xref: /dragonfly/sys/dev/netif/ste/if_ste.c (revision 984263bc)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_ste.c,v 1.14.2.9 2003/02/05 22:03:57 mbr Exp $
33  */
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/sockio.h>
38 #include <sys/mbuf.h>
39 #include <sys/malloc.h>
40 #include <sys/kernel.h>
41 #include <sys/socket.h>
42 
43 #include <net/if.h>
44 #include <net/if_arp.h>
45 #include <net/ethernet.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 #include <net/if_vlan_var.h>
49 
50 #include <net/bpf.h>
51 
52 #include <vm/vm.h>              /* for vtophys */
53 #include <vm/pmap.h>            /* for vtophys */
54 #include <machine/clock.h>      /* for DELAY */
55 #include <machine/bus_memio.h>
56 #include <machine/bus_pio.h>
57 #include <machine/bus.h>
58 #include <machine/resource.h>
59 #include <sys/bus.h>
60 #include <sys/rman.h>
61 
62 #include <dev/mii/mii.h>
63 #include <dev/mii/miivar.h>
64 
65 #include <pci/pcireg.h>
66 #include <pci/pcivar.h>
67 
68 /* "controller miibus0" required.  See GENERIC if you get errors here. */
69 #include "miibus_if.h"
70 
71 #define STE_USEIOSPACE
72 
73 #include <pci/if_stereg.h>
74 
75 #if !defined(lint)
76 static const char rcsid[] =
77   "$FreeBSD: src/sys/pci/if_ste.c,v 1.14.2.9 2003/02/05 22:03:57 mbr Exp $";
78 #endif
79 
80 /*
81  * Various supported device vendors/types and their names.
82  */
83 static struct ste_type ste_devs[] = {
84 	{ ST_VENDORID, ST_DEVICEID_ST201, "Sundance ST201 10/100BaseTX" },
85 	{ DL_VENDORID, DL_DEVICEID_550TX, "D-Link DFE-550TX 10/100BaseTX" },
86 	{ 0, 0, NULL }
87 };
88 
89 static int ste_probe		__P((device_t));
90 static int ste_attach		__P((device_t));
91 static int ste_detach		__P((device_t));
92 static void ste_init		__P((void *));
93 static void ste_intr		__P((void *));
94 static void ste_rxeof		__P((struct ste_softc *));
95 static void ste_txeoc		__P((struct ste_softc *));
96 static void ste_txeof		__P((struct ste_softc *));
97 static void ste_stats_update	__P((void *));
98 static void ste_stop		__P((struct ste_softc *));
99 static void ste_reset		__P((struct ste_softc *));
100 static int ste_ioctl		__P((struct ifnet *, u_long, caddr_t));
101 static int ste_encap		__P((struct ste_softc *, struct ste_chain *,
102 					struct mbuf *));
103 static void ste_start		__P((struct ifnet *));
104 static void ste_watchdog	__P((struct ifnet *));
105 static void ste_shutdown	__P((device_t));
106 static int ste_newbuf		__P((struct ste_softc *,
107 					struct ste_chain_onefrag *,
108 					struct mbuf *));
109 static int ste_ifmedia_upd	__P((struct ifnet *));
110 static void ste_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
111 
112 static void ste_mii_sync	__P((struct ste_softc *));
113 static void ste_mii_send	__P((struct ste_softc *, u_int32_t, int));
114 static int ste_mii_readreg	__P((struct ste_softc *,
115 					struct ste_mii_frame *));
116 static int ste_mii_writereg	__P((struct ste_softc *,
117 					struct ste_mii_frame *));
118 static int ste_miibus_readreg	__P((device_t, int, int));
119 static int ste_miibus_writereg	__P((device_t, int, int, int));
120 static void ste_miibus_statchg	__P((device_t));
121 
122 static int ste_eeprom_wait	__P((struct ste_softc *));
123 static int ste_read_eeprom	__P((struct ste_softc *, caddr_t, int,
124 							int, int));
125 static void ste_wait		__P((struct ste_softc *));
126 static u_int8_t ste_calchash	__P((caddr_t));
127 static void ste_setmulti	__P((struct ste_softc *));
128 static int ste_init_rx_list	__P((struct ste_softc *));
129 static void ste_init_tx_list	__P((struct ste_softc *));
130 
131 #ifdef STE_USEIOSPACE
132 #define STE_RES			SYS_RES_IOPORT
133 #define STE_RID			STE_PCI_LOIO
134 #else
135 #define STE_RES			SYS_RES_MEMORY
136 #define STE_RID			STE_PCI_LOMEM
137 #endif
138 
139 static device_method_t ste_methods[] = {
140 	/* Device interface */
141 	DEVMETHOD(device_probe,		ste_probe),
142 	DEVMETHOD(device_attach,	ste_attach),
143 	DEVMETHOD(device_detach,	ste_detach),
144 	DEVMETHOD(device_shutdown,	ste_shutdown),
145 
146 	/* bus interface */
147 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
148 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
149 
150 	/* MII interface */
151 	DEVMETHOD(miibus_readreg,	ste_miibus_readreg),
152 	DEVMETHOD(miibus_writereg,	ste_miibus_writereg),
153 	DEVMETHOD(miibus_statchg,	ste_miibus_statchg),
154 
155 	{ 0, 0 }
156 };
157 
158 static driver_t ste_driver = {
159 	"ste",
160 	ste_methods,
161 	sizeof(struct ste_softc)
162 };
163 
164 static devclass_t ste_devclass;
165 
166 DRIVER_MODULE(if_ste, pci, ste_driver, ste_devclass, 0, 0);
167 DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
168 
169 #define STE_SETBIT4(sc, reg, x)				\
170 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
171 
172 #define STE_CLRBIT4(sc, reg, x)				\
173 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
174 
175 #define STE_SETBIT2(sc, reg, x)				\
176 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | x)
177 
178 #define STE_CLRBIT2(sc, reg, x)				\
179 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~x)
180 
181 #define STE_SETBIT1(sc, reg, x)				\
182 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | x)
183 
184 #define STE_CLRBIT1(sc, reg, x)				\
185 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~x)
186 
187 
188 #define MII_SET(x)		STE_SETBIT1(sc, STE_PHYCTL, x)
189 #define MII_CLR(x)		STE_CLRBIT1(sc, STE_PHYCTL, x)
190 
191 /*
192  * Sync the PHYs by setting data bit and strobing the clock 32 times.
193  */
194 static void ste_mii_sync(sc)
195 	struct ste_softc		*sc;
196 {
197 	register int		i;
198 
199 	MII_SET(STE_PHYCTL_MDIR|STE_PHYCTL_MDATA);
200 
201 	for (i = 0; i < 32; i++) {
202 		MII_SET(STE_PHYCTL_MCLK);
203 		DELAY(1);
204 		MII_CLR(STE_PHYCTL_MCLK);
205 		DELAY(1);
206 	}
207 
208 	return;
209 }
210 
211 /*
212  * Clock a series of bits through the MII.
213  */
214 static void ste_mii_send(sc, bits, cnt)
215 	struct ste_softc		*sc;
216 	u_int32_t		bits;
217 	int			cnt;
218 {
219 	int			i;
220 
221 	MII_CLR(STE_PHYCTL_MCLK);
222 
223 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
224                 if (bits & i) {
225 			MII_SET(STE_PHYCTL_MDATA);
226                 } else {
227 			MII_CLR(STE_PHYCTL_MDATA);
228                 }
229 		DELAY(1);
230 		MII_CLR(STE_PHYCTL_MCLK);
231 		DELAY(1);
232 		MII_SET(STE_PHYCTL_MCLK);
233 	}
234 }
235 
236 /*
237  * Read an PHY register through the MII.
238  */
239 static int ste_mii_readreg(sc, frame)
240 	struct ste_softc		*sc;
241 	struct ste_mii_frame	*frame;
242 
243 {
244 	int			i, ack, s;
245 
246 	s = splimp();
247 
248 	/*
249 	 * Set up frame for RX.
250 	 */
251 	frame->mii_stdelim = STE_MII_STARTDELIM;
252 	frame->mii_opcode = STE_MII_READOP;
253 	frame->mii_turnaround = 0;
254 	frame->mii_data = 0;
255 
256 	CSR_WRITE_2(sc, STE_PHYCTL, 0);
257 	/*
258  	 * Turn on data xmit.
259 	 */
260 	MII_SET(STE_PHYCTL_MDIR);
261 
262 	ste_mii_sync(sc);
263 
264 	/*
265 	 * Send command/address info.
266 	 */
267 	ste_mii_send(sc, frame->mii_stdelim, 2);
268 	ste_mii_send(sc, frame->mii_opcode, 2);
269 	ste_mii_send(sc, frame->mii_phyaddr, 5);
270 	ste_mii_send(sc, frame->mii_regaddr, 5);
271 
272 	/* Turn off xmit. */
273 	MII_CLR(STE_PHYCTL_MDIR);
274 
275 	/* Idle bit */
276 	MII_CLR((STE_PHYCTL_MCLK|STE_PHYCTL_MDATA));
277 	DELAY(1);
278 	MII_SET(STE_PHYCTL_MCLK);
279 	DELAY(1);
280 
281 	/* Check for ack */
282 	MII_CLR(STE_PHYCTL_MCLK);
283 	DELAY(1);
284 	ack = CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA;
285 	MII_SET(STE_PHYCTL_MCLK);
286 	DELAY(1);
287 
288 	/*
289 	 * Now try reading data bits. If the ack failed, we still
290 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
291 	 */
292 	if (ack) {
293 		for(i = 0; i < 16; i++) {
294 			MII_CLR(STE_PHYCTL_MCLK);
295 			DELAY(1);
296 			MII_SET(STE_PHYCTL_MCLK);
297 			DELAY(1);
298 		}
299 		goto fail;
300 	}
301 
302 	for (i = 0x8000; i; i >>= 1) {
303 		MII_CLR(STE_PHYCTL_MCLK);
304 		DELAY(1);
305 		if (!ack) {
306 			if (CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA)
307 				frame->mii_data |= i;
308 			DELAY(1);
309 		}
310 		MII_SET(STE_PHYCTL_MCLK);
311 		DELAY(1);
312 	}
313 
314 fail:
315 
316 	MII_CLR(STE_PHYCTL_MCLK);
317 	DELAY(1);
318 	MII_SET(STE_PHYCTL_MCLK);
319 	DELAY(1);
320 
321 	splx(s);
322 
323 	if (ack)
324 		return(1);
325 	return(0);
326 }
327 
328 /*
329  * Write to a PHY register through the MII.
330  */
331 static int ste_mii_writereg(sc, frame)
332 	struct ste_softc		*sc;
333 	struct ste_mii_frame	*frame;
334 
335 {
336 	int			s;
337 
338 	s = splimp();
339 	/*
340 	 * Set up frame for TX.
341 	 */
342 
343 	frame->mii_stdelim = STE_MII_STARTDELIM;
344 	frame->mii_opcode = STE_MII_WRITEOP;
345 	frame->mii_turnaround = STE_MII_TURNAROUND;
346 
347 	/*
348  	 * Turn on data output.
349 	 */
350 	MII_SET(STE_PHYCTL_MDIR);
351 
352 	ste_mii_sync(sc);
353 
354 	ste_mii_send(sc, frame->mii_stdelim, 2);
355 	ste_mii_send(sc, frame->mii_opcode, 2);
356 	ste_mii_send(sc, frame->mii_phyaddr, 5);
357 	ste_mii_send(sc, frame->mii_regaddr, 5);
358 	ste_mii_send(sc, frame->mii_turnaround, 2);
359 	ste_mii_send(sc, frame->mii_data, 16);
360 
361 	/* Idle bit. */
362 	MII_SET(STE_PHYCTL_MCLK);
363 	DELAY(1);
364 	MII_CLR(STE_PHYCTL_MCLK);
365 	DELAY(1);
366 
367 	/*
368 	 * Turn off xmit.
369 	 */
370 	MII_CLR(STE_PHYCTL_MDIR);
371 
372 	splx(s);
373 
374 	return(0);
375 }
376 
377 static int ste_miibus_readreg(dev, phy, reg)
378 	device_t		dev;
379 	int			phy, reg;
380 {
381 	struct ste_softc	*sc;
382 	struct ste_mii_frame	frame;
383 
384 	sc = device_get_softc(dev);
385 
386 	if ( sc->ste_one_phy && phy != 0 )
387 		return (0);
388 
389 	bzero((char *)&frame, sizeof(frame));
390 
391 	frame.mii_phyaddr = phy;
392 	frame.mii_regaddr = reg;
393 	ste_mii_readreg(sc, &frame);
394 
395 	return(frame.mii_data);
396 }
397 
398 static int ste_miibus_writereg(dev, phy, reg, data)
399 	device_t		dev;
400 	int			phy, reg, data;
401 {
402 	struct ste_softc	*sc;
403 	struct ste_mii_frame	frame;
404 
405 	sc = device_get_softc(dev);
406 	bzero((char *)&frame, sizeof(frame));
407 
408 	frame.mii_phyaddr = phy;
409 	frame.mii_regaddr = reg;
410 	frame.mii_data = data;
411 
412 	ste_mii_writereg(sc, &frame);
413 
414 	return(0);
415 }
416 
417 static void ste_miibus_statchg(dev)
418 	device_t		dev;
419 {
420 	struct ste_softc	*sc;
421 	struct mii_data		*mii;
422 	int			i;
423 
424 	sc = device_get_softc(dev);
425 	mii = device_get_softc(sc->ste_miibus);
426 
427 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
428 		STE_SETBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
429 	} else {
430 		STE_CLRBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
431 	}
432 
433 	STE_SETBIT4(sc, STE_ASICCTL,STE_ASICCTL_RX_RESET |
434 		    STE_ASICCTL_TX_RESET);
435 	for (i = 0; i < STE_TIMEOUT; i++) {
436 		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
437 			break;
438 	}
439 	if (i == STE_TIMEOUT)
440 		printf("ste%d: rx reset never completed\n", sc->ste_unit);
441 
442 	return;
443 }
444 
445 static int ste_ifmedia_upd(ifp)
446 	struct ifnet		*ifp;
447 {
448 	struct ste_softc	*sc;
449 	struct mii_data		*mii;
450 
451 	sc = ifp->if_softc;
452 	mii = device_get_softc(sc->ste_miibus);
453 	sc->ste_link = 0;
454 	if (mii->mii_instance) {
455 		struct mii_softc	*miisc;
456 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
457 		    miisc = LIST_NEXT(miisc, mii_list))
458 			mii_phy_reset(miisc);
459 	}
460 	mii_mediachg(mii);
461 
462 	return(0);
463 }
464 
465 static void ste_ifmedia_sts(ifp, ifmr)
466 	struct ifnet		*ifp;
467 	struct ifmediareq	*ifmr;
468 {
469 	struct ste_softc	*sc;
470 	struct mii_data		*mii;
471 
472 	sc = ifp->if_softc;
473 	mii = device_get_softc(sc->ste_miibus);
474 
475 	mii_pollstat(mii);
476 	ifmr->ifm_active = mii->mii_media_active;
477 	ifmr->ifm_status = mii->mii_media_status;
478 
479 	return;
480 }
481 
482 static void ste_wait(sc)
483 	struct ste_softc		*sc;
484 {
485 	register int		i;
486 
487 	for (i = 0; i < STE_TIMEOUT; i++) {
488 		if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
489 			break;
490 	}
491 
492 	if (i == STE_TIMEOUT)
493 		printf("ste%d: command never completed!\n", sc->ste_unit);
494 
495 	return;
496 }
497 
498 /*
499  * The EEPROM is slow: give it time to come ready after issuing
500  * it a command.
501  */
502 static int ste_eeprom_wait(sc)
503 	struct ste_softc		*sc;
504 {
505 	int			i;
506 
507 	DELAY(1000);
508 
509 	for (i = 0; i < 100; i++) {
510 		if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
511 			DELAY(1000);
512 		else
513 			break;
514 	}
515 
516 	if (i == 100) {
517 		printf("ste%d: eeprom failed to come ready\n", sc->ste_unit);
518 		return(1);
519 	}
520 
521 	return(0);
522 }
523 
524 /*
525  * Read a sequence of words from the EEPROM. Note that ethernet address
526  * data is stored in the EEPROM in network byte order.
527  */
528 static int ste_read_eeprom(sc, dest, off, cnt, swap)
529 	struct ste_softc		*sc;
530 	caddr_t			dest;
531 	int			off;
532 	int			cnt;
533 	int			swap;
534 {
535 	int			err = 0, i;
536 	u_int16_t		word = 0, *ptr;
537 
538 	if (ste_eeprom_wait(sc))
539 		return(1);
540 
541 	for (i = 0; i < cnt; i++) {
542 		CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
543 		err = ste_eeprom_wait(sc);
544 		if (err)
545 			break;
546 		word = CSR_READ_2(sc, STE_EEPROM_DATA);
547 		ptr = (u_int16_t *)(dest + (i * 2));
548 		if (swap)
549 			*ptr = ntohs(word);
550 		else
551 			*ptr = word;
552 	}
553 
554 	return(err ? 1 : 0);
555 }
556 
557 static u_int8_t ste_calchash(addr)
558 	caddr_t			addr;
559 {
560 
561 	u_int32_t		crc, carry;
562 	int			i, j;
563 	u_int8_t		c;
564 
565 	/* Compute CRC for the address value. */
566 	crc = 0xFFFFFFFF; /* initial value */
567 
568 	for (i = 0; i < 6; i++) {
569 		c = *(addr + i);
570 		for (j = 0; j < 8; j++) {
571 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
572 			crc <<= 1;
573 			c >>= 1;
574 			if (carry)
575 				crc = (crc ^ 0x04c11db6) | carry;
576 		}
577 	}
578 
579 	/* return the filter bit position */
580 	return(crc & 0x0000003F);
581 }
582 
583 static void ste_setmulti(sc)
584 	struct ste_softc	*sc;
585 {
586 	struct ifnet		*ifp;
587 	int			h = 0;
588 	u_int32_t		hashes[2] = { 0, 0 };
589 	struct ifmultiaddr	*ifma;
590 
591 	ifp = &sc->arpcom.ac_if;
592 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
593 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
594 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
595 		return;
596 	}
597 
598 	/* first, zot all the existing hash bits */
599 	CSR_WRITE_2(sc, STE_MAR0, 0);
600 	CSR_WRITE_2(sc, STE_MAR1, 0);
601 	CSR_WRITE_2(sc, STE_MAR2, 0);
602 	CSR_WRITE_2(sc, STE_MAR3, 0);
603 
604 	/* now program new ones */
605 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
606 	    ifma = ifma->ifma_link.le_next) {
607 		if (ifma->ifma_addr->sa_family != AF_LINK)
608 			continue;
609 		h = ste_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
610 		if (h < 32)
611 			hashes[0] |= (1 << h);
612 		else
613 			hashes[1] |= (1 << (h - 32));
614 	}
615 
616 	CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
617 	CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
618 	CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
619 	CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
620 	STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
621 	STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
622 
623 	return;
624 }
625 
626 static void ste_intr(xsc)
627 	void			*xsc;
628 {
629 	struct ste_softc	*sc;
630 	struct ifnet		*ifp;
631 	u_int16_t		status;
632 
633 	sc = xsc;
634 	ifp = &sc->arpcom.ac_if;
635 
636 	/* See if this is really our interrupt. */
637 	if (!(CSR_READ_2(sc, STE_ISR) & STE_ISR_INTLATCH))
638 		return;
639 
640 	for (;;) {
641 		status = CSR_READ_2(sc, STE_ISR_ACK);
642 
643 		if (!(status & STE_INTRS))
644 			break;
645 
646 		if (status & STE_ISR_RX_DMADONE)
647 			ste_rxeof(sc);
648 
649 		if (status & STE_ISR_TX_DMADONE)
650 			ste_txeof(sc);
651 
652 		if (status & STE_ISR_TX_DONE)
653 			ste_txeoc(sc);
654 
655 		if (status & STE_ISR_STATS_OFLOW) {
656 			untimeout(ste_stats_update, sc, sc->ste_stat_ch);
657 			ste_stats_update(sc);
658 		}
659 
660 		if (status & STE_ISR_LINKEVENT)
661 			mii_pollstat(device_get_softc(sc->ste_miibus));
662 
663 		if (status & STE_ISR_HOSTERR) {
664 			ste_reset(sc);
665 			ste_init(sc);
666 		}
667 	}
668 
669 	/* Re-enable interrupts */
670 	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
671 
672 	if (ifp->if_snd.ifq_head != NULL)
673 		ste_start(ifp);
674 
675 	return;
676 }
677 
678 /*
679  * A frame has been uploaded: pass the resulting mbuf chain up to
680  * the higher level protocols.
681  */
682 static void ste_rxeof(sc)
683 	struct ste_softc		*sc;
684 {
685         struct ether_header	*eh;
686         struct mbuf		*m;
687         struct ifnet		*ifp;
688 	struct ste_chain_onefrag	*cur_rx;
689 	int			total_len = 0, count=0;
690 	u_int32_t		rxstat;
691 
692 	ifp = &sc->arpcom.ac_if;
693 
694 	while((rxstat = sc->ste_cdata.ste_rx_head->ste_ptr->ste_status)
695 	      & STE_RXSTAT_DMADONE) {
696 		if ((STE_RX_LIST_CNT - count) < 3) {
697 			break;
698 		}
699 
700 		cur_rx = sc->ste_cdata.ste_rx_head;
701 		sc->ste_cdata.ste_rx_head = cur_rx->ste_next;
702 
703 		/*
704 		 * If an error occurs, update stats, clear the
705 		 * status word and leave the mbuf cluster in place:
706 		 * it should simply get re-used next time this descriptor
707 	 	 * comes up in the ring.
708 		 */
709 		if (rxstat & STE_RXSTAT_FRAME_ERR) {
710 			ifp->if_ierrors++;
711 			cur_rx->ste_ptr->ste_status = 0;
712 			continue;
713 		}
714 
715 		/*
716 		 * If there error bit was not set, the upload complete
717 		 * bit should be set which means we have a valid packet.
718 		 * If not, something truly strange has happened.
719 		 */
720 		if (!(rxstat & STE_RXSTAT_DMADONE)) {
721 			printf("ste%d: bad receive status -- packet dropped",
722 							sc->ste_unit);
723 			ifp->if_ierrors++;
724 			cur_rx->ste_ptr->ste_status = 0;
725 			continue;
726 		}
727 
728 		/* No errors; receive the packet. */
729 		m = cur_rx->ste_mbuf;
730 		total_len = cur_rx->ste_ptr->ste_status & STE_RXSTAT_FRAMELEN;
731 
732 		/*
733 		 * Try to conjure up a new mbuf cluster. If that
734 		 * fails, it means we have an out of memory condition and
735 		 * should leave the buffer in place and continue. This will
736 		 * result in a lost packet, but there's little else we
737 		 * can do in this situation.
738 		 */
739 		if (ste_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
740 			ifp->if_ierrors++;
741 			cur_rx->ste_ptr->ste_status = 0;
742 			continue;
743 		}
744 
745 		ifp->if_ipackets++;
746 		eh = mtod(m, struct ether_header *);
747 		m->m_pkthdr.rcvif = ifp;
748 		m->m_pkthdr.len = m->m_len = total_len;
749 
750 		/* Remove header from mbuf and pass it on. */
751 		m_adj(m, sizeof(struct ether_header));
752 		ether_input(ifp, eh, m);
753 
754 		cur_rx->ste_ptr->ste_status = 0;
755 		count++;
756 	}
757 
758 	return;
759 }
760 
761 static void ste_txeoc(sc)
762 	struct ste_softc	*sc;
763 {
764 	u_int8_t		txstat;
765 	struct ifnet		*ifp;
766 
767 	ifp = &sc->arpcom.ac_if;
768 
769 	while ((txstat = CSR_READ_1(sc, STE_TX_STATUS)) &
770 	    STE_TXSTATUS_TXDONE) {
771 		if (txstat & STE_TXSTATUS_UNDERRUN ||
772 		    txstat & STE_TXSTATUS_EXCESSCOLLS ||
773 		    txstat & STE_TXSTATUS_RECLAIMERR) {
774 			ifp->if_oerrors++;
775 			printf("ste%d: transmission error: %x\n",
776 			    sc->ste_unit, txstat);
777 
778 			ste_reset(sc);
779 			ste_init(sc);
780 
781 			if (txstat & STE_TXSTATUS_UNDERRUN &&
782 			    sc->ste_tx_thresh < STE_PACKET_SIZE) {
783 				sc->ste_tx_thresh += STE_MIN_FRAMELEN;
784 				printf("ste%d: tx underrun, increasing tx"
785 				    " start threshold to %d bytes\n",
786 				    sc->ste_unit, sc->ste_tx_thresh);
787 			}
788 			CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
789 			CSR_WRITE_2(sc, STE_TX_RECLAIM_THRESH,
790 			    (STE_PACKET_SIZE >> 4));
791 		}
792 		ste_init(sc);
793 		CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
794 	}
795 
796 	return;
797 }
798 
799 static void ste_txeof(sc)
800 	struct ste_softc	*sc;
801 {
802 	struct ste_chain	*cur_tx = NULL;
803 	struct ifnet		*ifp;
804 	int			idx;
805 
806 	ifp = &sc->arpcom.ac_if;
807 
808 	idx = sc->ste_cdata.ste_tx_cons;
809 	while(idx != sc->ste_cdata.ste_tx_prod) {
810 		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
811 
812 		if (!(cur_tx->ste_ptr->ste_ctl & STE_TXCTL_DMADONE))
813 			break;
814 
815 		if (cur_tx->ste_mbuf != NULL) {
816 			m_freem(cur_tx->ste_mbuf);
817 			cur_tx->ste_mbuf = NULL;
818 		}
819 
820 		ifp->if_opackets++;
821 
822 		sc->ste_cdata.ste_tx_cnt--;
823 		STE_INC(idx, STE_TX_LIST_CNT);
824 		ifp->if_timer = 0;
825 	}
826 
827 	sc->ste_cdata.ste_tx_cons = idx;
828 
829 	if (cur_tx != NULL)
830 		ifp->if_flags &= ~IFF_OACTIVE;
831 
832 	return;
833 }
834 
835 static void ste_stats_update(xsc)
836 	void			*xsc;
837 {
838 	struct ste_softc	*sc;
839 	struct ifnet		*ifp;
840 	struct mii_data		*mii;
841 	int			s;
842 
843 	s = splimp();
844 
845 	sc = xsc;
846 	ifp = &sc->arpcom.ac_if;
847 	mii = device_get_softc(sc->ste_miibus);
848 
849         ifp->if_collisions += CSR_READ_1(sc, STE_LATE_COLLS)
850             + CSR_READ_1(sc, STE_MULTI_COLLS)
851             + CSR_READ_1(sc, STE_SINGLE_COLLS);
852 
853 	if (!sc->ste_link) {
854 		mii_pollstat(mii);
855 		if (mii->mii_media_status & IFM_ACTIVE &&
856 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
857 			sc->ste_link++;
858 			/*
859 			 * we don't get a call-back on re-init so do it
860 			 * otherwise we get stuck in the wrong link state
861 			 */
862 			ste_miibus_statchg(sc->ste_dev);
863 			if (ifp->if_snd.ifq_head != NULL)
864 				ste_start(ifp);
865 		}
866 	}
867 
868 	sc->ste_stat_ch = timeout(ste_stats_update, sc, hz);
869 	splx(s);
870 
871 	return;
872 }
873 
874 
875 /*
876  * Probe for a Sundance ST201 chip. Check the PCI vendor and device
877  * IDs against our list and return a device name if we find a match.
878  */
879 static int ste_probe(dev)
880 	device_t		dev;
881 {
882 	struct ste_type		*t;
883 
884 	t = ste_devs;
885 
886 	while(t->ste_name != NULL) {
887 		if ((pci_get_vendor(dev) == t->ste_vid) &&
888 		    (pci_get_device(dev) == t->ste_did)) {
889 			device_set_desc(dev, t->ste_name);
890 			return(0);
891 		}
892 		t++;
893 	}
894 
895 	return(ENXIO);
896 }
897 
898 /*
899  * Attach the interface. Allocate softc structures, do ifmedia
900  * setup and ethernet/BPF attach.
901  */
902 static int ste_attach(dev)
903 	device_t		dev;
904 {
905 	int			s;
906 	u_int32_t		command;
907 	struct ste_softc	*sc;
908 	struct ifnet		*ifp;
909 	int			unit, error = 0, rid;
910 
911 	s = splimp();
912 
913 	sc = device_get_softc(dev);
914 	unit = device_get_unit(dev);
915 	bzero(sc, sizeof(struct ste_softc));
916 	sc->ste_dev = dev;
917 
918 	/*
919 	 * Only use one PHY since this chip reports multiple
920 	 * Note on the DFE-550 the PHY is at 1 on the DFE-580
921 	 * it is at 0 & 1.  It is rev 0x12.
922 	 */
923 	if (pci_get_vendor(dev) == DL_VENDORID &&
924 	    pci_get_device(dev) == DL_DEVICEID_550TX &&
925 	    pci_get_revid(dev) == 0x12 )
926 		sc->ste_one_phy = 1;
927 
928 	/*
929 	 * Handle power management nonsense.
930 	 */
931 	command = pci_read_config(dev, STE_PCI_CAPID, 4) & 0x000000FF;
932 	if (command == 0x01) {
933 
934 		command = pci_read_config(dev, STE_PCI_PWRMGMTCTRL, 4);
935 		if (command & STE_PSTATE_MASK) {
936 			u_int32_t		iobase, membase, irq;
937 
938 			/* Save important PCI config data. */
939 			iobase = pci_read_config(dev, STE_PCI_LOIO, 4);
940 			membase = pci_read_config(dev, STE_PCI_LOMEM, 4);
941 			irq = pci_read_config(dev, STE_PCI_INTLINE, 4);
942 
943 			/* Reset the power state. */
944 			printf("ste%d: chip is in D%d power mode "
945 			"-- setting to D0\n", unit, command & STE_PSTATE_MASK);
946 			command &= 0xFFFFFFFC;
947 			pci_write_config(dev, STE_PCI_PWRMGMTCTRL, command, 4);
948 
949 			/* Restore PCI config data. */
950 			pci_write_config(dev, STE_PCI_LOIO, iobase, 4);
951 			pci_write_config(dev, STE_PCI_LOMEM, membase, 4);
952 			pci_write_config(dev, STE_PCI_INTLINE, irq, 4);
953 		}
954 	}
955 
956 	/*
957 	 * Map control/status registers.
958 	 */
959 	command = pci_read_config(dev, PCIR_COMMAND, 4);
960 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
961 	pci_write_config(dev, PCIR_COMMAND, command, 4);
962 	command = pci_read_config(dev, PCIR_COMMAND, 4);
963 
964 #ifdef STE_USEIOSPACE
965 	if (!(command & PCIM_CMD_PORTEN)) {
966 		printf("ste%d: failed to enable I/O ports!\n", unit);
967 		error = ENXIO;
968 		goto fail;
969 	}
970 #else
971 	if (!(command & PCIM_CMD_MEMEN)) {
972 		printf("ste%d: failed to enable memory mapping!\n", unit);
973 		error = ENXIO;
974 		goto fail;
975 	}
976 #endif
977 
978 	rid = STE_RID;
979 	sc->ste_res = bus_alloc_resource(dev, STE_RES, &rid,
980 	    0, ~0, 1, RF_ACTIVE);
981 
982 	if (sc->ste_res == NULL) {
983 		printf ("ste%d: couldn't map ports/memory\n", unit);
984 		error = ENXIO;
985 		goto fail;
986 	}
987 
988 	sc->ste_btag = rman_get_bustag(sc->ste_res);
989 	sc->ste_bhandle = rman_get_bushandle(sc->ste_res);
990 
991 	rid = 0;
992 	sc->ste_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
993 	    RF_SHAREABLE | RF_ACTIVE);
994 
995 	if (sc->ste_irq == NULL) {
996 		printf("ste%d: couldn't map interrupt\n", unit);
997 		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
998 		error = ENXIO;
999 		goto fail;
1000 	}
1001 
1002 	error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET,
1003 	    ste_intr, sc, &sc->ste_intrhand);
1004 
1005 	if (error) {
1006 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1007 		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1008 		printf("ste%d: couldn't set up irq\n", unit);
1009 		goto fail;
1010 	}
1011 
1012 	callout_handle_init(&sc->ste_stat_ch);
1013 
1014 	/* Reset the adapter. */
1015 	ste_reset(sc);
1016 
1017 	/*
1018 	 * Get station address from the EEPROM.
1019 	 */
1020 	if (ste_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1021 	    STE_EEADDR_NODE0, 3, 0)) {
1022 		printf("ste%d: failed to read station address\n", unit);
1023 		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1024 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1025 		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1026 		error = ENXIO;;
1027 		goto fail;
1028 	}
1029 
1030 	/*
1031 	 * A Sundance chip was detected. Inform the world.
1032 	 */
1033 	printf("ste%d: Ethernet address: %6D\n", unit,
1034 	    sc->arpcom.ac_enaddr, ":");
1035 
1036 	sc->ste_unit = unit;
1037 
1038 	/* Allocate the descriptor queues. */
1039 	sc->ste_ldata = contigmalloc(sizeof(struct ste_list_data), M_DEVBUF,
1040 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1041 
1042 	if (sc->ste_ldata == NULL) {
1043 		printf("ste%d: no memory for list buffers!\n", unit);
1044 		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1045 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1046 		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1047 		error = ENXIO;
1048 		goto fail;
1049 	}
1050 
1051 	bzero(sc->ste_ldata, sizeof(struct ste_list_data));
1052 
1053 	/* Do MII setup. */
1054 	if (mii_phy_probe(dev, &sc->ste_miibus,
1055 		ste_ifmedia_upd, ste_ifmedia_sts)) {
1056 		printf("ste%d: MII without any phy!\n", sc->ste_unit);
1057 		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1058 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1059 		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1060 		contigfree(sc->ste_ldata,
1061 		    sizeof(struct ste_list_data), M_DEVBUF);
1062 		error = ENXIO;
1063 		goto fail;
1064 	}
1065 
1066 	ifp = &sc->arpcom.ac_if;
1067 	ifp->if_softc = sc;
1068 	ifp->if_unit = unit;
1069 	ifp->if_name = "ste";
1070 	ifp->if_mtu = ETHERMTU;
1071 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1072 	ifp->if_ioctl = ste_ioctl;
1073 	ifp->if_output = ether_output;
1074 	ifp->if_start = ste_start;
1075 	ifp->if_watchdog = ste_watchdog;
1076 	ifp->if_init = ste_init;
1077 	ifp->if_baudrate = 10000000;
1078 	ifp->if_snd.ifq_maxlen = STE_TX_LIST_CNT - 1;
1079 
1080 	sc->ste_tx_thresh = STE_TXSTART_THRESH;
1081 
1082 	/*
1083 	 * Call MI attach routine.
1084 	 */
1085 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
1086 
1087         /*
1088          * Tell the upper layer(s) we support long frames.
1089          */
1090         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1091 
1092 fail:
1093 	splx(s);
1094 	return(error);
1095 }
1096 
1097 static int ste_detach(dev)
1098 	device_t		dev;
1099 {
1100 	struct ste_softc	*sc;
1101 	struct ifnet		*ifp;
1102 	int			s;
1103 
1104 	s = splimp();
1105 
1106 	sc = device_get_softc(dev);
1107 	ifp = &sc->arpcom.ac_if;
1108 
1109 	ste_stop(sc);
1110 	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
1111 
1112 	bus_generic_detach(dev);
1113 	device_delete_child(dev, sc->ste_miibus);
1114 
1115 	bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1116 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1117 	bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1118 
1119 	contigfree(sc->ste_ldata, sizeof(struct ste_list_data), M_DEVBUF);
1120 
1121 	splx(s);
1122 
1123 	return(0);
1124 }
1125 
1126 static int ste_newbuf(sc, c, m)
1127 	struct ste_softc	*sc;
1128 	struct ste_chain_onefrag	*c;
1129 	struct mbuf		*m;
1130 {
1131 	struct mbuf		*m_new = NULL;
1132 
1133 	if (m == NULL) {
1134 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1135 		if (m_new == NULL)
1136 			return(ENOBUFS);
1137 		MCLGET(m_new, M_DONTWAIT);
1138 		if (!(m_new->m_flags & M_EXT)) {
1139 			m_freem(m_new);
1140 			return(ENOBUFS);
1141 		}
1142 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1143 	} else {
1144 		m_new = m;
1145 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1146 		m_new->m_data = m_new->m_ext.ext_buf;
1147 	}
1148 
1149 	m_adj(m_new, ETHER_ALIGN);
1150 
1151 	c->ste_mbuf = m_new;
1152 	c->ste_ptr->ste_status = 0;
1153 	c->ste_ptr->ste_frag.ste_addr = vtophys(mtod(m_new, caddr_t));
1154 	c->ste_ptr->ste_frag.ste_len = (1536 + EVL_ENCAPLEN) | STE_FRAG_LAST;
1155 
1156 	return(0);
1157 }
1158 
1159 static int ste_init_rx_list(sc)
1160 	struct ste_softc	*sc;
1161 {
1162 	struct ste_chain_data	*cd;
1163 	struct ste_list_data	*ld;
1164 	int			i;
1165 
1166 	cd = &sc->ste_cdata;
1167 	ld = sc->ste_ldata;
1168 
1169 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1170 		cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
1171 		if (ste_newbuf(sc, &cd->ste_rx_chain[i], NULL) == ENOBUFS)
1172 			return(ENOBUFS);
1173 		if (i == (STE_RX_LIST_CNT - 1)) {
1174 			cd->ste_rx_chain[i].ste_next =
1175 			    &cd->ste_rx_chain[0];
1176 			ld->ste_rx_list[i].ste_next =
1177 			    vtophys(&ld->ste_rx_list[0]);
1178 		} else {
1179 			cd->ste_rx_chain[i].ste_next =
1180 			    &cd->ste_rx_chain[i + 1];
1181 			ld->ste_rx_list[i].ste_next =
1182 			    vtophys(&ld->ste_rx_list[i + 1]);
1183 		}
1184 		ld->ste_rx_list[i].ste_status = 0;
1185 	}
1186 
1187 	cd->ste_rx_head = &cd->ste_rx_chain[0];
1188 
1189 	return(0);
1190 }
1191 
1192 static void ste_init_tx_list(sc)
1193 	struct ste_softc	*sc;
1194 {
1195 	struct ste_chain_data	*cd;
1196 	struct ste_list_data	*ld;
1197 	int			i;
1198 
1199 	cd = &sc->ste_cdata;
1200 	ld = sc->ste_ldata;
1201 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1202 		cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
1203 		cd->ste_tx_chain[i].ste_ptr->ste_next = 0;
1204 		cd->ste_tx_chain[i].ste_ptr->ste_ctl  = 0;
1205 		cd->ste_tx_chain[i].ste_phys = vtophys(&ld->ste_tx_list[i]);
1206 		if (i == (STE_TX_LIST_CNT - 1))
1207 			cd->ste_tx_chain[i].ste_next =
1208 			    &cd->ste_tx_chain[0];
1209 		else
1210 			cd->ste_tx_chain[i].ste_next =
1211 			    &cd->ste_tx_chain[i + 1];
1212 		if (i == 0)
1213 			cd->ste_tx_chain[i].ste_prev =
1214 			     &cd->ste_tx_chain[STE_TX_LIST_CNT - 1];
1215 		else
1216 			cd->ste_tx_chain[i].ste_prev =
1217 			     &cd->ste_tx_chain[i - 1];
1218 	}
1219 
1220 	cd->ste_tx_prod = 0;
1221 	cd->ste_tx_cons = 0;
1222 	cd->ste_tx_cnt = 0;
1223 
1224 	return;
1225 }
1226 
1227 static void ste_init(xsc)
1228 	void			*xsc;
1229 {
1230 	struct ste_softc	*sc;
1231 	int			i, s;
1232 	struct ifnet		*ifp;
1233 	struct mii_data		*mii;
1234 
1235 	s = splimp();
1236 
1237 	sc = xsc;
1238 	ifp = &sc->arpcom.ac_if;
1239 	mii = device_get_softc(sc->ste_miibus);
1240 
1241 	ste_stop(sc);
1242 
1243 	/* Init our MAC address */
1244 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
1245 		CSR_WRITE_1(sc, STE_PAR0 + i, sc->arpcom.ac_enaddr[i]);
1246 	}
1247 
1248 	/* Init RX list */
1249 	if (ste_init_rx_list(sc) == ENOBUFS) {
1250 		printf("ste%d: initialization failed: no "
1251 		    "memory for RX buffers\n", sc->ste_unit);
1252 		ste_stop(sc);
1253 		splx(s);
1254 		return;
1255 	}
1256 
1257 	/* Set RX polling interval */
1258 	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 1);
1259 
1260 	/* Init TX descriptors */
1261 	ste_init_tx_list(sc);
1262 
1263 	/* Set the TX freethresh value */
1264 	CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
1265 
1266 	/* Set the TX start threshold for best performance. */
1267 	CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
1268 
1269 	/* Set the TX reclaim threshold. */
1270 	CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
1271 
1272 	/* Set up the RX filter. */
1273 	CSR_WRITE_1(sc, STE_RX_MODE, STE_RXMODE_UNICAST);
1274 
1275 	/* If we want promiscuous mode, set the allframes bit. */
1276 	if (ifp->if_flags & IFF_PROMISC) {
1277 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1278 	} else {
1279 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1280 	}
1281 
1282 	/* Set capture broadcast bit to accept broadcast frames. */
1283 	if (ifp->if_flags & IFF_BROADCAST) {
1284 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1285 	} else {
1286 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1287 	}
1288 
1289 	ste_setmulti(sc);
1290 
1291 	/* Load the address of the RX list. */
1292 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1293 	ste_wait(sc);
1294 	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
1295 	    vtophys(&sc->ste_ldata->ste_rx_list[0]));
1296 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1297 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1298 
1299 	/* Set TX polling interval (defer until we TX first packet */
1300 	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1301 
1302 	/* Load address of the TX list */
1303 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1304 	ste_wait(sc);
1305 	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1306 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1307 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1308 	ste_wait(sc);
1309 	sc->ste_tx_prev_idx=-1;
1310 
1311 	/* Enable receiver and transmitter */
1312 	CSR_WRITE_2(sc, STE_MACCTL0, 0);
1313 	CSR_WRITE_2(sc, STE_MACCTL1, 0);
1314 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
1315 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
1316 
1317 	/* Enable stats counters. */
1318 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
1319 
1320 	/* Enable interrupts. */
1321 	CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
1322 	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1323 
1324 	/* Accept VLAN length packets */
1325 	CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + EVL_ENCAPLEN);
1326 
1327 	ste_ifmedia_upd(ifp);
1328 
1329 	ifp->if_flags |= IFF_RUNNING;
1330 	ifp->if_flags &= ~IFF_OACTIVE;
1331 
1332 	splx(s);
1333 
1334 	sc->ste_stat_ch = timeout(ste_stats_update, sc, hz);
1335 
1336 	return;
1337 }
1338 
1339 static void ste_stop(sc)
1340 	struct ste_softc	*sc;
1341 {
1342 	int			i;
1343 	struct ifnet		*ifp;
1344 
1345 	ifp = &sc->arpcom.ac_if;
1346 
1347 	untimeout(ste_stats_update, sc, sc->ste_stat_ch);
1348 
1349 	CSR_WRITE_2(sc, STE_IMR, 0);
1350 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_DISABLE);
1351 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_DISABLE);
1352 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_DISABLE);
1353 	STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1354 	STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1355 	ste_wait(sc);
1356 	/*
1357 	 * Try really hard to stop the RX engine or under heavy RX
1358 	 * data chip will write into de-allocated memory.
1359 	 */
1360 	ste_reset(sc);
1361 
1362 	sc->ste_link = 0;
1363 
1364 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1365 		if (sc->ste_cdata.ste_rx_chain[i].ste_mbuf != NULL) {
1366 			m_freem(sc->ste_cdata.ste_rx_chain[i].ste_mbuf);
1367 			sc->ste_cdata.ste_rx_chain[i].ste_mbuf = NULL;
1368 		}
1369 	}
1370 
1371 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1372 		if (sc->ste_cdata.ste_tx_chain[i].ste_mbuf != NULL) {
1373 			m_freem(sc->ste_cdata.ste_tx_chain[i].ste_mbuf);
1374 			sc->ste_cdata.ste_tx_chain[i].ste_mbuf = NULL;
1375 		}
1376 	}
1377 
1378 	bzero(sc->ste_ldata, sizeof(struct ste_list_data));
1379 
1380 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1381 
1382 	return;
1383 }
1384 
1385 static void ste_reset(sc)
1386 	struct ste_softc	*sc;
1387 {
1388 	int			i;
1389 
1390 	STE_SETBIT4(sc, STE_ASICCTL,
1391 	    STE_ASICCTL_GLOBAL_RESET|STE_ASICCTL_RX_RESET|
1392 	    STE_ASICCTL_TX_RESET|STE_ASICCTL_DMA_RESET|
1393 	    STE_ASICCTL_FIFO_RESET|STE_ASICCTL_NETWORK_RESET|
1394 	    STE_ASICCTL_AUTOINIT_RESET|STE_ASICCTL_HOST_RESET|
1395 	    STE_ASICCTL_EXTRESET_RESET);
1396 
1397 	DELAY(100000);
1398 
1399 	for (i = 0; i < STE_TIMEOUT; i++) {
1400 		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
1401 			break;
1402 	}
1403 
1404 	if (i == STE_TIMEOUT)
1405 		printf("ste%d: global reset never completed\n", sc->ste_unit);
1406 
1407 	return;
1408 }
1409 
1410 static int ste_ioctl(ifp, command, data)
1411 	struct ifnet		*ifp;
1412 	u_long			command;
1413 	caddr_t			data;
1414 {
1415 	struct ste_softc	*sc;
1416 	struct ifreq		*ifr;
1417 	struct mii_data		*mii;
1418 	int			error = 0, s;
1419 
1420 	s = splimp();
1421 
1422 	sc = ifp->if_softc;
1423 	ifr = (struct ifreq *)data;
1424 
1425 	switch(command) {
1426 	case SIOCSIFADDR:
1427 	case SIOCGIFADDR:
1428 	case SIOCSIFMTU:
1429 		error = ether_ioctl(ifp, command, data);
1430 		break;
1431 	case SIOCSIFFLAGS:
1432 		if (ifp->if_flags & IFF_UP) {
1433 			if (ifp->if_flags & IFF_RUNNING &&
1434 			    ifp->if_flags & IFF_PROMISC &&
1435 			    !(sc->ste_if_flags & IFF_PROMISC)) {
1436 				STE_SETBIT1(sc, STE_RX_MODE,
1437 				    STE_RXMODE_PROMISC);
1438 			} else if (ifp->if_flags & IFF_RUNNING &&
1439 			    !(ifp->if_flags & IFF_PROMISC) &&
1440 			    sc->ste_if_flags & IFF_PROMISC) {
1441 				STE_CLRBIT1(sc, STE_RX_MODE,
1442 				    STE_RXMODE_PROMISC);
1443 			}
1444 			if (!(ifp->if_flags & IFF_RUNNING)) {
1445 				sc->ste_tx_thresh = STE_TXSTART_THRESH;
1446 				ste_init(sc);
1447 			}
1448 		} else {
1449 			if (ifp->if_flags & IFF_RUNNING)
1450 				ste_stop(sc);
1451 		}
1452 		sc->ste_if_flags = ifp->if_flags;
1453 		error = 0;
1454 		break;
1455 	case SIOCADDMULTI:
1456 	case SIOCDELMULTI:
1457 		ste_setmulti(sc);
1458 		error = 0;
1459 		break;
1460 	case SIOCGIFMEDIA:
1461 	case SIOCSIFMEDIA:
1462 		mii = device_get_softc(sc->ste_miibus);
1463 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1464 		break;
1465 	default:
1466 		error = EINVAL;
1467 		break;
1468 	}
1469 
1470 	splx(s);
1471 
1472 	return(error);
1473 }
1474 
1475 static int ste_encap(sc, c, m_head)
1476 	struct ste_softc	*sc;
1477 	struct ste_chain	*c;
1478 	struct mbuf		*m_head;
1479 {
1480 	int			frag = 0;
1481 	struct ste_frag		*f = NULL;
1482 	struct mbuf		*m;
1483 	struct ste_desc		*d;
1484 	int			total_len = 0;
1485 
1486 	d = c->ste_ptr;
1487 	d->ste_ctl = 0;
1488 
1489 encap_retry:
1490 	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1491 		if (m->m_len != 0) {
1492 			if (frag == STE_MAXFRAGS)
1493 				break;
1494 			total_len += m->m_len;
1495 			f = &d->ste_frags[frag];
1496 			f->ste_addr = vtophys(mtod(m, vm_offset_t));
1497 			f->ste_len = m->m_len;
1498 			frag++;
1499 		}
1500 	}
1501 
1502 	if (m != NULL) {
1503 		struct mbuf *mn;
1504 
1505 		/*
1506 		 * We ran out of segments. We have to recopy this
1507 		 * mbuf chain first. Bail out if we can't get the
1508 		 * new buffers.  Code borrowed from if_fxp.c.
1509 		 */
1510 		MGETHDR(mn, M_DONTWAIT, MT_DATA);
1511 		if (mn == NULL) {
1512 			m_freem(m_head);
1513 			return ENOMEM;
1514 		}
1515 		if (m_head->m_pkthdr.len > MHLEN) {
1516 			MCLGET(mn, M_DONTWAIT);
1517 			if ((mn->m_flags & M_EXT) == 0) {
1518 				m_freem(mn);
1519 				m_freem(m_head);
1520 				return ENOMEM;
1521 			}
1522 		}
1523 		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1524 		    mtod(mn, caddr_t));
1525 		mn->m_pkthdr.len = mn->m_len = m_head->m_pkthdr.len;
1526 		m_freem(m_head);
1527 		m_head = mn;
1528 		goto encap_retry;
1529 	}
1530 
1531 	c->ste_mbuf = m_head;
1532 	d->ste_frags[frag - 1].ste_len |= STE_FRAG_LAST;
1533 	d->ste_ctl = 1;
1534 
1535 	return(0);
1536 }
1537 
1538 static void ste_start(ifp)
1539 	struct ifnet		*ifp;
1540 {
1541 	struct ste_softc	*sc;
1542 	struct mbuf		*m_head = NULL;
1543 	struct ste_chain	*cur_tx = NULL;
1544 	int			idx;
1545 
1546 	sc = ifp->if_softc;
1547 
1548 	if (!sc->ste_link)
1549 		return;
1550 
1551 	if (ifp->if_flags & IFF_OACTIVE)
1552 		return;
1553 
1554 	idx = sc->ste_cdata.ste_tx_prod;
1555 
1556 	while(sc->ste_cdata.ste_tx_chain[idx].ste_mbuf == NULL) {
1557 
1558 		if ((STE_TX_LIST_CNT - sc->ste_cdata.ste_tx_cnt) < 3) {
1559 			ifp->if_flags |= IFF_OACTIVE;
1560 			break;
1561 		}
1562 
1563 		IF_DEQUEUE(&ifp->if_snd, m_head);
1564 		if (m_head == NULL)
1565 			break;
1566 
1567 		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
1568 
1569 		if (ste_encap(sc, cur_tx, m_head) != 0)
1570 			break;
1571 
1572 		cur_tx->ste_ptr->ste_next = 0;
1573 
1574 		if(sc->ste_tx_prev_idx < 0){
1575 			cur_tx->ste_ptr->ste_ctl = STE_TXCTL_DMAINTR | 1;
1576 			/* Load address of the TX list */
1577 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1578 			ste_wait(sc);
1579 
1580 			CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
1581 			    vtophys(&sc->ste_ldata->ste_tx_list[0]));
1582 
1583 			/* Set TX polling interval to start TX engine */
1584 			CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
1585 
1586 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1587 			ste_wait(sc);
1588 		}else{
1589 			cur_tx->ste_ptr->ste_ctl = STE_TXCTL_DMAINTR | 1;
1590 			sc->ste_cdata.ste_tx_chain[
1591 			    sc->ste_tx_prev_idx].ste_ptr->ste_next
1592 				= cur_tx->ste_phys;
1593 		}
1594 
1595 		sc->ste_tx_prev_idx=idx;
1596 
1597 		/*
1598 		 * If there's a BPF listener, bounce a copy of this frame
1599 		 * to him.
1600 	 	 */
1601 		if (ifp->if_bpf)
1602 			bpf_mtap(ifp, cur_tx->ste_mbuf);
1603 
1604 		STE_INC(idx, STE_TX_LIST_CNT);
1605 		sc->ste_cdata.ste_tx_cnt++;
1606 		ifp->if_timer = 5;
1607 		sc->ste_cdata.ste_tx_prod = idx;
1608 	}
1609 
1610 	return;
1611 }
1612 
1613 static void ste_watchdog(ifp)
1614 	struct ifnet		*ifp;
1615 {
1616 	struct ste_softc	*sc;
1617 
1618 	sc = ifp->if_softc;
1619 
1620 	ifp->if_oerrors++;
1621 	printf("ste%d: watchdog timeout\n", sc->ste_unit);
1622 
1623 	ste_txeoc(sc);
1624 	ste_txeof(sc);
1625 	ste_rxeof(sc);
1626 	ste_reset(sc);
1627 	ste_init(sc);
1628 
1629 	if (ifp->if_snd.ifq_head != NULL)
1630 		ste_start(ifp);
1631 
1632 	return;
1633 }
1634 
1635 static void ste_shutdown(dev)
1636 	device_t		dev;
1637 {
1638 	struct ste_softc	*sc;
1639 
1640 	sc = device_get_softc(dev);
1641 
1642 	ste_stop(sc);
1643 
1644 	return;
1645 }
1646