xref: /dragonfly/sys/dev/netif/ti/if_ti.c (revision 3641b7ca)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_ti.c,v 1.25.2.14 2002/02/15 04:20:20 silby Exp $
33  * $DragonFly: src/sys/dev/netif/ti/if_ti.c,v 1.52 2008/05/16 13:19:12 sephe Exp $
34  */
35 
36 /*
37  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
38  * Manuals, sample driver and firmware source kits are available
39  * from http://www.alteon.com/support/openkits.
40  *
41  * Written by Bill Paul <wpaul@ctr.columbia.edu>
42  * Electrical Engineering Department
43  * Columbia University, New York City
44  */
45 
46 /*
47  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
48  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
49  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
50  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
51  * filtering and jumbo (9014 byte) frames. The hardware is largely
52  * controlled by firmware, which must be loaded into the NIC during
53  * initialization.
54  *
55  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
56  * revision, which supports new features such as extended commands,
57  * extended jumbo receive ring desciptors and a mini receive ring.
58  *
59  * Alteon Networks is to be commended for releasing such a vast amount
60  * of development material for the Tigon NIC without requiring an NDA
61  * (although they really should have done it a long time ago). With
62  * any luck, the other vendors will finally wise up and follow Alteon's
63  * stellar example.
64  *
65  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
66  * this driver by #including it as a C header file. This bloats the
67  * driver somewhat, but it's the easiest method considering that the
68  * driver code and firmware code need to be kept in sync. The source
69  * for the firmware is not provided with the FreeBSD distribution since
70  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
71  *
72  * The following people deserve special thanks:
73  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
74  *   for testing
75  * - Raymond Lee of Netgear, for providing a pair of Netgear
76  *   GA620 Tigon 2 boards for testing
77  * - Ulf Zimmermann, for bringing the GA260 to my attention and
78  *   convincing me to write this driver.
79  * - Andrew Gallatin for providing FreeBSD/Alpha support.
80  */
81 
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/sockio.h>
85 #include <sys/mbuf.h>
86 #include <sys/malloc.h>
87 #include <sys/kernel.h>
88 #include <sys/socket.h>
89 #include <sys/queue.h>
90 #include <sys/serialize.h>
91 #include <sys/bus.h>
92 #include <sys/rman.h>
93 #include <sys/thread2.h>
94 #include <sys/interrupt.h>
95 
96 #include <net/if.h>
97 #include <net/ifq_var.h>
98 #include <net/if_arp.h>
99 #include <net/ethernet.h>
100 #include <net/if_dl.h>
101 #include <net/if_media.h>
102 #include <net/if_types.h>
103 #include <net/vlan/if_vlan_var.h>
104 #include <net/vlan/if_vlan_ether.h>
105 
106 #include <net/bpf.h>
107 
108 #include <netinet/in_systm.h>
109 #include <netinet/in.h>
110 #include <netinet/ip.h>
111 
112 #include <vm/vm.h>              /* for vtophys */
113 #include <vm/pmap.h>            /* for vtophys */
114 
115 #include <bus/pci/pcireg.h>
116 #include <bus/pci/pcivar.h>
117 
118 #include "if_tireg.h"
119 #include "ti_fw.h"
120 #include "ti_fw2.h"
121 
122 /*
123  * Temporarily disable the checksum offload support for now.
124  * Tests with ftp.freesoftware.com show that after about 12 hours,
125  * the firmware will begin calculating completely bogus TX checksums
126  * and refuse to stop until the interface is reset. Unfortunately,
127  * there isn't enough time to fully debug this before the 4.1
128  * release, so this will need to stay off for now.
129  */
130 #ifdef notdef
131 #define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
132 #else
133 #define TI_CSUM_FEATURES	0
134 #endif
135 
136 /*
137  * Various supported device vendors/types and their names.
138  */
139 
140 static struct ti_type ti_devs[] = {
141 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
142 		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
143 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
144 		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
145 	{ TC_VENDORID,	TC_DEVICEID_3C985,
146 		"3Com 3c985-SX Gigabit Ethernet" },
147 	{ NG_VENDORID, NG_DEVICEID_GA620,
148 		"Netgear GA620 1000baseSX Gigabit Ethernet" },
149 	{ NG_VENDORID, NG_DEVICEID_GA620T,
150 		"Netgear GA620 1000baseT Gigabit Ethernet" },
151 	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
152 		"Silicon Graphics Gigabit Ethernet" },
153 	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
154 		"Farallon PN9000SX Gigabit Ethernet" },
155 	{ 0, 0, NULL }
156 };
157 
158 static int	ti_probe(device_t);
159 static int	ti_attach(device_t);
160 static int	ti_detach(device_t);
161 static void	ti_txeof(struct ti_softc *);
162 static void	ti_rxeof(struct ti_softc *);
163 
164 static void	ti_stats_update(struct ti_softc *);
165 static int	ti_encap(struct ti_softc *, struct mbuf *, uint32_t *);
166 
167 static void	ti_intr(void *);
168 static void	ti_start(struct ifnet *);
169 static int	ti_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
170 static void	ti_init(void *);
171 static void	ti_init2(struct ti_softc *);
172 static void	ti_stop(struct ti_softc *);
173 static void	ti_watchdog(struct ifnet *);
174 static void	ti_shutdown(device_t);
175 static int	ti_ifmedia_upd(struct ifnet *);
176 static void	ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
177 
178 static uint32_t	ti_eeprom_putbyte(struct ti_softc *, int);
179 static uint8_t	ti_eeprom_getbyte(struct ti_softc *, int, uint8_t *);
180 static int	ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
181 
182 static void	ti_add_mcast(struct ti_softc *, struct ether_addr *);
183 static void	ti_del_mcast(struct ti_softc *, struct ether_addr *);
184 static void	ti_setmulti(struct ti_softc *);
185 
186 static void	ti_mem(struct ti_softc *, uint32_t, uint32_t, caddr_t);
187 static void	ti_loadfw(struct ti_softc *);
188 static void	ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
189 static void	ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *,
190 			   caddr_t, int);
191 static void	ti_handle_events(struct ti_softc *);
192 static int	ti_alloc_jumbo_mem(struct ti_softc *);
193 static struct ti_jslot *
194 		ti_jalloc(struct ti_softc *);
195 static void	ti_jfree(void *);
196 static void	ti_jref(void *);
197 static int	ti_newbuf_std(struct ti_softc *, int, struct mbuf *);
198 static int	ti_newbuf_mini(struct ti_softc *, int, struct mbuf *);
199 static int	ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
200 static int	ti_init_rx_ring_std(struct ti_softc *);
201 static void	ti_free_rx_ring_std(struct ti_softc *);
202 static int	ti_init_rx_ring_jumbo(struct ti_softc *);
203 static void	ti_free_rx_ring_jumbo(struct ti_softc *);
204 static int	ti_init_rx_ring_mini(struct ti_softc *);
205 static void	ti_free_rx_ring_mini(struct ti_softc *);
206 static void	ti_free_tx_ring(struct ti_softc *);
207 static int	ti_init_tx_ring(struct ti_softc *);
208 
209 static int	ti_64bitslot_war(struct ti_softc *);
210 static int	ti_chipinit(struct ti_softc *);
211 static int	ti_gibinit(struct ti_softc *);
212 
213 static device_method_t ti_methods[] = {
214 	/* Device interface */
215 	DEVMETHOD(device_probe,		ti_probe),
216 	DEVMETHOD(device_attach,	ti_attach),
217 	DEVMETHOD(device_detach,	ti_detach),
218 	DEVMETHOD(device_shutdown,	ti_shutdown),
219 	{ 0, 0 }
220 };
221 
222 
223 static DEFINE_CLASS_0(ti, ti_driver, ti_methods, sizeof(struct ti_softc));
224 static devclass_t ti_devclass;
225 
226 DECLARE_DUMMY_MODULE(if_ti);
227 DRIVER_MODULE(if_ti, pci, ti_driver, ti_devclass, 0, 0);
228 
229 /*
230  * Send an instruction or address to the EEPROM, check for ACK.
231  */
232 static uint32_t
233 ti_eeprom_putbyte(struct ti_softc *sc, int byte)
234 {
235 	int ack = 0, i;
236 
237 	/*
238 	 * Make sure we're in TX mode.
239 	 */
240 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
241 
242 	/*
243 	 * Feed in each bit and stobe the clock.
244 	 */
245 	for (i = 0x80; i; i >>= 1) {
246 		if (byte & i)
247 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
248 		else
249 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
250 		DELAY(1);
251 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
252 		DELAY(1);
253 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
254 	}
255 
256 	/*
257 	 * Turn off TX mode.
258 	 */
259 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
260 
261 	/*
262 	 * Check for ack.
263 	 */
264 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
265 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
266 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
267 
268 	return(ack);
269 }
270 
271 /*
272  * Read a byte of data stored in the EEPROM at address 'addr.'
273  * We have to send two address bytes since the EEPROM can hold
274  * more than 256 bytes of data.
275  */
276 static uint8_t
277 ti_eeprom_getbyte(struct ti_softc *sc, int addr, uint8_t *dest)
278 {
279 	struct ifnet *ifp = &sc->arpcom.ac_if;
280 	int i;
281 	uint8_t byte = 0;
282 
283 	EEPROM_START;
284 
285 	/*
286 	 * Send write control code to EEPROM.
287 	 */
288 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
289 		if_printf(ifp, "failed to send write command, status: %x\n",
290 			  CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
291 		return(1);
292 	}
293 
294 	/*
295 	 * Send first byte of address of byte we want to read.
296 	 */
297 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
298 		if_printf(ifp, "failed to send address, status: %x\n",
299 			  CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
300 		return(1);
301 	}
302 	/*
303 	 * Send second byte address of byte we want to read.
304 	 */
305 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
306 		if_printf(ifp, "failed to send address, status: %x\n",
307 			  CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
308 		return(1);
309 	}
310 
311 	EEPROM_STOP;
312 	EEPROM_START;
313 	/*
314 	 * Send read control code to EEPROM.
315 	 */
316 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
317 		if_printf(ifp, "failed to send read command, status: %x\n",
318 			  CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
319 		return(1);
320 	}
321 
322 	/*
323 	 * Start reading bits from EEPROM.
324 	 */
325 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
326 	for (i = 0x80; i; i >>= 1) {
327 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
328 		DELAY(1);
329 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
330 			byte |= i;
331 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
332 		DELAY(1);
333 	}
334 
335 	EEPROM_STOP;
336 
337 	/*
338 	 * No ACK generated for read, so just return byte.
339 	 */
340 
341 	*dest = byte;
342 
343 	return(0);
344 }
345 
346 /*
347  * Read a sequence of bytes from the EEPROM.
348  */
349 static int
350 ti_read_eeprom(struct ti_softc *sc, caddr_t dest, int off, int cnt)
351 {
352 	int err = 0, i;
353 	uint8_t byte = 0;
354 
355 	for (i = 0; i < cnt; i++) {
356 		err = ti_eeprom_getbyte(sc, off + i, &byte);
357 		if (err)
358 			break;
359 		*(dest + i) = byte;
360 	}
361 
362 	return(err ? 1 : 0);
363 }
364 
365 /*
366  * NIC memory access function. Can be used to either clear a section
367  * of NIC local memory or (if buf is non-NULL) copy data into it.
368  */
369 static void
370 ti_mem(struct ti_softc *sc, uint32_t addr, uint32_t len, caddr_t buf)
371 {
372 	int cnt, segptr, segsize;
373 	caddr_t ti_winbase, ptr;
374 
375 	segptr = addr;
376 	cnt = len;
377 	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
378 	ptr = buf;
379 
380 	while(cnt) {
381 		if (cnt < TI_WINLEN)
382 			segsize = cnt;
383 		else
384 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
385 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
386 		if (buf == NULL)
387 			bzero((char *)ti_winbase + (segptr &
388 			    (TI_WINLEN - 1)), segsize);
389 		else {
390 			bcopy((char *)ptr, (char *)ti_winbase +
391 			    (segptr & (TI_WINLEN - 1)), segsize);
392 			ptr += segsize;
393 		}
394 		segptr += segsize;
395 		cnt -= segsize;
396 	}
397 }
398 
399 /*
400  * Load firmware image into the NIC. Check that the firmware revision
401  * is acceptable and see if we want the firmware for the Tigon 1 or
402  * Tigon 2.
403  */
404 static void
405 ti_loadfw(struct ti_softc *sc)
406 {
407 	struct ifnet *ifp = &sc->arpcom.ac_if;
408 
409 	switch(sc->ti_hwrev) {
410 	case TI_HWREV_TIGON:
411 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
412 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
413 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
414 			if_printf(ifp, "firmware revision mismatch; want "
415 				  "%d.%d.%d, got %d.%d.%d\n",
416 				  TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
417 				  TI_FIRMWARE_FIX, tigonFwReleaseMajor,
418 				  tigonFwReleaseMinor, tigonFwReleaseFix);
419 			return;
420 		}
421 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
422 		    (caddr_t)tigonFwText);
423 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
424 		    (caddr_t)tigonFwData);
425 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
426 		    (caddr_t)tigonFwRodata);
427 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
428 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
429 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
430 		break;
431 	case TI_HWREV_TIGON_II:
432 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
433 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
434 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
435 			if_printf(ifp, "firmware revision mismatch; want "
436 				  "%d.%d.%d, got %d.%d.%d\n",
437 				  TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
438 				  TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
439 				  tigon2FwReleaseMinor, tigon2FwReleaseFix);
440 			return;
441 		}
442 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
443 		    (caddr_t)tigon2FwText);
444 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
445 		    (caddr_t)tigon2FwData);
446 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
447 		    (caddr_t)tigon2FwRodata);
448 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
449 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
450 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
451 		break;
452 	default:
453 		if_printf(ifp, "can't load firmware: unknown hardware rev\n");
454 		break;
455 	}
456 }
457 
458 /*
459  * Send the NIC a command via the command ring.
460  */
461 static void
462 ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
463 {
464 	uint32_t index;
465 
466 	if (sc->ti_rdata->ti_cmd_ring == NULL)
467 		return;
468 
469 	index = sc->ti_cmd_saved_prodidx;
470 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
471 	TI_INC(index, TI_CMD_RING_CNT);
472 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
473 	sc->ti_cmd_saved_prodidx = index;
474 }
475 
476 /*
477  * Send the NIC an extended command. The 'len' parameter specifies the
478  * number of command slots to include after the initial command.
479  */
480 static void
481 ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, caddr_t arg, int len)
482 {
483 	uint32_t index;
484 	int i;
485 
486 	if (sc->ti_rdata->ti_cmd_ring == NULL)
487 		return;
488 
489 	index = sc->ti_cmd_saved_prodidx;
490 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
491 	TI_INC(index, TI_CMD_RING_CNT);
492 	for (i = 0; i < len; i++) {
493 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
494 		    *(uint32_t *)(&arg[i * 4]));
495 		TI_INC(index, TI_CMD_RING_CNT);
496 	}
497 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
498 	sc->ti_cmd_saved_prodidx = index;
499 }
500 
501 /*
502  * Handle events that have triggered interrupts.
503  */
504 static void
505 ti_handle_events(struct ti_softc *sc)
506 {
507 	struct ifnet *ifp = &sc->arpcom.ac_if;
508 	struct ti_event_desc *e;
509 
510 	if (sc->ti_rdata->ti_event_ring == NULL)
511 		return;
512 
513 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
514 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
515 		switch(e->ti_event) {
516 		case TI_EV_LINKSTAT_CHANGED:
517 			sc->ti_linkstat = e->ti_code;
518 			if (e->ti_code == TI_EV_CODE_LINK_UP) {
519 				if_printf(ifp, "10/100 link up\n");
520 			} else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP) {
521 				if_printf(ifp, "gigabit link up\n");
522 			} else if (e->ti_code == TI_EV_CODE_LINK_DOWN) {
523 				if_printf(ifp, "link down\n");
524 			}
525 			break;
526 		case TI_EV_ERROR:
527 			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD) {
528 				if_printf(ifp, "invalid command\n");
529 			} else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD) {
530 				if_printf(ifp, "unknown command\n");
531 			} else if (e->ti_code == TI_EV_CODE_ERR_BADCFG) {
532 				if_printf(ifp, "bad config data\n");
533 			}
534 			break;
535 		case TI_EV_FIRMWARE_UP:
536 			ti_init2(sc);
537 			break;
538 		case TI_EV_STATS_UPDATED:
539 			ti_stats_update(sc);
540 			break;
541 		case TI_EV_RESET_JUMBO_RING:
542 		case TI_EV_MCAST_UPDATED:
543 			/* Who cares. */
544 			break;
545 		default:
546 			if_printf(ifp, "unknown event: %d\n", e->ti_event);
547 			break;
548 		}
549 		/* Advance the consumer index. */
550 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
551 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
552 	}
553 }
554 
555 /*
556  * Memory management for the jumbo receive ring is a pain in the
557  * butt. We need to allocate at least 9018 bytes of space per frame,
558  * _and_ it has to be contiguous (unless you use the extended
559  * jumbo descriptor format). Using malloc() all the time won't
560  * work: malloc() allocates memory in powers of two, which means we
561  * would end up wasting a considerable amount of space by allocating
562  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
563  * to do our own memory management.
564  *
565  * The driver needs to allocate a contiguous chunk of memory at boot
566  * time. We then chop this up ourselves into 9K pieces and use them
567  * as external mbuf storage.
568  *
569  * One issue here is how much memory to allocate. The jumbo ring has
570  * 256 slots in it, but at 9K per slot than can consume over 2MB of
571  * RAM. This is a bit much, especially considering we also need
572  * RAM for the standard ring and mini ring (on the Tigon 2). To
573  * save space, we only actually allocate enough memory for 64 slots
574  * by default, which works out to between 500 and 600K. This can
575  * be tuned by changing a #define in if_tireg.h.
576  */
577 
578 static int
579 ti_alloc_jumbo_mem(struct ti_softc *sc)
580 {
581 	struct ti_jslot *entry;
582 	caddr_t ptr;
583 	int i;
584 
585 	/* Grab a big chunk o' storage. */
586 	sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
587 		M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
588 
589 	if (sc->ti_cdata.ti_jumbo_buf == NULL) {
590 		if_printf(&sc->arpcom.ac_if, "no memory for jumbo buffers!\n");
591 		return(ENOBUFS);
592 	}
593 
594 	lwkt_serialize_init(&sc->ti_jslot_serializer);
595 	SLIST_INIT(&sc->ti_jfree_listhead);
596 
597 	/*
598 	 * Now divide it up into 9K pieces and save the addresses
599 	 * in an array. Note that we play an evil trick here by using
600 	 * the first few bytes in the buffer to hold the the address
601 	 * of the softc structure for this interface. This is because
602 	 * ti_jfree() needs it, but it is called by the mbuf management
603 	 * code which will not pass it to us explicitly.
604 	 */
605 	ptr = sc->ti_cdata.ti_jumbo_buf;
606 	for (i = 0; i < TI_JSLOTS; i++) {
607 		entry = &sc->ti_cdata.ti_jslots[i];
608 		entry->ti_sc = sc;
609 		entry->ti_buf = ptr;
610 		entry->ti_inuse = 0;
611 		entry->ti_slot = i;
612 		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jslot_link);
613 		ptr += TI_JLEN;
614 	}
615 
616 	return(0);
617 }
618 
619 /*
620  * Allocate a jumbo buffer.
621  */
622 static struct ti_jslot *
623 ti_jalloc(struct ti_softc *sc)
624 {
625 	struct ti_jslot *entry;
626 
627 	lwkt_serialize_enter(&sc->ti_jslot_serializer);
628 	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
629 	if (entry) {
630 		SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jslot_link);
631 		entry->ti_inuse = 1;
632 	} else {
633 		if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
634 	}
635 	lwkt_serialize_exit(&sc->ti_jslot_serializer);
636 	return(entry);
637 }
638 
639 /*
640  * Adjust usage count on a jumbo buffer. In general this doesn't
641  * get used much because our jumbo buffers don't get passed around
642  * too much, but it's implemented for correctness.
643  */
644 static void
645 ti_jref(void *arg)
646 {
647 	struct ti_jslot *entry = (struct ti_jslot *)arg;
648 	struct ti_softc *sc = entry->ti_sc;
649 
650 	if (sc == NULL)
651 		panic("ti_jref: can't find softc pointer!");
652 
653 	if (&sc->ti_cdata.ti_jslots[entry->ti_slot] != entry)
654 		panic("ti_jref: asked to reference buffer "
655 		    "that we don't manage!");
656 	if (entry->ti_inuse == 0)
657 		panic("ti_jref: buffer already free!");
658 	atomic_add_int(&entry->ti_inuse, 1);
659 }
660 
661 /*
662  * Release a jumbo buffer.
663  */
664 static void
665 ti_jfree(void *arg)
666 {
667 	struct ti_jslot *entry = (struct ti_jslot *)arg;
668 	struct ti_softc *sc = entry->ti_sc;
669 
670 	if (sc == NULL)
671 		panic("ti_jref: can't find softc pointer!");
672 
673 	if (&sc->ti_cdata.ti_jslots[entry->ti_slot] != entry)
674 		panic("ti_jref: asked to reference buffer "
675 		    "that we don't manage!");
676 	if (entry->ti_inuse == 0)
677 		panic("ti_jref: buffer already free!");
678 	lwkt_serialize_enter(&sc->ti_jslot_serializer);
679 	atomic_subtract_int(&entry->ti_inuse, 1);
680 	if (entry->ti_inuse == 0)
681 		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jslot_link);
682 	lwkt_serialize_exit(&sc->ti_jslot_serializer);
683 }
684 
685 
686 /*
687  * Intialize a standard receive ring descriptor.
688  */
689 static int
690 ti_newbuf_std(struct ti_softc *sc, int i, struct mbuf *m)
691 {
692 	struct mbuf *m_new;
693 	struct ti_rx_desc *r;
694 
695 	if (m == NULL) {
696 		m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
697 		if (m_new == NULL)
698 			return (ENOBUFS);
699 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
700 	} else {
701 		m_new = m;
702 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
703 		m_new->m_data = m_new->m_ext.ext_buf;
704 	}
705 
706 
707 	m_adj(m_new, ETHER_ALIGN);
708 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
709 	r = &sc->ti_rdata->ti_rx_std_ring[i];
710 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
711 	r->ti_type = TI_BDTYPE_RECV_BD;
712 	r->ti_flags = 0;
713 	if (sc->arpcom.ac_if.if_hwassist)
714 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
715 	r->ti_len = m_new->m_len;
716 	r->ti_idx = i;
717 
718 	return(0);
719 }
720 
721 /*
722  * Intialize a mini receive ring descriptor. This only applies to
723  * the Tigon 2.
724  */
725 static int
726 ti_newbuf_mini(struct ti_softc *sc, int i, struct mbuf *m)
727 {
728 	struct mbuf *m_new;
729 	struct ti_rx_desc *r;
730 
731 	if (m == NULL) {
732 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
733 		if (m_new == NULL) {
734 			return(ENOBUFS);
735 		}
736 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
737 	} else {
738 		m_new = m;
739 		m_new->m_data = m_new->m_pktdat;
740 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
741 	}
742 
743 	m_adj(m_new, ETHER_ALIGN);
744 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
745 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
746 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
747 	r->ti_type = TI_BDTYPE_RECV_BD;
748 	r->ti_flags = TI_BDFLAG_MINI_RING;
749 	if (sc->arpcom.ac_if.if_hwassist)
750 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
751 	r->ti_len = m_new->m_len;
752 	r->ti_idx = i;
753 
754 	return(0);
755 }
756 
757 /*
758  * Initialize a jumbo receive ring descriptor. This allocates
759  * a jumbo buffer from the pool managed internally by the driver.
760  */
761 static int
762 ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *m)
763 {
764 	struct mbuf *m_new;
765 	struct ti_rx_desc *r;
766 	struct ti_jslot *buf;
767 
768 	if (m == NULL) {
769 		/* Allocate the mbuf. */
770 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
771 		if (m_new == NULL) {
772 			return(ENOBUFS);
773 		}
774 
775 		/* Allocate the jumbo buffer */
776 		buf = ti_jalloc(sc);
777 		if (buf == NULL) {
778 			m_freem(m_new);
779 			if_printf(&sc->arpcom.ac_if, "jumbo allocation failed "
780 				  "-- packet dropped!\n");
781 			return(ENOBUFS);
782 		}
783 
784 		/* Attach the buffer to the mbuf. */
785 		m_new->m_ext.ext_arg = buf;
786 		m_new->m_ext.ext_buf = buf->ti_buf;
787 		m_new->m_ext.ext_free = ti_jfree;
788 		m_new->m_ext.ext_ref = ti_jref;
789 		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
790 
791 		m_new->m_flags |= M_EXT;
792 	} else {
793 		/*
794 	 	 * We're re-using a previously allocated mbuf;
795 		 * be sure to re-init pointers and lengths to
796 		 * default values.
797 		 */
798 		KKASSERT(m->m_flags & M_EXT);
799 		m_new = m;
800 	}
801 	m_new->m_data = m_new->m_ext.ext_buf;
802 	m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
803 
804 	m_adj(m_new, ETHER_ALIGN);
805 	/* Set up the descriptor. */
806 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
807 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
808 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
809 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
810 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
811 	if (sc->arpcom.ac_if.if_hwassist)
812 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
813 	r->ti_len = m_new->m_len;
814 	r->ti_idx = i;
815 
816 	return(0);
817 }
818 
819 /*
820  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
821  * that's 1MB or memory, which is a lot. For now, we fill only the first
822  * 256 ring entries and hope that our CPU is fast enough to keep up with
823  * the NIC.
824  */
825 static int
826 ti_init_rx_ring_std(struct ti_softc *sc)
827 {
828 	int i;
829 	struct ti_cmd_desc cmd;
830 
831 	for (i = 0; i < TI_SSLOTS; i++) {
832 		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
833 			return(ENOBUFS);
834 	};
835 
836 	TI_UPDATE_STDPROD(sc, i - 1);
837 	sc->ti_std = i - 1;
838 
839 	return(0);
840 }
841 
842 static void
843 ti_free_rx_ring_std(struct ti_softc *sc)
844 {
845 	int i;
846 
847 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
848 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
849 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
850 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
851 		}
852 		bzero(&sc->ti_rdata->ti_rx_std_ring[i],
853 		    sizeof(struct ti_rx_desc));
854 	}
855 }
856 
857 static int
858 ti_init_rx_ring_jumbo(struct ti_softc *sc)
859 {
860 	int i;
861 	struct ti_cmd_desc cmd;
862 
863 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
864 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
865 			return(ENOBUFS);
866 	}
867 
868 	TI_UPDATE_JUMBOPROD(sc, i - 1);
869 	sc->ti_jumbo = i - 1;
870 
871 	return(0);
872 }
873 
874 static void
875 ti_free_rx_ring_jumbo(struct ti_softc *sc)
876 {
877 	int i;
878 
879 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
880 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
881 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
882 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
883 		}
884 		bzero(&sc->ti_rdata->ti_rx_jumbo_ring[i],
885 		    sizeof(struct ti_rx_desc));
886 	}
887 }
888 
889 static int
890 ti_init_rx_ring_mini(struct ti_softc *sc)
891 {
892 	int i;
893 
894 	for (i = 0; i < TI_MSLOTS; i++) {
895 		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
896 			return(ENOBUFS);
897 	}
898 
899 	TI_UPDATE_MINIPROD(sc, i - 1);
900 	sc->ti_mini = i - 1;
901 
902 	return(0);
903 }
904 
905 static void
906 ti_free_rx_ring_mini(struct ti_softc *sc)
907 {
908 	int i;
909 
910 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
911 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
912 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
913 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
914 		}
915 		bzero(&sc->ti_rdata->ti_rx_mini_ring[i],
916 		    sizeof(struct ti_rx_desc));
917 	}
918 }
919 
920 static void
921 ti_free_tx_ring(struct ti_softc *sc)
922 {
923 	int i;
924 
925 	if (sc->ti_rdata->ti_tx_ring == NULL)
926 		return;
927 
928 	for (i = 0; i < TI_TX_RING_CNT; i++) {
929 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
930 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
931 			sc->ti_cdata.ti_tx_chain[i] = NULL;
932 		}
933 		bzero(&sc->ti_rdata->ti_tx_ring[i],
934 		    sizeof(struct ti_tx_desc));
935 	}
936 }
937 
938 static int
939 ti_init_tx_ring(struct ti_softc *sc)
940 {
941 	sc->ti_txcnt = 0;
942 	sc->ti_tx_saved_considx = 0;
943 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
944 	return(0);
945 }
946 
947 /*
948  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
949  * but we have to support the old way too so that Tigon 1 cards will
950  * work.
951  */
952 static void
953 ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr)
954 {
955 	struct ti_cmd_desc cmd;
956 	uint16_t *m;
957 	uint32_t ext[2] = {0, 0};
958 
959 	m = (uint16_t *)&addr->octet[0];
960 
961 	switch(sc->ti_hwrev) {
962 	case TI_HWREV_TIGON:
963 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
964 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
965 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
966 		break;
967 	case TI_HWREV_TIGON_II:
968 		ext[0] = htons(m[0]);
969 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
970 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
971 		break;
972 	default:
973 		if_printf(&sc->arpcom.ac_if, "unknown hwrev\n");
974 		break;
975 	}
976 }
977 
978 static void
979 ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr)
980 {
981 	struct ti_cmd_desc cmd;
982 	uint16_t *m;
983 	uint32_t ext[2] = {0, 0};
984 
985 	m = (uint16_t *)&addr->octet[0];
986 
987 	switch(sc->ti_hwrev) {
988 	case TI_HWREV_TIGON:
989 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
990 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
991 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
992 		break;
993 	case TI_HWREV_TIGON_II:
994 		ext[0] = htons(m[0]);
995 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
996 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
997 		break;
998 	default:
999 		if_printf(&sc->arpcom.ac_if, "unknown hwrev\n");
1000 		break;
1001 	}
1002 }
1003 
1004 /*
1005  * Configure the Tigon's multicast address filter.
1006  *
1007  * The actual multicast table management is a bit of a pain, thanks to
1008  * slight brain damage on the part of both Alteon and us. With our
1009  * multicast code, we are only alerted when the multicast address table
1010  * changes and at that point we only have the current list of addresses:
1011  * we only know the current state, not the previous state, so we don't
1012  * actually know what addresses were removed or added. The firmware has
1013  * state, but we can't get our grubby mits on it, and there is no 'delete
1014  * all multicast addresses' command. Hence, we have to maintain our own
1015  * state so we know what addresses have been programmed into the NIC at
1016  * any given time.
1017  */
1018 static void
1019 ti_setmulti(struct ti_softc *sc)
1020 {
1021 	struct ifnet *ifp = &sc->arpcom.ac_if;
1022 	struct ifmultiaddr *ifma;
1023 	struct ti_cmd_desc cmd;
1024 	struct ti_mc_entry *mc;
1025 	uint32_t intrs;
1026 
1027 	if (ifp->if_flags & IFF_ALLMULTI) {
1028 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1029 		return;
1030 	}
1031 
1032 	TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1033 
1034 	/* Disable interrupts. */
1035 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1036 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1037 
1038 	/* First, zot all the existing filters. */
1039 	while (sc->ti_mc_listhead.slh_first != NULL) {
1040 		mc = sc->ti_mc_listhead.slh_first;
1041 		ti_del_mcast(sc, &mc->mc_addr);
1042 		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1043 		kfree(mc, M_DEVBUF);
1044 	}
1045 
1046 	/* Now program new ones. */
1047 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1048 		if (ifma->ifma_addr->sa_family != AF_LINK)
1049 			continue;
1050 		mc = kmalloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_INTWAIT);
1051 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1052 		    &mc->mc_addr, ETHER_ADDR_LEN);
1053 		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1054 		ti_add_mcast(sc, &mc->mc_addr);
1055 	}
1056 
1057 	/* Re-enable interrupts. */
1058 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1059 }
1060 
1061 /*
1062  * Check to see if the BIOS has configured us for a 64 bit slot when
1063  * we aren't actually in one. If we detect this condition, we can work
1064  * around it on the Tigon 2 by setting a bit in the PCI state register,
1065  * but for the Tigon 1 we must give up and abort the interface attach.
1066  */
1067 static int
1068 ti_64bitslot_war(struct ti_softc *sc)
1069 {
1070 	if ((CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS) == 0) {
1071 		CSR_WRITE_4(sc, 0x600, 0);
1072 		CSR_WRITE_4(sc, 0x604, 0);
1073 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1074 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1075 			if (sc->ti_hwrev == TI_HWREV_TIGON)
1076 				return(EINVAL);
1077 			TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_32BIT_BUS);
1078 			return(0);
1079 		}
1080 	}
1081 
1082 	return(0);
1083 }
1084 
1085 /*
1086  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1087  * self-test results.
1088  */
1089 static int
1090 ti_chipinit(struct ti_softc *sc)
1091 {
1092 	struct ifnet *ifp = &sc->arpcom.ac_if;
1093 	uint32_t cacheline;
1094 	uint32_t pci_writemax = 0;
1095 
1096 	/* Initialize link to down state. */
1097 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1098 
1099 	if (ifp->if_capenable & IFCAP_HWCSUM)
1100 		ifp->if_hwassist = TI_CSUM_FEATURES;
1101 	else
1102 		ifp->if_hwassist = 0;
1103 
1104 	/* Set endianness before we access any non-PCI registers. */
1105 #if BYTE_ORDER == BIG_ENDIAN
1106 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1107 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1108 #else
1109 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1110 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1111 #endif
1112 
1113 	/* Check the ROM failed bit to see if self-tests passed. */
1114 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1115 		if_printf(ifp, "board self-diagnostics failed!\n");
1116 		return(ENODEV);
1117 	}
1118 
1119 	/* Halt the CPU. */
1120 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1121 
1122 	/* Figure out the hardware revision. */
1123 	switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1124 	case TI_REV_TIGON_I:
1125 		sc->ti_hwrev = TI_HWREV_TIGON;
1126 		break;
1127 	case TI_REV_TIGON_II:
1128 		sc->ti_hwrev = TI_HWREV_TIGON_II;
1129 		break;
1130 	default:
1131 		if_printf(ifp, "unsupported chip revision\n");
1132 		return(ENODEV);
1133 	}
1134 
1135 	/* Do special setup for Tigon 2. */
1136 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1137 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1138 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1139 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1140 	}
1141 
1142 	/* Set up the PCI state register. */
1143 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1144 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1145 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1146 	}
1147 
1148 	/* Clear the read/write max DMA parameters. */
1149 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1150 	    TI_PCISTATE_READ_MAXDMA));
1151 
1152 	/* Get cache line size. */
1153 	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1154 
1155 	/*
1156 	 * If the system has set enabled the PCI memory write
1157 	 * and invalidate command in the command register, set
1158 	 * the write max parameter accordingly. This is necessary
1159 	 * to use MWI with the Tigon 2.
1160 	 */
1161 	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1162 		switch(cacheline) {
1163 		case 1:
1164 		case 4:
1165 		case 8:
1166 		case 16:
1167 		case 32:
1168 		case 64:
1169 			break;
1170 		default:
1171 		/* Disable PCI memory write and invalidate. */
1172 			if (bootverbose) {
1173 				if_printf(ifp, "cache line size %d not "
1174 					  "supported; disabling PCI MWI\n",
1175 					  cacheline);
1176 			}
1177 			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1178 			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1179 			break;
1180 		}
1181 	}
1182 
1183 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1184 
1185 	/* This sets the min dma param all the way up (0xff). */
1186 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1187 
1188 	/* Configure DMA variables. */
1189 #if BYTE_ORDER == BIG_ENDIAN
1190 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1191 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1192 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1193 	    TI_OPMODE_DONT_FRAG_JUMBO);
1194 #else
1195 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1196 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1197 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1198 #endif
1199 
1200 	/*
1201 	 * Only allow 1 DMA channel to be active at a time.
1202 	 * I don't think this is a good idea, but without it
1203 	 * the firmware racks up lots of nicDmaReadRingFull
1204 	 * errors.  This is not compatible with hardware checksums.
1205 	 */
1206 	if (ifp->if_hwassist == 0)
1207 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1208 
1209 	/* Recommended settings from Tigon manual. */
1210 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1211 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1212 
1213 	if (ti_64bitslot_war(sc)) {
1214 		if_printf(ifp, "bios thinks we're in a 64 bit slot, "
1215 			  "but we aren't");
1216 		return(EINVAL);
1217 	}
1218 
1219 	return(0);
1220 }
1221 
1222 /*
1223  * Initialize the general information block and firmware, and
1224  * start the CPU(s) running.
1225  */
1226 static int
1227 ti_gibinit(struct ti_softc *sc)
1228 {
1229 	struct ifnet *ifp = &sc->arpcom.ac_if;
1230 	struct ti_rcb *rcb;
1231 	int i;
1232 
1233 	/* Disable interrupts for now. */
1234 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1235 
1236 	/* Tell the chip where to find the general information block. */
1237 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1238 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info));
1239 
1240 	/* Load the firmware into SRAM. */
1241 	ti_loadfw(sc);
1242 
1243 	/* Set up the contents of the general info and ring control blocks. */
1244 
1245 	/* Set up the event ring and producer pointer. */
1246 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1247 
1248 	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring);
1249 	rcb->ti_flags = 0;
1250 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1251 	    vtophys(&sc->ti_ev_prodidx);
1252 	sc->ti_ev_prodidx.ti_idx = 0;
1253 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1254 	sc->ti_ev_saved_considx = 0;
1255 
1256 	/* Set up the command ring and producer mailbox. */
1257 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1258 
1259 	sc->ti_rdata->ti_cmd_ring =
1260 	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1261 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1262 	rcb->ti_flags = 0;
1263 	rcb->ti_max_len = 0;
1264 	for (i = 0; i < TI_CMD_RING_CNT; i++)
1265 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1266 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1267 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1268 	sc->ti_cmd_saved_prodidx = 0;
1269 
1270 	/*
1271 	 * Assign the address of the stats refresh buffer.
1272 	 * We re-use the current stats buffer for this to
1273 	 * conserve memory.
1274 	 */
1275 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1276 	    vtophys(&sc->ti_rdata->ti_info.ti_stats);
1277 
1278 	/* Set up the standard receive ring. */
1279 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1280 	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring);
1281 	rcb->ti_max_len = TI_FRAMELEN;
1282 	rcb->ti_flags = 0;
1283 	if (ifp->if_hwassist)
1284 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1285 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1286 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1287 
1288 	/* Set up the jumbo receive ring. */
1289 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1290 	TI_HOSTADDR(rcb->ti_hostaddr) =
1291 	    vtophys(&sc->ti_rdata->ti_rx_jumbo_ring);
1292 	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1293 	rcb->ti_flags = 0;
1294 	if (ifp->if_hwassist)
1295 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1296 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1297 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1298 
1299 	/*
1300 	 * Set up the mini ring. Only activated on the
1301 	 * Tigon 2 but the slot in the config block is
1302 	 * still there on the Tigon 1.
1303 	 */
1304 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1305 	TI_HOSTADDR(rcb->ti_hostaddr) =
1306 	    vtophys(&sc->ti_rdata->ti_rx_mini_ring);
1307 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1308 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1309 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1310 	else
1311 		rcb->ti_flags = 0;
1312 	if (ifp->if_hwassist)
1313 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1314 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1315 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1316 
1317 	/*
1318 	 * Set up the receive return ring.
1319 	 */
1320 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1321 	TI_HOSTADDR(rcb->ti_hostaddr) =
1322 	    vtophys(&sc->ti_rdata->ti_rx_return_ring);
1323 	rcb->ti_flags = 0;
1324 	rcb->ti_max_len = TI_RETURN_RING_CNT;
1325 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1326 	    vtophys(&sc->ti_return_prodidx);
1327 
1328 	/*
1329 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1330 	 * of putting the transmit ring in the host's address space and
1331 	 * letting the chip DMA it instead of leaving the ring in the NIC's
1332 	 * memory and accessing it through the shared memory region. We
1333 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1334 	 * so we have to revert to the shared memory scheme if we detect
1335 	 * a Tigon 1 chip.
1336 	 */
1337 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1338 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1339 		sc->ti_rdata->ti_tx_ring_nic =
1340 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1341 	}
1342 	bzero(sc->ti_rdata->ti_tx_ring,
1343 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1344 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1345 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1346 		rcb->ti_flags = 0;
1347 	else
1348 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1349 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1350 	if (ifp->if_hwassist)
1351 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1352 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1353 	rcb->ti_max_len = TI_TX_RING_CNT;
1354 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1355 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1356 	else
1357 		TI_HOSTADDR(rcb->ti_hostaddr) =
1358 		    vtophys(&sc->ti_rdata->ti_tx_ring);
1359 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1360 	    vtophys(&sc->ti_tx_considx);
1361 
1362 	/* Set up tuneables */
1363 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1364 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1365 		    (sc->ti_rx_coal_ticks / 10));
1366 	else
1367 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1368 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1369 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1370 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1371 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1372 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1373 
1374 	/* Turn interrupts on. */
1375 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1376 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1377 
1378 	/* Start CPU. */
1379 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1380 
1381 	return(0);
1382 }
1383 
1384 /*
1385  * Probe for a Tigon chip. Check the PCI vendor and device IDs
1386  * against our list and return its name if we find a match.
1387  */
1388 static int
1389 ti_probe(device_t dev)
1390 {
1391 	struct ti_type *t;
1392 	uint16_t vendor, product;
1393 
1394 	vendor = pci_get_vendor(dev);
1395 	product = pci_get_device(dev);
1396 
1397 	for (t = ti_devs; t->ti_name != NULL; t++) {
1398 		if (vendor == t->ti_vid && product == t->ti_did) {
1399 			device_set_desc(dev, t->ti_name);
1400 			return(0);
1401 		}
1402 	}
1403 
1404 	return(ENXIO);
1405 }
1406 
1407 static int
1408 ti_attach(device_t dev)
1409 {
1410 	struct ti_softc *sc;
1411 	struct ifnet *ifp;
1412 	int error = 0, rid;
1413 	uint8_t eaddr[ETHER_ADDR_LEN];
1414 
1415 	sc = device_get_softc(dev);
1416 	ifp = &sc->arpcom.ac_if;
1417 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1418 	ifp->if_capabilities = IFCAP_HWCSUM |
1419 	    IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
1420 	ifp->if_capenable = ifp->if_capabilities;
1421 
1422 	pci_enable_busmaster(dev);
1423 
1424 	/*
1425 	 * Initialize media before any possible error may occur,
1426 	 * so we can destroy it unconditionally, if an error occurs later on.
1427 	 */
1428 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1429 
1430 	rid = TI_PCI_LOMEM;
1431 	sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1432 	    RF_ACTIVE);
1433 
1434 	if (sc->ti_res == NULL) {
1435 		device_printf(dev, "couldn't map memory\n");
1436 		error = ENXIO;
1437 		goto fail;
1438 	}
1439 
1440 	sc->ti_btag = rman_get_bustag(sc->ti_res);
1441 	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
1442 	sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
1443 
1444 	/* Allocate interrupt */
1445 	rid = 0;
1446 	sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1447 	    RF_SHAREABLE | RF_ACTIVE);
1448 	if (sc->ti_irq == NULL) {
1449 		device_printf(dev, "couldn't map interrupt\n");
1450 		error = ENXIO;
1451 		goto fail;
1452 	}
1453 
1454 	if (ti_chipinit(sc)) {
1455 		device_printf(dev, "chip initialization failed\n");
1456 		error = ENXIO;
1457 		goto fail;
1458 	}
1459 
1460 	/* Zero out the NIC's on-board SRAM. */
1461 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
1462 
1463 	/* Init again -- zeroing memory may have clobbered some registers. */
1464 	if (ti_chipinit(sc)) {
1465 		device_printf(dev, "chip initialization failed\n");
1466 		error = ENXIO;
1467 		goto fail;
1468 	}
1469 
1470 	/*
1471 	 * Get station address from the EEPROM. Note: the manual states
1472 	 * that the MAC address is at offset 0x8c, however the data is
1473 	 * stored as two longwords (since that's how it's loaded into
1474 	 * the NIC). This means the MAC address is actually preceeded
1475 	 * by two zero bytes. We need to skip over those.
1476 	 */
1477 	if (ti_read_eeprom(sc, eaddr, TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1478 		device_printf(dev, "failed to read station address\n");
1479 		error = ENXIO;
1480 		goto fail;
1481 	}
1482 
1483 	/* Allocate the general information block and ring buffers. */
1484 	sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF,
1485 	    M_WAITOK | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
1486 
1487 	if (sc->ti_rdata == NULL) {
1488 		device_printf(dev, "no memory for list buffers!\n");
1489 		error = ENXIO;
1490 		goto fail;
1491 	}
1492 
1493 	/* Try to allocate memory for jumbo buffers. */
1494 	if (ti_alloc_jumbo_mem(sc)) {
1495 		device_printf(dev, "jumbo buffer allocation failed\n");
1496 		error = ENXIO;
1497 		goto fail;
1498 	}
1499 
1500 	/*
1501 	 * We really need a better way to tell a 1000baseT card
1502 	 * from a 1000baseSX one, since in theory there could be
1503 	 * OEMed 1000baseT cards from lame vendors who aren't
1504 	 * clever enough to change the PCI ID. For the moment
1505 	 * though, the AceNIC is the only copper card available.
1506 	 */
1507 	if (pci_get_vendor(dev) == ALT_VENDORID &&
1508 	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
1509 		sc->ti_copper = 1;
1510 	/* Ok, it's not the only copper card available. */
1511 	if (pci_get_vendor(dev) == NG_VENDORID &&
1512 	    pci_get_device(dev) == NG_DEVICEID_GA620T)
1513 		sc->ti_copper = 1;
1514 
1515 	/* Set default tuneable values. */
1516 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1517 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1518 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1519 	sc->ti_rx_max_coal_bds = 64;
1520 	sc->ti_tx_max_coal_bds = 128;
1521 	sc->ti_tx_buf_ratio = 21;
1522 
1523 	/* Set up ifnet structure */
1524 	ifp->if_softc = sc;
1525 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1526 	ifp->if_ioctl = ti_ioctl;
1527 	ifp->if_start = ti_start;
1528 	ifp->if_watchdog = ti_watchdog;
1529 	ifp->if_init = ti_init;
1530 	ifp->if_mtu = ETHERMTU;
1531 	ifq_set_maxlen(&ifp->if_snd, TI_TX_RING_CNT - 1);
1532 	ifq_set_ready(&ifp->if_snd);
1533 
1534 	/* Set up ifmedia support. */
1535 	if (sc->ti_copper) {
1536 		/*
1537 		 * Copper cards allow manual 10/100 mode selection,
1538 		 * but not manual 1000baseT mode selection. Why?
1539 		 * Becuase currently there's no way to specify the
1540 		 * master/slave setting through the firmware interface,
1541 		 * so Alteon decided to just bag it and handle it
1542 		 * via autonegotiation.
1543 		 */
1544 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1545 		ifmedia_add(&sc->ifmedia,
1546 		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1547 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1548 		ifmedia_add(&sc->ifmedia,
1549 		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1550 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T, 0, NULL);
1551 		ifmedia_add(&sc->ifmedia,
1552 		    IFM_ETHER|IFM_1000_T | IFM_FDX, 0, NULL);
1553 	} else {
1554 		/* Fiber cards don't support 10/100 modes. */
1555 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1556 		ifmedia_add(&sc->ifmedia,
1557 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1558 	}
1559 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1560 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1561 
1562 	/*
1563 	 * Call MI attach routine.
1564 	 */
1565 	ether_ifattach(ifp, eaddr, NULL);
1566 
1567 	error = bus_setup_intr(dev, sc->ti_irq, INTR_NETSAFE,
1568 			       ti_intr, sc, &sc->ti_intrhand,
1569 			       ifp->if_serializer);
1570 	if (error) {
1571 		device_printf(dev, "couldn't set up irq\n");
1572 		ether_ifdetach(ifp);
1573 		goto fail;
1574 	}
1575 
1576 	ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->ti_irq));
1577 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
1578 
1579 	return 0;
1580 fail:
1581 	ti_detach(dev);
1582 	return(error);
1583 }
1584 
1585 static int
1586 ti_detach(device_t dev)
1587 {
1588 	struct ti_softc *sc = device_get_softc(dev);
1589 	struct ifnet *ifp = &sc->arpcom.ac_if;
1590 
1591 	if (device_is_attached(dev)) {
1592 		lwkt_serialize_enter(ifp->if_serializer);
1593 		ti_stop(sc);
1594 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1595 		lwkt_serialize_exit(ifp->if_serializer);
1596 
1597 		ether_ifdetach(ifp);
1598 	}
1599 
1600 	if (sc->ti_irq != NULL)
1601 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1602 	if (sc->ti_res != NULL) {
1603 		bus_release_resource(dev, SYS_RES_MEMORY,
1604 				     TI_PCI_LOMEM, sc->ti_res);
1605 	}
1606 	if (sc->ti_cdata.ti_jumbo_buf != NULL)
1607 		contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF);
1608 	if (sc->ti_rdata != NULL)
1609 		contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF);
1610 	ifmedia_removeall(&sc->ifmedia);
1611 
1612 
1613 	return(0);
1614 }
1615 
1616 /*
1617  * Frame reception handling. This is called if there's a frame
1618  * on the receive return list.
1619  *
1620  * Note: we have to be able to handle three possibilities here:
1621  * 1) the frame is from the mini receive ring (can only happen)
1622  *    on Tigon 2 boards)
1623  * 2) the frame is from the jumbo recieve ring
1624  * 3) the frame is from the standard receive ring
1625  */
1626 static void
1627 ti_rxeof(struct ti_softc *sc)
1628 {
1629 	struct ifnet *ifp = &sc->arpcom.ac_if;
1630 	struct ti_cmd_desc cmd;
1631 
1632 	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1633 		struct ti_rx_desc *cur_rx;
1634 		uint32_t rxidx;
1635 		struct mbuf *m;
1636 		uint16_t vlan_tag = 0;
1637 		int have_tag = 0;
1638 
1639 		cur_rx =
1640 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1641 		rxidx = cur_rx->ti_idx;
1642 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1643 
1644 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1645 			have_tag = 1;
1646 			vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
1647 		}
1648 
1649 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1650 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1651 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1652 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1653 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1654 				ifp->if_ierrors++;
1655 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1656 				continue;
1657 			}
1658 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
1659 				ifp->if_ierrors++;
1660 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1661 				continue;
1662 			}
1663 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1664 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1665 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1666 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1667 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1668 				ifp->if_ierrors++;
1669 				ti_newbuf_mini(sc, sc->ti_mini, m);
1670 				continue;
1671 			}
1672 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
1673 				ifp->if_ierrors++;
1674 				ti_newbuf_mini(sc, sc->ti_mini, m);
1675 				continue;
1676 			}
1677 		} else {
1678 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1679 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1680 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1681 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1682 				ifp->if_ierrors++;
1683 				ti_newbuf_std(sc, sc->ti_std, m);
1684 				continue;
1685 			}
1686 			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
1687 				ifp->if_ierrors++;
1688 				ti_newbuf_std(sc, sc->ti_std, m);
1689 				continue;
1690 			}
1691 		}
1692 
1693 		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1694 		ifp->if_ipackets++;
1695 		m->m_pkthdr.rcvif = ifp;
1696 
1697 		if (ifp->if_hwassist) {
1698 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
1699 			    CSUM_DATA_VALID;
1700 			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
1701 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1702 			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
1703 		}
1704 
1705 		if (have_tag) {
1706 			m->m_flags |= M_VLANTAG;
1707 			m->m_pkthdr.ether_vlantag = vlan_tag;
1708 		}
1709 		ifp->if_input(ifp, m);
1710 	}
1711 
1712 	/* Only necessary on the Tigon 1. */
1713 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1714 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
1715 		    sc->ti_rx_saved_considx);
1716 
1717 	TI_UPDATE_STDPROD(sc, sc->ti_std);
1718 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
1719 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
1720 }
1721 
1722 static void
1723 ti_txeof(struct ti_softc *sc)
1724 {
1725 	struct ifnet *ifp = &sc->arpcom.ac_if;
1726 	struct ti_tx_desc *cur_tx = NULL;
1727 
1728 	/*
1729 	 * Go through our tx ring and free mbufs for those
1730 	 * frames that have been sent.
1731 	 */
1732 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
1733 		uint32_t idx = 0;
1734 
1735 		idx = sc->ti_tx_saved_considx;
1736 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
1737 			if (idx > 383)
1738 				CSR_WRITE_4(sc, TI_WINBASE,
1739 				    TI_TX_RING_BASE + 6144);
1740 			else if (idx > 255)
1741 				CSR_WRITE_4(sc, TI_WINBASE,
1742 				    TI_TX_RING_BASE + 4096);
1743 			else if (idx > 127)
1744 				CSR_WRITE_4(sc, TI_WINBASE,
1745 				    TI_TX_RING_BASE + 2048);
1746 			else
1747 				CSR_WRITE_4(sc, TI_WINBASE,
1748 				    TI_TX_RING_BASE);
1749 			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
1750 		} else
1751 			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
1752 		if (cur_tx->ti_flags & TI_BDFLAG_END)
1753 			ifp->if_opackets++;
1754 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
1755 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
1756 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
1757 		}
1758 		sc->ti_txcnt--;
1759 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
1760 		ifp->if_timer = 0;
1761 	}
1762 
1763 	if (cur_tx != NULL)
1764 		ifp->if_flags &= ~IFF_OACTIVE;
1765 }
1766 
1767 static void
1768 ti_intr(void *xsc)
1769 {
1770 	struct ti_softc *sc = xsc;
1771 	struct ifnet *ifp = &sc->arpcom.ac_if;
1772 
1773 #ifdef notdef
1774 	/* Avoid this for now -- checking this register is expensive. */
1775 	/* Make sure this is really our interrupt. */
1776 	if ((CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE) == 0)
1777 		return;
1778 #endif
1779 
1780 	/* Ack interrupt and stop others from occuring. */
1781 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1782 
1783 	if (ifp->if_flags & IFF_RUNNING) {
1784 		/* Check RX return ring producer/consumer */
1785 		ti_rxeof(sc);
1786 
1787 		/* Check TX ring producer/consumer */
1788 		ti_txeof(sc);
1789 	}
1790 
1791 	ti_handle_events(sc);
1792 
1793 	/* Re-enable interrupts. */
1794 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1795 
1796 	if ((ifp->if_flags & IFF_RUNNING) && !ifq_is_empty(&ifp->if_snd))
1797 		if_devstart(ifp);
1798 }
1799 
1800 static void
1801 ti_stats_update(struct ti_softc *sc)
1802 {
1803 	struct ifnet *ifp = &sc->arpcom.ac_if;
1804 
1805 	ifp->if_collisions +=
1806 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
1807 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
1808 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
1809 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
1810 	   ifp->if_collisions;
1811 }
1812 
1813 /*
1814  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
1815  * pointers to descriptors.
1816  */
1817 static int
1818 ti_encap(struct ti_softc *sc, struct mbuf *m_head, uint32_t *txidx)
1819 {
1820 	struct ti_tx_desc *f = NULL;
1821 	struct mbuf *m;
1822 	uint32_t cnt = 0, cur, frag;
1823 	uint16_t csum_flags = 0, vlan_tag = 0, vlan_flag = 0;
1824 
1825 	if (m_head->m_flags & M_VLANTAG) {
1826 		vlan_tag = m_head->m_pkthdr.ether_vlantag;
1827 		vlan_flag = TI_BDFLAG_VLAN_TAG;
1828 	}
1829 
1830 	m = m_head;
1831 	cur = frag = *txidx;
1832 
1833 	if (m_head->m_pkthdr.csum_flags) {
1834 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1835 			csum_flags |= TI_BDFLAG_IP_CKSUM;
1836 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
1837 			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
1838 		if (m_head->m_flags & M_LASTFRAG)
1839 			csum_flags |= TI_BDFLAG_IP_FRAG_END;
1840 		else if (m_head->m_flags & M_FRAG)
1841 			csum_flags |= TI_BDFLAG_IP_FRAG;
1842 	}
1843 	/*
1844  	 * Start packing the mbufs in this chain into
1845 	 * the fragment pointers. Stop when we run out
1846  	 * of fragments or hit the end of the mbuf chain.
1847 	 */
1848 	for (m = m_head; m != NULL; m = m->m_next) {
1849 		if (m->m_len != 0) {
1850 			if (sc->ti_hwrev == TI_HWREV_TIGON) {
1851 				if (frag > 383)
1852 					CSR_WRITE_4(sc, TI_WINBASE,
1853 					    TI_TX_RING_BASE + 6144);
1854 				else if (frag > 255)
1855 					CSR_WRITE_4(sc, TI_WINBASE,
1856 					    TI_TX_RING_BASE + 4096);
1857 				else if (frag > 127)
1858 					CSR_WRITE_4(sc, TI_WINBASE,
1859 					    TI_TX_RING_BASE + 2048);
1860 				else
1861 					CSR_WRITE_4(sc, TI_WINBASE,
1862 					    TI_TX_RING_BASE);
1863 				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
1864 			} else
1865 				f = &sc->ti_rdata->ti_tx_ring[frag];
1866 			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
1867 				break;
1868 			TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
1869 			f->ti_len = m->m_len;
1870 			f->ti_flags = csum_flags | vlan_flag;
1871 			f->ti_vlan_tag = vlan_tag & 0xfff;
1872 
1873 			/*
1874 			 * Sanity check: avoid coming within 16 descriptors
1875 			 * of the end of the ring.
1876 			 */
1877 			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
1878 				return(ENOBUFS);
1879 			cur = frag;
1880 			TI_INC(frag, TI_TX_RING_CNT);
1881 			cnt++;
1882 		}
1883 	}
1884 
1885 	if (m != NULL)
1886 		return(ENOBUFS);
1887 
1888 	if (frag == sc->ti_tx_saved_considx)
1889 		return(ENOBUFS);
1890 
1891 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1892 		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
1893 		    TI_BDFLAG_END;
1894 	else
1895 		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
1896 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
1897 	sc->ti_txcnt += cnt;
1898 
1899 	*txidx = frag;
1900 
1901 	return(0);
1902 }
1903 
1904 /*
1905  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1906  * to the mbuf data regions directly in the transmit descriptors.
1907  */
1908 static void
1909 ti_start(struct ifnet *ifp)
1910 {
1911 	struct ti_softc *sc = ifp->if_softc;
1912 	struct mbuf *m_head = NULL;
1913 	uint32_t prodidx = 0;
1914 	int need_trans;
1915 
1916 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
1917 
1918 	need_trans = 0;
1919 	while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
1920 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1921 		if (m_head == NULL)
1922 			break;
1923 
1924 		/*
1925 		 * XXX
1926 		 * safety overkill.  If this is a fragmented packet chain
1927 		 * with delayed TCP/UDP checksums, then only encapsulate
1928 		 * it if we have enough descriptors to handle the entire
1929 		 * chain at once.
1930 		 * (paranoia -- may not actually be needed)
1931 		 */
1932 		if (m_head->m_flags & M_FIRSTFRAG &&
1933 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
1934 			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
1935 			    m_head->m_pkthdr.csum_data + 16) {
1936 				ifp->if_flags |= IFF_OACTIVE;
1937 				ifq_prepend(&ifp->if_snd, m_head);
1938 				break;
1939 			}
1940 		}
1941 
1942 		/*
1943 		 * Pack the data into the transmit ring. If we
1944 		 * don't have room, set the OACTIVE flag and wait
1945 		 * for the NIC to drain the ring.
1946 		 */
1947 		if (ti_encap(sc, m_head, &prodidx)) {
1948 			ifp->if_flags |= IFF_OACTIVE;
1949 			ifq_prepend(&ifp->if_snd, m_head);
1950 			break;
1951 		}
1952 		need_trans = 1;
1953 
1954 		ETHER_BPF_MTAP(ifp, m_head);
1955 	}
1956 
1957 	if (!need_trans)
1958 		return;
1959 
1960 	/* Transmit */
1961 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
1962 
1963 	/*
1964 	 * Set a timeout in case the chip goes out to lunch.
1965 	 */
1966 	ifp->if_timer = 5;
1967 }
1968 
1969 static void
1970 ti_init(void *xsc)
1971 {
1972 	struct ti_softc *sc = xsc;
1973 
1974 	/* Cancel pending I/O and flush buffers. */
1975 	ti_stop(sc);
1976 
1977 	/* Init the gen info block, ring control blocks and firmware. */
1978 	if (ti_gibinit(sc)) {
1979 		if_printf(&sc->arpcom.ac_if, "initialization failure\n");
1980 		return;
1981 	}
1982 }
1983 
1984 static void
1985 ti_init2(struct ti_softc *sc)
1986 {
1987 	struct ifnet *ifp = &sc->arpcom.ac_if;
1988 	struct ti_cmd_desc cmd;
1989 	uint16_t *m;
1990 	struct ifmedia *ifm;
1991 	int tmp;
1992 
1993 	/* Specify MTU and interface index. */
1994 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, ifp->if_dunit);
1995 	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
1996 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
1997 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
1998 
1999 	/* Load our MAC address. */
2000 	m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
2001 	CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2002 	CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2003 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2004 
2005 	/* Enable or disable promiscuous mode as needed. */
2006 	if (ifp->if_flags & IFF_PROMISC)
2007 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2008 	else
2009 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2010 
2011 	/* Program multicast filter. */
2012 	ti_setmulti(sc);
2013 
2014 	/*
2015 	 * If this is a Tigon 1, we should tell the
2016 	 * firmware to use software packet filtering.
2017 	 */
2018 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2019 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2020 
2021 	/* Init RX ring. */
2022 	ti_init_rx_ring_std(sc);
2023 
2024 	/* Init jumbo RX ring. */
2025 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2026 		ti_init_rx_ring_jumbo(sc);
2027 
2028 	/*
2029 	 * If this is a Tigon 2, we can also configure the
2030 	 * mini ring.
2031 	 */
2032 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2033 		ti_init_rx_ring_mini(sc);
2034 
2035 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2036 	sc->ti_rx_saved_considx = 0;
2037 
2038 	/* Init TX ring. */
2039 	ti_init_tx_ring(sc);
2040 
2041 	/* Tell firmware we're alive. */
2042 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2043 
2044 	/* Enable host interrupts. */
2045 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2046 
2047 	ifp->if_flags |= IFF_RUNNING;
2048 	ifp->if_flags &= ~IFF_OACTIVE;
2049 
2050 	/*
2051 	 * Make sure to set media properly. We have to do this
2052 	 * here since we have to issue commands in order to set
2053 	 * the link negotiation and we can't issue commands until
2054 	 * the firmware is running.
2055 	 */
2056 	ifm = &sc->ifmedia;
2057 	tmp = ifm->ifm_media;
2058 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2059 	ti_ifmedia_upd(ifp);
2060 	ifm->ifm_media = tmp;
2061 }
2062 
2063 /*
2064  * Set media options.
2065  */
2066 static int
2067 ti_ifmedia_upd(struct ifnet *ifp)
2068 {
2069 	struct ti_softc *sc = ifp->if_softc;
2070 	struct ifmedia *ifm = &sc->ifmedia;
2071 	struct ti_cmd_desc cmd;
2072 
2073 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2074 		return(EINVAL);
2075 
2076 	switch(IFM_SUBTYPE(ifm->ifm_media)) {
2077 	case IFM_AUTO:
2078 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF | TI_GLNK_1000MB |
2079 		    TI_GLNK_FULL_DUPLEX | TI_GLNK_RX_FLOWCTL_Y |
2080 		    TI_GLNK_AUTONEGENB | TI_GLNK_ENB);
2081 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB | TI_LNK_10MB |
2082 		    TI_LNK_FULL_DUPLEX | TI_LNK_HALF_DUPLEX |
2083 		    TI_LNK_AUTONEGENB | TI_LNK_ENB);
2084 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2085 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2086 		break;
2087 	case IFM_1000_SX:
2088 	case IFM_1000_T:
2089 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB |
2090 		    TI_GLNK_RX_FLOWCTL_Y | TI_GLNK_ENB);
2091 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2092 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
2093 			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
2094 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2095 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2096 		break;
2097 	case IFM_100_FX:
2098 	case IFM_10_FL:
2099 	case IFM_100_TX:
2100 	case IFM_10_T:
2101 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2102 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB | TI_LNK_PREF);
2103 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2104 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX)
2105 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2106 		else
2107 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2108 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
2109 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2110 		else
2111 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2112 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2113 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2114 		break;
2115 	}
2116 
2117 	return(0);
2118 }
2119 
2120 /*
2121  * Report current media status.
2122  */
2123 static void
2124 ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2125 {
2126 	struct ti_softc *sc = ifp->if_softc;
2127 	uint32_t media = 0;
2128 
2129 	ifmr->ifm_status = IFM_AVALID;
2130 	ifmr->ifm_active = IFM_ETHER;
2131 
2132 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2133 		return;
2134 
2135 	ifmr->ifm_status |= IFM_ACTIVE;
2136 
2137 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2138 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2139 		if (sc->ti_copper)
2140 			ifmr->ifm_active |= IFM_1000_T;
2141 		else
2142 			ifmr->ifm_active |= IFM_1000_SX;
2143 		if (media & TI_GLNK_FULL_DUPLEX)
2144 			ifmr->ifm_active |= IFM_FDX;
2145 		else
2146 			ifmr->ifm_active |= IFM_HDX;
2147 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2148 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2149 		if (sc->ti_copper) {
2150 			if (media & TI_LNK_100MB)
2151 				ifmr->ifm_active |= IFM_100_TX;
2152 			if (media & TI_LNK_10MB)
2153 				ifmr->ifm_active |= IFM_10_T;
2154 		} else {
2155 			if (media & TI_LNK_100MB)
2156 				ifmr->ifm_active |= IFM_100_FX;
2157 			if (media & TI_LNK_10MB)
2158 				ifmr->ifm_active |= IFM_10_FL;
2159 		}
2160 		if (media & TI_LNK_FULL_DUPLEX)
2161 			ifmr->ifm_active |= IFM_FDX;
2162 		if (media & TI_LNK_HALF_DUPLEX)
2163 			ifmr->ifm_active |= IFM_HDX;
2164 	}
2165 }
2166 
2167 static int
2168 ti_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2169 {
2170 	struct ti_softc *sc = ifp->if_softc;
2171 	struct ifreq *ifr = (struct ifreq *) data;
2172 	struct ti_cmd_desc cmd;
2173 	int error = 0, mask;
2174 
2175 	switch(command) {
2176 	case SIOCSIFMTU:
2177 		if (ifr->ifr_mtu > TI_JUMBO_MTU)
2178 			error = EINVAL;
2179 		else {
2180 			ifp->if_mtu = ifr->ifr_mtu;
2181 			ti_init(sc);
2182 		}
2183 		break;
2184 	case SIOCSIFFLAGS:
2185 		if (ifp->if_flags & IFF_UP) {
2186 			/*
2187 			 * If only the state of the PROMISC flag changed,
2188 			 * then just use the 'set promisc mode' command
2189 			 * instead of reinitializing the entire NIC. Doing
2190 			 * a full re-init means reloading the firmware and
2191 			 * waiting for it to start up, which may take a
2192 			 * second or two.
2193 			 */
2194 			if (ifp->if_flags & IFF_RUNNING &&
2195 			    ifp->if_flags & IFF_PROMISC &&
2196 			    !(sc->ti_if_flags & IFF_PROMISC)) {
2197 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2198 				    TI_CMD_CODE_PROMISC_ENB, 0);
2199 			} else if (ifp->if_flags & IFF_RUNNING &&
2200 			    !(ifp->if_flags & IFF_PROMISC) &&
2201 			    sc->ti_if_flags & IFF_PROMISC) {
2202 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2203 				    TI_CMD_CODE_PROMISC_DIS, 0);
2204 			} else
2205 				ti_init(sc);
2206 		} else if (ifp->if_flags & IFF_RUNNING) {
2207 			ti_stop(sc);
2208 		}
2209 		sc->ti_if_flags = ifp->if_flags;
2210 		error = 0;
2211 		break;
2212 	case SIOCADDMULTI:
2213 	case SIOCDELMULTI:
2214 		if (ifp->if_flags & IFF_RUNNING) {
2215 			ti_setmulti(sc);
2216 			error = 0;
2217 		}
2218 		break;
2219 	case SIOCSIFMEDIA:
2220 	case SIOCGIFMEDIA:
2221 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2222 		break;
2223 	case SIOCSIFCAP:
2224 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2225 		if (mask & IFCAP_HWCSUM) {
2226 			if (IFCAP_HWCSUM & ifp->if_capenable)
2227 				ifp->if_capenable &= ~IFCAP_HWCSUM;
2228                         else
2229                                 ifp->if_capenable |= IFCAP_HWCSUM;
2230 			if (ifp->if_flags & IFF_RUNNING)
2231 				ti_init(sc);
2232                 }
2233 		error = 0;
2234 		break;
2235 	default:
2236 		error = ether_ioctl(ifp, command, data);
2237 		break;
2238 	}
2239 	return(error);
2240 }
2241 
2242 static void
2243 ti_watchdog(struct ifnet *ifp)
2244 {
2245 	struct ti_softc *sc = ifp->if_softc;
2246 
2247 	if_printf(ifp, "watchdog timeout -- resetting\n");
2248 	ti_stop(sc);
2249 	ti_init(sc);
2250 
2251 	ifp->if_oerrors++;
2252 
2253 	if (!ifq_is_empty(&ifp->if_snd))
2254 		if_devstart(ifp);
2255 }
2256 
2257 /*
2258  * Stop the adapter and free any mbufs allocated to the
2259  * RX and TX lists.
2260  */
2261 static void
2262 ti_stop(struct ti_softc *sc)
2263 {
2264 	struct ifnet *ifp = &sc->arpcom.ac_if;
2265 	struct ti_cmd_desc cmd;
2266 
2267 	/* Disable host interrupts. */
2268 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2269 	/*
2270 	 * Tell firmware we're shutting down.
2271 	 */
2272 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2273 
2274 	/* Halt and reinitialize. */
2275 	ti_chipinit(sc);
2276 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2277 	ti_chipinit(sc);
2278 
2279 	/* Free the RX lists. */
2280 	ti_free_rx_ring_std(sc);
2281 
2282 	/* Free jumbo RX list. */
2283 	ti_free_rx_ring_jumbo(sc);
2284 
2285 	/* Free mini RX list. */
2286 	ti_free_rx_ring_mini(sc);
2287 
2288 	/* Free TX buffers. */
2289 	ti_free_tx_ring(sc);
2290 
2291 	sc->ti_ev_prodidx.ti_idx = 0;
2292 	sc->ti_return_prodidx.ti_idx = 0;
2293 	sc->ti_tx_considx.ti_idx = 0;
2294 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2295 
2296 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2297 }
2298 
2299 /*
2300  * Stop all chip I/O so that the kernel's probe routines don't
2301  * get confused by errant DMAs when rebooting.
2302  */
2303 static void
2304 ti_shutdown(device_t dev)
2305 {
2306 	struct ti_softc *sc = device_get_softc(dev);
2307 
2308 	ti_chipinit(sc);
2309 }
2310