xref: /dragonfly/sys/dev/netif/sn/if_sn.c (revision 9bb2a92d)
1 /*
2  * Copyright (c) 1996 Gardner Buchanan <gbuchanan@shl.com>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *      This product includes software developed by Gardner Buchanan.
16  * 4. The name of Gardner Buchanan may not be used to endorse or promote
17  *    products derived from this software without specific prior written
18  *    permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *   $FreeBSD: src/sys/dev/sn/if_sn.c,v 1.7.2.3 2001/02/04 04:38:38 toshi Exp $
32  *   $DragonFly: src/sys/dev/netif/sn/if_sn.c,v 1.6 2004/01/06 01:40:49 dillon Exp $
33  */
34 
35 /*
36  * This is a driver for SMC's 9000 series of Ethernet adapters.
37  *
38  * This FreeBSD driver is derived from the smc9194 Linux driver by
39  * Erik Stahlman and is Copyright (C) 1996 by Erik Stahlman.
40  * This driver also shamelessly borrows from the FreeBSD ep driver
41  * which is Copyright (C) 1994 Herb Peyerl <hpeyerl@novatel.ca>
42  * All rights reserved.
43  *
44  * It is set up for my SMC91C92 equipped Ampro LittleBoard embedded
45  * PC.  It is adapted from Erik Stahlman's Linux driver which worked
46  * with his EFA Info*Express SVC VLB adaptor.  According to SMC's databook,
47  * it will work for the entire SMC 9xxx series. (Ha Ha)
48  *
49  * "Features" of the SMC chip:
50  *   4608 byte packet memory. (for the 91C92.  Others have more)
51  *   EEPROM for configuration
52  *   AUI/TP selection
53  *
54  * Authors:
55  *      Erik Stahlman                   erik@vt.edu
56  *      Herb Peyerl                     hpeyerl@novatel.ca
57  *      Andres Vega Garcia              avega@sophia.inria.fr
58  *      Serge Babkin                    babkin@hq.icb.chel.su
59  *      Gardner Buchanan                gbuchanan@shl.com
60  *
61  * Sources:
62  *    o   SMC databook
63  *    o   "smc9194.c:v0.10(FIXED) 02/15/96 by Erik Stahlman (erik@vt.edu)"
64  *    o   "if_ep.c,v 1.19 1995/01/24 20:53:45 davidg Exp"
65  *
66  * Known Bugs:
67  *    o   The hardware multicast filter isn't used yet.
68  *    o   Setting of the hardware address isn't supported.
69  *    o   Hardware padding isn't used.
70  */
71 
72 /*
73  * Modifications for Megahertz X-Jack Ethernet Card (XJ-10BT)
74  *
75  * Copyright (c) 1996 by Tatsumi Hosokawa <hosokawa@jp.FreeBSD.org>
76  *                       BSD-nomads, Tokyo, Japan.
77  */
78 /*
79  * Multicast support by Kei TANAKA <kei@pal.xerox.com>
80  * Special thanks to itojun@itojun.org
81  */
82 
83 #undef	SN_DEBUG	/* (by hosokawa) */
84 
85 #include <sys/param.h>
86 #include <sys/systm.h>
87 #include <sys/kernel.h>
88 #include <sys/errno.h>
89 #include <sys/sockio.h>
90 #include <sys/malloc.h>
91 #include <sys/mbuf.h>
92 #include <sys/socket.h>
93 #include <sys/syslog.h>
94 
95 #include <sys/module.h>
96 #include <sys/bus.h>
97 
98 #include <machine/bus.h>
99 #include <machine/resource.h>
100 #include <sys/rman.h>
101 
102 #include <net/ethernet.h>
103 #include <net/if.h>
104 #include <net/if_arp.h>
105 #include <net/if_dl.h>
106 #include <net/if_types.h>
107 #include <net/if_mib.h>
108 
109 #ifdef INET
110 #include <netinet/in.h>
111 #include <netinet/in_systm.h>
112 #include <netinet/in_var.h>
113 #include <netinet/ip.h>
114 #endif
115 
116 #ifdef NS
117 #include <netns/ns.h>
118 #include <netns/ns_if.h>
119 #endif
120 
121 #include <net/bpf.h>
122 #include <net/bpfdesc.h>
123 
124 #include <machine/clock.h>
125 
126 #include "if_snreg.h"
127 #include "if_snvar.h"
128 
129 /* Exported variables */
130 devclass_t sn_devclass;
131 
132 static int snioctl(struct ifnet * ifp, u_long, caddr_t);
133 
134 static void snresume(struct ifnet *);
135 
136 void sninit(void *);
137 void snread(struct ifnet *);
138 void snreset(struct sn_softc *);
139 void snstart(struct ifnet *);
140 void snstop(struct sn_softc *);
141 void snwatchdog(struct ifnet *);
142 
143 static void sn_setmcast(struct sn_softc *);
144 static int sn_getmcf(struct arpcom *ac, u_char *mcf);
145 static u_int smc_crc(u_char *);
146 
147 DECLARE_DUMMY_MODULE(if_sn);
148 
149 /* I (GB) have been unlucky getting the hardware padding
150  * to work properly.
151  */
152 #define SW_PAD
153 
154 static const char *chip_ids[15] = {
155 	NULL, NULL, NULL,
156 	 /* 3 */ "SMC91C90/91C92",
157 	 /* 4 */ "SMC91C94",
158 	 /* 5 */ "SMC91C95",
159 	NULL,
160 	 /* 7 */ "SMC91C100",
161 	 /* 8 */ "SMC91C100FD",
162 	NULL, NULL, NULL,
163 	NULL, NULL, NULL
164 };
165 
166 int
167 sn_attach(device_t dev)
168 {
169 	struct sn_softc *sc = device_get_softc(dev);
170 	struct ifnet   *ifp = &sc->arpcom.ac_if;
171 	u_short         i;
172 	u_char         *p;
173 	struct ifaddr  *ifa;
174 	struct sockaddr_dl *sdl;
175 	int             rev;
176 	u_short         address;
177 	int		j;
178 
179 	sn_activate(dev);
180 
181 	snstop(sc);
182 
183 	sc->dev = dev;
184 	sc->pages_wanted = -1;
185 
186 	device_printf(dev, " ");
187 
188 	SMC_SELECT_BANK(3);
189 	rev = inw(BASE + REVISION_REG_W);
190 	if (chip_ids[(rev >> 4) & 0xF])
191 		printf("%s ", chip_ids[(rev >> 4) & 0xF]);
192 
193 	SMC_SELECT_BANK(1);
194 	i = inw(BASE + CONFIG_REG_W);
195 	printf(i & CR_AUI_SELECT ? "AUI" : "UTP");
196 
197 	if (sc->pccard_enaddr)
198 		for (j = 0; j < 3; j++) {
199 			u_short	w;
200 
201 			w = (u_short)sc->arpcom.ac_enaddr[j * 2] |
202 				(((u_short)sc->arpcom.ac_enaddr[j * 2 + 1]) << 8);
203 			outw(BASE + IAR_ADDR0_REG_W + j * 2, w);
204 		}
205 
206 	/*
207 	 * Read the station address from the chip. The MAC address is bank 1,
208 	 * regs 4 - 9
209 	 */
210 	SMC_SELECT_BANK(1);
211 	p = (u_char *) & sc->arpcom.ac_enaddr;
212 	for (i = 0; i < 6; i += 2) {
213 		address = inw(BASE + IAR_ADDR0_REG_W + i);
214 		p[i + 1] = address >> 8;
215 		p[i] = address & 0xFF;
216 	}
217 	printf(" MAC address %6D\n", sc->arpcom.ac_enaddr, ":");
218 	ifp->if_softc = sc;
219 	if_initname(ifp, "sn", device_get_unit(dev));
220 	ifp->if_mtu = ETHERMTU;
221 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
222 	ifp->if_output = ether_output;
223 	ifp->if_start = snstart;
224 	ifp->if_ioctl = snioctl;
225 	ifp->if_watchdog = snwatchdog;
226 	ifp->if_init = sninit;
227 	ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
228 	ifp->if_timer = 0;
229 
230 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
231 
232 	/*
233 	 * Fill the hardware address into ifa_addr if we find an AF_LINK
234 	 * entry. We need to do this so bpf's can get the hardware addr of
235 	 * this card. netstat likes this too!
236 	 */
237 	ifa = TAILQ_FIRST(&ifp->if_addrhead);
238 	while ((ifa != 0) && (ifa->ifa_addr != 0) &&
239 	       (ifa->ifa_addr->sa_family != AF_LINK))
240 		ifa = TAILQ_NEXT(ifa, ifa_link);
241 
242 	if ((ifa != 0) && (ifa->ifa_addr != 0)) {
243 		sdl = (struct sockaddr_dl *) ifa->ifa_addr;
244 		sdl->sdl_type = IFT_ETHER;
245 		sdl->sdl_alen = ETHER_ADDR_LEN;
246 		sdl->sdl_slen = 0;
247 		bcopy(sc->arpcom.ac_enaddr, LLADDR(sdl), ETHER_ADDR_LEN);
248 	}
249 
250 	return 0;
251 }
252 
253 
254 /*
255  * Reset and initialize the chip
256  */
257 void
258 sninit(void *xsc)
259 {
260 	struct sn_softc *sc = xsc;
261 	struct ifnet *ifp = &sc->arpcom.ac_if;
262 	int             s;
263 	int             flags;
264 	int             mask;
265 
266 	s = splimp();
267 
268 	/*
269 	 * This resets the registers mostly to defaults, but doesn't affect
270 	 * EEPROM.  After the reset cycle, we pause briefly for the chip to
271 	 * be happy.
272 	 */
273 	SMC_SELECT_BANK(0);
274 	outw(BASE + RECV_CONTROL_REG_W, RCR_SOFTRESET);
275 	SMC_DELAY();
276 	outw(BASE + RECV_CONTROL_REG_W, 0x0000);
277 	SMC_DELAY();
278 	SMC_DELAY();
279 
280 	outw(BASE + TXMIT_CONTROL_REG_W, 0x0000);
281 
282 	/*
283 	 * Set the control register to automatically release succesfully
284 	 * transmitted packets (making the best use out of our limited
285 	 * memory) and to enable the EPH interrupt on certain TX errors.
286 	 */
287 	SMC_SELECT_BANK(1);
288 	outw(BASE + CONTROL_REG_W, (CTR_AUTO_RELEASE | CTR_TE_ENABLE |
289 				    CTR_CR_ENABLE | CTR_LE_ENABLE));
290 
291 	/* Set squelch level to 240mV (default 480mV) */
292 	flags = inw(BASE + CONFIG_REG_W);
293 	flags |= CR_SET_SQLCH;
294 	outw(BASE + CONFIG_REG_W, flags);
295 
296 	/*
297 	 * Reset the MMU and wait for it to be un-busy.
298 	 */
299 	SMC_SELECT_BANK(2);
300 	outw(BASE + MMU_CMD_REG_W, MMUCR_RESET);
301 	while (inw(BASE + MMU_CMD_REG_W) & MMUCR_BUSY)	/* NOTHING */
302 		;
303 
304 	/*
305 	 * Disable all interrupts
306 	 */
307 	outb(BASE + INTR_MASK_REG_B, 0x00);
308 
309 	sn_setmcast(sc);
310 
311 	/*
312 	 * Set the transmitter control.  We want it enabled.
313 	 */
314 	flags = TCR_ENABLE;
315 
316 #ifndef SW_PAD
317 	/*
318 	 * I (GB) have been unlucky getting this to work.
319 	 */
320 	flags |= TCR_PAD_ENABLE;
321 #endif	/* SW_PAD */
322 
323 	outw(BASE + TXMIT_CONTROL_REG_W, flags);
324 
325 
326 	/*
327 	 * Now, enable interrupts
328 	 */
329 	SMC_SELECT_BANK(2);
330 
331 	mask = IM_EPH_INT |
332 		IM_RX_OVRN_INT |
333 		IM_RCV_INT |
334 		IM_TX_INT;
335 
336 	outb(BASE + INTR_MASK_REG_B, mask);
337 	sc->intr_mask = mask;
338 	sc->pages_wanted = -1;
339 
340 
341 	/*
342 	 * Mark the interface running but not active.
343 	 */
344 	ifp->if_flags |= IFF_RUNNING;
345 	ifp->if_flags &= ~IFF_OACTIVE;
346 
347 	/*
348 	 * Attempt to push out any waiting packets.
349 	 */
350 	snstart(ifp);
351 
352 	splx(s);
353 }
354 
355 
356 void
357 snstart(struct ifnet *ifp)
358 {
359 	struct sn_softc *sc = ifp->if_softc;
360 	u_int  len;
361 	struct mbuf *m;
362 	struct mbuf    *top;
363 	int             s, pad;
364 	int             mask;
365 	u_short         length;
366 	u_short         numPages;
367 	u_char          packet_no;
368 	int             time_out;
369 
370 	s = splimp();
371 
372 	if (sc->arpcom.ac_if.if_flags & IFF_OACTIVE) {
373 		splx(s);
374 		return;
375 	}
376 	if (sc->pages_wanted != -1) {
377 		splx(s);
378 		printf("%s: snstart() while memory allocation pending\n",
379 		       ifp->if_xname);
380 		return;
381 	}
382 startagain:
383 
384 	/*
385 	 * Sneak a peek at the next packet
386 	 */
387 	m = sc->arpcom.ac_if.if_snd.ifq_head;
388 	if (m == 0) {
389 		splx(s);
390 		return;
391 	}
392 	/*
393 	 * Compute the frame length and set pad to give an overall even
394 	 * number of bytes.  Below we assume that the packet length is even.
395 	 */
396 	for (len = 0, top = m; m; m = m->m_next)
397 		len += m->m_len;
398 
399 	pad = (len & 1);
400 
401 	/*
402 	 * We drop packets that are too large. Perhaps we should truncate
403 	 * them instead?
404 	 */
405 	if (len + pad > ETHER_MAX_LEN - ETHER_CRC_LEN) {
406 		printf("%s: large packet discarded (A)\n", ifp->if_xname);
407 		++sc->arpcom.ac_if.if_oerrors;
408 		IF_DEQUEUE(&sc->arpcom.ac_if.if_snd, m);
409 		m_freem(m);
410 		goto readcheck;
411 	}
412 #ifdef SW_PAD
413 
414 	/*
415 	 * If HW padding is not turned on, then pad to ETHER_MIN_LEN.
416 	 */
417 	if (len < ETHER_MIN_LEN - ETHER_CRC_LEN)
418 		pad = ETHER_MIN_LEN - ETHER_CRC_LEN - len;
419 
420 #endif	/* SW_PAD */
421 
422 	length = pad + len;
423 
424 	/*
425 	 * The MMU wants the number of pages to be the number of 256 byte
426 	 * 'pages', minus 1 (A packet can't ever have 0 pages. We also
427 	 * include space for the status word, byte count and control bytes in
428 	 * the allocation request.
429 	 */
430 	numPages = (length + 6) >> 8;
431 
432 
433 	/*
434 	 * Now, try to allocate the memory
435 	 */
436 	SMC_SELECT_BANK(2);
437 	outw(BASE + MMU_CMD_REG_W, MMUCR_ALLOC | numPages);
438 
439 	/*
440 	 * Wait a short amount of time to see if the allocation request
441 	 * completes.  Otherwise, I enable the interrupt and wait for
442 	 * completion asyncronously.
443 	 */
444 
445 	time_out = MEMORY_WAIT_TIME;
446 	do {
447 		if (inb(BASE + INTR_STAT_REG_B) & IM_ALLOC_INT)
448 			break;
449 	} while (--time_out);
450 
451 	if (!time_out) {
452 
453 		/*
454 		 * No memory now.  Oh well, wait until the chip finds memory
455 		 * later.   Remember how many pages we were asking for and
456 		 * enable the allocation completion interrupt. Also set a
457 		 * watchdog in case  we miss the interrupt. We mark the
458 		 * interface active since there is no point in attempting an
459 		 * snstart() until after the memory is available.
460 		 */
461 		mask = inb(BASE + INTR_MASK_REG_B) | IM_ALLOC_INT;
462 		outb(BASE + INTR_MASK_REG_B, mask);
463 		sc->intr_mask = mask;
464 
465 		sc->arpcom.ac_if.if_timer = 1;
466 		sc->arpcom.ac_if.if_flags |= IFF_OACTIVE;
467 		sc->pages_wanted = numPages;
468 
469 		splx(s);
470 		return;
471 	}
472 	/*
473 	 * The memory allocation completed.  Check the results.
474 	 */
475 	packet_no = inb(BASE + ALLOC_RESULT_REG_B);
476 	if (packet_no & ARR_FAILED) {
477 		printf("%s: Memory allocation failed\n", ifp->if_xname);
478 		goto startagain;
479 	}
480 	/*
481 	 * We have a packet number, so tell the card to use it.
482 	 */
483 	outb(BASE + PACKET_NUM_REG_B, packet_no);
484 
485 	/*
486 	 * Point to the beginning of the packet
487 	 */
488 	outw(BASE + POINTER_REG_W, PTR_AUTOINC | 0x0000);
489 
490 	/*
491 	 * Send the packet length (+6 for status, length and control byte)
492 	 * and the status word (set to zeros)
493 	 */
494 	outw(BASE + DATA_REG_W, 0);
495 	outb(BASE + DATA_REG_B, (length + 6) & 0xFF);
496 	outb(BASE + DATA_REG_B, (length + 6) >> 8);
497 
498 	/*
499 	 * Get the packet from the kernel.  This will include the Ethernet
500 	 * frame header, MAC Addresses etc.
501 	 */
502 	IF_DEQUEUE(&sc->arpcom.ac_if.if_snd, m);
503 
504 	/*
505 	 * Push out the data to the card.
506 	 */
507 	for (top = m; m != 0; m = m->m_next) {
508 
509 		/*
510 		 * Push out words.
511 		 */
512 		outsw(BASE + DATA_REG_W, mtod(m, caddr_t), m->m_len / 2);
513 
514 		/*
515 		 * Push out remaining byte.
516 		 */
517 		if (m->m_len & 1)
518 			outb(BASE + DATA_REG_B, *(mtod(m, caddr_t) + m->m_len - 1));
519 	}
520 
521 	/*
522 	 * Push out padding.
523 	 */
524 	while (pad > 1) {
525 		outw(BASE + DATA_REG_W, 0);
526 		pad -= 2;
527 	}
528 	if (pad)
529 		outb(BASE + DATA_REG_B, 0);
530 
531 	/*
532 	 * Push out control byte and unused packet byte The control byte is 0
533 	 * meaning the packet is even lengthed and no special CRC handling is
534 	 * desired.
535 	 */
536 	outw(BASE + DATA_REG_W, 0);
537 
538 	/*
539 	 * Enable the interrupts and let the chipset deal with it Also set a
540 	 * watchdog in case we miss the interrupt.
541 	 */
542 	mask = inb(BASE + INTR_MASK_REG_B) | (IM_TX_INT | IM_TX_EMPTY_INT);
543 	outb(BASE + INTR_MASK_REG_B, mask);
544 	sc->intr_mask = mask;
545 
546 	outw(BASE + MMU_CMD_REG_W, MMUCR_ENQUEUE);
547 
548 	sc->arpcom.ac_if.if_flags |= IFF_OACTIVE;
549 	sc->arpcom.ac_if.if_timer = 1;
550 
551 	if (ifp->if_bpf) {
552 		bpf_mtap(ifp, top);
553 	}
554 
555 	sc->arpcom.ac_if.if_opackets++;
556 	m_freem(top);
557 
558 
559 readcheck:
560 
561 	/*
562 	 * Is another packet coming in?  We don't want to overflow the tiny
563 	 * RX FIFO.  If nothing has arrived then attempt to queue another
564 	 * transmit packet.
565 	 */
566 	if (inw(BASE + FIFO_PORTS_REG_W) & FIFO_REMPTY)
567 		goto startagain;
568 
569 	splx(s);
570 	return;
571 }
572 
573 
574 
575 /* Resume a packet transmit operation after a memory allocation
576  * has completed.
577  *
578  * This is basically a hacked up copy of snstart() which handles
579  * a completed memory allocation the same way snstart() does.
580  * It then passes control to snstart to handle any other queued
581  * packets.
582  */
583 static void
584 snresume(struct ifnet *ifp)
585 {
586 	struct sn_softc *sc = ifp->if_softc;
587 	u_int  len;
588 	struct mbuf *m;
589 	struct mbuf    *top;
590 	int             pad;
591 	int             mask;
592 	u_short         length;
593 	u_short         numPages;
594 	u_short         pages_wanted;
595 	u_char          packet_no;
596 
597 	if (sc->pages_wanted < 0)
598 		return;
599 
600 	pages_wanted = sc->pages_wanted;
601 	sc->pages_wanted = -1;
602 
603 	/*
604 	 * Sneak a peek at the next packet
605 	 */
606 	m = sc->arpcom.ac_if.if_snd.ifq_head;
607 	if (m == 0) {
608 		printf("%s: snresume() with nothing to send\n", ifp->if_xname);
609 		return;
610 	}
611 	/*
612 	 * Compute the frame length and set pad to give an overall even
613 	 * number of bytes.  Below we assume that the packet length is even.
614 	 */
615 	for (len = 0, top = m; m; m = m->m_next)
616 		len += m->m_len;
617 
618 	pad = (len & 1);
619 
620 	/*
621 	 * We drop packets that are too large. Perhaps we should truncate
622 	 * them instead?
623 	 */
624 	if (len + pad > ETHER_MAX_LEN - ETHER_CRC_LEN) {
625 		printf("%s: large packet discarded (B)\n", ifp->if_xname);
626 		++sc->arpcom.ac_if.if_oerrors;
627 		IF_DEQUEUE(&sc->arpcom.ac_if.if_snd, m);
628 		m_freem(m);
629 		return;
630 	}
631 #ifdef SW_PAD
632 
633 	/*
634 	 * If HW padding is not turned on, then pad to ETHER_MIN_LEN.
635 	 */
636 	if (len < ETHER_MIN_LEN - ETHER_CRC_LEN)
637 		pad = ETHER_MIN_LEN - ETHER_CRC_LEN - len;
638 
639 #endif	/* SW_PAD */
640 
641 	length = pad + len;
642 
643 
644 	/*
645 	 * The MMU wants the number of pages to be the number of 256 byte
646 	 * 'pages', minus 1 (A packet can't ever have 0 pages. We also
647 	 * include space for the status word, byte count and control bytes in
648 	 * the allocation request.
649 	 */
650 	numPages = (length + 6) >> 8;
651 
652 
653 	SMC_SELECT_BANK(2);
654 
655 	/*
656 	 * The memory allocation completed.  Check the results. If it failed,
657 	 * we simply set a watchdog timer and hope for the best.
658 	 */
659 	packet_no = inb(BASE + ALLOC_RESULT_REG_B);
660 	if (packet_no & ARR_FAILED) {
661 		printf("%s: Memory allocation failed.  Weird.\n", ifp->if_xname);
662 		sc->arpcom.ac_if.if_timer = 1;
663 		goto try_start;
664 	}
665 	/*
666 	 * We have a packet number, so tell the card to use it.
667 	 */
668 	outb(BASE + PACKET_NUM_REG_B, packet_no);
669 
670 	/*
671 	 * Now, numPages should match the pages_wanted recorded when the
672 	 * memory allocation was initiated.
673 	 */
674 	if (pages_wanted != numPages) {
675 		printf("%s: memory allocation wrong size.  Weird.\n", ifp->if_xname);
676 		/*
677 		 * If the allocation was the wrong size we simply release the
678 		 * memory once it is granted. Wait for the MMU to be un-busy.
679 		 */
680 		while (inw(BASE + MMU_CMD_REG_W) & MMUCR_BUSY)	/* NOTHING */
681 			;
682 		outw(BASE + MMU_CMD_REG_W, MMUCR_FREEPKT);
683 
684 		return;
685 	}
686 	/*
687 	 * Point to the beginning of the packet
688 	 */
689 	outw(BASE + POINTER_REG_W, PTR_AUTOINC | 0x0000);
690 
691 	/*
692 	 * Send the packet length (+6 for status, length and control byte)
693 	 * and the status word (set to zeros)
694 	 */
695 	outw(BASE + DATA_REG_W, 0);
696 	outb(BASE + DATA_REG_B, (length + 6) & 0xFF);
697 	outb(BASE + DATA_REG_B, (length + 6) >> 8);
698 
699 	/*
700 	 * Get the packet from the kernel.  This will include the Ethernet
701 	 * frame header, MAC Addresses etc.
702 	 */
703 	IF_DEQUEUE(&sc->arpcom.ac_if.if_snd, m);
704 
705 	/*
706 	 * Push out the data to the card.
707 	 */
708 	for (top = m; m != 0; m = m->m_next) {
709 
710 		/*
711 		 * Push out words.
712 		 */
713 		outsw(BASE + DATA_REG_W, mtod(m, caddr_t), m->m_len / 2);
714 
715 		/*
716 		 * Push out remaining byte.
717 		 */
718 		if (m->m_len & 1)
719 			outb(BASE + DATA_REG_B, *(mtod(m, caddr_t) + m->m_len - 1));
720 	}
721 
722 	/*
723 	 * Push out padding.
724 	 */
725 	while (pad > 1) {
726 		outw(BASE + DATA_REG_W, 0);
727 		pad -= 2;
728 	}
729 	if (pad)
730 		outb(BASE + DATA_REG_B, 0);
731 
732 	/*
733 	 * Push out control byte and unused packet byte The control byte is 0
734 	 * meaning the packet is even lengthed and no special CRC handling is
735 	 * desired.
736 	 */
737 	outw(BASE + DATA_REG_W, 0);
738 
739 	/*
740 	 * Enable the interrupts and let the chipset deal with it Also set a
741 	 * watchdog in case we miss the interrupt.
742 	 */
743 	mask = inb(BASE + INTR_MASK_REG_B) | (IM_TX_INT | IM_TX_EMPTY_INT);
744 	outb(BASE + INTR_MASK_REG_B, mask);
745 	sc->intr_mask = mask;
746 	outw(BASE + MMU_CMD_REG_W, MMUCR_ENQUEUE);
747 
748 	if (ifp->if_bpf) {
749 		bpf_mtap(ifp, top);
750 	}
751 
752 	sc->arpcom.ac_if.if_opackets++;
753 	m_freem(top);
754 
755 try_start:
756 
757 	/*
758 	 * Now pass control to snstart() to queue any additional packets
759 	 */
760 	sc->arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
761 	snstart(ifp);
762 
763 	/*
764 	 * We've sent something, so we're active.  Set a watchdog in case the
765 	 * TX_EMPTY interrupt is lost.
766 	 */
767 	sc->arpcom.ac_if.if_flags |= IFF_OACTIVE;
768 	sc->arpcom.ac_if.if_timer = 1;
769 
770 	return;
771 }
772 
773 
774 void
775 sn_intr(void *arg)
776 {
777 	int             status, interrupts;
778 	struct sn_softc *sc = (struct sn_softc *) arg;
779 	struct ifnet   *ifp = &sc->arpcom.ac_if;
780 	int             x;
781 
782 	/*
783 	 * Chip state registers
784 	 */
785 	u_char          mask;
786 	u_char          packet_no;
787 	u_short         tx_status;
788 	u_short         card_stats;
789 
790 	/*
791 	 * if_ep.c did this, so I do too.  Yet if_ed.c doesn't. I wonder...
792 	 */
793 	x = splbio();
794 
795 	/*
796 	 * Clear the watchdog.
797 	 */
798 	ifp->if_timer = 0;
799 
800 	SMC_SELECT_BANK(2);
801 
802 	/*
803 	 * Obtain the current interrupt mask and clear the hardware mask
804 	 * while servicing interrupts.
805 	 */
806 	mask = inb(BASE + INTR_MASK_REG_B);
807 	outb(BASE + INTR_MASK_REG_B, 0x00);
808 
809 	/*
810 	 * Get the set of interrupts which occurred and eliminate any which
811 	 * are masked.
812 	 */
813 	interrupts = inb(BASE + INTR_STAT_REG_B);
814 	status = interrupts & mask;
815 
816 	/*
817 	 * Now, process each of the interrupt types.
818 	 */
819 
820 	/*
821 	 * Receive Overrun.
822 	 */
823 	if (status & IM_RX_OVRN_INT) {
824 
825 		/*
826 		 * Acknowlege Interrupt
827 		 */
828 		SMC_SELECT_BANK(2);
829 		outb(BASE + INTR_ACK_REG_B, IM_RX_OVRN_INT);
830 
831 		++sc->arpcom.ac_if.if_ierrors;
832 	}
833 	/*
834 	 * Got a packet.
835 	 */
836 	if (status & IM_RCV_INT) {
837 #if 1
838 		int             packet_number;
839 
840 		SMC_SELECT_BANK(2);
841 		packet_number = inw(BASE + FIFO_PORTS_REG_W);
842 
843 		if (packet_number & FIFO_REMPTY) {
844 
845 			/*
846 			 * we got called , but nothing was on the FIFO
847 			 */
848 			printf("sn: Receive interrupt with nothing on FIFO\n");
849 
850 			goto out;
851 		}
852 #endif
853 		snread(ifp);
854 	}
855 	/*
856 	 * An on-card memory allocation came through.
857 	 */
858 	if (status & IM_ALLOC_INT) {
859 
860 		/*
861 		 * Disable this interrupt.
862 		 */
863 		mask &= ~IM_ALLOC_INT;
864 		sc->arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
865 		snresume(&sc->arpcom.ac_if);
866 	}
867 	/*
868 	 * TX Completion.  Handle a transmit error message. This will only be
869 	 * called when there is an error, because of the AUTO_RELEASE mode.
870 	 */
871 	if (status & IM_TX_INT) {
872 
873 		/*
874 		 * Acknowlege Interrupt
875 		 */
876 		SMC_SELECT_BANK(2);
877 		outb(BASE + INTR_ACK_REG_B, IM_TX_INT);
878 
879 		packet_no = inw(BASE + FIFO_PORTS_REG_W);
880 		packet_no &= FIFO_TX_MASK;
881 
882 		/*
883 		 * select this as the packet to read from
884 		 */
885 		outb(BASE + PACKET_NUM_REG_B, packet_no);
886 
887 		/*
888 		 * Position the pointer to the first word from this packet
889 		 */
890 		outw(BASE + POINTER_REG_W, PTR_AUTOINC | PTR_READ | 0x0000);
891 
892 		/*
893 		 * Fetch the TX status word.  The value found here will be a
894 		 * copy of the EPH_STATUS_REG_W at the time the transmit
895 		 * failed.
896 		 */
897 		tx_status = inw(BASE + DATA_REG_W);
898 
899 		if (tx_status & EPHSR_TX_SUC) {
900 			device_printf(sc->dev,
901 			    "Successful packet caused interrupt\n");
902 		} else {
903 			++sc->arpcom.ac_if.if_oerrors;
904 		}
905 
906 		if (tx_status & EPHSR_LATCOL)
907 			++sc->arpcom.ac_if.if_collisions;
908 
909 		/*
910 		 * Some of these errors will have disabled transmit.
911 		 * Re-enable transmit now.
912 		 */
913 		SMC_SELECT_BANK(0);
914 
915 #ifdef SW_PAD
916 		outw(BASE + TXMIT_CONTROL_REG_W, TCR_ENABLE);
917 #else
918 		outw(BASE + TXMIT_CONTROL_REG_W, TCR_ENABLE | TCR_PAD_ENABLE);
919 #endif	/* SW_PAD */
920 
921 		/*
922 		 * kill the failed packet. Wait for the MMU to be un-busy.
923 		 */
924 		SMC_SELECT_BANK(2);
925 		while (inw(BASE + MMU_CMD_REG_W) & MMUCR_BUSY)	/* NOTHING */
926 			;
927 		outw(BASE + MMU_CMD_REG_W, MMUCR_FREEPKT);
928 
929 		/*
930 		 * Attempt to queue more transmits.
931 		 */
932 		sc->arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
933 		snstart(&sc->arpcom.ac_if);
934 	}
935 	/*
936 	 * Transmit underrun.  We use this opportunity to update transmit
937 	 * statistics from the card.
938 	 */
939 	if (status & IM_TX_EMPTY_INT) {
940 
941 		/*
942 		 * Acknowlege Interrupt
943 		 */
944 		SMC_SELECT_BANK(2);
945 		outb(BASE + INTR_ACK_REG_B, IM_TX_EMPTY_INT);
946 
947 		/*
948 		 * Disable this interrupt.
949 		 */
950 		mask &= ~IM_TX_EMPTY_INT;
951 
952 		SMC_SELECT_BANK(0);
953 		card_stats = inw(BASE + COUNTER_REG_W);
954 
955 		/*
956 		 * Single collisions
957 		 */
958 		sc->arpcom.ac_if.if_collisions += card_stats & ECR_COLN_MASK;
959 
960 		/*
961 		 * Multiple collisions
962 		 */
963 		sc->arpcom.ac_if.if_collisions += (card_stats & ECR_MCOLN_MASK) >> 4;
964 
965 		SMC_SELECT_BANK(2);
966 
967 		/*
968 		 * Attempt to enqueue some more stuff.
969 		 */
970 		sc->arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
971 		snstart(&sc->arpcom.ac_if);
972 	}
973 	/*
974 	 * Some other error.  Try to fix it by resetting the adapter.
975 	 */
976 	if (status & IM_EPH_INT) {
977 		snstop(sc);
978 		sninit(sc);
979 	}
980 
981 out:
982 	/*
983 	 * Handled all interrupt sources.
984 	 */
985 
986 	SMC_SELECT_BANK(2);
987 
988 	/*
989 	 * Reestablish interrupts from mask which have not been deselected
990 	 * during this interrupt.  Note that the hardware mask, which was set
991 	 * to 0x00 at the start of this service routine, may have been
992 	 * updated by one or more of the interrupt handers and we must let
993 	 * those new interrupts stay enabled here.
994 	 */
995 	mask |= inb(BASE + INTR_MASK_REG_B);
996 	outb(BASE + INTR_MASK_REG_B, mask);
997 	sc->intr_mask = mask;
998 
999 	splx(x);
1000 }
1001 
1002 void
1003 snread(struct ifnet *ifp)
1004 {
1005         struct sn_softc *sc = ifp->if_softc;
1006 	struct ether_header *eh;
1007 	struct mbuf    *m;
1008 	short           status;
1009 	int             packet_number;
1010 	u_short         packet_length;
1011 	u_char         *data;
1012 
1013 	SMC_SELECT_BANK(2);
1014 #if 0
1015 	packet_number = inw(BASE + FIFO_PORTS_REG_W);
1016 
1017 	if (packet_number & FIFO_REMPTY) {
1018 
1019 		/*
1020 		 * we got called , but nothing was on the FIFO
1021 		 */
1022 		printf("sn: Receive interrupt with nothing on FIFO\n");
1023 		return;
1024 	}
1025 #endif
1026 read_another:
1027 
1028 	/*
1029 	 * Start reading from the start of the packet. Since PTR_RCV is set,
1030 	 * packet number is found in FIFO_PORTS_REG_W, FIFO_RX_MASK.
1031 	 */
1032 	outw(BASE + POINTER_REG_W, PTR_READ | PTR_RCV | PTR_AUTOINC | 0x0000);
1033 
1034 	/*
1035 	 * First two words are status and packet_length
1036 	 */
1037 	status = inw(BASE + DATA_REG_W);
1038 	packet_length = inw(BASE + DATA_REG_W) & RLEN_MASK;
1039 
1040 	/*
1041 	 * The packet length contains 3 extra words: status, length, and a
1042 	 * extra word with the control byte.
1043 	 */
1044 	packet_length -= 6;
1045 
1046 	/*
1047 	 * Account for receive errors and discard.
1048 	 */
1049 	if (status & RS_ERRORS) {
1050 		++sc->arpcom.ac_if.if_ierrors;
1051 		goto out;
1052 	}
1053 	/*
1054 	 * A packet is received.
1055 	 */
1056 
1057 	/*
1058 	 * Adjust for odd-length packet.
1059 	 */
1060 	if (status & RS_ODDFRAME)
1061 		packet_length++;
1062 
1063 	/*
1064 	 * Allocate a header mbuf from the kernel.
1065 	 */
1066 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1067 	if (m == NULL)
1068 		goto out;
1069 
1070 	m->m_pkthdr.rcvif = &sc->arpcom.ac_if;
1071 	m->m_pkthdr.len = m->m_len = packet_length;
1072 
1073 	/*
1074 	 * Attach an mbuf cluster
1075 	 */
1076 	MCLGET(m, M_DONTWAIT);
1077 
1078 	/*
1079 	 * Insist on getting a cluster
1080 	 */
1081 	if ((m->m_flags & M_EXT) == 0) {
1082 		m_freem(m);
1083 		++sc->arpcom.ac_if.if_ierrors;
1084 		printf("sn: snread() kernel memory allocation problem\n");
1085 		goto out;
1086 	}
1087 	eh = mtod(m, struct ether_header *);
1088 
1089 	/*
1090 	 * Get packet, including link layer address, from interface.
1091 	 */
1092 
1093 	data = (u_char *) eh;
1094 	insw(BASE + DATA_REG_W, data, packet_length >> 1);
1095 	if (packet_length & 1) {
1096 		data += packet_length & ~1;
1097 		*data = inb(BASE + DATA_REG_B);
1098 	}
1099 	++sc->arpcom.ac_if.if_ipackets;
1100 
1101 	/*
1102 	 * Remove link layer addresses and whatnot.
1103 	 */
1104 	m->m_pkthdr.len = m->m_len = packet_length - sizeof(struct ether_header);
1105 	m->m_data += sizeof(struct ether_header);
1106 
1107 	ether_input(&sc->arpcom.ac_if, eh, m);
1108 
1109 out:
1110 
1111 	/*
1112 	 * Error or good, tell the card to get rid of this packet Wait for
1113 	 * the MMU to be un-busy.
1114 	 */
1115 	SMC_SELECT_BANK(2);
1116 	while (inw(BASE + MMU_CMD_REG_W) & MMUCR_BUSY)	/* NOTHING */
1117 		;
1118 	outw(BASE + MMU_CMD_REG_W, MMUCR_RELEASE);
1119 
1120 	/*
1121 	 * Check whether another packet is ready
1122 	 */
1123 	packet_number = inw(BASE + FIFO_PORTS_REG_W);
1124 	if (packet_number & FIFO_REMPTY) {
1125 		return;
1126 	}
1127 	goto read_another;
1128 }
1129 
1130 
1131 /*
1132  * Handle IOCTLS.  This function is completely stolen from if_ep.c
1133  * As with its progenitor, it does not handle hardware address
1134  * changes.
1135  */
1136 static int
1137 snioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1138 {
1139 	struct sn_softc *sc = ifp->if_softc;
1140 	int             s, error = 0;
1141 
1142 	s = splimp();
1143 
1144 	switch (cmd) {
1145 	case SIOCSIFADDR:
1146 	case SIOCGIFADDR:
1147 	case SIOCSIFMTU:
1148 		error = ether_ioctl(ifp, cmd, data);
1149 		break;
1150 
1151 	case SIOCSIFFLAGS:
1152 		if ((ifp->if_flags & IFF_UP) == 0 && ifp->if_flags & IFF_RUNNING) {
1153 			ifp->if_flags &= ~IFF_RUNNING;
1154 			snstop(sc);
1155 			break;
1156 		} else {
1157 			/* reinitialize card on any parameter change */
1158 			sninit(sc);
1159 			break;
1160 		}
1161 		break;
1162 
1163 #ifdef notdef
1164 	case SIOCGHWADDR:
1165 		bcopy((caddr_t) sc->sc_addr, (caddr_t) & ifr->ifr_data,
1166 		      sizeof(sc->sc_addr));
1167 		break;
1168 #endif
1169 
1170 	case SIOCADDMULTI:
1171 	    /* update multicast filter list. */
1172 	    sn_setmcast(sc);
1173 	    error = 0;
1174 	    break;
1175 	case SIOCDELMULTI:
1176 	    /* update multicast filter list. */
1177 	    sn_setmcast(sc);
1178 	    error = 0;
1179 	    break;
1180 	default:
1181 		error = EINVAL;
1182 	}
1183 
1184 	splx(s);
1185 
1186 	return (error);
1187 }
1188 
1189 void
1190 snreset(struct sn_softc *sc)
1191 {
1192 	int	s;
1193 
1194 	s = splimp();
1195 	snstop(sc);
1196 	sninit(sc);
1197 
1198 	splx(s);
1199 }
1200 
1201 void
1202 snwatchdog(struct ifnet *ifp)
1203 {
1204 	int	s;
1205 	s = splimp();
1206 	sn_intr(ifp->if_softc);
1207 	splx(s);
1208 }
1209 
1210 
1211 /* 1. zero the interrupt mask
1212  * 2. clear the enable receive flag
1213  * 3. clear the enable xmit flags
1214  */
1215 void
1216 snstop(struct sn_softc *sc)
1217 {
1218 
1219 	struct ifnet   *ifp = &sc->arpcom.ac_if;
1220 
1221 	/*
1222 	 * Clear interrupt mask; disable all interrupts.
1223 	 */
1224 	SMC_SELECT_BANK(2);
1225 	outb(BASE + INTR_MASK_REG_B, 0x00);
1226 
1227 	/*
1228 	 * Disable transmitter and Receiver
1229 	 */
1230 	SMC_SELECT_BANK(0);
1231 	outw(BASE + RECV_CONTROL_REG_W, 0x0000);
1232 	outw(BASE + TXMIT_CONTROL_REG_W, 0x0000);
1233 
1234 	/*
1235 	 * Cancel watchdog.
1236 	 */
1237 	ifp->if_timer = 0;
1238 }
1239 
1240 
1241 int
1242 sn_activate(device_t dev)
1243 {
1244 	struct sn_softc *sc = device_get_softc(dev);
1245 	int err;
1246 
1247 	sc->port_rid = 0;
1248 	sc->port_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &sc->port_rid,
1249 	    0, ~0, SMC_IO_EXTENT, RF_ACTIVE);
1250 	if (!sc->port_res) {
1251 #ifdef SN_DEBUG
1252 		device_printf(dev, "Cannot allocate ioport\n");
1253 #endif
1254 		return ENOMEM;
1255 	}
1256 
1257 	sc->irq_rid = 0;
1258 	sc->irq_res = bus_alloc_resource(dev, SYS_RES_IRQ, &sc->irq_rid,
1259 	    0, ~0, 1, RF_ACTIVE);
1260 	if (!sc->irq_res) {
1261 #ifdef SN_DEBUG
1262 		device_printf(dev, "Cannot allocate irq\n");
1263 #endif
1264 		sn_deactivate(dev);
1265 		return ENOMEM;
1266 	}
1267 	if ((err = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_NET, sn_intr, sc,
1268 	    &sc->intrhand)) != 0) {
1269 		sn_deactivate(dev);
1270 		return err;
1271 	}
1272 
1273 	sc->sn_io_addr = rman_get_start(sc->port_res);
1274 	return (0);
1275 }
1276 
1277 void
1278 sn_deactivate(device_t dev)
1279 {
1280 	struct sn_softc *sc = device_get_softc(dev);
1281 
1282 	if (sc->intrhand)
1283 		bus_teardown_intr(dev, sc->irq_res, sc->intrhand);
1284 	sc->intrhand = 0;
1285 	if (sc->port_res)
1286 		bus_release_resource(dev, SYS_RES_IOPORT, sc->port_rid,
1287 		    sc->port_res);
1288 	sc->port_res = 0;
1289 	if (sc->irq_res)
1290 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid,
1291 		    sc->irq_res);
1292 	sc->irq_res = 0;
1293 	return;
1294 }
1295 
1296 /*
1297  * Function: sn_probe( device_t dev, int pccard )
1298  *
1299  * Purpose:
1300  *      Tests to see if a given ioaddr points to an SMC9xxx chip.
1301  *      Tries to cause as little damage as possible if it's not a SMC chip.
1302  *      Returns a 0 on success
1303  *
1304  * Algorithm:
1305  *      (1) see if the high byte of BANK_SELECT is 0x33
1306  *      (2) compare the ioaddr with the base register's address
1307  *      (3) see if I recognize the chip ID in the appropriate register
1308  *
1309  *
1310  */
1311 int
1312 sn_probe(device_t dev, int pccard)
1313 {
1314 	struct sn_softc *sc = device_get_softc(dev);
1315 	u_int           bank;
1316 	u_short         revision_register;
1317 	u_short         base_address_register;
1318 	u_short		ioaddr;
1319 	int		err;
1320 
1321 	if ((err = sn_activate(dev)) != 0)
1322 		return err;
1323 
1324 	ioaddr = sc->sn_io_addr;
1325 
1326 	/*
1327 	 * First, see if the high byte is 0x33
1328 	 */
1329 	bank = inw(ioaddr + BANK_SELECT_REG_W);
1330 	if ((bank & BSR_DETECT_MASK) != BSR_DETECT_VALUE) {
1331 #ifdef	SN_DEBUG
1332 		device_printf(dev, "test1 failed\n");
1333 #endif
1334 		goto error;
1335 	}
1336 	/*
1337 	 * The above MIGHT indicate a device, but I need to write to further
1338 	 * test this.  Go to bank 0, then test that the register still
1339 	 * reports the high byte is 0x33.
1340 	 */
1341 	outw(ioaddr + BANK_SELECT_REG_W, 0x0000);
1342 	bank = inw(ioaddr + BANK_SELECT_REG_W);
1343 	if ((bank & BSR_DETECT_MASK) != BSR_DETECT_VALUE) {
1344 #ifdef	SN_DEBUG
1345 		device_printf(dev, "test2 failed\n");
1346 #endif
1347 		goto error;
1348 	}
1349 	/*
1350 	 * well, we've already written once, so hopefully another time won't
1351 	 * hurt.  This time, I need to switch the bank register to bank 1, so
1352 	 * I can access the base address register.  The contents of the
1353 	 * BASE_ADDR_REG_W register, after some jiggery pokery, is expected
1354 	 * to match the I/O port address where the adapter is being probed.
1355 	 */
1356 	outw(ioaddr + BANK_SELECT_REG_W, 0x0001);
1357 	base_address_register = inw(ioaddr + BASE_ADDR_REG_W);
1358 
1359 	/*
1360 	 * This test is nonsence on PC-card architecture, so if
1361 	 * pccard == 1, skip this test. (hosokawa)
1362 	 */
1363 	if (!pccard && (ioaddr != (base_address_register >> 3 & 0x3E0))) {
1364 
1365 		/*
1366 		 * Well, the base address register didn't match.  Must not
1367 		 * have been a SMC chip after all.
1368 		 */
1369 		/*
1370 		 * printf("sn: ioaddr %x doesn't match card configuration
1371 		 * (%x)\n", ioaddr, base_address_register >> 3 & 0x3E0 );
1372 		 */
1373 
1374 #ifdef	SN_DEBUG
1375 		device_printf(dev, "test3 failed ioaddr = 0x%x, "
1376 		    "base_address_register = 0x%x\n", ioaddr,
1377 		    base_address_register >> 3 & 0x3E0);
1378 #endif
1379 		goto error;
1380 	}
1381 	/*
1382 	 * Check if the revision register is something that I recognize.
1383 	 * These might need to be added to later, as future revisions could
1384 	 * be added.
1385 	 */
1386 	outw(ioaddr + BANK_SELECT_REG_W, 0x3);
1387 	revision_register = inw(ioaddr + REVISION_REG_W);
1388 	if (!chip_ids[(revision_register >> 4) & 0xF]) {
1389 
1390 		/*
1391 		 * I don't regonize this chip, so...
1392 		 */
1393 #ifdef	SN_DEBUG
1394 		device_printf(dev, "test4 failed\n");
1395 #endif
1396 		goto error;
1397 	}
1398 	/*
1399 	 * at this point I'll assume that the chip is an SMC9xxx. It might be
1400 	 * prudent to check a listing of MAC addresses against the hardware
1401 	 * address, or do some other tests.
1402 	 */
1403 	sn_deactivate(dev);
1404 	return 0;
1405  error:
1406 	sn_deactivate(dev);
1407 	return ENXIO;
1408 }
1409 
1410 #define MCFSZ 8
1411 
1412 static void
1413 sn_setmcast(struct sn_softc *sc)
1414 {
1415 	struct ifnet *ifp = (struct ifnet *)sc;
1416 	int flags;
1417 
1418 	/*
1419 	 * Set the receiver filter.  We want receive enabled and auto strip
1420 	 * of CRC from received packet.  If we are promiscuous then set that
1421 	 * bit too.
1422 	 */
1423 	flags = RCR_ENABLE | RCR_STRIP_CRC;
1424 
1425 	if (ifp->if_flags & IFF_PROMISC) {
1426 		flags |= RCR_PROMISC | RCR_ALMUL;
1427 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1428 		flags |= RCR_ALMUL;
1429 	} else {
1430 		u_char mcf[MCFSZ];
1431 		if (sn_getmcf(&sc->arpcom, mcf)) {
1432 			/* set filter */
1433 			SMC_SELECT_BANK(3);
1434 			outw(BASE + MULTICAST1_REG_W,
1435 			    ((u_short)mcf[1] << 8) |  mcf[0]);
1436 			outw(BASE + MULTICAST2_REG_W,
1437 			    ((u_short)mcf[3] << 8) |  mcf[2]);
1438 			outw(BASE + MULTICAST3_REG_W,
1439 			    ((u_short)mcf[5] << 8) |  mcf[4]);
1440 			outw(BASE + MULTICAST4_REG_W,
1441 			    ((u_short)mcf[7] << 8) |  mcf[6]);
1442 		} else {
1443 			flags |= RCR_ALMUL;
1444 		}
1445 	}
1446 	SMC_SELECT_BANK(0);
1447 	outw(BASE + RECV_CONTROL_REG_W, flags);
1448 }
1449 
1450 static int
1451 sn_getmcf(struct arpcom *ac, u_char *mcf)
1452 {
1453 	int i;
1454 	u_int index, index2;
1455 	u_char *af = (u_char *) mcf;
1456 	struct ifmultiaddr *ifma;
1457 
1458 	bzero(mcf, MCFSZ);
1459 
1460 	for (ifma = ac->ac_if.if_multiaddrs.lh_first; ifma;
1461 	     ifma = ifma->ifma_link.le_next) {
1462 	    if (ifma->ifma_addr->sa_family != AF_LINK)
1463 		return 0;
1464 	    index = smc_crc(LLADDR((struct sockaddr_dl *)ifma->ifma_addr)) & 0x3f;
1465 	    index2 = 0;
1466 	    for (i = 0; i < 6; i++) {
1467 		index2 <<= 1;
1468 		index2 |= (index & 0x01);
1469 		index >>= 1;
1470 	    }
1471 	    af[index2 >> 3] |= 1 << (index2 & 7);
1472 	}
1473 	return 1;  /* use multicast filter */
1474 }
1475 
1476 static u_int
1477 smc_crc(u_char *s)
1478 {
1479 	int perByte;
1480 	int perBit;
1481 	const u_int poly = 0xedb88320;
1482 	u_int v = 0xffffffff;
1483 	u_char c;
1484 
1485 	for (perByte = 0; perByte < ETHER_ADDR_LEN; perByte++) {
1486 		c = s[perByte];
1487 		for (perBit = 0; perBit < 8; perBit++) {
1488 			v = (v >> 1)^(((v ^ c) & 0x01) ? poly : 0);
1489 			c >>= 1;
1490 		}
1491 	}
1492 	return v;
1493 }
1494