_devclass;
130 
131 static int snioctl(struct ifnet * ifp, u_long, caddr_t);
132 
133 static void snresume(struct ifnet *);
134 
135 void sninit(void *);
136 void snread(struct ifnet *);
137 void snreset(struct sn_softc *);
138 void snstart(struct ifnet *);
139 void snstop(struct sn_softc *);
140 void snwatchdog(struct ifnet *);
141 
142 static void sn_setmcast(struct sn_softc *);
143 static int sn_getmcf(struct arpcom *ac, u_char *mcf);
144 static u_int smc_crc(u_char *);
145 
146 /* I (GB) have been unlucky getting the hardware padding
147  * to work properly.
148  */
149 #define SW_PAD
150 
151 static const char *chip_ids[15] = {
152 	NULL, NULL, NULL,
153 	 /* 3 */ "SMC91C90/91C92",
154 	 /* 4 */ "SMC91C94",
155 	 /* 5 */ "SMC91C95",
156 	NULL,
157 	 /* 7 */ "SMC91C100",
158 	 /* 8 */ "SMC91C100FD",
159 	NULL, NULL, NULL,
160 	NULL, NULL, NULL
161 };
162 
163 int
164 sn_attach(device_t dev)
165 {
166 	struct sn_softc *sc = device_get_softc(dev);
167 	struct ifnet   *ifp = &sc->arpcom.ac_if;
168 	u_short         i;
169 	u_char         *p;
170 	struct ifaddr  *ifa;
171 	struct sockaddr_dl *sdl;
172 	int             rev;
173 	u_short         address;
174 	int		j;
175 
176 	sn_activate(dev);
177 
178 	snstop(sc);
179 
180 	sc->dev = dev;
181 	sc->pages_wanted = -1;
182 
183 	device_printf(dev, " ");
184 
185 	SMC_SELECT_BANK(3);
186 	rev = inw(BASE + REVISION_REG_W);
187 	if (chip_ids[(rev >> 4) & 0xF])
188 		printf("%s ", chip_ids[(rev >> 4) & 0xF]);
189 
190 	SMC_SELECT_BANK(1);
191 	i = inw(BASE + CONFIG_REG_W);
192 	printf(i & CR_AUI_SELECT ? "AUI" : "UTP");
193 
194 	if (sc->pccard_enaddr)
195 		for (j = 0; j < 3; j++) {
196 			u_short	w;
197 
198 			w = (u_short)sc->arpcom.ac_enaddr[j * 2] |
199 				(((u_short)sc->arpcom.ac_enaddr[j * 2 + 1]) << 8);
200 			outw(BASE + IAR_ADDR0_REG_W + j * 2, w);
201 		}
202 
203 	/*
204 	 * Read the station address from the chip. The MAC address is bank 1,
205 	 * regs 4 - 9
206 	 */
207 	SMC_SELECT_BANK(1);
208 	p = (u_char *) & sc->arpcom.ac_enaddr;
209 	for (i = 0; i < 6; i += 2) {
210 		address = inw(BASE + IAR_ADDR0_REG_W + i);
211 		p[i + 1] = address >> 8;
212 		p[i] = address & 0xFF;
213 	}
214 	printf(" MAC address %6D\n", sc->arpcom.ac_enaddr, ":");
215 	ifp->if_softc = sc;
216 	ifp->if_unit = device_get_unit(dev);
217 	ifp->if_name = "sn";
218 	ifp->if_mtu = ETHERMTU;
219 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
220 	ifp->if_output = ether_output;
221 	ifp->if_start = snstart;
222 	ifp->if_ioctl = snioctl;
223 	ifp->if_watchdog = snwatchdog;
224 	ifp->if_init = sninit;
225 	ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
226 	ifp->if_timer = 0;
227 
228 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
229 
230 	/*
231 	 * Fill the hardware address into ifa_addr if we find an AF_LINK
232 	 * entry. We need to do this so bpf's can get the hardware addr of
233 	 * this card. netstat likes this too!
234 	 */
235 	ifa = TAILQ_FIRST(&ifp->if_addrhead);
236 	while ((ifa != 0) && (ifa->ifa_addr != 0) &&
237 	       (ifa->ifa_addr->sa_family != AF_LINK))
238 		ifa = TAILQ_NEXT(ifa, ifa_link);
239 
240 	if ((ifa != 0) && (ifa->ifa_addr != 0)) {
241 		sdl = (struct sockaddr_dl *) ifa->ifa_addr;
242 		sdl->sdl_type = IFT_ETHER;
243 		sdl->sdl_alen = ETHER_ADDR_LEN;
244 		sdl->sdl_slen = 0;
245 		bcopy(sc->arpcom.ac_enaddr, LLADDR(sdl), ETHER_ADDR_LEN);
246 	}
247 
248 	return 0;
249 }
250 
251 
252 /*
253  * Reset and initialize the chip
254  */
255 void
256 sninit(void *xsc)
257 {
258 	register struct sn_softc *sc = xsc;
259 	register struct ifnet *ifp = &sc->arpcom.ac_if;
260 	int             s;
261 	int             flags;
262 	int             mask;
263 
264 	s = splimp();
265 
266 	/*
267 	 * This resets the registers mostly to defaults, but doesn't affect
268 	 * EEPROM.  After the reset cycle, we pause briefly for the chip to
269 	 * be happy.
270 	 */
271 	SMC_SELECT_BANK(0);
272 	outw(BASE + RECV_CONTROL_REG_W, RCR_SOFTRESET);
273 	SMC_DELAY();
274 	outw(BASE + RECV_CONTROL_REG_W, 0x0000);
275 	SMC_DELAY();
276 	SMC_DELAY();
277 
278 	outw(BASE + TXMIT_CONTROL_REG_W, 0x0000);
279 
280 	/*
281 	 * Set the control register to automatically release succesfully
282 	 * transmitted packets (making the best use out of our limited
283 	 * memory) and to enable the EPH interrupt on certain TX errors.
284 	 */
285 	SMC_SELECT_BANK(1);
286 	outw(BASE + CONTROL_REG_W, (CTR_AUTO_RELEASE | CTR_TE_ENABLE |
287 				    CTR_CR_ENABLE | CTR_LE_ENABLE));
288 
289 	/* Set squelch level to 240mV (default 480mV) */
290 	flags = inw(BASE + CONFIG_REG_W);
291 	flags |= CR_SET_SQLCH;
292 	outw(BASE + CONFIG_REG_W, flags);
293 
294 	/*
295 	 * Reset the MMU and wait for it to be un-busy.
296 	 */
297 	SMC_SELECT_BANK(2);
298 	outw(BASE + MMU_CMD_REG_W, MMUCR_RESET);
299 	while (inw(BASE + MMU_CMD_REG_W) & MMUCR_BUSY)	/* NOTHING */
300 		;
301 
302 	/*
303 	 * Disable all interrupts
304 	 */
305 	outb(BASE + INTR_MASK_REG_B, 0x00);
306 
307 	sn_setmcast(sc);
308 
309 	/*
310 	 * Set the transmitter control.  We want it enabled.
311 	 */
312 	flags = TCR_ENABLE;
313 
314 #ifndef SW_PAD
315 	/*
316 	 * I (GB) have been unlucky getting this to work.
317 	 */
318 	flags |= TCR_PAD_ENABLE;
319 #endif	/* SW_PAD */
320 
321 	outw(BASE + TXMIT_CONTROL_REG_W, flags);
322 
323 
324 	/*
325 	 * Now, enable interrupts
326 	 */
327 	SMC_SELECT_BANK(2);
328 
329 	mask = IM_EPH_INT |
330 		IM_RX_OVRN_INT |
331 		IM_RCV_INT |
332 		IM_TX_INT;
333 
334 	outb(BASE + INTR_MASK_REG_B, mask);
335 	sc->intr_mask = mask;
336 	sc->pages_wanted = -1;
337 
338 
339 	/*
340 	 * Mark the interface running but not active.
341 	 */
342 	ifp->if_flags |= IFF_RUNNING;
343 	ifp->if_flags &= ~IFF_OACTIVE;
344 
345 	/*
346 	 * Attempt to push out any waiting packets.
347 	 */
348 	snstart(ifp);
349 
350 	splx(s);
351 }
352 
353 
354 void
355 snstart(struct ifnet *ifp)
356 {
357 	register struct sn_softc *sc = ifp->if_softc;
358 	register u_int  len;
359 	register struct mbuf *m;
360 	struct mbuf    *top;
361 	int             s, pad;
362 	int             mask;
363 	u_short         length;
364 	u_short         numPages;
365 	u_char          packet_no;
366 	int             time_out;
367 
368 	s = splimp();
369 
370 	if (sc->arpcom.ac_if.if_flags & IFF_OACTIVE) {
371 		splx(s);
372 		return;
373 	}
374 	if (sc->pages_wanted != -1) {
375 		splx(s);
376 		printf("sn%d: snstart() while memory allocation pending\n",
377 		       ifp->if_unit);
378 		return;
379 	}
380 startagain:
381 
382 	/*
383 	 * Sneak a peek at the next packet
384 	 */
385 	m = sc->arpcom.ac_if.if_snd.ifq_head;
386 	if (m == 0) {
387 		splx(s);
388 		return;
389 	}
390 	/*
391 	 * Compute the frame length and set pad to give an overall even
392 	 * number of bytes.  Below we assume that the packet length is even.
393 	 */
394 	for (len = 0, top = m; m; m = m->m_next)
395 		len += m->m_len;
396 
397 	pad = (len & 1);
398 
399 	/*
400 	 * We drop packets that are too large. Perhaps we should truncate
401 	 * them instead?
402 	 */
403 	if (len + pad > ETHER_MAX_LEN - ETHER_CRC_LEN) {
404 		printf("sn%d: large packet discarded (A)\n", ifp->if_unit);
405 		++sc->arpcom.ac_if.if_oerrors;
406 		IF_DEQUEUE(&sc->arpcom.ac_if.if_snd, m);
407 		m_freem(m);
408 		goto readcheck;
409 	}
410 #ifdef SW_PAD
411 
412 	/*
413 	 * If HW padding is not turned on, then pad to ETHER_MIN_LEN.
414 	 */
415 	if (len < ETHER_MIN_LEN - ETHER_CRC_LEN)
416 		pad = ETHER_MIN_LEN - ETHER_CRC_LEN - len;
417 
418 #endif	/* SW_PAD */
419 
420 	length = pad + len;
421 
422 	/*
423 	 * The MMU wants the number of pages to be the number of 256 byte
424 	 * 'pages', minus 1 (A packet can't ever have 0 pages. We also
425 	 * include space for the status word, byte count and control bytes in
426 	 * the allocation request.
427 	 */
428 	numPages = (length + 6) >> 8;
429 
430 
431 	/*
432 	 * Now, try to allocate the memory
433 	 */
434 	SMC_SELECT_BANK(2);
435 	outw(BASE + MMU_CMD_REG_W, MMUCR_ALLOC | numPages);
436 
437 	/*
438 	 * Wait a short amount of time to see if the allocation request
439 	 * completes.  Otherwise, I enable the interrupt and wait for
440 	 * completion asyncronously.
441 	 */
442 
443 	time_out = MEMORY_WAIT_TIME;
444 	do {
445 		if (inb(BASE + INTR_STAT_REG_B) & IM_ALLOC_INT)
446 			break;
447 	} while (--time_out);
448 
449 	if (!time_out) {
450 
451 		/*
452 		 * No memory now.  Oh well, wait until the chip finds memory
453 		 * later.   Remember how many pages we were asking for and
454 		 * enable the allocation completion interrupt. Also set a
455 		 * watchdog in case  we miss the interrupt. We mark the
456 		 * interface active since there is no point in attempting an
457 		 * snstart() until after the memory is available.
458 		 */
459 		mask = inb(BASE + INTR_MASK_REG_B) | IM_ALLOC_INT;
460 		outb(BASE + INTR_MASK_REG_B, mask);
461 		sc->intr_mask = mask;
462 
463 		sc->arpcom.ac_if.if_timer = 1;
464 		sc->arpcom.ac_if.if_flags |= IFF_OACTIVE;
465 		sc->pages_wanted = numPages;
466 
467 		splx(s);
468 		return;
469 	}
470 	/*
471 	 * The memory allocation completed.  Check the results.
472 	 */
473 	packet_no = inb(BASE + ALLOC_RESULT_REG_B);
474 	if (packet_no & ARR_FAILED) {
475 		printf("sn%d: Memory allocation failed\n", ifp->if_unit);
476 		goto startagain;
477 	}
478 	/*
479 	 * We have a packet number, so tell the card to use it.
480 	 */
481 	outb(BASE + PACKET_NUM_REG_B, packet_no);
482 
483 	/*
484 	 * Point to the beginning of the packet
485 	 */
486 	outw(BASE + POINTER_REG_W, PTR_AUTOINC | 0x0000);
487 
488 	/*
489 	 * Send the packet length (+6 for status, length and control byte)
490 	 * and the status word (set to zeros)
491 	 */
492 	outw(BASE + DATA_REG_W, 0);
493 	outb(BASE + DATA_REG_B, (length + 6) & 0xFF);
494 	outb(BASE + DATA_REG_B, (length + 6) >> 8);
495 
496 	/*
497 	 * Get the packet from the kernel.  This will include the Ethernet
498 	 * frame header, MAC Addresses etc.
499 	 */
500 	IF_DEQUEUE(&sc->arpcom.ac_if.if_snd, m);
501 
502 	/*
503 	 * Push out the data to the card.
504 	 */
505 	for (top = m; m != 0; m = m->m_next) {
506 
507 		/*
508 		 * Push out words.
509 		 */
510 		outsw(BASE + DATA_REG_W, mtod(m, caddr_t), m->m_len / 2);
511 
512 		/*
513 		 * Push out remaining byte.
514 		 */
515 		if (m->m_len & 1)
516 			outb(BASE + DATA_REG_B, *(mtod(m, caddr_t) + m->m_len - 1));
517 	}
518 
519 	/*
520 	 * Push out padding.
521 	 */
522 	while (pad > 1) {
523 		outw(BASE + DATA_REG_W, 0);
524 		pad -= 2;
525 	}
526 	if (pad)
527 		outb(BASE + DATA_REG_B, 0);
528 
529 	/*
530 	 * Push out control byte and unused packet byte The control byte is 0
531 	 * meaning the packet is even lengthed and no special CRC handling is
532 	 * desired.
533 	 */
534 	outw(BASE + DATA_REG_W, 0);
535 
536 	/*
537 	 * Enable the interrupts and let the chipset deal with it Also set a
538 	 * watchdog in case we miss the interrupt.
539 	 */
540 	mask = inb(BASE + INTR_MASK_REG_B) | (IM_TX_INT | IM_TX_EMPTY_INT);
541 	outb(BASE + INTR_MASK_REG_B, mask);
542 	sc->intr_mask = mask;
543 
544 	outw(BASE + MMU_CMD_REG_W, MMUCR_ENQUEUE);
545 
546 	sc->arpcom.ac_if.if_flags |= IFF_OACTIVE;
547 	sc->arpcom.ac_if.if_timer = 1;
548 
549 	if (ifp->if_bpf) {
550 		bpf_mtap(ifp, top);
551 	}
552 
553 	sc->arpcom.ac_if.if_opackets++;
554 	m_freem(top);
555 
556 
557 readcheck:
558 
559 	/*
560 	 * Is another packet coming in?  We don't want to overflow the tiny
561 	 * RX FIFO.  If nothing has arrived then attempt to queue another
562 	 * transmit packet.
563 	 */
564 	if (inw(BASE + FIFO_PORTS_REG_W) & FIFO_REMPTY)
565 		goto startagain;
566 
567 	splx(s);
568 	return;
569 }
570 
571 
572 
573 /* Resume a packet transmit operation after a memory allocation
574  * has completed.
575  *
576  * This is basically a hacked up copy of snstart() which handles
577  * a completed memory allocation the same way snstart() does.
578  * It then passes control to snstart to handle any other queued
579  * packets.
580  */
581 static void
582 snresume(struct ifnet *ifp)
583 {
584 	register struct sn_softc *sc = ifp->if_softc;
585 	register u_int  len;
586 	register struct mbuf *m;
587 	struct mbuf    *top;
588 	int             pad;
589 	int             mask;
590 	u_short         length;
591 	u_short         numPages;
592 	u_short         pages_wanted;
593 	u_char          packet_no;
594 
595 	if (sc->pages_wanted < 0)
596 		return;
597 
598 	pages_wanted = sc->pages_wanted;
599 	sc->pages_wanted = -1;
600 
601 	/*
602 	 * Sneak a peek at the next packet
603 	 */
604 	m = sc->arpcom.ac_if.if_snd.ifq_head;
605 	if (m == 0) {
606 		printf("sn%d: snresume() with nothing to send\n", ifp->if_unit);
607 		return;
608 	}
609 	/*
610 	 * Compute the frame length and set pad to give an overall even
611 	 * number of bytes.  Below we assume that the packet length is even.
612 	 */
613 	for (len = 0, top = m; m; m = m->m_next)
614 		len += m->m_len;
615 
616 	pad = (len & 1);
617 
618 	/*
619 	 * We drop packets that are too large. Perhaps we should truncate
620 	 * them instead?
621 	 */
622 	if (len + pad > ETHER_MAX_LEN - ETHER_CRC_LEN) {
623 		printf("sn%d: large packet discarded (B)\n", ifp->if_unit);
624 		++sc->arpcom.ac_if.if_oerrors;
625 		IF_DEQUEUE(&sc->arpcom.ac_if.if_snd, m);
626 		m_freem(m);
627 		return;
628 	}
629 #ifdef SW_PAD
630 
631 	/*
632 	 * If HW padding is not turned on, then pad to ETHER_MIN_LEN.
633 	 */
634 	if (len < ETHER_MIN_LEN - ETHER_CRC_LEN)
635 		pad = ETHER_MIN_LEN - ETHER_CRC_LEN - len;
636 
637 #endif	/* SW_PAD */
638 
639 	length = pad + len;
640 
641 
642 	/*
643 	 * The MMU wants the number of pages to be the number of 256 byte
644 	 * 'pages', minus 1 (A packet can't ever have 0 pages. We also
645 	 * include space for the status word, byte count and control bytes in
646 	 * the allocation request.
647 	 */
648 	numPages = (length + 6) >> 8;
649 
650 
651 	SMC_SELECT_BANK(2);
652 
653 	/*
654 	 * The memory allocation completed.  Check the results. If it failed,
655 	 * we simply set a watchdog timer and hope for the best.
656 	 */
657 	packet_no = inb(BASE + ALLOC_RESULT_REG_B);
658 	if (packet_no & ARR_FAILED) {
659 		printf("sn%d: Memory allocation failed.  Weird.\n", ifp->if_unit);
660 		sc->arpcom.ac_if.if_timer = 1;
661 		goto try_start;
662 	}
663 	/*
664 	 * We have a packet number, so tell the card to use it.
665 	 */
666 	outb(BASE + PACKET_NUM_REG_B, packet_no);
667 
668 	/*
669 	 * Now, numPages should match the pages_wanted recorded when the
670 	 * memory allocation was initiated.
671 	 */
672 	if (pages_wanted != numPages) {
673 		printf("sn%d: memory allocation wrong size.  Weird.\n", ifp->if_unit);
674 		/*
675 		 * If the allocation was the wrong size we simply release the
676 		 * memory once it is granted. Wait for the MMU to be un-busy.
677 		 */
678 		while (inw(BASE + MMU_CMD_REG_W) & MMUCR_BUSY)	/* NOTHING */
679 			;
680 		outw(BASE + MMU_CMD_REG_W, MMUCR_FREEPKT);
681 
682 		return;
683 	}
684 	/*
685 	 * Point to the beginning of the packet
686 	 */
687 	outw(BASE + POINTER_REG_W, PTR_AUTOINC | 0x0000);
688 
689 	/*
690 	 * Send the packet length (+6 for status, length and control byte)
691 	 * and the status word (set to zeros)
692 	 */
693 	outw(BASE + DATA_REG_W, 0);
694 	outb(BASE + DATA_REG_B, (length + 6) & 0xFF);
695 	outb(BASE + DATA_REG_B, (length + 6) >> 8);
696 
697 	/*
698 	 * Get the packet from the kernel.  This will include the Ethernet
699 	 * frame header, MAC Addresses etc.
700 	 */
701 	IF_DEQUEUE(&sc->arpcom.ac_if.if_snd, m);
702 
703 	/*
704 	 * Push out the data to the card.
705 	 */
706 	for (top = m; m != 0; m = m->m_next) {
707 
708 		/*
709 		 * Push out words.
710 		 */
711 		outsw(BASE + DATA_REG_W, mtod(m, caddr_t), m->m_len / 2);
712 
713 		/*
714 		 * Push out remaining byte.
715 		 */
716 		if (m->m_len & 1)
717 			outb(BASE + DATA_REG_B, *(mtod(m, caddr_t) + m->m_len - 1));
718 	}
719 
720 	/*
721 	 * Push out padding.
722 	 */
723 	while (pad > 1) {
724 		outw(BASE + DATA_REG_W, 0);
725 		pad -= 2;
726 	}
727 	if (pad)
728 		outb(BASE + DATA_REG_B, 0);
729 
730 	/*
731 	 * Push out control byte and unused packet byte The control byte is 0
732 	 * meaning the packet is even lengthed and no special CRC handling is
733 	 * desired.
734 	 */
735 	outw(BASE + DATA_REG_W, 0);
736 
737 	/*
738 	 * Enable the interrupts and let the chipset deal with it Also set a
739 	 * watchdog in case we miss the interrupt.
740 	 */
741 	mask = inb(BASE + INTR_MASK_REG_B) | (IM_TX_INT | IM_TX_EMPTY_INT);
742 	outb(BASE + INTR_MASK_REG_B, mask);
743 	sc->intr_mask = mask;
744 	outw(BASE + MMU_CMD_REG_W, MMUCR_ENQUEUE);
745 
746 	if (ifp->if_bpf) {
747 		bpf_mtap(ifp, top);
748 	}
749 
750 	sc->arpcom.ac_if.if_opackets++;
751 	m_freem(top);
752 
753 try_start:
754 
755 	/*
756 	 * Now pass control to snstart() to queue any additional packets
757 	 */
758 	sc->arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
759 	snstart(ifp);
760 
761 	/*
762 	 * We've sent something, so we're active.  Set a watchdog in case the
763 	 * TX_EMPTY interrupt is lost.
764 	 */
765 	sc->arpcom.ac_if.if_flags |= IFF_OACTIVE;
766 	sc->arpcom.ac_if.if_timer = 1;
767 
768 	return;
769 }
770 
771 
772 void
773 sn_intr(void *arg)
774 {
775 	int             status, interrupts;
776 	register struct sn_softc *sc = (struct sn_softc *) arg;
777 	struct ifnet   *ifp = &sc->arpcom.ac_if;
778 	int             x;
779 
780 	/*
781 	 * Chip state registers
782 	 */
783 	u_char          mask;
784 	u_char          packet_no;
785 	u_short         tx_status;
786 	u_short         card_stats;
787 
788 	/*
789 	 * if_ep.c did this, so I do too.  Yet if_ed.c doesn't. I wonder...
790 	 */
791 	x = splbio();
792 
793 	/*
794 	 * Clear the watchdog.
795 	 */
796 	ifp->if_timer = 0;
797 
798 	SMC_SELECT_BANK(2);
799 
800 	/*
801 	 * Obtain the current interrupt mask and clear the hardware mask
802 	 * while servicing interrupts.
803 	 */
804 	mask = inb(BASE + INTR_MASK_REG_B);
805 	outb(BASE + INTR_MASK_REG_B, 0x00);
806 
807 	/*
808 	 * Get the set of interrupts which occurred and eliminate any which
809 	 * are masked.
810 	 */
811 	interrupts = inb(BASE + INTR_STAT_REG_B);
812 	status = interrupts & mask;
813 
814 	/*
815 	 * Now, process each of the interrupt types.
816 	 */
817 
818 	/*
819 	 * Receive Overrun.
820 	 */
821 	if (status & IM_RX_OVRN_INT) {
822 
823 		/*
824 		 * Acknowlege Interrupt
825 		 */
826 		SMC_SELECT_BANK(2);
827 		outb(BASE + INTR_ACK_REG_B, IM_RX_OVRN_INT);
828 
829 		++sc->arpcom.ac_if.if_ierrors;
830 	}
831 	/*
832 	 * Got a packet.
833 	 */
834 	if (status & IM_RCV_INT) {
835 #if 1
836 		int             packet_number;
837 
838 		SMC_SELECT_BANK(2);
839 		packet_number = inw(BASE + FIFO_PORTS_REG_W);
840 
841 		if (packet_number & FIFO_REMPTY) {
842 
843 			/*
844 			 * we got called , but nothing was on the FIFO
845 			 */
846 			printf("sn: Receive interrupt with nothing on FIFO\n");
847 
848 			goto out;
849 		}
850 #endif
851 		snread(ifp);
852 	}
853 	/*
854 	 * An on-card memory allocation came through.
855 	 */
856 	if (status & IM_ALLOC_INT) {
857 
858 		/*
859 		 * Disable this interrupt.
860 		 */
861 		mask &= ~IM_ALLOC_INT;
862 		sc->arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
863 		snresume(&sc->arpcom.ac_if);
864 	}
865 	/*
866 	 * TX Completion.  Handle a transmit error message. This will only be
867 	 * called when there is an error, because of the AUTO_RELEASE mode.
868 	 */
869 	if (status & IM_TX_INT) {
870 
871 		/*
872 		 * Acknowlege Interrupt
873 		 */
874 		SMC_SELECT_BANK(2);
875 		outb(BASE + INTR_ACK_REG_B, IM_TX_INT);
876 
877 		packet_no = inw(BASE + FIFO_PORTS_REG_W);
878 		packet_no &= FIFO_TX_MASK;
879 
880 		/*
881 		 * select this as the packet to read from
882 		 */
883 		outb(BASE + PACKET_NUM_REG_B, packet_no);
884 
885 		/*
886 		 * Position the pointer to the first word from this packet
887 		 */
888 		outw(BASE + POINTER_REG_W, PTR_AUTOINC | PTR_READ | 0x0000);
889 
890 		/*
891 		 * Fetch the TX status word.  The value found here will be a
892 		 * copy of the EPH_STATUS_REG_W at the time the transmit
893 		 * failed.
894 		 */
895 		tx_status = inw(BASE + DATA_REG_W);
896 
897 		if (tx_status & EPHSR_TX_SUC) {
898 			device_printf(sc->dev,
899 			    "Successful packet caused interrupt\n");
900 		} else {
901 			++sc->arpcom.ac_if.if_oerrors;
902 		}
903 
904 		if (tx_status & EPHSR_LATCOL)
905 			++sc->arpcom.ac_if.if_collisions;
906 
907 		/*
908 		 * Some of these errors will have disabled transmit.
909 		 * Re-enable transmit now.
910 		 */
911 		SMC_SELECT_BANK(0);
912 
913 #ifdef SW_PAD
914 		outw(BASE + TXMIT_CONTROL_REG_W, TCR_ENABLE);
915 #else
916 		outw(BASE + TXMIT_CONTROL_REG_W, TCR_ENABLE | TCR_PAD_ENABLE);
917 #endif	/* SW_PAD */
918 
919 		/*
920 		 * kill the failed packet. Wait for the MMU to be un-busy.
921 		 */
922 		SMC_SELECT_BANK(2);
923 		while (inw(BASE + MMU_CMD_REG_W) & MMUCR_BUSY)	/* NOTHING */
924 			;
925 		outw(BASE + MMU_CMD_REG_W, MMUCR_FREEPKT);
926 
927 		/*
928 		 * Attempt to queue more transmits.
929 		 */
930 		sc->arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
931 		snstart(&sc->arpcom.ac_if);
932 	}
933 	/*
934 	 * Transmit underrun.  We use this opportunity to update transmit
935 	 * statistics from the card.
936 	 */
937 	if (status & IM_TX_EMPTY_INT) {
938 
939 		/*
940 		 * Acknowlege Interrupt
941 		 */
942 		SMC_SELECT_BANK(2);
943 		outb(BASE + INTR_ACK_REG_B, IM_TX_EMPTY_INT);
944 
945 		/*
946 		 * Disable this interrupt.
947 		 */
948 		mask &= ~IM_TX_EMPTY_INT;
949 
950 		SMC_SELECT_BANK(0);
951 		card_stats = inw(BASE + COUNTER_REG_W);
952 
953 		/*
954 		 * Single collisions
955 		 */
956 		sc->arpcom.ac_if.if_collisions += card_stats & ECR_COLN_MASK;
957 
958 		/*
959 		 * Multiple collisions
960 		 */
961 		sc->arpcom.ac_if.if_collisions += (card_stats & ECR_MCOLN_MASK) >> 4;
962 
963 		SMC_SELECT_BANK(2);
964 
965 		/*
966 		 * Attempt to enqueue some more stuff.
967 		 */
968 		sc->arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
969 		snstart(&sc->arpcom.ac_if);
970 	}
971 	/*
972 	 * Some other error.  Try to fix it by resetting the adapter.
973 	 */
974 	if (status & IM_EPH_INT) {
975 		snstop(sc);
976 		sninit(sc);
977 	}
978 
979 out:
980 	/*
981 	 * Handled all interrupt sources.
982 	 */
983 
984 	SMC_SELECT_BANK(2);
985 
986 	/*
987 	 * Reestablish interrupts from mask which have not been deselected
988 	 * during this interrupt.  Note that the hardware mask, which was set
989 	 * to 0x00 at the start of this service routine, may have been
990 	 * updated by one or more of the interrupt handers and we must let
991 	 * those new interrupts stay enabled here.
992 	 */
993 	mask |= inb(BASE + INTR_MASK_REG_B);
994 	outb(BASE + INTR_MASK_REG_B, mask);
995 	sc->intr_mask = mask;
996 
997 	splx(x);
998 }
999 
1000 void
1001 snread(register struct ifnet *ifp)
1002 {
1003         struct sn_softc *sc = ifp->if_softc;
1004 	struct ether_header *eh;
1005 	struct mbuf    *m;
1006 	short           status;
1007 	int             packet_number;
1008 	u_short         packet_length;
1009 	u_char         *data;
1010 
1011 	SMC_SELECT_BANK(2);
1012 #if 0
1013 	packet_number = inw(BASE + FIFO_PORTS_REG_W);
1014 
1015 	if (packet_number & FIFO_REMPTY) {
1016 
1017 		/*
1018 		 * we got called , but nothing was on the FIFO
1019 		 */
1020 		printf("sn: Receive interrupt with nothing on FIFO\n");
1021 		return;
1022 	}
1023 #endif
1024 read_another:
1025 
1026 	/*
1027 	 * Start reading from the start of the packet. Since PTR_RCV is set,
1028 	 * packet number is found in FIFO_PORTS_REG_W, FIFO_RX_MASK.
1029 	 */
1030 	outw(BASE + POINTER_REG_W, PTR_READ | PTR_RCV | PTR_AUTOINC | 0x0000);
1031 
1032 	/*
1033 	 * First two words are status and packet_length
1034 	 */
1035 	status = inw(BASE + DATA_REG_W);
1036 	packet_length = inw(BASE + DATA_REG_W) & RLEN_MASK;
1037 
1038 	/*
1039 	 * The packet length contains 3 extra words: status, length, and a
1040 	 * extra word with the control byte.
1041 	 */
1042 	packet_length -= 6;
1043 
1044 	/*
1045 	 * Account for receive errors and discard.
1046 	 */
1047 	if (status & RS_ERRORS) {
1048 		++sc->arpcom.ac_if.if_ierrors;
1049 		goto out;
1050 	}
1051 	/*
1052 	 * A packet is received.
1053 	 */
1054 
1055 	/*
1056 	 * Adjust for odd-length packet.
1057 	 */
1058 	if (status & RS_ODDFRAME)
1059 		packet_length++;
1060 
1061 	/*
1062 	 * Allocate a header mbuf from the kernel.
1063 	 */
1064 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1065 	if (m == NULL)
1066 		goto out;
1067 
1068 	m->m_pkthdr.rcvif = &sc->arpcom.ac_if;
1069 	m->m_pkthdr.len = m->m_len = packet_length;
1070 
1071 	/*
1072 	 * Attach an mbuf cluster
1073 	 */
1074 	MCLGET(m, M_DONTWAIT);
1075 
1076 	/*
1077 	 * Insist on getting a cluster
1078 	 */
1079 	if ((m->m_flags & M_EXT) == 0) {
1080 		m_freem(m);
1081 		++sc->arpcom.ac_if.if_ierrors;
1082 		printf("sn: snread() kernel memory allocation problem\n");
1083 		goto out;
1084 	}
1085 	eh = mtod(m, struct ether_header *);
1086 
1087 	/*
1088 	 * Get packet, including link layer address, from interface.
1089 	 */
1090 
1091 	data = (u_char *) eh;
1092 	insw(BASE + DATA_REG_W, data, packet_length >> 1);
1093 	if (packet_length & 1) {
1094 		data += packet_length & ~1;
1095 		*data = inb(BASE + DATA_REG_B);
1096 	}
1097 	++sc->arpcom.ac_if.if_ipackets;
1098 
1099 	/*
1100 	 * Remove link layer addresses and whatnot.
1101 	 */
1102 	m->m_pkthdr.len = m->m_len = packet_length - sizeof(struct ether_header);
1103 	m->m_data += sizeof(struct ether_header);
1104 
1105 	ether_input(&sc->arpcom.ac_if, eh, m);
1106 
1107 out:
1108 
1109 	/*
1110 	 * Error or good, tell the card to get rid of this packet Wait for
1111 	 * the MMU to be un-busy.
1112 	 */
1113 	SMC_SELECT_BANK(2);
1114 	while (inw(BASE + MMU_CMD_REG_W) & MMUCR_BUSY)	/* NOTHING */
1115 		;
1116 	outw(BASE + MMU_CMD_REG_W, MMUCR_RELEASE);
1117 
1118 	/*
1119 	 * Check whether another packet is ready
1120 	 */
1121 	packet_number = inw(BASE + FIFO_PORTS_REG_W);
1122 	if (packet_number & FIFO_REMPTY) {
1123 		return;
1124 	}
1125 	goto read_another;
1126 }
1127 
1128 
1129 /*
1130  * Handle IOCTLS.  This function is completely stolen from if_ep.c
1131  * As with its progenitor, it does not handle hardware address
1132  * changes.
1133  */
1134 static int
1135 snioctl(register struct ifnet *ifp, u_long cmd, caddr_t data)
1136 {
1137 	struct sn_softc *sc = ifp->if_softc;
1138 	int             s, error = 0;
1139 
1140 	s = splimp();
1141 
1142 	switch (cmd) {
1143 	case SIOCSIFADDR:
1144 	case SIOCGIFADDR:
1145 	case SIOCSIFMTU:
1146 		error = ether_ioctl(ifp, cmd, data);
1147 		break;
1148 
1149 	case SIOCSIFFLAGS:
1150 		if ((ifp->if_flags & IFF_UP) == 0 && ifp->if_flags & IFF_RUNNING) {
1151 			ifp->if_flags &= ~IFF_RUNNING;
1152 			snstop(sc);
1153 			break;
1154 		} else {
1155 			/* reinitialize card on any parameter change */
1156 			sninit(sc);
1157 			break;
1158 		}
1159 		break;
1160 
1161 #ifdef notdef
1162 	case SIOCGHWADDR:
1163 		bcopy((caddr_t) sc->sc_addr, (caddr_t) & ifr->ifr_data,
1164 		      sizeof(sc->sc_addr));
1165 		break;
1166 #endif
1167 
1168 	case SIOCADDMULTI:
1169 	    /* update multicast filter list. */
1170 	    sn_setmcast(sc);
1171 	    error = 0;
1172 	    break;
1173 	case SIOCDELMULTI:
1174 	    /* update multicast filter list. */
1175 	    sn_setmcast(sc);
1176 	    error = 0;
1177 	    break;
1178 	default:
1179 		error = EINVAL;
1180 	}
1181 
1182 	splx(s);
1183 
1184 	return (error);
1185 }
1186 
1187 void
1188 snreset(struct sn_softc *sc)
1189 {
1190 	int	s;
1191 
1192 	s = splimp();
1193 	snstop(sc);
1194 	sninit(sc);
1195 
1196 	splx(s);
1197 }
1198 
1199 void
1200 snwatchdog(struct ifnet *ifp)
1201 {
1202 	int	s;
1203 	s = splimp();
1204 	sn_intr(ifp->if_softc);
1205 	splx(s);
1206 }
1207 
1208 
1209 /* 1. zero the interrupt mask
1210  * 2. clear the enable receive flag
1211  * 3. clear the enable xmit flags
1212  */
1213 void
1214 snstop(struct sn_softc *sc)
1215 {
1216 
1217 	struct ifnet   *ifp = &sc->arpcom.ac_if;
1218 
1219 	/*
1220 	 * Clear interrupt mask; disable all interrupts.
1221 	 */
1222 	SMC_SELECT_BANK(2);
1223 	outb(BASE + INTR_MASK_REG_B, 0x00);
1224 
1225 	/*
1226 	 * Disable transmitter and Receiver
1227 	 */
1228 	SMC_SELECT_BANK(0);
1229 	outw(BASE + RECV_CONTROL_REG_W, 0x0000);
1230 	outw(BASE + TXMIT_CONTROL_REG_W, 0x0000);
1231 
1232 	/*
1233 	 * Cancel watchdog.
1234 	 */
1235 	ifp->if_timer = 0;
1236 }
1237 
1238 
1239 int
1240 sn_activate(device_t dev)
1241 {
1242 	struct sn_softc *sc = device_get_softc(dev);
1243 	int err;
1244 
1245 	sc->port_rid = 0;
1246 	sc->port_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &sc->port_rid,
1247 	    0, ~0, SMC_IO_EXTENT, RF_ACTIVE);
1248 	if (!sc->port_res) {
1249 #ifdef SN_DEBUG
1250 		device_printf(dev, "Cannot allocate ioport\n");
1251 #endif
1252 		return ENOMEM;
1253 	}
1254 
1255 	sc->irq_rid = 0;
1256 	sc->irq_res = bus_alloc_resource(dev, SYS_RES_IRQ, &sc->irq_rid,
1257 	    0, ~0, 1, RF_ACTIVE);
1258 	if (!sc->irq_res) {
1259 #ifdef SN_DEBUG
1260 		device_printf(dev, "Cannot allocate irq\n");
1261 #endif
1262 		sn_deactivate(dev);
1263 		return ENOMEM;
1264 	}
1265 	if ((err = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_NET, sn_intr, sc,
1266 	    &sc->intrhand)) != 0) {
1267 		sn_deactivate(dev);
1268 		return err;
1269 	}
1270 
1271 	sc->sn_io_addr = rman_get_start(sc->port_res);
1272 	return (0);
1273 }
1274 
1275 void
1276 sn_deactivate(device_t dev)
1277 {
1278 	struct sn_softc *sc = device_get_softc(dev);
1279 
1280 	if (sc->intrhand)
1281 		bus_teardown_intr(dev, sc->irq_res, sc->intrhand);
1282 	sc->intrhand = 0;
1283 	if (sc->port_res)
1284 		bus_release_resource(dev, SYS_RES_IOPORT, sc->port_rid,
1285 		    sc->port_res);
1286 	sc->port_res = 0;
1287 	if (sc->irq_res)
1288 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid,
1289 		    sc->irq_res);
1290 	sc->irq_res = 0;
1291 	return;
1292 }
1293 
1294 /*
1295  * Function: sn_probe( device_t dev, int pccard )
1296  *
1297  * Purpose:
1298  *      Tests to see if a given ioaddr points to an SMC9xxx chip.
1299  *      Tries to cause as little damage as possible if it's not a SMC chip.
1300  *      Returns a 0 on success
1301  *
1302  * Algorithm:
1303  *      (1) see if the high byte of BANK_SELECT is 0x33
1304  *      (2) compare the ioaddr with the base register's address
1305  *      (3) see if I recognize the chip ID in the appropriate register
1306  *
1307  *
1308  */
1309 int
1310 sn_probe(device_t dev, int pccard)
1311 {
1312 	struct sn_softc *sc = device_get_softc(dev);
1313 	u_int           bank;
1314 	u_short         revision_register;
1315 	u_short         base_address_register;
1316 	u_short		ioaddr;
1317 	int		err;
1318 
1319 	if ((err = sn_activate(dev)) != 0)
1320 		return err;
1321 
1322 	ioaddr = sc->sn_io_addr;
1323 
1324 	/*
1325 	 * First, see if the high byte is 0x33
1326 	 */
1327 	bank = inw(ioaddr + BANK_SELECT_REG_W);
1328 	if ((bank & BSR_DETECT_MASK) != BSR_DETECT_VALUE) {
1329 #ifdef	SN_DEBUG
1330 		device_printf(dev, "test1 failed\n");
1331 #endif
1332 		goto error;
1333 	}
1334 	/*
1335 	 * The above MIGHT indicate a device, but I need to write to further
1336 	 * test this.  Go to bank 0, then test that the register still
1337 	 * reports the high byte is 0x33.
1338 	 */
1339 	outw(ioaddr + BANK_SELECT_REG_W, 0x0000);
1340 	bank = inw(ioaddr + BANK_SELECT_REG_W);
1341 	if ((bank & BSR_DETECT_MASK) != BSR_DETECT_VALUE) {
1342 #ifdef	SN_DEBUG
1343 		device_printf(dev, "test2 failed\n");
1344 #endif
1345 		goto error;
1346 	}
1347 	/*
1348 	 * well, we've already written once, so hopefully another time won't
1349 	 * hurt.  This time, I need to switch the bank register to bank 1, so
1350 	 * I can access the base address register.  The contents of the
1351 	 * BASE_ADDR_REG_W register, after some jiggery pokery, is expected
1352 	 * to match the I/O port address where the adapter is being probed.
1353 	 */
1354 	outw(ioaddr + BANK_SELECT_REG_W, 0x0001);
1355 	base_address_register = inw(ioaddr + BASE_ADDR_REG_W);
1356 
1357 	/*
1358 	 * This test is nonsence on PC-card architecture, so if
1359 	 * pccard == 1, skip this test. (hosokawa)
1360 	 */
1361 	if (!pccard && (ioaddr != (base_address_register >> 3 & 0x3E0))) {
1362 
1363 		/*
1364 		 * Well, the base address register didn't match.  Must not
1365 		 * have been a SMC chip after all.
1366 		 */
1367 		/*
1368 		 * printf("sn: ioaddr %x doesn't match card configuration
1369 		 * (%x)\n", ioaddr, base_address_register >> 3 & 0x3E0 );
1370 		 */
1371 
1372 #ifdef	SN_DEBUG
1373 		device_printf(dev, "test3 failed ioaddr = 0x%x, "
1374 		    "base_address_register = 0x%x\n", ioaddr,
1375 		    base_address_register >> 3 & 0x3E0);
1376 #endif
1377 		goto error;
1378 	}
1379 	/*
1380 	 * Check if the revision register is something that I recognize.
1381 	 * These might need to be added to later, as future revisions could
1382 	 * be added.
1383 	 */
1384 	outw(ioaddr + BANK_SELECT_REG_W, 0x3);
1385 	revision_register = inw(ioaddr + REVISION_REG_W);
1386 	if (!chip_ids[(revision_register >> 4) & 0xF]) {
1387 
1388 		/*
1389 		 * I don't regonize this chip, so...
1390 		 */
1391 #ifdef	SN_DEBUG
1392 		device_printf(dev, "test4 failed\n");
1393 #endif
1394 		goto error;
1395 	}
1396 	/*
1397 	 * at this point I'll assume that the chip is an SMC9xxx. It might be
1398 	 * prudent to check a listing of MAC addresses against the hardware
1399 	 * address, or do some other tests.
1400 	 */
1401 	sn_deactivate(dev);
1402 	return 0;
1403  error:
1404 	sn_deactivate(dev);
1405 	return ENXIO;
1406 }
1407 
1408 #define MCFSZ 8
1409 
1410 static void
1411 sn_setmcast(struct sn_softc *sc)
1412 {
1413 	struct ifnet *ifp = (struct ifnet *)sc;
1414 	int flags;
1415 
1416 	/*
1417 	 * Set the receiver filter.  We want receive enabled and auto strip
1418 	 * of CRC from received packet.  If we are promiscuous then set that
1419 	 * bit too.
1420 	 */
1421 	flags = RCR_ENABLE | RCR_STRIP_CRC;
1422 
1423 	if (ifp->if_flags & IFF_PROMISC) {
1424 		flags |= RCR_PROMISC | RCR_ALMUL;
1425 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1426 		flags |= RCR_ALMUL;
1427 	} else {
1428 		u_char mcf[MCFSZ];
1429 		if (sn_getmcf(&sc->arpcom, mcf)) {
1430 			/* set filter */
1431 			SMC_SELECT_BANK(3);
1432 			outw(BASE + MULTICAST1_REG_W,
1433 			    ((u_short)mcf[1] << 8) |  mcf[0]);
1434 			outw(BASE + MULTICAST2_REG_W,
1435 			    ((u_short)mcf[3] << 8) |  mcf[2]);
1436 			outw(BASE + MULTICAST3_REG_W,
1437 			    ((u_short)mcf[5] << 8) |  mcf[4]);
1438 			outw(BASE + MULTICAST4_REG_W,
1439 			    ((u_short)mcf[7] << 8) |  mcf[6]);
1440 		} else {
1441 			flags |= RCR_ALMUL;
1442 		}
1443 	}
1444 	SMC_SELECT_BANK(0);
1445 	outw(BASE + RECV_CONTROL_REG_W, flags);
1446 }
1447 
1448 static int
1449 sn_getmcf(struct arpcom *ac, u_char *mcf)
1450 {
1451 	int i;
1452 	register u_int index, index2;
1453 	register u_char *af = (u_char *) mcf;
1454 	struct ifmultiaddr *ifma;
1455 
1456 	bzero(mcf, MCFSZ);
1457 
1458 	for (ifma = ac->ac_if.if_multiaddrs.lh_first; ifma;
1459 	     ifma = ifma->ifma_link.le_next) {
1460 	    if (ifma->ifma_addr->sa_family != AF_LINK)
1461 		return 0;
1462 	    index = smc_crc(LLADDR((struct sockaddr_dl *)ifma->ifma_addr)) & 0x3f;
1463 	    index2 = 0;
1464 	    for (i = 0; i < 6; i++) {
1465 		index2 <<= 1;
1466 		index2 |= (index & 0x01);
1467 		index >>= 1;
1468 	    }
1469 	    af[index2 >> 3] |= 1 << (index2 & 7);
1470 	}
1471 	return 1;  /* use multicast filter */
1472 }
1473 
1474 static u_int
1475 smc_crc(u_char *s)
1476 {
1477 	int perByte;
1478 	int perBit;
1479 	const u_int poly = 0xedb88320;
1480 	u_int v = 0xffffffff;
1481 	u_char c;
1482 
1483 	for (perByte = 0; perByte < ETHER_ADDR_LEN; perByte++) {
1484 		c = s[perByte];
1485 		for (perBit = 0; perBit < 8; perBit++) {
1486 			v = (v >> 1)^(((v ^ c) & 0x01) ? poly : 0);
1487 			c >>= 1;
1488 		}
1489 	}
1490 	return v;
1491 }
1492